]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/intel_display.c
drm/i915: Avoid incorrect returning for some platforms
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
760285e7 37#include <drm/i915_drm.h>
79e53945 38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
760285e7
DH
40#include <drm/drm_dp_helper.h>
41#include <drm/drm_crtc_helper.h>
465c120c
MR
42#include <drm/drm_plane_helper.h>
43#include <drm/drm_rect.h>
c0f372b3 44#include <linux/dma_remapping.h>
79e53945 45
465c120c
MR
46/* Primary plane formats supported by all gen */
47#define COMMON_PRIMARY_FORMATS \
48 DRM_FORMAT_C8, \
49 DRM_FORMAT_RGB565, \
50 DRM_FORMAT_XRGB8888, \
51 DRM_FORMAT_ARGB8888
52
53/* Primary plane formats for gen <= 3 */
54static const uint32_t intel_primary_formats_gen2[] = {
55 COMMON_PRIMARY_FORMATS,
56 DRM_FORMAT_XRGB1555,
57 DRM_FORMAT_ARGB1555,
58};
59
60/* Primary plane formats for gen >= 4 */
61static const uint32_t intel_primary_formats_gen4[] = {
62 COMMON_PRIMARY_FORMATS, \
63 DRM_FORMAT_XBGR8888,
64 DRM_FORMAT_ABGR8888,
65 DRM_FORMAT_XRGB2101010,
66 DRM_FORMAT_ARGB2101010,
67 DRM_FORMAT_XBGR2101010,
68 DRM_FORMAT_ABGR2101010,
69};
70
3d7d6510
MR
71/* Cursor formats */
72static const uint32_t intel_cursor_formats[] = {
73 DRM_FORMAT_ARGB8888,
74};
75
ef9348c8 76#define DIV_ROUND_CLOSEST_ULL(ll, d) \
465c120c 77({ unsigned long long _tmp = (ll)+(d)/2; do_div(_tmp, d); _tmp; })
ef9348c8 78
cc36513c
DV
79static void intel_increase_pllclock(struct drm_device *dev,
80 enum pipe pipe);
6b383a7f 81static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945 82
f1f644dc
JB
83static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
84 struct intel_crtc_config *pipe_config);
18442d08
VS
85static void ironlake_pch_clock_get(struct intel_crtc *crtc,
86 struct intel_crtc_config *pipe_config);
f1f644dc 87
e7457a9a
DL
88static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
89 int x, int y, struct drm_framebuffer *old_fb);
eb1bfe80
JB
90static int intel_framebuffer_init(struct drm_device *dev,
91 struct intel_framebuffer *ifb,
92 struct drm_mode_fb_cmd2 *mode_cmd,
93 struct drm_i915_gem_object *obj);
5b18e57c
DV
94static void intel_dp_set_m_n(struct intel_crtc *crtc);
95static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
96static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
29407aab
DV
97static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
98 struct intel_link_m_n *m_n);
99static void ironlake_set_pipeconf(struct drm_crtc *crtc);
229fca97
DV
100static void haswell_set_pipeconf(struct drm_crtc *crtc);
101static void intel_set_pipe_csc(struct drm_crtc *crtc);
bdd4b6a6 102static void vlv_prepare_pll(struct intel_crtc *crtc);
e7457a9a 103
79e53945 104typedef struct {
0206e353 105 int min, max;
79e53945
JB
106} intel_range_t;
107
108typedef struct {
0206e353
AJ
109 int dot_limit;
110 int p2_slow, p2_fast;
79e53945
JB
111} intel_p2_t;
112
d4906093
ML
113typedef struct intel_limit intel_limit_t;
114struct intel_limit {
0206e353
AJ
115 intel_range_t dot, vco, n, m, m1, m2, p, p1;
116 intel_p2_t p2;
d4906093 117};
79e53945 118
d2acd215
DV
119int
120intel_pch_rawclk(struct drm_device *dev)
121{
122 struct drm_i915_private *dev_priv = dev->dev_private;
123
124 WARN_ON(!HAS_PCH_SPLIT(dev));
125
126 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
127}
128
021357ac
CW
129static inline u32 /* units of 100MHz */
130intel_fdi_link_freq(struct drm_device *dev)
131{
8b99e68c
CW
132 if (IS_GEN5(dev)) {
133 struct drm_i915_private *dev_priv = dev->dev_private;
134 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
135 } else
136 return 27;
021357ac
CW
137}
138
5d536e28 139static const intel_limit_t intel_limits_i8xx_dac = {
0206e353 140 .dot = { .min = 25000, .max = 350000 },
9c333719 141 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 142 .n = { .min = 2, .max = 16 },
0206e353
AJ
143 .m = { .min = 96, .max = 140 },
144 .m1 = { .min = 18, .max = 26 },
145 .m2 = { .min = 6, .max = 16 },
146 .p = { .min = 4, .max = 128 },
147 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
148 .p2 = { .dot_limit = 165000,
149 .p2_slow = 4, .p2_fast = 2 },
e4b36699
KP
150};
151
5d536e28
DV
152static const intel_limit_t intel_limits_i8xx_dvo = {
153 .dot = { .min = 25000, .max = 350000 },
9c333719 154 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 155 .n = { .min = 2, .max = 16 },
5d536e28
DV
156 .m = { .min = 96, .max = 140 },
157 .m1 = { .min = 18, .max = 26 },
158 .m2 = { .min = 6, .max = 16 },
159 .p = { .min = 4, .max = 128 },
160 .p1 = { .min = 2, .max = 33 },
161 .p2 = { .dot_limit = 165000,
162 .p2_slow = 4, .p2_fast = 4 },
163};
164
e4b36699 165static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353 166 .dot = { .min = 25000, .max = 350000 },
9c333719 167 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 168 .n = { .min = 2, .max = 16 },
0206e353
AJ
169 .m = { .min = 96, .max = 140 },
170 .m1 = { .min = 18, .max = 26 },
171 .m2 = { .min = 6, .max = 16 },
172 .p = { .min = 4, .max = 128 },
173 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
174 .p2 = { .dot_limit = 165000,
175 .p2_slow = 14, .p2_fast = 7 },
e4b36699 176};
273e27ca 177
e4b36699 178static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
179 .dot = { .min = 20000, .max = 400000 },
180 .vco = { .min = 1400000, .max = 2800000 },
181 .n = { .min = 1, .max = 6 },
182 .m = { .min = 70, .max = 120 },
4f7dfb67
PJ
183 .m1 = { .min = 8, .max = 18 },
184 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
185 .p = { .min = 5, .max = 80 },
186 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
187 .p2 = { .dot_limit = 200000,
188 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
189};
190
191static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
192 .dot = { .min = 20000, .max = 400000 },
193 .vco = { .min = 1400000, .max = 2800000 },
194 .n = { .min = 1, .max = 6 },
195 .m = { .min = 70, .max = 120 },
53a7d2d1
PJ
196 .m1 = { .min = 8, .max = 18 },
197 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
198 .p = { .min = 7, .max = 98 },
199 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
200 .p2 = { .dot_limit = 112000,
201 .p2_slow = 14, .p2_fast = 7 },
e4b36699
KP
202};
203
273e27ca 204
e4b36699 205static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
206 .dot = { .min = 25000, .max = 270000 },
207 .vco = { .min = 1750000, .max = 3500000},
208 .n = { .min = 1, .max = 4 },
209 .m = { .min = 104, .max = 138 },
210 .m1 = { .min = 17, .max = 23 },
211 .m2 = { .min = 5, .max = 11 },
212 .p = { .min = 10, .max = 30 },
213 .p1 = { .min = 1, .max = 3},
214 .p2 = { .dot_limit = 270000,
215 .p2_slow = 10,
216 .p2_fast = 10
044c7c41 217 },
e4b36699
KP
218};
219
220static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
221 .dot = { .min = 22000, .max = 400000 },
222 .vco = { .min = 1750000, .max = 3500000},
223 .n = { .min = 1, .max = 4 },
224 .m = { .min = 104, .max = 138 },
225 .m1 = { .min = 16, .max = 23 },
226 .m2 = { .min = 5, .max = 11 },
227 .p = { .min = 5, .max = 80 },
228 .p1 = { .min = 1, .max = 8},
229 .p2 = { .dot_limit = 165000,
230 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
231};
232
233static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
234 .dot = { .min = 20000, .max = 115000 },
235 .vco = { .min = 1750000, .max = 3500000 },
236 .n = { .min = 1, .max = 3 },
237 .m = { .min = 104, .max = 138 },
238 .m1 = { .min = 17, .max = 23 },
239 .m2 = { .min = 5, .max = 11 },
240 .p = { .min = 28, .max = 112 },
241 .p1 = { .min = 2, .max = 8 },
242 .p2 = { .dot_limit = 0,
243 .p2_slow = 14, .p2_fast = 14
044c7c41 244 },
e4b36699
KP
245};
246
247static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
248 .dot = { .min = 80000, .max = 224000 },
249 .vco = { .min = 1750000, .max = 3500000 },
250 .n = { .min = 1, .max = 3 },
251 .m = { .min = 104, .max = 138 },
252 .m1 = { .min = 17, .max = 23 },
253 .m2 = { .min = 5, .max = 11 },
254 .p = { .min = 14, .max = 42 },
255 .p1 = { .min = 2, .max = 6 },
256 .p2 = { .dot_limit = 0,
257 .p2_slow = 7, .p2_fast = 7
044c7c41 258 },
e4b36699
KP
259};
260
f2b115e6 261static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
262 .dot = { .min = 20000, .max = 400000},
263 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 264 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
265 .n = { .min = 3, .max = 6 },
266 .m = { .min = 2, .max = 256 },
273e27ca 267 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
268 .m1 = { .min = 0, .max = 0 },
269 .m2 = { .min = 0, .max = 254 },
270 .p = { .min = 5, .max = 80 },
271 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
272 .p2 = { .dot_limit = 200000,
273 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
274};
275
f2b115e6 276static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
277 .dot = { .min = 20000, .max = 400000 },
278 .vco = { .min = 1700000, .max = 3500000 },
279 .n = { .min = 3, .max = 6 },
280 .m = { .min = 2, .max = 256 },
281 .m1 = { .min = 0, .max = 0 },
282 .m2 = { .min = 0, .max = 254 },
283 .p = { .min = 7, .max = 112 },
284 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
285 .p2 = { .dot_limit = 112000,
286 .p2_slow = 14, .p2_fast = 14 },
e4b36699
KP
287};
288
273e27ca
EA
289/* Ironlake / Sandybridge
290 *
291 * We calculate clock using (register_value + 2) for N/M1/M2, so here
292 * the range value for them is (actual_value - 2).
293 */
b91ad0ec 294static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
295 .dot = { .min = 25000, .max = 350000 },
296 .vco = { .min = 1760000, .max = 3510000 },
297 .n = { .min = 1, .max = 5 },
298 .m = { .min = 79, .max = 127 },
299 .m1 = { .min = 12, .max = 22 },
300 .m2 = { .min = 5, .max = 9 },
301 .p = { .min = 5, .max = 80 },
302 .p1 = { .min = 1, .max = 8 },
303 .p2 = { .dot_limit = 225000,
304 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
305};
306
b91ad0ec 307static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
308 .dot = { .min = 25000, .max = 350000 },
309 .vco = { .min = 1760000, .max = 3510000 },
310 .n = { .min = 1, .max = 3 },
311 .m = { .min = 79, .max = 118 },
312 .m1 = { .min = 12, .max = 22 },
313 .m2 = { .min = 5, .max = 9 },
314 .p = { .min = 28, .max = 112 },
315 .p1 = { .min = 2, .max = 8 },
316 .p2 = { .dot_limit = 225000,
317 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
318};
319
320static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
321 .dot = { .min = 25000, .max = 350000 },
322 .vco = { .min = 1760000, .max = 3510000 },
323 .n = { .min = 1, .max = 3 },
324 .m = { .min = 79, .max = 127 },
325 .m1 = { .min = 12, .max = 22 },
326 .m2 = { .min = 5, .max = 9 },
327 .p = { .min = 14, .max = 56 },
328 .p1 = { .min = 2, .max = 8 },
329 .p2 = { .dot_limit = 225000,
330 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
331};
332
273e27ca 333/* LVDS 100mhz refclk limits. */
b91ad0ec 334static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
335 .dot = { .min = 25000, .max = 350000 },
336 .vco = { .min = 1760000, .max = 3510000 },
337 .n = { .min = 1, .max = 2 },
338 .m = { .min = 79, .max = 126 },
339 .m1 = { .min = 12, .max = 22 },
340 .m2 = { .min = 5, .max = 9 },
341 .p = { .min = 28, .max = 112 },
0206e353 342 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
343 .p2 = { .dot_limit = 225000,
344 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
345};
346
347static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
348 .dot = { .min = 25000, .max = 350000 },
349 .vco = { .min = 1760000, .max = 3510000 },
350 .n = { .min = 1, .max = 3 },
351 .m = { .min = 79, .max = 126 },
352 .m1 = { .min = 12, .max = 22 },
353 .m2 = { .min = 5, .max = 9 },
354 .p = { .min = 14, .max = 42 },
0206e353 355 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
356 .p2 = { .dot_limit = 225000,
357 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
358};
359
dc730512 360static const intel_limit_t intel_limits_vlv = {
f01b7962
VS
361 /*
362 * These are the data rate limits (measured in fast clocks)
363 * since those are the strictest limits we have. The fast
364 * clock and actual rate limits are more relaxed, so checking
365 * them would make no difference.
366 */
367 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
75e53986 368 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 369 .n = { .min = 1, .max = 7 },
a0c4da24
JB
370 .m1 = { .min = 2, .max = 3 },
371 .m2 = { .min = 11, .max = 156 },
b99ab663 372 .p1 = { .min = 2, .max = 3 },
5fdc9c49 373 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
a0c4da24
JB
374};
375
ef9348c8
CML
376static const intel_limit_t intel_limits_chv = {
377 /*
378 * These are the data rate limits (measured in fast clocks)
379 * since those are the strictest limits we have. The fast
380 * clock and actual rate limits are more relaxed, so checking
381 * them would make no difference.
382 */
383 .dot = { .min = 25000 * 5, .max = 540000 * 5},
384 .vco = { .min = 4860000, .max = 6700000 },
385 .n = { .min = 1, .max = 1 },
386 .m1 = { .min = 2, .max = 2 },
387 .m2 = { .min = 24 << 22, .max = 175 << 22 },
388 .p1 = { .min = 2, .max = 4 },
389 .p2 = { .p2_slow = 1, .p2_fast = 14 },
390};
391
6b4bf1c4
VS
392static void vlv_clock(int refclk, intel_clock_t *clock)
393{
394 clock->m = clock->m1 * clock->m2;
395 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
396 if (WARN_ON(clock->n == 0 || clock->p == 0))
397 return;
fb03ac01
VS
398 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
399 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
6b4bf1c4
VS
400}
401
e0638cdf
PZ
402/**
403 * Returns whether any output on the specified pipe is of the specified type
404 */
405static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
406{
407 struct drm_device *dev = crtc->dev;
408 struct intel_encoder *encoder;
409
410 for_each_encoder_on_crtc(dev, crtc, encoder)
411 if (encoder->type == type)
412 return true;
413
414 return false;
415}
416
1b894b59
CW
417static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
418 int refclk)
2c07245f 419{
b91ad0ec 420 struct drm_device *dev = crtc->dev;
2c07245f 421 const intel_limit_t *limit;
b91ad0ec
ZW
422
423 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 424 if (intel_is_dual_link_lvds(dev)) {
1b894b59 425 if (refclk == 100000)
b91ad0ec
ZW
426 limit = &intel_limits_ironlake_dual_lvds_100m;
427 else
428 limit = &intel_limits_ironlake_dual_lvds;
429 } else {
1b894b59 430 if (refclk == 100000)
b91ad0ec
ZW
431 limit = &intel_limits_ironlake_single_lvds_100m;
432 else
433 limit = &intel_limits_ironlake_single_lvds;
434 }
c6bb3538 435 } else
b91ad0ec 436 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
437
438 return limit;
439}
440
044c7c41
ML
441static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
442{
443 struct drm_device *dev = crtc->dev;
044c7c41
ML
444 const intel_limit_t *limit;
445
446 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 447 if (intel_is_dual_link_lvds(dev))
e4b36699 448 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41 449 else
e4b36699 450 limit = &intel_limits_g4x_single_channel_lvds;
044c7c41
ML
451 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
452 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
e4b36699 453 limit = &intel_limits_g4x_hdmi;
044c7c41 454 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
e4b36699 455 limit = &intel_limits_g4x_sdvo;
044c7c41 456 } else /* The option is for other outputs */
e4b36699 457 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
458
459 return limit;
460}
461
1b894b59 462static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
79e53945
JB
463{
464 struct drm_device *dev = crtc->dev;
465 const intel_limit_t *limit;
466
bad720ff 467 if (HAS_PCH_SPLIT(dev))
1b894b59 468 limit = intel_ironlake_limit(crtc, refclk);
2c07245f 469 else if (IS_G4X(dev)) {
044c7c41 470 limit = intel_g4x_limit(crtc);
f2b115e6 471 } else if (IS_PINEVIEW(dev)) {
2177832f 472 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
f2b115e6 473 limit = &intel_limits_pineview_lvds;
2177832f 474 else
f2b115e6 475 limit = &intel_limits_pineview_sdvo;
ef9348c8
CML
476 } else if (IS_CHERRYVIEW(dev)) {
477 limit = &intel_limits_chv;
a0c4da24 478 } else if (IS_VALLEYVIEW(dev)) {
dc730512 479 limit = &intel_limits_vlv;
a6c45cf0
CW
480 } else if (!IS_GEN2(dev)) {
481 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
482 limit = &intel_limits_i9xx_lvds;
483 else
484 limit = &intel_limits_i9xx_sdvo;
79e53945
JB
485 } else {
486 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 487 limit = &intel_limits_i8xx_lvds;
5d536e28 488 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
e4b36699 489 limit = &intel_limits_i8xx_dvo;
5d536e28
DV
490 else
491 limit = &intel_limits_i8xx_dac;
79e53945
JB
492 }
493 return limit;
494}
495
f2b115e6
AJ
496/* m1 is reserved as 0 in Pineview, n is a ring counter */
497static void pineview_clock(int refclk, intel_clock_t *clock)
79e53945 498{
2177832f
SL
499 clock->m = clock->m2 + 2;
500 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
501 if (WARN_ON(clock->n == 0 || clock->p == 0))
502 return;
fb03ac01
VS
503 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
504 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
2177832f
SL
505}
506
7429e9d4
DV
507static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
508{
509 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
510}
511
ac58c3f0 512static void i9xx_clock(int refclk, intel_clock_t *clock)
2177832f 513{
7429e9d4 514 clock->m = i9xx_dpll_compute_m(clock);
79e53945 515 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
516 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
517 return;
fb03ac01
VS
518 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
519 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
79e53945
JB
520}
521
ef9348c8
CML
522static void chv_clock(int refclk, intel_clock_t *clock)
523{
524 clock->m = clock->m1 * clock->m2;
525 clock->p = clock->p1 * clock->p2;
526 if (WARN_ON(clock->n == 0 || clock->p == 0))
527 return;
528 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
529 clock->n << 22);
530 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
531}
532
7c04d1d9 533#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
534/**
535 * Returns whether the given set of divisors are valid for a given refclk with
536 * the given connectors.
537 */
538
1b894b59
CW
539static bool intel_PLL_is_valid(struct drm_device *dev,
540 const intel_limit_t *limit,
541 const intel_clock_t *clock)
79e53945 542{
f01b7962
VS
543 if (clock->n < limit->n.min || limit->n.max < clock->n)
544 INTELPllInvalid("n out of range\n");
79e53945 545 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 546 INTELPllInvalid("p1 out of range\n");
79e53945 547 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 548 INTELPllInvalid("m2 out of range\n");
79e53945 549 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 550 INTELPllInvalid("m1 out of range\n");
f01b7962
VS
551
552 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
553 if (clock->m1 <= clock->m2)
554 INTELPllInvalid("m1 <= m2\n");
555
556 if (!IS_VALLEYVIEW(dev)) {
557 if (clock->p < limit->p.min || limit->p.max < clock->p)
558 INTELPllInvalid("p out of range\n");
559 if (clock->m < limit->m.min || limit->m.max < clock->m)
560 INTELPllInvalid("m out of range\n");
561 }
562
79e53945 563 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 564 INTELPllInvalid("vco out of range\n");
79e53945
JB
565 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
566 * connector, etc., rather than just a single range.
567 */
568 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 569 INTELPllInvalid("dot out of range\n");
79e53945
JB
570
571 return true;
572}
573
d4906093 574static bool
ee9300bb 575i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
576 int target, int refclk, intel_clock_t *match_clock,
577 intel_clock_t *best_clock)
79e53945
JB
578{
579 struct drm_device *dev = crtc->dev;
79e53945 580 intel_clock_t clock;
79e53945
JB
581 int err = target;
582
a210b028 583 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 584 /*
a210b028
DV
585 * For LVDS just rely on its current settings for dual-channel.
586 * We haven't figured out how to reliably set up different
587 * single/dual channel state, if we even can.
79e53945 588 */
1974cad0 589 if (intel_is_dual_link_lvds(dev))
79e53945
JB
590 clock.p2 = limit->p2.p2_fast;
591 else
592 clock.p2 = limit->p2.p2_slow;
593 } else {
594 if (target < limit->p2.dot_limit)
595 clock.p2 = limit->p2.p2_slow;
596 else
597 clock.p2 = limit->p2.p2_fast;
598 }
599
0206e353 600 memset(best_clock, 0, sizeof(*best_clock));
79e53945 601
42158660
ZY
602 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
603 clock.m1++) {
604 for (clock.m2 = limit->m2.min;
605 clock.m2 <= limit->m2.max; clock.m2++) {
c0efc387 606 if (clock.m2 >= clock.m1)
42158660
ZY
607 break;
608 for (clock.n = limit->n.min;
609 clock.n <= limit->n.max; clock.n++) {
610 for (clock.p1 = limit->p1.min;
611 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
612 int this_err;
613
ac58c3f0
DV
614 i9xx_clock(refclk, &clock);
615 if (!intel_PLL_is_valid(dev, limit,
616 &clock))
617 continue;
618 if (match_clock &&
619 clock.p != match_clock->p)
620 continue;
621
622 this_err = abs(clock.dot - target);
623 if (this_err < err) {
624 *best_clock = clock;
625 err = this_err;
626 }
627 }
628 }
629 }
630 }
631
632 return (err != target);
633}
634
635static bool
ee9300bb
DV
636pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
637 int target, int refclk, intel_clock_t *match_clock,
638 intel_clock_t *best_clock)
79e53945
JB
639{
640 struct drm_device *dev = crtc->dev;
79e53945 641 intel_clock_t clock;
79e53945
JB
642 int err = target;
643
a210b028 644 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 645 /*
a210b028
DV
646 * For LVDS just rely on its current settings for dual-channel.
647 * We haven't figured out how to reliably set up different
648 * single/dual channel state, if we even can.
79e53945 649 */
1974cad0 650 if (intel_is_dual_link_lvds(dev))
79e53945
JB
651 clock.p2 = limit->p2.p2_fast;
652 else
653 clock.p2 = limit->p2.p2_slow;
654 } else {
655 if (target < limit->p2.dot_limit)
656 clock.p2 = limit->p2.p2_slow;
657 else
658 clock.p2 = limit->p2.p2_fast;
659 }
660
0206e353 661 memset(best_clock, 0, sizeof(*best_clock));
79e53945 662
42158660
ZY
663 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
664 clock.m1++) {
665 for (clock.m2 = limit->m2.min;
666 clock.m2 <= limit->m2.max; clock.m2++) {
42158660
ZY
667 for (clock.n = limit->n.min;
668 clock.n <= limit->n.max; clock.n++) {
669 for (clock.p1 = limit->p1.min;
670 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
671 int this_err;
672
ac58c3f0 673 pineview_clock(refclk, &clock);
1b894b59
CW
674 if (!intel_PLL_is_valid(dev, limit,
675 &clock))
79e53945 676 continue;
cec2f356
SP
677 if (match_clock &&
678 clock.p != match_clock->p)
679 continue;
79e53945
JB
680
681 this_err = abs(clock.dot - target);
682 if (this_err < err) {
683 *best_clock = clock;
684 err = this_err;
685 }
686 }
687 }
688 }
689 }
690
691 return (err != target);
692}
693
d4906093 694static bool
ee9300bb
DV
695g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
696 int target, int refclk, intel_clock_t *match_clock,
697 intel_clock_t *best_clock)
d4906093
ML
698{
699 struct drm_device *dev = crtc->dev;
d4906093
ML
700 intel_clock_t clock;
701 int max_n;
702 bool found;
6ba770dc
AJ
703 /* approximately equals target * 0.00585 */
704 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
705 found = false;
706
707 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 708 if (intel_is_dual_link_lvds(dev))
d4906093
ML
709 clock.p2 = limit->p2.p2_fast;
710 else
711 clock.p2 = limit->p2.p2_slow;
712 } else {
713 if (target < limit->p2.dot_limit)
714 clock.p2 = limit->p2.p2_slow;
715 else
716 clock.p2 = limit->p2.p2_fast;
717 }
718
719 memset(best_clock, 0, sizeof(*best_clock));
720 max_n = limit->n.max;
f77f13e2 721 /* based on hardware requirement, prefer smaller n to precision */
d4906093 722 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 723 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
724 for (clock.m1 = limit->m1.max;
725 clock.m1 >= limit->m1.min; clock.m1--) {
726 for (clock.m2 = limit->m2.max;
727 clock.m2 >= limit->m2.min; clock.m2--) {
728 for (clock.p1 = limit->p1.max;
729 clock.p1 >= limit->p1.min; clock.p1--) {
730 int this_err;
731
ac58c3f0 732 i9xx_clock(refclk, &clock);
1b894b59
CW
733 if (!intel_PLL_is_valid(dev, limit,
734 &clock))
d4906093 735 continue;
1b894b59
CW
736
737 this_err = abs(clock.dot - target);
d4906093
ML
738 if (this_err < err_most) {
739 *best_clock = clock;
740 err_most = this_err;
741 max_n = clock.n;
742 found = true;
743 }
744 }
745 }
746 }
747 }
2c07245f
ZW
748 return found;
749}
750
a0c4da24 751static bool
ee9300bb
DV
752vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
753 int target, int refclk, intel_clock_t *match_clock,
754 intel_clock_t *best_clock)
a0c4da24 755{
f01b7962 756 struct drm_device *dev = crtc->dev;
6b4bf1c4 757 intel_clock_t clock;
69e4f900 758 unsigned int bestppm = 1000000;
27e639bf
VS
759 /* min update 19.2 MHz */
760 int max_n = min(limit->n.max, refclk / 19200);
49e497ef 761 bool found = false;
a0c4da24 762
6b4bf1c4
VS
763 target *= 5; /* fast clock */
764
765 memset(best_clock, 0, sizeof(*best_clock));
a0c4da24
JB
766
767 /* based on hardware requirement, prefer smaller n to precision */
27e639bf 768 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
811bbf05 769 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
889059d8 770 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
c1a9ae43 771 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
6b4bf1c4 772 clock.p = clock.p1 * clock.p2;
a0c4da24 773 /* based on hardware requirement, prefer bigger m1,m2 values */
6b4bf1c4 774 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
69e4f900
VS
775 unsigned int ppm, diff;
776
6b4bf1c4
VS
777 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
778 refclk * clock.m1);
779
780 vlv_clock(refclk, &clock);
43b0ac53 781
f01b7962
VS
782 if (!intel_PLL_is_valid(dev, limit,
783 &clock))
43b0ac53
VS
784 continue;
785
6b4bf1c4
VS
786 diff = abs(clock.dot - target);
787 ppm = div_u64(1000000ULL * diff, target);
788
789 if (ppm < 100 && clock.p > best_clock->p) {
43b0ac53 790 bestppm = 0;
6b4bf1c4 791 *best_clock = clock;
49e497ef 792 found = true;
43b0ac53 793 }
6b4bf1c4 794
c686122c 795 if (bestppm >= 10 && ppm < bestppm - 10) {
69e4f900 796 bestppm = ppm;
6b4bf1c4 797 *best_clock = clock;
49e497ef 798 found = true;
a0c4da24
JB
799 }
800 }
801 }
802 }
803 }
a0c4da24 804
49e497ef 805 return found;
a0c4da24 806}
a4fc5ed6 807
ef9348c8
CML
808static bool
809chv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
810 int target, int refclk, intel_clock_t *match_clock,
811 intel_clock_t *best_clock)
812{
813 struct drm_device *dev = crtc->dev;
814 intel_clock_t clock;
815 uint64_t m2;
816 int found = false;
817
818 memset(best_clock, 0, sizeof(*best_clock));
819
820 /*
821 * Based on hardware doc, the n always set to 1, and m1 always
822 * set to 2. If requires to support 200Mhz refclk, we need to
823 * revisit this because n may not 1 anymore.
824 */
825 clock.n = 1, clock.m1 = 2;
826 target *= 5; /* fast clock */
827
828 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
829 for (clock.p2 = limit->p2.p2_fast;
830 clock.p2 >= limit->p2.p2_slow;
831 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
832
833 clock.p = clock.p1 * clock.p2;
834
835 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
836 clock.n) << 22, refclk * clock.m1);
837
838 if (m2 > INT_MAX/clock.m1)
839 continue;
840
841 clock.m2 = m2;
842
843 chv_clock(refclk, &clock);
844
845 if (!intel_PLL_is_valid(dev, limit, &clock))
846 continue;
847
848 /* based on hardware requirement, prefer bigger p
849 */
850 if (clock.p > best_clock->p) {
851 *best_clock = clock;
852 found = true;
853 }
854 }
855 }
856
857 return found;
858}
859
20ddf665
VS
860bool intel_crtc_active(struct drm_crtc *crtc)
861{
862 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
863
864 /* Be paranoid as we can arrive here with only partial
865 * state retrieved from the hardware during setup.
866 *
241bfc38 867 * We can ditch the adjusted_mode.crtc_clock check as soon
20ddf665
VS
868 * as Haswell has gained clock readout/fastboot support.
869 *
66e514c1 870 * We can ditch the crtc->primary->fb check as soon as we can
20ddf665
VS
871 * properly reconstruct framebuffers.
872 */
f4510a27 873 return intel_crtc->active && crtc->primary->fb &&
241bfc38 874 intel_crtc->config.adjusted_mode.crtc_clock;
20ddf665
VS
875}
876
a5c961d1
PZ
877enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
878 enum pipe pipe)
879{
880 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
881 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
882
3b117c8f 883 return intel_crtc->config.cpu_transcoder;
a5c961d1
PZ
884}
885
57e22f4a 886static void g4x_wait_for_vblank(struct drm_device *dev, int pipe)
a928d536
PZ
887{
888 struct drm_i915_private *dev_priv = dev->dev_private;
57e22f4a 889 u32 frame, frame_reg = PIPE_FRMCOUNT_GM45(pipe);
a928d536
PZ
890
891 frame = I915_READ(frame_reg);
892
893 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
93937071 894 WARN(1, "vblank wait timed out\n");
a928d536
PZ
895}
896
9d0498a2
JB
897/**
898 * intel_wait_for_vblank - wait for vblank on a given pipe
899 * @dev: drm device
900 * @pipe: pipe to wait for
901 *
902 * Wait for vblank to occur on a given pipe. Needed for various bits of
903 * mode setting code.
904 */
905void intel_wait_for_vblank(struct drm_device *dev, int pipe)
79e53945 906{
9d0498a2 907 struct drm_i915_private *dev_priv = dev->dev_private;
9db4a9c7 908 int pipestat_reg = PIPESTAT(pipe);
9d0498a2 909
57e22f4a
VS
910 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
911 g4x_wait_for_vblank(dev, pipe);
a928d536
PZ
912 return;
913 }
914
300387c0
CW
915 /* Clear existing vblank status. Note this will clear any other
916 * sticky status fields as well.
917 *
918 * This races with i915_driver_irq_handler() with the result
919 * that either function could miss a vblank event. Here it is not
920 * fatal, as we will either wait upon the next vblank interrupt or
921 * timeout. Generally speaking intel_wait_for_vblank() is only
922 * called during modeset at which time the GPU should be idle and
923 * should *not* be performing page flips and thus not waiting on
924 * vblanks...
925 * Currently, the result of us stealing a vblank from the irq
926 * handler is that a single frame will be skipped during swapbuffers.
927 */
928 I915_WRITE(pipestat_reg,
929 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
930
9d0498a2 931 /* Wait for vblank interrupt bit to set */
481b6af3
CW
932 if (wait_for(I915_READ(pipestat_reg) &
933 PIPE_VBLANK_INTERRUPT_STATUS,
934 50))
9d0498a2
JB
935 DRM_DEBUG_KMS("vblank wait timed out\n");
936}
937
fbf49ea2
VS
938static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
939{
940 struct drm_i915_private *dev_priv = dev->dev_private;
941 u32 reg = PIPEDSL(pipe);
942 u32 line1, line2;
943 u32 line_mask;
944
945 if (IS_GEN2(dev))
946 line_mask = DSL_LINEMASK_GEN2;
947 else
948 line_mask = DSL_LINEMASK_GEN3;
949
950 line1 = I915_READ(reg) & line_mask;
951 mdelay(5);
952 line2 = I915_READ(reg) & line_mask;
953
954 return line1 == line2;
955}
956
ab7ad7f6
KP
957/*
958 * intel_wait_for_pipe_off - wait for pipe to turn off
9d0498a2
JB
959 * @dev: drm device
960 * @pipe: pipe to wait for
961 *
962 * After disabling a pipe, we can't wait for vblank in the usual way,
963 * spinning on the vblank interrupt status bit, since we won't actually
964 * see an interrupt when the pipe is disabled.
965 *
ab7ad7f6
KP
966 * On Gen4 and above:
967 * wait for the pipe register state bit to turn off
968 *
969 * Otherwise:
970 * wait for the display line value to settle (it usually
971 * ends up stopping at the start of the next frame).
58e10eb9 972 *
9d0498a2 973 */
58e10eb9 974void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
9d0498a2
JB
975{
976 struct drm_i915_private *dev_priv = dev->dev_private;
702e7a56
PZ
977 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
978 pipe);
ab7ad7f6
KP
979
980 if (INTEL_INFO(dev)->gen >= 4) {
702e7a56 981 int reg = PIPECONF(cpu_transcoder);
ab7ad7f6
KP
982
983 /* Wait for the Pipe State to go off */
58e10eb9
CW
984 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
985 100))
284637d9 986 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 987 } else {
ab7ad7f6 988 /* Wait for the display line to settle */
fbf49ea2 989 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
284637d9 990 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 991 }
79e53945
JB
992}
993
b0ea7d37
DL
994/*
995 * ibx_digital_port_connected - is the specified port connected?
996 * @dev_priv: i915 private structure
997 * @port: the port to test
998 *
999 * Returns true if @port is connected, false otherwise.
1000 */
1001bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1002 struct intel_digital_port *port)
1003{
1004 u32 bit;
1005
c36346e3 1006 if (HAS_PCH_IBX(dev_priv->dev)) {
eba905b2 1007 switch (port->port) {
c36346e3
DL
1008 case PORT_B:
1009 bit = SDE_PORTB_HOTPLUG;
1010 break;
1011 case PORT_C:
1012 bit = SDE_PORTC_HOTPLUG;
1013 break;
1014 case PORT_D:
1015 bit = SDE_PORTD_HOTPLUG;
1016 break;
1017 default:
1018 return true;
1019 }
1020 } else {
eba905b2 1021 switch (port->port) {
c36346e3
DL
1022 case PORT_B:
1023 bit = SDE_PORTB_HOTPLUG_CPT;
1024 break;
1025 case PORT_C:
1026 bit = SDE_PORTC_HOTPLUG_CPT;
1027 break;
1028 case PORT_D:
1029 bit = SDE_PORTD_HOTPLUG_CPT;
1030 break;
1031 default:
1032 return true;
1033 }
b0ea7d37
DL
1034 }
1035
1036 return I915_READ(SDEISR) & bit;
1037}
1038
b24e7179
JB
1039static const char *state_string(bool enabled)
1040{
1041 return enabled ? "on" : "off";
1042}
1043
1044/* Only for pre-ILK configs */
55607e8a
DV
1045void assert_pll(struct drm_i915_private *dev_priv,
1046 enum pipe pipe, bool state)
b24e7179
JB
1047{
1048 int reg;
1049 u32 val;
1050 bool cur_state;
1051
1052 reg = DPLL(pipe);
1053 val = I915_READ(reg);
1054 cur_state = !!(val & DPLL_VCO_ENABLE);
1055 WARN(cur_state != state,
1056 "PLL state assertion failure (expected %s, current %s)\n",
1057 state_string(state), state_string(cur_state));
1058}
b24e7179 1059
23538ef1
JN
1060/* XXX: the dsi pll is shared between MIPI DSI ports */
1061static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1062{
1063 u32 val;
1064 bool cur_state;
1065
1066 mutex_lock(&dev_priv->dpio_lock);
1067 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1068 mutex_unlock(&dev_priv->dpio_lock);
1069
1070 cur_state = val & DSI_PLL_VCO_EN;
1071 WARN(cur_state != state,
1072 "DSI PLL state assertion failure (expected %s, current %s)\n",
1073 state_string(state), state_string(cur_state));
1074}
1075#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1076#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1077
55607e8a 1078struct intel_shared_dpll *
e2b78267
DV
1079intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1080{
1081 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1082
a43f6e0f 1083 if (crtc->config.shared_dpll < 0)
e2b78267
DV
1084 return NULL;
1085
a43f6e0f 1086 return &dev_priv->shared_dplls[crtc->config.shared_dpll];
e2b78267
DV
1087}
1088
040484af 1089/* For ILK+ */
55607e8a
DV
1090void assert_shared_dpll(struct drm_i915_private *dev_priv,
1091 struct intel_shared_dpll *pll,
1092 bool state)
040484af 1093{
040484af 1094 bool cur_state;
5358901f 1095 struct intel_dpll_hw_state hw_state;
040484af 1096
92b27b08 1097 if (WARN (!pll,
46edb027 1098 "asserting DPLL %s with no DPLL\n", state_string(state)))
ee7b9f93 1099 return;
ee7b9f93 1100
5358901f 1101 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
92b27b08 1102 WARN(cur_state != state,
5358901f
DV
1103 "%s assertion failure (expected %s, current %s)\n",
1104 pll->name, state_string(state), state_string(cur_state));
040484af 1105}
040484af
JB
1106
1107static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1108 enum pipe pipe, bool state)
1109{
1110 int reg;
1111 u32 val;
1112 bool cur_state;
ad80a810
PZ
1113 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1114 pipe);
040484af 1115
affa9354
PZ
1116 if (HAS_DDI(dev_priv->dev)) {
1117 /* DDI does not have a specific FDI_TX register */
ad80a810 1118 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
bf507ef7 1119 val = I915_READ(reg);
ad80a810 1120 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
bf507ef7
ED
1121 } else {
1122 reg = FDI_TX_CTL(pipe);
1123 val = I915_READ(reg);
1124 cur_state = !!(val & FDI_TX_ENABLE);
1125 }
040484af
JB
1126 WARN(cur_state != state,
1127 "FDI TX state assertion failure (expected %s, current %s)\n",
1128 state_string(state), state_string(cur_state));
1129}
1130#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1131#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1132
1133static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1134 enum pipe pipe, bool state)
1135{
1136 int reg;
1137 u32 val;
1138 bool cur_state;
1139
d63fa0dc
PZ
1140 reg = FDI_RX_CTL(pipe);
1141 val = I915_READ(reg);
1142 cur_state = !!(val & FDI_RX_ENABLE);
040484af
JB
1143 WARN(cur_state != state,
1144 "FDI RX state assertion failure (expected %s, current %s)\n",
1145 state_string(state), state_string(cur_state));
1146}
1147#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1148#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1149
1150static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1151 enum pipe pipe)
1152{
1153 int reg;
1154 u32 val;
1155
1156 /* ILK FDI PLL is always enabled */
3d13ef2e 1157 if (INTEL_INFO(dev_priv->dev)->gen == 5)
040484af
JB
1158 return;
1159
bf507ef7 1160 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
affa9354 1161 if (HAS_DDI(dev_priv->dev))
bf507ef7
ED
1162 return;
1163
040484af
JB
1164 reg = FDI_TX_CTL(pipe);
1165 val = I915_READ(reg);
1166 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1167}
1168
55607e8a
DV
1169void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1170 enum pipe pipe, bool state)
040484af
JB
1171{
1172 int reg;
1173 u32 val;
55607e8a 1174 bool cur_state;
040484af
JB
1175
1176 reg = FDI_RX_CTL(pipe);
1177 val = I915_READ(reg);
55607e8a
DV
1178 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1179 WARN(cur_state != state,
1180 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1181 state_string(state), state_string(cur_state));
040484af
JB
1182}
1183
ea0760cf
JB
1184static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1185 enum pipe pipe)
1186{
1187 int pp_reg, lvds_reg;
1188 u32 val;
1189 enum pipe panel_pipe = PIPE_A;
0de3b485 1190 bool locked = true;
ea0760cf
JB
1191
1192 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1193 pp_reg = PCH_PP_CONTROL;
1194 lvds_reg = PCH_LVDS;
1195 } else {
1196 pp_reg = PP_CONTROL;
1197 lvds_reg = LVDS;
1198 }
1199
1200 val = I915_READ(pp_reg);
1201 if (!(val & PANEL_POWER_ON) ||
1202 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1203 locked = false;
1204
1205 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1206 panel_pipe = PIPE_B;
1207
1208 WARN(panel_pipe == pipe && locked,
1209 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1210 pipe_name(pipe));
ea0760cf
JB
1211}
1212
93ce0ba6
JN
1213static void assert_cursor(struct drm_i915_private *dev_priv,
1214 enum pipe pipe, bool state)
1215{
1216 struct drm_device *dev = dev_priv->dev;
1217 bool cur_state;
1218
d9d82081 1219 if (IS_845G(dev) || IS_I865G(dev))
93ce0ba6 1220 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
d9d82081 1221 else
5efb3e28 1222 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
93ce0ba6
JN
1223
1224 WARN(cur_state != state,
1225 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1226 pipe_name(pipe), state_string(state), state_string(cur_state));
1227}
1228#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1229#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1230
b840d907
JB
1231void assert_pipe(struct drm_i915_private *dev_priv,
1232 enum pipe pipe, bool state)
b24e7179
JB
1233{
1234 int reg;
1235 u32 val;
63d7bbe9 1236 bool cur_state;
702e7a56
PZ
1237 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1238 pipe);
b24e7179 1239
8e636784
DV
1240 /* if we need the pipe A quirk it must be always on */
1241 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1242 state = true;
1243
da7e29bd 1244 if (!intel_display_power_enabled(dev_priv,
b97186f0 1245 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
69310161
PZ
1246 cur_state = false;
1247 } else {
1248 reg = PIPECONF(cpu_transcoder);
1249 val = I915_READ(reg);
1250 cur_state = !!(val & PIPECONF_ENABLE);
1251 }
1252
63d7bbe9
JB
1253 WARN(cur_state != state,
1254 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 1255 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179
JB
1256}
1257
931872fc
CW
1258static void assert_plane(struct drm_i915_private *dev_priv,
1259 enum plane plane, bool state)
b24e7179
JB
1260{
1261 int reg;
1262 u32 val;
931872fc 1263 bool cur_state;
b24e7179
JB
1264
1265 reg = DSPCNTR(plane);
1266 val = I915_READ(reg);
931872fc
CW
1267 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1268 WARN(cur_state != state,
1269 "plane %c assertion failure (expected %s, current %s)\n",
1270 plane_name(plane), state_string(state), state_string(cur_state));
b24e7179
JB
1271}
1272
931872fc
CW
1273#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1274#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1275
b24e7179
JB
1276static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1277 enum pipe pipe)
1278{
653e1026 1279 struct drm_device *dev = dev_priv->dev;
b24e7179
JB
1280 int reg, i;
1281 u32 val;
1282 int cur_pipe;
1283
653e1026
VS
1284 /* Primary planes are fixed to pipes on gen4+ */
1285 if (INTEL_INFO(dev)->gen >= 4) {
28c05794
AJ
1286 reg = DSPCNTR(pipe);
1287 val = I915_READ(reg);
83f26f16 1288 WARN(val & DISPLAY_PLANE_ENABLE,
28c05794
AJ
1289 "plane %c assertion failure, should be disabled but not\n",
1290 plane_name(pipe));
19ec1358 1291 return;
28c05794 1292 }
19ec1358 1293
b24e7179 1294 /* Need to check both planes against the pipe */
08e2a7de 1295 for_each_pipe(i) {
b24e7179
JB
1296 reg = DSPCNTR(i);
1297 val = I915_READ(reg);
1298 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1299 DISPPLANE_SEL_PIPE_SHIFT;
1300 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1301 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1302 plane_name(i), pipe_name(pipe));
b24e7179
JB
1303 }
1304}
1305
19332d7a
JB
1306static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1307 enum pipe pipe)
1308{
20674eef 1309 struct drm_device *dev = dev_priv->dev;
1fe47785 1310 int reg, sprite;
19332d7a
JB
1311 u32 val;
1312
20674eef 1313 if (IS_VALLEYVIEW(dev)) {
1fe47785
DL
1314 for_each_sprite(pipe, sprite) {
1315 reg = SPCNTR(pipe, sprite);
20674eef 1316 val = I915_READ(reg);
83f26f16 1317 WARN(val & SP_ENABLE,
20674eef 1318 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1fe47785 1319 sprite_name(pipe, sprite), pipe_name(pipe));
20674eef
VS
1320 }
1321 } else if (INTEL_INFO(dev)->gen >= 7) {
1322 reg = SPRCTL(pipe);
19332d7a 1323 val = I915_READ(reg);
83f26f16 1324 WARN(val & SPRITE_ENABLE,
06da8da2 1325 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef
VS
1326 plane_name(pipe), pipe_name(pipe));
1327 } else if (INTEL_INFO(dev)->gen >= 5) {
1328 reg = DVSCNTR(pipe);
19332d7a 1329 val = I915_READ(reg);
83f26f16 1330 WARN(val & DVS_ENABLE,
06da8da2 1331 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef 1332 plane_name(pipe), pipe_name(pipe));
19332d7a
JB
1333 }
1334}
1335
89eff4be 1336static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
92f2584a
JB
1337{
1338 u32 val;
1339 bool enabled;
1340
89eff4be 1341 WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
9d82aa17 1342
92f2584a
JB
1343 val = I915_READ(PCH_DREF_CONTROL);
1344 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1345 DREF_SUPERSPREAD_SOURCE_MASK));
1346 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1347}
1348
ab9412ba
DV
1349static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1350 enum pipe pipe)
92f2584a
JB
1351{
1352 int reg;
1353 u32 val;
1354 bool enabled;
1355
ab9412ba 1356 reg = PCH_TRANSCONF(pipe);
92f2584a
JB
1357 val = I915_READ(reg);
1358 enabled = !!(val & TRANS_ENABLE);
9db4a9c7
JB
1359 WARN(enabled,
1360 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1361 pipe_name(pipe));
92f2584a
JB
1362}
1363
4e634389
KP
1364static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1365 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1366{
1367 if ((val & DP_PORT_EN) == 0)
1368 return false;
1369
1370 if (HAS_PCH_CPT(dev_priv->dev)) {
1371 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1372 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1373 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1374 return false;
44f37d1f
CML
1375 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1376 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1377 return false;
f0575e92
KP
1378 } else {
1379 if ((val & DP_PIPE_MASK) != (pipe << 30))
1380 return false;
1381 }
1382 return true;
1383}
1384
1519b995
KP
1385static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1386 enum pipe pipe, u32 val)
1387{
dc0fa718 1388 if ((val & SDVO_ENABLE) == 0)
1519b995
KP
1389 return false;
1390
1391 if (HAS_PCH_CPT(dev_priv->dev)) {
dc0fa718 1392 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1519b995 1393 return false;
44f37d1f
CML
1394 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1395 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1396 return false;
1519b995 1397 } else {
dc0fa718 1398 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1519b995
KP
1399 return false;
1400 }
1401 return true;
1402}
1403
1404static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1405 enum pipe pipe, u32 val)
1406{
1407 if ((val & LVDS_PORT_EN) == 0)
1408 return false;
1409
1410 if (HAS_PCH_CPT(dev_priv->dev)) {
1411 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1412 return false;
1413 } else {
1414 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1415 return false;
1416 }
1417 return true;
1418}
1419
1420static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1421 enum pipe pipe, u32 val)
1422{
1423 if ((val & ADPA_DAC_ENABLE) == 0)
1424 return false;
1425 if (HAS_PCH_CPT(dev_priv->dev)) {
1426 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1427 return false;
1428 } else {
1429 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1430 return false;
1431 }
1432 return true;
1433}
1434
291906f1 1435static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1436 enum pipe pipe, int reg, u32 port_sel)
291906f1 1437{
47a05eca 1438 u32 val = I915_READ(reg);
4e634389 1439 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1440 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1441 reg, pipe_name(pipe));
de9a35ab 1442
75c5da27
DV
1443 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1444 && (val & DP_PIPEB_SELECT),
de9a35ab 1445 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1446}
1447
1448static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1449 enum pipe pipe, int reg)
1450{
47a05eca 1451 u32 val = I915_READ(reg);
b70ad586 1452 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1453 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1454 reg, pipe_name(pipe));
de9a35ab 1455
dc0fa718 1456 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
75c5da27 1457 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1458 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1459}
1460
1461static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1462 enum pipe pipe)
1463{
1464 int reg;
1465 u32 val;
291906f1 1466
f0575e92
KP
1467 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1468 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1469 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1
JB
1470
1471 reg = PCH_ADPA;
1472 val = I915_READ(reg);
b70ad586 1473 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1474 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1475 pipe_name(pipe));
291906f1
JB
1476
1477 reg = PCH_LVDS;
1478 val = I915_READ(reg);
b70ad586 1479 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1480 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1481 pipe_name(pipe));
291906f1 1482
e2debe91
PZ
1483 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1484 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1485 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
291906f1
JB
1486}
1487
40e9cf64
JB
1488static void intel_init_dpio(struct drm_device *dev)
1489{
1490 struct drm_i915_private *dev_priv = dev->dev_private;
1491
1492 if (!IS_VALLEYVIEW(dev))
1493 return;
1494
a09caddd
CML
1495 /*
1496 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1497 * CHV x1 PHY (DP/HDMI D)
1498 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1499 */
1500 if (IS_CHERRYVIEW(dev)) {
1501 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1502 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1503 } else {
1504 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1505 }
5382f5f3
JB
1506}
1507
1508static void intel_reset_dpio(struct drm_device *dev)
1509{
1510 struct drm_i915_private *dev_priv = dev->dev_private;
1511
076ed3b2
CML
1512 if (IS_CHERRYVIEW(dev)) {
1513 enum dpio_phy phy;
1514 u32 val;
1515
1516 for (phy = DPIO_PHY0; phy < I915_NUM_PHYS_VLV; phy++) {
1517 /* Poll for phypwrgood signal */
1518 if (wait_for(I915_READ(DISPLAY_PHY_STATUS) &
1519 PHY_POWERGOOD(phy), 1))
1520 DRM_ERROR("Display PHY %d is not power up\n", phy);
1521
1522 /*
1523 * Deassert common lane reset for PHY.
1524 *
1525 * This should only be done on init and resume from S3
1526 * with both PLLs disabled, or we risk losing DPIO and
1527 * PLL synchronization.
1528 */
1529 val = I915_READ(DISPLAY_PHY_CONTROL);
1530 I915_WRITE(DISPLAY_PHY_CONTROL,
1531 PHY_COM_LANE_RESET_DEASSERT(phy, val));
1532 }
076ed3b2 1533 }
40e9cf64
JB
1534}
1535
426115cf 1536static void vlv_enable_pll(struct intel_crtc *crtc)
87442f73 1537{
426115cf
DV
1538 struct drm_device *dev = crtc->base.dev;
1539 struct drm_i915_private *dev_priv = dev->dev_private;
1540 int reg = DPLL(crtc->pipe);
1541 u32 dpll = crtc->config.dpll_hw_state.dpll;
87442f73 1542
426115cf 1543 assert_pipe_disabled(dev_priv, crtc->pipe);
87442f73
DV
1544
1545 /* No really, not for ILK+ */
1546 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1547
1548 /* PLL is protected by panel, make sure we can write it */
1549 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
426115cf 1550 assert_panel_unlocked(dev_priv, crtc->pipe);
87442f73 1551
426115cf
DV
1552 I915_WRITE(reg, dpll);
1553 POSTING_READ(reg);
1554 udelay(150);
1555
1556 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1557 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1558
1559 I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1560 POSTING_READ(DPLL_MD(crtc->pipe));
87442f73
DV
1561
1562 /* We do this three times for luck */
426115cf 1563 I915_WRITE(reg, dpll);
87442f73
DV
1564 POSTING_READ(reg);
1565 udelay(150); /* wait for warmup */
426115cf 1566 I915_WRITE(reg, dpll);
87442f73
DV
1567 POSTING_READ(reg);
1568 udelay(150); /* wait for warmup */
426115cf 1569 I915_WRITE(reg, dpll);
87442f73
DV
1570 POSTING_READ(reg);
1571 udelay(150); /* wait for warmup */
1572}
1573
9d556c99
CML
1574static void chv_enable_pll(struct intel_crtc *crtc)
1575{
1576 struct drm_device *dev = crtc->base.dev;
1577 struct drm_i915_private *dev_priv = dev->dev_private;
1578 int pipe = crtc->pipe;
1579 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9d556c99
CML
1580 u32 tmp;
1581
1582 assert_pipe_disabled(dev_priv, crtc->pipe);
1583
1584 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1585
1586 mutex_lock(&dev_priv->dpio_lock);
1587
1588 /* Enable back the 10bit clock to display controller */
1589 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1590 tmp |= DPIO_DCLKP_EN;
1591 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1592
1593 /*
1594 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1595 */
1596 udelay(1);
1597
1598 /* Enable PLL */
a11b0703 1599 I915_WRITE(DPLL(pipe), crtc->config.dpll_hw_state.dpll);
9d556c99
CML
1600
1601 /* Check PLL is locked */
a11b0703 1602 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
9d556c99
CML
1603 DRM_ERROR("PLL %d failed to lock\n", pipe);
1604
a11b0703
VS
1605 /* not sure when this should be written */
1606 I915_WRITE(DPLL_MD(pipe), crtc->config.dpll_hw_state.dpll_md);
1607 POSTING_READ(DPLL_MD(pipe));
1608
9d556c99
CML
1609 mutex_unlock(&dev_priv->dpio_lock);
1610}
1611
66e3d5c0 1612static void i9xx_enable_pll(struct intel_crtc *crtc)
63d7bbe9 1613{
66e3d5c0
DV
1614 struct drm_device *dev = crtc->base.dev;
1615 struct drm_i915_private *dev_priv = dev->dev_private;
1616 int reg = DPLL(crtc->pipe);
1617 u32 dpll = crtc->config.dpll_hw_state.dpll;
63d7bbe9 1618
66e3d5c0 1619 assert_pipe_disabled(dev_priv, crtc->pipe);
58c6eaa2 1620
63d7bbe9 1621 /* No really, not for ILK+ */
3d13ef2e 1622 BUG_ON(INTEL_INFO(dev)->gen >= 5);
63d7bbe9
JB
1623
1624 /* PLL is protected by panel, make sure we can write it */
66e3d5c0
DV
1625 if (IS_MOBILE(dev) && !IS_I830(dev))
1626 assert_panel_unlocked(dev_priv, crtc->pipe);
63d7bbe9 1627
66e3d5c0
DV
1628 I915_WRITE(reg, dpll);
1629
1630 /* Wait for the clocks to stabilize. */
1631 POSTING_READ(reg);
1632 udelay(150);
1633
1634 if (INTEL_INFO(dev)->gen >= 4) {
1635 I915_WRITE(DPLL_MD(crtc->pipe),
1636 crtc->config.dpll_hw_state.dpll_md);
1637 } else {
1638 /* The pixel multiplier can only be updated once the
1639 * DPLL is enabled and the clocks are stable.
1640 *
1641 * So write it again.
1642 */
1643 I915_WRITE(reg, dpll);
1644 }
63d7bbe9
JB
1645
1646 /* We do this three times for luck */
66e3d5c0 1647 I915_WRITE(reg, dpll);
63d7bbe9
JB
1648 POSTING_READ(reg);
1649 udelay(150); /* wait for warmup */
66e3d5c0 1650 I915_WRITE(reg, dpll);
63d7bbe9
JB
1651 POSTING_READ(reg);
1652 udelay(150); /* wait for warmup */
66e3d5c0 1653 I915_WRITE(reg, dpll);
63d7bbe9
JB
1654 POSTING_READ(reg);
1655 udelay(150); /* wait for warmup */
1656}
1657
1658/**
50b44a44 1659 * i9xx_disable_pll - disable a PLL
63d7bbe9
JB
1660 * @dev_priv: i915 private structure
1661 * @pipe: pipe PLL to disable
1662 *
1663 * Disable the PLL for @pipe, making sure the pipe is off first.
1664 *
1665 * Note! This is for pre-ILK only.
1666 */
50b44a44 1667static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
63d7bbe9 1668{
63d7bbe9
JB
1669 /* Don't disable pipe A or pipe A PLLs if needed */
1670 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1671 return;
1672
1673 /* Make sure the pipe isn't still relying on us */
1674 assert_pipe_disabled(dev_priv, pipe);
1675
50b44a44
DV
1676 I915_WRITE(DPLL(pipe), 0);
1677 POSTING_READ(DPLL(pipe));
63d7bbe9
JB
1678}
1679
f6071166
JB
1680static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1681{
1682 u32 val = 0;
1683
1684 /* Make sure the pipe isn't still relying on us */
1685 assert_pipe_disabled(dev_priv, pipe);
1686
e5cbfbfb
ID
1687 /*
1688 * Leave integrated clock source and reference clock enabled for pipe B.
1689 * The latter is needed for VGA hotplug / manual detection.
1690 */
f6071166 1691 if (pipe == PIPE_B)
e5cbfbfb 1692 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
f6071166
JB
1693 I915_WRITE(DPLL(pipe), val);
1694 POSTING_READ(DPLL(pipe));
076ed3b2
CML
1695
1696}
1697
1698static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1699{
d752048d 1700 enum dpio_channel port = vlv_pipe_to_channel(pipe);
076ed3b2
CML
1701 u32 val;
1702
a11b0703
VS
1703 /* Make sure the pipe isn't still relying on us */
1704 assert_pipe_disabled(dev_priv, pipe);
076ed3b2 1705
a11b0703
VS
1706 /* Set PLL en = 0 */
1707 val = DPLL_SSC_REF_CLOCK_CHV;
1708 if (pipe != PIPE_A)
1709 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1710 I915_WRITE(DPLL(pipe), val);
1711 POSTING_READ(DPLL(pipe));
d752048d
VS
1712
1713 mutex_lock(&dev_priv->dpio_lock);
1714
1715 /* Disable 10bit clock to display controller */
1716 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1717 val &= ~DPIO_DCLKP_EN;
1718 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1719
61407f6d
VS
1720 /* disable left/right clock distribution */
1721 if (pipe != PIPE_B) {
1722 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1723 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1724 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1725 } else {
1726 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1727 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1728 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1729 }
1730
d752048d 1731 mutex_unlock(&dev_priv->dpio_lock);
f6071166
JB
1732}
1733
e4607fcf
CML
1734void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1735 struct intel_digital_port *dport)
89b667f8
JB
1736{
1737 u32 port_mask;
00fc31b7 1738 int dpll_reg;
89b667f8 1739
e4607fcf
CML
1740 switch (dport->port) {
1741 case PORT_B:
89b667f8 1742 port_mask = DPLL_PORTB_READY_MASK;
00fc31b7 1743 dpll_reg = DPLL(0);
e4607fcf
CML
1744 break;
1745 case PORT_C:
89b667f8 1746 port_mask = DPLL_PORTC_READY_MASK;
00fc31b7
CML
1747 dpll_reg = DPLL(0);
1748 break;
1749 case PORT_D:
1750 port_mask = DPLL_PORTD_READY_MASK;
1751 dpll_reg = DPIO_PHY_STATUS;
e4607fcf
CML
1752 break;
1753 default:
1754 BUG();
1755 }
89b667f8 1756
00fc31b7 1757 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
89b667f8 1758 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
00fc31b7 1759 port_name(dport->port), I915_READ(dpll_reg));
89b667f8
JB
1760}
1761
b14b1055
DV
1762static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1763{
1764 struct drm_device *dev = crtc->base.dev;
1765 struct drm_i915_private *dev_priv = dev->dev_private;
1766 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1767
be19f0ff
CW
1768 if (WARN_ON(pll == NULL))
1769 return;
1770
b14b1055
DV
1771 WARN_ON(!pll->refcount);
1772 if (pll->active == 0) {
1773 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1774 WARN_ON(pll->on);
1775 assert_shared_dpll_disabled(dev_priv, pll);
1776
1777 pll->mode_set(dev_priv, pll);
1778 }
1779}
1780
92f2584a 1781/**
85b3894f 1782 * intel_enable_shared_dpll - enable PCH PLL
92f2584a
JB
1783 * @dev_priv: i915 private structure
1784 * @pipe: pipe PLL to enable
1785 *
1786 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1787 * drives the transcoder clock.
1788 */
85b3894f 1789static void intel_enable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1790{
3d13ef2e
DL
1791 struct drm_device *dev = crtc->base.dev;
1792 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1793 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
92f2584a 1794
87a875bb 1795 if (WARN_ON(pll == NULL))
48da64a8
CW
1796 return;
1797
1798 if (WARN_ON(pll->refcount == 0))
1799 return;
ee7b9f93 1800
46edb027
DV
1801 DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1802 pll->name, pll->active, pll->on,
e2b78267 1803 crtc->base.base.id);
92f2584a 1804
cdbd2316
DV
1805 if (pll->active++) {
1806 WARN_ON(!pll->on);
e9d6944e 1807 assert_shared_dpll_enabled(dev_priv, pll);
ee7b9f93
JB
1808 return;
1809 }
f4a091c7 1810 WARN_ON(pll->on);
ee7b9f93 1811
bd2bb1b9
PZ
1812 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1813
46edb027 1814 DRM_DEBUG_KMS("enabling %s\n", pll->name);
e7b903d2 1815 pll->enable(dev_priv, pll);
ee7b9f93 1816 pll->on = true;
92f2584a
JB
1817}
1818
716c2e55 1819void intel_disable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1820{
3d13ef2e
DL
1821 struct drm_device *dev = crtc->base.dev;
1822 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1823 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4c609cb8 1824
92f2584a 1825 /* PCH only available on ILK+ */
3d13ef2e 1826 BUG_ON(INTEL_INFO(dev)->gen < 5);
87a875bb 1827 if (WARN_ON(pll == NULL))
ee7b9f93 1828 return;
92f2584a 1829
48da64a8
CW
1830 if (WARN_ON(pll->refcount == 0))
1831 return;
7a419866 1832
46edb027
DV
1833 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1834 pll->name, pll->active, pll->on,
e2b78267 1835 crtc->base.base.id);
7a419866 1836
48da64a8 1837 if (WARN_ON(pll->active == 0)) {
e9d6944e 1838 assert_shared_dpll_disabled(dev_priv, pll);
48da64a8
CW
1839 return;
1840 }
1841
e9d6944e 1842 assert_shared_dpll_enabled(dev_priv, pll);
f4a091c7 1843 WARN_ON(!pll->on);
cdbd2316 1844 if (--pll->active)
7a419866 1845 return;
ee7b9f93 1846
46edb027 1847 DRM_DEBUG_KMS("disabling %s\n", pll->name);
e7b903d2 1848 pll->disable(dev_priv, pll);
ee7b9f93 1849 pll->on = false;
bd2bb1b9
PZ
1850
1851 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
92f2584a
JB
1852}
1853
b8a4f404
PZ
1854static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1855 enum pipe pipe)
040484af 1856{
23670b32 1857 struct drm_device *dev = dev_priv->dev;
7c26e5c6 1858 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
e2b78267 1859 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
23670b32 1860 uint32_t reg, val, pipeconf_val;
040484af
JB
1861
1862 /* PCH only available on ILK+ */
3d13ef2e 1863 BUG_ON(INTEL_INFO(dev)->gen < 5);
040484af
JB
1864
1865 /* Make sure PCH DPLL is enabled */
e72f9fbf 1866 assert_shared_dpll_enabled(dev_priv,
e9d6944e 1867 intel_crtc_to_shared_dpll(intel_crtc));
040484af
JB
1868
1869 /* FDI must be feeding us bits for PCH ports */
1870 assert_fdi_tx_enabled(dev_priv, pipe);
1871 assert_fdi_rx_enabled(dev_priv, pipe);
1872
23670b32
DV
1873 if (HAS_PCH_CPT(dev)) {
1874 /* Workaround: Set the timing override bit before enabling the
1875 * pch transcoder. */
1876 reg = TRANS_CHICKEN2(pipe);
1877 val = I915_READ(reg);
1878 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1879 I915_WRITE(reg, val);
59c859d6 1880 }
23670b32 1881
ab9412ba 1882 reg = PCH_TRANSCONF(pipe);
040484af 1883 val = I915_READ(reg);
5f7f726d 1884 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c
JB
1885
1886 if (HAS_PCH_IBX(dev_priv->dev)) {
1887 /*
1888 * make the BPC in transcoder be consistent with
1889 * that in pipeconf reg.
1890 */
dfd07d72
DV
1891 val &= ~PIPECONF_BPC_MASK;
1892 val |= pipeconf_val & PIPECONF_BPC_MASK;
e9bcff5c 1893 }
5f7f726d
PZ
1894
1895 val &= ~TRANS_INTERLACE_MASK;
1896 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
7c26e5c6
PZ
1897 if (HAS_PCH_IBX(dev_priv->dev) &&
1898 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1899 val |= TRANS_LEGACY_INTERLACED_ILK;
1900 else
1901 val |= TRANS_INTERLACED;
5f7f726d
PZ
1902 else
1903 val |= TRANS_PROGRESSIVE;
1904
040484af
JB
1905 I915_WRITE(reg, val | TRANS_ENABLE);
1906 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
4bb6f1f3 1907 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
040484af
JB
1908}
1909
8fb033d7 1910static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
937bb610 1911 enum transcoder cpu_transcoder)
040484af 1912{
8fb033d7 1913 u32 val, pipeconf_val;
8fb033d7
PZ
1914
1915 /* PCH only available on ILK+ */
3d13ef2e 1916 BUG_ON(INTEL_INFO(dev_priv->dev)->gen < 5);
8fb033d7 1917
8fb033d7 1918 /* FDI must be feeding us bits for PCH ports */
1a240d4d 1919 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
937bb610 1920 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
8fb033d7 1921
223a6fdf
PZ
1922 /* Workaround: set timing override bit. */
1923 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1924 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf
PZ
1925 I915_WRITE(_TRANSA_CHICKEN2, val);
1926
25f3ef11 1927 val = TRANS_ENABLE;
937bb610 1928 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
8fb033d7 1929
9a76b1c6
PZ
1930 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1931 PIPECONF_INTERLACED_ILK)
a35f2679 1932 val |= TRANS_INTERLACED;
8fb033d7
PZ
1933 else
1934 val |= TRANS_PROGRESSIVE;
1935
ab9412ba
DV
1936 I915_WRITE(LPT_TRANSCONF, val);
1937 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
937bb610 1938 DRM_ERROR("Failed to enable PCH transcoder\n");
8fb033d7
PZ
1939}
1940
b8a4f404
PZ
1941static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1942 enum pipe pipe)
040484af 1943{
23670b32
DV
1944 struct drm_device *dev = dev_priv->dev;
1945 uint32_t reg, val;
040484af
JB
1946
1947 /* FDI relies on the transcoder */
1948 assert_fdi_tx_disabled(dev_priv, pipe);
1949 assert_fdi_rx_disabled(dev_priv, pipe);
1950
291906f1
JB
1951 /* Ports must be off as well */
1952 assert_pch_ports_disabled(dev_priv, pipe);
1953
ab9412ba 1954 reg = PCH_TRANSCONF(pipe);
040484af
JB
1955 val = I915_READ(reg);
1956 val &= ~TRANS_ENABLE;
1957 I915_WRITE(reg, val);
1958 /* wait for PCH transcoder off, transcoder state */
1959 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4bb6f1f3 1960 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
23670b32
DV
1961
1962 if (!HAS_PCH_IBX(dev)) {
1963 /* Workaround: Clear the timing override chicken bit again. */
1964 reg = TRANS_CHICKEN2(pipe);
1965 val = I915_READ(reg);
1966 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1967 I915_WRITE(reg, val);
1968 }
040484af
JB
1969}
1970
ab4d966c 1971static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
8fb033d7 1972{
8fb033d7
PZ
1973 u32 val;
1974
ab9412ba 1975 val = I915_READ(LPT_TRANSCONF);
8fb033d7 1976 val &= ~TRANS_ENABLE;
ab9412ba 1977 I915_WRITE(LPT_TRANSCONF, val);
8fb033d7 1978 /* wait for PCH transcoder off, transcoder state */
ab9412ba 1979 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
8a52fd9f 1980 DRM_ERROR("Failed to disable PCH transcoder\n");
223a6fdf
PZ
1981
1982 /* Workaround: clear timing override bit. */
1983 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1984 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf 1985 I915_WRITE(_TRANSA_CHICKEN2, val);
040484af
JB
1986}
1987
b24e7179 1988/**
309cfea8 1989 * intel_enable_pipe - enable a pipe, asserting requirements
0372264a 1990 * @crtc: crtc responsible for the pipe
b24e7179 1991 *
0372264a 1992 * Enable @crtc's pipe, making sure that various hardware specific requirements
b24e7179 1993 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
b24e7179 1994 */
e1fdc473 1995static void intel_enable_pipe(struct intel_crtc *crtc)
b24e7179 1996{
0372264a
PZ
1997 struct drm_device *dev = crtc->base.dev;
1998 struct drm_i915_private *dev_priv = dev->dev_private;
1999 enum pipe pipe = crtc->pipe;
702e7a56
PZ
2000 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2001 pipe);
1a240d4d 2002 enum pipe pch_transcoder;
b24e7179
JB
2003 int reg;
2004 u32 val;
2005
58c6eaa2 2006 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2007 assert_cursor_disabled(dev_priv, pipe);
58c6eaa2
DV
2008 assert_sprites_disabled(dev_priv, pipe);
2009
681e5811 2010 if (HAS_PCH_LPT(dev_priv->dev))
cc391bbb
PZ
2011 pch_transcoder = TRANSCODER_A;
2012 else
2013 pch_transcoder = pipe;
2014
b24e7179
JB
2015 /*
2016 * A pipe without a PLL won't actually be able to drive bits from
2017 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2018 * need the check.
2019 */
2020 if (!HAS_PCH_SPLIT(dev_priv->dev))
fbf3218a 2021 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DSI))
23538ef1
JN
2022 assert_dsi_pll_enabled(dev_priv);
2023 else
2024 assert_pll_enabled(dev_priv, pipe);
040484af 2025 else {
30421c4f 2026 if (crtc->config.has_pch_encoder) {
040484af 2027 /* if driving the PCH, we need FDI enabled */
cc391bbb 2028 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1a240d4d
DV
2029 assert_fdi_tx_pll_enabled(dev_priv,
2030 (enum pipe) cpu_transcoder);
040484af
JB
2031 }
2032 /* FIXME: assert CPU port conditions for SNB+ */
2033 }
b24e7179 2034
702e7a56 2035 reg = PIPECONF(cpu_transcoder);
b24e7179 2036 val = I915_READ(reg);
7ad25d48
PZ
2037 if (val & PIPECONF_ENABLE) {
2038 WARN_ON(!(pipe == PIPE_A &&
2039 dev_priv->quirks & QUIRK_PIPEA_FORCE));
00d70b15 2040 return;
7ad25d48 2041 }
00d70b15
CW
2042
2043 I915_WRITE(reg, val | PIPECONF_ENABLE);
851855d8 2044 POSTING_READ(reg);
b24e7179
JB
2045}
2046
2047/**
309cfea8 2048 * intel_disable_pipe - disable a pipe, asserting requirements
b24e7179
JB
2049 * @dev_priv: i915 private structure
2050 * @pipe: pipe to disable
2051 *
2052 * Disable @pipe, making sure that various hardware specific requirements
2053 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
2054 *
2055 * @pipe should be %PIPE_A or %PIPE_B.
2056 *
2057 * Will wait until the pipe has shut down before returning.
2058 */
2059static void intel_disable_pipe(struct drm_i915_private *dev_priv,
2060 enum pipe pipe)
2061{
702e7a56
PZ
2062 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2063 pipe);
b24e7179
JB
2064 int reg;
2065 u32 val;
2066
2067 /*
2068 * Make sure planes won't keep trying to pump pixels to us,
2069 * or we might hang the display.
2070 */
2071 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2072 assert_cursor_disabled(dev_priv, pipe);
19332d7a 2073 assert_sprites_disabled(dev_priv, pipe);
b24e7179
JB
2074
2075 /* Don't disable pipe A or pipe A PLLs if needed */
2076 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
2077 return;
2078
702e7a56 2079 reg = PIPECONF(cpu_transcoder);
b24e7179 2080 val = I915_READ(reg);
00d70b15
CW
2081 if ((val & PIPECONF_ENABLE) == 0)
2082 return;
2083
2084 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
b24e7179
JB
2085 intel_wait_for_pipe_off(dev_priv->dev, pipe);
2086}
2087
d74362c9
KP
2088/*
2089 * Plane regs are double buffered, going from enabled->disabled needs a
2090 * trigger in order to latch. The display address reg provides this.
2091 */
1dba99f4
VS
2092void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2093 enum plane plane)
d74362c9 2094{
3d13ef2e
DL
2095 struct drm_device *dev = dev_priv->dev;
2096 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
1dba99f4
VS
2097
2098 I915_WRITE(reg, I915_READ(reg));
2099 POSTING_READ(reg);
d74362c9
KP
2100}
2101
b24e7179 2102/**
262ca2b0 2103 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
b24e7179
JB
2104 * @dev_priv: i915 private structure
2105 * @plane: plane to enable
2106 * @pipe: pipe being fed
2107 *
2108 * Enable @plane on @pipe, making sure that @pipe is running first.
2109 */
262ca2b0
MR
2110static void intel_enable_primary_hw_plane(struct drm_i915_private *dev_priv,
2111 enum plane plane, enum pipe pipe)
b24e7179 2112{
33c3b0d1 2113 struct drm_device *dev = dev_priv->dev;
939c2fe8
VS
2114 struct intel_crtc *intel_crtc =
2115 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
b24e7179
JB
2116 int reg;
2117 u32 val;
2118
2119 /* If the pipe isn't enabled, we can't pump pixels and may hang */
2120 assert_pipe_enabled(dev_priv, pipe);
2121
98ec7739
VS
2122 if (intel_crtc->primary_enabled)
2123 return;
0037f71c 2124
4c445e0e 2125 intel_crtc->primary_enabled = true;
939c2fe8 2126
b24e7179
JB
2127 reg = DSPCNTR(plane);
2128 val = I915_READ(reg);
10efa932 2129 WARN_ON(val & DISPLAY_PLANE_ENABLE);
00d70b15
CW
2130
2131 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1dba99f4 2132 intel_flush_primary_plane(dev_priv, plane);
33c3b0d1
VS
2133
2134 /*
2135 * BDW signals flip done immediately if the plane
2136 * is disabled, even if the plane enable is already
2137 * armed to occur at the next vblank :(
2138 */
2139 if (IS_BROADWELL(dev))
2140 intel_wait_for_vblank(dev, intel_crtc->pipe);
b24e7179
JB
2141}
2142
b24e7179 2143/**
262ca2b0 2144 * intel_disable_primary_hw_plane - disable the primary hardware plane
b24e7179
JB
2145 * @dev_priv: i915 private structure
2146 * @plane: plane to disable
2147 * @pipe: pipe consuming the data
2148 *
2149 * Disable @plane; should be an independent operation.
2150 */
262ca2b0
MR
2151static void intel_disable_primary_hw_plane(struct drm_i915_private *dev_priv,
2152 enum plane plane, enum pipe pipe)
b24e7179 2153{
939c2fe8
VS
2154 struct intel_crtc *intel_crtc =
2155 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
b24e7179
JB
2156 int reg;
2157 u32 val;
2158
98ec7739
VS
2159 if (!intel_crtc->primary_enabled)
2160 return;
0037f71c 2161
4c445e0e 2162 intel_crtc->primary_enabled = false;
939c2fe8 2163
b24e7179
JB
2164 reg = DSPCNTR(plane);
2165 val = I915_READ(reg);
10efa932 2166 WARN_ON((val & DISPLAY_PLANE_ENABLE) == 0);
00d70b15
CW
2167
2168 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1dba99f4 2169 intel_flush_primary_plane(dev_priv, plane);
b24e7179
JB
2170}
2171
693db184
CW
2172static bool need_vtd_wa(struct drm_device *dev)
2173{
2174#ifdef CONFIG_INTEL_IOMMU
2175 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2176 return true;
2177#endif
2178 return false;
2179}
2180
a57ce0b2
JB
2181static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2182{
2183 int tile_height;
2184
2185 tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2186 return ALIGN(height, tile_height);
2187}
2188
127bd2ac 2189int
48b956c5 2190intel_pin_and_fence_fb_obj(struct drm_device *dev,
05394f39 2191 struct drm_i915_gem_object *obj,
a4872ba6 2192 struct intel_engine_cs *pipelined)
6b95a207 2193{
ce453d81 2194 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
2195 u32 alignment;
2196 int ret;
2197
ebcdd39e
MR
2198 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2199
05394f39 2200 switch (obj->tiling_mode) {
6b95a207 2201 case I915_TILING_NONE:
534843da
CW
2202 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2203 alignment = 128 * 1024;
a6c45cf0 2204 else if (INTEL_INFO(dev)->gen >= 4)
534843da
CW
2205 alignment = 4 * 1024;
2206 else
2207 alignment = 64 * 1024;
6b95a207
KH
2208 break;
2209 case I915_TILING_X:
2210 /* pin() will align the object as required by fence */
2211 alignment = 0;
2212 break;
2213 case I915_TILING_Y:
80075d49 2214 WARN(1, "Y tiled bo slipped through, driver bug!\n");
6b95a207
KH
2215 return -EINVAL;
2216 default:
2217 BUG();
2218 }
2219
693db184
CW
2220 /* Note that the w/a also requires 64 PTE of padding following the
2221 * bo. We currently fill all unused PTE with the shadow page and so
2222 * we should always have valid PTE following the scanout preventing
2223 * the VT-d warning.
2224 */
2225 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2226 alignment = 256 * 1024;
2227
ce453d81 2228 dev_priv->mm.interruptible = false;
2da3b9b9 2229 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
48b956c5 2230 if (ret)
ce453d81 2231 goto err_interruptible;
6b95a207
KH
2232
2233 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2234 * fence, whereas 965+ only requires a fence if using
2235 * framebuffer compression. For simplicity, we always install
2236 * a fence as the cost is not that onerous.
2237 */
06d98131 2238 ret = i915_gem_object_get_fence(obj);
9a5a53b3
CW
2239 if (ret)
2240 goto err_unpin;
1690e1eb 2241
9a5a53b3 2242 i915_gem_object_pin_fence(obj);
6b95a207 2243
ce453d81 2244 dev_priv->mm.interruptible = true;
6b95a207 2245 return 0;
48b956c5
CW
2246
2247err_unpin:
cc98b413 2248 i915_gem_object_unpin_from_display_plane(obj);
ce453d81
CW
2249err_interruptible:
2250 dev_priv->mm.interruptible = true;
48b956c5 2251 return ret;
6b95a207
KH
2252}
2253
1690e1eb
CW
2254void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2255{
ebcdd39e
MR
2256 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2257
1690e1eb 2258 i915_gem_object_unpin_fence(obj);
cc98b413 2259 i915_gem_object_unpin_from_display_plane(obj);
1690e1eb
CW
2260}
2261
c2c75131
DV
2262/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2263 * is assumed to be a power-of-two. */
bc752862
CW
2264unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2265 unsigned int tiling_mode,
2266 unsigned int cpp,
2267 unsigned int pitch)
c2c75131 2268{
bc752862
CW
2269 if (tiling_mode != I915_TILING_NONE) {
2270 unsigned int tile_rows, tiles;
c2c75131 2271
bc752862
CW
2272 tile_rows = *y / 8;
2273 *y %= 8;
c2c75131 2274
bc752862
CW
2275 tiles = *x / (512/cpp);
2276 *x %= 512/cpp;
2277
2278 return tile_rows * pitch * 8 + tiles * 4096;
2279 } else {
2280 unsigned int offset;
2281
2282 offset = *y * pitch + *x * cpp;
2283 *y = 0;
2284 *x = (offset & 4095) / cpp;
2285 return offset & -4096;
2286 }
c2c75131
DV
2287}
2288
46f297fb
JB
2289int intel_format_to_fourcc(int format)
2290{
2291 switch (format) {
2292 case DISPPLANE_8BPP:
2293 return DRM_FORMAT_C8;
2294 case DISPPLANE_BGRX555:
2295 return DRM_FORMAT_XRGB1555;
2296 case DISPPLANE_BGRX565:
2297 return DRM_FORMAT_RGB565;
2298 default:
2299 case DISPPLANE_BGRX888:
2300 return DRM_FORMAT_XRGB8888;
2301 case DISPPLANE_RGBX888:
2302 return DRM_FORMAT_XBGR8888;
2303 case DISPPLANE_BGRX101010:
2304 return DRM_FORMAT_XRGB2101010;
2305 case DISPPLANE_RGBX101010:
2306 return DRM_FORMAT_XBGR2101010;
2307 }
2308}
2309
484b41dd 2310static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
46f297fb
JB
2311 struct intel_plane_config *plane_config)
2312{
2313 struct drm_device *dev = crtc->base.dev;
2314 struct drm_i915_gem_object *obj = NULL;
2315 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2316 u32 base = plane_config->base;
2317
ff2652ea
CW
2318 if (plane_config->size == 0)
2319 return false;
2320
46f297fb
JB
2321 obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2322 plane_config->size);
2323 if (!obj)
484b41dd 2324 return false;
46f297fb
JB
2325
2326 if (plane_config->tiled) {
2327 obj->tiling_mode = I915_TILING_X;
66e514c1 2328 obj->stride = crtc->base.primary->fb->pitches[0];
46f297fb
JB
2329 }
2330
66e514c1
DA
2331 mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2332 mode_cmd.width = crtc->base.primary->fb->width;
2333 mode_cmd.height = crtc->base.primary->fb->height;
2334 mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
46f297fb
JB
2335
2336 mutex_lock(&dev->struct_mutex);
2337
66e514c1 2338 if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
484b41dd 2339 &mode_cmd, obj)) {
46f297fb
JB
2340 DRM_DEBUG_KMS("intel fb init failed\n");
2341 goto out_unref_obj;
2342 }
2343
a071fa00 2344 obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
46f297fb 2345 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2346
2347 DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2348 return true;
46f297fb
JB
2349
2350out_unref_obj:
2351 drm_gem_object_unreference(&obj->base);
2352 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2353 return false;
2354}
2355
2356static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2357 struct intel_plane_config *plane_config)
2358{
2359 struct drm_device *dev = intel_crtc->base.dev;
2360 struct drm_crtc *c;
2361 struct intel_crtc *i;
2ff8fde1 2362 struct drm_i915_gem_object *obj;
484b41dd 2363
66e514c1 2364 if (!intel_crtc->base.primary->fb)
484b41dd
JB
2365 return;
2366
2367 if (intel_alloc_plane_obj(intel_crtc, plane_config))
2368 return;
2369
66e514c1
DA
2370 kfree(intel_crtc->base.primary->fb);
2371 intel_crtc->base.primary->fb = NULL;
484b41dd
JB
2372
2373 /*
2374 * Failed to alloc the obj, check to see if we should share
2375 * an fb with another CRTC instead
2376 */
70e1e0ec 2377 for_each_crtc(dev, c) {
484b41dd
JB
2378 i = to_intel_crtc(c);
2379
2380 if (c == &intel_crtc->base)
2381 continue;
2382
2ff8fde1
MR
2383 if (!i->active)
2384 continue;
2385
2386 obj = intel_fb_obj(c->primary->fb);
2387 if (obj == NULL)
484b41dd
JB
2388 continue;
2389
2ff8fde1 2390 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
66e514c1
DA
2391 drm_framebuffer_reference(c->primary->fb);
2392 intel_crtc->base.primary->fb = c->primary->fb;
2ff8fde1 2393 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
484b41dd
JB
2394 break;
2395 }
2396 }
46f297fb
JB
2397}
2398
29b9bde6
DV
2399static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2400 struct drm_framebuffer *fb,
2401 int x, int y)
81255565
JB
2402{
2403 struct drm_device *dev = crtc->dev;
2404 struct drm_i915_private *dev_priv = dev->dev_private;
2405 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2ff8fde1 2406 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
81255565 2407 int plane = intel_crtc->plane;
e506a0c6 2408 unsigned long linear_offset;
81255565 2409 u32 dspcntr;
5eddb70b 2410 u32 reg;
81255565 2411
5eddb70b
CW
2412 reg = DSPCNTR(plane);
2413 dspcntr = I915_READ(reg);
81255565
JB
2414 /* Mask out pixel format bits in case we change it */
2415 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
57779d06
VS
2416 switch (fb->pixel_format) {
2417 case DRM_FORMAT_C8:
81255565
JB
2418 dspcntr |= DISPPLANE_8BPP;
2419 break;
57779d06
VS
2420 case DRM_FORMAT_XRGB1555:
2421 case DRM_FORMAT_ARGB1555:
2422 dspcntr |= DISPPLANE_BGRX555;
81255565 2423 break;
57779d06
VS
2424 case DRM_FORMAT_RGB565:
2425 dspcntr |= DISPPLANE_BGRX565;
2426 break;
2427 case DRM_FORMAT_XRGB8888:
2428 case DRM_FORMAT_ARGB8888:
2429 dspcntr |= DISPPLANE_BGRX888;
2430 break;
2431 case DRM_FORMAT_XBGR8888:
2432 case DRM_FORMAT_ABGR8888:
2433 dspcntr |= DISPPLANE_RGBX888;
2434 break;
2435 case DRM_FORMAT_XRGB2101010:
2436 case DRM_FORMAT_ARGB2101010:
2437 dspcntr |= DISPPLANE_BGRX101010;
2438 break;
2439 case DRM_FORMAT_XBGR2101010:
2440 case DRM_FORMAT_ABGR2101010:
2441 dspcntr |= DISPPLANE_RGBX101010;
81255565
JB
2442 break;
2443 default:
baba133a 2444 BUG();
81255565 2445 }
57779d06 2446
a6c45cf0 2447 if (INTEL_INFO(dev)->gen >= 4) {
05394f39 2448 if (obj->tiling_mode != I915_TILING_NONE)
81255565
JB
2449 dspcntr |= DISPPLANE_TILED;
2450 else
2451 dspcntr &= ~DISPPLANE_TILED;
2452 }
2453
de1aa629
VS
2454 if (IS_G4X(dev))
2455 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2456
5eddb70b 2457 I915_WRITE(reg, dspcntr);
81255565 2458
e506a0c6 2459 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
81255565 2460
c2c75131
DV
2461 if (INTEL_INFO(dev)->gen >= 4) {
2462 intel_crtc->dspaddr_offset =
bc752862
CW
2463 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2464 fb->bits_per_pixel / 8,
2465 fb->pitches[0]);
c2c75131
DV
2466 linear_offset -= intel_crtc->dspaddr_offset;
2467 } else {
e506a0c6 2468 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2469 }
e506a0c6 2470
f343c5f6
BW
2471 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2472 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2473 fb->pitches[0]);
01f2c773 2474 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2475 if (INTEL_INFO(dev)->gen >= 4) {
85ba7b7d
DV
2476 I915_WRITE(DSPSURF(plane),
2477 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
5eddb70b 2478 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2479 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2480 } else
f343c5f6 2481 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
5eddb70b 2482 POSTING_READ(reg);
17638cd6
JB
2483}
2484
29b9bde6
DV
2485static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2486 struct drm_framebuffer *fb,
2487 int x, int y)
17638cd6
JB
2488{
2489 struct drm_device *dev = crtc->dev;
2490 struct drm_i915_private *dev_priv = dev->dev_private;
2491 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2ff8fde1 2492 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
17638cd6 2493 int plane = intel_crtc->plane;
e506a0c6 2494 unsigned long linear_offset;
17638cd6
JB
2495 u32 dspcntr;
2496 u32 reg;
2497
17638cd6
JB
2498 reg = DSPCNTR(plane);
2499 dspcntr = I915_READ(reg);
2500 /* Mask out pixel format bits in case we change it */
2501 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
57779d06
VS
2502 switch (fb->pixel_format) {
2503 case DRM_FORMAT_C8:
17638cd6
JB
2504 dspcntr |= DISPPLANE_8BPP;
2505 break;
57779d06
VS
2506 case DRM_FORMAT_RGB565:
2507 dspcntr |= DISPPLANE_BGRX565;
17638cd6 2508 break;
57779d06
VS
2509 case DRM_FORMAT_XRGB8888:
2510 case DRM_FORMAT_ARGB8888:
2511 dspcntr |= DISPPLANE_BGRX888;
2512 break;
2513 case DRM_FORMAT_XBGR8888:
2514 case DRM_FORMAT_ABGR8888:
2515 dspcntr |= DISPPLANE_RGBX888;
2516 break;
2517 case DRM_FORMAT_XRGB2101010:
2518 case DRM_FORMAT_ARGB2101010:
2519 dspcntr |= DISPPLANE_BGRX101010;
2520 break;
2521 case DRM_FORMAT_XBGR2101010:
2522 case DRM_FORMAT_ABGR2101010:
2523 dspcntr |= DISPPLANE_RGBX101010;
17638cd6
JB
2524 break;
2525 default:
baba133a 2526 BUG();
17638cd6
JB
2527 }
2528
2529 if (obj->tiling_mode != I915_TILING_NONE)
2530 dspcntr |= DISPPLANE_TILED;
2531 else
2532 dspcntr &= ~DISPPLANE_TILED;
2533
b42c6009 2534 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1f5d76db
PZ
2535 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2536 else
2537 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
17638cd6
JB
2538
2539 I915_WRITE(reg, dspcntr);
2540
e506a0c6 2541 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
c2c75131 2542 intel_crtc->dspaddr_offset =
bc752862
CW
2543 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2544 fb->bits_per_pixel / 8,
2545 fb->pitches[0]);
c2c75131 2546 linear_offset -= intel_crtc->dspaddr_offset;
17638cd6 2547
f343c5f6
BW
2548 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2549 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2550 fb->pitches[0]);
01f2c773 2551 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
85ba7b7d
DV
2552 I915_WRITE(DSPSURF(plane),
2553 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
b3dc685e 2554 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
bc1c91eb
DL
2555 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2556 } else {
2557 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2558 I915_WRITE(DSPLINOFF(plane), linear_offset);
2559 }
17638cd6 2560 POSTING_READ(reg);
17638cd6
JB
2561}
2562
2563/* Assume fb object is pinned & idle & fenced and just update base pointers */
2564static int
2565intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2566 int x, int y, enum mode_set_atomic state)
2567{
2568 struct drm_device *dev = crtc->dev;
2569 struct drm_i915_private *dev_priv = dev->dev_private;
17638cd6 2570
6b8e6ed0
CW
2571 if (dev_priv->display.disable_fbc)
2572 dev_priv->display.disable_fbc(dev);
cc36513c 2573 intel_increase_pllclock(dev, to_intel_crtc(crtc)->pipe);
81255565 2574
29b9bde6
DV
2575 dev_priv->display.update_primary_plane(crtc, fb, x, y);
2576
2577 return 0;
81255565
JB
2578}
2579
96a02917
VS
2580void intel_display_handle_reset(struct drm_device *dev)
2581{
2582 struct drm_i915_private *dev_priv = dev->dev_private;
2583 struct drm_crtc *crtc;
2584
2585 /*
2586 * Flips in the rings have been nuked by the reset,
2587 * so complete all pending flips so that user space
2588 * will get its events and not get stuck.
2589 *
2590 * Also update the base address of all primary
2591 * planes to the the last fb to make sure we're
2592 * showing the correct fb after a reset.
2593 *
2594 * Need to make two loops over the crtcs so that we
2595 * don't try to grab a crtc mutex before the
2596 * pending_flip_queue really got woken up.
2597 */
2598
70e1e0ec 2599 for_each_crtc(dev, crtc) {
96a02917
VS
2600 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2601 enum plane plane = intel_crtc->plane;
2602
2603 intel_prepare_page_flip(dev, plane);
2604 intel_finish_page_flip_plane(dev, plane);
2605 }
2606
70e1e0ec 2607 for_each_crtc(dev, crtc) {
96a02917
VS
2608 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2609
51fd371b 2610 drm_modeset_lock(&crtc->mutex, NULL);
947fdaad
CW
2611 /*
2612 * FIXME: Once we have proper support for primary planes (and
2613 * disabling them without disabling the entire crtc) allow again
66e514c1 2614 * a NULL crtc->primary->fb.
947fdaad 2615 */
f4510a27 2616 if (intel_crtc->active && crtc->primary->fb)
262ca2b0 2617 dev_priv->display.update_primary_plane(crtc,
66e514c1 2618 crtc->primary->fb,
262ca2b0
MR
2619 crtc->x,
2620 crtc->y);
51fd371b 2621 drm_modeset_unlock(&crtc->mutex);
96a02917
VS
2622 }
2623}
2624
14667a4b
CW
2625static int
2626intel_finish_fb(struct drm_framebuffer *old_fb)
2627{
2ff8fde1 2628 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
14667a4b
CW
2629 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2630 bool was_interruptible = dev_priv->mm.interruptible;
2631 int ret;
2632
14667a4b
CW
2633 /* Big Hammer, we also need to ensure that any pending
2634 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2635 * current scanout is retired before unpinning the old
2636 * framebuffer.
2637 *
2638 * This should only fail upon a hung GPU, in which case we
2639 * can safely continue.
2640 */
2641 dev_priv->mm.interruptible = false;
2642 ret = i915_gem_object_finish_gpu(obj);
2643 dev_priv->mm.interruptible = was_interruptible;
2644
2645 return ret;
2646}
2647
7d5e3799
CW
2648static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2649{
2650 struct drm_device *dev = crtc->dev;
2651 struct drm_i915_private *dev_priv = dev->dev_private;
2652 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2653 unsigned long flags;
2654 bool pending;
2655
2656 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2657 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2658 return false;
2659
2660 spin_lock_irqsave(&dev->event_lock, flags);
2661 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2662 spin_unlock_irqrestore(&dev->event_lock, flags);
2663
2664 return pending;
2665}
2666
5c3b82e2 2667static int
3c4fdcfb 2668intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
94352cf9 2669 struct drm_framebuffer *fb)
79e53945
JB
2670{
2671 struct drm_device *dev = crtc->dev;
6b8e6ed0 2672 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 2673 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 2674 enum pipe pipe = intel_crtc->pipe;
2ff8fde1
MR
2675 struct drm_framebuffer *old_fb = crtc->primary->fb;
2676 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2677 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
5c3b82e2 2678 int ret;
79e53945 2679
7d5e3799
CW
2680 if (intel_crtc_has_pending_flip(crtc)) {
2681 DRM_ERROR("pipe is still busy with an old pageflip\n");
2682 return -EBUSY;
2683 }
2684
79e53945 2685 /* no fb bound */
94352cf9 2686 if (!fb) {
a5071c2f 2687 DRM_ERROR("No FB bound\n");
5c3b82e2
CW
2688 return 0;
2689 }
2690
7eb552ae 2691 if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
84f44ce7
VS
2692 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2693 plane_name(intel_crtc->plane),
2694 INTEL_INFO(dev)->num_pipes);
5c3b82e2 2695 return -EINVAL;
79e53945
JB
2696 }
2697
5c3b82e2 2698 mutex_lock(&dev->struct_mutex);
a071fa00
DV
2699 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
2700 if (ret == 0)
91565c85 2701 i915_gem_track_fb(old_obj, obj,
a071fa00 2702 INTEL_FRONTBUFFER_PRIMARY(pipe));
8ac36ec1 2703 mutex_unlock(&dev->struct_mutex);
5c3b82e2 2704 if (ret != 0) {
a5071c2f 2705 DRM_ERROR("pin & fence failed\n");
5c3b82e2
CW
2706 return ret;
2707 }
79e53945 2708
bb2043de
DL
2709 /*
2710 * Update pipe size and adjust fitter if needed: the reason for this is
2711 * that in compute_mode_changes we check the native mode (not the pfit
2712 * mode) to see if we can flip rather than do a full mode set. In the
2713 * fastboot case, we'll flip, but if we don't update the pipesrc and
2714 * pfit state, we'll end up with a big fb scanned out into the wrong
2715 * sized surface.
2716 *
2717 * To fix this properly, we need to hoist the checks up into
2718 * compute_mode_changes (or above), check the actual pfit state and
2719 * whether the platform allows pfit disable with pipe active, and only
2720 * then update the pipesrc and pfit state, even on the flip path.
2721 */
d330a953 2722 if (i915.fastboot) {
d7bf63f2
DL
2723 const struct drm_display_mode *adjusted_mode =
2724 &intel_crtc->config.adjusted_mode;
2725
4d6a3e63 2726 I915_WRITE(PIPESRC(intel_crtc->pipe),
d7bf63f2
DL
2727 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2728 (adjusted_mode->crtc_vdisplay - 1));
fd4daa9c 2729 if (!intel_crtc->config.pch_pfit.enabled &&
4d6a3e63
JB
2730 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2731 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2732 I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2733 I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2734 I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2735 }
0637d60d
JB
2736 intel_crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2737 intel_crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
4d6a3e63
JB
2738 }
2739
29b9bde6 2740 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3c4fdcfb 2741
f99d7069
DV
2742 if (intel_crtc->active)
2743 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
2744
f4510a27 2745 crtc->primary->fb = fb;
6c4c86f5
DV
2746 crtc->x = x;
2747 crtc->y = y;
94352cf9 2748
b7f1de28 2749 if (old_fb) {
d7697eea
DV
2750 if (intel_crtc->active && old_fb != fb)
2751 intel_wait_for_vblank(dev, intel_crtc->pipe);
8ac36ec1 2752 mutex_lock(&dev->struct_mutex);
2ff8fde1 2753 intel_unpin_fb_obj(old_obj);
8ac36ec1 2754 mutex_unlock(&dev->struct_mutex);
b7f1de28 2755 }
652c393a 2756
8ac36ec1 2757 mutex_lock(&dev->struct_mutex);
6b8e6ed0 2758 intel_update_fbc(dev);
5c3b82e2 2759 mutex_unlock(&dev->struct_mutex);
79e53945 2760
5c3b82e2 2761 return 0;
79e53945
JB
2762}
2763
5e84e1a4
ZW
2764static void intel_fdi_normal_train(struct drm_crtc *crtc)
2765{
2766 struct drm_device *dev = crtc->dev;
2767 struct drm_i915_private *dev_priv = dev->dev_private;
2768 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2769 int pipe = intel_crtc->pipe;
2770 u32 reg, temp;
2771
2772 /* enable normal train */
2773 reg = FDI_TX_CTL(pipe);
2774 temp = I915_READ(reg);
61e499bf 2775 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
2776 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2777 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
2778 } else {
2779 temp &= ~FDI_LINK_TRAIN_NONE;
2780 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 2781 }
5e84e1a4
ZW
2782 I915_WRITE(reg, temp);
2783
2784 reg = FDI_RX_CTL(pipe);
2785 temp = I915_READ(reg);
2786 if (HAS_PCH_CPT(dev)) {
2787 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2788 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2789 } else {
2790 temp &= ~FDI_LINK_TRAIN_NONE;
2791 temp |= FDI_LINK_TRAIN_NONE;
2792 }
2793 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2794
2795 /* wait one idle pattern time */
2796 POSTING_READ(reg);
2797 udelay(1000);
357555c0
JB
2798
2799 /* IVB wants error correction enabled */
2800 if (IS_IVYBRIDGE(dev))
2801 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2802 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
2803}
2804
1fbc0d78 2805static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
1e833f40 2806{
1fbc0d78
DV
2807 return crtc->base.enabled && crtc->active &&
2808 crtc->config.has_pch_encoder;
1e833f40
DV
2809}
2810
01a415fd
DV
2811static void ivb_modeset_global_resources(struct drm_device *dev)
2812{
2813 struct drm_i915_private *dev_priv = dev->dev_private;
2814 struct intel_crtc *pipe_B_crtc =
2815 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2816 struct intel_crtc *pipe_C_crtc =
2817 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2818 uint32_t temp;
2819
1e833f40
DV
2820 /*
2821 * When everything is off disable fdi C so that we could enable fdi B
2822 * with all lanes. Note that we don't care about enabled pipes without
2823 * an enabled pch encoder.
2824 */
2825 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2826 !pipe_has_enabled_pch(pipe_C_crtc)) {
01a415fd
DV
2827 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2828 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2829
2830 temp = I915_READ(SOUTH_CHICKEN1);
2831 temp &= ~FDI_BC_BIFURCATION_SELECT;
2832 DRM_DEBUG_KMS("disabling fdi C rx\n");
2833 I915_WRITE(SOUTH_CHICKEN1, temp);
2834 }
2835}
2836
8db9d77b
ZW
2837/* The FDI link training functions for ILK/Ibexpeak. */
2838static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2839{
2840 struct drm_device *dev = crtc->dev;
2841 struct drm_i915_private *dev_priv = dev->dev_private;
2842 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2843 int pipe = intel_crtc->pipe;
5eddb70b 2844 u32 reg, temp, tries;
8db9d77b 2845
1c8562f6 2846 /* FDI needs bits from pipe first */
0fc932b8 2847 assert_pipe_enabled(dev_priv, pipe);
0fc932b8 2848
e1a44743
AJ
2849 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2850 for train result */
5eddb70b
CW
2851 reg = FDI_RX_IMR(pipe);
2852 temp = I915_READ(reg);
e1a44743
AJ
2853 temp &= ~FDI_RX_SYMBOL_LOCK;
2854 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2855 I915_WRITE(reg, temp);
2856 I915_READ(reg);
e1a44743
AJ
2857 udelay(150);
2858
8db9d77b 2859 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2860 reg = FDI_TX_CTL(pipe);
2861 temp = I915_READ(reg);
627eb5a3
DV
2862 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2863 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
8db9d77b
ZW
2864 temp &= ~FDI_LINK_TRAIN_NONE;
2865 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 2866 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2867
5eddb70b
CW
2868 reg = FDI_RX_CTL(pipe);
2869 temp = I915_READ(reg);
8db9d77b
ZW
2870 temp &= ~FDI_LINK_TRAIN_NONE;
2871 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
2872 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2873
2874 POSTING_READ(reg);
8db9d77b
ZW
2875 udelay(150);
2876
5b2adf89 2877 /* Ironlake workaround, enable clock pointer after FDI enable*/
8f5718a6
DV
2878 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2879 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2880 FDI_RX_PHASE_SYNC_POINTER_EN);
5b2adf89 2881
5eddb70b 2882 reg = FDI_RX_IIR(pipe);
e1a44743 2883 for (tries = 0; tries < 5; tries++) {
5eddb70b 2884 temp = I915_READ(reg);
8db9d77b
ZW
2885 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2886
2887 if ((temp & FDI_RX_BIT_LOCK)) {
2888 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 2889 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
2890 break;
2891 }
8db9d77b 2892 }
e1a44743 2893 if (tries == 5)
5eddb70b 2894 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
2895
2896 /* Train 2 */
5eddb70b
CW
2897 reg = FDI_TX_CTL(pipe);
2898 temp = I915_READ(reg);
8db9d77b
ZW
2899 temp &= ~FDI_LINK_TRAIN_NONE;
2900 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2901 I915_WRITE(reg, temp);
8db9d77b 2902
5eddb70b
CW
2903 reg = FDI_RX_CTL(pipe);
2904 temp = I915_READ(reg);
8db9d77b
ZW
2905 temp &= ~FDI_LINK_TRAIN_NONE;
2906 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2907 I915_WRITE(reg, temp);
8db9d77b 2908
5eddb70b
CW
2909 POSTING_READ(reg);
2910 udelay(150);
8db9d77b 2911
5eddb70b 2912 reg = FDI_RX_IIR(pipe);
e1a44743 2913 for (tries = 0; tries < 5; tries++) {
5eddb70b 2914 temp = I915_READ(reg);
8db9d77b
ZW
2915 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2916
2917 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 2918 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
2919 DRM_DEBUG_KMS("FDI train 2 done.\n");
2920 break;
2921 }
8db9d77b 2922 }
e1a44743 2923 if (tries == 5)
5eddb70b 2924 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
2925
2926 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 2927
8db9d77b
ZW
2928}
2929
0206e353 2930static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
2931 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2932 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2933 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2934 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2935};
2936
2937/* The FDI link training functions for SNB/Cougarpoint. */
2938static void gen6_fdi_link_train(struct drm_crtc *crtc)
2939{
2940 struct drm_device *dev = crtc->dev;
2941 struct drm_i915_private *dev_priv = dev->dev_private;
2942 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2943 int pipe = intel_crtc->pipe;
fa37d39e 2944 u32 reg, temp, i, retry;
8db9d77b 2945
e1a44743
AJ
2946 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2947 for train result */
5eddb70b
CW
2948 reg = FDI_RX_IMR(pipe);
2949 temp = I915_READ(reg);
e1a44743
AJ
2950 temp &= ~FDI_RX_SYMBOL_LOCK;
2951 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2952 I915_WRITE(reg, temp);
2953
2954 POSTING_READ(reg);
e1a44743
AJ
2955 udelay(150);
2956
8db9d77b 2957 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2958 reg = FDI_TX_CTL(pipe);
2959 temp = I915_READ(reg);
627eb5a3
DV
2960 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2961 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
8db9d77b
ZW
2962 temp &= ~FDI_LINK_TRAIN_NONE;
2963 temp |= FDI_LINK_TRAIN_PATTERN_1;
2964 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2965 /* SNB-B */
2966 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 2967 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2968
d74cf324
DV
2969 I915_WRITE(FDI_RX_MISC(pipe),
2970 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2971
5eddb70b
CW
2972 reg = FDI_RX_CTL(pipe);
2973 temp = I915_READ(reg);
8db9d77b
ZW
2974 if (HAS_PCH_CPT(dev)) {
2975 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2976 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2977 } else {
2978 temp &= ~FDI_LINK_TRAIN_NONE;
2979 temp |= FDI_LINK_TRAIN_PATTERN_1;
2980 }
5eddb70b
CW
2981 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2982
2983 POSTING_READ(reg);
8db9d77b
ZW
2984 udelay(150);
2985
0206e353 2986 for (i = 0; i < 4; i++) {
5eddb70b
CW
2987 reg = FDI_TX_CTL(pipe);
2988 temp = I915_READ(reg);
8db9d77b
ZW
2989 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2990 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
2991 I915_WRITE(reg, temp);
2992
2993 POSTING_READ(reg);
8db9d77b
ZW
2994 udelay(500);
2995
fa37d39e
SP
2996 for (retry = 0; retry < 5; retry++) {
2997 reg = FDI_RX_IIR(pipe);
2998 temp = I915_READ(reg);
2999 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3000 if (temp & FDI_RX_BIT_LOCK) {
3001 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3002 DRM_DEBUG_KMS("FDI train 1 done.\n");
3003 break;
3004 }
3005 udelay(50);
8db9d77b 3006 }
fa37d39e
SP
3007 if (retry < 5)
3008 break;
8db9d77b
ZW
3009 }
3010 if (i == 4)
5eddb70b 3011 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3012
3013 /* Train 2 */
5eddb70b
CW
3014 reg = FDI_TX_CTL(pipe);
3015 temp = I915_READ(reg);
8db9d77b
ZW
3016 temp &= ~FDI_LINK_TRAIN_NONE;
3017 temp |= FDI_LINK_TRAIN_PATTERN_2;
3018 if (IS_GEN6(dev)) {
3019 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3020 /* SNB-B */
3021 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3022 }
5eddb70b 3023 I915_WRITE(reg, temp);
8db9d77b 3024
5eddb70b
CW
3025 reg = FDI_RX_CTL(pipe);
3026 temp = I915_READ(reg);
8db9d77b
ZW
3027 if (HAS_PCH_CPT(dev)) {
3028 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3029 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3030 } else {
3031 temp &= ~FDI_LINK_TRAIN_NONE;
3032 temp |= FDI_LINK_TRAIN_PATTERN_2;
3033 }
5eddb70b
CW
3034 I915_WRITE(reg, temp);
3035
3036 POSTING_READ(reg);
8db9d77b
ZW
3037 udelay(150);
3038
0206e353 3039 for (i = 0; i < 4; i++) {
5eddb70b
CW
3040 reg = FDI_TX_CTL(pipe);
3041 temp = I915_READ(reg);
8db9d77b
ZW
3042 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3043 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3044 I915_WRITE(reg, temp);
3045
3046 POSTING_READ(reg);
8db9d77b
ZW
3047 udelay(500);
3048
fa37d39e
SP
3049 for (retry = 0; retry < 5; retry++) {
3050 reg = FDI_RX_IIR(pipe);
3051 temp = I915_READ(reg);
3052 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3053 if (temp & FDI_RX_SYMBOL_LOCK) {
3054 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3055 DRM_DEBUG_KMS("FDI train 2 done.\n");
3056 break;
3057 }
3058 udelay(50);
8db9d77b 3059 }
fa37d39e
SP
3060 if (retry < 5)
3061 break;
8db9d77b
ZW
3062 }
3063 if (i == 4)
5eddb70b 3064 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3065
3066 DRM_DEBUG_KMS("FDI train done.\n");
3067}
3068
357555c0
JB
3069/* Manual link training for Ivy Bridge A0 parts */
3070static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3071{
3072 struct drm_device *dev = crtc->dev;
3073 struct drm_i915_private *dev_priv = dev->dev_private;
3074 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3075 int pipe = intel_crtc->pipe;
139ccd3f 3076 u32 reg, temp, i, j;
357555c0
JB
3077
3078 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3079 for train result */
3080 reg = FDI_RX_IMR(pipe);
3081 temp = I915_READ(reg);
3082 temp &= ~FDI_RX_SYMBOL_LOCK;
3083 temp &= ~FDI_RX_BIT_LOCK;
3084 I915_WRITE(reg, temp);
3085
3086 POSTING_READ(reg);
3087 udelay(150);
3088
01a415fd
DV
3089 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3090 I915_READ(FDI_RX_IIR(pipe)));
3091
139ccd3f
JB
3092 /* Try each vswing and preemphasis setting twice before moving on */
3093 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3094 /* disable first in case we need to retry */
3095 reg = FDI_TX_CTL(pipe);
3096 temp = I915_READ(reg);
3097 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3098 temp &= ~FDI_TX_ENABLE;
3099 I915_WRITE(reg, temp);
357555c0 3100
139ccd3f
JB
3101 reg = FDI_RX_CTL(pipe);
3102 temp = I915_READ(reg);
3103 temp &= ~FDI_LINK_TRAIN_AUTO;
3104 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3105 temp &= ~FDI_RX_ENABLE;
3106 I915_WRITE(reg, temp);
357555c0 3107
139ccd3f 3108 /* enable CPU FDI TX and PCH FDI RX */
357555c0
JB
3109 reg = FDI_TX_CTL(pipe);
3110 temp = I915_READ(reg);
139ccd3f
JB
3111 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3112 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3113 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
357555c0 3114 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
139ccd3f
JB
3115 temp |= snb_b_fdi_train_param[j/2];
3116 temp |= FDI_COMPOSITE_SYNC;
3117 I915_WRITE(reg, temp | FDI_TX_ENABLE);
357555c0 3118
139ccd3f
JB
3119 I915_WRITE(FDI_RX_MISC(pipe),
3120 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
357555c0 3121
139ccd3f 3122 reg = FDI_RX_CTL(pipe);
357555c0 3123 temp = I915_READ(reg);
139ccd3f
JB
3124 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3125 temp |= FDI_COMPOSITE_SYNC;
3126 I915_WRITE(reg, temp | FDI_RX_ENABLE);
357555c0 3127
139ccd3f
JB
3128 POSTING_READ(reg);
3129 udelay(1); /* should be 0.5us */
357555c0 3130
139ccd3f
JB
3131 for (i = 0; i < 4; i++) {
3132 reg = FDI_RX_IIR(pipe);
3133 temp = I915_READ(reg);
3134 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3135
139ccd3f
JB
3136 if (temp & FDI_RX_BIT_LOCK ||
3137 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3138 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3139 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3140 i);
3141 break;
3142 }
3143 udelay(1); /* should be 0.5us */
3144 }
3145 if (i == 4) {
3146 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3147 continue;
3148 }
357555c0 3149
139ccd3f 3150 /* Train 2 */
357555c0
JB
3151 reg = FDI_TX_CTL(pipe);
3152 temp = I915_READ(reg);
139ccd3f
JB
3153 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3154 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3155 I915_WRITE(reg, temp);
3156
3157 reg = FDI_RX_CTL(pipe);
3158 temp = I915_READ(reg);
3159 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3160 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
357555c0
JB
3161 I915_WRITE(reg, temp);
3162
3163 POSTING_READ(reg);
139ccd3f 3164 udelay(2); /* should be 1.5us */
357555c0 3165
139ccd3f
JB
3166 for (i = 0; i < 4; i++) {
3167 reg = FDI_RX_IIR(pipe);
3168 temp = I915_READ(reg);
3169 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3170
139ccd3f
JB
3171 if (temp & FDI_RX_SYMBOL_LOCK ||
3172 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3173 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3174 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3175 i);
3176 goto train_done;
3177 }
3178 udelay(2); /* should be 1.5us */
357555c0 3179 }
139ccd3f
JB
3180 if (i == 4)
3181 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
357555c0 3182 }
357555c0 3183
139ccd3f 3184train_done:
357555c0
JB
3185 DRM_DEBUG_KMS("FDI train done.\n");
3186}
3187
88cefb6c 3188static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 3189{
88cefb6c 3190 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 3191 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 3192 int pipe = intel_crtc->pipe;
5eddb70b 3193 u32 reg, temp;
79e53945 3194
c64e311e 3195
c98e9dcf 3196 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
3197 reg = FDI_RX_CTL(pipe);
3198 temp = I915_READ(reg);
627eb5a3
DV
3199 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3200 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
dfd07d72 3201 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5eddb70b
CW
3202 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3203
3204 POSTING_READ(reg);
c98e9dcf
JB
3205 udelay(200);
3206
3207 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
3208 temp = I915_READ(reg);
3209 I915_WRITE(reg, temp | FDI_PCDCLK);
3210
3211 POSTING_READ(reg);
c98e9dcf
JB
3212 udelay(200);
3213
20749730
PZ
3214 /* Enable CPU FDI TX PLL, always on for Ironlake */
3215 reg = FDI_TX_CTL(pipe);
3216 temp = I915_READ(reg);
3217 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3218 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 3219
20749730
PZ
3220 POSTING_READ(reg);
3221 udelay(100);
6be4a607 3222 }
0e23b99d
JB
3223}
3224
88cefb6c
DV
3225static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3226{
3227 struct drm_device *dev = intel_crtc->base.dev;
3228 struct drm_i915_private *dev_priv = dev->dev_private;
3229 int pipe = intel_crtc->pipe;
3230 u32 reg, temp;
3231
3232 /* Switch from PCDclk to Rawclk */
3233 reg = FDI_RX_CTL(pipe);
3234 temp = I915_READ(reg);
3235 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3236
3237 /* Disable CPU FDI TX PLL */
3238 reg = FDI_TX_CTL(pipe);
3239 temp = I915_READ(reg);
3240 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3241
3242 POSTING_READ(reg);
3243 udelay(100);
3244
3245 reg = FDI_RX_CTL(pipe);
3246 temp = I915_READ(reg);
3247 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3248
3249 /* Wait for the clocks to turn off. */
3250 POSTING_READ(reg);
3251 udelay(100);
3252}
3253
0fc932b8
JB
3254static void ironlake_fdi_disable(struct drm_crtc *crtc)
3255{
3256 struct drm_device *dev = crtc->dev;
3257 struct drm_i915_private *dev_priv = dev->dev_private;
3258 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3259 int pipe = intel_crtc->pipe;
3260 u32 reg, temp;
3261
3262 /* disable CPU FDI tx and PCH FDI rx */
3263 reg = FDI_TX_CTL(pipe);
3264 temp = I915_READ(reg);
3265 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3266 POSTING_READ(reg);
3267
3268 reg = FDI_RX_CTL(pipe);
3269 temp = I915_READ(reg);
3270 temp &= ~(0x7 << 16);
dfd07d72 3271 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3272 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3273
3274 POSTING_READ(reg);
3275 udelay(100);
3276
3277 /* Ironlake workaround, disable clock pointer after downing FDI */
eba905b2 3278 if (HAS_PCH_IBX(dev))
6f06ce18 3279 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
3280
3281 /* still set train pattern 1 */
3282 reg = FDI_TX_CTL(pipe);
3283 temp = I915_READ(reg);
3284 temp &= ~FDI_LINK_TRAIN_NONE;
3285 temp |= FDI_LINK_TRAIN_PATTERN_1;
3286 I915_WRITE(reg, temp);
3287
3288 reg = FDI_RX_CTL(pipe);
3289 temp = I915_READ(reg);
3290 if (HAS_PCH_CPT(dev)) {
3291 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3292 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3293 } else {
3294 temp &= ~FDI_LINK_TRAIN_NONE;
3295 temp |= FDI_LINK_TRAIN_PATTERN_1;
3296 }
3297 /* BPC in FDI rx is consistent with that in PIPECONF */
3298 temp &= ~(0x07 << 16);
dfd07d72 3299 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3300 I915_WRITE(reg, temp);
3301
3302 POSTING_READ(reg);
3303 udelay(100);
3304}
3305
5dce5b93
CW
3306bool intel_has_pending_fb_unpin(struct drm_device *dev)
3307{
3308 struct intel_crtc *crtc;
3309
3310 /* Note that we don't need to be called with mode_config.lock here
3311 * as our list of CRTC objects is static for the lifetime of the
3312 * device and so cannot disappear as we iterate. Similarly, we can
3313 * happily treat the predicates as racy, atomic checks as userspace
3314 * cannot claim and pin a new fb without at least acquring the
3315 * struct_mutex and so serialising with us.
3316 */
d3fcc808 3317 for_each_intel_crtc(dev, crtc) {
5dce5b93
CW
3318 if (atomic_read(&crtc->unpin_work_count) == 0)
3319 continue;
3320
3321 if (crtc->unpin_work)
3322 intel_wait_for_vblank(dev, crtc->pipe);
3323
3324 return true;
3325 }
3326
3327 return false;
3328}
3329
46a55d30 3330void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
e6c3a2a6 3331{
0f91128d 3332 struct drm_device *dev = crtc->dev;
5bb61643 3333 struct drm_i915_private *dev_priv = dev->dev_private;
e6c3a2a6 3334
f4510a27 3335 if (crtc->primary->fb == NULL)
e6c3a2a6
CW
3336 return;
3337
2c10d571
DV
3338 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3339
eed6d67d
DV
3340 WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3341 !intel_crtc_has_pending_flip(crtc),
3342 60*HZ) == 0);
5bb61643 3343
0f91128d 3344 mutex_lock(&dev->struct_mutex);
f4510a27 3345 intel_finish_fb(crtc->primary->fb);
0f91128d 3346 mutex_unlock(&dev->struct_mutex);
e6c3a2a6
CW
3347}
3348
e615efe4
ED
3349/* Program iCLKIP clock to the desired frequency */
3350static void lpt_program_iclkip(struct drm_crtc *crtc)
3351{
3352 struct drm_device *dev = crtc->dev;
3353 struct drm_i915_private *dev_priv = dev->dev_private;
241bfc38 3354 int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
e615efe4
ED
3355 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3356 u32 temp;
3357
09153000
DV
3358 mutex_lock(&dev_priv->dpio_lock);
3359
e615efe4
ED
3360 /* It is necessary to ungate the pixclk gate prior to programming
3361 * the divisors, and gate it back when it is done.
3362 */
3363 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3364
3365 /* Disable SSCCTL */
3366 intel_sbi_write(dev_priv, SBI_SSCCTL6,
988d6ee8
PZ
3367 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3368 SBI_SSCCTL_DISABLE,
3369 SBI_ICLK);
e615efe4
ED
3370
3371 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
12d7ceed 3372 if (clock == 20000) {
e615efe4
ED
3373 auxdiv = 1;
3374 divsel = 0x41;
3375 phaseinc = 0x20;
3376 } else {
3377 /* The iCLK virtual clock root frequency is in MHz,
241bfc38
DL
3378 * but the adjusted_mode->crtc_clock in in KHz. To get the
3379 * divisors, it is necessary to divide one by another, so we
e615efe4
ED
3380 * convert the virtual clock precision to KHz here for higher
3381 * precision.
3382 */
3383 u32 iclk_virtual_root_freq = 172800 * 1000;
3384 u32 iclk_pi_range = 64;
3385 u32 desired_divisor, msb_divisor_value, pi_value;
3386
12d7ceed 3387 desired_divisor = (iclk_virtual_root_freq / clock);
e615efe4
ED
3388 msb_divisor_value = desired_divisor / iclk_pi_range;
3389 pi_value = desired_divisor % iclk_pi_range;
3390
3391 auxdiv = 0;
3392 divsel = msb_divisor_value - 2;
3393 phaseinc = pi_value;
3394 }
3395
3396 /* This should not happen with any sane values */
3397 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3398 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3399 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3400 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3401
3402 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
12d7ceed 3403 clock,
e615efe4
ED
3404 auxdiv,
3405 divsel,
3406 phasedir,
3407 phaseinc);
3408
3409 /* Program SSCDIVINTPHASE6 */
988d6ee8 3410 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
e615efe4
ED
3411 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3412 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3413 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3414 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3415 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3416 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
988d6ee8 3417 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
e615efe4
ED
3418
3419 /* Program SSCAUXDIV */
988d6ee8 3420 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
e615efe4
ED
3421 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3422 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
988d6ee8 3423 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
e615efe4
ED
3424
3425 /* Enable modulator and associated divider */
988d6ee8 3426 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
e615efe4 3427 temp &= ~SBI_SSCCTL_DISABLE;
988d6ee8 3428 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
e615efe4
ED
3429
3430 /* Wait for initialization time */
3431 udelay(24);
3432
3433 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
09153000
DV
3434
3435 mutex_unlock(&dev_priv->dpio_lock);
e615efe4
ED
3436}
3437
275f01b2
DV
3438static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3439 enum pipe pch_transcoder)
3440{
3441 struct drm_device *dev = crtc->base.dev;
3442 struct drm_i915_private *dev_priv = dev->dev_private;
3443 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3444
3445 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3446 I915_READ(HTOTAL(cpu_transcoder)));
3447 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3448 I915_READ(HBLANK(cpu_transcoder)));
3449 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3450 I915_READ(HSYNC(cpu_transcoder)));
3451
3452 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3453 I915_READ(VTOTAL(cpu_transcoder)));
3454 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3455 I915_READ(VBLANK(cpu_transcoder)));
3456 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3457 I915_READ(VSYNC(cpu_transcoder)));
3458 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3459 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3460}
3461
1fbc0d78
DV
3462static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3463{
3464 struct drm_i915_private *dev_priv = dev->dev_private;
3465 uint32_t temp;
3466
3467 temp = I915_READ(SOUTH_CHICKEN1);
3468 if (temp & FDI_BC_BIFURCATION_SELECT)
3469 return;
3470
3471 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3472 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3473
3474 temp |= FDI_BC_BIFURCATION_SELECT;
3475 DRM_DEBUG_KMS("enabling fdi C rx\n");
3476 I915_WRITE(SOUTH_CHICKEN1, temp);
3477 POSTING_READ(SOUTH_CHICKEN1);
3478}
3479
3480static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3481{
3482 struct drm_device *dev = intel_crtc->base.dev;
3483 struct drm_i915_private *dev_priv = dev->dev_private;
3484
3485 switch (intel_crtc->pipe) {
3486 case PIPE_A:
3487 break;
3488 case PIPE_B:
3489 if (intel_crtc->config.fdi_lanes > 2)
3490 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3491 else
3492 cpt_enable_fdi_bc_bifurcation(dev);
3493
3494 break;
3495 case PIPE_C:
3496 cpt_enable_fdi_bc_bifurcation(dev);
3497
3498 break;
3499 default:
3500 BUG();
3501 }
3502}
3503
f67a559d
JB
3504/*
3505 * Enable PCH resources required for PCH ports:
3506 * - PCH PLLs
3507 * - FDI training & RX/TX
3508 * - update transcoder timings
3509 * - DP transcoding bits
3510 * - transcoder
3511 */
3512static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
3513{
3514 struct drm_device *dev = crtc->dev;
3515 struct drm_i915_private *dev_priv = dev->dev_private;
3516 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3517 int pipe = intel_crtc->pipe;
ee7b9f93 3518 u32 reg, temp;
2c07245f 3519
ab9412ba 3520 assert_pch_transcoder_disabled(dev_priv, pipe);
e7e164db 3521
1fbc0d78
DV
3522 if (IS_IVYBRIDGE(dev))
3523 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3524
cd986abb
DV
3525 /* Write the TU size bits before fdi link training, so that error
3526 * detection works. */
3527 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3528 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3529
c98e9dcf 3530 /* For PCH output, training FDI link */
674cf967 3531 dev_priv->display.fdi_link_train(crtc);
2c07245f 3532
3ad8a208
DV
3533 /* We need to program the right clock selection before writing the pixel
3534 * mutliplier into the DPLL. */
303b81e0 3535 if (HAS_PCH_CPT(dev)) {
ee7b9f93 3536 u32 sel;
4b645f14 3537
c98e9dcf 3538 temp = I915_READ(PCH_DPLL_SEL);
11887397
DV
3539 temp |= TRANS_DPLL_ENABLE(pipe);
3540 sel = TRANS_DPLLB_SEL(pipe);
a43f6e0f 3541 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
ee7b9f93
JB
3542 temp |= sel;
3543 else
3544 temp &= ~sel;
c98e9dcf 3545 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 3546 }
5eddb70b 3547
3ad8a208
DV
3548 /* XXX: pch pll's can be enabled any time before we enable the PCH
3549 * transcoder, and we actually should do this to not upset any PCH
3550 * transcoder that already use the clock when we share it.
3551 *
3552 * Note that enable_shared_dpll tries to do the right thing, but
3553 * get_shared_dpll unconditionally resets the pll - we need that to have
3554 * the right LVDS enable sequence. */
85b3894f 3555 intel_enable_shared_dpll(intel_crtc);
3ad8a208 3556
d9b6cb56
JB
3557 /* set transcoder timing, panel must allow it */
3558 assert_panel_unlocked(dev_priv, pipe);
275f01b2 3559 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
8db9d77b 3560
303b81e0 3561 intel_fdi_normal_train(crtc);
5e84e1a4 3562
c98e9dcf
JB
3563 /* For PCH DP, enable TRANS_DP_CTL */
3564 if (HAS_PCH_CPT(dev) &&
417e822d
KP
3565 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3566 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
dfd07d72 3567 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
5eddb70b
CW
3568 reg = TRANS_DP_CTL(pipe);
3569 temp = I915_READ(reg);
3570 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
3571 TRANS_DP_SYNC_MASK |
3572 TRANS_DP_BPC_MASK);
5eddb70b
CW
3573 temp |= (TRANS_DP_OUTPUT_ENABLE |
3574 TRANS_DP_ENH_FRAMING);
9325c9f0 3575 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
3576
3577 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 3578 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 3579 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 3580 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
3581
3582 switch (intel_trans_dp_port_sel(crtc)) {
3583 case PCH_DP_B:
5eddb70b 3584 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
3585 break;
3586 case PCH_DP_C:
5eddb70b 3587 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
3588 break;
3589 case PCH_DP_D:
5eddb70b 3590 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
3591 break;
3592 default:
e95d41e1 3593 BUG();
32f9d658 3594 }
2c07245f 3595
5eddb70b 3596 I915_WRITE(reg, temp);
6be4a607 3597 }
b52eb4dc 3598
b8a4f404 3599 ironlake_enable_pch_transcoder(dev_priv, pipe);
f67a559d
JB
3600}
3601
1507e5bd
PZ
3602static void lpt_pch_enable(struct drm_crtc *crtc)
3603{
3604 struct drm_device *dev = crtc->dev;
3605 struct drm_i915_private *dev_priv = dev->dev_private;
3606 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3b117c8f 3607 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
1507e5bd 3608
ab9412ba 3609 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
1507e5bd 3610
8c52b5e8 3611 lpt_program_iclkip(crtc);
1507e5bd 3612
0540e488 3613 /* Set transcoder timing. */
275f01b2 3614 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
1507e5bd 3615
937bb610 3616 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
f67a559d
JB
3617}
3618
716c2e55 3619void intel_put_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 3620{
e2b78267 3621 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
ee7b9f93
JB
3622
3623 if (pll == NULL)
3624 return;
3625
3626 if (pll->refcount == 0) {
46edb027 3627 WARN(1, "bad %s refcount\n", pll->name);
ee7b9f93
JB
3628 return;
3629 }
3630
f4a091c7
DV
3631 if (--pll->refcount == 0) {
3632 WARN_ON(pll->on);
3633 WARN_ON(pll->active);
3634 }
3635
a43f6e0f 3636 crtc->config.shared_dpll = DPLL_ID_PRIVATE;
ee7b9f93
JB
3637}
3638
716c2e55 3639struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 3640{
e2b78267
DV
3641 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3642 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3643 enum intel_dpll_id i;
ee7b9f93 3644
ee7b9f93 3645 if (pll) {
46edb027
DV
3646 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3647 crtc->base.base.id, pll->name);
e2b78267 3648 intel_put_shared_dpll(crtc);
ee7b9f93
JB
3649 }
3650
98b6bd99
DV
3651 if (HAS_PCH_IBX(dev_priv->dev)) {
3652 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
d94ab068 3653 i = (enum intel_dpll_id) crtc->pipe;
e72f9fbf 3654 pll = &dev_priv->shared_dplls[i];
98b6bd99 3655
46edb027
DV
3656 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3657 crtc->base.base.id, pll->name);
98b6bd99 3658
f2a69f44
DV
3659 WARN_ON(pll->refcount);
3660
98b6bd99
DV
3661 goto found;
3662 }
3663
e72f9fbf
DV
3664 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3665 pll = &dev_priv->shared_dplls[i];
ee7b9f93
JB
3666
3667 /* Only want to check enabled timings first */
3668 if (pll->refcount == 0)
3669 continue;
3670
b89a1d39
DV
3671 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3672 sizeof(pll->hw_state)) == 0) {
46edb027 3673 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
e2b78267 3674 crtc->base.base.id,
46edb027 3675 pll->name, pll->refcount, pll->active);
ee7b9f93
JB
3676
3677 goto found;
3678 }
3679 }
3680
3681 /* Ok no matching timings, maybe there's a free one? */
e72f9fbf
DV
3682 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3683 pll = &dev_priv->shared_dplls[i];
ee7b9f93 3684 if (pll->refcount == 0) {
46edb027
DV
3685 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3686 crtc->base.base.id, pll->name);
ee7b9f93
JB
3687 goto found;
3688 }
3689 }
3690
3691 return NULL;
3692
3693found:
f2a69f44
DV
3694 if (pll->refcount == 0)
3695 pll->hw_state = crtc->config.dpll_hw_state;
3696
a43f6e0f 3697 crtc->config.shared_dpll = i;
46edb027
DV
3698 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3699 pipe_name(crtc->pipe));
ee7b9f93 3700
cdbd2316 3701 pll->refcount++;
e04c7350 3702
ee7b9f93
JB
3703 return pll;
3704}
3705
a1520318 3706static void cpt_verify_modeset(struct drm_device *dev, int pipe)
d4270e57
JB
3707{
3708 struct drm_i915_private *dev_priv = dev->dev_private;
23670b32 3709 int dslreg = PIPEDSL(pipe);
d4270e57
JB
3710 u32 temp;
3711
3712 temp = I915_READ(dslreg);
3713 udelay(500);
3714 if (wait_for(I915_READ(dslreg) != temp, 5)) {
d4270e57 3715 if (wait_for(I915_READ(dslreg) != temp, 5))
84f44ce7 3716 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
d4270e57
JB
3717 }
3718}
3719
b074cec8
JB
3720static void ironlake_pfit_enable(struct intel_crtc *crtc)
3721{
3722 struct drm_device *dev = crtc->base.dev;
3723 struct drm_i915_private *dev_priv = dev->dev_private;
3724 int pipe = crtc->pipe;
3725
fd4daa9c 3726 if (crtc->config.pch_pfit.enabled) {
b074cec8
JB
3727 /* Force use of hard-coded filter coefficients
3728 * as some pre-programmed values are broken,
3729 * e.g. x201.
3730 */
3731 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3732 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3733 PF_PIPE_SEL_IVB(pipe));
3734 else
3735 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3736 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3737 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
d4270e57
JB
3738 }
3739}
3740
bb53d4ae
VS
3741static void intel_enable_planes(struct drm_crtc *crtc)
3742{
3743 struct drm_device *dev = crtc->dev;
3744 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 3745 struct drm_plane *plane;
bb53d4ae
VS
3746 struct intel_plane *intel_plane;
3747
af2b653b
MR
3748 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3749 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
3750 if (intel_plane->pipe == pipe)
3751 intel_plane_restore(&intel_plane->base);
af2b653b 3752 }
bb53d4ae
VS
3753}
3754
3755static void intel_disable_planes(struct drm_crtc *crtc)
3756{
3757 struct drm_device *dev = crtc->dev;
3758 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 3759 struct drm_plane *plane;
bb53d4ae
VS
3760 struct intel_plane *intel_plane;
3761
af2b653b
MR
3762 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3763 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
3764 if (intel_plane->pipe == pipe)
3765 intel_plane_disable(&intel_plane->base);
af2b653b 3766 }
bb53d4ae
VS
3767}
3768
20bc8673 3769void hsw_enable_ips(struct intel_crtc *crtc)
d77e4531 3770{
cea165c3
VS
3771 struct drm_device *dev = crtc->base.dev;
3772 struct drm_i915_private *dev_priv = dev->dev_private;
d77e4531
PZ
3773
3774 if (!crtc->config.ips_enabled)
3775 return;
3776
cea165c3
VS
3777 /* We can only enable IPS after we enable a plane and wait for a vblank */
3778 intel_wait_for_vblank(dev, crtc->pipe);
3779
d77e4531 3780 assert_plane_enabled(dev_priv, crtc->plane);
cea165c3 3781 if (IS_BROADWELL(dev)) {
2a114cc1
BW
3782 mutex_lock(&dev_priv->rps.hw_lock);
3783 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3784 mutex_unlock(&dev_priv->rps.hw_lock);
3785 /* Quoting Art Runyan: "its not safe to expect any particular
3786 * value in IPS_CTL bit 31 after enabling IPS through the
e59150dc
JB
3787 * mailbox." Moreover, the mailbox may return a bogus state,
3788 * so we need to just enable it and continue on.
2a114cc1
BW
3789 */
3790 } else {
3791 I915_WRITE(IPS_CTL, IPS_ENABLE);
3792 /* The bit only becomes 1 in the next vblank, so this wait here
3793 * is essentially intel_wait_for_vblank. If we don't have this
3794 * and don't wait for vblanks until the end of crtc_enable, then
3795 * the HW state readout code will complain that the expected
3796 * IPS_CTL value is not the one we read. */
3797 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3798 DRM_ERROR("Timed out waiting for IPS enable\n");
3799 }
d77e4531
PZ
3800}
3801
20bc8673 3802void hsw_disable_ips(struct intel_crtc *crtc)
d77e4531
PZ
3803{
3804 struct drm_device *dev = crtc->base.dev;
3805 struct drm_i915_private *dev_priv = dev->dev_private;
3806
3807 if (!crtc->config.ips_enabled)
3808 return;
3809
3810 assert_plane_enabled(dev_priv, crtc->plane);
23d0b130 3811 if (IS_BROADWELL(dev)) {
2a114cc1
BW
3812 mutex_lock(&dev_priv->rps.hw_lock);
3813 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
3814 mutex_unlock(&dev_priv->rps.hw_lock);
23d0b130
BW
3815 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
3816 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
3817 DRM_ERROR("Timed out waiting for IPS disable\n");
e59150dc 3818 } else {
2a114cc1 3819 I915_WRITE(IPS_CTL, 0);
e59150dc
JB
3820 POSTING_READ(IPS_CTL);
3821 }
d77e4531
PZ
3822
3823 /* We need to wait for a vblank before we can disable the plane. */
3824 intel_wait_for_vblank(dev, crtc->pipe);
3825}
3826
3827/** Loads the palette/gamma unit for the CRTC with the prepared values */
3828static void intel_crtc_load_lut(struct drm_crtc *crtc)
3829{
3830 struct drm_device *dev = crtc->dev;
3831 struct drm_i915_private *dev_priv = dev->dev_private;
3832 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3833 enum pipe pipe = intel_crtc->pipe;
3834 int palreg = PALETTE(pipe);
3835 int i;
3836 bool reenable_ips = false;
3837
3838 /* The clocks have to be on to load the palette. */
3839 if (!crtc->enabled || !intel_crtc->active)
3840 return;
3841
3842 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3843 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3844 assert_dsi_pll_enabled(dev_priv);
3845 else
3846 assert_pll_enabled(dev_priv, pipe);
3847 }
3848
3849 /* use legacy palette for Ironlake */
3850 if (HAS_PCH_SPLIT(dev))
3851 palreg = LGC_PALETTE(pipe);
3852
3853 /* Workaround : Do not read or write the pipe palette/gamma data while
3854 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3855 */
41e6fc4c 3856 if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
d77e4531
PZ
3857 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
3858 GAMMA_MODE_MODE_SPLIT)) {
3859 hsw_disable_ips(intel_crtc);
3860 reenable_ips = true;
3861 }
3862
3863 for (i = 0; i < 256; i++) {
3864 I915_WRITE(palreg + 4 * i,
3865 (intel_crtc->lut_r[i] << 16) |
3866 (intel_crtc->lut_g[i] << 8) |
3867 intel_crtc->lut_b[i]);
3868 }
3869
3870 if (reenable_ips)
3871 hsw_enable_ips(intel_crtc);
3872}
3873
d3eedb1a
VS
3874static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3875{
3876 if (!enable && intel_crtc->overlay) {
3877 struct drm_device *dev = intel_crtc->base.dev;
3878 struct drm_i915_private *dev_priv = dev->dev_private;
3879
3880 mutex_lock(&dev->struct_mutex);
3881 dev_priv->mm.interruptible = false;
3882 (void) intel_overlay_switch_off(intel_crtc->overlay);
3883 dev_priv->mm.interruptible = true;
3884 mutex_unlock(&dev->struct_mutex);
3885 }
3886
3887 /* Let userspace switch the overlay on again. In most cases userspace
3888 * has to recompute where to put it anyway.
3889 */
3890}
3891
d3eedb1a 3892static void intel_crtc_enable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
3893{
3894 struct drm_device *dev = crtc->dev;
3895 struct drm_i915_private *dev_priv = dev->dev_private;
3896 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3897 int pipe = intel_crtc->pipe;
3898 int plane = intel_crtc->plane;
3899
f98551ae
VS
3900 drm_vblank_on(dev, pipe);
3901
a5c4d7bc
VS
3902 intel_enable_primary_hw_plane(dev_priv, plane, pipe);
3903 intel_enable_planes(crtc);
3904 intel_crtc_update_cursor(crtc, true);
d3eedb1a 3905 intel_crtc_dpms_overlay(intel_crtc, true);
a5c4d7bc
VS
3906
3907 hsw_enable_ips(intel_crtc);
3908
3909 mutex_lock(&dev->struct_mutex);
3910 intel_update_fbc(dev);
3911 mutex_unlock(&dev->struct_mutex);
f99d7069
DV
3912
3913 /*
3914 * FIXME: Once we grow proper nuclear flip support out of this we need
3915 * to compute the mask of flip planes precisely. For the time being
3916 * consider this a flip from a NULL plane.
3917 */
3918 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
3919}
3920
d3eedb1a 3921static void intel_crtc_disable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
3922{
3923 struct drm_device *dev = crtc->dev;
3924 struct drm_i915_private *dev_priv = dev->dev_private;
3925 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3926 int pipe = intel_crtc->pipe;
3927 int plane = intel_crtc->plane;
3928
3929 intel_crtc_wait_for_pending_flips(crtc);
a5c4d7bc
VS
3930
3931 if (dev_priv->fbc.plane == plane)
3932 intel_disable_fbc(dev);
3933
3934 hsw_disable_ips(intel_crtc);
3935
d3eedb1a 3936 intel_crtc_dpms_overlay(intel_crtc, false);
a5c4d7bc
VS
3937 intel_crtc_update_cursor(crtc, false);
3938 intel_disable_planes(crtc);
3939 intel_disable_primary_hw_plane(dev_priv, plane, pipe);
f98551ae 3940
f99d7069
DV
3941 /*
3942 * FIXME: Once we grow proper nuclear flip support out of this we need
3943 * to compute the mask of flip planes precisely. For the time being
3944 * consider this a flip to a NULL plane.
3945 */
3946 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
3947
f98551ae 3948 drm_vblank_off(dev, pipe);
a5c4d7bc
VS
3949}
3950
f67a559d
JB
3951static void ironlake_crtc_enable(struct drm_crtc *crtc)
3952{
3953 struct drm_device *dev = crtc->dev;
3954 struct drm_i915_private *dev_priv = dev->dev_private;
3955 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3956 struct intel_encoder *encoder;
f67a559d 3957 int pipe = intel_crtc->pipe;
29407aab 3958 enum plane plane = intel_crtc->plane;
f67a559d 3959
08a48469
DV
3960 WARN_ON(!crtc->enabled);
3961
f67a559d
JB
3962 if (intel_crtc->active)
3963 return;
3964
b14b1055
DV
3965 if (intel_crtc->config.has_pch_encoder)
3966 intel_prepare_shared_dpll(intel_crtc);
3967
29407aab
DV
3968 if (intel_crtc->config.has_dp_encoder)
3969 intel_dp_set_m_n(intel_crtc);
3970
3971 intel_set_pipe_timings(intel_crtc);
3972
3973 if (intel_crtc->config.has_pch_encoder) {
3974 intel_cpu_transcoder_set_m_n(intel_crtc,
3975 &intel_crtc->config.fdi_m_n);
3976 }
3977
3978 ironlake_set_pipeconf(crtc);
3979
3980 /* Set up the display plane register */
3981 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
3982 POSTING_READ(DSPCNTR(plane));
3983
3984 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
3985 crtc->x, crtc->y);
3986
f67a559d 3987 intel_crtc->active = true;
8664281b
PZ
3988
3989 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3990 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3991
f6736a1a 3992 for_each_encoder_on_crtc(dev, crtc, encoder)
952735ee
DV
3993 if (encoder->pre_enable)
3994 encoder->pre_enable(encoder);
f67a559d 3995
5bfe2ac0 3996 if (intel_crtc->config.has_pch_encoder) {
fff367c7
DV
3997 /* Note: FDI PLL enabling _must_ be done before we enable the
3998 * cpu pipes, hence this is separate from all the other fdi/pch
3999 * enabling. */
88cefb6c 4000 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
4001 } else {
4002 assert_fdi_tx_disabled(dev_priv, pipe);
4003 assert_fdi_rx_disabled(dev_priv, pipe);
4004 }
f67a559d 4005
b074cec8 4006 ironlake_pfit_enable(intel_crtc);
f67a559d 4007
9c54c0dd
JB
4008 /*
4009 * On ILK+ LUT must be loaded before the pipe is running but with
4010 * clocks enabled
4011 */
4012 intel_crtc_load_lut(crtc);
4013
f37fcc2a 4014 intel_update_watermarks(crtc);
e1fdc473 4015 intel_enable_pipe(intel_crtc);
f67a559d 4016
5bfe2ac0 4017 if (intel_crtc->config.has_pch_encoder)
f67a559d 4018 ironlake_pch_enable(crtc);
c98e9dcf 4019
fa5c73b1
DV
4020 for_each_encoder_on_crtc(dev, crtc, encoder)
4021 encoder->enable(encoder);
61b77ddd
DV
4022
4023 if (HAS_PCH_CPT(dev))
a1520318 4024 cpt_verify_modeset(dev, intel_crtc->pipe);
6ce94100 4025
d3eedb1a 4026 intel_crtc_enable_planes(crtc);
6be4a607
JB
4027}
4028
42db64ef
PZ
4029/* IPS only exists on ULT machines and is tied to pipe A. */
4030static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4031{
f5adf94e 4032 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
42db64ef
PZ
4033}
4034
e4916946
PZ
4035/*
4036 * This implements the workaround described in the "notes" section of the mode
4037 * set sequence documentation. When going from no pipes or single pipe to
4038 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4039 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4040 */
4041static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4042{
4043 struct drm_device *dev = crtc->base.dev;
4044 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4045
4046 /* We want to get the other_active_crtc only if there's only 1 other
4047 * active crtc. */
d3fcc808 4048 for_each_intel_crtc(dev, crtc_it) {
e4916946
PZ
4049 if (!crtc_it->active || crtc_it == crtc)
4050 continue;
4051
4052 if (other_active_crtc)
4053 return;
4054
4055 other_active_crtc = crtc_it;
4056 }
4057 if (!other_active_crtc)
4058 return;
4059
4060 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4061 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4062}
4063
4f771f10
PZ
4064static void haswell_crtc_enable(struct drm_crtc *crtc)
4065{
4066 struct drm_device *dev = crtc->dev;
4067 struct drm_i915_private *dev_priv = dev->dev_private;
4068 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4069 struct intel_encoder *encoder;
4070 int pipe = intel_crtc->pipe;
229fca97 4071 enum plane plane = intel_crtc->plane;
4f771f10
PZ
4072
4073 WARN_ON(!crtc->enabled);
4074
4075 if (intel_crtc->active)
4076 return;
4077
df8ad70c
DV
4078 if (intel_crtc_to_shared_dpll(intel_crtc))
4079 intel_enable_shared_dpll(intel_crtc);
4080
229fca97
DV
4081 if (intel_crtc->config.has_dp_encoder)
4082 intel_dp_set_m_n(intel_crtc);
4083
4084 intel_set_pipe_timings(intel_crtc);
4085
4086 if (intel_crtc->config.has_pch_encoder) {
4087 intel_cpu_transcoder_set_m_n(intel_crtc,
4088 &intel_crtc->config.fdi_m_n);
4089 }
4090
4091 haswell_set_pipeconf(crtc);
4092
4093 intel_set_pipe_csc(crtc);
4094
4095 /* Set up the display plane register */
4096 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
4097 POSTING_READ(DSPCNTR(plane));
4098
4099 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4100 crtc->x, crtc->y);
4101
4f771f10 4102 intel_crtc->active = true;
8664281b
PZ
4103
4104 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4f771f10
PZ
4105 for_each_encoder_on_crtc(dev, crtc, encoder)
4106 if (encoder->pre_enable)
4107 encoder->pre_enable(encoder);
4108
4fe9467d
ID
4109 if (intel_crtc->config.has_pch_encoder) {
4110 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4111 dev_priv->display.fdi_link_train(crtc);
4112 }
4113
1f544388 4114 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 4115
b074cec8 4116 ironlake_pfit_enable(intel_crtc);
4f771f10
PZ
4117
4118 /*
4119 * On ILK+ LUT must be loaded before the pipe is running but with
4120 * clocks enabled
4121 */
4122 intel_crtc_load_lut(crtc);
4123
1f544388 4124 intel_ddi_set_pipe_settings(crtc);
8228c251 4125 intel_ddi_enable_transcoder_func(crtc);
4f771f10 4126
f37fcc2a 4127 intel_update_watermarks(crtc);
e1fdc473 4128 intel_enable_pipe(intel_crtc);
42db64ef 4129
5bfe2ac0 4130 if (intel_crtc->config.has_pch_encoder)
1507e5bd 4131 lpt_pch_enable(crtc);
4f771f10 4132
8807e55b 4133 for_each_encoder_on_crtc(dev, crtc, encoder) {
4f771f10 4134 encoder->enable(encoder);
8807e55b
JN
4135 intel_opregion_notify_encoder(encoder, true);
4136 }
4f771f10 4137
e4916946
PZ
4138 /* If we change the relative order between pipe/planes enabling, we need
4139 * to change the workaround. */
4140 haswell_mode_set_planes_workaround(intel_crtc);
d3eedb1a 4141 intel_crtc_enable_planes(crtc);
4f771f10
PZ
4142}
4143
3f8dce3a
DV
4144static void ironlake_pfit_disable(struct intel_crtc *crtc)
4145{
4146 struct drm_device *dev = crtc->base.dev;
4147 struct drm_i915_private *dev_priv = dev->dev_private;
4148 int pipe = crtc->pipe;
4149
4150 /* To avoid upsetting the power well on haswell only disable the pfit if
4151 * it's in use. The hw state code will make sure we get this right. */
fd4daa9c 4152 if (crtc->config.pch_pfit.enabled) {
3f8dce3a
DV
4153 I915_WRITE(PF_CTL(pipe), 0);
4154 I915_WRITE(PF_WIN_POS(pipe), 0);
4155 I915_WRITE(PF_WIN_SZ(pipe), 0);
4156 }
4157}
4158
6be4a607
JB
4159static void ironlake_crtc_disable(struct drm_crtc *crtc)
4160{
4161 struct drm_device *dev = crtc->dev;
4162 struct drm_i915_private *dev_priv = dev->dev_private;
4163 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4164 struct intel_encoder *encoder;
6be4a607 4165 int pipe = intel_crtc->pipe;
5eddb70b 4166 u32 reg, temp;
b52eb4dc 4167
f7abfe8b
CW
4168 if (!intel_crtc->active)
4169 return;
4170
d3eedb1a 4171 intel_crtc_disable_planes(crtc);
a5c4d7bc 4172
ea9d758d
DV
4173 for_each_encoder_on_crtc(dev, crtc, encoder)
4174 encoder->disable(encoder);
4175
d925c59a
DV
4176 if (intel_crtc->config.has_pch_encoder)
4177 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
4178
b24e7179 4179 intel_disable_pipe(dev_priv, pipe);
32f9d658 4180
3f8dce3a 4181 ironlake_pfit_disable(intel_crtc);
2c07245f 4182
bf49ec8c
DV
4183 for_each_encoder_on_crtc(dev, crtc, encoder)
4184 if (encoder->post_disable)
4185 encoder->post_disable(encoder);
2c07245f 4186
d925c59a
DV
4187 if (intel_crtc->config.has_pch_encoder) {
4188 ironlake_fdi_disable(crtc);
913d8d11 4189
d925c59a
DV
4190 ironlake_disable_pch_transcoder(dev_priv, pipe);
4191 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
6be4a607 4192
d925c59a
DV
4193 if (HAS_PCH_CPT(dev)) {
4194 /* disable TRANS_DP_CTL */
4195 reg = TRANS_DP_CTL(pipe);
4196 temp = I915_READ(reg);
4197 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4198 TRANS_DP_PORT_SEL_MASK);
4199 temp |= TRANS_DP_PORT_SEL_NONE;
4200 I915_WRITE(reg, temp);
4201
4202 /* disable DPLL_SEL */
4203 temp = I915_READ(PCH_DPLL_SEL);
11887397 4204 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
d925c59a 4205 I915_WRITE(PCH_DPLL_SEL, temp);
9db4a9c7 4206 }
e3421a18 4207
d925c59a 4208 /* disable PCH DPLL */
e72f9fbf 4209 intel_disable_shared_dpll(intel_crtc);
8db9d77b 4210
d925c59a
DV
4211 ironlake_fdi_pll_disable(intel_crtc);
4212 }
6b383a7f 4213
f7abfe8b 4214 intel_crtc->active = false;
46ba614c 4215 intel_update_watermarks(crtc);
d1ebd816
BW
4216
4217 mutex_lock(&dev->struct_mutex);
6b383a7f 4218 intel_update_fbc(dev);
d1ebd816 4219 mutex_unlock(&dev->struct_mutex);
6be4a607 4220}
1b3c7a47 4221
4f771f10 4222static void haswell_crtc_disable(struct drm_crtc *crtc)
ee7b9f93 4223{
4f771f10
PZ
4224 struct drm_device *dev = crtc->dev;
4225 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93 4226 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4f771f10
PZ
4227 struct intel_encoder *encoder;
4228 int pipe = intel_crtc->pipe;
3b117c8f 4229 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
ee7b9f93 4230
4f771f10
PZ
4231 if (!intel_crtc->active)
4232 return;
4233
d3eedb1a 4234 intel_crtc_disable_planes(crtc);
dda9a66a 4235
8807e55b
JN
4236 for_each_encoder_on_crtc(dev, crtc, encoder) {
4237 intel_opregion_notify_encoder(encoder, false);
4f771f10 4238 encoder->disable(encoder);
8807e55b 4239 }
4f771f10 4240
8664281b
PZ
4241 if (intel_crtc->config.has_pch_encoder)
4242 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
4f771f10
PZ
4243 intel_disable_pipe(dev_priv, pipe);
4244
ad80a810 4245 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4f771f10 4246
3f8dce3a 4247 ironlake_pfit_disable(intel_crtc);
4f771f10 4248
1f544388 4249 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10 4250
88adfff1 4251 if (intel_crtc->config.has_pch_encoder) {
ab4d966c 4252 lpt_disable_pch_transcoder(dev_priv);
8664281b 4253 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
1ad960f2 4254 intel_ddi_fdi_disable(crtc);
83616634 4255 }
4f771f10 4256
97b040aa
ID
4257 for_each_encoder_on_crtc(dev, crtc, encoder)
4258 if (encoder->post_disable)
4259 encoder->post_disable(encoder);
4260
4f771f10 4261 intel_crtc->active = false;
46ba614c 4262 intel_update_watermarks(crtc);
4f771f10
PZ
4263
4264 mutex_lock(&dev->struct_mutex);
4265 intel_update_fbc(dev);
4266 mutex_unlock(&dev->struct_mutex);
df8ad70c
DV
4267
4268 if (intel_crtc_to_shared_dpll(intel_crtc))
4269 intel_disable_shared_dpll(intel_crtc);
4f771f10
PZ
4270}
4271
ee7b9f93
JB
4272static void ironlake_crtc_off(struct drm_crtc *crtc)
4273{
4274 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
e72f9fbf 4275 intel_put_shared_dpll(intel_crtc);
ee7b9f93
JB
4276}
4277
6441ab5f 4278
2dd24552
JB
4279static void i9xx_pfit_enable(struct intel_crtc *crtc)
4280{
4281 struct drm_device *dev = crtc->base.dev;
4282 struct drm_i915_private *dev_priv = dev->dev_private;
4283 struct intel_crtc_config *pipe_config = &crtc->config;
4284
328d8e82 4285 if (!crtc->config.gmch_pfit.control)
2dd24552
JB
4286 return;
4287
2dd24552 4288 /*
c0b03411
DV
4289 * The panel fitter should only be adjusted whilst the pipe is disabled,
4290 * according to register description and PRM.
2dd24552 4291 */
c0b03411
DV
4292 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4293 assert_pipe_disabled(dev_priv, crtc->pipe);
2dd24552 4294
b074cec8
JB
4295 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4296 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5a80c45c
DV
4297
4298 /* Border color in case we don't scale up to the full screen. Black by
4299 * default, change to something else for debugging. */
4300 I915_WRITE(BCLRPAT(crtc->pipe), 0);
2dd24552
JB
4301}
4302
319be8ae
ID
4303enum intel_display_power_domain
4304intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4305{
4306 struct drm_device *dev = intel_encoder->base.dev;
4307 struct intel_digital_port *intel_dig_port;
4308
4309 switch (intel_encoder->type) {
4310 case INTEL_OUTPUT_UNKNOWN:
4311 /* Only DDI platforms should ever use this output type */
4312 WARN_ON_ONCE(!HAS_DDI(dev));
4313 case INTEL_OUTPUT_DISPLAYPORT:
4314 case INTEL_OUTPUT_HDMI:
4315 case INTEL_OUTPUT_EDP:
4316 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4317 switch (intel_dig_port->port) {
4318 case PORT_A:
4319 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4320 case PORT_B:
4321 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4322 case PORT_C:
4323 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4324 case PORT_D:
4325 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4326 default:
4327 WARN_ON_ONCE(1);
4328 return POWER_DOMAIN_PORT_OTHER;
4329 }
4330 case INTEL_OUTPUT_ANALOG:
4331 return POWER_DOMAIN_PORT_CRT;
4332 case INTEL_OUTPUT_DSI:
4333 return POWER_DOMAIN_PORT_DSI;
4334 default:
4335 return POWER_DOMAIN_PORT_OTHER;
4336 }
4337}
4338
4339static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
77d22dca 4340{
319be8ae
ID
4341 struct drm_device *dev = crtc->dev;
4342 struct intel_encoder *intel_encoder;
4343 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4344 enum pipe pipe = intel_crtc->pipe;
77d22dca
ID
4345 unsigned long mask;
4346 enum transcoder transcoder;
4347
4348 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4349
4350 mask = BIT(POWER_DOMAIN_PIPE(pipe));
4351 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
fabf6e51
DV
4352 if (intel_crtc->config.pch_pfit.enabled ||
4353 intel_crtc->config.pch_pfit.force_thru)
77d22dca
ID
4354 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4355
319be8ae
ID
4356 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4357 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4358
77d22dca
ID
4359 return mask;
4360}
4361
4362void intel_display_set_init_power(struct drm_i915_private *dev_priv,
4363 bool enable)
4364{
4365 if (dev_priv->power_domains.init_power_on == enable)
4366 return;
4367
4368 if (enable)
4369 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
4370 else
4371 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
4372
4373 dev_priv->power_domains.init_power_on = enable;
4374}
4375
4376static void modeset_update_crtc_power_domains(struct drm_device *dev)
4377{
4378 struct drm_i915_private *dev_priv = dev->dev_private;
4379 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4380 struct intel_crtc *crtc;
4381
4382 /*
4383 * First get all needed power domains, then put all unneeded, to avoid
4384 * any unnecessary toggling of the power wells.
4385 */
d3fcc808 4386 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4387 enum intel_display_power_domain domain;
4388
4389 if (!crtc->base.enabled)
4390 continue;
4391
319be8ae 4392 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
77d22dca
ID
4393
4394 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4395 intel_display_power_get(dev_priv, domain);
4396 }
4397
d3fcc808 4398 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4399 enum intel_display_power_domain domain;
4400
4401 for_each_power_domain(domain, crtc->enabled_power_domains)
4402 intel_display_power_put(dev_priv, domain);
4403
4404 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4405 }
4406
4407 intel_display_set_init_power(dev_priv, false);
4408}
4409
dfcab17e 4410/* returns HPLL frequency in kHz */
f8bf63fd 4411static int valleyview_get_vco(struct drm_i915_private *dev_priv)
30a970c6 4412{
586f49dc 4413 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
30a970c6 4414
586f49dc
JB
4415 /* Obtain SKU information */
4416 mutex_lock(&dev_priv->dpio_lock);
4417 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4418 CCK_FUSE_HPLL_FREQ_MASK;
4419 mutex_unlock(&dev_priv->dpio_lock);
30a970c6 4420
dfcab17e 4421 return vco_freq[hpll_freq] * 1000;
30a970c6
JB
4422}
4423
f8bf63fd
VS
4424static void vlv_update_cdclk(struct drm_device *dev)
4425{
4426 struct drm_i915_private *dev_priv = dev->dev_private;
4427
4428 dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
4429 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz",
4430 dev_priv->vlv_cdclk_freq);
4431
4432 /*
4433 * Program the gmbus_freq based on the cdclk frequency.
4434 * BSpec erroneously claims we should aim for 4MHz, but
4435 * in fact 1MHz is the correct frequency.
4436 */
4437 I915_WRITE(GMBUSFREQ_VLV, dev_priv->vlv_cdclk_freq);
4438}
4439
30a970c6
JB
4440/* Adjust CDclk dividers to allow high res or save power if possible */
4441static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4442{
4443 struct drm_i915_private *dev_priv = dev->dev_private;
4444 u32 val, cmd;
4445
d197b7d3 4446 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
d60c4473 4447
dfcab17e 4448 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
30a970c6 4449 cmd = 2;
dfcab17e 4450 else if (cdclk == 266667)
30a970c6
JB
4451 cmd = 1;
4452 else
4453 cmd = 0;
4454
4455 mutex_lock(&dev_priv->rps.hw_lock);
4456 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4457 val &= ~DSPFREQGUAR_MASK;
4458 val |= (cmd << DSPFREQGUAR_SHIFT);
4459 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4460 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4461 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4462 50)) {
4463 DRM_ERROR("timed out waiting for CDclk change\n");
4464 }
4465 mutex_unlock(&dev_priv->rps.hw_lock);
4466
dfcab17e 4467 if (cdclk == 400000) {
30a970c6
JB
4468 u32 divider, vco;
4469
4470 vco = valleyview_get_vco(dev_priv);
dfcab17e 4471 divider = DIV_ROUND_CLOSEST(vco << 1, cdclk) - 1;
30a970c6
JB
4472
4473 mutex_lock(&dev_priv->dpio_lock);
4474 /* adjust cdclk divider */
4475 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
9cf33db5 4476 val &= ~DISPLAY_FREQUENCY_VALUES;
30a970c6
JB
4477 val |= divider;
4478 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
a877e801
VS
4479
4480 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4481 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4482 50))
4483 DRM_ERROR("timed out waiting for CDclk change\n");
30a970c6
JB
4484 mutex_unlock(&dev_priv->dpio_lock);
4485 }
4486
4487 mutex_lock(&dev_priv->dpio_lock);
4488 /* adjust self-refresh exit latency value */
4489 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4490 val &= ~0x7f;
4491
4492 /*
4493 * For high bandwidth configs, we set a higher latency in the bunit
4494 * so that the core display fetch happens in time to avoid underruns.
4495 */
dfcab17e 4496 if (cdclk == 400000)
30a970c6
JB
4497 val |= 4500 / 250; /* 4.5 usec */
4498 else
4499 val |= 3000 / 250; /* 3.0 usec */
4500 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4501 mutex_unlock(&dev_priv->dpio_lock);
4502
f8bf63fd 4503 vlv_update_cdclk(dev);
30a970c6
JB
4504}
4505
30a970c6
JB
4506static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4507 int max_pixclk)
4508{
29dc7ef3
VS
4509 int vco = valleyview_get_vco(dev_priv);
4510 int freq_320 = (vco << 1) % 320000 != 0 ? 333333 : 320000;
4511
30a970c6
JB
4512 /*
4513 * Really only a few cases to deal with, as only 4 CDclks are supported:
4514 * 200MHz
4515 * 267MHz
29dc7ef3 4516 * 320/333MHz (depends on HPLL freq)
30a970c6
JB
4517 * 400MHz
4518 * So we check to see whether we're above 90% of the lower bin and
4519 * adjust if needed.
e37c67a1
VS
4520 *
4521 * We seem to get an unstable or solid color picture at 200MHz.
4522 * Not sure what's wrong. For now use 200MHz only when all pipes
4523 * are off.
30a970c6 4524 */
29dc7ef3 4525 if (max_pixclk > freq_320*9/10)
dfcab17e
VS
4526 return 400000;
4527 else if (max_pixclk > 266667*9/10)
29dc7ef3 4528 return freq_320;
e37c67a1 4529 else if (max_pixclk > 0)
dfcab17e 4530 return 266667;
e37c67a1
VS
4531 else
4532 return 200000;
30a970c6
JB
4533}
4534
2f2d7aa1
VS
4535/* compute the max pixel clock for new configuration */
4536static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
30a970c6
JB
4537{
4538 struct drm_device *dev = dev_priv->dev;
4539 struct intel_crtc *intel_crtc;
4540 int max_pixclk = 0;
4541
d3fcc808 4542 for_each_intel_crtc(dev, intel_crtc) {
2f2d7aa1 4543 if (intel_crtc->new_enabled)
30a970c6 4544 max_pixclk = max(max_pixclk,
2f2d7aa1 4545 intel_crtc->new_config->adjusted_mode.crtc_clock);
30a970c6
JB
4546 }
4547
4548 return max_pixclk;
4549}
4550
4551static void valleyview_modeset_global_pipes(struct drm_device *dev,
2f2d7aa1 4552 unsigned *prepare_pipes)
30a970c6
JB
4553{
4554 struct drm_i915_private *dev_priv = dev->dev_private;
4555 struct intel_crtc *intel_crtc;
2f2d7aa1 4556 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6 4557
d60c4473
ID
4558 if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4559 dev_priv->vlv_cdclk_freq)
30a970c6
JB
4560 return;
4561
2f2d7aa1 4562 /* disable/enable all currently active pipes while we change cdclk */
d3fcc808 4563 for_each_intel_crtc(dev, intel_crtc)
30a970c6
JB
4564 if (intel_crtc->base.enabled)
4565 *prepare_pipes |= (1 << intel_crtc->pipe);
4566}
4567
4568static void valleyview_modeset_global_resources(struct drm_device *dev)
4569{
4570 struct drm_i915_private *dev_priv = dev->dev_private;
2f2d7aa1 4571 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6
JB
4572 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4573
d60c4473 4574 if (req_cdclk != dev_priv->vlv_cdclk_freq)
30a970c6 4575 valleyview_set_cdclk(dev, req_cdclk);
77961eb9 4576 modeset_update_crtc_power_domains(dev);
30a970c6
JB
4577}
4578
89b667f8
JB
4579static void valleyview_crtc_enable(struct drm_crtc *crtc)
4580{
4581 struct drm_device *dev = crtc->dev;
5b18e57c 4582 struct drm_i915_private *dev_priv = dev->dev_private;
89b667f8
JB
4583 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4584 struct intel_encoder *encoder;
4585 int pipe = intel_crtc->pipe;
5b18e57c 4586 int plane = intel_crtc->plane;
23538ef1 4587 bool is_dsi;
5b18e57c 4588 u32 dspcntr;
89b667f8
JB
4589
4590 WARN_ON(!crtc->enabled);
4591
4592 if (intel_crtc->active)
4593 return;
4594
8525a235
SK
4595 is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
4596
4597 if (!is_dsi && !IS_CHERRYVIEW(dev))
4598 vlv_prepare_pll(intel_crtc);
bdd4b6a6 4599
5b18e57c
DV
4600 /* Set up the display plane register */
4601 dspcntr = DISPPLANE_GAMMA_ENABLE;
4602
4603 if (intel_crtc->config.has_dp_encoder)
4604 intel_dp_set_m_n(intel_crtc);
4605
4606 intel_set_pipe_timings(intel_crtc);
4607
4608 /* pipesrc and dspsize control the size that is scaled from,
4609 * which should always be the user's requested size.
4610 */
4611 I915_WRITE(DSPSIZE(plane),
4612 ((intel_crtc->config.pipe_src_h - 1) << 16) |
4613 (intel_crtc->config.pipe_src_w - 1));
4614 I915_WRITE(DSPPOS(plane), 0);
4615
4616 i9xx_set_pipeconf(intel_crtc);
4617
4618 I915_WRITE(DSPCNTR(plane), dspcntr);
4619 POSTING_READ(DSPCNTR(plane));
4620
4621 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4622 crtc->x, crtc->y);
4623
89b667f8 4624 intel_crtc->active = true;
89b667f8 4625
4a3436e8
VS
4626 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4627
89b667f8
JB
4628 for_each_encoder_on_crtc(dev, crtc, encoder)
4629 if (encoder->pre_pll_enable)
4630 encoder->pre_pll_enable(encoder);
4631
9d556c99
CML
4632 if (!is_dsi) {
4633 if (IS_CHERRYVIEW(dev))
4634 chv_enable_pll(intel_crtc);
4635 else
4636 vlv_enable_pll(intel_crtc);
4637 }
89b667f8
JB
4638
4639 for_each_encoder_on_crtc(dev, crtc, encoder)
4640 if (encoder->pre_enable)
4641 encoder->pre_enable(encoder);
4642
2dd24552
JB
4643 i9xx_pfit_enable(intel_crtc);
4644
63cbb074
VS
4645 intel_crtc_load_lut(crtc);
4646
f37fcc2a 4647 intel_update_watermarks(crtc);
e1fdc473 4648 intel_enable_pipe(intel_crtc);
be6a6f8e 4649
5004945f
JN
4650 for_each_encoder_on_crtc(dev, crtc, encoder)
4651 encoder->enable(encoder);
9ab0460b
VS
4652
4653 intel_crtc_enable_planes(crtc);
d40d9187 4654
56b80e1f
VS
4655 /* Underruns don't raise interrupts, so check manually. */
4656 i9xx_check_fifo_underruns(dev);
89b667f8
JB
4657}
4658
f13c2ef3
DV
4659static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
4660{
4661 struct drm_device *dev = crtc->base.dev;
4662 struct drm_i915_private *dev_priv = dev->dev_private;
4663
4664 I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
4665 I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
4666}
4667
0b8765c6 4668static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
4669{
4670 struct drm_device *dev = crtc->dev;
5b18e57c 4671 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 4672 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4673 struct intel_encoder *encoder;
79e53945 4674 int pipe = intel_crtc->pipe;
5b18e57c
DV
4675 int plane = intel_crtc->plane;
4676 u32 dspcntr;
79e53945 4677
08a48469
DV
4678 WARN_ON(!crtc->enabled);
4679
f7abfe8b
CW
4680 if (intel_crtc->active)
4681 return;
4682
f13c2ef3
DV
4683 i9xx_set_pll_dividers(intel_crtc);
4684
5b18e57c
DV
4685 /* Set up the display plane register */
4686 dspcntr = DISPPLANE_GAMMA_ENABLE;
4687
4688 if (pipe == 0)
4689 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4690 else
4691 dspcntr |= DISPPLANE_SEL_PIPE_B;
4692
4693 if (intel_crtc->config.has_dp_encoder)
4694 intel_dp_set_m_n(intel_crtc);
4695
4696 intel_set_pipe_timings(intel_crtc);
4697
4698 /* pipesrc and dspsize control the size that is scaled from,
4699 * which should always be the user's requested size.
4700 */
4701 I915_WRITE(DSPSIZE(plane),
4702 ((intel_crtc->config.pipe_src_h - 1) << 16) |
4703 (intel_crtc->config.pipe_src_w - 1));
4704 I915_WRITE(DSPPOS(plane), 0);
4705
4706 i9xx_set_pipeconf(intel_crtc);
4707
4708 I915_WRITE(DSPCNTR(plane), dspcntr);
4709 POSTING_READ(DSPCNTR(plane));
4710
4711 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4712 crtc->x, crtc->y);
4713
f7abfe8b 4714 intel_crtc->active = true;
6b383a7f 4715
4a3436e8
VS
4716 if (!IS_GEN2(dev))
4717 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4718
9d6d9f19
MK
4719 for_each_encoder_on_crtc(dev, crtc, encoder)
4720 if (encoder->pre_enable)
4721 encoder->pre_enable(encoder);
4722
f6736a1a
DV
4723 i9xx_enable_pll(intel_crtc);
4724
2dd24552
JB
4725 i9xx_pfit_enable(intel_crtc);
4726
63cbb074
VS
4727 intel_crtc_load_lut(crtc);
4728
f37fcc2a 4729 intel_update_watermarks(crtc);
e1fdc473 4730 intel_enable_pipe(intel_crtc);
be6a6f8e 4731
fa5c73b1
DV
4732 for_each_encoder_on_crtc(dev, crtc, encoder)
4733 encoder->enable(encoder);
9ab0460b
VS
4734
4735 intel_crtc_enable_planes(crtc);
d40d9187 4736
4a3436e8
VS
4737 /*
4738 * Gen2 reports pipe underruns whenever all planes are disabled.
4739 * So don't enable underrun reporting before at least some planes
4740 * are enabled.
4741 * FIXME: Need to fix the logic to work when we turn off all planes
4742 * but leave the pipe running.
4743 */
4744 if (IS_GEN2(dev))
4745 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4746
56b80e1f
VS
4747 /* Underruns don't raise interrupts, so check manually. */
4748 i9xx_check_fifo_underruns(dev);
0b8765c6 4749}
79e53945 4750
87476d63
DV
4751static void i9xx_pfit_disable(struct intel_crtc *crtc)
4752{
4753 struct drm_device *dev = crtc->base.dev;
4754 struct drm_i915_private *dev_priv = dev->dev_private;
87476d63 4755
328d8e82
DV
4756 if (!crtc->config.gmch_pfit.control)
4757 return;
87476d63 4758
328d8e82 4759 assert_pipe_disabled(dev_priv, crtc->pipe);
87476d63 4760
328d8e82
DV
4761 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4762 I915_READ(PFIT_CONTROL));
4763 I915_WRITE(PFIT_CONTROL, 0);
87476d63
DV
4764}
4765
0b8765c6
JB
4766static void i9xx_crtc_disable(struct drm_crtc *crtc)
4767{
4768 struct drm_device *dev = crtc->dev;
4769 struct drm_i915_private *dev_priv = dev->dev_private;
4770 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4771 struct intel_encoder *encoder;
0b8765c6 4772 int pipe = intel_crtc->pipe;
ef9c3aee 4773
f7abfe8b
CW
4774 if (!intel_crtc->active)
4775 return;
4776
4a3436e8
VS
4777 /*
4778 * Gen2 reports pipe underruns whenever all planes are disabled.
4779 * So diasble underrun reporting before all the planes get disabled.
4780 * FIXME: Need to fix the logic to work when we turn off all planes
4781 * but leave the pipe running.
4782 */
4783 if (IS_GEN2(dev))
4784 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4785
564ed191
ID
4786 /*
4787 * Vblank time updates from the shadow to live plane control register
4788 * are blocked if the memory self-refresh mode is active at that
4789 * moment. So to make sure the plane gets truly disabled, disable
4790 * first the self-refresh mode. The self-refresh enable bit in turn
4791 * will be checked/applied by the HW only at the next frame start
4792 * event which is after the vblank start event, so we need to have a
4793 * wait-for-vblank between disabling the plane and the pipe.
4794 */
4795 intel_set_memory_cxsr(dev_priv, false);
9ab0460b
VS
4796 intel_crtc_disable_planes(crtc);
4797
ea9d758d
DV
4798 for_each_encoder_on_crtc(dev, crtc, encoder)
4799 encoder->disable(encoder);
4800
6304cd91
VS
4801 /*
4802 * On gen2 planes are double buffered but the pipe isn't, so we must
4803 * wait for planes to fully turn off before disabling the pipe.
564ed191
ID
4804 * We also need to wait on all gmch platforms because of the
4805 * self-refresh mode constraint explained above.
6304cd91 4806 */
564ed191 4807 intel_wait_for_vblank(dev, pipe);
6304cd91 4808
b24e7179 4809 intel_disable_pipe(dev_priv, pipe);
24a1f16d 4810
87476d63 4811 i9xx_pfit_disable(intel_crtc);
24a1f16d 4812
89b667f8
JB
4813 for_each_encoder_on_crtc(dev, crtc, encoder)
4814 if (encoder->post_disable)
4815 encoder->post_disable(encoder);
4816
076ed3b2
CML
4817 if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI)) {
4818 if (IS_CHERRYVIEW(dev))
4819 chv_disable_pll(dev_priv, pipe);
4820 else if (IS_VALLEYVIEW(dev))
4821 vlv_disable_pll(dev_priv, pipe);
4822 else
4823 i9xx_disable_pll(dev_priv, pipe);
4824 }
0b8765c6 4825
4a3436e8
VS
4826 if (!IS_GEN2(dev))
4827 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4828
f7abfe8b 4829 intel_crtc->active = false;
46ba614c 4830 intel_update_watermarks(crtc);
f37fcc2a 4831
efa9624e 4832 mutex_lock(&dev->struct_mutex);
6b383a7f 4833 intel_update_fbc(dev);
efa9624e 4834 mutex_unlock(&dev->struct_mutex);
0b8765c6
JB
4835}
4836
ee7b9f93
JB
4837static void i9xx_crtc_off(struct drm_crtc *crtc)
4838{
4839}
4840
976f8a20
DV
4841static void intel_crtc_update_sarea(struct drm_crtc *crtc,
4842 bool enabled)
2c07245f
ZW
4843{
4844 struct drm_device *dev = crtc->dev;
4845 struct drm_i915_master_private *master_priv;
4846 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4847 int pipe = intel_crtc->pipe;
79e53945
JB
4848
4849 if (!dev->primary->master)
4850 return;
4851
4852 master_priv = dev->primary->master->driver_priv;
4853 if (!master_priv->sarea_priv)
4854 return;
4855
79e53945
JB
4856 switch (pipe) {
4857 case 0:
4858 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
4859 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
4860 break;
4861 case 1:
4862 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
4863 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
4864 break;
4865 default:
9db4a9c7 4866 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
79e53945
JB
4867 break;
4868 }
79e53945
JB
4869}
4870
b04c5bd6
BF
4871/* Master function to enable/disable CRTC and corresponding power wells */
4872void intel_crtc_control(struct drm_crtc *crtc, bool enable)
976f8a20
DV
4873{
4874 struct drm_device *dev = crtc->dev;
4875 struct drm_i915_private *dev_priv = dev->dev_private;
0e572fe7 4876 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
0e572fe7
DV
4877 enum intel_display_power_domain domain;
4878 unsigned long domains;
976f8a20 4879
0e572fe7
DV
4880 if (enable) {
4881 if (!intel_crtc->active) {
e1e9fb84
DV
4882 domains = get_crtc_power_domains(crtc);
4883 for_each_power_domain(domain, domains)
4884 intel_display_power_get(dev_priv, domain);
4885 intel_crtc->enabled_power_domains = domains;
0e572fe7
DV
4886
4887 dev_priv->display.crtc_enable(crtc);
4888 }
4889 } else {
4890 if (intel_crtc->active) {
4891 dev_priv->display.crtc_disable(crtc);
4892
e1e9fb84
DV
4893 domains = intel_crtc->enabled_power_domains;
4894 for_each_power_domain(domain, domains)
4895 intel_display_power_put(dev_priv, domain);
4896 intel_crtc->enabled_power_domains = 0;
0e572fe7
DV
4897 }
4898 }
b04c5bd6
BF
4899}
4900
4901/**
4902 * Sets the power management mode of the pipe and plane.
4903 */
4904void intel_crtc_update_dpms(struct drm_crtc *crtc)
4905{
4906 struct drm_device *dev = crtc->dev;
4907 struct intel_encoder *intel_encoder;
4908 bool enable = false;
4909
4910 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4911 enable |= intel_encoder->connectors_active;
4912
4913 intel_crtc_control(crtc, enable);
976f8a20
DV
4914
4915 intel_crtc_update_sarea(crtc, enable);
4916}
4917
cdd59983
CW
4918static void intel_crtc_disable(struct drm_crtc *crtc)
4919{
cdd59983 4920 struct drm_device *dev = crtc->dev;
976f8a20 4921 struct drm_connector *connector;
ee7b9f93 4922 struct drm_i915_private *dev_priv = dev->dev_private;
2ff8fde1 4923 struct drm_i915_gem_object *old_obj = intel_fb_obj(crtc->primary->fb);
a071fa00 4924 enum pipe pipe = to_intel_crtc(crtc)->pipe;
cdd59983 4925
976f8a20
DV
4926 /* crtc should still be enabled when we disable it. */
4927 WARN_ON(!crtc->enabled);
4928
4929 dev_priv->display.crtc_disable(crtc);
4930 intel_crtc_update_sarea(crtc, false);
ee7b9f93
JB
4931 dev_priv->display.off(crtc);
4932
f4510a27 4933 if (crtc->primary->fb) {
cdd59983 4934 mutex_lock(&dev->struct_mutex);
a071fa00
DV
4935 intel_unpin_fb_obj(old_obj);
4936 i915_gem_track_fb(old_obj, NULL,
4937 INTEL_FRONTBUFFER_PRIMARY(pipe));
cdd59983 4938 mutex_unlock(&dev->struct_mutex);
f4510a27 4939 crtc->primary->fb = NULL;
976f8a20
DV
4940 }
4941
4942 /* Update computed state. */
4943 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4944 if (!connector->encoder || !connector->encoder->crtc)
4945 continue;
4946
4947 if (connector->encoder->crtc != crtc)
4948 continue;
4949
4950 connector->dpms = DRM_MODE_DPMS_OFF;
4951 to_intel_encoder(connector->encoder)->connectors_active = false;
cdd59983
CW
4952 }
4953}
4954
ea5b213a 4955void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 4956{
4ef69c7a 4957 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 4958
ea5b213a
CW
4959 drm_encoder_cleanup(encoder);
4960 kfree(intel_encoder);
7e7d76c3
JB
4961}
4962
9237329d 4963/* Simple dpms helper for encoders with just one connector, no cloning and only
5ab432ef
DV
4964 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
4965 * state of the entire output pipe. */
9237329d 4966static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
7e7d76c3 4967{
5ab432ef
DV
4968 if (mode == DRM_MODE_DPMS_ON) {
4969 encoder->connectors_active = true;
4970
b2cabb0e 4971 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef
DV
4972 } else {
4973 encoder->connectors_active = false;
4974
b2cabb0e 4975 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef 4976 }
79e53945
JB
4977}
4978
0a91ca29
DV
4979/* Cross check the actual hw state with our own modeset state tracking (and it's
4980 * internal consistency). */
b980514c 4981static void intel_connector_check_state(struct intel_connector *connector)
79e53945 4982{
0a91ca29
DV
4983 if (connector->get_hw_state(connector)) {
4984 struct intel_encoder *encoder = connector->encoder;
4985 struct drm_crtc *crtc;
4986 bool encoder_enabled;
4987 enum pipe pipe;
4988
4989 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4990 connector->base.base.id,
c23cc417 4991 connector->base.name);
0a91ca29
DV
4992
4993 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
4994 "wrong connector dpms state\n");
4995 WARN(connector->base.encoder != &encoder->base,
4996 "active connector not linked to encoder\n");
4997 WARN(!encoder->connectors_active,
4998 "encoder->connectors_active not set\n");
4999
5000 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5001 WARN(!encoder_enabled, "encoder not enabled\n");
5002 if (WARN_ON(!encoder->base.crtc))
5003 return;
5004
5005 crtc = encoder->base.crtc;
5006
5007 WARN(!crtc->enabled, "crtc not enabled\n");
5008 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5009 WARN(pipe != to_intel_crtc(crtc)->pipe,
5010 "encoder active on the wrong pipe\n");
5011 }
79e53945
JB
5012}
5013
5ab432ef
DV
5014/* Even simpler default implementation, if there's really no special case to
5015 * consider. */
5016void intel_connector_dpms(struct drm_connector *connector, int mode)
79e53945 5017{
5ab432ef
DV
5018 /* All the simple cases only support two dpms states. */
5019 if (mode != DRM_MODE_DPMS_ON)
5020 mode = DRM_MODE_DPMS_OFF;
d4270e57 5021
5ab432ef
DV
5022 if (mode == connector->dpms)
5023 return;
5024
5025 connector->dpms = mode;
5026
5027 /* Only need to change hw state when actually enabled */
c9976dcf
CW
5028 if (connector->encoder)
5029 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
0a91ca29 5030
b980514c 5031 intel_modeset_check_state(connector->dev);
79e53945
JB
5032}
5033
f0947c37
DV
5034/* Simple connector->get_hw_state implementation for encoders that support only
5035 * one connector and no cloning and hence the encoder state determines the state
5036 * of the connector. */
5037bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 5038{
24929352 5039 enum pipe pipe = 0;
f0947c37 5040 struct intel_encoder *encoder = connector->encoder;
ea5b213a 5041
f0947c37 5042 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
5043}
5044
1857e1da
DV
5045static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5046 struct intel_crtc_config *pipe_config)
5047{
5048 struct drm_i915_private *dev_priv = dev->dev_private;
5049 struct intel_crtc *pipe_B_crtc =
5050 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5051
5052 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5053 pipe_name(pipe), pipe_config->fdi_lanes);
5054 if (pipe_config->fdi_lanes > 4) {
5055 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5056 pipe_name(pipe), pipe_config->fdi_lanes);
5057 return false;
5058 }
5059
bafb6553 5060 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1857e1da
DV
5061 if (pipe_config->fdi_lanes > 2) {
5062 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5063 pipe_config->fdi_lanes);
5064 return false;
5065 } else {
5066 return true;
5067 }
5068 }
5069
5070 if (INTEL_INFO(dev)->num_pipes == 2)
5071 return true;
5072
5073 /* Ivybridge 3 pipe is really complicated */
5074 switch (pipe) {
5075 case PIPE_A:
5076 return true;
5077 case PIPE_B:
5078 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5079 pipe_config->fdi_lanes > 2) {
5080 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5081 pipe_name(pipe), pipe_config->fdi_lanes);
5082 return false;
5083 }
5084 return true;
5085 case PIPE_C:
1e833f40 5086 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
1857e1da
DV
5087 pipe_B_crtc->config.fdi_lanes <= 2) {
5088 if (pipe_config->fdi_lanes > 2) {
5089 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5090 pipe_name(pipe), pipe_config->fdi_lanes);
5091 return false;
5092 }
5093 } else {
5094 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5095 return false;
5096 }
5097 return true;
5098 default:
5099 BUG();
5100 }
5101}
5102
e29c22c0
DV
5103#define RETRY 1
5104static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5105 struct intel_crtc_config *pipe_config)
877d48d5 5106{
1857e1da 5107 struct drm_device *dev = intel_crtc->base.dev;
877d48d5 5108 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
ff9a6750 5109 int lane, link_bw, fdi_dotclock;
e29c22c0 5110 bool setup_ok, needs_recompute = false;
877d48d5 5111
e29c22c0 5112retry:
877d48d5
DV
5113 /* FDI is a binary signal running at ~2.7GHz, encoding
5114 * each output octet as 10 bits. The actual frequency
5115 * is stored as a divider into a 100MHz clock, and the
5116 * mode pixel clock is stored in units of 1KHz.
5117 * Hence the bw of each lane in terms of the mode signal
5118 * is:
5119 */
5120 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5121
241bfc38 5122 fdi_dotclock = adjusted_mode->crtc_clock;
877d48d5 5123
2bd89a07 5124 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
877d48d5
DV
5125 pipe_config->pipe_bpp);
5126
5127 pipe_config->fdi_lanes = lane;
5128
2bd89a07 5129 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
877d48d5 5130 link_bw, &pipe_config->fdi_m_n);
1857e1da 5131
e29c22c0
DV
5132 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5133 intel_crtc->pipe, pipe_config);
5134 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5135 pipe_config->pipe_bpp -= 2*3;
5136 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5137 pipe_config->pipe_bpp);
5138 needs_recompute = true;
5139 pipe_config->bw_constrained = true;
5140
5141 goto retry;
5142 }
5143
5144 if (needs_recompute)
5145 return RETRY;
5146
5147 return setup_ok ? 0 : -EINVAL;
877d48d5
DV
5148}
5149
42db64ef
PZ
5150static void hsw_compute_ips_config(struct intel_crtc *crtc,
5151 struct intel_crtc_config *pipe_config)
5152{
d330a953 5153 pipe_config->ips_enabled = i915.enable_ips &&
3c4ca58c 5154 hsw_crtc_supports_ips(crtc) &&
b6dfdc9b 5155 pipe_config->pipe_bpp <= 24;
42db64ef
PZ
5156}
5157
a43f6e0f 5158static int intel_crtc_compute_config(struct intel_crtc *crtc,
e29c22c0 5159 struct intel_crtc_config *pipe_config)
79e53945 5160{
a43f6e0f 5161 struct drm_device *dev = crtc->base.dev;
b8cecdf5 5162 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
89749350 5163
ad3a4479 5164 /* FIXME should check pixel clock limits on all platforms */
cf532bb2
VS
5165 if (INTEL_INFO(dev)->gen < 4) {
5166 struct drm_i915_private *dev_priv = dev->dev_private;
5167 int clock_limit =
5168 dev_priv->display.get_display_clock_speed(dev);
5169
5170 /*
5171 * Enable pixel doubling when the dot clock
5172 * is > 90% of the (display) core speed.
5173 *
b397c96b
VS
5174 * GDG double wide on either pipe,
5175 * otherwise pipe A only.
cf532bb2 5176 */
b397c96b 5177 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
241bfc38 5178 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
ad3a4479 5179 clock_limit *= 2;
cf532bb2 5180 pipe_config->double_wide = true;
ad3a4479
VS
5181 }
5182
241bfc38 5183 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
e29c22c0 5184 return -EINVAL;
2c07245f 5185 }
89749350 5186
1d1d0e27
VS
5187 /*
5188 * Pipe horizontal size must be even in:
5189 * - DVO ganged mode
5190 * - LVDS dual channel mode
5191 * - Double wide pipe
5192 */
5193 if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5194 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5195 pipe_config->pipe_src_w &= ~1;
5196
8693a824
DL
5197 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5198 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
44f46b42
CW
5199 */
5200 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5201 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
e29c22c0 5202 return -EINVAL;
44f46b42 5203
bd080ee5 5204 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5d2d38dd 5205 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
bd080ee5 5206 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5d2d38dd
DV
5207 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5208 * for lvds. */
5209 pipe_config->pipe_bpp = 8*3;
5210 }
5211
f5adf94e 5212 if (HAS_IPS(dev))
a43f6e0f
DV
5213 hsw_compute_ips_config(crtc, pipe_config);
5214
12030431
DV
5215 /*
5216 * XXX: PCH/WRPLL clock sharing is done in ->mode_set, so make sure the
5217 * old clock survives for now.
5218 */
5219 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev) || HAS_DDI(dev))
a43f6e0f 5220 pipe_config->shared_dpll = crtc->config.shared_dpll;
42db64ef 5221
877d48d5 5222 if (pipe_config->has_pch_encoder)
a43f6e0f 5223 return ironlake_fdi_compute_config(crtc, pipe_config);
877d48d5 5224
e29c22c0 5225 return 0;
79e53945
JB
5226}
5227
25eb05fc
JB
5228static int valleyview_get_display_clock_speed(struct drm_device *dev)
5229{
d197b7d3
VS
5230 struct drm_i915_private *dev_priv = dev->dev_private;
5231 int vco = valleyview_get_vco(dev_priv);
5232 u32 val;
5233 int divider;
5234
5235 mutex_lock(&dev_priv->dpio_lock);
5236 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5237 mutex_unlock(&dev_priv->dpio_lock);
5238
5239 divider = val & DISPLAY_FREQUENCY_VALUES;
5240
7d007f40
VS
5241 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5242 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5243 "cdclk change in progress\n");
5244
d197b7d3 5245 return DIV_ROUND_CLOSEST(vco << 1, divider + 1);
25eb05fc
JB
5246}
5247
e70236a8
JB
5248static int i945_get_display_clock_speed(struct drm_device *dev)
5249{
5250 return 400000;
5251}
79e53945 5252
e70236a8 5253static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 5254{
e70236a8
JB
5255 return 333000;
5256}
79e53945 5257
e70236a8
JB
5258static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5259{
5260 return 200000;
5261}
79e53945 5262
257a7ffc
DV
5263static int pnv_get_display_clock_speed(struct drm_device *dev)
5264{
5265 u16 gcfgc = 0;
5266
5267 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5268
5269 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5270 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5271 return 267000;
5272 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5273 return 333000;
5274 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5275 return 444000;
5276 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5277 return 200000;
5278 default:
5279 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5280 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5281 return 133000;
5282 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5283 return 167000;
5284 }
5285}
5286
e70236a8
JB
5287static int i915gm_get_display_clock_speed(struct drm_device *dev)
5288{
5289 u16 gcfgc = 0;
79e53945 5290
e70236a8
JB
5291 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5292
5293 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5294 return 133000;
5295 else {
5296 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5297 case GC_DISPLAY_CLOCK_333_MHZ:
5298 return 333000;
5299 default:
5300 case GC_DISPLAY_CLOCK_190_200_MHZ:
5301 return 190000;
79e53945 5302 }
e70236a8
JB
5303 }
5304}
5305
5306static int i865_get_display_clock_speed(struct drm_device *dev)
5307{
5308 return 266000;
5309}
5310
5311static int i855_get_display_clock_speed(struct drm_device *dev)
5312{
5313 u16 hpllcc = 0;
5314 /* Assume that the hardware is in the high speed state. This
5315 * should be the default.
5316 */
5317 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5318 case GC_CLOCK_133_200:
5319 case GC_CLOCK_100_200:
5320 return 200000;
5321 case GC_CLOCK_166_250:
5322 return 250000;
5323 case GC_CLOCK_100_133:
79e53945 5324 return 133000;
e70236a8 5325 }
79e53945 5326
e70236a8
JB
5327 /* Shouldn't happen */
5328 return 0;
5329}
79e53945 5330
e70236a8
JB
5331static int i830_get_display_clock_speed(struct drm_device *dev)
5332{
5333 return 133000;
79e53945
JB
5334}
5335
2c07245f 5336static void
a65851af 5337intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
2c07245f 5338{
a65851af
VS
5339 while (*num > DATA_LINK_M_N_MASK ||
5340 *den > DATA_LINK_M_N_MASK) {
2c07245f
ZW
5341 *num >>= 1;
5342 *den >>= 1;
5343 }
5344}
5345
a65851af
VS
5346static void compute_m_n(unsigned int m, unsigned int n,
5347 uint32_t *ret_m, uint32_t *ret_n)
5348{
5349 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5350 *ret_m = div_u64((uint64_t) m * *ret_n, n);
5351 intel_reduce_m_n_ratio(ret_m, ret_n);
5352}
5353
e69d0bc1
DV
5354void
5355intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5356 int pixel_clock, int link_clock,
5357 struct intel_link_m_n *m_n)
2c07245f 5358{
e69d0bc1 5359 m_n->tu = 64;
a65851af
VS
5360
5361 compute_m_n(bits_per_pixel * pixel_clock,
5362 link_clock * nlanes * 8,
5363 &m_n->gmch_m, &m_n->gmch_n);
5364
5365 compute_m_n(pixel_clock, link_clock,
5366 &m_n->link_m, &m_n->link_n);
2c07245f
ZW
5367}
5368
a7615030
CW
5369static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5370{
d330a953
JN
5371 if (i915.panel_use_ssc >= 0)
5372 return i915.panel_use_ssc != 0;
41aa3448 5373 return dev_priv->vbt.lvds_use_ssc
435793df 5374 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
5375}
5376
c65d77d8
JB
5377static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5378{
5379 struct drm_device *dev = crtc->dev;
5380 struct drm_i915_private *dev_priv = dev->dev_private;
5381 int refclk;
5382
a0c4da24 5383 if (IS_VALLEYVIEW(dev)) {
9a0ea498 5384 refclk = 100000;
a0c4da24 5385 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
c65d77d8 5386 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b
VS
5387 refclk = dev_priv->vbt.lvds_ssc_freq;
5388 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
c65d77d8
JB
5389 } else if (!IS_GEN2(dev)) {
5390 refclk = 96000;
5391 } else {
5392 refclk = 48000;
5393 }
5394
5395 return refclk;
5396}
5397
7429e9d4 5398static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
c65d77d8 5399{
7df00d7a 5400 return (1 << dpll->n) << 16 | dpll->m2;
7429e9d4 5401}
f47709a9 5402
7429e9d4
DV
5403static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5404{
5405 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
c65d77d8
JB
5406}
5407
f47709a9 5408static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
a7516a05
JB
5409 intel_clock_t *reduced_clock)
5410{
f47709a9 5411 struct drm_device *dev = crtc->base.dev;
a7516a05
JB
5412 u32 fp, fp2 = 0;
5413
5414 if (IS_PINEVIEW(dev)) {
7429e9d4 5415 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
a7516a05 5416 if (reduced_clock)
7429e9d4 5417 fp2 = pnv_dpll_compute_fp(reduced_clock);
a7516a05 5418 } else {
7429e9d4 5419 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
a7516a05 5420 if (reduced_clock)
7429e9d4 5421 fp2 = i9xx_dpll_compute_fp(reduced_clock);
a7516a05
JB
5422 }
5423
8bcc2795 5424 crtc->config.dpll_hw_state.fp0 = fp;
a7516a05 5425
f47709a9
DV
5426 crtc->lowfreq_avail = false;
5427 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
d330a953 5428 reduced_clock && i915.powersave) {
8bcc2795 5429 crtc->config.dpll_hw_state.fp1 = fp2;
f47709a9 5430 crtc->lowfreq_avail = true;
a7516a05 5431 } else {
8bcc2795 5432 crtc->config.dpll_hw_state.fp1 = fp;
a7516a05
JB
5433 }
5434}
5435
5e69f97f
CML
5436static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5437 pipe)
89b667f8
JB
5438{
5439 u32 reg_val;
5440
5441 /*
5442 * PLLB opamp always calibrates to max value of 0x3f, force enable it
5443 * and set it to a reasonable value instead.
5444 */
ab3c759a 5445 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8
JB
5446 reg_val &= 0xffffff00;
5447 reg_val |= 0x00000030;
ab3c759a 5448 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5449
ab3c759a 5450 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5451 reg_val &= 0x8cffffff;
5452 reg_val = 0x8c000000;
ab3c759a 5453 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8 5454
ab3c759a 5455 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8 5456 reg_val &= 0xffffff00;
ab3c759a 5457 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5458
ab3c759a 5459 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5460 reg_val &= 0x00ffffff;
5461 reg_val |= 0xb0000000;
ab3c759a 5462 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8
JB
5463}
5464
b551842d
DV
5465static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5466 struct intel_link_m_n *m_n)
5467{
5468 struct drm_device *dev = crtc->base.dev;
5469 struct drm_i915_private *dev_priv = dev->dev_private;
5470 int pipe = crtc->pipe;
5471
e3b95f1e
DV
5472 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5473 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5474 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5475 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
b551842d
DV
5476}
5477
5478static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5479 struct intel_link_m_n *m_n)
5480{
5481 struct drm_device *dev = crtc->base.dev;
5482 struct drm_i915_private *dev_priv = dev->dev_private;
5483 int pipe = crtc->pipe;
5484 enum transcoder transcoder = crtc->config.cpu_transcoder;
5485
5486 if (INTEL_INFO(dev)->gen >= 5) {
5487 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5488 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5489 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5490 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5491 } else {
e3b95f1e
DV
5492 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5493 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5494 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5495 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
b551842d
DV
5496 }
5497}
5498
03afc4a2
DV
5499static void intel_dp_set_m_n(struct intel_crtc *crtc)
5500{
5501 if (crtc->config.has_pch_encoder)
5502 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5503 else
5504 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5505}
5506
f47709a9 5507static void vlv_update_pll(struct intel_crtc *crtc)
bdd4b6a6
DV
5508{
5509 u32 dpll, dpll_md;
5510
5511 /*
5512 * Enable DPIO clock input. We should never disable the reference
5513 * clock for pipe B, since VGA hotplug / manual detection depends
5514 * on it.
5515 */
5516 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5517 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5518 /* We should never disable this, set it here for state tracking */
5519 if (crtc->pipe == PIPE_B)
5520 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5521 dpll |= DPLL_VCO_ENABLE;
5522 crtc->config.dpll_hw_state.dpll = dpll;
5523
5524 dpll_md = (crtc->config.pixel_multiplier - 1)
5525 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5526 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5527}
5528
5529static void vlv_prepare_pll(struct intel_crtc *crtc)
a0c4da24 5530{
f47709a9 5531 struct drm_device *dev = crtc->base.dev;
a0c4da24 5532 struct drm_i915_private *dev_priv = dev->dev_private;
f47709a9 5533 int pipe = crtc->pipe;
bdd4b6a6 5534 u32 mdiv;
a0c4da24 5535 u32 bestn, bestm1, bestm2, bestp1, bestp2;
bdd4b6a6 5536 u32 coreclk, reg_val;
a0c4da24 5537
09153000
DV
5538 mutex_lock(&dev_priv->dpio_lock);
5539
f47709a9
DV
5540 bestn = crtc->config.dpll.n;
5541 bestm1 = crtc->config.dpll.m1;
5542 bestm2 = crtc->config.dpll.m2;
5543 bestp1 = crtc->config.dpll.p1;
5544 bestp2 = crtc->config.dpll.p2;
a0c4da24 5545
89b667f8
JB
5546 /* See eDP HDMI DPIO driver vbios notes doc */
5547
5548 /* PLL B needs special handling */
bdd4b6a6 5549 if (pipe == PIPE_B)
5e69f97f 5550 vlv_pllb_recal_opamp(dev_priv, pipe);
89b667f8
JB
5551
5552 /* Set up Tx target for periodic Rcomp update */
ab3c759a 5553 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
89b667f8
JB
5554
5555 /* Disable target IRef on PLL */
ab3c759a 5556 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
89b667f8 5557 reg_val &= 0x00ffffff;
ab3c759a 5558 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
89b667f8
JB
5559
5560 /* Disable fast lock */
ab3c759a 5561 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
89b667f8
JB
5562
5563 /* Set idtafcrecal before PLL is enabled */
a0c4da24
JB
5564 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5565 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5566 mdiv |= ((bestn << DPIO_N_SHIFT));
a0c4da24 5567 mdiv |= (1 << DPIO_K_SHIFT);
7df5080b
JB
5568
5569 /*
5570 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5571 * but we don't support that).
5572 * Note: don't use the DAC post divider as it seems unstable.
5573 */
5574 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
ab3c759a 5575 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5576
a0c4da24 5577 mdiv |= DPIO_ENABLE_CALIBRATION;
ab3c759a 5578 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5579
89b667f8 5580 /* Set HBR and RBR LPF coefficients */
ff9a6750 5581 if (crtc->config.port_clock == 162000 ||
99750bd4 5582 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
89b667f8 5583 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
ab3c759a 5584 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
885b0120 5585 0x009f0003);
89b667f8 5586 else
ab3c759a 5587 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
89b667f8
JB
5588 0x00d0000f);
5589
5590 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
5591 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
5592 /* Use SSC source */
bdd4b6a6 5593 if (pipe == PIPE_A)
ab3c759a 5594 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5595 0x0df40000);
5596 else
ab3c759a 5597 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5598 0x0df70000);
5599 } else { /* HDMI or VGA */
5600 /* Use bend source */
bdd4b6a6 5601 if (pipe == PIPE_A)
ab3c759a 5602 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5603 0x0df70000);
5604 else
ab3c759a 5605 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5606 0x0df40000);
5607 }
a0c4da24 5608
ab3c759a 5609 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
89b667f8
JB
5610 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5611 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
5612 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
5613 coreclk |= 0x01000000;
ab3c759a 5614 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
a0c4da24 5615
ab3c759a 5616 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
09153000 5617 mutex_unlock(&dev_priv->dpio_lock);
a0c4da24
JB
5618}
5619
9d556c99
CML
5620static void chv_update_pll(struct intel_crtc *crtc)
5621{
5622 struct drm_device *dev = crtc->base.dev;
5623 struct drm_i915_private *dev_priv = dev->dev_private;
5624 int pipe = crtc->pipe;
5625 int dpll_reg = DPLL(crtc->pipe);
5626 enum dpio_channel port = vlv_pipe_to_channel(pipe);
580d3811 5627 u32 loopfilter, intcoeff;
9d556c99
CML
5628 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5629 int refclk;
5630
a11b0703
VS
5631 crtc->config.dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
5632 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5633 DPLL_VCO_ENABLE;
5634 if (pipe != PIPE_A)
5635 crtc->config.dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5636
5637 crtc->config.dpll_hw_state.dpll_md =
5638 (crtc->config.pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
9d556c99
CML
5639
5640 bestn = crtc->config.dpll.n;
5641 bestm2_frac = crtc->config.dpll.m2 & 0x3fffff;
5642 bestm1 = crtc->config.dpll.m1;
5643 bestm2 = crtc->config.dpll.m2 >> 22;
5644 bestp1 = crtc->config.dpll.p1;
5645 bestp2 = crtc->config.dpll.p2;
5646
5647 /*
5648 * Enable Refclk and SSC
5649 */
a11b0703
VS
5650 I915_WRITE(dpll_reg,
5651 crtc->config.dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
5652
5653 mutex_lock(&dev_priv->dpio_lock);
9d556c99 5654
9d556c99
CML
5655 /* p1 and p2 divider */
5656 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
5657 5 << DPIO_CHV_S1_DIV_SHIFT |
5658 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
5659 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
5660 1 << DPIO_CHV_K_DIV_SHIFT);
5661
5662 /* Feedback post-divider - m2 */
5663 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
5664
5665 /* Feedback refclk divider - n and m1 */
5666 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
5667 DPIO_CHV_M1_DIV_BY_2 |
5668 1 << DPIO_CHV_N_DIV_SHIFT);
5669
5670 /* M2 fraction division */
5671 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
5672
5673 /* M2 fraction division enable */
5674 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
5675 DPIO_CHV_FRAC_DIV_EN |
5676 (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
5677
5678 /* Loop filter */
5679 refclk = i9xx_get_refclk(&crtc->base, 0);
5680 loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
5681 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
5682 if (refclk == 100000)
5683 intcoeff = 11;
5684 else if (refclk == 38400)
5685 intcoeff = 10;
5686 else
5687 intcoeff = 9;
5688 loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
5689 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
5690
5691 /* AFC Recal */
5692 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
5693 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
5694 DPIO_AFC_RECAL);
5695
5696 mutex_unlock(&dev_priv->dpio_lock);
5697}
5698
f47709a9
DV
5699static void i9xx_update_pll(struct intel_crtc *crtc,
5700 intel_clock_t *reduced_clock,
eb1cbe48
DV
5701 int num_connectors)
5702{
f47709a9 5703 struct drm_device *dev = crtc->base.dev;
eb1cbe48 5704 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48
DV
5705 u32 dpll;
5706 bool is_sdvo;
f47709a9 5707 struct dpll *clock = &crtc->config.dpll;
eb1cbe48 5708
f47709a9 5709 i9xx_update_pll_dividers(crtc, reduced_clock);
2a8f64ca 5710
f47709a9
DV
5711 is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
5712 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
eb1cbe48
DV
5713
5714 dpll = DPLL_VGA_MODE_DIS;
5715
f47709a9 5716 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
eb1cbe48
DV
5717 dpll |= DPLLB_MODE_LVDS;
5718 else
5719 dpll |= DPLLB_MODE_DAC_SERIAL;
6cc5f341 5720
ef1b460d 5721 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
198a037f
DV
5722 dpll |= (crtc->config.pixel_multiplier - 1)
5723 << SDVO_MULTIPLIER_SHIFT_HIRES;
eb1cbe48 5724 }
198a037f
DV
5725
5726 if (is_sdvo)
4a33e48d 5727 dpll |= DPLL_SDVO_HIGH_SPEED;
198a037f 5728
f47709a9 5729 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4a33e48d 5730 dpll |= DPLL_SDVO_HIGH_SPEED;
eb1cbe48
DV
5731
5732 /* compute bitmask from p1 value */
5733 if (IS_PINEVIEW(dev))
5734 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5735 else {
5736 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5737 if (IS_G4X(dev) && reduced_clock)
5738 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5739 }
5740 switch (clock->p2) {
5741 case 5:
5742 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5743 break;
5744 case 7:
5745 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5746 break;
5747 case 10:
5748 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5749 break;
5750 case 14:
5751 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5752 break;
5753 }
5754 if (INTEL_INFO(dev)->gen >= 4)
5755 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5756
09ede541 5757 if (crtc->config.sdvo_tv_clock)
eb1cbe48 5758 dpll |= PLL_REF_INPUT_TVCLKINBC;
f47709a9 5759 else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
5760 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5761 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5762 else
5763 dpll |= PLL_REF_INPUT_DREFCLK;
5764
5765 dpll |= DPLL_VCO_ENABLE;
8bcc2795
DV
5766 crtc->config.dpll_hw_state.dpll = dpll;
5767
eb1cbe48 5768 if (INTEL_INFO(dev)->gen >= 4) {
ef1b460d
DV
5769 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
5770 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8bcc2795 5771 crtc->config.dpll_hw_state.dpll_md = dpll_md;
eb1cbe48
DV
5772 }
5773}
5774
f47709a9 5775static void i8xx_update_pll(struct intel_crtc *crtc,
f47709a9 5776 intel_clock_t *reduced_clock,
eb1cbe48
DV
5777 int num_connectors)
5778{
f47709a9 5779 struct drm_device *dev = crtc->base.dev;
eb1cbe48 5780 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48 5781 u32 dpll;
f47709a9 5782 struct dpll *clock = &crtc->config.dpll;
eb1cbe48 5783
f47709a9 5784 i9xx_update_pll_dividers(crtc, reduced_clock);
2a8f64ca 5785
eb1cbe48
DV
5786 dpll = DPLL_VGA_MODE_DIS;
5787
f47709a9 5788 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
eb1cbe48
DV
5789 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5790 } else {
5791 if (clock->p1 == 2)
5792 dpll |= PLL_P1_DIVIDE_BY_TWO;
5793 else
5794 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5795 if (clock->p2 == 4)
5796 dpll |= PLL_P2_DIVIDE_BY_4;
5797 }
5798
4a33e48d
DV
5799 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
5800 dpll |= DPLL_DVO_2X_MODE;
5801
f47709a9 5802 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
5803 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5804 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5805 else
5806 dpll |= PLL_REF_INPUT_DREFCLK;
5807
5808 dpll |= DPLL_VCO_ENABLE;
8bcc2795 5809 crtc->config.dpll_hw_state.dpll = dpll;
eb1cbe48
DV
5810}
5811
8a654f3b 5812static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
b0e77b9c
PZ
5813{
5814 struct drm_device *dev = intel_crtc->base.dev;
5815 struct drm_i915_private *dev_priv = dev->dev_private;
5816 enum pipe pipe = intel_crtc->pipe;
3b117c8f 5817 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8a654f3b
DV
5818 struct drm_display_mode *adjusted_mode =
5819 &intel_crtc->config.adjusted_mode;
1caea6e9
VS
5820 uint32_t crtc_vtotal, crtc_vblank_end;
5821 int vsyncshift = 0;
4d8a62ea
DV
5822
5823 /* We need to be careful not to changed the adjusted mode, for otherwise
5824 * the hw state checker will get angry at the mismatch. */
5825 crtc_vtotal = adjusted_mode->crtc_vtotal;
5826 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
b0e77b9c 5827
609aeaca 5828 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
b0e77b9c 5829 /* the chip adds 2 halflines automatically */
4d8a62ea
DV
5830 crtc_vtotal -= 1;
5831 crtc_vblank_end -= 1;
609aeaca
VS
5832
5833 if (intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
5834 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
5835 else
5836 vsyncshift = adjusted_mode->crtc_hsync_start -
5837 adjusted_mode->crtc_htotal / 2;
1caea6e9
VS
5838 if (vsyncshift < 0)
5839 vsyncshift += adjusted_mode->crtc_htotal;
b0e77b9c
PZ
5840 }
5841
5842 if (INTEL_INFO(dev)->gen > 3)
fe2b8f9d 5843 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
b0e77b9c 5844
fe2b8f9d 5845 I915_WRITE(HTOTAL(cpu_transcoder),
b0e77b9c
PZ
5846 (adjusted_mode->crtc_hdisplay - 1) |
5847 ((adjusted_mode->crtc_htotal - 1) << 16));
fe2b8f9d 5848 I915_WRITE(HBLANK(cpu_transcoder),
b0e77b9c
PZ
5849 (adjusted_mode->crtc_hblank_start - 1) |
5850 ((adjusted_mode->crtc_hblank_end - 1) << 16));
fe2b8f9d 5851 I915_WRITE(HSYNC(cpu_transcoder),
b0e77b9c
PZ
5852 (adjusted_mode->crtc_hsync_start - 1) |
5853 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5854
fe2b8f9d 5855 I915_WRITE(VTOTAL(cpu_transcoder),
b0e77b9c 5856 (adjusted_mode->crtc_vdisplay - 1) |
4d8a62ea 5857 ((crtc_vtotal - 1) << 16));
fe2b8f9d 5858 I915_WRITE(VBLANK(cpu_transcoder),
b0e77b9c 5859 (adjusted_mode->crtc_vblank_start - 1) |
4d8a62ea 5860 ((crtc_vblank_end - 1) << 16));
fe2b8f9d 5861 I915_WRITE(VSYNC(cpu_transcoder),
b0e77b9c
PZ
5862 (adjusted_mode->crtc_vsync_start - 1) |
5863 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5864
b5e508d4
PZ
5865 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
5866 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
5867 * documented on the DDI_FUNC_CTL register description, EDP Input Select
5868 * bits. */
5869 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
5870 (pipe == PIPE_B || pipe == PIPE_C))
5871 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
5872
b0e77b9c
PZ
5873 /* pipesrc controls the size that is scaled from, which should
5874 * always be the user's requested size.
5875 */
5876 I915_WRITE(PIPESRC(pipe),
37327abd
VS
5877 ((intel_crtc->config.pipe_src_w - 1) << 16) |
5878 (intel_crtc->config.pipe_src_h - 1));
b0e77b9c
PZ
5879}
5880
1bd1bd80
DV
5881static void intel_get_pipe_timings(struct intel_crtc *crtc,
5882 struct intel_crtc_config *pipe_config)
5883{
5884 struct drm_device *dev = crtc->base.dev;
5885 struct drm_i915_private *dev_priv = dev->dev_private;
5886 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
5887 uint32_t tmp;
5888
5889 tmp = I915_READ(HTOTAL(cpu_transcoder));
5890 pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
5891 pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
5892 tmp = I915_READ(HBLANK(cpu_transcoder));
5893 pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
5894 pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
5895 tmp = I915_READ(HSYNC(cpu_transcoder));
5896 pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
5897 pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
5898
5899 tmp = I915_READ(VTOTAL(cpu_transcoder));
5900 pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
5901 pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
5902 tmp = I915_READ(VBLANK(cpu_transcoder));
5903 pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
5904 pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
5905 tmp = I915_READ(VSYNC(cpu_transcoder));
5906 pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
5907 pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
5908
5909 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
5910 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
5911 pipe_config->adjusted_mode.crtc_vtotal += 1;
5912 pipe_config->adjusted_mode.crtc_vblank_end += 1;
5913 }
5914
5915 tmp = I915_READ(PIPESRC(crtc->pipe));
37327abd
VS
5916 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
5917 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
5918
5919 pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
5920 pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
1bd1bd80
DV
5921}
5922
f6a83288
DV
5923void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5924 struct intel_crtc_config *pipe_config)
babea61d 5925{
f6a83288
DV
5926 mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
5927 mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
5928 mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
5929 mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
babea61d 5930
f6a83288
DV
5931 mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
5932 mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
5933 mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
5934 mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
babea61d 5935
f6a83288 5936 mode->flags = pipe_config->adjusted_mode.flags;
babea61d 5937
f6a83288
DV
5938 mode->clock = pipe_config->adjusted_mode.crtc_clock;
5939 mode->flags |= pipe_config->adjusted_mode.flags;
babea61d
JB
5940}
5941
84b046f3
DV
5942static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
5943{
5944 struct drm_device *dev = intel_crtc->base.dev;
5945 struct drm_i915_private *dev_priv = dev->dev_private;
5946 uint32_t pipeconf;
5947
9f11a9e4 5948 pipeconf = 0;
84b046f3 5949
67c72a12
DV
5950 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
5951 I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
5952 pipeconf |= PIPECONF_ENABLE;
5953
cf532bb2
VS
5954 if (intel_crtc->config.double_wide)
5955 pipeconf |= PIPECONF_DOUBLE_WIDE;
84b046f3 5956
ff9ce46e
DV
5957 /* only g4x and later have fancy bpc/dither controls */
5958 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
ff9ce46e
DV
5959 /* Bspec claims that we can't use dithering for 30bpp pipes. */
5960 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
5961 pipeconf |= PIPECONF_DITHER_EN |
84b046f3 5962 PIPECONF_DITHER_TYPE_SP;
84b046f3 5963
ff9ce46e
DV
5964 switch (intel_crtc->config.pipe_bpp) {
5965 case 18:
5966 pipeconf |= PIPECONF_6BPC;
5967 break;
5968 case 24:
5969 pipeconf |= PIPECONF_8BPC;
5970 break;
5971 case 30:
5972 pipeconf |= PIPECONF_10BPC;
5973 break;
5974 default:
5975 /* Case prevented by intel_choose_pipe_bpp_dither. */
5976 BUG();
84b046f3
DV
5977 }
5978 }
5979
5980 if (HAS_PIPE_CXSR(dev)) {
5981 if (intel_crtc->lowfreq_avail) {
5982 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5983 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5984 } else {
5985 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
84b046f3
DV
5986 }
5987 }
5988
efc2cfff
VS
5989 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
5990 if (INTEL_INFO(dev)->gen < 4 ||
5991 intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
5992 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5993 else
5994 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
5995 } else
84b046f3
DV
5996 pipeconf |= PIPECONF_PROGRESSIVE;
5997
9f11a9e4
DV
5998 if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
5999 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
9c8e09b7 6000
84b046f3
DV
6001 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6002 POSTING_READ(PIPECONF(intel_crtc->pipe));
6003}
6004
f564048e 6005static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
f564048e 6006 int x, int y,
94352cf9 6007 struct drm_framebuffer *fb)
79e53945
JB
6008{
6009 struct drm_device *dev = crtc->dev;
6010 struct drm_i915_private *dev_priv = dev->dev_private;
6011 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c751ce4f 6012 int refclk, num_connectors = 0;
652c393a 6013 intel_clock_t clock, reduced_clock;
a16af721 6014 bool ok, has_reduced_clock = false;
e9fd1c02 6015 bool is_lvds = false, is_dsi = false;
5eddb70b 6016 struct intel_encoder *encoder;
d4906093 6017 const intel_limit_t *limit;
79e53945 6018
6c2b7c12 6019 for_each_encoder_on_crtc(dev, crtc, encoder) {
5eddb70b 6020 switch (encoder->type) {
79e53945
JB
6021 case INTEL_OUTPUT_LVDS:
6022 is_lvds = true;
6023 break;
e9fd1c02
JN
6024 case INTEL_OUTPUT_DSI:
6025 is_dsi = true;
6026 break;
79e53945 6027 }
43565a06 6028
c751ce4f 6029 num_connectors++;
79e53945
JB
6030 }
6031
f2335330 6032 if (is_dsi)
5b18e57c 6033 return 0;
f2335330
JN
6034
6035 if (!intel_crtc->config.clock_set) {
6036 refclk = i9xx_get_refclk(crtc, num_connectors);
79e53945 6037
e9fd1c02
JN
6038 /*
6039 * Returns a set of divisors for the desired target clock with
6040 * the given refclk, or FALSE. The returned values represent
6041 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6042 * 2) / p1 / p2.
6043 */
6044 limit = intel_limit(crtc, refclk);
6045 ok = dev_priv->display.find_dpll(limit, crtc,
6046 intel_crtc->config.port_clock,
6047 refclk, NULL, &clock);
f2335330 6048 if (!ok) {
e9fd1c02
JN
6049 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6050 return -EINVAL;
6051 }
79e53945 6052
f2335330
JN
6053 if (is_lvds && dev_priv->lvds_downclock_avail) {
6054 /*
6055 * Ensure we match the reduced clock's P to the target
6056 * clock. If the clocks don't match, we can't switch
6057 * the display clock by using the FP0/FP1. In such case
6058 * we will disable the LVDS downclock feature.
6059 */
6060 has_reduced_clock =
6061 dev_priv->display.find_dpll(limit, crtc,
6062 dev_priv->lvds_downclock,
6063 refclk, &clock,
6064 &reduced_clock);
6065 }
6066 /* Compat-code for transition, will disappear. */
f47709a9
DV
6067 intel_crtc->config.dpll.n = clock.n;
6068 intel_crtc->config.dpll.m1 = clock.m1;
6069 intel_crtc->config.dpll.m2 = clock.m2;
6070 intel_crtc->config.dpll.p1 = clock.p1;
6071 intel_crtc->config.dpll.p2 = clock.p2;
6072 }
7026d4ac 6073
e9fd1c02 6074 if (IS_GEN2(dev)) {
8a654f3b 6075 i8xx_update_pll(intel_crtc,
2a8f64ca
VP
6076 has_reduced_clock ? &reduced_clock : NULL,
6077 num_connectors);
9d556c99
CML
6078 } else if (IS_CHERRYVIEW(dev)) {
6079 chv_update_pll(intel_crtc);
e9fd1c02 6080 } else if (IS_VALLEYVIEW(dev)) {
f2335330 6081 vlv_update_pll(intel_crtc);
e9fd1c02 6082 } else {
f47709a9 6083 i9xx_update_pll(intel_crtc,
eb1cbe48 6084 has_reduced_clock ? &reduced_clock : NULL,
eba905b2 6085 num_connectors);
e9fd1c02 6086 }
79e53945 6087
c8f7a0db 6088 return 0;
f564048e
EA
6089}
6090
2fa2fe9a
DV
6091static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6092 struct intel_crtc_config *pipe_config)
6093{
6094 struct drm_device *dev = crtc->base.dev;
6095 struct drm_i915_private *dev_priv = dev->dev_private;
6096 uint32_t tmp;
6097
dc9e7dec
VS
6098 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6099 return;
6100
2fa2fe9a 6101 tmp = I915_READ(PFIT_CONTROL);
06922821
DV
6102 if (!(tmp & PFIT_ENABLE))
6103 return;
2fa2fe9a 6104
06922821 6105 /* Check whether the pfit is attached to our pipe. */
2fa2fe9a
DV
6106 if (INTEL_INFO(dev)->gen < 4) {
6107 if (crtc->pipe != PIPE_B)
6108 return;
2fa2fe9a
DV
6109 } else {
6110 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6111 return;
6112 }
6113
06922821 6114 pipe_config->gmch_pfit.control = tmp;
2fa2fe9a
DV
6115 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6116 if (INTEL_INFO(dev)->gen < 5)
6117 pipe_config->gmch_pfit.lvds_border_bits =
6118 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6119}
6120
acbec814
JB
6121static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6122 struct intel_crtc_config *pipe_config)
6123{
6124 struct drm_device *dev = crtc->base.dev;
6125 struct drm_i915_private *dev_priv = dev->dev_private;
6126 int pipe = pipe_config->cpu_transcoder;
6127 intel_clock_t clock;
6128 u32 mdiv;
662c6ecb 6129 int refclk = 100000;
acbec814
JB
6130
6131 mutex_lock(&dev_priv->dpio_lock);
ab3c759a 6132 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
acbec814
JB
6133 mutex_unlock(&dev_priv->dpio_lock);
6134
6135 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6136 clock.m2 = mdiv & DPIO_M2DIV_MASK;
6137 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6138 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6139 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6140
f646628b 6141 vlv_clock(refclk, &clock);
acbec814 6142
f646628b
VS
6143 /* clock.dot is the fast clock */
6144 pipe_config->port_clock = clock.dot / 5;
acbec814
JB
6145}
6146
1ad292b5
JB
6147static void i9xx_get_plane_config(struct intel_crtc *crtc,
6148 struct intel_plane_config *plane_config)
6149{
6150 struct drm_device *dev = crtc->base.dev;
6151 struct drm_i915_private *dev_priv = dev->dev_private;
6152 u32 val, base, offset;
6153 int pipe = crtc->pipe, plane = crtc->plane;
6154 int fourcc, pixel_format;
6155 int aligned_height;
6156
66e514c1
DA
6157 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6158 if (!crtc->base.primary->fb) {
1ad292b5
JB
6159 DRM_DEBUG_KMS("failed to alloc fb\n");
6160 return;
6161 }
6162
6163 val = I915_READ(DSPCNTR(plane));
6164
6165 if (INTEL_INFO(dev)->gen >= 4)
6166 if (val & DISPPLANE_TILED)
6167 plane_config->tiled = true;
6168
6169 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6170 fourcc = intel_format_to_fourcc(pixel_format);
66e514c1
DA
6171 crtc->base.primary->fb->pixel_format = fourcc;
6172 crtc->base.primary->fb->bits_per_pixel =
1ad292b5
JB
6173 drm_format_plane_cpp(fourcc, 0) * 8;
6174
6175 if (INTEL_INFO(dev)->gen >= 4) {
6176 if (plane_config->tiled)
6177 offset = I915_READ(DSPTILEOFF(plane));
6178 else
6179 offset = I915_READ(DSPLINOFF(plane));
6180 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6181 } else {
6182 base = I915_READ(DSPADDR(plane));
6183 }
6184 plane_config->base = base;
6185
6186 val = I915_READ(PIPESRC(pipe));
66e514c1
DA
6187 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6188 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
1ad292b5
JB
6189
6190 val = I915_READ(DSPSTRIDE(pipe));
66e514c1 6191 crtc->base.primary->fb->pitches[0] = val & 0xffffff80;
1ad292b5 6192
66e514c1 6193 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
1ad292b5
JB
6194 plane_config->tiled);
6195
1267a26b
FF
6196 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
6197 aligned_height);
1ad292b5
JB
6198
6199 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
66e514c1
DA
6200 pipe, plane, crtc->base.primary->fb->width,
6201 crtc->base.primary->fb->height,
6202 crtc->base.primary->fb->bits_per_pixel, base,
6203 crtc->base.primary->fb->pitches[0],
1ad292b5
JB
6204 plane_config->size);
6205
6206}
6207
70b23a98
VS
6208static void chv_crtc_clock_get(struct intel_crtc *crtc,
6209 struct intel_crtc_config *pipe_config)
6210{
6211 struct drm_device *dev = crtc->base.dev;
6212 struct drm_i915_private *dev_priv = dev->dev_private;
6213 int pipe = pipe_config->cpu_transcoder;
6214 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6215 intel_clock_t clock;
6216 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6217 int refclk = 100000;
6218
6219 mutex_lock(&dev_priv->dpio_lock);
6220 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6221 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6222 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6223 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6224 mutex_unlock(&dev_priv->dpio_lock);
6225
6226 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6227 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6228 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6229 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6230 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6231
6232 chv_clock(refclk, &clock);
6233
6234 /* clock.dot is the fast clock */
6235 pipe_config->port_clock = clock.dot / 5;
6236}
6237
0e8ffe1b
DV
6238static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6239 struct intel_crtc_config *pipe_config)
6240{
6241 struct drm_device *dev = crtc->base.dev;
6242 struct drm_i915_private *dev_priv = dev->dev_private;
6243 uint32_t tmp;
6244
b5482bd0
ID
6245 if (!intel_display_power_enabled(dev_priv,
6246 POWER_DOMAIN_PIPE(crtc->pipe)))
6247 return false;
6248
e143a21c 6249 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 6250 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 6251
0e8ffe1b
DV
6252 tmp = I915_READ(PIPECONF(crtc->pipe));
6253 if (!(tmp & PIPECONF_ENABLE))
6254 return false;
6255
42571aef
VS
6256 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6257 switch (tmp & PIPECONF_BPC_MASK) {
6258 case PIPECONF_6BPC:
6259 pipe_config->pipe_bpp = 18;
6260 break;
6261 case PIPECONF_8BPC:
6262 pipe_config->pipe_bpp = 24;
6263 break;
6264 case PIPECONF_10BPC:
6265 pipe_config->pipe_bpp = 30;
6266 break;
6267 default:
6268 break;
6269 }
6270 }
6271
b5a9fa09
DV
6272 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6273 pipe_config->limited_color_range = true;
6274
282740f7
VS
6275 if (INTEL_INFO(dev)->gen < 4)
6276 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6277
1bd1bd80
DV
6278 intel_get_pipe_timings(crtc, pipe_config);
6279
2fa2fe9a
DV
6280 i9xx_get_pfit_config(crtc, pipe_config);
6281
6c49f241
DV
6282 if (INTEL_INFO(dev)->gen >= 4) {
6283 tmp = I915_READ(DPLL_MD(crtc->pipe));
6284 pipe_config->pixel_multiplier =
6285 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6286 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8bcc2795 6287 pipe_config->dpll_hw_state.dpll_md = tmp;
6c49f241
DV
6288 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6289 tmp = I915_READ(DPLL(crtc->pipe));
6290 pipe_config->pixel_multiplier =
6291 ((tmp & SDVO_MULTIPLIER_MASK)
6292 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6293 } else {
6294 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6295 * port and will be fixed up in the encoder->get_config
6296 * function. */
6297 pipe_config->pixel_multiplier = 1;
6298 }
8bcc2795
DV
6299 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6300 if (!IS_VALLEYVIEW(dev)) {
6301 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6302 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
165e901c
VS
6303 } else {
6304 /* Mask out read-only status bits. */
6305 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6306 DPLL_PORTC_READY_MASK |
6307 DPLL_PORTB_READY_MASK);
8bcc2795 6308 }
6c49f241 6309
70b23a98
VS
6310 if (IS_CHERRYVIEW(dev))
6311 chv_crtc_clock_get(crtc, pipe_config);
6312 else if (IS_VALLEYVIEW(dev))
acbec814
JB
6313 vlv_crtc_clock_get(crtc, pipe_config);
6314 else
6315 i9xx_crtc_clock_get(crtc, pipe_config);
18442d08 6316
0e8ffe1b
DV
6317 return true;
6318}
6319
dde86e2d 6320static void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
6321{
6322 struct drm_i915_private *dev_priv = dev->dev_private;
6323 struct drm_mode_config *mode_config = &dev->mode_config;
13d83a67 6324 struct intel_encoder *encoder;
74cfd7ac 6325 u32 val, final;
13d83a67 6326 bool has_lvds = false;
199e5d79 6327 bool has_cpu_edp = false;
199e5d79 6328 bool has_panel = false;
99eb6a01
KP
6329 bool has_ck505 = false;
6330 bool can_ssc = false;
13d83a67
JB
6331
6332 /* We need to take the global config into account */
199e5d79
KP
6333 list_for_each_entry(encoder, &mode_config->encoder_list,
6334 base.head) {
6335 switch (encoder->type) {
6336 case INTEL_OUTPUT_LVDS:
6337 has_panel = true;
6338 has_lvds = true;
6339 break;
6340 case INTEL_OUTPUT_EDP:
6341 has_panel = true;
2de6905f 6342 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
199e5d79
KP
6343 has_cpu_edp = true;
6344 break;
13d83a67
JB
6345 }
6346 }
6347
99eb6a01 6348 if (HAS_PCH_IBX(dev)) {
41aa3448 6349 has_ck505 = dev_priv->vbt.display_clock_mode;
99eb6a01
KP
6350 can_ssc = has_ck505;
6351 } else {
6352 has_ck505 = false;
6353 can_ssc = true;
6354 }
6355
2de6905f
ID
6356 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6357 has_panel, has_lvds, has_ck505);
13d83a67
JB
6358
6359 /* Ironlake: try to setup display ref clock before DPLL
6360 * enabling. This is only under driver's control after
6361 * PCH B stepping, previous chipset stepping should be
6362 * ignoring this setting.
6363 */
74cfd7ac
CW
6364 val = I915_READ(PCH_DREF_CONTROL);
6365
6366 /* As we must carefully and slowly disable/enable each source in turn,
6367 * compute the final state we want first and check if we need to
6368 * make any changes at all.
6369 */
6370 final = val;
6371 final &= ~DREF_NONSPREAD_SOURCE_MASK;
6372 if (has_ck505)
6373 final |= DREF_NONSPREAD_CK505_ENABLE;
6374 else
6375 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6376
6377 final &= ~DREF_SSC_SOURCE_MASK;
6378 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6379 final &= ~DREF_SSC1_ENABLE;
6380
6381 if (has_panel) {
6382 final |= DREF_SSC_SOURCE_ENABLE;
6383
6384 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6385 final |= DREF_SSC1_ENABLE;
6386
6387 if (has_cpu_edp) {
6388 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6389 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6390 else
6391 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6392 } else
6393 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6394 } else {
6395 final |= DREF_SSC_SOURCE_DISABLE;
6396 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6397 }
6398
6399 if (final == val)
6400 return;
6401
13d83a67 6402 /* Always enable nonspread source */
74cfd7ac 6403 val &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 6404
99eb6a01 6405 if (has_ck505)
74cfd7ac 6406 val |= DREF_NONSPREAD_CK505_ENABLE;
99eb6a01 6407 else
74cfd7ac 6408 val |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 6409
199e5d79 6410 if (has_panel) {
74cfd7ac
CW
6411 val &= ~DREF_SSC_SOURCE_MASK;
6412 val |= DREF_SSC_SOURCE_ENABLE;
13d83a67 6413
199e5d79 6414 /* SSC must be turned on before enabling the CPU output */
99eb6a01 6415 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6416 DRM_DEBUG_KMS("Using SSC on panel\n");
74cfd7ac 6417 val |= DREF_SSC1_ENABLE;
e77166b5 6418 } else
74cfd7ac 6419 val &= ~DREF_SSC1_ENABLE;
199e5d79
KP
6420
6421 /* Get SSC going before enabling the outputs */
74cfd7ac 6422 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6423 POSTING_READ(PCH_DREF_CONTROL);
6424 udelay(200);
6425
74cfd7ac 6426 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
13d83a67
JB
6427
6428 /* Enable CPU source on CPU attached eDP */
199e5d79 6429 if (has_cpu_edp) {
99eb6a01 6430 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6431 DRM_DEBUG_KMS("Using SSC on eDP\n");
74cfd7ac 6432 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
eba905b2 6433 } else
74cfd7ac 6434 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79 6435 } else
74cfd7ac 6436 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6437
74cfd7ac 6438 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6439 POSTING_READ(PCH_DREF_CONTROL);
6440 udelay(200);
6441 } else {
6442 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6443
74cfd7ac 6444 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
199e5d79
KP
6445
6446 /* Turn off CPU output */
74cfd7ac 6447 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6448
74cfd7ac 6449 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6450 POSTING_READ(PCH_DREF_CONTROL);
6451 udelay(200);
6452
6453 /* Turn off the SSC source */
74cfd7ac
CW
6454 val &= ~DREF_SSC_SOURCE_MASK;
6455 val |= DREF_SSC_SOURCE_DISABLE;
199e5d79
KP
6456
6457 /* Turn off SSC1 */
74cfd7ac 6458 val &= ~DREF_SSC1_ENABLE;
199e5d79 6459
74cfd7ac 6460 I915_WRITE(PCH_DREF_CONTROL, val);
13d83a67
JB
6461 POSTING_READ(PCH_DREF_CONTROL);
6462 udelay(200);
6463 }
74cfd7ac
CW
6464
6465 BUG_ON(val != final);
13d83a67
JB
6466}
6467
f31f2d55 6468static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
dde86e2d 6469{
f31f2d55 6470 uint32_t tmp;
dde86e2d 6471
0ff066a9
PZ
6472 tmp = I915_READ(SOUTH_CHICKEN2);
6473 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6474 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6475
0ff066a9
PZ
6476 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6477 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6478 DRM_ERROR("FDI mPHY reset assert timeout\n");
dde86e2d 6479
0ff066a9
PZ
6480 tmp = I915_READ(SOUTH_CHICKEN2);
6481 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6482 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6483
0ff066a9
PZ
6484 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6485 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6486 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
f31f2d55
PZ
6487}
6488
6489/* WaMPhyProgramming:hsw */
6490static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6491{
6492 uint32_t tmp;
dde86e2d
PZ
6493
6494 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6495 tmp &= ~(0xFF << 24);
6496 tmp |= (0x12 << 24);
6497 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6498
dde86e2d
PZ
6499 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6500 tmp |= (1 << 11);
6501 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6502
6503 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6504 tmp |= (1 << 11);
6505 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6506
dde86e2d
PZ
6507 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6508 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6509 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6510
6511 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6512 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6513 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6514
0ff066a9
PZ
6515 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6516 tmp &= ~(7 << 13);
6517 tmp |= (5 << 13);
6518 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
dde86e2d 6519
0ff066a9
PZ
6520 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6521 tmp &= ~(7 << 13);
6522 tmp |= (5 << 13);
6523 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
dde86e2d
PZ
6524
6525 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6526 tmp &= ~0xFF;
6527 tmp |= 0x1C;
6528 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6529
6530 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6531 tmp &= ~0xFF;
6532 tmp |= 0x1C;
6533 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6534
6535 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6536 tmp &= ~(0xFF << 16);
6537 tmp |= (0x1C << 16);
6538 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6539
6540 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6541 tmp &= ~(0xFF << 16);
6542 tmp |= (0x1C << 16);
6543 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6544
0ff066a9
PZ
6545 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6546 tmp |= (1 << 27);
6547 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
dde86e2d 6548
0ff066a9
PZ
6549 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6550 tmp |= (1 << 27);
6551 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
dde86e2d 6552
0ff066a9
PZ
6553 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6554 tmp &= ~(0xF << 28);
6555 tmp |= (4 << 28);
6556 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
dde86e2d 6557
0ff066a9
PZ
6558 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6559 tmp &= ~(0xF << 28);
6560 tmp |= (4 << 28);
6561 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
f31f2d55
PZ
6562}
6563
2fa86a1f
PZ
6564/* Implements 3 different sequences from BSpec chapter "Display iCLK
6565 * Programming" based on the parameters passed:
6566 * - Sequence to enable CLKOUT_DP
6567 * - Sequence to enable CLKOUT_DP without spread
6568 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6569 */
6570static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6571 bool with_fdi)
f31f2d55
PZ
6572{
6573 struct drm_i915_private *dev_priv = dev->dev_private;
2fa86a1f
PZ
6574 uint32_t reg, tmp;
6575
6576 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6577 with_spread = true;
6578 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6579 with_fdi, "LP PCH doesn't have FDI\n"))
6580 with_fdi = false;
f31f2d55
PZ
6581
6582 mutex_lock(&dev_priv->dpio_lock);
6583
6584 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6585 tmp &= ~SBI_SSCCTL_DISABLE;
6586 tmp |= SBI_SSCCTL_PATHALT;
6587 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6588
6589 udelay(24);
6590
2fa86a1f
PZ
6591 if (with_spread) {
6592 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6593 tmp &= ~SBI_SSCCTL_PATHALT;
6594 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
f31f2d55 6595
2fa86a1f
PZ
6596 if (with_fdi) {
6597 lpt_reset_fdi_mphy(dev_priv);
6598 lpt_program_fdi_mphy(dev_priv);
6599 }
6600 }
dde86e2d 6601
2fa86a1f
PZ
6602 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6603 SBI_GEN0 : SBI_DBUFF0;
6604 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6605 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6606 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
c00db246
DV
6607
6608 mutex_unlock(&dev_priv->dpio_lock);
dde86e2d
PZ
6609}
6610
47701c3b
PZ
6611/* Sequence to disable CLKOUT_DP */
6612static void lpt_disable_clkout_dp(struct drm_device *dev)
6613{
6614 struct drm_i915_private *dev_priv = dev->dev_private;
6615 uint32_t reg, tmp;
6616
6617 mutex_lock(&dev_priv->dpio_lock);
6618
6619 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6620 SBI_GEN0 : SBI_DBUFF0;
6621 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6622 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6623 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6624
6625 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6626 if (!(tmp & SBI_SSCCTL_DISABLE)) {
6627 if (!(tmp & SBI_SSCCTL_PATHALT)) {
6628 tmp |= SBI_SSCCTL_PATHALT;
6629 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6630 udelay(32);
6631 }
6632 tmp |= SBI_SSCCTL_DISABLE;
6633 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6634 }
6635
6636 mutex_unlock(&dev_priv->dpio_lock);
6637}
6638
bf8fa3d3
PZ
6639static void lpt_init_pch_refclk(struct drm_device *dev)
6640{
6641 struct drm_mode_config *mode_config = &dev->mode_config;
6642 struct intel_encoder *encoder;
6643 bool has_vga = false;
6644
6645 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
6646 switch (encoder->type) {
6647 case INTEL_OUTPUT_ANALOG:
6648 has_vga = true;
6649 break;
6650 }
6651 }
6652
47701c3b
PZ
6653 if (has_vga)
6654 lpt_enable_clkout_dp(dev, true, true);
6655 else
6656 lpt_disable_clkout_dp(dev);
bf8fa3d3
PZ
6657}
6658
dde86e2d
PZ
6659/*
6660 * Initialize reference clocks when the driver loads
6661 */
6662void intel_init_pch_refclk(struct drm_device *dev)
6663{
6664 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
6665 ironlake_init_pch_refclk(dev);
6666 else if (HAS_PCH_LPT(dev))
6667 lpt_init_pch_refclk(dev);
6668}
6669
d9d444cb
JB
6670static int ironlake_get_refclk(struct drm_crtc *crtc)
6671{
6672 struct drm_device *dev = crtc->dev;
6673 struct drm_i915_private *dev_priv = dev->dev_private;
6674 struct intel_encoder *encoder;
d9d444cb
JB
6675 int num_connectors = 0;
6676 bool is_lvds = false;
6677
6c2b7c12 6678 for_each_encoder_on_crtc(dev, crtc, encoder) {
d9d444cb
JB
6679 switch (encoder->type) {
6680 case INTEL_OUTPUT_LVDS:
6681 is_lvds = true;
6682 break;
d9d444cb
JB
6683 }
6684 num_connectors++;
6685 }
6686
6687 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b 6688 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
41aa3448 6689 dev_priv->vbt.lvds_ssc_freq);
e91e941b 6690 return dev_priv->vbt.lvds_ssc_freq;
d9d444cb
JB
6691 }
6692
6693 return 120000;
6694}
6695
6ff93609 6696static void ironlake_set_pipeconf(struct drm_crtc *crtc)
79e53945 6697{
c8203565 6698 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
79e53945
JB
6699 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6700 int pipe = intel_crtc->pipe;
c8203565
PZ
6701 uint32_t val;
6702
78114071 6703 val = 0;
c8203565 6704
965e0c48 6705 switch (intel_crtc->config.pipe_bpp) {
c8203565 6706 case 18:
dfd07d72 6707 val |= PIPECONF_6BPC;
c8203565
PZ
6708 break;
6709 case 24:
dfd07d72 6710 val |= PIPECONF_8BPC;
c8203565
PZ
6711 break;
6712 case 30:
dfd07d72 6713 val |= PIPECONF_10BPC;
c8203565
PZ
6714 break;
6715 case 36:
dfd07d72 6716 val |= PIPECONF_12BPC;
c8203565
PZ
6717 break;
6718 default:
cc769b62
PZ
6719 /* Case prevented by intel_choose_pipe_bpp_dither. */
6720 BUG();
c8203565
PZ
6721 }
6722
d8b32247 6723 if (intel_crtc->config.dither)
c8203565
PZ
6724 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6725
6ff93609 6726 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
c8203565
PZ
6727 val |= PIPECONF_INTERLACED_ILK;
6728 else
6729 val |= PIPECONF_PROGRESSIVE;
6730
50f3b016 6731 if (intel_crtc->config.limited_color_range)
3685a8f3 6732 val |= PIPECONF_COLOR_RANGE_SELECT;
3685a8f3 6733
c8203565
PZ
6734 I915_WRITE(PIPECONF(pipe), val);
6735 POSTING_READ(PIPECONF(pipe));
6736}
6737
86d3efce
VS
6738/*
6739 * Set up the pipe CSC unit.
6740 *
6741 * Currently only full range RGB to limited range RGB conversion
6742 * is supported, but eventually this should handle various
6743 * RGB<->YCbCr scenarios as well.
6744 */
50f3b016 6745static void intel_set_pipe_csc(struct drm_crtc *crtc)
86d3efce
VS
6746{
6747 struct drm_device *dev = crtc->dev;
6748 struct drm_i915_private *dev_priv = dev->dev_private;
6749 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6750 int pipe = intel_crtc->pipe;
6751 uint16_t coeff = 0x7800; /* 1.0 */
6752
6753 /*
6754 * TODO: Check what kind of values actually come out of the pipe
6755 * with these coeff/postoff values and adjust to get the best
6756 * accuracy. Perhaps we even need to take the bpc value into
6757 * consideration.
6758 */
6759
50f3b016 6760 if (intel_crtc->config.limited_color_range)
86d3efce
VS
6761 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
6762
6763 /*
6764 * GY/GU and RY/RU should be the other way around according
6765 * to BSpec, but reality doesn't agree. Just set them up in
6766 * a way that results in the correct picture.
6767 */
6768 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
6769 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
6770
6771 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
6772 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
6773
6774 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
6775 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
6776
6777 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
6778 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
6779 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
6780
6781 if (INTEL_INFO(dev)->gen > 6) {
6782 uint16_t postoff = 0;
6783
50f3b016 6784 if (intel_crtc->config.limited_color_range)
32cf0cb0 6785 postoff = (16 * (1 << 12) / 255) & 0x1fff;
86d3efce
VS
6786
6787 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
6788 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
6789 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
6790
6791 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
6792 } else {
6793 uint32_t mode = CSC_MODE_YUV_TO_RGB;
6794
50f3b016 6795 if (intel_crtc->config.limited_color_range)
86d3efce
VS
6796 mode |= CSC_BLACK_SCREEN_OFFSET;
6797
6798 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
6799 }
6800}
6801
6ff93609 6802static void haswell_set_pipeconf(struct drm_crtc *crtc)
ee2b0b38 6803{
756f85cf
PZ
6804 struct drm_device *dev = crtc->dev;
6805 struct drm_i915_private *dev_priv = dev->dev_private;
ee2b0b38 6806 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756f85cf 6807 enum pipe pipe = intel_crtc->pipe;
3b117c8f 6808 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
ee2b0b38
PZ
6809 uint32_t val;
6810
3eff4faa 6811 val = 0;
ee2b0b38 6812
756f85cf 6813 if (IS_HASWELL(dev) && intel_crtc->config.dither)
ee2b0b38
PZ
6814 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6815
6ff93609 6816 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
ee2b0b38
PZ
6817 val |= PIPECONF_INTERLACED_ILK;
6818 else
6819 val |= PIPECONF_PROGRESSIVE;
6820
702e7a56
PZ
6821 I915_WRITE(PIPECONF(cpu_transcoder), val);
6822 POSTING_READ(PIPECONF(cpu_transcoder));
3eff4faa
DV
6823
6824 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
6825 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
756f85cf
PZ
6826
6827 if (IS_BROADWELL(dev)) {
6828 val = 0;
6829
6830 switch (intel_crtc->config.pipe_bpp) {
6831 case 18:
6832 val |= PIPEMISC_DITHER_6_BPC;
6833 break;
6834 case 24:
6835 val |= PIPEMISC_DITHER_8_BPC;
6836 break;
6837 case 30:
6838 val |= PIPEMISC_DITHER_10_BPC;
6839 break;
6840 case 36:
6841 val |= PIPEMISC_DITHER_12_BPC;
6842 break;
6843 default:
6844 /* Case prevented by pipe_config_set_bpp. */
6845 BUG();
6846 }
6847
6848 if (intel_crtc->config.dither)
6849 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
6850
6851 I915_WRITE(PIPEMISC(pipe), val);
6852 }
ee2b0b38
PZ
6853}
6854
6591c6e4 6855static bool ironlake_compute_clocks(struct drm_crtc *crtc,
6591c6e4
PZ
6856 intel_clock_t *clock,
6857 bool *has_reduced_clock,
6858 intel_clock_t *reduced_clock)
6859{
6860 struct drm_device *dev = crtc->dev;
6861 struct drm_i915_private *dev_priv = dev->dev_private;
6862 struct intel_encoder *intel_encoder;
6863 int refclk;
d4906093 6864 const intel_limit_t *limit;
a16af721 6865 bool ret, is_lvds = false;
79e53945 6866
6591c6e4
PZ
6867 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6868 switch (intel_encoder->type) {
79e53945
JB
6869 case INTEL_OUTPUT_LVDS:
6870 is_lvds = true;
6871 break;
79e53945
JB
6872 }
6873 }
6874
d9d444cb 6875 refclk = ironlake_get_refclk(crtc);
79e53945 6876
d4906093
ML
6877 /*
6878 * Returns a set of divisors for the desired target clock with the given
6879 * refclk, or FALSE. The returned values represent the clock equation:
6880 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
6881 */
1b894b59 6882 limit = intel_limit(crtc, refclk);
ff9a6750
DV
6883 ret = dev_priv->display.find_dpll(limit, crtc,
6884 to_intel_crtc(crtc)->config.port_clock,
ee9300bb 6885 refclk, NULL, clock);
6591c6e4
PZ
6886 if (!ret)
6887 return false;
cda4b7d3 6888
ddc9003c 6889 if (is_lvds && dev_priv->lvds_downclock_avail) {
cec2f356
SP
6890 /*
6891 * Ensure we match the reduced clock's P to the target clock.
6892 * If the clocks don't match, we can't switch the display clock
6893 * by using the FP0/FP1. In such case we will disable the LVDS
6894 * downclock feature.
6895 */
ee9300bb
DV
6896 *has_reduced_clock =
6897 dev_priv->display.find_dpll(limit, crtc,
6898 dev_priv->lvds_downclock,
6899 refclk, clock,
6900 reduced_clock);
652c393a 6901 }
61e9653f 6902
6591c6e4
PZ
6903 return true;
6904}
6905
d4b1931c
PZ
6906int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
6907{
6908 /*
6909 * Account for spread spectrum to avoid
6910 * oversubscribing the link. Max center spread
6911 * is 2.5%; use 5% for safety's sake.
6912 */
6913 u32 bps = target_clock * bpp * 21 / 20;
619d4d04 6914 return DIV_ROUND_UP(bps, link_bw * 8);
d4b1931c
PZ
6915}
6916
7429e9d4 6917static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6cf86a5e 6918{
7429e9d4 6919 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
f48d8f23
PZ
6920}
6921
de13a2e3 6922static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7429e9d4 6923 u32 *fp,
9a7c7890 6924 intel_clock_t *reduced_clock, u32 *fp2)
79e53945 6925{
de13a2e3 6926 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
6927 struct drm_device *dev = crtc->dev;
6928 struct drm_i915_private *dev_priv = dev->dev_private;
de13a2e3
PZ
6929 struct intel_encoder *intel_encoder;
6930 uint32_t dpll;
6cc5f341 6931 int factor, num_connectors = 0;
09ede541 6932 bool is_lvds = false, is_sdvo = false;
79e53945 6933
de13a2e3
PZ
6934 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6935 switch (intel_encoder->type) {
79e53945
JB
6936 case INTEL_OUTPUT_LVDS:
6937 is_lvds = true;
6938 break;
6939 case INTEL_OUTPUT_SDVO:
7d57382e 6940 case INTEL_OUTPUT_HDMI:
79e53945 6941 is_sdvo = true;
79e53945 6942 break;
79e53945 6943 }
43565a06 6944
c751ce4f 6945 num_connectors++;
79e53945 6946 }
79e53945 6947
c1858123 6948 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
6949 factor = 21;
6950 if (is_lvds) {
6951 if ((intel_panel_use_ssc(dev_priv) &&
e91e941b 6952 dev_priv->vbt.lvds_ssc_freq == 100000) ||
f0b44056 6953 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8febb297 6954 factor = 25;
09ede541 6955 } else if (intel_crtc->config.sdvo_tv_clock)
8febb297 6956 factor = 20;
c1858123 6957
7429e9d4 6958 if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
7d0ac5b7 6959 *fp |= FP_CB_TUNE;
2c07245f 6960
9a7c7890
DV
6961 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
6962 *fp2 |= FP_CB_TUNE;
6963
5eddb70b 6964 dpll = 0;
2c07245f 6965
a07d6787
EA
6966 if (is_lvds)
6967 dpll |= DPLLB_MODE_LVDS;
6968 else
6969 dpll |= DPLLB_MODE_DAC_SERIAL;
198a037f 6970
ef1b460d
DV
6971 dpll |= (intel_crtc->config.pixel_multiplier - 1)
6972 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
198a037f
DV
6973
6974 if (is_sdvo)
4a33e48d 6975 dpll |= DPLL_SDVO_HIGH_SPEED;
9566e9af 6976 if (intel_crtc->config.has_dp_encoder)
4a33e48d 6977 dpll |= DPLL_SDVO_HIGH_SPEED;
79e53945 6978
a07d6787 6979 /* compute bitmask from p1 value */
7429e9d4 6980 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 6981 /* also FPA1 */
7429e9d4 6982 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 6983
7429e9d4 6984 switch (intel_crtc->config.dpll.p2) {
a07d6787
EA
6985 case 5:
6986 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6987 break;
6988 case 7:
6989 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6990 break;
6991 case 10:
6992 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6993 break;
6994 case 14:
6995 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6996 break;
79e53945
JB
6997 }
6998
b4c09f3b 6999 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 7000 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
7001 else
7002 dpll |= PLL_REF_INPUT_DREFCLK;
7003
959e16d6 7004 return dpll | DPLL_VCO_ENABLE;
de13a2e3
PZ
7005}
7006
7007static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
de13a2e3
PZ
7008 int x, int y,
7009 struct drm_framebuffer *fb)
7010{
7011 struct drm_device *dev = crtc->dev;
de13a2e3 7012 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
de13a2e3
PZ
7013 int num_connectors = 0;
7014 intel_clock_t clock, reduced_clock;
cbbab5bd 7015 u32 dpll = 0, fp = 0, fp2 = 0;
e2f12b07 7016 bool ok, has_reduced_clock = false;
8b47047b 7017 bool is_lvds = false;
de13a2e3 7018 struct intel_encoder *encoder;
e2b78267 7019 struct intel_shared_dpll *pll;
de13a2e3
PZ
7020
7021 for_each_encoder_on_crtc(dev, crtc, encoder) {
7022 switch (encoder->type) {
7023 case INTEL_OUTPUT_LVDS:
7024 is_lvds = true;
7025 break;
de13a2e3
PZ
7026 }
7027
7028 num_connectors++;
a07d6787 7029 }
79e53945 7030
5dc5298b
PZ
7031 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7032 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
a07d6787 7033
ff9a6750 7034 ok = ironlake_compute_clocks(crtc, &clock,
de13a2e3 7035 &has_reduced_clock, &reduced_clock);
ee9300bb 7036 if (!ok && !intel_crtc->config.clock_set) {
de13a2e3
PZ
7037 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7038 return -EINVAL;
79e53945 7039 }
f47709a9
DV
7040 /* Compat-code for transition, will disappear. */
7041 if (!intel_crtc->config.clock_set) {
7042 intel_crtc->config.dpll.n = clock.n;
7043 intel_crtc->config.dpll.m1 = clock.m1;
7044 intel_crtc->config.dpll.m2 = clock.m2;
7045 intel_crtc->config.dpll.p1 = clock.p1;
7046 intel_crtc->config.dpll.p2 = clock.p2;
7047 }
79e53945 7048
5dc5298b 7049 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8b47047b 7050 if (intel_crtc->config.has_pch_encoder) {
7429e9d4 7051 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
cbbab5bd 7052 if (has_reduced_clock)
7429e9d4 7053 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
cbbab5bd 7054
7429e9d4 7055 dpll = ironlake_compute_dpll(intel_crtc,
cbbab5bd
DV
7056 &fp, &reduced_clock,
7057 has_reduced_clock ? &fp2 : NULL);
7058
959e16d6 7059 intel_crtc->config.dpll_hw_state.dpll = dpll;
66e985c0
DV
7060 intel_crtc->config.dpll_hw_state.fp0 = fp;
7061 if (has_reduced_clock)
7062 intel_crtc->config.dpll_hw_state.fp1 = fp2;
7063 else
7064 intel_crtc->config.dpll_hw_state.fp1 = fp;
7065
b89a1d39 7066 pll = intel_get_shared_dpll(intel_crtc);
ee7b9f93 7067 if (pll == NULL) {
84f44ce7 7068 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
29407aab 7069 pipe_name(intel_crtc->pipe));
4b645f14
JB
7070 return -EINVAL;
7071 }
ee7b9f93 7072 } else
e72f9fbf 7073 intel_put_shared_dpll(intel_crtc);
79e53945 7074
d330a953 7075 if (is_lvds && has_reduced_clock && i915.powersave)
bcd644e0
DV
7076 intel_crtc->lowfreq_avail = true;
7077 else
7078 intel_crtc->lowfreq_avail = false;
e2b78267 7079
c8f7a0db 7080 return 0;
79e53945
JB
7081}
7082
eb14cb74
VS
7083static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7084 struct intel_link_m_n *m_n)
7085{
7086 struct drm_device *dev = crtc->base.dev;
7087 struct drm_i915_private *dev_priv = dev->dev_private;
7088 enum pipe pipe = crtc->pipe;
7089
7090 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7091 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7092 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7093 & ~TU_SIZE_MASK;
7094 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7095 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7096 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7097}
7098
7099static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7100 enum transcoder transcoder,
7101 struct intel_link_m_n *m_n)
72419203
DV
7102{
7103 struct drm_device *dev = crtc->base.dev;
7104 struct drm_i915_private *dev_priv = dev->dev_private;
eb14cb74 7105 enum pipe pipe = crtc->pipe;
72419203 7106
eb14cb74
VS
7107 if (INTEL_INFO(dev)->gen >= 5) {
7108 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7109 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7110 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7111 & ~TU_SIZE_MASK;
7112 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7113 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7114 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7115 } else {
7116 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7117 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7118 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7119 & ~TU_SIZE_MASK;
7120 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7121 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7122 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7123 }
7124}
7125
7126void intel_dp_get_m_n(struct intel_crtc *crtc,
7127 struct intel_crtc_config *pipe_config)
7128{
7129 if (crtc->config.has_pch_encoder)
7130 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7131 else
7132 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7133 &pipe_config->dp_m_n);
7134}
72419203 7135
eb14cb74
VS
7136static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7137 struct intel_crtc_config *pipe_config)
7138{
7139 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7140 &pipe_config->fdi_m_n);
72419203
DV
7141}
7142
2fa2fe9a
DV
7143static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7144 struct intel_crtc_config *pipe_config)
7145{
7146 struct drm_device *dev = crtc->base.dev;
7147 struct drm_i915_private *dev_priv = dev->dev_private;
7148 uint32_t tmp;
7149
7150 tmp = I915_READ(PF_CTL(crtc->pipe));
7151
7152 if (tmp & PF_ENABLE) {
fd4daa9c 7153 pipe_config->pch_pfit.enabled = true;
2fa2fe9a
DV
7154 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7155 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
cb8b2a30
DV
7156
7157 /* We currently do not free assignements of panel fitters on
7158 * ivb/hsw (since we don't use the higher upscaling modes which
7159 * differentiates them) so just WARN about this case for now. */
7160 if (IS_GEN7(dev)) {
7161 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7162 PF_PIPE_SEL_IVB(crtc->pipe));
7163 }
2fa2fe9a 7164 }
79e53945
JB
7165}
7166
4c6baa59
JB
7167static void ironlake_get_plane_config(struct intel_crtc *crtc,
7168 struct intel_plane_config *plane_config)
7169{
7170 struct drm_device *dev = crtc->base.dev;
7171 struct drm_i915_private *dev_priv = dev->dev_private;
7172 u32 val, base, offset;
7173 int pipe = crtc->pipe, plane = crtc->plane;
7174 int fourcc, pixel_format;
7175 int aligned_height;
7176
66e514c1
DA
7177 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7178 if (!crtc->base.primary->fb) {
4c6baa59
JB
7179 DRM_DEBUG_KMS("failed to alloc fb\n");
7180 return;
7181 }
7182
7183 val = I915_READ(DSPCNTR(plane));
7184
7185 if (INTEL_INFO(dev)->gen >= 4)
7186 if (val & DISPPLANE_TILED)
7187 plane_config->tiled = true;
7188
7189 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7190 fourcc = intel_format_to_fourcc(pixel_format);
66e514c1
DA
7191 crtc->base.primary->fb->pixel_format = fourcc;
7192 crtc->base.primary->fb->bits_per_pixel =
4c6baa59
JB
7193 drm_format_plane_cpp(fourcc, 0) * 8;
7194
7195 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7196 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7197 offset = I915_READ(DSPOFFSET(plane));
7198 } else {
7199 if (plane_config->tiled)
7200 offset = I915_READ(DSPTILEOFF(plane));
7201 else
7202 offset = I915_READ(DSPLINOFF(plane));
7203 }
7204 plane_config->base = base;
7205
7206 val = I915_READ(PIPESRC(pipe));
66e514c1
DA
7207 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7208 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
4c6baa59
JB
7209
7210 val = I915_READ(DSPSTRIDE(pipe));
66e514c1 7211 crtc->base.primary->fb->pitches[0] = val & 0xffffff80;
4c6baa59 7212
66e514c1 7213 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
4c6baa59
JB
7214 plane_config->tiled);
7215
1267a26b
FF
7216 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
7217 aligned_height);
4c6baa59
JB
7218
7219 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
66e514c1
DA
7220 pipe, plane, crtc->base.primary->fb->width,
7221 crtc->base.primary->fb->height,
7222 crtc->base.primary->fb->bits_per_pixel, base,
7223 crtc->base.primary->fb->pitches[0],
4c6baa59
JB
7224 plane_config->size);
7225}
7226
0e8ffe1b
DV
7227static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7228 struct intel_crtc_config *pipe_config)
7229{
7230 struct drm_device *dev = crtc->base.dev;
7231 struct drm_i915_private *dev_priv = dev->dev_private;
7232 uint32_t tmp;
7233
930e8c9e
PZ
7234 if (!intel_display_power_enabled(dev_priv,
7235 POWER_DOMAIN_PIPE(crtc->pipe)))
7236 return false;
7237
e143a21c 7238 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 7239 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 7240
0e8ffe1b
DV
7241 tmp = I915_READ(PIPECONF(crtc->pipe));
7242 if (!(tmp & PIPECONF_ENABLE))
7243 return false;
7244
42571aef
VS
7245 switch (tmp & PIPECONF_BPC_MASK) {
7246 case PIPECONF_6BPC:
7247 pipe_config->pipe_bpp = 18;
7248 break;
7249 case PIPECONF_8BPC:
7250 pipe_config->pipe_bpp = 24;
7251 break;
7252 case PIPECONF_10BPC:
7253 pipe_config->pipe_bpp = 30;
7254 break;
7255 case PIPECONF_12BPC:
7256 pipe_config->pipe_bpp = 36;
7257 break;
7258 default:
7259 break;
7260 }
7261
b5a9fa09
DV
7262 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7263 pipe_config->limited_color_range = true;
7264
ab9412ba 7265 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
66e985c0
DV
7266 struct intel_shared_dpll *pll;
7267
88adfff1
DV
7268 pipe_config->has_pch_encoder = true;
7269
627eb5a3
DV
7270 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7271 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7272 FDI_DP_PORT_WIDTH_SHIFT) + 1;
72419203
DV
7273
7274 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6c49f241 7275
c0d43d62 7276 if (HAS_PCH_IBX(dev_priv->dev)) {
d94ab068
DV
7277 pipe_config->shared_dpll =
7278 (enum intel_dpll_id) crtc->pipe;
c0d43d62
DV
7279 } else {
7280 tmp = I915_READ(PCH_DPLL_SEL);
7281 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7282 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7283 else
7284 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7285 }
66e985c0
DV
7286
7287 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7288
7289 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7290 &pipe_config->dpll_hw_state));
c93f54cf
DV
7291
7292 tmp = pipe_config->dpll_hw_state.dpll;
7293 pipe_config->pixel_multiplier =
7294 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7295 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
18442d08
VS
7296
7297 ironlake_pch_clock_get(crtc, pipe_config);
6c49f241
DV
7298 } else {
7299 pipe_config->pixel_multiplier = 1;
627eb5a3
DV
7300 }
7301
1bd1bd80
DV
7302 intel_get_pipe_timings(crtc, pipe_config);
7303
2fa2fe9a
DV
7304 ironlake_get_pfit_config(crtc, pipe_config);
7305
0e8ffe1b
DV
7306 return true;
7307}
7308
be256dc7
PZ
7309static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7310{
7311 struct drm_device *dev = dev_priv->dev;
be256dc7 7312 struct intel_crtc *crtc;
be256dc7 7313
d3fcc808 7314 for_each_intel_crtc(dev, crtc)
798183c5 7315 WARN(crtc->active, "CRTC for pipe %c enabled\n",
be256dc7
PZ
7316 pipe_name(crtc->pipe));
7317
7318 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
8cc3e169
DV
7319 WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7320 WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7321 WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
be256dc7
PZ
7322 WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7323 WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7324 "CPU PWM1 enabled\n");
c5107b87
PZ
7325 if (IS_HASWELL(dev))
7326 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7327 "CPU PWM2 enabled\n");
be256dc7
PZ
7328 WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7329 "PCH PWM1 enabled\n");
7330 WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7331 "Utility pin enabled\n");
7332 WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7333
9926ada1
PZ
7334 /*
7335 * In theory we can still leave IRQs enabled, as long as only the HPD
7336 * interrupts remain enabled. We used to check for that, but since it's
7337 * gen-specific and since we only disable LCPLL after we fully disable
7338 * the interrupts, the check below should be enough.
7339 */
9df7575f 7340 WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
be256dc7
PZ
7341}
7342
9ccd5aeb
PZ
7343static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7344{
7345 struct drm_device *dev = dev_priv->dev;
7346
7347 if (IS_HASWELL(dev))
7348 return I915_READ(D_COMP_HSW);
7349 else
7350 return I915_READ(D_COMP_BDW);
7351}
7352
3c4c9b81
PZ
7353static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7354{
7355 struct drm_device *dev = dev_priv->dev;
7356
7357 if (IS_HASWELL(dev)) {
7358 mutex_lock(&dev_priv->rps.hw_lock);
7359 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7360 val))
f475dadf 7361 DRM_ERROR("Failed to write to D_COMP\n");
3c4c9b81
PZ
7362 mutex_unlock(&dev_priv->rps.hw_lock);
7363 } else {
9ccd5aeb
PZ
7364 I915_WRITE(D_COMP_BDW, val);
7365 POSTING_READ(D_COMP_BDW);
3c4c9b81 7366 }
be256dc7
PZ
7367}
7368
7369/*
7370 * This function implements pieces of two sequences from BSpec:
7371 * - Sequence for display software to disable LCPLL
7372 * - Sequence for display software to allow package C8+
7373 * The steps implemented here are just the steps that actually touch the LCPLL
7374 * register. Callers should take care of disabling all the display engine
7375 * functions, doing the mode unset, fixing interrupts, etc.
7376 */
6ff58d53
PZ
7377static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7378 bool switch_to_fclk, bool allow_power_down)
be256dc7
PZ
7379{
7380 uint32_t val;
7381
7382 assert_can_disable_lcpll(dev_priv);
7383
7384 val = I915_READ(LCPLL_CTL);
7385
7386 if (switch_to_fclk) {
7387 val |= LCPLL_CD_SOURCE_FCLK;
7388 I915_WRITE(LCPLL_CTL, val);
7389
7390 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7391 LCPLL_CD_SOURCE_FCLK_DONE, 1))
7392 DRM_ERROR("Switching to FCLK failed\n");
7393
7394 val = I915_READ(LCPLL_CTL);
7395 }
7396
7397 val |= LCPLL_PLL_DISABLE;
7398 I915_WRITE(LCPLL_CTL, val);
7399 POSTING_READ(LCPLL_CTL);
7400
7401 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7402 DRM_ERROR("LCPLL still locked\n");
7403
9ccd5aeb 7404 val = hsw_read_dcomp(dev_priv);
be256dc7 7405 val |= D_COMP_COMP_DISABLE;
3c4c9b81 7406 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7407 ndelay(100);
7408
9ccd5aeb
PZ
7409 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
7410 1))
be256dc7
PZ
7411 DRM_ERROR("D_COMP RCOMP still in progress\n");
7412
7413 if (allow_power_down) {
7414 val = I915_READ(LCPLL_CTL);
7415 val |= LCPLL_POWER_DOWN_ALLOW;
7416 I915_WRITE(LCPLL_CTL, val);
7417 POSTING_READ(LCPLL_CTL);
7418 }
7419}
7420
7421/*
7422 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7423 * source.
7424 */
6ff58d53 7425static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
be256dc7
PZ
7426{
7427 uint32_t val;
a8a8bd54 7428 unsigned long irqflags;
be256dc7
PZ
7429
7430 val = I915_READ(LCPLL_CTL);
7431
7432 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7433 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7434 return;
7435
a8a8bd54
PZ
7436 /*
7437 * Make sure we're not on PC8 state before disabling PC8, otherwise
7438 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7439 *
7440 * The other problem is that hsw_restore_lcpll() is called as part of
7441 * the runtime PM resume sequence, so we can't just call
7442 * gen6_gt_force_wake_get() because that function calls
7443 * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7444 * while we are on the resume sequence. So to solve this problem we have
7445 * to call special forcewake code that doesn't touch runtime PM and
7446 * doesn't enable the forcewake delayed work.
7447 */
7448 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7449 if (dev_priv->uncore.forcewake_count++ == 0)
7450 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7451 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
215733fa 7452
be256dc7
PZ
7453 if (val & LCPLL_POWER_DOWN_ALLOW) {
7454 val &= ~LCPLL_POWER_DOWN_ALLOW;
7455 I915_WRITE(LCPLL_CTL, val);
35d8f2eb 7456 POSTING_READ(LCPLL_CTL);
be256dc7
PZ
7457 }
7458
9ccd5aeb 7459 val = hsw_read_dcomp(dev_priv);
be256dc7
PZ
7460 val |= D_COMP_COMP_FORCE;
7461 val &= ~D_COMP_COMP_DISABLE;
3c4c9b81 7462 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7463
7464 val = I915_READ(LCPLL_CTL);
7465 val &= ~LCPLL_PLL_DISABLE;
7466 I915_WRITE(LCPLL_CTL, val);
7467
7468 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7469 DRM_ERROR("LCPLL not locked yet\n");
7470
7471 if (val & LCPLL_CD_SOURCE_FCLK) {
7472 val = I915_READ(LCPLL_CTL);
7473 val &= ~LCPLL_CD_SOURCE_FCLK;
7474 I915_WRITE(LCPLL_CTL, val);
7475
7476 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7477 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7478 DRM_ERROR("Switching back to LCPLL failed\n");
7479 }
215733fa 7480
a8a8bd54
PZ
7481 /* See the big comment above. */
7482 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7483 if (--dev_priv->uncore.forcewake_count == 0)
7484 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7485 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
be256dc7
PZ
7486}
7487
765dab67
PZ
7488/*
7489 * Package states C8 and deeper are really deep PC states that can only be
7490 * reached when all the devices on the system allow it, so even if the graphics
7491 * device allows PC8+, it doesn't mean the system will actually get to these
7492 * states. Our driver only allows PC8+ when going into runtime PM.
7493 *
7494 * The requirements for PC8+ are that all the outputs are disabled, the power
7495 * well is disabled and most interrupts are disabled, and these are also
7496 * requirements for runtime PM. When these conditions are met, we manually do
7497 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7498 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7499 * hang the machine.
7500 *
7501 * When we really reach PC8 or deeper states (not just when we allow it) we lose
7502 * the state of some registers, so when we come back from PC8+ we need to
7503 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7504 * need to take care of the registers kept by RC6. Notice that this happens even
7505 * if we don't put the device in PCI D3 state (which is what currently happens
7506 * because of the runtime PM support).
7507 *
7508 * For more, read "Display Sequences for Package C8" on the hardware
7509 * documentation.
7510 */
a14cb6fc 7511void hsw_enable_pc8(struct drm_i915_private *dev_priv)
c67a470b 7512{
c67a470b
PZ
7513 struct drm_device *dev = dev_priv->dev;
7514 uint32_t val;
7515
c67a470b
PZ
7516 DRM_DEBUG_KMS("Enabling package C8+\n");
7517
c67a470b
PZ
7518 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7519 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7520 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7521 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7522 }
7523
7524 lpt_disable_clkout_dp(dev);
c67a470b
PZ
7525 hsw_disable_lcpll(dev_priv, true, true);
7526}
7527
a14cb6fc 7528void hsw_disable_pc8(struct drm_i915_private *dev_priv)
c67a470b
PZ
7529{
7530 struct drm_device *dev = dev_priv->dev;
7531 uint32_t val;
7532
c67a470b
PZ
7533 DRM_DEBUG_KMS("Disabling package C8+\n");
7534
7535 hsw_restore_lcpll(dev_priv);
c67a470b
PZ
7536 lpt_init_pch_refclk(dev);
7537
7538 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7539 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7540 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7541 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7542 }
7543
7544 intel_prepare_ddi(dev);
c67a470b
PZ
7545}
7546
9a952a0d
PZ
7547static void snb_modeset_global_resources(struct drm_device *dev)
7548{
7549 modeset_update_crtc_power_domains(dev);
7550}
7551
4f074129
ID
7552static void haswell_modeset_global_resources(struct drm_device *dev)
7553{
da723569 7554 modeset_update_crtc_power_domains(dev);
d6dd9eb1
DV
7555}
7556
09b4ddf9 7557static int haswell_crtc_mode_set(struct drm_crtc *crtc,
09b4ddf9
PZ
7558 int x, int y,
7559 struct drm_framebuffer *fb)
7560{
09b4ddf9 7561 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
09b4ddf9 7562
566b734a 7563 if (!intel_ddi_pll_select(intel_crtc))
6441ab5f 7564 return -EINVAL;
716c2e55 7565
644cef34
DV
7566 intel_crtc->lowfreq_avail = false;
7567
c8f7a0db 7568 return 0;
79e53945
JB
7569}
7570
26804afd
DV
7571static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
7572 struct intel_crtc_config *pipe_config)
7573{
7574 struct drm_device *dev = crtc->base.dev;
7575 struct drm_i915_private *dev_priv = dev->dev_private;
d452c5b6 7576 struct intel_shared_dpll *pll;
26804afd
DV
7577 enum port port;
7578 uint32_t tmp;
7579
7580 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
7581
7582 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
7583
7584 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9cd86933
DV
7585
7586 switch (pipe_config->ddi_pll_sel) {
7587 case PORT_CLK_SEL_WRPLL1:
7588 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
7589 break;
7590 case PORT_CLK_SEL_WRPLL2:
7591 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
7592 break;
7593 }
7594
d452c5b6
DV
7595 if (pipe_config->shared_dpll >= 0) {
7596 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7597
7598 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7599 &pipe_config->dpll_hw_state));
7600 }
7601
26804afd
DV
7602 /*
7603 * Haswell has only FDI/PCH transcoder A. It is which is connected to
7604 * DDI E. So just check whether this pipe is wired to DDI E and whether
7605 * the PCH transcoder is on.
7606 */
7607 if ((port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
7608 pipe_config->has_pch_encoder = true;
7609
7610 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
7611 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7612 FDI_DP_PORT_WIDTH_SHIFT) + 1;
7613
7614 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7615 }
7616}
7617
0e8ffe1b
DV
7618static bool haswell_get_pipe_config(struct intel_crtc *crtc,
7619 struct intel_crtc_config *pipe_config)
7620{
7621 struct drm_device *dev = crtc->base.dev;
7622 struct drm_i915_private *dev_priv = dev->dev_private;
2fa2fe9a 7623 enum intel_display_power_domain pfit_domain;
0e8ffe1b
DV
7624 uint32_t tmp;
7625
b5482bd0
ID
7626 if (!intel_display_power_enabled(dev_priv,
7627 POWER_DOMAIN_PIPE(crtc->pipe)))
7628 return false;
7629
e143a21c 7630 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62
DV
7631 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7632
eccb140b
DV
7633 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
7634 if (tmp & TRANS_DDI_FUNC_ENABLE) {
7635 enum pipe trans_edp_pipe;
7636 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
7637 default:
7638 WARN(1, "unknown pipe linked to edp transcoder\n");
7639 case TRANS_DDI_EDP_INPUT_A_ONOFF:
7640 case TRANS_DDI_EDP_INPUT_A_ON:
7641 trans_edp_pipe = PIPE_A;
7642 break;
7643 case TRANS_DDI_EDP_INPUT_B_ONOFF:
7644 trans_edp_pipe = PIPE_B;
7645 break;
7646 case TRANS_DDI_EDP_INPUT_C_ONOFF:
7647 trans_edp_pipe = PIPE_C;
7648 break;
7649 }
7650
7651 if (trans_edp_pipe == crtc->pipe)
7652 pipe_config->cpu_transcoder = TRANSCODER_EDP;
7653 }
7654
da7e29bd 7655 if (!intel_display_power_enabled(dev_priv,
eccb140b 7656 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
2bfce950
PZ
7657 return false;
7658
eccb140b 7659 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
0e8ffe1b
DV
7660 if (!(tmp & PIPECONF_ENABLE))
7661 return false;
7662
26804afd 7663 haswell_get_ddi_port_state(crtc, pipe_config);
627eb5a3 7664
1bd1bd80
DV
7665 intel_get_pipe_timings(crtc, pipe_config);
7666
2fa2fe9a 7667 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
da7e29bd 7668 if (intel_display_power_enabled(dev_priv, pfit_domain))
2fa2fe9a 7669 ironlake_get_pfit_config(crtc, pipe_config);
88adfff1 7670
e59150dc
JB
7671 if (IS_HASWELL(dev))
7672 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
7673 (I915_READ(IPS_CTL) & IPS_ENABLE);
42db64ef 7674
6c49f241
DV
7675 pipe_config->pixel_multiplier = 1;
7676
0e8ffe1b
DV
7677 return true;
7678}
7679
1a91510d
JN
7680static struct {
7681 int clock;
7682 u32 config;
7683} hdmi_audio_clock[] = {
7684 { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
7685 { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
7686 { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
7687 { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
7688 { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
7689 { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
7690 { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
7691 { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
7692 { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
7693 { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
7694};
7695
7696/* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
7697static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
7698{
7699 int i;
7700
7701 for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
7702 if (mode->clock == hdmi_audio_clock[i].clock)
7703 break;
7704 }
7705
7706 if (i == ARRAY_SIZE(hdmi_audio_clock)) {
7707 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
7708 i = 1;
7709 }
7710
7711 DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
7712 hdmi_audio_clock[i].clock,
7713 hdmi_audio_clock[i].config);
7714
7715 return hdmi_audio_clock[i].config;
7716}
7717
3a9627f4
WF
7718static bool intel_eld_uptodate(struct drm_connector *connector,
7719 int reg_eldv, uint32_t bits_eldv,
7720 int reg_elda, uint32_t bits_elda,
7721 int reg_edid)
7722{
7723 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7724 uint8_t *eld = connector->eld;
7725 uint32_t i;
7726
7727 i = I915_READ(reg_eldv);
7728 i &= bits_eldv;
7729
7730 if (!eld[0])
7731 return !i;
7732
7733 if (!i)
7734 return false;
7735
7736 i = I915_READ(reg_elda);
7737 i &= ~bits_elda;
7738 I915_WRITE(reg_elda, i);
7739
7740 for (i = 0; i < eld[2]; i++)
7741 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
7742 return false;
7743
7744 return true;
7745}
7746
e0dac65e 7747static void g4x_write_eld(struct drm_connector *connector,
34427052
JN
7748 struct drm_crtc *crtc,
7749 struct drm_display_mode *mode)
e0dac65e
WF
7750{
7751 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7752 uint8_t *eld = connector->eld;
7753 uint32_t eldv;
7754 uint32_t len;
7755 uint32_t i;
7756
7757 i = I915_READ(G4X_AUD_VID_DID);
7758
7759 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
7760 eldv = G4X_ELDV_DEVCL_DEVBLC;
7761 else
7762 eldv = G4X_ELDV_DEVCTG;
7763
3a9627f4
WF
7764 if (intel_eld_uptodate(connector,
7765 G4X_AUD_CNTL_ST, eldv,
7766 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
7767 G4X_HDMIW_HDMIEDID))
7768 return;
7769
e0dac65e
WF
7770 i = I915_READ(G4X_AUD_CNTL_ST);
7771 i &= ~(eldv | G4X_ELD_ADDR);
7772 len = (i >> 9) & 0x1f; /* ELD buffer size */
7773 I915_WRITE(G4X_AUD_CNTL_ST, i);
7774
7775 if (!eld[0])
7776 return;
7777
7778 len = min_t(uint8_t, eld[2], len);
7779 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7780 for (i = 0; i < len; i++)
7781 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
7782
7783 i = I915_READ(G4X_AUD_CNTL_ST);
7784 i |= eldv;
7785 I915_WRITE(G4X_AUD_CNTL_ST, i);
7786}
7787
83358c85 7788static void haswell_write_eld(struct drm_connector *connector,
34427052
JN
7789 struct drm_crtc *crtc,
7790 struct drm_display_mode *mode)
83358c85
WX
7791{
7792 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7793 uint8_t *eld = connector->eld;
83358c85
WX
7794 uint32_t eldv;
7795 uint32_t i;
7796 int len;
7797 int pipe = to_intel_crtc(crtc)->pipe;
7798 int tmp;
7799
7800 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
7801 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
7802 int aud_config = HSW_AUD_CFG(pipe);
7803 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
7804
83358c85
WX
7805 /* Audio output enable */
7806 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
7807 tmp = I915_READ(aud_cntrl_st2);
7808 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
7809 I915_WRITE(aud_cntrl_st2, tmp);
c7905792 7810 POSTING_READ(aud_cntrl_st2);
83358c85 7811
c7905792 7812 assert_pipe_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
83358c85
WX
7813
7814 /* Set ELD valid state */
7815 tmp = I915_READ(aud_cntrl_st2);
7e7cb34f 7816 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
83358c85
WX
7817 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
7818 I915_WRITE(aud_cntrl_st2, tmp);
7819 tmp = I915_READ(aud_cntrl_st2);
7e7cb34f 7820 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
83358c85
WX
7821
7822 /* Enable HDMI mode */
7823 tmp = I915_READ(aud_config);
7e7cb34f 7824 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
83358c85
WX
7825 /* clear N_programing_enable and N_value_index */
7826 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
7827 I915_WRITE(aud_config, tmp);
7828
7829 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7830
7831 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
7832
7833 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7834 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7835 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
7836 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
1a91510d
JN
7837 } else {
7838 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7839 }
83358c85
WX
7840
7841 if (intel_eld_uptodate(connector,
7842 aud_cntrl_st2, eldv,
7843 aud_cntl_st, IBX_ELD_ADDRESS,
7844 hdmiw_hdmiedid))
7845 return;
7846
7847 i = I915_READ(aud_cntrl_st2);
7848 i &= ~eldv;
7849 I915_WRITE(aud_cntrl_st2, i);
7850
7851 if (!eld[0])
7852 return;
7853
7854 i = I915_READ(aud_cntl_st);
7855 i &= ~IBX_ELD_ADDRESS;
7856 I915_WRITE(aud_cntl_st, i);
7857 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
7858 DRM_DEBUG_DRIVER("port num:%d\n", i);
7859
7860 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
7861 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7862 for (i = 0; i < len; i++)
7863 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7864
7865 i = I915_READ(aud_cntrl_st2);
7866 i |= eldv;
7867 I915_WRITE(aud_cntrl_st2, i);
7868
7869}
7870
e0dac65e 7871static void ironlake_write_eld(struct drm_connector *connector,
34427052
JN
7872 struct drm_crtc *crtc,
7873 struct drm_display_mode *mode)
e0dac65e
WF
7874{
7875 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7876 uint8_t *eld = connector->eld;
7877 uint32_t eldv;
7878 uint32_t i;
7879 int len;
7880 int hdmiw_hdmiedid;
b6daa025 7881 int aud_config;
e0dac65e
WF
7882 int aud_cntl_st;
7883 int aud_cntrl_st2;
9b138a83 7884 int pipe = to_intel_crtc(crtc)->pipe;
e0dac65e 7885
b3f33cbf 7886 if (HAS_PCH_IBX(connector->dev)) {
9b138a83
WX
7887 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
7888 aud_config = IBX_AUD_CFG(pipe);
7889 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
1202b4c6 7890 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
9ca2fe73
ML
7891 } else if (IS_VALLEYVIEW(connector->dev)) {
7892 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
7893 aud_config = VLV_AUD_CFG(pipe);
7894 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
7895 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
e0dac65e 7896 } else {
9b138a83
WX
7897 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
7898 aud_config = CPT_AUD_CFG(pipe);
7899 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
1202b4c6 7900 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
e0dac65e
WF
7901 }
7902
9b138a83 7903 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
e0dac65e 7904
9ca2fe73
ML
7905 if (IS_VALLEYVIEW(connector->dev)) {
7906 struct intel_encoder *intel_encoder;
7907 struct intel_digital_port *intel_dig_port;
7908
7909 intel_encoder = intel_attached_encoder(connector);
7910 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
7911 i = intel_dig_port->port;
7912 } else {
7913 i = I915_READ(aud_cntl_st);
7914 i = (i >> 29) & DIP_PORT_SEL_MASK;
7915 /* DIP_Port_Select, 0x1 = PortB */
7916 }
7917
e0dac65e
WF
7918 if (!i) {
7919 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
7920 /* operate blindly on all ports */
1202b4c6
WF
7921 eldv = IBX_ELD_VALIDB;
7922 eldv |= IBX_ELD_VALIDB << 4;
7923 eldv |= IBX_ELD_VALIDB << 8;
e0dac65e 7924 } else {
2582a850 7925 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
1202b4c6 7926 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
e0dac65e
WF
7927 }
7928
3a9627f4
WF
7929 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7930 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7931 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
b6daa025 7932 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
1a91510d
JN
7933 } else {
7934 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7935 }
e0dac65e 7936
3a9627f4
WF
7937 if (intel_eld_uptodate(connector,
7938 aud_cntrl_st2, eldv,
7939 aud_cntl_st, IBX_ELD_ADDRESS,
7940 hdmiw_hdmiedid))
7941 return;
7942
e0dac65e
WF
7943 i = I915_READ(aud_cntrl_st2);
7944 i &= ~eldv;
7945 I915_WRITE(aud_cntrl_st2, i);
7946
7947 if (!eld[0])
7948 return;
7949
e0dac65e 7950 i = I915_READ(aud_cntl_st);
1202b4c6 7951 i &= ~IBX_ELD_ADDRESS;
e0dac65e
WF
7952 I915_WRITE(aud_cntl_st, i);
7953
7954 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
7955 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7956 for (i = 0; i < len; i++)
7957 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7958
7959 i = I915_READ(aud_cntrl_st2);
7960 i |= eldv;
7961 I915_WRITE(aud_cntrl_st2, i);
7962}
7963
7964void intel_write_eld(struct drm_encoder *encoder,
7965 struct drm_display_mode *mode)
7966{
7967 struct drm_crtc *crtc = encoder->crtc;
7968 struct drm_connector *connector;
7969 struct drm_device *dev = encoder->dev;
7970 struct drm_i915_private *dev_priv = dev->dev_private;
7971
7972 connector = drm_select_eld(encoder, mode);
7973 if (!connector)
7974 return;
7975
7976 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7977 connector->base.id,
c23cc417 7978 connector->name,
e0dac65e 7979 connector->encoder->base.id,
8e329a03 7980 connector->encoder->name);
e0dac65e
WF
7981
7982 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
7983
7984 if (dev_priv->display.write_eld)
34427052 7985 dev_priv->display.write_eld(connector, crtc, mode);
e0dac65e
WF
7986}
7987
560b85bb
CW
7988static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
7989{
7990 struct drm_device *dev = crtc->dev;
7991 struct drm_i915_private *dev_priv = dev->dev_private;
7992 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4b0e333e 7993 uint32_t cntl;
560b85bb 7994
4b0e333e 7995 if (base != intel_crtc->cursor_base) {
560b85bb
CW
7996 /* On these chipsets we can only modify the base whilst
7997 * the cursor is disabled.
7998 */
4b0e333e
CW
7999 if (intel_crtc->cursor_cntl) {
8000 I915_WRITE(_CURACNTR, 0);
8001 POSTING_READ(_CURACNTR);
8002 intel_crtc->cursor_cntl = 0;
8003 }
8004
9db4a9c7 8005 I915_WRITE(_CURABASE, base);
4b0e333e
CW
8006 POSTING_READ(_CURABASE);
8007 }
560b85bb 8008
4b0e333e
CW
8009 /* XXX width must be 64, stride 256 => 0x00 << 28 */
8010 cntl = 0;
8011 if (base)
8012 cntl = (CURSOR_ENABLE |
560b85bb 8013 CURSOR_GAMMA_ENABLE |
4b0e333e
CW
8014 CURSOR_FORMAT_ARGB);
8015 if (intel_crtc->cursor_cntl != cntl) {
8016 I915_WRITE(_CURACNTR, cntl);
8017 POSTING_READ(_CURACNTR);
8018 intel_crtc->cursor_cntl = cntl;
8019 }
560b85bb
CW
8020}
8021
8022static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
8023{
8024 struct drm_device *dev = crtc->dev;
8025 struct drm_i915_private *dev_priv = dev->dev_private;
8026 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8027 int pipe = intel_crtc->pipe;
4b0e333e 8028 uint32_t cntl;
4726e0b0 8029
4b0e333e
CW
8030 cntl = 0;
8031 if (base) {
8032 cntl = MCURSOR_GAMMA_ENABLE;
8033 switch (intel_crtc->cursor_width) {
4726e0b0
SK
8034 case 64:
8035 cntl |= CURSOR_MODE_64_ARGB_AX;
8036 break;
8037 case 128:
8038 cntl |= CURSOR_MODE_128_ARGB_AX;
8039 break;
8040 case 256:
8041 cntl |= CURSOR_MODE_256_ARGB_AX;
8042 break;
8043 default:
8044 WARN_ON(1);
8045 return;
560b85bb 8046 }
4b0e333e
CW
8047 cntl |= pipe << 28; /* Connect to correct pipe */
8048 }
8049 if (intel_crtc->cursor_cntl != cntl) {
9db4a9c7 8050 I915_WRITE(CURCNTR(pipe), cntl);
4b0e333e
CW
8051 POSTING_READ(CURCNTR(pipe));
8052 intel_crtc->cursor_cntl = cntl;
560b85bb 8053 }
4b0e333e 8054
560b85bb 8055 /* and commit changes on next vblank */
9db4a9c7 8056 I915_WRITE(CURBASE(pipe), base);
b2ea8ef5 8057 POSTING_READ(CURBASE(pipe));
560b85bb
CW
8058}
8059
65a21cd6
JB
8060static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
8061{
8062 struct drm_device *dev = crtc->dev;
8063 struct drm_i915_private *dev_priv = dev->dev_private;
8064 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8065 int pipe = intel_crtc->pipe;
4b0e333e
CW
8066 uint32_t cntl;
8067
8068 cntl = 0;
8069 if (base) {
8070 cntl = MCURSOR_GAMMA_ENABLE;
8071 switch (intel_crtc->cursor_width) {
4726e0b0
SK
8072 case 64:
8073 cntl |= CURSOR_MODE_64_ARGB_AX;
8074 break;
8075 case 128:
8076 cntl |= CURSOR_MODE_128_ARGB_AX;
8077 break;
8078 case 256:
8079 cntl |= CURSOR_MODE_256_ARGB_AX;
8080 break;
8081 default:
8082 WARN_ON(1);
8083 return;
65a21cd6 8084 }
4b0e333e
CW
8085 }
8086 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8087 cntl |= CURSOR_PIPE_CSC_ENABLE;
65a21cd6 8088
4b0e333e
CW
8089 if (intel_crtc->cursor_cntl != cntl) {
8090 I915_WRITE(CURCNTR(pipe), cntl);
8091 POSTING_READ(CURCNTR(pipe));
8092 intel_crtc->cursor_cntl = cntl;
65a21cd6 8093 }
4b0e333e 8094
65a21cd6 8095 /* and commit changes on next vblank */
5efb3e28
VS
8096 I915_WRITE(CURBASE(pipe), base);
8097 POSTING_READ(CURBASE(pipe));
65a21cd6
JB
8098}
8099
cda4b7d3 8100/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
8101static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8102 bool on)
cda4b7d3
CW
8103{
8104 struct drm_device *dev = crtc->dev;
8105 struct drm_i915_private *dev_priv = dev->dev_private;
8106 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8107 int pipe = intel_crtc->pipe;
3d7d6510
MR
8108 int x = crtc->cursor_x;
8109 int y = crtc->cursor_y;
d6e4db15 8110 u32 base = 0, pos = 0;
cda4b7d3 8111
d6e4db15 8112 if (on)
cda4b7d3 8113 base = intel_crtc->cursor_addr;
cda4b7d3 8114
d6e4db15
VS
8115 if (x >= intel_crtc->config.pipe_src_w)
8116 base = 0;
8117
8118 if (y >= intel_crtc->config.pipe_src_h)
cda4b7d3
CW
8119 base = 0;
8120
8121 if (x < 0) {
efc9064e 8122 if (x + intel_crtc->cursor_width <= 0)
cda4b7d3
CW
8123 base = 0;
8124
8125 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8126 x = -x;
8127 }
8128 pos |= x << CURSOR_X_SHIFT;
8129
8130 if (y < 0) {
efc9064e 8131 if (y + intel_crtc->cursor_height <= 0)
cda4b7d3
CW
8132 base = 0;
8133
8134 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8135 y = -y;
8136 }
8137 pos |= y << CURSOR_Y_SHIFT;
8138
4b0e333e 8139 if (base == 0 && intel_crtc->cursor_base == 0)
cda4b7d3
CW
8140 return;
8141
5efb3e28
VS
8142 I915_WRITE(CURPOS(pipe), pos);
8143
8144 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev) || IS_BROADWELL(dev))
65a21cd6 8145 ivb_update_cursor(crtc, base);
5efb3e28
VS
8146 else if (IS_845G(dev) || IS_I865G(dev))
8147 i845_update_cursor(crtc, base);
8148 else
8149 i9xx_update_cursor(crtc, base);
4b0e333e 8150 intel_crtc->cursor_base = base;
cda4b7d3
CW
8151}
8152
e3287951
MR
8153/*
8154 * intel_crtc_cursor_set_obj - Set cursor to specified GEM object
8155 *
8156 * Note that the object's reference will be consumed if the update fails. If
8157 * the update succeeds, the reference of the old object (if any) will be
8158 * consumed.
8159 */
8160static int intel_crtc_cursor_set_obj(struct drm_crtc *crtc,
8161 struct drm_i915_gem_object *obj,
8162 uint32_t width, uint32_t height)
79e53945
JB
8163{
8164 struct drm_device *dev = crtc->dev;
8165 struct drm_i915_private *dev_priv = dev->dev_private;
8166 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 8167 enum pipe pipe = intel_crtc->pipe;
64f962e3 8168 unsigned old_width;
cda4b7d3 8169 uint32_t addr;
3f8bc370 8170 int ret;
79e53945 8171
79e53945 8172 /* if we want to turn off the cursor ignore width and height */
e3287951 8173 if (!obj) {
28c97730 8174 DRM_DEBUG_KMS("cursor off\n");
3f8bc370 8175 addr = 0;
05394f39 8176 obj = NULL;
5004417d 8177 mutex_lock(&dev->struct_mutex);
3f8bc370 8178 goto finish;
79e53945
JB
8179 }
8180
4726e0b0
SK
8181 /* Check for which cursor types we support */
8182 if (!((width == 64 && height == 64) ||
8183 (width == 128 && height == 128 && !IS_GEN2(dev)) ||
8184 (width == 256 && height == 256 && !IS_GEN2(dev)))) {
8185 DRM_DEBUG("Cursor dimension not supported\n");
79e53945
JB
8186 return -EINVAL;
8187 }
8188
05394f39 8189 if (obj->base.size < width * height * 4) {
e3287951 8190 DRM_DEBUG_KMS("buffer is too small\n");
34b8686e
DA
8191 ret = -ENOMEM;
8192 goto fail;
79e53945
JB
8193 }
8194
71acb5eb 8195 /* we only need to pin inside GTT if cursor is non-phy */
7f9872e0 8196 mutex_lock(&dev->struct_mutex);
3d13ef2e 8197 if (!INTEL_INFO(dev)->cursor_needs_physical) {
693db184
CW
8198 unsigned alignment;
8199
d9e86c0e 8200 if (obj->tiling_mode) {
3b25b31f 8201 DRM_DEBUG_KMS("cursor cannot be tiled\n");
d9e86c0e
CW
8202 ret = -EINVAL;
8203 goto fail_locked;
8204 }
8205
693db184
CW
8206 /* Note that the w/a also requires 2 PTE of padding following
8207 * the bo. We currently fill all unused PTE with the shadow
8208 * page and so we should always have valid PTE following the
8209 * cursor preventing the VT-d warning.
8210 */
8211 alignment = 0;
8212 if (need_vtd_wa(dev))
8213 alignment = 64*1024;
8214
8215 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
e7b526bb 8216 if (ret) {
3b25b31f 8217 DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
2da3b9b9 8218 goto fail_locked;
e7b526bb
CW
8219 }
8220
d9e86c0e
CW
8221 ret = i915_gem_object_put_fence(obj);
8222 if (ret) {
3b25b31f 8223 DRM_DEBUG_KMS("failed to release fence for cursor");
d9e86c0e
CW
8224 goto fail_unpin;
8225 }
8226
f343c5f6 8227 addr = i915_gem_obj_ggtt_offset(obj);
71acb5eb 8228 } else {
6eeefaf3 8229 int align = IS_I830(dev) ? 16 * 1024 : 256;
00731155 8230 ret = i915_gem_object_attach_phys(obj, align);
71acb5eb 8231 if (ret) {
3b25b31f 8232 DRM_DEBUG_KMS("failed to attach phys object\n");
7f9872e0 8233 goto fail_locked;
71acb5eb 8234 }
00731155 8235 addr = obj->phys_handle->busaddr;
3f8bc370
KH
8236 }
8237
a6c45cf0 8238 if (IS_GEN2(dev))
14b60391
JB
8239 I915_WRITE(CURSIZE, (height << 12) | width);
8240
3f8bc370 8241 finish:
3f8bc370 8242 if (intel_crtc->cursor_bo) {
00731155 8243 if (!INTEL_INFO(dev)->cursor_needs_physical)
cc98b413 8244 i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
3f8bc370 8245 }
80824003 8246
a071fa00
DV
8247 i915_gem_track_fb(intel_crtc->cursor_bo, obj,
8248 INTEL_FRONTBUFFER_CURSOR(pipe));
7f9872e0 8249 mutex_unlock(&dev->struct_mutex);
3f8bc370 8250
64f962e3
CW
8251 old_width = intel_crtc->cursor_width;
8252
3f8bc370 8253 intel_crtc->cursor_addr = addr;
05394f39 8254 intel_crtc->cursor_bo = obj;
cda4b7d3
CW
8255 intel_crtc->cursor_width = width;
8256 intel_crtc->cursor_height = height;
8257
64f962e3
CW
8258 if (intel_crtc->active) {
8259 if (old_width != width)
8260 intel_update_watermarks(crtc);
f2f5f771 8261 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
64f962e3 8262 }
3f8bc370 8263
f99d7069
DV
8264 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe));
8265
79e53945 8266 return 0;
e7b526bb 8267fail_unpin:
cc98b413 8268 i915_gem_object_unpin_from_display_plane(obj);
7f9872e0 8269fail_locked:
34b8686e 8270 mutex_unlock(&dev->struct_mutex);
bc9025bd 8271fail:
05394f39 8272 drm_gem_object_unreference_unlocked(&obj->base);
34b8686e 8273 return ret;
79e53945
JB
8274}
8275
79e53945 8276static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 8277 u16 *blue, uint32_t start, uint32_t size)
79e53945 8278{
7203425a 8279 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 8280 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8281
7203425a 8282 for (i = start; i < end; i++) {
79e53945
JB
8283 intel_crtc->lut_r[i] = red[i] >> 8;
8284 intel_crtc->lut_g[i] = green[i] >> 8;
8285 intel_crtc->lut_b[i] = blue[i] >> 8;
8286 }
8287
8288 intel_crtc_load_lut(crtc);
8289}
8290
79e53945
JB
8291/* VESA 640x480x72Hz mode to set on the pipe */
8292static struct drm_display_mode load_detect_mode = {
8293 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8294 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8295};
8296
a8bb6818
DV
8297struct drm_framebuffer *
8298__intel_framebuffer_create(struct drm_device *dev,
8299 struct drm_mode_fb_cmd2 *mode_cmd,
8300 struct drm_i915_gem_object *obj)
d2dff872
CW
8301{
8302 struct intel_framebuffer *intel_fb;
8303 int ret;
8304
8305 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8306 if (!intel_fb) {
8307 drm_gem_object_unreference_unlocked(&obj->base);
8308 return ERR_PTR(-ENOMEM);
8309 }
8310
8311 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
dd4916c5
DV
8312 if (ret)
8313 goto err;
d2dff872
CW
8314
8315 return &intel_fb->base;
dd4916c5
DV
8316err:
8317 drm_gem_object_unreference_unlocked(&obj->base);
8318 kfree(intel_fb);
8319
8320 return ERR_PTR(ret);
d2dff872
CW
8321}
8322
b5ea642a 8323static struct drm_framebuffer *
a8bb6818
DV
8324intel_framebuffer_create(struct drm_device *dev,
8325 struct drm_mode_fb_cmd2 *mode_cmd,
8326 struct drm_i915_gem_object *obj)
8327{
8328 struct drm_framebuffer *fb;
8329 int ret;
8330
8331 ret = i915_mutex_lock_interruptible(dev);
8332 if (ret)
8333 return ERR_PTR(ret);
8334 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8335 mutex_unlock(&dev->struct_mutex);
8336
8337 return fb;
8338}
8339
d2dff872
CW
8340static u32
8341intel_framebuffer_pitch_for_width(int width, int bpp)
8342{
8343 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8344 return ALIGN(pitch, 64);
8345}
8346
8347static u32
8348intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8349{
8350 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
1267a26b 8351 return PAGE_ALIGN(pitch * mode->vdisplay);
d2dff872
CW
8352}
8353
8354static struct drm_framebuffer *
8355intel_framebuffer_create_for_mode(struct drm_device *dev,
8356 struct drm_display_mode *mode,
8357 int depth, int bpp)
8358{
8359 struct drm_i915_gem_object *obj;
0fed39bd 8360 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
d2dff872
CW
8361
8362 obj = i915_gem_alloc_object(dev,
8363 intel_framebuffer_size_for_mode(mode, bpp));
8364 if (obj == NULL)
8365 return ERR_PTR(-ENOMEM);
8366
8367 mode_cmd.width = mode->hdisplay;
8368 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
8369 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8370 bpp);
5ca0c34a 8371 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872
CW
8372
8373 return intel_framebuffer_create(dev, &mode_cmd, obj);
8374}
8375
8376static struct drm_framebuffer *
8377mode_fits_in_fbdev(struct drm_device *dev,
8378 struct drm_display_mode *mode)
8379{
4520f53a 8380#ifdef CONFIG_DRM_I915_FBDEV
d2dff872
CW
8381 struct drm_i915_private *dev_priv = dev->dev_private;
8382 struct drm_i915_gem_object *obj;
8383 struct drm_framebuffer *fb;
8384
4c0e5528 8385 if (!dev_priv->fbdev)
d2dff872
CW
8386 return NULL;
8387
4c0e5528 8388 if (!dev_priv->fbdev->fb)
d2dff872
CW
8389 return NULL;
8390
4c0e5528
DV
8391 obj = dev_priv->fbdev->fb->obj;
8392 BUG_ON(!obj);
8393
8bcd4553 8394 fb = &dev_priv->fbdev->fb->base;
01f2c773
VS
8395 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8396 fb->bits_per_pixel))
d2dff872
CW
8397 return NULL;
8398
01f2c773 8399 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
8400 return NULL;
8401
8402 return fb;
4520f53a
DV
8403#else
8404 return NULL;
8405#endif
d2dff872
CW
8406}
8407
d2434ab7 8408bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 8409 struct drm_display_mode *mode,
51fd371b
RC
8410 struct intel_load_detect_pipe *old,
8411 struct drm_modeset_acquire_ctx *ctx)
79e53945
JB
8412{
8413 struct intel_crtc *intel_crtc;
d2434ab7
DV
8414 struct intel_encoder *intel_encoder =
8415 intel_attached_encoder(connector);
79e53945 8416 struct drm_crtc *possible_crtc;
4ef69c7a 8417 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
8418 struct drm_crtc *crtc = NULL;
8419 struct drm_device *dev = encoder->dev;
94352cf9 8420 struct drm_framebuffer *fb;
51fd371b
RC
8421 struct drm_mode_config *config = &dev->mode_config;
8422 int ret, i = -1;
79e53945 8423
d2dff872 8424 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8425 connector->base.id, connector->name,
8e329a03 8426 encoder->base.id, encoder->name);
d2dff872 8427
51fd371b
RC
8428 drm_modeset_acquire_init(ctx, 0);
8429
8430retry:
8431 ret = drm_modeset_lock(&config->connection_mutex, ctx);
8432 if (ret)
8433 goto fail_unlock;
6e9f798d 8434
79e53945
JB
8435 /*
8436 * Algorithm gets a little messy:
7a5e4805 8437 *
79e53945
JB
8438 * - if the connector already has an assigned crtc, use it (but make
8439 * sure it's on first)
7a5e4805 8440 *
79e53945
JB
8441 * - try to find the first unused crtc that can drive this connector,
8442 * and use that if we find one
79e53945
JB
8443 */
8444
8445 /* See if we already have a CRTC for this connector */
8446 if (encoder->crtc) {
8447 crtc = encoder->crtc;
8261b191 8448
51fd371b
RC
8449 ret = drm_modeset_lock(&crtc->mutex, ctx);
8450 if (ret)
8451 goto fail_unlock;
7b24056b 8452
24218aac 8453 old->dpms_mode = connector->dpms;
8261b191
CW
8454 old->load_detect_temp = false;
8455
8456 /* Make sure the crtc and connector are running */
24218aac
DV
8457 if (connector->dpms != DRM_MODE_DPMS_ON)
8458 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8261b191 8459
7173188d 8460 return true;
79e53945
JB
8461 }
8462
8463 /* Find an unused one (if possible) */
70e1e0ec 8464 for_each_crtc(dev, possible_crtc) {
79e53945
JB
8465 i++;
8466 if (!(encoder->possible_crtcs & (1 << i)))
8467 continue;
8468 if (!possible_crtc->enabled) {
8469 crtc = possible_crtc;
8470 break;
8471 }
79e53945
JB
8472 }
8473
8474 /*
8475 * If we didn't find an unused CRTC, don't use any.
8476 */
8477 if (!crtc) {
7173188d 8478 DRM_DEBUG_KMS("no pipe available for load-detect\n");
51fd371b 8479 goto fail_unlock;
79e53945
JB
8480 }
8481
51fd371b
RC
8482 ret = drm_modeset_lock(&crtc->mutex, ctx);
8483 if (ret)
8484 goto fail_unlock;
fc303101
DV
8485 intel_encoder->new_crtc = to_intel_crtc(crtc);
8486 to_intel_connector(connector)->new_encoder = intel_encoder;
79e53945
JB
8487
8488 intel_crtc = to_intel_crtc(crtc);
412b61d8
VS
8489 intel_crtc->new_enabled = true;
8490 intel_crtc->new_config = &intel_crtc->config;
24218aac 8491 old->dpms_mode = connector->dpms;
8261b191 8492 old->load_detect_temp = true;
d2dff872 8493 old->release_fb = NULL;
79e53945 8494
6492711d
CW
8495 if (!mode)
8496 mode = &load_detect_mode;
79e53945 8497
d2dff872
CW
8498 /* We need a framebuffer large enough to accommodate all accesses
8499 * that the plane may generate whilst we perform load detection.
8500 * We can not rely on the fbcon either being present (we get called
8501 * during its initialisation to detect all boot displays, or it may
8502 * not even exist) or that it is large enough to satisfy the
8503 * requested mode.
8504 */
94352cf9
DV
8505 fb = mode_fits_in_fbdev(dev, mode);
8506 if (fb == NULL) {
d2dff872 8507 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9
DV
8508 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8509 old->release_fb = fb;
d2dff872
CW
8510 } else
8511 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 8512 if (IS_ERR(fb)) {
d2dff872 8513 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
412b61d8 8514 goto fail;
79e53945 8515 }
79e53945 8516
c0c36b94 8517 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6492711d 8518 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
8519 if (old->release_fb)
8520 old->release_fb->funcs->destroy(old->release_fb);
412b61d8 8521 goto fail;
79e53945 8522 }
7173188d 8523
79e53945 8524 /* let the connector get through one full cycle before testing */
9d0498a2 8525 intel_wait_for_vblank(dev, intel_crtc->pipe);
7173188d 8526 return true;
412b61d8
VS
8527
8528 fail:
8529 intel_crtc->new_enabled = crtc->enabled;
8530 if (intel_crtc->new_enabled)
8531 intel_crtc->new_config = &intel_crtc->config;
8532 else
8533 intel_crtc->new_config = NULL;
51fd371b
RC
8534fail_unlock:
8535 if (ret == -EDEADLK) {
8536 drm_modeset_backoff(ctx);
8537 goto retry;
8538 }
8539
8540 drm_modeset_drop_locks(ctx);
8541 drm_modeset_acquire_fini(ctx);
6e9f798d 8542
412b61d8 8543 return false;
79e53945
JB
8544}
8545
d2434ab7 8546void intel_release_load_detect_pipe(struct drm_connector *connector,
51fd371b
RC
8547 struct intel_load_detect_pipe *old,
8548 struct drm_modeset_acquire_ctx *ctx)
79e53945 8549{
d2434ab7
DV
8550 struct intel_encoder *intel_encoder =
8551 intel_attached_encoder(connector);
4ef69c7a 8552 struct drm_encoder *encoder = &intel_encoder->base;
7b24056b 8553 struct drm_crtc *crtc = encoder->crtc;
412b61d8 8554 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8555
d2dff872 8556 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8557 connector->base.id, connector->name,
8e329a03 8558 encoder->base.id, encoder->name);
d2dff872 8559
8261b191 8560 if (old->load_detect_temp) {
fc303101
DV
8561 to_intel_connector(connector)->new_encoder = NULL;
8562 intel_encoder->new_crtc = NULL;
412b61d8
VS
8563 intel_crtc->new_enabled = false;
8564 intel_crtc->new_config = NULL;
fc303101 8565 intel_set_mode(crtc, NULL, 0, 0, NULL);
d2dff872 8566
36206361
DV
8567 if (old->release_fb) {
8568 drm_framebuffer_unregister_private(old->release_fb);
8569 drm_framebuffer_unreference(old->release_fb);
8570 }
d2dff872 8571
51fd371b 8572 goto unlock;
0622a53c 8573 return;
79e53945
JB
8574 }
8575
c751ce4f 8576 /* Switch crtc and encoder back off if necessary */
24218aac
DV
8577 if (old->dpms_mode != DRM_MODE_DPMS_ON)
8578 connector->funcs->dpms(connector, old->dpms_mode);
7b24056b 8579
51fd371b
RC
8580unlock:
8581 drm_modeset_drop_locks(ctx);
8582 drm_modeset_acquire_fini(ctx);
79e53945
JB
8583}
8584
da4a1efa
VS
8585static int i9xx_pll_refclk(struct drm_device *dev,
8586 const struct intel_crtc_config *pipe_config)
8587{
8588 struct drm_i915_private *dev_priv = dev->dev_private;
8589 u32 dpll = pipe_config->dpll_hw_state.dpll;
8590
8591 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
e91e941b 8592 return dev_priv->vbt.lvds_ssc_freq;
da4a1efa
VS
8593 else if (HAS_PCH_SPLIT(dev))
8594 return 120000;
8595 else if (!IS_GEN2(dev))
8596 return 96000;
8597 else
8598 return 48000;
8599}
8600
79e53945 8601/* Returns the clock of the currently programmed mode of the given pipe. */
f1f644dc
JB
8602static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8603 struct intel_crtc_config *pipe_config)
79e53945 8604{
f1f644dc 8605 struct drm_device *dev = crtc->base.dev;
79e53945 8606 struct drm_i915_private *dev_priv = dev->dev_private;
f1f644dc 8607 int pipe = pipe_config->cpu_transcoder;
293623f7 8608 u32 dpll = pipe_config->dpll_hw_state.dpll;
79e53945
JB
8609 u32 fp;
8610 intel_clock_t clock;
da4a1efa 8611 int refclk = i9xx_pll_refclk(dev, pipe_config);
79e53945
JB
8612
8613 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
293623f7 8614 fp = pipe_config->dpll_hw_state.fp0;
79e53945 8615 else
293623f7 8616 fp = pipe_config->dpll_hw_state.fp1;
79e53945
JB
8617
8618 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
8619 if (IS_PINEVIEW(dev)) {
8620 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8621 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
8622 } else {
8623 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8624 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8625 }
8626
a6c45cf0 8627 if (!IS_GEN2(dev)) {
f2b115e6
AJ
8628 if (IS_PINEVIEW(dev))
8629 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8630 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
8631 else
8632 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
8633 DPLL_FPA01_P1_POST_DIV_SHIFT);
8634
8635 switch (dpll & DPLL_MODE_MASK) {
8636 case DPLLB_MODE_DAC_SERIAL:
8637 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8638 5 : 10;
8639 break;
8640 case DPLLB_MODE_LVDS:
8641 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8642 7 : 14;
8643 break;
8644 default:
28c97730 8645 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945 8646 "mode\n", (int)(dpll & DPLL_MODE_MASK));
f1f644dc 8647 return;
79e53945
JB
8648 }
8649
ac58c3f0 8650 if (IS_PINEVIEW(dev))
da4a1efa 8651 pineview_clock(refclk, &clock);
ac58c3f0 8652 else
da4a1efa 8653 i9xx_clock(refclk, &clock);
79e53945 8654 } else {
0fb58223 8655 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
b1c560d1 8656 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
79e53945
JB
8657
8658 if (is_lvds) {
8659 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8660 DPLL_FPA01_P1_POST_DIV_SHIFT);
b1c560d1
VS
8661
8662 if (lvds & LVDS_CLKB_POWER_UP)
8663 clock.p2 = 7;
8664 else
8665 clock.p2 = 14;
79e53945
JB
8666 } else {
8667 if (dpll & PLL_P1_DIVIDE_BY_TWO)
8668 clock.p1 = 2;
8669 else {
8670 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8671 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8672 }
8673 if (dpll & PLL_P2_DIVIDE_BY_4)
8674 clock.p2 = 4;
8675 else
8676 clock.p2 = 2;
79e53945 8677 }
da4a1efa
VS
8678
8679 i9xx_clock(refclk, &clock);
79e53945
JB
8680 }
8681
18442d08
VS
8682 /*
8683 * This value includes pixel_multiplier. We will use
241bfc38 8684 * port_clock to compute adjusted_mode.crtc_clock in the
18442d08
VS
8685 * encoder's get_config() function.
8686 */
8687 pipe_config->port_clock = clock.dot;
f1f644dc
JB
8688}
8689
6878da05
VS
8690int intel_dotclock_calculate(int link_freq,
8691 const struct intel_link_m_n *m_n)
f1f644dc 8692{
f1f644dc
JB
8693 /*
8694 * The calculation for the data clock is:
1041a02f 8695 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
f1f644dc 8696 * But we want to avoid losing precison if possible, so:
1041a02f 8697 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
f1f644dc
JB
8698 *
8699 * and the link clock is simpler:
1041a02f 8700 * link_clock = (m * link_clock) / n
f1f644dc
JB
8701 */
8702
6878da05
VS
8703 if (!m_n->link_n)
8704 return 0;
f1f644dc 8705
6878da05
VS
8706 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8707}
f1f644dc 8708
18442d08
VS
8709static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8710 struct intel_crtc_config *pipe_config)
6878da05
VS
8711{
8712 struct drm_device *dev = crtc->base.dev;
79e53945 8713
18442d08
VS
8714 /* read out port_clock from the DPLL */
8715 i9xx_crtc_clock_get(crtc, pipe_config);
f1f644dc 8716
f1f644dc 8717 /*
18442d08 8718 * This value does not include pixel_multiplier.
241bfc38 8719 * We will check that port_clock and adjusted_mode.crtc_clock
18442d08
VS
8720 * agree once we know their relationship in the encoder's
8721 * get_config() function.
79e53945 8722 */
241bfc38 8723 pipe_config->adjusted_mode.crtc_clock =
18442d08
VS
8724 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8725 &pipe_config->fdi_m_n);
79e53945
JB
8726}
8727
8728/** Returns the currently programmed mode of the given pipe. */
8729struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8730 struct drm_crtc *crtc)
8731{
548f245b 8732 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 8733 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3b117c8f 8734 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
79e53945 8735 struct drm_display_mode *mode;
f1f644dc 8736 struct intel_crtc_config pipe_config;
fe2b8f9d
PZ
8737 int htot = I915_READ(HTOTAL(cpu_transcoder));
8738 int hsync = I915_READ(HSYNC(cpu_transcoder));
8739 int vtot = I915_READ(VTOTAL(cpu_transcoder));
8740 int vsync = I915_READ(VSYNC(cpu_transcoder));
293623f7 8741 enum pipe pipe = intel_crtc->pipe;
79e53945
JB
8742
8743 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8744 if (!mode)
8745 return NULL;
8746
f1f644dc
JB
8747 /*
8748 * Construct a pipe_config sufficient for getting the clock info
8749 * back out of crtc_clock_get.
8750 *
8751 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8752 * to use a real value here instead.
8753 */
293623f7 8754 pipe_config.cpu_transcoder = (enum transcoder) pipe;
f1f644dc 8755 pipe_config.pixel_multiplier = 1;
293623f7
VS
8756 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8757 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8758 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
f1f644dc
JB
8759 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8760
773ae034 8761 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
79e53945
JB
8762 mode->hdisplay = (htot & 0xffff) + 1;
8763 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8764 mode->hsync_start = (hsync & 0xffff) + 1;
8765 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8766 mode->vdisplay = (vtot & 0xffff) + 1;
8767 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8768 mode->vsync_start = (vsync & 0xffff) + 1;
8769 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8770
8771 drm_mode_set_name(mode);
79e53945
JB
8772
8773 return mode;
8774}
8775
cc36513c
DV
8776static void intel_increase_pllclock(struct drm_device *dev,
8777 enum pipe pipe)
652c393a 8778{
fbee40df 8779 struct drm_i915_private *dev_priv = dev->dev_private;
dbdc6479
JB
8780 int dpll_reg = DPLL(pipe);
8781 int dpll;
652c393a 8782
bad720ff 8783 if (HAS_PCH_SPLIT(dev))
652c393a
JB
8784 return;
8785
8786 if (!dev_priv->lvds_downclock_avail)
8787 return;
8788
dbdc6479 8789 dpll = I915_READ(dpll_reg);
652c393a 8790 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
44d98a61 8791 DRM_DEBUG_DRIVER("upclocking LVDS\n");
652c393a 8792
8ac5a6d5 8793 assert_panel_unlocked(dev_priv, pipe);
652c393a
JB
8794
8795 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
8796 I915_WRITE(dpll_reg, dpll);
9d0498a2 8797 intel_wait_for_vblank(dev, pipe);
dbdc6479 8798
652c393a
JB
8799 dpll = I915_READ(dpll_reg);
8800 if (dpll & DISPLAY_RATE_SELECT_FPA1)
44d98a61 8801 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
652c393a 8802 }
652c393a
JB
8803}
8804
8805static void intel_decrease_pllclock(struct drm_crtc *crtc)
8806{
8807 struct drm_device *dev = crtc->dev;
fbee40df 8808 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 8809 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
652c393a 8810
bad720ff 8811 if (HAS_PCH_SPLIT(dev))
652c393a
JB
8812 return;
8813
8814 if (!dev_priv->lvds_downclock_avail)
8815 return;
8816
8817 /*
8818 * Since this is called by a timer, we should never get here in
8819 * the manual case.
8820 */
8821 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
dc257cf1
DV
8822 int pipe = intel_crtc->pipe;
8823 int dpll_reg = DPLL(pipe);
8824 int dpll;
f6e5b160 8825
44d98a61 8826 DRM_DEBUG_DRIVER("downclocking LVDS\n");
652c393a 8827
8ac5a6d5 8828 assert_panel_unlocked(dev_priv, pipe);
652c393a 8829
dc257cf1 8830 dpll = I915_READ(dpll_reg);
652c393a
JB
8831 dpll |= DISPLAY_RATE_SELECT_FPA1;
8832 I915_WRITE(dpll_reg, dpll);
9d0498a2 8833 intel_wait_for_vblank(dev, pipe);
652c393a
JB
8834 dpll = I915_READ(dpll_reg);
8835 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
44d98a61 8836 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
652c393a
JB
8837 }
8838
8839}
8840
f047e395
CW
8841void intel_mark_busy(struct drm_device *dev)
8842{
c67a470b
PZ
8843 struct drm_i915_private *dev_priv = dev->dev_private;
8844
f62a0076
CW
8845 if (dev_priv->mm.busy)
8846 return;
8847
43694d69 8848 intel_runtime_pm_get(dev_priv);
c67a470b 8849 i915_update_gfx_val(dev_priv);
f62a0076 8850 dev_priv->mm.busy = true;
f047e395
CW
8851}
8852
8853void intel_mark_idle(struct drm_device *dev)
652c393a 8854{
c67a470b 8855 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 8856 struct drm_crtc *crtc;
652c393a 8857
f62a0076
CW
8858 if (!dev_priv->mm.busy)
8859 return;
8860
8861 dev_priv->mm.busy = false;
8862
d330a953 8863 if (!i915.powersave)
bb4cdd53 8864 goto out;
652c393a 8865
70e1e0ec 8866 for_each_crtc(dev, crtc) {
f4510a27 8867 if (!crtc->primary->fb)
652c393a
JB
8868 continue;
8869
725a5b54 8870 intel_decrease_pllclock(crtc);
652c393a 8871 }
b29c19b6 8872
3d13ef2e 8873 if (INTEL_INFO(dev)->gen >= 6)
b29c19b6 8874 gen6_rps_idle(dev->dev_private);
bb4cdd53
PZ
8875
8876out:
43694d69 8877 intel_runtime_pm_put(dev_priv);
652c393a
JB
8878}
8879
7c8f8a70 8880
f99d7069
DV
8881/**
8882 * intel_mark_fb_busy - mark given planes as busy
8883 * @dev: DRM device
8884 * @frontbuffer_bits: bits for the affected planes
8885 * @ring: optional ring for asynchronous commands
8886 *
8887 * This function gets called every time the screen contents change. It can be
8888 * used to keep e.g. the update rate at the nominal refresh rate with DRRS.
8889 */
8890static void intel_mark_fb_busy(struct drm_device *dev,
8891 unsigned frontbuffer_bits,
8892 struct intel_engine_cs *ring)
652c393a 8893{
cc36513c 8894 enum pipe pipe;
652c393a 8895
d330a953 8896 if (!i915.powersave)
acb87dfb
CW
8897 return;
8898
cc36513c 8899 for_each_pipe(pipe) {
f99d7069 8900 if (!(frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(pipe)))
c65355bb
CW
8901 continue;
8902
cc36513c 8903 intel_increase_pllclock(dev, pipe);
c65355bb
CW
8904 if (ring && intel_fbc_enabled(dev))
8905 ring->fbc_dirty = true;
652c393a
JB
8906 }
8907}
8908
f99d7069
DV
8909/**
8910 * intel_fb_obj_invalidate - invalidate frontbuffer object
8911 * @obj: GEM object to invalidate
8912 * @ring: set for asynchronous rendering
8913 *
8914 * This function gets called every time rendering on the given object starts and
8915 * frontbuffer caching (fbc, low refresh rate for DRRS, panel self refresh) must
8916 * be invalidated. If @ring is non-NULL any subsequent invalidation will be delayed
8917 * until the rendering completes or a flip on this frontbuffer plane is
8918 * scheduled.
8919 */
8920void intel_fb_obj_invalidate(struct drm_i915_gem_object *obj,
8921 struct intel_engine_cs *ring)
8922{
8923 struct drm_device *dev = obj->base.dev;
8924 struct drm_i915_private *dev_priv = dev->dev_private;
8925
8926 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
8927
8928 if (!obj->frontbuffer_bits)
8929 return;
8930
8931 if (ring) {
8932 mutex_lock(&dev_priv->fb_tracking.lock);
8933 dev_priv->fb_tracking.busy_bits
8934 |= obj->frontbuffer_bits;
8935 dev_priv->fb_tracking.flip_bits
8936 &= ~obj->frontbuffer_bits;
8937 mutex_unlock(&dev_priv->fb_tracking.lock);
8938 }
8939
8940 intel_mark_fb_busy(dev, obj->frontbuffer_bits, ring);
8941
9ca15301 8942 intel_edp_psr_invalidate(dev, obj->frontbuffer_bits);
f99d7069
DV
8943}
8944
8945/**
8946 * intel_frontbuffer_flush - flush frontbuffer
8947 * @dev: DRM device
8948 * @frontbuffer_bits: frontbuffer plane tracking bits
8949 *
8950 * This function gets called every time rendering on the given planes has
8951 * completed and frontbuffer caching can be started again. Flushes will get
8952 * delayed if they're blocked by some oustanding asynchronous rendering.
8953 *
8954 * Can be called without any locks held.
8955 */
8956void intel_frontbuffer_flush(struct drm_device *dev,
8957 unsigned frontbuffer_bits)
8958{
8959 struct drm_i915_private *dev_priv = dev->dev_private;
8960
8961 /* Delay flushing when rings are still busy.*/
8962 mutex_lock(&dev_priv->fb_tracking.lock);
8963 frontbuffer_bits &= ~dev_priv->fb_tracking.busy_bits;
8964 mutex_unlock(&dev_priv->fb_tracking.lock);
8965
8966 intel_mark_fb_busy(dev, frontbuffer_bits, NULL);
8967
9ca15301 8968 intel_edp_psr_flush(dev, frontbuffer_bits);
f99d7069
DV
8969}
8970
8971/**
8972 * intel_fb_obj_flush - flush frontbuffer object
8973 * @obj: GEM object to flush
8974 * @retire: set when retiring asynchronous rendering
8975 *
8976 * This function gets called every time rendering on the given object has
8977 * completed and frontbuffer caching can be started again. If @retire is true
8978 * then any delayed flushes will be unblocked.
8979 */
8980void intel_fb_obj_flush(struct drm_i915_gem_object *obj,
8981 bool retire)
8982{
8983 struct drm_device *dev = obj->base.dev;
8984 struct drm_i915_private *dev_priv = dev->dev_private;
8985 unsigned frontbuffer_bits;
8986
8987 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
8988
8989 if (!obj->frontbuffer_bits)
8990 return;
8991
8992 frontbuffer_bits = obj->frontbuffer_bits;
8993
8994 if (retire) {
8995 mutex_lock(&dev_priv->fb_tracking.lock);
8996 /* Filter out new bits since rendering started. */
8997 frontbuffer_bits &= dev_priv->fb_tracking.busy_bits;
8998
8999 dev_priv->fb_tracking.busy_bits &= ~frontbuffer_bits;
9000 mutex_unlock(&dev_priv->fb_tracking.lock);
9001 }
9002
9003 intel_frontbuffer_flush(dev, frontbuffer_bits);
9004}
9005
9006/**
9007 * intel_frontbuffer_flip_prepare - prepare asnychronous frontbuffer flip
9008 * @dev: DRM device
9009 * @frontbuffer_bits: frontbuffer plane tracking bits
9010 *
9011 * This function gets called after scheduling a flip on @obj. The actual
9012 * frontbuffer flushing will be delayed until completion is signalled with
9013 * intel_frontbuffer_flip_complete. If an invalidate happens in between this
9014 * flush will be cancelled.
9015 *
9016 * Can be called without any locks held.
9017 */
9018void intel_frontbuffer_flip_prepare(struct drm_device *dev,
9019 unsigned frontbuffer_bits)
9020{
9021 struct drm_i915_private *dev_priv = dev->dev_private;
9022
9023 mutex_lock(&dev_priv->fb_tracking.lock);
9024 dev_priv->fb_tracking.flip_bits
9025 |= frontbuffer_bits;
9026 mutex_unlock(&dev_priv->fb_tracking.lock);
9027}
9028
9029/**
9030 * intel_frontbuffer_flip_complete - complete asynchronous frontbuffer flush
9031 * @dev: DRM device
9032 * @frontbuffer_bits: frontbuffer plane tracking bits
9033 *
9034 * This function gets called after the flip has been latched and will complete
9035 * on the next vblank. It will execute the fush if it hasn't been cancalled yet.
9036 *
9037 * Can be called without any locks held.
9038 */
9039void intel_frontbuffer_flip_complete(struct drm_device *dev,
9040 unsigned frontbuffer_bits)
9041{
9042 struct drm_i915_private *dev_priv = dev->dev_private;
9043
9044 mutex_lock(&dev_priv->fb_tracking.lock);
9045 /* Mask any cancelled flips. */
9046 frontbuffer_bits &= dev_priv->fb_tracking.flip_bits;
9047 dev_priv->fb_tracking.flip_bits &= ~frontbuffer_bits;
9048 mutex_unlock(&dev_priv->fb_tracking.lock);
9049
9050 intel_frontbuffer_flush(dev, frontbuffer_bits);
9051}
9052
79e53945
JB
9053static void intel_crtc_destroy(struct drm_crtc *crtc)
9054{
9055 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
9056 struct drm_device *dev = crtc->dev;
9057 struct intel_unpin_work *work;
9058 unsigned long flags;
9059
9060 spin_lock_irqsave(&dev->event_lock, flags);
9061 work = intel_crtc->unpin_work;
9062 intel_crtc->unpin_work = NULL;
9063 spin_unlock_irqrestore(&dev->event_lock, flags);
9064
9065 if (work) {
9066 cancel_work_sync(&work->work);
9067 kfree(work);
9068 }
79e53945
JB
9069
9070 drm_crtc_cleanup(crtc);
67e77c5a 9071
79e53945
JB
9072 kfree(intel_crtc);
9073}
9074
6b95a207
KH
9075static void intel_unpin_work_fn(struct work_struct *__work)
9076{
9077 struct intel_unpin_work *work =
9078 container_of(__work, struct intel_unpin_work, work);
b4a98e57 9079 struct drm_device *dev = work->crtc->dev;
f99d7069 9080 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
6b95a207 9081
b4a98e57 9082 mutex_lock(&dev->struct_mutex);
1690e1eb 9083 intel_unpin_fb_obj(work->old_fb_obj);
05394f39
CW
9084 drm_gem_object_unreference(&work->pending_flip_obj->base);
9085 drm_gem_object_unreference(&work->old_fb_obj->base);
d9e86c0e 9086
b4a98e57
CW
9087 intel_update_fbc(dev);
9088 mutex_unlock(&dev->struct_mutex);
9089
f99d7069
DV
9090 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9091
b4a98e57
CW
9092 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9093 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9094
6b95a207
KH
9095 kfree(work);
9096}
9097
1afe3e9d 9098static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 9099 struct drm_crtc *crtc)
6b95a207 9100{
fbee40df 9101 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
9102 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9103 struct intel_unpin_work *work;
6b95a207
KH
9104 unsigned long flags;
9105
9106 /* Ignore early vblank irqs */
9107 if (intel_crtc == NULL)
9108 return;
9109
9110 spin_lock_irqsave(&dev->event_lock, flags);
9111 work = intel_crtc->unpin_work;
e7d841ca
CW
9112
9113 /* Ensure we don't miss a work->pending update ... */
9114 smp_rmb();
9115
9116 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
6b95a207
KH
9117 spin_unlock_irqrestore(&dev->event_lock, flags);
9118 return;
9119 }
9120
e7d841ca
CW
9121 /* and that the unpin work is consistent wrt ->pending. */
9122 smp_rmb();
9123
6b95a207 9124 intel_crtc->unpin_work = NULL;
6b95a207 9125
45a066eb
RC
9126 if (work->event)
9127 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
6b95a207 9128
87b6b101 9129 drm_crtc_vblank_put(crtc);
0af7e4df 9130
6b95a207
KH
9131 spin_unlock_irqrestore(&dev->event_lock, flags);
9132
2c10d571 9133 wake_up_all(&dev_priv->pending_flip_queue);
b4a98e57
CW
9134
9135 queue_work(dev_priv->wq, &work->work);
e5510fac
JB
9136
9137 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6b95a207
KH
9138}
9139
1afe3e9d
JB
9140void intel_finish_page_flip(struct drm_device *dev, int pipe)
9141{
fbee40df 9142 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9143 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9144
49b14a5c 9145 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9146}
9147
9148void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9149{
fbee40df 9150 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9151 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9152
49b14a5c 9153 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9154}
9155
75f7f3ec
VS
9156/* Is 'a' after or equal to 'b'? */
9157static bool g4x_flip_count_after_eq(u32 a, u32 b)
9158{
9159 return !((a - b) & 0x80000000);
9160}
9161
9162static bool page_flip_finished(struct intel_crtc *crtc)
9163{
9164 struct drm_device *dev = crtc->base.dev;
9165 struct drm_i915_private *dev_priv = dev->dev_private;
9166
9167 /*
9168 * The relevant registers doen't exist on pre-ctg.
9169 * As the flip done interrupt doesn't trigger for mmio
9170 * flips on gmch platforms, a flip count check isn't
9171 * really needed there. But since ctg has the registers,
9172 * include it in the check anyway.
9173 */
9174 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9175 return true;
9176
9177 /*
9178 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9179 * used the same base address. In that case the mmio flip might
9180 * have completed, but the CS hasn't even executed the flip yet.
9181 *
9182 * A flip count check isn't enough as the CS might have updated
9183 * the base address just after start of vblank, but before we
9184 * managed to process the interrupt. This means we'd complete the
9185 * CS flip too soon.
9186 *
9187 * Combining both checks should get us a good enough result. It may
9188 * still happen that the CS flip has been executed, but has not
9189 * yet actually completed. But in case the base address is the same
9190 * anyway, we don't really care.
9191 */
9192 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9193 crtc->unpin_work->gtt_offset &&
9194 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9195 crtc->unpin_work->flip_count);
9196}
9197
6b95a207
KH
9198void intel_prepare_page_flip(struct drm_device *dev, int plane)
9199{
fbee40df 9200 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
9201 struct intel_crtc *intel_crtc =
9202 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9203 unsigned long flags;
9204
e7d841ca
CW
9205 /* NB: An MMIO update of the plane base pointer will also
9206 * generate a page-flip completion irq, i.e. every modeset
9207 * is also accompanied by a spurious intel_prepare_page_flip().
9208 */
6b95a207 9209 spin_lock_irqsave(&dev->event_lock, flags);
75f7f3ec 9210 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
e7d841ca 9211 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
6b95a207
KH
9212 spin_unlock_irqrestore(&dev->event_lock, flags);
9213}
9214
eba905b2 9215static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
e7d841ca
CW
9216{
9217 /* Ensure that the work item is consistent when activating it ... */
9218 smp_wmb();
9219 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9220 /* and that it is marked active as soon as the irq could fire. */
9221 smp_wmb();
9222}
9223
8c9f3aaf
JB
9224static int intel_gen2_queue_flip(struct drm_device *dev,
9225 struct drm_crtc *crtc,
9226 struct drm_framebuffer *fb,
ed8d1975 9227 struct drm_i915_gem_object *obj,
a4872ba6 9228 struct intel_engine_cs *ring,
ed8d1975 9229 uint32_t flags)
8c9f3aaf 9230{
8c9f3aaf 9231 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9232 u32 flip_mask;
9233 int ret;
9234
6d90c952 9235 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9236 if (ret)
4fa62c89 9237 return ret;
8c9f3aaf
JB
9238
9239 /* Can't queue multiple flips, so wait for the previous
9240 * one to finish before executing the next.
9241 */
9242 if (intel_crtc->plane)
9243 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9244 else
9245 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9246 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9247 intel_ring_emit(ring, MI_NOOP);
9248 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9249 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9250 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9251 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952 9252 intel_ring_emit(ring, 0); /* aux display base address, unused */
e7d841ca
CW
9253
9254 intel_mark_page_flip_active(intel_crtc);
09246732 9255 __intel_ring_advance(ring);
83d4092b 9256 return 0;
8c9f3aaf
JB
9257}
9258
9259static int intel_gen3_queue_flip(struct drm_device *dev,
9260 struct drm_crtc *crtc,
9261 struct drm_framebuffer *fb,
ed8d1975 9262 struct drm_i915_gem_object *obj,
a4872ba6 9263 struct intel_engine_cs *ring,
ed8d1975 9264 uint32_t flags)
8c9f3aaf 9265{
8c9f3aaf 9266 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9267 u32 flip_mask;
9268 int ret;
9269
6d90c952 9270 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9271 if (ret)
4fa62c89 9272 return ret;
8c9f3aaf
JB
9273
9274 if (intel_crtc->plane)
9275 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9276 else
9277 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9278 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9279 intel_ring_emit(ring, MI_NOOP);
9280 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9281 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9282 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9283 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952
DV
9284 intel_ring_emit(ring, MI_NOOP);
9285
e7d841ca 9286 intel_mark_page_flip_active(intel_crtc);
09246732 9287 __intel_ring_advance(ring);
83d4092b 9288 return 0;
8c9f3aaf
JB
9289}
9290
9291static int intel_gen4_queue_flip(struct drm_device *dev,
9292 struct drm_crtc *crtc,
9293 struct drm_framebuffer *fb,
ed8d1975 9294 struct drm_i915_gem_object *obj,
a4872ba6 9295 struct intel_engine_cs *ring,
ed8d1975 9296 uint32_t flags)
8c9f3aaf
JB
9297{
9298 struct drm_i915_private *dev_priv = dev->dev_private;
9299 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9300 uint32_t pf, pipesrc;
9301 int ret;
9302
6d90c952 9303 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9304 if (ret)
4fa62c89 9305 return ret;
8c9f3aaf
JB
9306
9307 /* i965+ uses the linear or tiled offsets from the
9308 * Display Registers (which do not change across a page-flip)
9309 * so we need only reprogram the base address.
9310 */
6d90c952
DV
9311 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9312 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9313 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9314 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
c2c75131 9315 obj->tiling_mode);
8c9f3aaf
JB
9316
9317 /* XXX Enabling the panel-fitter across page-flip is so far
9318 * untested on non-native modes, so ignore it for now.
9319 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9320 */
9321 pf = 0;
9322 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9323 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9324
9325 intel_mark_page_flip_active(intel_crtc);
09246732 9326 __intel_ring_advance(ring);
83d4092b 9327 return 0;
8c9f3aaf
JB
9328}
9329
9330static int intel_gen6_queue_flip(struct drm_device *dev,
9331 struct drm_crtc *crtc,
9332 struct drm_framebuffer *fb,
ed8d1975 9333 struct drm_i915_gem_object *obj,
a4872ba6 9334 struct intel_engine_cs *ring,
ed8d1975 9335 uint32_t flags)
8c9f3aaf
JB
9336{
9337 struct drm_i915_private *dev_priv = dev->dev_private;
9338 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9339 uint32_t pf, pipesrc;
9340 int ret;
9341
6d90c952 9342 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9343 if (ret)
4fa62c89 9344 return ret;
8c9f3aaf 9345
6d90c952
DV
9346 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9347 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9348 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
75f7f3ec 9349 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
8c9f3aaf 9350
dc257cf1
DV
9351 /* Contrary to the suggestions in the documentation,
9352 * "Enable Panel Fitter" does not seem to be required when page
9353 * flipping with a non-native mode, and worse causes a normal
9354 * modeset to fail.
9355 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9356 */
9357 pf = 0;
8c9f3aaf 9358 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9359 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9360
9361 intel_mark_page_flip_active(intel_crtc);
09246732 9362 __intel_ring_advance(ring);
83d4092b 9363 return 0;
8c9f3aaf
JB
9364}
9365
7c9017e5
JB
9366static int intel_gen7_queue_flip(struct drm_device *dev,
9367 struct drm_crtc *crtc,
9368 struct drm_framebuffer *fb,
ed8d1975 9369 struct drm_i915_gem_object *obj,
a4872ba6 9370 struct intel_engine_cs *ring,
ed8d1975 9371 uint32_t flags)
7c9017e5 9372{
7c9017e5 9373 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cb05d8de 9374 uint32_t plane_bit = 0;
ffe74d75
CW
9375 int len, ret;
9376
eba905b2 9377 switch (intel_crtc->plane) {
cb05d8de
DV
9378 case PLANE_A:
9379 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9380 break;
9381 case PLANE_B:
9382 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9383 break;
9384 case PLANE_C:
9385 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9386 break;
9387 default:
9388 WARN_ONCE(1, "unknown plane in flip command\n");
4fa62c89 9389 return -ENODEV;
cb05d8de
DV
9390 }
9391
ffe74d75 9392 len = 4;
f476828a 9393 if (ring->id == RCS) {
ffe74d75 9394 len += 6;
f476828a
DL
9395 /*
9396 * On Gen 8, SRM is now taking an extra dword to accommodate
9397 * 48bits addresses, and we need a NOOP for the batch size to
9398 * stay even.
9399 */
9400 if (IS_GEN8(dev))
9401 len += 2;
9402 }
ffe74d75 9403
f66fab8e
VS
9404 /*
9405 * BSpec MI_DISPLAY_FLIP for IVB:
9406 * "The full packet must be contained within the same cache line."
9407 *
9408 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9409 * cacheline, if we ever start emitting more commands before
9410 * the MI_DISPLAY_FLIP we may need to first emit everything else,
9411 * then do the cacheline alignment, and finally emit the
9412 * MI_DISPLAY_FLIP.
9413 */
9414 ret = intel_ring_cacheline_align(ring);
9415 if (ret)
4fa62c89 9416 return ret;
f66fab8e 9417
ffe74d75 9418 ret = intel_ring_begin(ring, len);
7c9017e5 9419 if (ret)
4fa62c89 9420 return ret;
7c9017e5 9421
ffe74d75
CW
9422 /* Unmask the flip-done completion message. Note that the bspec says that
9423 * we should do this for both the BCS and RCS, and that we must not unmask
9424 * more than one flip event at any time (or ensure that one flip message
9425 * can be sent by waiting for flip-done prior to queueing new flips).
9426 * Experimentation says that BCS works despite DERRMR masking all
9427 * flip-done completion events and that unmasking all planes at once
9428 * for the RCS also doesn't appear to drop events. Setting the DERRMR
9429 * to zero does lead to lockups within MI_DISPLAY_FLIP.
9430 */
9431 if (ring->id == RCS) {
9432 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9433 intel_ring_emit(ring, DERRMR);
9434 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9435 DERRMR_PIPEB_PRI_FLIP_DONE |
9436 DERRMR_PIPEC_PRI_FLIP_DONE));
f476828a
DL
9437 if (IS_GEN8(dev))
9438 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9439 MI_SRM_LRM_GLOBAL_GTT);
9440 else
9441 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9442 MI_SRM_LRM_GLOBAL_GTT);
ffe74d75
CW
9443 intel_ring_emit(ring, DERRMR);
9444 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
f476828a
DL
9445 if (IS_GEN8(dev)) {
9446 intel_ring_emit(ring, 0);
9447 intel_ring_emit(ring, MI_NOOP);
9448 }
ffe74d75
CW
9449 }
9450
cb05d8de 9451 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
01f2c773 9452 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
75f7f3ec 9453 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
7c9017e5 9454 intel_ring_emit(ring, (MI_NOOP));
e7d841ca
CW
9455
9456 intel_mark_page_flip_active(intel_crtc);
09246732 9457 __intel_ring_advance(ring);
83d4092b 9458 return 0;
7c9017e5
JB
9459}
9460
84c33a64
SG
9461static bool use_mmio_flip(struct intel_engine_cs *ring,
9462 struct drm_i915_gem_object *obj)
9463{
9464 /*
9465 * This is not being used for older platforms, because
9466 * non-availability of flip done interrupt forces us to use
9467 * CS flips. Older platforms derive flip done using some clever
9468 * tricks involving the flip_pending status bits and vblank irqs.
9469 * So using MMIO flips there would disrupt this mechanism.
9470 */
9471
8e09bf83
CW
9472 if (ring == NULL)
9473 return true;
9474
84c33a64
SG
9475 if (INTEL_INFO(ring->dev)->gen < 5)
9476 return false;
9477
9478 if (i915.use_mmio_flip < 0)
9479 return false;
9480 else if (i915.use_mmio_flip > 0)
9481 return true;
9482 else
9483 return ring != obj->ring;
9484}
9485
9486static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9487{
9488 struct drm_device *dev = intel_crtc->base.dev;
9489 struct drm_i915_private *dev_priv = dev->dev_private;
9490 struct intel_framebuffer *intel_fb =
9491 to_intel_framebuffer(intel_crtc->base.primary->fb);
9492 struct drm_i915_gem_object *obj = intel_fb->obj;
9493 u32 dspcntr;
9494 u32 reg;
9495
9496 intel_mark_page_flip_active(intel_crtc);
9497
9498 reg = DSPCNTR(intel_crtc->plane);
9499 dspcntr = I915_READ(reg);
9500
9501 if (INTEL_INFO(dev)->gen >= 4) {
9502 if (obj->tiling_mode != I915_TILING_NONE)
9503 dspcntr |= DISPPLANE_TILED;
9504 else
9505 dspcntr &= ~DISPPLANE_TILED;
9506 }
9507 I915_WRITE(reg, dspcntr);
9508
9509 I915_WRITE(DSPSURF(intel_crtc->plane),
9510 intel_crtc->unpin_work->gtt_offset);
9511 POSTING_READ(DSPSURF(intel_crtc->plane));
9512}
9513
9514static int intel_postpone_flip(struct drm_i915_gem_object *obj)
9515{
9516 struct intel_engine_cs *ring;
9517 int ret;
9518
9519 lockdep_assert_held(&obj->base.dev->struct_mutex);
9520
9521 if (!obj->last_write_seqno)
9522 return 0;
9523
9524 ring = obj->ring;
9525
9526 if (i915_seqno_passed(ring->get_seqno(ring, true),
9527 obj->last_write_seqno))
9528 return 0;
9529
9530 ret = i915_gem_check_olr(ring, obj->last_write_seqno);
9531 if (ret)
9532 return ret;
9533
9534 if (WARN_ON(!ring->irq_get(ring)))
9535 return 0;
9536
9537 return 1;
9538}
9539
9540void intel_notify_mmio_flip(struct intel_engine_cs *ring)
9541{
9542 struct drm_i915_private *dev_priv = to_i915(ring->dev);
9543 struct intel_crtc *intel_crtc;
9544 unsigned long irq_flags;
9545 u32 seqno;
9546
9547 seqno = ring->get_seqno(ring, false);
9548
9549 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9550 for_each_intel_crtc(ring->dev, intel_crtc) {
9551 struct intel_mmio_flip *mmio_flip;
9552
9553 mmio_flip = &intel_crtc->mmio_flip;
9554 if (mmio_flip->seqno == 0)
9555 continue;
9556
9557 if (ring->id != mmio_flip->ring_id)
9558 continue;
9559
9560 if (i915_seqno_passed(seqno, mmio_flip->seqno)) {
9561 intel_do_mmio_flip(intel_crtc);
9562 mmio_flip->seqno = 0;
9563 ring->irq_put(ring);
9564 }
9565 }
9566 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9567}
9568
9569static int intel_queue_mmio_flip(struct drm_device *dev,
9570 struct drm_crtc *crtc,
9571 struct drm_framebuffer *fb,
9572 struct drm_i915_gem_object *obj,
9573 struct intel_engine_cs *ring,
9574 uint32_t flags)
9575{
9576 struct drm_i915_private *dev_priv = dev->dev_private;
9577 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9578 unsigned long irq_flags;
9579 int ret;
9580
9581 if (WARN_ON(intel_crtc->mmio_flip.seqno))
9582 return -EBUSY;
9583
9584 ret = intel_postpone_flip(obj);
9585 if (ret < 0)
9586 return ret;
9587 if (ret == 0) {
9588 intel_do_mmio_flip(intel_crtc);
9589 return 0;
9590 }
9591
9592 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9593 intel_crtc->mmio_flip.seqno = obj->last_write_seqno;
9594 intel_crtc->mmio_flip.ring_id = obj->ring->id;
9595 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9596
9597 /*
9598 * Double check to catch cases where irq fired before
9599 * mmio flip data was ready
9600 */
9601 intel_notify_mmio_flip(obj->ring);
9602 return 0;
9603}
9604
8c9f3aaf
JB
9605static int intel_default_queue_flip(struct drm_device *dev,
9606 struct drm_crtc *crtc,
9607 struct drm_framebuffer *fb,
ed8d1975 9608 struct drm_i915_gem_object *obj,
a4872ba6 9609 struct intel_engine_cs *ring,
ed8d1975 9610 uint32_t flags)
8c9f3aaf
JB
9611{
9612 return -ENODEV;
9613}
9614
6b95a207
KH
9615static int intel_crtc_page_flip(struct drm_crtc *crtc,
9616 struct drm_framebuffer *fb,
ed8d1975
KP
9617 struct drm_pending_vblank_event *event,
9618 uint32_t page_flip_flags)
6b95a207
KH
9619{
9620 struct drm_device *dev = crtc->dev;
9621 struct drm_i915_private *dev_priv = dev->dev_private;
f4510a27 9622 struct drm_framebuffer *old_fb = crtc->primary->fb;
2ff8fde1 9623 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6b95a207 9624 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 9625 enum pipe pipe = intel_crtc->pipe;
6b95a207 9626 struct intel_unpin_work *work;
a4872ba6 9627 struct intel_engine_cs *ring;
8c9f3aaf 9628 unsigned long flags;
52e68630 9629 int ret;
6b95a207 9630
2ff8fde1
MR
9631 /*
9632 * drm_mode_page_flip_ioctl() should already catch this, but double
9633 * check to be safe. In the future we may enable pageflipping from
9634 * a disabled primary plane.
9635 */
9636 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9637 return -EBUSY;
9638
e6a595d2 9639 /* Can't change pixel format via MI display flips. */
f4510a27 9640 if (fb->pixel_format != crtc->primary->fb->pixel_format)
e6a595d2
VS
9641 return -EINVAL;
9642
9643 /*
9644 * TILEOFF/LINOFF registers can't be changed via MI display flips.
9645 * Note that pitch changes could also affect these register.
9646 */
9647 if (INTEL_INFO(dev)->gen > 3 &&
f4510a27
MR
9648 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9649 fb->pitches[0] != crtc->primary->fb->pitches[0]))
e6a595d2
VS
9650 return -EINVAL;
9651
f900db47
CW
9652 if (i915_terminally_wedged(&dev_priv->gpu_error))
9653 goto out_hang;
9654
b14c5679 9655 work = kzalloc(sizeof(*work), GFP_KERNEL);
6b95a207
KH
9656 if (work == NULL)
9657 return -ENOMEM;
9658
6b95a207 9659 work->event = event;
b4a98e57 9660 work->crtc = crtc;
2ff8fde1 9661 work->old_fb_obj = intel_fb_obj(old_fb);
6b95a207
KH
9662 INIT_WORK(&work->work, intel_unpin_work_fn);
9663
87b6b101 9664 ret = drm_crtc_vblank_get(crtc);
7317c75e
JB
9665 if (ret)
9666 goto free_work;
9667
6b95a207
KH
9668 /* We borrow the event spin lock for protecting unpin_work */
9669 spin_lock_irqsave(&dev->event_lock, flags);
9670 if (intel_crtc->unpin_work) {
9671 spin_unlock_irqrestore(&dev->event_lock, flags);
9672 kfree(work);
87b6b101 9673 drm_crtc_vblank_put(crtc);
468f0b44
CW
9674
9675 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6b95a207
KH
9676 return -EBUSY;
9677 }
9678 intel_crtc->unpin_work = work;
9679 spin_unlock_irqrestore(&dev->event_lock, flags);
9680
b4a98e57
CW
9681 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9682 flush_workqueue(dev_priv->wq);
9683
79158103
CW
9684 ret = i915_mutex_lock_interruptible(dev);
9685 if (ret)
9686 goto cleanup;
6b95a207 9687
75dfca80 9688 /* Reference the objects for the scheduled work. */
05394f39
CW
9689 drm_gem_object_reference(&work->old_fb_obj->base);
9690 drm_gem_object_reference(&obj->base);
6b95a207 9691
f4510a27 9692 crtc->primary->fb = fb;
96b099fd 9693
e1f99ce6 9694 work->pending_flip_obj = obj;
e1f99ce6 9695
4e5359cd
SF
9696 work->enable_stall_check = true;
9697
b4a98e57 9698 atomic_inc(&intel_crtc->unpin_work_count);
10d83730 9699 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
e1f99ce6 9700
75f7f3ec 9701 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
a071fa00 9702 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
75f7f3ec 9703
4fa62c89
VS
9704 if (IS_VALLEYVIEW(dev)) {
9705 ring = &dev_priv->ring[BCS];
8e09bf83
CW
9706 if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
9707 /* vlv: DISPLAY_FLIP fails to change tiling */
9708 ring = NULL;
2a92d5bc
CW
9709 } else if (IS_IVYBRIDGE(dev)) {
9710 ring = &dev_priv->ring[BCS];
4fa62c89
VS
9711 } else if (INTEL_INFO(dev)->gen >= 7) {
9712 ring = obj->ring;
9713 if (ring == NULL || ring->id != RCS)
9714 ring = &dev_priv->ring[BCS];
9715 } else {
9716 ring = &dev_priv->ring[RCS];
9717 }
9718
9719 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf
JB
9720 if (ret)
9721 goto cleanup_pending;
6b95a207 9722
4fa62c89
VS
9723 work->gtt_offset =
9724 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9725
84c33a64
SG
9726 if (use_mmio_flip(ring, obj))
9727 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9728 page_flip_flags);
9729 else
9730 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
9731 page_flip_flags);
4fa62c89
VS
9732 if (ret)
9733 goto cleanup_unpin;
9734
a071fa00
DV
9735 i915_gem_track_fb(work->old_fb_obj, obj,
9736 INTEL_FRONTBUFFER_PRIMARY(pipe));
9737
7782de3b 9738 intel_disable_fbc(dev);
f99d7069 9739 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
6b95a207
KH
9740 mutex_unlock(&dev->struct_mutex);
9741
e5510fac
JB
9742 trace_i915_flip_request(intel_crtc->plane, obj);
9743
6b95a207 9744 return 0;
96b099fd 9745
4fa62c89
VS
9746cleanup_unpin:
9747 intel_unpin_fb_obj(obj);
8c9f3aaf 9748cleanup_pending:
b4a98e57 9749 atomic_dec(&intel_crtc->unpin_work_count);
f4510a27 9750 crtc->primary->fb = old_fb;
05394f39
CW
9751 drm_gem_object_unreference(&work->old_fb_obj->base);
9752 drm_gem_object_unreference(&obj->base);
96b099fd
CW
9753 mutex_unlock(&dev->struct_mutex);
9754
79158103 9755cleanup:
96b099fd
CW
9756 spin_lock_irqsave(&dev->event_lock, flags);
9757 intel_crtc->unpin_work = NULL;
9758 spin_unlock_irqrestore(&dev->event_lock, flags);
9759
87b6b101 9760 drm_crtc_vblank_put(crtc);
7317c75e 9761free_work:
96b099fd
CW
9762 kfree(work);
9763
f900db47
CW
9764 if (ret == -EIO) {
9765out_hang:
9766 intel_crtc_wait_for_pending_flips(crtc);
9767 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
9768 if (ret == 0 && event)
a071fa00 9769 drm_send_vblank_event(dev, pipe, event);
f900db47 9770 }
96b099fd 9771 return ret;
6b95a207
KH
9772}
9773
f6e5b160 9774static struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160
CW
9775 .mode_set_base_atomic = intel_pipe_set_base_atomic,
9776 .load_lut = intel_crtc_load_lut,
f6e5b160
CW
9777};
9778
9a935856
DV
9779/**
9780 * intel_modeset_update_staged_output_state
9781 *
9782 * Updates the staged output configuration state, e.g. after we've read out the
9783 * current hw state.
9784 */
9785static void intel_modeset_update_staged_output_state(struct drm_device *dev)
f6e5b160 9786{
7668851f 9787 struct intel_crtc *crtc;
9a935856
DV
9788 struct intel_encoder *encoder;
9789 struct intel_connector *connector;
f6e5b160 9790
9a935856
DV
9791 list_for_each_entry(connector, &dev->mode_config.connector_list,
9792 base.head) {
9793 connector->new_encoder =
9794 to_intel_encoder(connector->base.encoder);
9795 }
f6e5b160 9796
9a935856
DV
9797 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9798 base.head) {
9799 encoder->new_crtc =
9800 to_intel_crtc(encoder->base.crtc);
9801 }
7668851f 9802
d3fcc808 9803 for_each_intel_crtc(dev, crtc) {
7668851f 9804 crtc->new_enabled = crtc->base.enabled;
7bd0a8e7
VS
9805
9806 if (crtc->new_enabled)
9807 crtc->new_config = &crtc->config;
9808 else
9809 crtc->new_config = NULL;
7668851f 9810 }
f6e5b160
CW
9811}
9812
9a935856
DV
9813/**
9814 * intel_modeset_commit_output_state
9815 *
9816 * This function copies the stage display pipe configuration to the real one.
9817 */
9818static void intel_modeset_commit_output_state(struct drm_device *dev)
9819{
7668851f 9820 struct intel_crtc *crtc;
9a935856
DV
9821 struct intel_encoder *encoder;
9822 struct intel_connector *connector;
f6e5b160 9823
9a935856
DV
9824 list_for_each_entry(connector, &dev->mode_config.connector_list,
9825 base.head) {
9826 connector->base.encoder = &connector->new_encoder->base;
9827 }
f6e5b160 9828
9a935856
DV
9829 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9830 base.head) {
9831 encoder->base.crtc = &encoder->new_crtc->base;
9832 }
7668851f 9833
d3fcc808 9834 for_each_intel_crtc(dev, crtc) {
7668851f
VS
9835 crtc->base.enabled = crtc->new_enabled;
9836 }
9a935856
DV
9837}
9838
050f7aeb 9839static void
eba905b2 9840connected_sink_compute_bpp(struct intel_connector *connector,
050f7aeb
DV
9841 struct intel_crtc_config *pipe_config)
9842{
9843 int bpp = pipe_config->pipe_bpp;
9844
9845 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9846 connector->base.base.id,
c23cc417 9847 connector->base.name);
050f7aeb
DV
9848
9849 /* Don't use an invalid EDID bpc value */
9850 if (connector->base.display_info.bpc &&
9851 connector->base.display_info.bpc * 3 < bpp) {
9852 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9853 bpp, connector->base.display_info.bpc*3);
9854 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9855 }
9856
9857 /* Clamp bpp to 8 on screens without EDID 1.4 */
9858 if (connector->base.display_info.bpc == 0 && bpp > 24) {
9859 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9860 bpp);
9861 pipe_config->pipe_bpp = 24;
9862 }
9863}
9864
4e53c2e0 9865static int
050f7aeb
DV
9866compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9867 struct drm_framebuffer *fb,
9868 struct intel_crtc_config *pipe_config)
4e53c2e0 9869{
050f7aeb
DV
9870 struct drm_device *dev = crtc->base.dev;
9871 struct intel_connector *connector;
4e53c2e0
DV
9872 int bpp;
9873
d42264b1
DV
9874 switch (fb->pixel_format) {
9875 case DRM_FORMAT_C8:
4e53c2e0
DV
9876 bpp = 8*3; /* since we go through a colormap */
9877 break;
d42264b1
DV
9878 case DRM_FORMAT_XRGB1555:
9879 case DRM_FORMAT_ARGB1555:
9880 /* checked in intel_framebuffer_init already */
9881 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
9882 return -EINVAL;
9883 case DRM_FORMAT_RGB565:
4e53c2e0
DV
9884 bpp = 6*3; /* min is 18bpp */
9885 break;
d42264b1
DV
9886 case DRM_FORMAT_XBGR8888:
9887 case DRM_FORMAT_ABGR8888:
9888 /* checked in intel_framebuffer_init already */
9889 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9890 return -EINVAL;
9891 case DRM_FORMAT_XRGB8888:
9892 case DRM_FORMAT_ARGB8888:
4e53c2e0
DV
9893 bpp = 8*3;
9894 break;
d42264b1
DV
9895 case DRM_FORMAT_XRGB2101010:
9896 case DRM_FORMAT_ARGB2101010:
9897 case DRM_FORMAT_XBGR2101010:
9898 case DRM_FORMAT_ABGR2101010:
9899 /* checked in intel_framebuffer_init already */
9900 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
baba133a 9901 return -EINVAL;
4e53c2e0
DV
9902 bpp = 10*3;
9903 break;
baba133a 9904 /* TODO: gen4+ supports 16 bpc floating point, too. */
4e53c2e0
DV
9905 default:
9906 DRM_DEBUG_KMS("unsupported depth\n");
9907 return -EINVAL;
9908 }
9909
4e53c2e0
DV
9910 pipe_config->pipe_bpp = bpp;
9911
9912 /* Clamp display bpp to EDID value */
9913 list_for_each_entry(connector, &dev->mode_config.connector_list,
050f7aeb 9914 base.head) {
1b829e05
DV
9915 if (!connector->new_encoder ||
9916 connector->new_encoder->new_crtc != crtc)
4e53c2e0
DV
9917 continue;
9918
050f7aeb 9919 connected_sink_compute_bpp(connector, pipe_config);
4e53c2e0
DV
9920 }
9921
9922 return bpp;
9923}
9924
644db711
DV
9925static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
9926{
9927 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
9928 "type: 0x%x flags: 0x%x\n",
1342830c 9929 mode->crtc_clock,
644db711
DV
9930 mode->crtc_hdisplay, mode->crtc_hsync_start,
9931 mode->crtc_hsync_end, mode->crtc_htotal,
9932 mode->crtc_vdisplay, mode->crtc_vsync_start,
9933 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
9934}
9935
c0b03411
DV
9936static void intel_dump_pipe_config(struct intel_crtc *crtc,
9937 struct intel_crtc_config *pipe_config,
9938 const char *context)
9939{
9940 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
9941 context, pipe_name(crtc->pipe));
9942
9943 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
9944 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
9945 pipe_config->pipe_bpp, pipe_config->dither);
9946 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9947 pipe_config->has_pch_encoder,
9948 pipe_config->fdi_lanes,
9949 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
9950 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
9951 pipe_config->fdi_m_n.tu);
eb14cb74
VS
9952 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9953 pipe_config->has_dp_encoder,
9954 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
9955 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
9956 pipe_config->dp_m_n.tu);
c0b03411
DV
9957 DRM_DEBUG_KMS("requested mode:\n");
9958 drm_mode_debug_printmodeline(&pipe_config->requested_mode);
9959 DRM_DEBUG_KMS("adjusted mode:\n");
9960 drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
644db711 9961 intel_dump_crtc_timings(&pipe_config->adjusted_mode);
d71b8d4a 9962 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
37327abd
VS
9963 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
9964 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
c0b03411
DV
9965 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
9966 pipe_config->gmch_pfit.control,
9967 pipe_config->gmch_pfit.pgm_ratios,
9968 pipe_config->gmch_pfit.lvds_border_bits);
fd4daa9c 9969 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
c0b03411 9970 pipe_config->pch_pfit.pos,
fd4daa9c
CW
9971 pipe_config->pch_pfit.size,
9972 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
42db64ef 9973 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
cf532bb2 9974 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
c0b03411
DV
9975}
9976
bc079e8b
VS
9977static bool encoders_cloneable(const struct intel_encoder *a,
9978 const struct intel_encoder *b)
accfc0c5 9979{
bc079e8b
VS
9980 /* masks could be asymmetric, so check both ways */
9981 return a == b || (a->cloneable & (1 << b->type) &&
9982 b->cloneable & (1 << a->type));
9983}
9984
9985static bool check_single_encoder_cloning(struct intel_crtc *crtc,
9986 struct intel_encoder *encoder)
9987{
9988 struct drm_device *dev = crtc->base.dev;
9989 struct intel_encoder *source_encoder;
9990
9991 list_for_each_entry(source_encoder,
9992 &dev->mode_config.encoder_list, base.head) {
9993 if (source_encoder->new_crtc != crtc)
9994 continue;
9995
9996 if (!encoders_cloneable(encoder, source_encoder))
9997 return false;
9998 }
9999
10000 return true;
10001}
10002
10003static bool check_encoder_cloning(struct intel_crtc *crtc)
10004{
10005 struct drm_device *dev = crtc->base.dev;
accfc0c5
DV
10006 struct intel_encoder *encoder;
10007
bc079e8b
VS
10008 list_for_each_entry(encoder,
10009 &dev->mode_config.encoder_list, base.head) {
10010 if (encoder->new_crtc != crtc)
accfc0c5
DV
10011 continue;
10012
bc079e8b
VS
10013 if (!check_single_encoder_cloning(crtc, encoder))
10014 return false;
accfc0c5
DV
10015 }
10016
bc079e8b 10017 return true;
accfc0c5
DV
10018}
10019
b8cecdf5
DV
10020static struct intel_crtc_config *
10021intel_modeset_pipe_config(struct drm_crtc *crtc,
4e53c2e0 10022 struct drm_framebuffer *fb,
b8cecdf5 10023 struct drm_display_mode *mode)
ee7b9f93 10024{
7758a113 10025 struct drm_device *dev = crtc->dev;
7758a113 10026 struct intel_encoder *encoder;
b8cecdf5 10027 struct intel_crtc_config *pipe_config;
e29c22c0
DV
10028 int plane_bpp, ret = -EINVAL;
10029 bool retry = true;
ee7b9f93 10030
bc079e8b 10031 if (!check_encoder_cloning(to_intel_crtc(crtc))) {
accfc0c5
DV
10032 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10033 return ERR_PTR(-EINVAL);
10034 }
10035
b8cecdf5
DV
10036 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10037 if (!pipe_config)
7758a113
DV
10038 return ERR_PTR(-ENOMEM);
10039
b8cecdf5
DV
10040 drm_mode_copy(&pipe_config->adjusted_mode, mode);
10041 drm_mode_copy(&pipe_config->requested_mode, mode);
37327abd 10042
e143a21c
DV
10043 pipe_config->cpu_transcoder =
10044 (enum transcoder) to_intel_crtc(crtc)->pipe;
c0d43d62 10045 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
b8cecdf5 10046
2960bc9c
ID
10047 /*
10048 * Sanitize sync polarity flags based on requested ones. If neither
10049 * positive or negative polarity is requested, treat this as meaning
10050 * negative polarity.
10051 */
10052 if (!(pipe_config->adjusted_mode.flags &
10053 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10054 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10055
10056 if (!(pipe_config->adjusted_mode.flags &
10057 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10058 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10059
050f7aeb
DV
10060 /* Compute a starting value for pipe_config->pipe_bpp taking the source
10061 * plane pixel format and any sink constraints into account. Returns the
10062 * source plane bpp so that dithering can be selected on mismatches
10063 * after encoders and crtc also have had their say. */
10064 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10065 fb, pipe_config);
4e53c2e0
DV
10066 if (plane_bpp < 0)
10067 goto fail;
10068
e41a56be
VS
10069 /*
10070 * Determine the real pipe dimensions. Note that stereo modes can
10071 * increase the actual pipe size due to the frame doubling and
10072 * insertion of additional space for blanks between the frame. This
10073 * is stored in the crtc timings. We use the requested mode to do this
10074 * computation to clearly distinguish it from the adjusted mode, which
10075 * can be changed by the connectors in the below retry loop.
10076 */
10077 drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
10078 pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
10079 pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
10080
e29c22c0 10081encoder_retry:
ef1b460d 10082 /* Ensure the port clock defaults are reset when retrying. */
ff9a6750 10083 pipe_config->port_clock = 0;
ef1b460d 10084 pipe_config->pixel_multiplier = 1;
ff9a6750 10085
135c81b8 10086 /* Fill in default crtc timings, allow encoders to overwrite them. */
6ce70f5e 10087 drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
135c81b8 10088
7758a113
DV
10089 /* Pass our mode to the connectors and the CRTC to give them a chance to
10090 * adjust it according to limitations or connector properties, and also
10091 * a chance to reject the mode entirely.
47f1c6c9 10092 */
7758a113
DV
10093 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10094 base.head) {
47f1c6c9 10095
7758a113
DV
10096 if (&encoder->new_crtc->base != crtc)
10097 continue;
7ae89233 10098
efea6e8e
DV
10099 if (!(encoder->compute_config(encoder, pipe_config))) {
10100 DRM_DEBUG_KMS("Encoder config failure\n");
7758a113
DV
10101 goto fail;
10102 }
ee7b9f93 10103 }
47f1c6c9 10104
ff9a6750
DV
10105 /* Set default port clock if not overwritten by the encoder. Needs to be
10106 * done afterwards in case the encoder adjusts the mode. */
10107 if (!pipe_config->port_clock)
241bfc38
DL
10108 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
10109 * pipe_config->pixel_multiplier;
ff9a6750 10110
a43f6e0f 10111 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
e29c22c0 10112 if (ret < 0) {
7758a113
DV
10113 DRM_DEBUG_KMS("CRTC fixup failed\n");
10114 goto fail;
ee7b9f93 10115 }
e29c22c0
DV
10116
10117 if (ret == RETRY) {
10118 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10119 ret = -EINVAL;
10120 goto fail;
10121 }
10122
10123 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10124 retry = false;
10125 goto encoder_retry;
10126 }
10127
4e53c2e0
DV
10128 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10129 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10130 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10131
b8cecdf5 10132 return pipe_config;
7758a113 10133fail:
b8cecdf5 10134 kfree(pipe_config);
e29c22c0 10135 return ERR_PTR(ret);
ee7b9f93 10136}
47f1c6c9 10137
e2e1ed41
DV
10138/* Computes which crtcs are affected and sets the relevant bits in the mask. For
10139 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10140static void
10141intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10142 unsigned *prepare_pipes, unsigned *disable_pipes)
79e53945
JB
10143{
10144 struct intel_crtc *intel_crtc;
e2e1ed41
DV
10145 struct drm_device *dev = crtc->dev;
10146 struct intel_encoder *encoder;
10147 struct intel_connector *connector;
10148 struct drm_crtc *tmp_crtc;
79e53945 10149
e2e1ed41 10150 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
79e53945 10151
e2e1ed41
DV
10152 /* Check which crtcs have changed outputs connected to them, these need
10153 * to be part of the prepare_pipes mask. We don't (yet) support global
10154 * modeset across multiple crtcs, so modeset_pipes will only have one
10155 * bit set at most. */
10156 list_for_each_entry(connector, &dev->mode_config.connector_list,
10157 base.head) {
10158 if (connector->base.encoder == &connector->new_encoder->base)
10159 continue;
79e53945 10160
e2e1ed41
DV
10161 if (connector->base.encoder) {
10162 tmp_crtc = connector->base.encoder->crtc;
10163
10164 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10165 }
10166
10167 if (connector->new_encoder)
10168 *prepare_pipes |=
10169 1 << connector->new_encoder->new_crtc->pipe;
79e53945
JB
10170 }
10171
e2e1ed41
DV
10172 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10173 base.head) {
10174 if (encoder->base.crtc == &encoder->new_crtc->base)
10175 continue;
10176
10177 if (encoder->base.crtc) {
10178 tmp_crtc = encoder->base.crtc;
10179
10180 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10181 }
10182
10183 if (encoder->new_crtc)
10184 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
80824003
JB
10185 }
10186
7668851f 10187 /* Check for pipes that will be enabled/disabled ... */
d3fcc808 10188 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10189 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
e2e1ed41 10190 continue;
7e7d76c3 10191
7668851f 10192 if (!intel_crtc->new_enabled)
e2e1ed41 10193 *disable_pipes |= 1 << intel_crtc->pipe;
7668851f
VS
10194 else
10195 *prepare_pipes |= 1 << intel_crtc->pipe;
7e7d76c3
JB
10196 }
10197
e2e1ed41
DV
10198
10199 /* set_mode is also used to update properties on life display pipes. */
10200 intel_crtc = to_intel_crtc(crtc);
7668851f 10201 if (intel_crtc->new_enabled)
e2e1ed41
DV
10202 *prepare_pipes |= 1 << intel_crtc->pipe;
10203
b6c5164d
DV
10204 /*
10205 * For simplicity do a full modeset on any pipe where the output routing
10206 * changed. We could be more clever, but that would require us to be
10207 * more careful with calling the relevant encoder->mode_set functions.
10208 */
e2e1ed41
DV
10209 if (*prepare_pipes)
10210 *modeset_pipes = *prepare_pipes;
10211
10212 /* ... and mask these out. */
10213 *modeset_pipes &= ~(*disable_pipes);
10214 *prepare_pipes &= ~(*disable_pipes);
b6c5164d
DV
10215
10216 /*
10217 * HACK: We don't (yet) fully support global modesets. intel_set_config
10218 * obies this rule, but the modeset restore mode of
10219 * intel_modeset_setup_hw_state does not.
10220 */
10221 *modeset_pipes &= 1 << intel_crtc->pipe;
10222 *prepare_pipes &= 1 << intel_crtc->pipe;
e3641d3f
DV
10223
10224 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10225 *modeset_pipes, *prepare_pipes, *disable_pipes);
47f1c6c9 10226}
79e53945 10227
ea9d758d 10228static bool intel_crtc_in_use(struct drm_crtc *crtc)
f6e5b160 10229{
ea9d758d 10230 struct drm_encoder *encoder;
f6e5b160 10231 struct drm_device *dev = crtc->dev;
f6e5b160 10232
ea9d758d
DV
10233 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10234 if (encoder->crtc == crtc)
10235 return true;
10236
10237 return false;
10238}
10239
10240static void
10241intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10242{
10243 struct intel_encoder *intel_encoder;
10244 struct intel_crtc *intel_crtc;
10245 struct drm_connector *connector;
10246
10247 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
10248 base.head) {
10249 if (!intel_encoder->base.crtc)
10250 continue;
10251
10252 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10253
10254 if (prepare_pipes & (1 << intel_crtc->pipe))
10255 intel_encoder->connectors_active = false;
10256 }
10257
10258 intel_modeset_commit_output_state(dev);
10259
7668851f 10260 /* Double check state. */
d3fcc808 10261 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10262 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
7bd0a8e7
VS
10263 WARN_ON(intel_crtc->new_config &&
10264 intel_crtc->new_config != &intel_crtc->config);
10265 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
ea9d758d
DV
10266 }
10267
10268 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10269 if (!connector->encoder || !connector->encoder->crtc)
10270 continue;
10271
10272 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10273
10274 if (prepare_pipes & (1 << intel_crtc->pipe)) {
68d34720
DV
10275 struct drm_property *dpms_property =
10276 dev->mode_config.dpms_property;
10277
ea9d758d 10278 connector->dpms = DRM_MODE_DPMS_ON;
662595df 10279 drm_object_property_set_value(&connector->base,
68d34720
DV
10280 dpms_property,
10281 DRM_MODE_DPMS_ON);
ea9d758d
DV
10282
10283 intel_encoder = to_intel_encoder(connector->encoder);
10284 intel_encoder->connectors_active = true;
10285 }
10286 }
10287
10288}
10289
3bd26263 10290static bool intel_fuzzy_clock_check(int clock1, int clock2)
f1f644dc 10291{
3bd26263 10292 int diff;
f1f644dc
JB
10293
10294 if (clock1 == clock2)
10295 return true;
10296
10297 if (!clock1 || !clock2)
10298 return false;
10299
10300 diff = abs(clock1 - clock2);
10301
10302 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10303 return true;
10304
10305 return false;
10306}
10307
25c5b266
DV
10308#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10309 list_for_each_entry((intel_crtc), \
10310 &(dev)->mode_config.crtc_list, \
10311 base.head) \
0973f18f 10312 if (mask & (1 <<(intel_crtc)->pipe))
25c5b266 10313
0e8ffe1b 10314static bool
2fa2fe9a
DV
10315intel_pipe_config_compare(struct drm_device *dev,
10316 struct intel_crtc_config *current_config,
0e8ffe1b
DV
10317 struct intel_crtc_config *pipe_config)
10318{
66e985c0
DV
10319#define PIPE_CONF_CHECK_X(name) \
10320 if (current_config->name != pipe_config->name) { \
10321 DRM_ERROR("mismatch in " #name " " \
10322 "(expected 0x%08x, found 0x%08x)\n", \
10323 current_config->name, \
10324 pipe_config->name); \
10325 return false; \
10326 }
10327
08a24034
DV
10328#define PIPE_CONF_CHECK_I(name) \
10329 if (current_config->name != pipe_config->name) { \
10330 DRM_ERROR("mismatch in " #name " " \
10331 "(expected %i, found %i)\n", \
10332 current_config->name, \
10333 pipe_config->name); \
10334 return false; \
88adfff1
DV
10335 }
10336
1bd1bd80
DV
10337#define PIPE_CONF_CHECK_FLAGS(name, mask) \
10338 if ((current_config->name ^ pipe_config->name) & (mask)) { \
6f02488e 10339 DRM_ERROR("mismatch in " #name "(" #mask ") " \
1bd1bd80
DV
10340 "(expected %i, found %i)\n", \
10341 current_config->name & (mask), \
10342 pipe_config->name & (mask)); \
10343 return false; \
10344 }
10345
5e550656
VS
10346#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10347 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10348 DRM_ERROR("mismatch in " #name " " \
10349 "(expected %i, found %i)\n", \
10350 current_config->name, \
10351 pipe_config->name); \
10352 return false; \
10353 }
10354
bb760063
DV
10355#define PIPE_CONF_QUIRK(quirk) \
10356 ((current_config->quirks | pipe_config->quirks) & (quirk))
10357
eccb140b
DV
10358 PIPE_CONF_CHECK_I(cpu_transcoder);
10359
08a24034
DV
10360 PIPE_CONF_CHECK_I(has_pch_encoder);
10361 PIPE_CONF_CHECK_I(fdi_lanes);
72419203
DV
10362 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10363 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10364 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10365 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10366 PIPE_CONF_CHECK_I(fdi_m_n.tu);
08a24034 10367
eb14cb74
VS
10368 PIPE_CONF_CHECK_I(has_dp_encoder);
10369 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10370 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10371 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10372 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10373 PIPE_CONF_CHECK_I(dp_m_n.tu);
10374
1bd1bd80
DV
10375 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
10376 PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
10377 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
10378 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
10379 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
10380 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
10381
10382 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
10383 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
10384 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
10385 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
10386 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
10387 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
10388
c93f54cf 10389 PIPE_CONF_CHECK_I(pixel_multiplier);
6897b4b5 10390 PIPE_CONF_CHECK_I(has_hdmi_sink);
b5a9fa09
DV
10391 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10392 IS_VALLEYVIEW(dev))
10393 PIPE_CONF_CHECK_I(limited_color_range);
6c49f241 10394
9ed109a7
DV
10395 PIPE_CONF_CHECK_I(has_audio);
10396
1bd1bd80
DV
10397 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10398 DRM_MODE_FLAG_INTERLACE);
10399
bb760063
DV
10400 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10401 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10402 DRM_MODE_FLAG_PHSYNC);
10403 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10404 DRM_MODE_FLAG_NHSYNC);
10405 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10406 DRM_MODE_FLAG_PVSYNC);
10407 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10408 DRM_MODE_FLAG_NVSYNC);
10409 }
045ac3b5 10410
37327abd
VS
10411 PIPE_CONF_CHECK_I(pipe_src_w);
10412 PIPE_CONF_CHECK_I(pipe_src_h);
1bd1bd80 10413
9953599b
DV
10414 /*
10415 * FIXME: BIOS likes to set up a cloned config with lvds+external
10416 * screen. Since we don't yet re-compute the pipe config when moving
10417 * just the lvds port away to another pipe the sw tracking won't match.
10418 *
10419 * Proper atomic modesets with recomputed global state will fix this.
10420 * Until then just don't check gmch state for inherited modes.
10421 */
10422 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10423 PIPE_CONF_CHECK_I(gmch_pfit.control);
10424 /* pfit ratios are autocomputed by the hw on gen4+ */
10425 if (INTEL_INFO(dev)->gen < 4)
10426 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10427 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10428 }
10429
fd4daa9c
CW
10430 PIPE_CONF_CHECK_I(pch_pfit.enabled);
10431 if (current_config->pch_pfit.enabled) {
10432 PIPE_CONF_CHECK_I(pch_pfit.pos);
10433 PIPE_CONF_CHECK_I(pch_pfit.size);
10434 }
2fa2fe9a 10435
e59150dc
JB
10436 /* BDW+ don't expose a synchronous way to read the state */
10437 if (IS_HASWELL(dev))
10438 PIPE_CONF_CHECK_I(ips_enabled);
42db64ef 10439
282740f7
VS
10440 PIPE_CONF_CHECK_I(double_wide);
10441
26804afd
DV
10442 PIPE_CONF_CHECK_X(ddi_pll_sel);
10443
c0d43d62 10444 PIPE_CONF_CHECK_I(shared_dpll);
66e985c0 10445 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8bcc2795 10446 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
66e985c0
DV
10447 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10448 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
d452c5b6 10449 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
c0d43d62 10450
42571aef
VS
10451 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10452 PIPE_CONF_CHECK_I(pipe_bpp);
10453
a9a7e98a
JB
10454 PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10455 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
5e550656 10456
66e985c0 10457#undef PIPE_CONF_CHECK_X
08a24034 10458#undef PIPE_CONF_CHECK_I
1bd1bd80 10459#undef PIPE_CONF_CHECK_FLAGS
5e550656 10460#undef PIPE_CONF_CHECK_CLOCK_FUZZY
bb760063 10461#undef PIPE_CONF_QUIRK
88adfff1 10462
0e8ffe1b
DV
10463 return true;
10464}
10465
91d1b4bd
DV
10466static void
10467check_connector_state(struct drm_device *dev)
8af6cf88 10468{
8af6cf88
DV
10469 struct intel_connector *connector;
10470
10471 list_for_each_entry(connector, &dev->mode_config.connector_list,
10472 base.head) {
10473 /* This also checks the encoder/connector hw state with the
10474 * ->get_hw_state callbacks. */
10475 intel_connector_check_state(connector);
10476
10477 WARN(&connector->new_encoder->base != connector->base.encoder,
10478 "connector's staged encoder doesn't match current encoder\n");
10479 }
91d1b4bd
DV
10480}
10481
10482static void
10483check_encoder_state(struct drm_device *dev)
10484{
10485 struct intel_encoder *encoder;
10486 struct intel_connector *connector;
8af6cf88
DV
10487
10488 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10489 base.head) {
10490 bool enabled = false;
10491 bool active = false;
10492 enum pipe pipe, tracked_pipe;
10493
10494 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10495 encoder->base.base.id,
8e329a03 10496 encoder->base.name);
8af6cf88
DV
10497
10498 WARN(&encoder->new_crtc->base != encoder->base.crtc,
10499 "encoder's stage crtc doesn't match current crtc\n");
10500 WARN(encoder->connectors_active && !encoder->base.crtc,
10501 "encoder's active_connectors set, but no crtc\n");
10502
10503 list_for_each_entry(connector, &dev->mode_config.connector_list,
10504 base.head) {
10505 if (connector->base.encoder != &encoder->base)
10506 continue;
10507 enabled = true;
10508 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10509 active = true;
10510 }
10511 WARN(!!encoder->base.crtc != enabled,
10512 "encoder's enabled state mismatch "
10513 "(expected %i, found %i)\n",
10514 !!encoder->base.crtc, enabled);
10515 WARN(active && !encoder->base.crtc,
10516 "active encoder with no crtc\n");
10517
10518 WARN(encoder->connectors_active != active,
10519 "encoder's computed active state doesn't match tracked active state "
10520 "(expected %i, found %i)\n", active, encoder->connectors_active);
10521
10522 active = encoder->get_hw_state(encoder, &pipe);
10523 WARN(active != encoder->connectors_active,
10524 "encoder's hw state doesn't match sw tracking "
10525 "(expected %i, found %i)\n",
10526 encoder->connectors_active, active);
10527
10528 if (!encoder->base.crtc)
10529 continue;
10530
10531 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10532 WARN(active && pipe != tracked_pipe,
10533 "active encoder's pipe doesn't match"
10534 "(expected %i, found %i)\n",
10535 tracked_pipe, pipe);
10536
10537 }
91d1b4bd
DV
10538}
10539
10540static void
10541check_crtc_state(struct drm_device *dev)
10542{
fbee40df 10543 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10544 struct intel_crtc *crtc;
10545 struct intel_encoder *encoder;
10546 struct intel_crtc_config pipe_config;
8af6cf88 10547
d3fcc808 10548 for_each_intel_crtc(dev, crtc) {
8af6cf88
DV
10549 bool enabled = false;
10550 bool active = false;
10551
045ac3b5
JB
10552 memset(&pipe_config, 0, sizeof(pipe_config));
10553
8af6cf88
DV
10554 DRM_DEBUG_KMS("[CRTC:%d]\n",
10555 crtc->base.base.id);
10556
10557 WARN(crtc->active && !crtc->base.enabled,
10558 "active crtc, but not enabled in sw tracking\n");
10559
10560 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10561 base.head) {
10562 if (encoder->base.crtc != &crtc->base)
10563 continue;
10564 enabled = true;
10565 if (encoder->connectors_active)
10566 active = true;
10567 }
6c49f241 10568
8af6cf88
DV
10569 WARN(active != crtc->active,
10570 "crtc's computed active state doesn't match tracked active state "
10571 "(expected %i, found %i)\n", active, crtc->active);
10572 WARN(enabled != crtc->base.enabled,
10573 "crtc's computed enabled state doesn't match tracked enabled state "
10574 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10575
0e8ffe1b
DV
10576 active = dev_priv->display.get_pipe_config(crtc,
10577 &pipe_config);
d62cf62a
DV
10578
10579 /* hw state is inconsistent with the pipe A quirk */
10580 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
10581 active = crtc->active;
10582
6c49f241
DV
10583 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10584 base.head) {
3eaba51c 10585 enum pipe pipe;
6c49f241
DV
10586 if (encoder->base.crtc != &crtc->base)
10587 continue;
1d37b689 10588 if (encoder->get_hw_state(encoder, &pipe))
6c49f241
DV
10589 encoder->get_config(encoder, &pipe_config);
10590 }
10591
0e8ffe1b
DV
10592 WARN(crtc->active != active,
10593 "crtc active state doesn't match with hw state "
10594 "(expected %i, found %i)\n", crtc->active, active);
10595
c0b03411
DV
10596 if (active &&
10597 !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10598 WARN(1, "pipe state doesn't match!\n");
10599 intel_dump_pipe_config(crtc, &pipe_config,
10600 "[hw state]");
10601 intel_dump_pipe_config(crtc, &crtc->config,
10602 "[sw state]");
10603 }
8af6cf88
DV
10604 }
10605}
10606
91d1b4bd
DV
10607static void
10608check_shared_dpll_state(struct drm_device *dev)
10609{
fbee40df 10610 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10611 struct intel_crtc *crtc;
10612 struct intel_dpll_hw_state dpll_hw_state;
10613 int i;
5358901f
DV
10614
10615 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10616 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10617 int enabled_crtcs = 0, active_crtcs = 0;
10618 bool active;
10619
10620 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10621
10622 DRM_DEBUG_KMS("%s\n", pll->name);
10623
10624 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10625
10626 WARN(pll->active > pll->refcount,
10627 "more active pll users than references: %i vs %i\n",
10628 pll->active, pll->refcount);
10629 WARN(pll->active && !pll->on,
10630 "pll in active use but not on in sw tracking\n");
35c95375
DV
10631 WARN(pll->on && !pll->active,
10632 "pll in on but not on in use in sw tracking\n");
5358901f
DV
10633 WARN(pll->on != active,
10634 "pll on state mismatch (expected %i, found %i)\n",
10635 pll->on, active);
10636
d3fcc808 10637 for_each_intel_crtc(dev, crtc) {
5358901f
DV
10638 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10639 enabled_crtcs++;
10640 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10641 active_crtcs++;
10642 }
10643 WARN(pll->active != active_crtcs,
10644 "pll active crtcs mismatch (expected %i, found %i)\n",
10645 pll->active, active_crtcs);
10646 WARN(pll->refcount != enabled_crtcs,
10647 "pll enabled crtcs mismatch (expected %i, found %i)\n",
10648 pll->refcount, enabled_crtcs);
66e985c0
DV
10649
10650 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
10651 sizeof(dpll_hw_state)),
10652 "pll hw state mismatch\n");
5358901f 10653 }
8af6cf88
DV
10654}
10655
91d1b4bd
DV
10656void
10657intel_modeset_check_state(struct drm_device *dev)
10658{
10659 check_connector_state(dev);
10660 check_encoder_state(dev);
10661 check_crtc_state(dev);
10662 check_shared_dpll_state(dev);
10663}
10664
18442d08
VS
10665void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
10666 int dotclock)
10667{
10668 /*
10669 * FDI already provided one idea for the dotclock.
10670 * Yell if the encoder disagrees.
10671 */
241bfc38 10672 WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
18442d08 10673 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
241bfc38 10674 pipe_config->adjusted_mode.crtc_clock, dotclock);
18442d08
VS
10675}
10676
80715b2f
VS
10677static void update_scanline_offset(struct intel_crtc *crtc)
10678{
10679 struct drm_device *dev = crtc->base.dev;
10680
10681 /*
10682 * The scanline counter increments at the leading edge of hsync.
10683 *
10684 * On most platforms it starts counting from vtotal-1 on the
10685 * first active line. That means the scanline counter value is
10686 * always one less than what we would expect. Ie. just after
10687 * start of vblank, which also occurs at start of hsync (on the
10688 * last active line), the scanline counter will read vblank_start-1.
10689 *
10690 * On gen2 the scanline counter starts counting from 1 instead
10691 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
10692 * to keep the value positive), instead of adding one.
10693 *
10694 * On HSW+ the behaviour of the scanline counter depends on the output
10695 * type. For DP ports it behaves like most other platforms, but on HDMI
10696 * there's an extra 1 line difference. So we need to add two instead of
10697 * one to the value.
10698 */
10699 if (IS_GEN2(dev)) {
10700 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
10701 int vtotal;
10702
10703 vtotal = mode->crtc_vtotal;
10704 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
10705 vtotal /= 2;
10706
10707 crtc->scanline_offset = vtotal - 1;
10708 } else if (HAS_DDI(dev) &&
10709 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI)) {
10710 crtc->scanline_offset = 2;
10711 } else
10712 crtc->scanline_offset = 1;
10713}
10714
f30da187
DV
10715static int __intel_set_mode(struct drm_crtc *crtc,
10716 struct drm_display_mode *mode,
10717 int x, int y, struct drm_framebuffer *fb)
a6778b3c
DV
10718{
10719 struct drm_device *dev = crtc->dev;
fbee40df 10720 struct drm_i915_private *dev_priv = dev->dev_private;
4b4b9238 10721 struct drm_display_mode *saved_mode;
b8cecdf5 10722 struct intel_crtc_config *pipe_config = NULL;
25c5b266
DV
10723 struct intel_crtc *intel_crtc;
10724 unsigned disable_pipes, prepare_pipes, modeset_pipes;
c0c36b94 10725 int ret = 0;
a6778b3c 10726
4b4b9238 10727 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
c0c36b94
CW
10728 if (!saved_mode)
10729 return -ENOMEM;
a6778b3c 10730
e2e1ed41 10731 intel_modeset_affected_pipes(crtc, &modeset_pipes,
25c5b266
DV
10732 &prepare_pipes, &disable_pipes);
10733
3ac18232 10734 *saved_mode = crtc->mode;
a6778b3c 10735
25c5b266
DV
10736 /* Hack: Because we don't (yet) support global modeset on multiple
10737 * crtcs, we don't keep track of the new mode for more than one crtc.
10738 * Hence simply check whether any bit is set in modeset_pipes in all the
10739 * pieces of code that are not yet converted to deal with mutliple crtcs
10740 * changing their mode at the same time. */
25c5b266 10741 if (modeset_pipes) {
4e53c2e0 10742 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
b8cecdf5
DV
10743 if (IS_ERR(pipe_config)) {
10744 ret = PTR_ERR(pipe_config);
10745 pipe_config = NULL;
10746
3ac18232 10747 goto out;
25c5b266 10748 }
c0b03411
DV
10749 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
10750 "[modeset]");
50741abc 10751 to_intel_crtc(crtc)->new_config = pipe_config;
25c5b266 10752 }
a6778b3c 10753
30a970c6
JB
10754 /*
10755 * See if the config requires any additional preparation, e.g.
10756 * to adjust global state with pipes off. We need to do this
10757 * here so we can get the modeset_pipe updated config for the new
10758 * mode set on this crtc. For other crtcs we need to use the
10759 * adjusted_mode bits in the crtc directly.
10760 */
c164f833 10761 if (IS_VALLEYVIEW(dev)) {
2f2d7aa1 10762 valleyview_modeset_global_pipes(dev, &prepare_pipes);
30a970c6 10763
c164f833
VS
10764 /* may have added more to prepare_pipes than we should */
10765 prepare_pipes &= ~disable_pipes;
10766 }
10767
460da916
DV
10768 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
10769 intel_crtc_disable(&intel_crtc->base);
10770
ea9d758d
DV
10771 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10772 if (intel_crtc->base.enabled)
10773 dev_priv->display.crtc_disable(&intel_crtc->base);
10774 }
a6778b3c 10775
6c4c86f5
DV
10776 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
10777 * to set it here already despite that we pass it down the callchain.
f6e5b160 10778 */
b8cecdf5 10779 if (modeset_pipes) {
25c5b266 10780 crtc->mode = *mode;
b8cecdf5
DV
10781 /* mode_set/enable/disable functions rely on a correct pipe
10782 * config. */
10783 to_intel_crtc(crtc)->config = *pipe_config;
50741abc 10784 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
c326c0a9
VS
10785
10786 /*
10787 * Calculate and store various constants which
10788 * are later needed by vblank and swap-completion
10789 * timestamping. They are derived from true hwmode.
10790 */
10791 drm_calc_timestamping_constants(crtc,
10792 &pipe_config->adjusted_mode);
b8cecdf5 10793 }
7758a113 10794
ea9d758d
DV
10795 /* Only after disabling all output pipelines that will be changed can we
10796 * update the the output configuration. */
10797 intel_modeset_update_state(dev, prepare_pipes);
f6e5b160 10798
47fab737
DV
10799 if (dev_priv->display.modeset_global_resources)
10800 dev_priv->display.modeset_global_resources(dev);
10801
a6778b3c
DV
10802 /* Set up the DPLL and any encoders state that needs to adjust or depend
10803 * on the DPLL.
f6e5b160 10804 */
25c5b266 10805 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
2ff8fde1
MR
10806 struct drm_framebuffer *old_fb = crtc->primary->fb;
10807 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
10808 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
4c10794f
DV
10809
10810 mutex_lock(&dev->struct_mutex);
10811 ret = intel_pin_and_fence_fb_obj(dev,
a071fa00 10812 obj,
4c10794f
DV
10813 NULL);
10814 if (ret != 0) {
10815 DRM_ERROR("pin & fence failed\n");
10816 mutex_unlock(&dev->struct_mutex);
10817 goto done;
10818 }
2ff8fde1 10819 if (old_fb)
a071fa00 10820 intel_unpin_fb_obj(old_obj);
a071fa00
DV
10821 i915_gem_track_fb(old_obj, obj,
10822 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
4c10794f
DV
10823 mutex_unlock(&dev->struct_mutex);
10824
10825 crtc->primary->fb = fb;
10826 crtc->x = x;
10827 crtc->y = y;
10828
4271b753
DV
10829 ret = dev_priv->display.crtc_mode_set(&intel_crtc->base,
10830 x, y, fb);
c0c36b94
CW
10831 if (ret)
10832 goto done;
a6778b3c
DV
10833 }
10834
10835 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
80715b2f
VS
10836 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10837 update_scanline_offset(intel_crtc);
10838
25c5b266 10839 dev_priv->display.crtc_enable(&intel_crtc->base);
80715b2f 10840 }
a6778b3c 10841
a6778b3c
DV
10842 /* FIXME: add subpixel order */
10843done:
4b4b9238 10844 if (ret && crtc->enabled)
3ac18232 10845 crtc->mode = *saved_mode;
a6778b3c 10846
3ac18232 10847out:
b8cecdf5 10848 kfree(pipe_config);
3ac18232 10849 kfree(saved_mode);
a6778b3c 10850 return ret;
f6e5b160
CW
10851}
10852
e7457a9a
DL
10853static int intel_set_mode(struct drm_crtc *crtc,
10854 struct drm_display_mode *mode,
10855 int x, int y, struct drm_framebuffer *fb)
f30da187
DV
10856{
10857 int ret;
10858
10859 ret = __intel_set_mode(crtc, mode, x, y, fb);
10860
10861 if (ret == 0)
10862 intel_modeset_check_state(crtc->dev);
10863
10864 return ret;
10865}
10866
c0c36b94
CW
10867void intel_crtc_restore_mode(struct drm_crtc *crtc)
10868{
f4510a27 10869 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
c0c36b94
CW
10870}
10871
25c5b266
DV
10872#undef for_each_intel_crtc_masked
10873
d9e55608
DV
10874static void intel_set_config_free(struct intel_set_config *config)
10875{
10876 if (!config)
10877 return;
10878
1aa4b628
DV
10879 kfree(config->save_connector_encoders);
10880 kfree(config->save_encoder_crtcs);
7668851f 10881 kfree(config->save_crtc_enabled);
d9e55608
DV
10882 kfree(config);
10883}
10884
85f9eb71
DV
10885static int intel_set_config_save_state(struct drm_device *dev,
10886 struct intel_set_config *config)
10887{
7668851f 10888 struct drm_crtc *crtc;
85f9eb71
DV
10889 struct drm_encoder *encoder;
10890 struct drm_connector *connector;
10891 int count;
10892
7668851f
VS
10893 config->save_crtc_enabled =
10894 kcalloc(dev->mode_config.num_crtc,
10895 sizeof(bool), GFP_KERNEL);
10896 if (!config->save_crtc_enabled)
10897 return -ENOMEM;
10898
1aa4b628
DV
10899 config->save_encoder_crtcs =
10900 kcalloc(dev->mode_config.num_encoder,
10901 sizeof(struct drm_crtc *), GFP_KERNEL);
10902 if (!config->save_encoder_crtcs)
85f9eb71
DV
10903 return -ENOMEM;
10904
1aa4b628
DV
10905 config->save_connector_encoders =
10906 kcalloc(dev->mode_config.num_connector,
10907 sizeof(struct drm_encoder *), GFP_KERNEL);
10908 if (!config->save_connector_encoders)
85f9eb71
DV
10909 return -ENOMEM;
10910
10911 /* Copy data. Note that driver private data is not affected.
10912 * Should anything bad happen only the expected state is
10913 * restored, not the drivers personal bookkeeping.
10914 */
7668851f 10915 count = 0;
70e1e0ec 10916 for_each_crtc(dev, crtc) {
7668851f
VS
10917 config->save_crtc_enabled[count++] = crtc->enabled;
10918 }
10919
85f9eb71
DV
10920 count = 0;
10921 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
1aa4b628 10922 config->save_encoder_crtcs[count++] = encoder->crtc;
85f9eb71
DV
10923 }
10924
10925 count = 0;
10926 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1aa4b628 10927 config->save_connector_encoders[count++] = connector->encoder;
85f9eb71
DV
10928 }
10929
10930 return 0;
10931}
10932
10933static void intel_set_config_restore_state(struct drm_device *dev,
10934 struct intel_set_config *config)
10935{
7668851f 10936 struct intel_crtc *crtc;
9a935856
DV
10937 struct intel_encoder *encoder;
10938 struct intel_connector *connector;
85f9eb71
DV
10939 int count;
10940
7668851f 10941 count = 0;
d3fcc808 10942 for_each_intel_crtc(dev, crtc) {
7668851f 10943 crtc->new_enabled = config->save_crtc_enabled[count++];
7bd0a8e7
VS
10944
10945 if (crtc->new_enabled)
10946 crtc->new_config = &crtc->config;
10947 else
10948 crtc->new_config = NULL;
7668851f
VS
10949 }
10950
85f9eb71 10951 count = 0;
9a935856
DV
10952 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10953 encoder->new_crtc =
10954 to_intel_crtc(config->save_encoder_crtcs[count++]);
85f9eb71
DV
10955 }
10956
10957 count = 0;
9a935856
DV
10958 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
10959 connector->new_encoder =
10960 to_intel_encoder(config->save_connector_encoders[count++]);
85f9eb71
DV
10961 }
10962}
10963
e3de42b6 10964static bool
2e57f47d 10965is_crtc_connector_off(struct drm_mode_set *set)
e3de42b6
ID
10966{
10967 int i;
10968
2e57f47d
CW
10969 if (set->num_connectors == 0)
10970 return false;
10971
10972 if (WARN_ON(set->connectors == NULL))
10973 return false;
10974
10975 for (i = 0; i < set->num_connectors; i++)
10976 if (set->connectors[i]->encoder &&
10977 set->connectors[i]->encoder->crtc == set->crtc &&
10978 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
e3de42b6
ID
10979 return true;
10980
10981 return false;
10982}
10983
5e2b584e
DV
10984static void
10985intel_set_config_compute_mode_changes(struct drm_mode_set *set,
10986 struct intel_set_config *config)
10987{
10988
10989 /* We should be able to check here if the fb has the same properties
10990 * and then just flip_or_move it */
2e57f47d
CW
10991 if (is_crtc_connector_off(set)) {
10992 config->mode_changed = true;
f4510a27 10993 } else if (set->crtc->primary->fb != set->fb) {
3b150f08
MR
10994 /*
10995 * If we have no fb, we can only flip as long as the crtc is
10996 * active, otherwise we need a full mode set. The crtc may
10997 * be active if we've only disabled the primary plane, or
10998 * in fastboot situations.
10999 */
f4510a27 11000 if (set->crtc->primary->fb == NULL) {
319d9827
JB
11001 struct intel_crtc *intel_crtc =
11002 to_intel_crtc(set->crtc);
11003
3b150f08 11004 if (intel_crtc->active) {
319d9827
JB
11005 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11006 config->fb_changed = true;
11007 } else {
11008 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11009 config->mode_changed = true;
11010 }
5e2b584e
DV
11011 } else if (set->fb == NULL) {
11012 config->mode_changed = true;
72f4901e 11013 } else if (set->fb->pixel_format !=
f4510a27 11014 set->crtc->primary->fb->pixel_format) {
5e2b584e 11015 config->mode_changed = true;
e3de42b6 11016 } else {
5e2b584e 11017 config->fb_changed = true;
e3de42b6 11018 }
5e2b584e
DV
11019 }
11020
835c5873 11021 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
5e2b584e
DV
11022 config->fb_changed = true;
11023
11024 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11025 DRM_DEBUG_KMS("modes are different, full mode set\n");
11026 drm_mode_debug_printmodeline(&set->crtc->mode);
11027 drm_mode_debug_printmodeline(set->mode);
11028 config->mode_changed = true;
11029 }
a1d95703
CW
11030
11031 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11032 set->crtc->base.id, config->mode_changed, config->fb_changed);
5e2b584e
DV
11033}
11034
2e431051 11035static int
9a935856
DV
11036intel_modeset_stage_output_state(struct drm_device *dev,
11037 struct drm_mode_set *set,
11038 struct intel_set_config *config)
50f56119 11039{
9a935856
DV
11040 struct intel_connector *connector;
11041 struct intel_encoder *encoder;
7668851f 11042 struct intel_crtc *crtc;
f3f08572 11043 int ro;
50f56119 11044
9abdda74 11045 /* The upper layers ensure that we either disable a crtc or have a list
9a935856
DV
11046 * of connectors. For paranoia, double-check this. */
11047 WARN_ON(!set->fb && (set->num_connectors != 0));
11048 WARN_ON(set->fb && (set->num_connectors == 0));
11049
9a935856
DV
11050 list_for_each_entry(connector, &dev->mode_config.connector_list,
11051 base.head) {
11052 /* Otherwise traverse passed in connector list and get encoders
11053 * for them. */
50f56119 11054 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856
DV
11055 if (set->connectors[ro] == &connector->base) {
11056 connector->new_encoder = connector->encoder;
50f56119
DV
11057 break;
11058 }
11059 }
11060
9a935856
DV
11061 /* If we disable the crtc, disable all its connectors. Also, if
11062 * the connector is on the changing crtc but not on the new
11063 * connector list, disable it. */
11064 if ((!set->fb || ro == set->num_connectors) &&
11065 connector->base.encoder &&
11066 connector->base.encoder->crtc == set->crtc) {
11067 connector->new_encoder = NULL;
11068
11069 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11070 connector->base.base.id,
c23cc417 11071 connector->base.name);
9a935856
DV
11072 }
11073
11074
11075 if (&connector->new_encoder->base != connector->base.encoder) {
50f56119 11076 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
5e2b584e 11077 config->mode_changed = true;
50f56119
DV
11078 }
11079 }
9a935856 11080 /* connector->new_encoder is now updated for all connectors. */
50f56119 11081
9a935856 11082 /* Update crtc of enabled connectors. */
9a935856
DV
11083 list_for_each_entry(connector, &dev->mode_config.connector_list,
11084 base.head) {
7668851f
VS
11085 struct drm_crtc *new_crtc;
11086
9a935856 11087 if (!connector->new_encoder)
50f56119
DV
11088 continue;
11089
9a935856 11090 new_crtc = connector->new_encoder->base.crtc;
50f56119
DV
11091
11092 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11093 if (set->connectors[ro] == &connector->base)
50f56119
DV
11094 new_crtc = set->crtc;
11095 }
11096
11097 /* Make sure the new CRTC will work with the encoder */
14509916
TR
11098 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11099 new_crtc)) {
5e2b584e 11100 return -EINVAL;
50f56119 11101 }
9a935856
DV
11102 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
11103
11104 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11105 connector->base.base.id,
c23cc417 11106 connector->base.name,
9a935856
DV
11107 new_crtc->base.id);
11108 }
11109
11110 /* Check for any encoders that needs to be disabled. */
11111 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
11112 base.head) {
5a65f358 11113 int num_connectors = 0;
9a935856
DV
11114 list_for_each_entry(connector,
11115 &dev->mode_config.connector_list,
11116 base.head) {
11117 if (connector->new_encoder == encoder) {
11118 WARN_ON(!connector->new_encoder->new_crtc);
5a65f358 11119 num_connectors++;
9a935856
DV
11120 }
11121 }
5a65f358
PZ
11122
11123 if (num_connectors == 0)
11124 encoder->new_crtc = NULL;
11125 else if (num_connectors > 1)
11126 return -EINVAL;
11127
9a935856
DV
11128 /* Only now check for crtc changes so we don't miss encoders
11129 * that will be disabled. */
11130 if (&encoder->new_crtc->base != encoder->base.crtc) {
50f56119 11131 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
5e2b584e 11132 config->mode_changed = true;
50f56119
DV
11133 }
11134 }
9a935856 11135 /* Now we've also updated encoder->new_crtc for all encoders. */
50f56119 11136
d3fcc808 11137 for_each_intel_crtc(dev, crtc) {
7668851f
VS
11138 crtc->new_enabled = false;
11139
11140 list_for_each_entry(encoder,
11141 &dev->mode_config.encoder_list,
11142 base.head) {
11143 if (encoder->new_crtc == crtc) {
11144 crtc->new_enabled = true;
11145 break;
11146 }
11147 }
11148
11149 if (crtc->new_enabled != crtc->base.enabled) {
11150 DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11151 crtc->new_enabled ? "en" : "dis");
11152 config->mode_changed = true;
11153 }
7bd0a8e7
VS
11154
11155 if (crtc->new_enabled)
11156 crtc->new_config = &crtc->config;
11157 else
11158 crtc->new_config = NULL;
7668851f
VS
11159 }
11160
2e431051
DV
11161 return 0;
11162}
11163
7d00a1f5
VS
11164static void disable_crtc_nofb(struct intel_crtc *crtc)
11165{
11166 struct drm_device *dev = crtc->base.dev;
11167 struct intel_encoder *encoder;
11168 struct intel_connector *connector;
11169
11170 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11171 pipe_name(crtc->pipe));
11172
11173 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11174 if (connector->new_encoder &&
11175 connector->new_encoder->new_crtc == crtc)
11176 connector->new_encoder = NULL;
11177 }
11178
11179 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
11180 if (encoder->new_crtc == crtc)
11181 encoder->new_crtc = NULL;
11182 }
11183
11184 crtc->new_enabled = false;
7bd0a8e7 11185 crtc->new_config = NULL;
7d00a1f5
VS
11186}
11187
2e431051
DV
11188static int intel_crtc_set_config(struct drm_mode_set *set)
11189{
11190 struct drm_device *dev;
2e431051
DV
11191 struct drm_mode_set save_set;
11192 struct intel_set_config *config;
11193 int ret;
2e431051 11194
8d3e375e
DV
11195 BUG_ON(!set);
11196 BUG_ON(!set->crtc);
11197 BUG_ON(!set->crtc->helper_private);
2e431051 11198
7e53f3a4
DV
11199 /* Enforce sane interface api - has been abused by the fb helper. */
11200 BUG_ON(!set->mode && set->fb);
11201 BUG_ON(set->fb && set->num_connectors == 0);
431e50f7 11202
2e431051
DV
11203 if (set->fb) {
11204 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11205 set->crtc->base.id, set->fb->base.id,
11206 (int)set->num_connectors, set->x, set->y);
11207 } else {
11208 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
2e431051
DV
11209 }
11210
11211 dev = set->crtc->dev;
11212
11213 ret = -ENOMEM;
11214 config = kzalloc(sizeof(*config), GFP_KERNEL);
11215 if (!config)
11216 goto out_config;
11217
11218 ret = intel_set_config_save_state(dev, config);
11219 if (ret)
11220 goto out_config;
11221
11222 save_set.crtc = set->crtc;
11223 save_set.mode = &set->crtc->mode;
11224 save_set.x = set->crtc->x;
11225 save_set.y = set->crtc->y;
f4510a27 11226 save_set.fb = set->crtc->primary->fb;
2e431051
DV
11227
11228 /* Compute whether we need a full modeset, only an fb base update or no
11229 * change at all. In the future we might also check whether only the
11230 * mode changed, e.g. for LVDS where we only change the panel fitter in
11231 * such cases. */
11232 intel_set_config_compute_mode_changes(set, config);
11233
9a935856 11234 ret = intel_modeset_stage_output_state(dev, set, config);
2e431051
DV
11235 if (ret)
11236 goto fail;
11237
5e2b584e 11238 if (config->mode_changed) {
c0c36b94
CW
11239 ret = intel_set_mode(set->crtc, set->mode,
11240 set->x, set->y, set->fb);
5e2b584e 11241 } else if (config->fb_changed) {
3b150f08
MR
11242 struct drm_i915_private *dev_priv = dev->dev_private;
11243 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11244
4878cae2
VS
11245 intel_crtc_wait_for_pending_flips(set->crtc);
11246
4f660f49 11247 ret = intel_pipe_set_base(set->crtc,
94352cf9 11248 set->x, set->y, set->fb);
3b150f08
MR
11249
11250 /*
11251 * We need to make sure the primary plane is re-enabled if it
11252 * has previously been turned off.
11253 */
11254 if (!intel_crtc->primary_enabled && ret == 0) {
11255 WARN_ON(!intel_crtc->active);
11256 intel_enable_primary_hw_plane(dev_priv, intel_crtc->plane,
11257 intel_crtc->pipe);
11258 }
11259
7ca51a3a
JB
11260 /*
11261 * In the fastboot case this may be our only check of the
11262 * state after boot. It would be better to only do it on
11263 * the first update, but we don't have a nice way of doing that
11264 * (and really, set_config isn't used much for high freq page
11265 * flipping, so increasing its cost here shouldn't be a big
11266 * deal).
11267 */
d330a953 11268 if (i915.fastboot && ret == 0)
7ca51a3a 11269 intel_modeset_check_state(set->crtc->dev);
50f56119
DV
11270 }
11271
2d05eae1 11272 if (ret) {
bf67dfeb
DV
11273 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11274 set->crtc->base.id, ret);
50f56119 11275fail:
2d05eae1 11276 intel_set_config_restore_state(dev, config);
50f56119 11277
7d00a1f5
VS
11278 /*
11279 * HACK: if the pipe was on, but we didn't have a framebuffer,
11280 * force the pipe off to avoid oopsing in the modeset code
11281 * due to fb==NULL. This should only happen during boot since
11282 * we don't yet reconstruct the FB from the hardware state.
11283 */
11284 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11285 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11286
2d05eae1
CW
11287 /* Try to restore the config */
11288 if (config->mode_changed &&
11289 intel_set_mode(save_set.crtc, save_set.mode,
11290 save_set.x, save_set.y, save_set.fb))
11291 DRM_ERROR("failed to restore config after modeset failure\n");
11292 }
50f56119 11293
d9e55608
DV
11294out_config:
11295 intel_set_config_free(config);
50f56119
DV
11296 return ret;
11297}
f6e5b160
CW
11298
11299static const struct drm_crtc_funcs intel_crtc_funcs = {
f6e5b160 11300 .gamma_set = intel_crtc_gamma_set,
50f56119 11301 .set_config = intel_crtc_set_config,
f6e5b160
CW
11302 .destroy = intel_crtc_destroy,
11303 .page_flip = intel_crtc_page_flip,
11304};
11305
5358901f
DV
11306static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11307 struct intel_shared_dpll *pll,
11308 struct intel_dpll_hw_state *hw_state)
ee7b9f93 11309{
5358901f 11310 uint32_t val;
ee7b9f93 11311
bd2bb1b9
PZ
11312 if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_PLLS))
11313 return false;
11314
5358901f 11315 val = I915_READ(PCH_DPLL(pll->id));
66e985c0
DV
11316 hw_state->dpll = val;
11317 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11318 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
5358901f
DV
11319
11320 return val & DPLL_VCO_ENABLE;
11321}
11322
15bdd4cf
DV
11323static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11324 struct intel_shared_dpll *pll)
11325{
11326 I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
11327 I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
11328}
11329
e7b903d2
DV
11330static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11331 struct intel_shared_dpll *pll)
11332{
e7b903d2 11333 /* PCH refclock must be enabled first */
89eff4be 11334 ibx_assert_pch_refclk_enabled(dev_priv);
e7b903d2 11335
15bdd4cf
DV
11336 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11337
11338 /* Wait for the clocks to stabilize. */
11339 POSTING_READ(PCH_DPLL(pll->id));
11340 udelay(150);
11341
11342 /* The pixel multiplier can only be updated once the
11343 * DPLL is enabled and the clocks are stable.
11344 *
11345 * So write it again.
11346 */
11347 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11348 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11349 udelay(200);
11350}
11351
11352static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11353 struct intel_shared_dpll *pll)
11354{
11355 struct drm_device *dev = dev_priv->dev;
11356 struct intel_crtc *crtc;
e7b903d2
DV
11357
11358 /* Make sure no transcoder isn't still depending on us. */
d3fcc808 11359 for_each_intel_crtc(dev, crtc) {
e7b903d2
DV
11360 if (intel_crtc_to_shared_dpll(crtc) == pll)
11361 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
ee7b9f93
JB
11362 }
11363
15bdd4cf
DV
11364 I915_WRITE(PCH_DPLL(pll->id), 0);
11365 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11366 udelay(200);
11367}
11368
46edb027
DV
11369static char *ibx_pch_dpll_names[] = {
11370 "PCH DPLL A",
11371 "PCH DPLL B",
11372};
11373
7c74ade1 11374static void ibx_pch_dpll_init(struct drm_device *dev)
ee7b9f93 11375{
e7b903d2 11376 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93
JB
11377 int i;
11378
7c74ade1 11379 dev_priv->num_shared_dpll = 2;
ee7b9f93 11380
e72f9fbf 11381 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
46edb027
DV
11382 dev_priv->shared_dplls[i].id = i;
11383 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
15bdd4cf 11384 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
e7b903d2
DV
11385 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11386 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
5358901f
DV
11387 dev_priv->shared_dplls[i].get_hw_state =
11388 ibx_pch_dpll_get_hw_state;
ee7b9f93
JB
11389 }
11390}
11391
7c74ade1
DV
11392static void intel_shared_dpll_init(struct drm_device *dev)
11393{
e7b903d2 11394 struct drm_i915_private *dev_priv = dev->dev_private;
7c74ade1 11395
9cd86933
DV
11396 if (HAS_DDI(dev))
11397 intel_ddi_pll_init(dev);
11398 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7c74ade1
DV
11399 ibx_pch_dpll_init(dev);
11400 else
11401 dev_priv->num_shared_dpll = 0;
11402
11403 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
7c74ade1
DV
11404}
11405
465c120c
MR
11406static int
11407intel_primary_plane_disable(struct drm_plane *plane)
11408{
11409 struct drm_device *dev = plane->dev;
11410 struct drm_i915_private *dev_priv = dev->dev_private;
11411 struct intel_plane *intel_plane = to_intel_plane(plane);
11412 struct intel_crtc *intel_crtc;
11413
11414 if (!plane->fb)
11415 return 0;
11416
11417 BUG_ON(!plane->crtc);
11418
11419 intel_crtc = to_intel_crtc(plane->crtc);
11420
11421 /*
11422 * Even though we checked plane->fb above, it's still possible that
11423 * the primary plane has been implicitly disabled because the crtc
11424 * coordinates given weren't visible, or because we detected
11425 * that it was 100% covered by a sprite plane. Or, the CRTC may be
11426 * off and we've set a fb, but haven't actually turned on the CRTC yet.
11427 * In either case, we need to unpin the FB and let the fb pointer get
11428 * updated, but otherwise we don't need to touch the hardware.
11429 */
11430 if (!intel_crtc->primary_enabled)
11431 goto disable_unpin;
11432
11433 intel_crtc_wait_for_pending_flips(plane->crtc);
11434 intel_disable_primary_hw_plane(dev_priv, intel_plane->plane,
11435 intel_plane->pipe);
465c120c 11436disable_unpin:
4c34574f 11437 mutex_lock(&dev->struct_mutex);
2ff8fde1 11438 i915_gem_track_fb(intel_fb_obj(plane->fb), NULL,
a071fa00 11439 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
2ff8fde1 11440 intel_unpin_fb_obj(intel_fb_obj(plane->fb));
4c34574f 11441 mutex_unlock(&dev->struct_mutex);
465c120c
MR
11442 plane->fb = NULL;
11443
11444 return 0;
11445}
11446
11447static int
11448intel_primary_plane_setplane(struct drm_plane *plane, struct drm_crtc *crtc,
11449 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11450 unsigned int crtc_w, unsigned int crtc_h,
11451 uint32_t src_x, uint32_t src_y,
11452 uint32_t src_w, uint32_t src_h)
11453{
11454 struct drm_device *dev = crtc->dev;
11455 struct drm_i915_private *dev_priv = dev->dev_private;
11456 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11457 struct intel_plane *intel_plane = to_intel_plane(plane);
2ff8fde1
MR
11458 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11459 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
465c120c
MR
11460 struct drm_rect dest = {
11461 /* integer pixels */
11462 .x1 = crtc_x,
11463 .y1 = crtc_y,
11464 .x2 = crtc_x + crtc_w,
11465 .y2 = crtc_y + crtc_h,
11466 };
11467 struct drm_rect src = {
11468 /* 16.16 fixed point */
11469 .x1 = src_x,
11470 .y1 = src_y,
11471 .x2 = src_x + src_w,
11472 .y2 = src_y + src_h,
11473 };
11474 const struct drm_rect clip = {
11475 /* integer pixels */
11476 .x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0,
11477 .y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0,
11478 };
11479 bool visible;
11480 int ret;
11481
11482 ret = drm_plane_helper_check_update(plane, crtc, fb,
11483 &src, &dest, &clip,
11484 DRM_PLANE_HELPER_NO_SCALING,
11485 DRM_PLANE_HELPER_NO_SCALING,
11486 false, true, &visible);
11487
11488 if (ret)
11489 return ret;
11490
11491 /*
11492 * If the CRTC isn't enabled, we're just pinning the framebuffer,
11493 * updating the fb pointer, and returning without touching the
11494 * hardware. This allows us to later do a drmModeSetCrtc with fb=-1 to
11495 * turn on the display with all planes setup as desired.
11496 */
11497 if (!crtc->enabled) {
4c34574f
MR
11498 mutex_lock(&dev->struct_mutex);
11499
465c120c
MR
11500 /*
11501 * If we already called setplane while the crtc was disabled,
11502 * we may have an fb pinned; unpin it.
11503 */
11504 if (plane->fb)
a071fa00
DV
11505 intel_unpin_fb_obj(old_obj);
11506
11507 i915_gem_track_fb(old_obj, obj,
11508 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
465c120c
MR
11509
11510 /* Pin and return without programming hardware */
4c34574f
MR
11511 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
11512 mutex_unlock(&dev->struct_mutex);
11513
11514 return ret;
465c120c
MR
11515 }
11516
11517 intel_crtc_wait_for_pending_flips(crtc);
11518
11519 /*
11520 * If clipping results in a non-visible primary plane, we'll disable
11521 * the primary plane. Note that this is a bit different than what
11522 * happens if userspace explicitly disables the plane by passing fb=0
11523 * because plane->fb still gets set and pinned.
11524 */
11525 if (!visible) {
4c34574f
MR
11526 mutex_lock(&dev->struct_mutex);
11527
465c120c
MR
11528 /*
11529 * Try to pin the new fb first so that we can bail out if we
11530 * fail.
11531 */
11532 if (plane->fb != fb) {
a071fa00 11533 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
4c34574f
MR
11534 if (ret) {
11535 mutex_unlock(&dev->struct_mutex);
465c120c 11536 return ret;
4c34574f 11537 }
465c120c
MR
11538 }
11539
a071fa00
DV
11540 i915_gem_track_fb(old_obj, obj,
11541 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11542
465c120c
MR
11543 if (intel_crtc->primary_enabled)
11544 intel_disable_primary_hw_plane(dev_priv,
11545 intel_plane->plane,
11546 intel_plane->pipe);
11547
11548
11549 if (plane->fb != fb)
11550 if (plane->fb)
a071fa00 11551 intel_unpin_fb_obj(old_obj);
465c120c 11552
4c34574f
MR
11553 mutex_unlock(&dev->struct_mutex);
11554
465c120c
MR
11555 return 0;
11556 }
11557
11558 ret = intel_pipe_set_base(crtc, src.x1, src.y1, fb);
11559 if (ret)
11560 return ret;
11561
11562 if (!intel_crtc->primary_enabled)
11563 intel_enable_primary_hw_plane(dev_priv, intel_crtc->plane,
11564 intel_crtc->pipe);
11565
11566 return 0;
11567}
11568
3d7d6510
MR
11569/* Common destruction function for both primary and cursor planes */
11570static void intel_plane_destroy(struct drm_plane *plane)
465c120c
MR
11571{
11572 struct intel_plane *intel_plane = to_intel_plane(plane);
11573 drm_plane_cleanup(plane);
11574 kfree(intel_plane);
11575}
11576
11577static const struct drm_plane_funcs intel_primary_plane_funcs = {
11578 .update_plane = intel_primary_plane_setplane,
11579 .disable_plane = intel_primary_plane_disable,
3d7d6510 11580 .destroy = intel_plane_destroy,
465c120c
MR
11581};
11582
11583static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
11584 int pipe)
11585{
11586 struct intel_plane *primary;
11587 const uint32_t *intel_primary_formats;
11588 int num_formats;
11589
11590 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
11591 if (primary == NULL)
11592 return NULL;
11593
11594 primary->can_scale = false;
11595 primary->max_downscale = 1;
11596 primary->pipe = pipe;
11597 primary->plane = pipe;
11598 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
11599 primary->plane = !pipe;
11600
11601 if (INTEL_INFO(dev)->gen <= 3) {
11602 intel_primary_formats = intel_primary_formats_gen2;
11603 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
11604 } else {
11605 intel_primary_formats = intel_primary_formats_gen4;
11606 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
11607 }
11608
11609 drm_universal_plane_init(dev, &primary->base, 0,
11610 &intel_primary_plane_funcs,
11611 intel_primary_formats, num_formats,
11612 DRM_PLANE_TYPE_PRIMARY);
11613 return &primary->base;
11614}
11615
3d7d6510
MR
11616static int
11617intel_cursor_plane_disable(struct drm_plane *plane)
11618{
11619 if (!plane->fb)
11620 return 0;
11621
11622 BUG_ON(!plane->crtc);
11623
11624 return intel_crtc_cursor_set_obj(plane->crtc, NULL, 0, 0);
11625}
11626
11627static int
11628intel_cursor_plane_update(struct drm_plane *plane, struct drm_crtc *crtc,
11629 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11630 unsigned int crtc_w, unsigned int crtc_h,
11631 uint32_t src_x, uint32_t src_y,
11632 uint32_t src_w, uint32_t src_h)
11633{
11634 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11635 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
11636 struct drm_i915_gem_object *obj = intel_fb->obj;
11637 struct drm_rect dest = {
11638 /* integer pixels */
11639 .x1 = crtc_x,
11640 .y1 = crtc_y,
11641 .x2 = crtc_x + crtc_w,
11642 .y2 = crtc_y + crtc_h,
11643 };
11644 struct drm_rect src = {
11645 /* 16.16 fixed point */
11646 .x1 = src_x,
11647 .y1 = src_y,
11648 .x2 = src_x + src_w,
11649 .y2 = src_y + src_h,
11650 };
11651 const struct drm_rect clip = {
11652 /* integer pixels */
11653 .x2 = intel_crtc->config.pipe_src_w,
11654 .y2 = intel_crtc->config.pipe_src_h,
11655 };
11656 bool visible;
11657 int ret;
11658
11659 ret = drm_plane_helper_check_update(plane, crtc, fb,
11660 &src, &dest, &clip,
11661 DRM_PLANE_HELPER_NO_SCALING,
11662 DRM_PLANE_HELPER_NO_SCALING,
11663 true, true, &visible);
11664 if (ret)
11665 return ret;
11666
11667 crtc->cursor_x = crtc_x;
11668 crtc->cursor_y = crtc_y;
11669 if (fb != crtc->cursor->fb) {
11670 return intel_crtc_cursor_set_obj(crtc, obj, crtc_w, crtc_h);
11671 } else {
11672 intel_crtc_update_cursor(crtc, visible);
11673 return 0;
11674 }
11675}
11676static const struct drm_plane_funcs intel_cursor_plane_funcs = {
11677 .update_plane = intel_cursor_plane_update,
11678 .disable_plane = intel_cursor_plane_disable,
11679 .destroy = intel_plane_destroy,
11680};
11681
11682static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
11683 int pipe)
11684{
11685 struct intel_plane *cursor;
11686
11687 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
11688 if (cursor == NULL)
11689 return NULL;
11690
11691 cursor->can_scale = false;
11692 cursor->max_downscale = 1;
11693 cursor->pipe = pipe;
11694 cursor->plane = pipe;
11695
11696 drm_universal_plane_init(dev, &cursor->base, 0,
11697 &intel_cursor_plane_funcs,
11698 intel_cursor_formats,
11699 ARRAY_SIZE(intel_cursor_formats),
11700 DRM_PLANE_TYPE_CURSOR);
11701 return &cursor->base;
11702}
11703
b358d0a6 11704static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 11705{
fbee40df 11706 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 11707 struct intel_crtc *intel_crtc;
3d7d6510
MR
11708 struct drm_plane *primary = NULL;
11709 struct drm_plane *cursor = NULL;
465c120c 11710 int i, ret;
79e53945 11711
955382f3 11712 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
79e53945
JB
11713 if (intel_crtc == NULL)
11714 return;
11715
465c120c 11716 primary = intel_primary_plane_create(dev, pipe);
3d7d6510
MR
11717 if (!primary)
11718 goto fail;
11719
11720 cursor = intel_cursor_plane_create(dev, pipe);
11721 if (!cursor)
11722 goto fail;
11723
465c120c 11724 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
3d7d6510
MR
11725 cursor, &intel_crtc_funcs);
11726 if (ret)
11727 goto fail;
79e53945
JB
11728
11729 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
11730 for (i = 0; i < 256; i++) {
11731 intel_crtc->lut_r[i] = i;
11732 intel_crtc->lut_g[i] = i;
11733 intel_crtc->lut_b[i] = i;
11734 }
11735
1f1c2e24
VS
11736 /*
11737 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
8c0f92e1 11738 * is hooked to pipe B. Hence we want plane A feeding pipe B.
1f1c2e24 11739 */
80824003
JB
11740 intel_crtc->pipe = pipe;
11741 intel_crtc->plane = pipe;
3a77c4c4 11742 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
28c97730 11743 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 11744 intel_crtc->plane = !pipe;
80824003
JB
11745 }
11746
4b0e333e
CW
11747 intel_crtc->cursor_base = ~0;
11748 intel_crtc->cursor_cntl = ~0;
11749
8d7849db
VS
11750 init_waitqueue_head(&intel_crtc->vbl_wait);
11751
22fd0fab
JB
11752 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
11753 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
11754 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
11755 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
11756
79e53945 11757 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
87b6b101
DV
11758
11759 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
3d7d6510
MR
11760 return;
11761
11762fail:
11763 if (primary)
11764 drm_plane_cleanup(primary);
11765 if (cursor)
11766 drm_plane_cleanup(cursor);
11767 kfree(intel_crtc);
79e53945
JB
11768}
11769
752aa88a
JB
11770enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
11771{
11772 struct drm_encoder *encoder = connector->base.encoder;
6e9f798d 11773 struct drm_device *dev = connector->base.dev;
752aa88a 11774
51fd371b 11775 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
752aa88a
JB
11776
11777 if (!encoder)
11778 return INVALID_PIPE;
11779
11780 return to_intel_crtc(encoder->crtc)->pipe;
11781}
11782
08d7b3d1 11783int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 11784 struct drm_file *file)
08d7b3d1 11785{
08d7b3d1 11786 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
c05422d5
DV
11787 struct drm_mode_object *drmmode_obj;
11788 struct intel_crtc *crtc;
08d7b3d1 11789
1cff8f6b
DV
11790 if (!drm_core_check_feature(dev, DRIVER_MODESET))
11791 return -ENODEV;
08d7b3d1 11792
c05422d5
DV
11793 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
11794 DRM_MODE_OBJECT_CRTC);
08d7b3d1 11795
c05422d5 11796 if (!drmmode_obj) {
08d7b3d1 11797 DRM_ERROR("no such CRTC id\n");
3f2c2057 11798 return -ENOENT;
08d7b3d1
CW
11799 }
11800
c05422d5
DV
11801 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
11802 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 11803
c05422d5 11804 return 0;
08d7b3d1
CW
11805}
11806
66a9278e 11807static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 11808{
66a9278e
DV
11809 struct drm_device *dev = encoder->base.dev;
11810 struct intel_encoder *source_encoder;
79e53945 11811 int index_mask = 0;
79e53945
JB
11812 int entry = 0;
11813
66a9278e
DV
11814 list_for_each_entry(source_encoder,
11815 &dev->mode_config.encoder_list, base.head) {
bc079e8b 11816 if (encoders_cloneable(encoder, source_encoder))
66a9278e
DV
11817 index_mask |= (1 << entry);
11818
79e53945
JB
11819 entry++;
11820 }
4ef69c7a 11821
79e53945
JB
11822 return index_mask;
11823}
11824
4d302442
CW
11825static bool has_edp_a(struct drm_device *dev)
11826{
11827 struct drm_i915_private *dev_priv = dev->dev_private;
11828
11829 if (!IS_MOBILE(dev))
11830 return false;
11831
11832 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
11833 return false;
11834
e3589908 11835 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
4d302442
CW
11836 return false;
11837
11838 return true;
11839}
11840
ba0fbca4
DL
11841const char *intel_output_name(int output)
11842{
11843 static const char *names[] = {
11844 [INTEL_OUTPUT_UNUSED] = "Unused",
11845 [INTEL_OUTPUT_ANALOG] = "Analog",
11846 [INTEL_OUTPUT_DVO] = "DVO",
11847 [INTEL_OUTPUT_SDVO] = "SDVO",
11848 [INTEL_OUTPUT_LVDS] = "LVDS",
11849 [INTEL_OUTPUT_TVOUT] = "TV",
11850 [INTEL_OUTPUT_HDMI] = "HDMI",
11851 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
11852 [INTEL_OUTPUT_EDP] = "eDP",
11853 [INTEL_OUTPUT_DSI] = "DSI",
11854 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
11855 };
11856
11857 if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
11858 return "Invalid";
11859
11860 return names[output];
11861}
11862
84b4e042
JB
11863static bool intel_crt_present(struct drm_device *dev)
11864{
11865 struct drm_i915_private *dev_priv = dev->dev_private;
11866
11867 if (IS_ULT(dev))
11868 return false;
11869
11870 if (IS_CHERRYVIEW(dev))
11871 return false;
11872
11873 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
11874 return false;
11875
11876 return true;
11877}
11878
79e53945
JB
11879static void intel_setup_outputs(struct drm_device *dev)
11880{
725e30ad 11881 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 11882 struct intel_encoder *encoder;
cb0953d7 11883 bool dpd_is_edp = false;
79e53945 11884
c9093354 11885 intel_lvds_init(dev);
79e53945 11886
84b4e042 11887 if (intel_crt_present(dev))
79935fca 11888 intel_crt_init(dev);
cb0953d7 11889
affa9354 11890 if (HAS_DDI(dev)) {
0e72a5b5
ED
11891 int found;
11892
11893 /* Haswell uses DDI functions to detect digital outputs */
11894 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
11895 /* DDI A only supports eDP */
11896 if (found)
11897 intel_ddi_init(dev, PORT_A);
11898
11899 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
11900 * register */
11901 found = I915_READ(SFUSE_STRAP);
11902
11903 if (found & SFUSE_STRAP_DDIB_DETECTED)
11904 intel_ddi_init(dev, PORT_B);
11905 if (found & SFUSE_STRAP_DDIC_DETECTED)
11906 intel_ddi_init(dev, PORT_C);
11907 if (found & SFUSE_STRAP_DDID_DETECTED)
11908 intel_ddi_init(dev, PORT_D);
11909 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7 11910 int found;
5d8a7752 11911 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
270b3042
DV
11912
11913 if (has_edp_a(dev))
11914 intel_dp_init(dev, DP_A, PORT_A);
cb0953d7 11915
dc0fa718 11916 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
461ed3ca 11917 /* PCH SDVOB multiplex with HDMIB */
eef4eacb 11918 found = intel_sdvo_init(dev, PCH_SDVOB, true);
30ad48b7 11919 if (!found)
e2debe91 11920 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
5eb08b69 11921 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 11922 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
11923 }
11924
dc0fa718 11925 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
e2debe91 11926 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
30ad48b7 11927
dc0fa718 11928 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
e2debe91 11929 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
30ad48b7 11930
5eb08b69 11931 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 11932 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 11933
270b3042 11934 if (I915_READ(PCH_DP_D) & DP_DETECTED)
ab9d7c30 11935 intel_dp_init(dev, PCH_DP_D, PORT_D);
4a87d65d 11936 } else if (IS_VALLEYVIEW(dev)) {
585a94b8
AB
11937 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
11938 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
11939 PORT_B);
11940 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
11941 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
11942 }
11943
6f6005a5
JB
11944 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
11945 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
11946 PORT_C);
11947 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
5d8a7752 11948 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
6f6005a5 11949 }
19c03924 11950
9418c1f1
VS
11951 if (IS_CHERRYVIEW(dev)) {
11952 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED) {
11953 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
11954 PORT_D);
11955 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
11956 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
11957 }
11958 }
11959
3cfca973 11960 intel_dsi_init(dev);
103a196f 11961 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
27185ae1 11962 bool found = false;
7d57382e 11963
e2debe91 11964 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 11965 DRM_DEBUG_KMS("probing SDVOB\n");
e2debe91 11966 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
b01f2c3a
JB
11967 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
11968 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
e2debe91 11969 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
b01f2c3a 11970 }
27185ae1 11971
e7281eab 11972 if (!found && SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 11973 intel_dp_init(dev, DP_B, PORT_B);
725e30ad 11974 }
13520b05
KH
11975
11976 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 11977
e2debe91 11978 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 11979 DRM_DEBUG_KMS("probing SDVOC\n");
e2debe91 11980 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
b01f2c3a 11981 }
27185ae1 11982
e2debe91 11983 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
27185ae1 11984
b01f2c3a
JB
11985 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
11986 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
e2debe91 11987 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
b01f2c3a 11988 }
e7281eab 11989 if (SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 11990 intel_dp_init(dev, DP_C, PORT_C);
725e30ad 11991 }
27185ae1 11992
b01f2c3a 11993 if (SUPPORTS_INTEGRATED_DP(dev) &&
e7281eab 11994 (I915_READ(DP_D) & DP_DETECTED))
ab9d7c30 11995 intel_dp_init(dev, DP_D, PORT_D);
bad720ff 11996 } else if (IS_GEN2(dev))
79e53945
JB
11997 intel_dvo_init(dev);
11998
103a196f 11999 if (SUPPORTS_TV(dev))
79e53945
JB
12000 intel_tv_init(dev);
12001
7c8f8a70
RV
12002 intel_edp_psr_init(dev);
12003
4ef69c7a
CW
12004 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
12005 encoder->base.possible_crtcs = encoder->crtc_mask;
12006 encoder->base.possible_clones =
66a9278e 12007 intel_encoder_clones(encoder);
79e53945 12008 }
47356eb6 12009
dde86e2d 12010 intel_init_pch_refclk(dev);
270b3042
DV
12011
12012 drm_helper_move_panel_connectors_to_head(dev);
79e53945
JB
12013}
12014
12015static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12016{
60a5ca01 12017 struct drm_device *dev = fb->dev;
79e53945 12018 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945 12019
ef2d633e 12020 drm_framebuffer_cleanup(fb);
60a5ca01 12021 mutex_lock(&dev->struct_mutex);
ef2d633e 12022 WARN_ON(!intel_fb->obj->framebuffer_references--);
60a5ca01
VS
12023 drm_gem_object_unreference(&intel_fb->obj->base);
12024 mutex_unlock(&dev->struct_mutex);
79e53945
JB
12025 kfree(intel_fb);
12026}
12027
12028static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 12029 struct drm_file *file,
79e53945
JB
12030 unsigned int *handle)
12031{
12032 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 12033 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 12034
05394f39 12035 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
12036}
12037
12038static const struct drm_framebuffer_funcs intel_fb_funcs = {
12039 .destroy = intel_user_framebuffer_destroy,
12040 .create_handle = intel_user_framebuffer_create_handle,
12041};
12042
b5ea642a
DV
12043static int intel_framebuffer_init(struct drm_device *dev,
12044 struct intel_framebuffer *intel_fb,
12045 struct drm_mode_fb_cmd2 *mode_cmd,
12046 struct drm_i915_gem_object *obj)
79e53945 12047{
a57ce0b2 12048 int aligned_height;
a35cdaa0 12049 int pitch_limit;
79e53945
JB
12050 int ret;
12051
dd4916c5
DV
12052 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12053
c16ed4be
CW
12054 if (obj->tiling_mode == I915_TILING_Y) {
12055 DRM_DEBUG("hardware does not support tiling Y\n");
57cd6508 12056 return -EINVAL;
c16ed4be 12057 }
57cd6508 12058
c16ed4be
CW
12059 if (mode_cmd->pitches[0] & 63) {
12060 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12061 mode_cmd->pitches[0]);
57cd6508 12062 return -EINVAL;
c16ed4be 12063 }
57cd6508 12064
a35cdaa0
CW
12065 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12066 pitch_limit = 32*1024;
12067 } else if (INTEL_INFO(dev)->gen >= 4) {
12068 if (obj->tiling_mode)
12069 pitch_limit = 16*1024;
12070 else
12071 pitch_limit = 32*1024;
12072 } else if (INTEL_INFO(dev)->gen >= 3) {
12073 if (obj->tiling_mode)
12074 pitch_limit = 8*1024;
12075 else
12076 pitch_limit = 16*1024;
12077 } else
12078 /* XXX DSPC is limited to 4k tiled */
12079 pitch_limit = 8*1024;
12080
12081 if (mode_cmd->pitches[0] > pitch_limit) {
12082 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12083 obj->tiling_mode ? "tiled" : "linear",
12084 mode_cmd->pitches[0], pitch_limit);
5d7bd705 12085 return -EINVAL;
c16ed4be 12086 }
5d7bd705
VS
12087
12088 if (obj->tiling_mode != I915_TILING_NONE &&
c16ed4be
CW
12089 mode_cmd->pitches[0] != obj->stride) {
12090 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12091 mode_cmd->pitches[0], obj->stride);
5d7bd705 12092 return -EINVAL;
c16ed4be 12093 }
5d7bd705 12094
57779d06 12095 /* Reject formats not supported by any plane early. */
308e5bcb 12096 switch (mode_cmd->pixel_format) {
57779d06 12097 case DRM_FORMAT_C8:
04b3924d
VS
12098 case DRM_FORMAT_RGB565:
12099 case DRM_FORMAT_XRGB8888:
12100 case DRM_FORMAT_ARGB8888:
57779d06
VS
12101 break;
12102 case DRM_FORMAT_XRGB1555:
12103 case DRM_FORMAT_ARGB1555:
c16ed4be 12104 if (INTEL_INFO(dev)->gen > 3) {
4ee62c76
VS
12105 DRM_DEBUG("unsupported pixel format: %s\n",
12106 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12107 return -EINVAL;
c16ed4be 12108 }
57779d06
VS
12109 break;
12110 case DRM_FORMAT_XBGR8888:
12111 case DRM_FORMAT_ABGR8888:
04b3924d
VS
12112 case DRM_FORMAT_XRGB2101010:
12113 case DRM_FORMAT_ARGB2101010:
57779d06
VS
12114 case DRM_FORMAT_XBGR2101010:
12115 case DRM_FORMAT_ABGR2101010:
c16ed4be 12116 if (INTEL_INFO(dev)->gen < 4) {
4ee62c76
VS
12117 DRM_DEBUG("unsupported pixel format: %s\n",
12118 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12119 return -EINVAL;
c16ed4be 12120 }
b5626747 12121 break;
04b3924d
VS
12122 case DRM_FORMAT_YUYV:
12123 case DRM_FORMAT_UYVY:
12124 case DRM_FORMAT_YVYU:
12125 case DRM_FORMAT_VYUY:
c16ed4be 12126 if (INTEL_INFO(dev)->gen < 5) {
4ee62c76
VS
12127 DRM_DEBUG("unsupported pixel format: %s\n",
12128 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12129 return -EINVAL;
c16ed4be 12130 }
57cd6508
CW
12131 break;
12132 default:
4ee62c76
VS
12133 DRM_DEBUG("unsupported pixel format: %s\n",
12134 drm_get_format_name(mode_cmd->pixel_format));
57cd6508
CW
12135 return -EINVAL;
12136 }
12137
90f9a336
VS
12138 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12139 if (mode_cmd->offsets[0] != 0)
12140 return -EINVAL;
12141
a57ce0b2
JB
12142 aligned_height = intel_align_height(dev, mode_cmd->height,
12143 obj->tiling_mode);
53155c0a
DV
12144 /* FIXME drm helper for size checks (especially planar formats)? */
12145 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12146 return -EINVAL;
12147
c7d73f6a
DV
12148 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12149 intel_fb->obj = obj;
80075d49 12150 intel_fb->obj->framebuffer_references++;
c7d73f6a 12151
79e53945
JB
12152 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12153 if (ret) {
12154 DRM_ERROR("framebuffer init failed %d\n", ret);
12155 return ret;
12156 }
12157
79e53945
JB
12158 return 0;
12159}
12160
79e53945
JB
12161static struct drm_framebuffer *
12162intel_user_framebuffer_create(struct drm_device *dev,
12163 struct drm_file *filp,
308e5bcb 12164 struct drm_mode_fb_cmd2 *mode_cmd)
79e53945 12165{
05394f39 12166 struct drm_i915_gem_object *obj;
79e53945 12167
308e5bcb
JB
12168 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12169 mode_cmd->handles[0]));
c8725226 12170 if (&obj->base == NULL)
cce13ff7 12171 return ERR_PTR(-ENOENT);
79e53945 12172
d2dff872 12173 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
12174}
12175
4520f53a 12176#ifndef CONFIG_DRM_I915_FBDEV
0632fef6 12177static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
4520f53a
DV
12178{
12179}
12180#endif
12181
79e53945 12182static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 12183 .fb_create = intel_user_framebuffer_create,
0632fef6 12184 .output_poll_changed = intel_fbdev_output_poll_changed,
79e53945
JB
12185};
12186
e70236a8
JB
12187/* Set up chip specific display functions */
12188static void intel_init_display(struct drm_device *dev)
12189{
12190 struct drm_i915_private *dev_priv = dev->dev_private;
12191
ee9300bb
DV
12192 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12193 dev_priv->display.find_dpll = g4x_find_best_dpll;
ef9348c8
CML
12194 else if (IS_CHERRYVIEW(dev))
12195 dev_priv->display.find_dpll = chv_find_best_dpll;
ee9300bb
DV
12196 else if (IS_VALLEYVIEW(dev))
12197 dev_priv->display.find_dpll = vlv_find_best_dpll;
12198 else if (IS_PINEVIEW(dev))
12199 dev_priv->display.find_dpll = pnv_find_best_dpll;
12200 else
12201 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12202
affa9354 12203 if (HAS_DDI(dev)) {
0e8ffe1b 12204 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
4c6baa59 12205 dev_priv->display.get_plane_config = ironlake_get_plane_config;
09b4ddf9 12206 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
4f771f10
PZ
12207 dev_priv->display.crtc_enable = haswell_crtc_enable;
12208 dev_priv->display.crtc_disable = haswell_crtc_disable;
df8ad70c 12209 dev_priv->display.off = ironlake_crtc_off;
262ca2b0
MR
12210 dev_priv->display.update_primary_plane =
12211 ironlake_update_primary_plane;
09b4ddf9 12212 } else if (HAS_PCH_SPLIT(dev)) {
0e8ffe1b 12213 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
4c6baa59 12214 dev_priv->display.get_plane_config = ironlake_get_plane_config;
f564048e 12215 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
76e5a89c
DV
12216 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12217 dev_priv->display.crtc_disable = ironlake_crtc_disable;
ee7b9f93 12218 dev_priv->display.off = ironlake_crtc_off;
262ca2b0
MR
12219 dev_priv->display.update_primary_plane =
12220 ironlake_update_primary_plane;
89b667f8
JB
12221 } else if (IS_VALLEYVIEW(dev)) {
12222 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
1ad292b5 12223 dev_priv->display.get_plane_config = i9xx_get_plane_config;
89b667f8
JB
12224 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12225 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12226 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12227 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12228 dev_priv->display.update_primary_plane =
12229 i9xx_update_primary_plane;
f564048e 12230 } else {
0e8ffe1b 12231 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
1ad292b5 12232 dev_priv->display.get_plane_config = i9xx_get_plane_config;
f564048e 12233 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
76e5a89c
DV
12234 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12235 dev_priv->display.crtc_disable = i9xx_crtc_disable;
ee7b9f93 12236 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12237 dev_priv->display.update_primary_plane =
12238 i9xx_update_primary_plane;
f564048e 12239 }
e70236a8 12240
e70236a8 12241 /* Returns the core display clock speed */
25eb05fc
JB
12242 if (IS_VALLEYVIEW(dev))
12243 dev_priv->display.get_display_clock_speed =
12244 valleyview_get_display_clock_speed;
12245 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
e70236a8
JB
12246 dev_priv->display.get_display_clock_speed =
12247 i945_get_display_clock_speed;
12248 else if (IS_I915G(dev))
12249 dev_priv->display.get_display_clock_speed =
12250 i915_get_display_clock_speed;
257a7ffc 12251 else if (IS_I945GM(dev) || IS_845G(dev))
e70236a8
JB
12252 dev_priv->display.get_display_clock_speed =
12253 i9xx_misc_get_display_clock_speed;
257a7ffc
DV
12254 else if (IS_PINEVIEW(dev))
12255 dev_priv->display.get_display_clock_speed =
12256 pnv_get_display_clock_speed;
e70236a8
JB
12257 else if (IS_I915GM(dev))
12258 dev_priv->display.get_display_clock_speed =
12259 i915gm_get_display_clock_speed;
12260 else if (IS_I865G(dev))
12261 dev_priv->display.get_display_clock_speed =
12262 i865_get_display_clock_speed;
f0f8a9ce 12263 else if (IS_I85X(dev))
e70236a8
JB
12264 dev_priv->display.get_display_clock_speed =
12265 i855_get_display_clock_speed;
12266 else /* 852, 830 */
12267 dev_priv->display.get_display_clock_speed =
12268 i830_get_display_clock_speed;
12269
7f8a8569 12270 if (HAS_PCH_SPLIT(dev)) {
f00a3ddf 12271 if (IS_GEN5(dev)) {
674cf967 12272 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
e0dac65e 12273 dev_priv->display.write_eld = ironlake_write_eld;
1398261a 12274 } else if (IS_GEN6(dev)) {
674cf967 12275 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
e0dac65e 12276 dev_priv->display.write_eld = ironlake_write_eld;
9a952a0d
PZ
12277 dev_priv->display.modeset_global_resources =
12278 snb_modeset_global_resources;
357555c0
JB
12279 } else if (IS_IVYBRIDGE(dev)) {
12280 /* FIXME: detect B0+ stepping and use auto training */
12281 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
e0dac65e 12282 dev_priv->display.write_eld = ironlake_write_eld;
01a415fd
DV
12283 dev_priv->display.modeset_global_resources =
12284 ivb_modeset_global_resources;
4e0bbc31 12285 } else if (IS_HASWELL(dev) || IS_GEN8(dev)) {
c82e4d26 12286 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
83358c85 12287 dev_priv->display.write_eld = haswell_write_eld;
d6dd9eb1
DV
12288 dev_priv->display.modeset_global_resources =
12289 haswell_modeset_global_resources;
a0e63c22 12290 }
6067aaea 12291 } else if (IS_G4X(dev)) {
e0dac65e 12292 dev_priv->display.write_eld = g4x_write_eld;
30a970c6
JB
12293 } else if (IS_VALLEYVIEW(dev)) {
12294 dev_priv->display.modeset_global_resources =
12295 valleyview_modeset_global_resources;
9ca2fe73 12296 dev_priv->display.write_eld = ironlake_write_eld;
e70236a8 12297 }
8c9f3aaf
JB
12298
12299 /* Default just returns -ENODEV to indicate unsupported */
12300 dev_priv->display.queue_flip = intel_default_queue_flip;
12301
12302 switch (INTEL_INFO(dev)->gen) {
12303 case 2:
12304 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12305 break;
12306
12307 case 3:
12308 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12309 break;
12310
12311 case 4:
12312 case 5:
12313 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12314 break;
12315
12316 case 6:
12317 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12318 break;
7c9017e5 12319 case 7:
4e0bbc31 12320 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
7c9017e5
JB
12321 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12322 break;
8c9f3aaf 12323 }
7bd688cd
JN
12324
12325 intel_panel_init_backlight_funcs(dev);
e70236a8
JB
12326}
12327
b690e96c
JB
12328/*
12329 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12330 * resume, or other times. This quirk makes sure that's the case for
12331 * affected systems.
12332 */
0206e353 12333static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
12334{
12335 struct drm_i915_private *dev_priv = dev->dev_private;
12336
12337 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 12338 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
12339}
12340
435793df
KP
12341/*
12342 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12343 */
12344static void quirk_ssc_force_disable(struct drm_device *dev)
12345{
12346 struct drm_i915_private *dev_priv = dev->dev_private;
12347 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 12348 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
12349}
12350
4dca20ef 12351/*
5a15ab5b
CE
12352 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12353 * brightness value
4dca20ef
CE
12354 */
12355static void quirk_invert_brightness(struct drm_device *dev)
12356{
12357 struct drm_i915_private *dev_priv = dev->dev_private;
12358 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 12359 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
12360}
12361
b690e96c
JB
12362struct intel_quirk {
12363 int device;
12364 int subsystem_vendor;
12365 int subsystem_device;
12366 void (*hook)(struct drm_device *dev);
12367};
12368
5f85f176
EE
12369/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
12370struct intel_dmi_quirk {
12371 void (*hook)(struct drm_device *dev);
12372 const struct dmi_system_id (*dmi_id_list)[];
12373};
12374
12375static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
12376{
12377 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
12378 return 1;
12379}
12380
12381static const struct intel_dmi_quirk intel_dmi_quirks[] = {
12382 {
12383 .dmi_id_list = &(const struct dmi_system_id[]) {
12384 {
12385 .callback = intel_dmi_reverse_brightness,
12386 .ident = "NCR Corporation",
12387 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
12388 DMI_MATCH(DMI_PRODUCT_NAME, ""),
12389 },
12390 },
12391 { } /* terminating entry */
12392 },
12393 .hook = quirk_invert_brightness,
12394 },
12395};
12396
c43b5634 12397static struct intel_quirk intel_quirks[] = {
b690e96c 12398 /* HP Mini needs pipe A force quirk (LP: #322104) */
0206e353 12399 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
b690e96c 12400
b690e96c
JB
12401 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
12402 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
12403
b690e96c
JB
12404 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
12405 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
12406
435793df
KP
12407 /* Lenovo U160 cannot use SSC on LVDS */
12408 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
12409
12410 /* Sony Vaio Y cannot use SSC on LVDS */
12411 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b 12412
be505f64
AH
12413 /* Acer Aspire 5734Z must invert backlight brightness */
12414 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
12415
12416 /* Acer/eMachines G725 */
12417 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
12418
12419 /* Acer/eMachines e725 */
12420 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
12421
12422 /* Acer/Packard Bell NCL20 */
12423 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
12424
12425 /* Acer Aspire 4736Z */
12426 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
0f540c3a
JN
12427
12428 /* Acer Aspire 5336 */
12429 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
b690e96c
JB
12430};
12431
12432static void intel_init_quirks(struct drm_device *dev)
12433{
12434 struct pci_dev *d = dev->pdev;
12435 int i;
12436
12437 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
12438 struct intel_quirk *q = &intel_quirks[i];
12439
12440 if (d->device == q->device &&
12441 (d->subsystem_vendor == q->subsystem_vendor ||
12442 q->subsystem_vendor == PCI_ANY_ID) &&
12443 (d->subsystem_device == q->subsystem_device ||
12444 q->subsystem_device == PCI_ANY_ID))
12445 q->hook(dev);
12446 }
5f85f176
EE
12447 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
12448 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
12449 intel_dmi_quirks[i].hook(dev);
12450 }
b690e96c
JB
12451}
12452
9cce37f4
JB
12453/* Disable the VGA plane that we never use */
12454static void i915_disable_vga(struct drm_device *dev)
12455{
12456 struct drm_i915_private *dev_priv = dev->dev_private;
12457 u8 sr1;
766aa1c4 12458 u32 vga_reg = i915_vgacntrl_reg(dev);
9cce37f4 12459
2b37c616 12460 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
9cce37f4 12461 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 12462 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
12463 sr1 = inb(VGA_SR_DATA);
12464 outb(sr1 | 1<<5, VGA_SR_DATA);
12465 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
12466 udelay(300);
12467
12468 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
12469 POSTING_READ(vga_reg);
12470}
12471
f817586c
DV
12472void intel_modeset_init_hw(struct drm_device *dev)
12473{
a8f78b58
ED
12474 intel_prepare_ddi(dev);
12475
f8bf63fd
VS
12476 if (IS_VALLEYVIEW(dev))
12477 vlv_update_cdclk(dev);
12478
f817586c
DV
12479 intel_init_clock_gating(dev);
12480
5382f5f3 12481 intel_reset_dpio(dev);
40e9cf64 12482
8090c6b9 12483 intel_enable_gt_powersave(dev);
f817586c
DV
12484}
12485
7d708ee4
ID
12486void intel_modeset_suspend_hw(struct drm_device *dev)
12487{
12488 intel_suspend_hw(dev);
12489}
12490
79e53945
JB
12491void intel_modeset_init(struct drm_device *dev)
12492{
652c393a 12493 struct drm_i915_private *dev_priv = dev->dev_private;
1fe47785 12494 int sprite, ret;
8cc87b75 12495 enum pipe pipe;
46f297fb 12496 struct intel_crtc *crtc;
79e53945
JB
12497
12498 drm_mode_config_init(dev);
12499
12500 dev->mode_config.min_width = 0;
12501 dev->mode_config.min_height = 0;
12502
019d96cb
DA
12503 dev->mode_config.preferred_depth = 24;
12504 dev->mode_config.prefer_shadow = 1;
12505
e6ecefaa 12506 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 12507
b690e96c
JB
12508 intel_init_quirks(dev);
12509
1fa61106
ED
12510 intel_init_pm(dev);
12511
e3c74757
BW
12512 if (INTEL_INFO(dev)->num_pipes == 0)
12513 return;
12514
e70236a8
JB
12515 intel_init_display(dev);
12516
a6c45cf0
CW
12517 if (IS_GEN2(dev)) {
12518 dev->mode_config.max_width = 2048;
12519 dev->mode_config.max_height = 2048;
12520 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
12521 dev->mode_config.max_width = 4096;
12522 dev->mode_config.max_height = 4096;
79e53945 12523 } else {
a6c45cf0
CW
12524 dev->mode_config.max_width = 8192;
12525 dev->mode_config.max_height = 8192;
79e53945 12526 }
068be561
DL
12527
12528 if (IS_GEN2(dev)) {
12529 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
12530 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
12531 } else {
12532 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
12533 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
12534 }
12535
5d4545ae 12536 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
79e53945 12537
28c97730 12538 DRM_DEBUG_KMS("%d display pipe%s available.\n",
7eb552ae
BW
12539 INTEL_INFO(dev)->num_pipes,
12540 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
79e53945 12541
8cc87b75
DL
12542 for_each_pipe(pipe) {
12543 intel_crtc_init(dev, pipe);
1fe47785
DL
12544 for_each_sprite(pipe, sprite) {
12545 ret = intel_plane_init(dev, pipe, sprite);
7f1f3851 12546 if (ret)
06da8da2 12547 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
1fe47785 12548 pipe_name(pipe), sprite_name(pipe, sprite), ret);
7f1f3851 12549 }
79e53945
JB
12550 }
12551
f42bb70d 12552 intel_init_dpio(dev);
5382f5f3 12553 intel_reset_dpio(dev);
f42bb70d 12554
e72f9fbf 12555 intel_shared_dpll_init(dev);
ee7b9f93 12556
9cce37f4
JB
12557 /* Just disable it once at startup */
12558 i915_disable_vga(dev);
79e53945 12559 intel_setup_outputs(dev);
11be49eb
CW
12560
12561 /* Just in case the BIOS is doing something questionable. */
12562 intel_disable_fbc(dev);
fa9fa083 12563
6e9f798d 12564 drm_modeset_lock_all(dev);
fa9fa083 12565 intel_modeset_setup_hw_state(dev, false);
6e9f798d 12566 drm_modeset_unlock_all(dev);
46f297fb 12567
d3fcc808 12568 for_each_intel_crtc(dev, crtc) {
46f297fb
JB
12569 if (!crtc->active)
12570 continue;
12571
46f297fb 12572 /*
46f297fb
JB
12573 * Note that reserving the BIOS fb up front prevents us
12574 * from stuffing other stolen allocations like the ring
12575 * on top. This prevents some ugliness at boot time, and
12576 * can even allow for smooth boot transitions if the BIOS
12577 * fb is large enough for the active pipe configuration.
12578 */
12579 if (dev_priv->display.get_plane_config) {
12580 dev_priv->display.get_plane_config(crtc,
12581 &crtc->plane_config);
12582 /*
12583 * If the fb is shared between multiple heads, we'll
12584 * just get the first one.
12585 */
484b41dd 12586 intel_find_plane_obj(crtc, &crtc->plane_config);
46f297fb 12587 }
46f297fb 12588 }
2c7111db
CW
12589}
12590
7fad798e
DV
12591static void intel_enable_pipe_a(struct drm_device *dev)
12592{
12593 struct intel_connector *connector;
12594 struct drm_connector *crt = NULL;
12595 struct intel_load_detect_pipe load_detect_temp;
51fd371b 12596 struct drm_modeset_acquire_ctx ctx;
7fad798e
DV
12597
12598 /* We can't just switch on the pipe A, we need to set things up with a
12599 * proper mode and output configuration. As a gross hack, enable pipe A
12600 * by enabling the load detect pipe once. */
12601 list_for_each_entry(connector,
12602 &dev->mode_config.connector_list,
12603 base.head) {
12604 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
12605 crt = &connector->base;
12606 break;
12607 }
12608 }
12609
12610 if (!crt)
12611 return;
12612
51fd371b
RC
12613 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, &ctx))
12614 intel_release_load_detect_pipe(crt, &load_detect_temp, &ctx);
7fad798e 12615
652c393a 12616
7fad798e
DV
12617}
12618
fa555837
DV
12619static bool
12620intel_check_plane_mapping(struct intel_crtc *crtc)
12621{
7eb552ae
BW
12622 struct drm_device *dev = crtc->base.dev;
12623 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837
DV
12624 u32 reg, val;
12625
7eb552ae 12626 if (INTEL_INFO(dev)->num_pipes == 1)
fa555837
DV
12627 return true;
12628
12629 reg = DSPCNTR(!crtc->plane);
12630 val = I915_READ(reg);
12631
12632 if ((val & DISPLAY_PLANE_ENABLE) &&
12633 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
12634 return false;
12635
12636 return true;
12637}
12638
24929352
DV
12639static void intel_sanitize_crtc(struct intel_crtc *crtc)
12640{
12641 struct drm_device *dev = crtc->base.dev;
12642 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837 12643 u32 reg;
24929352 12644
24929352 12645 /* Clear any frame start delays used for debugging left by the BIOS */
3b117c8f 12646 reg = PIPECONF(crtc->config.cpu_transcoder);
24929352
DV
12647 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
12648
d3eaf884
VS
12649 /* restore vblank interrupts to correct state */
12650 if (crtc->active)
12651 drm_vblank_on(dev, crtc->pipe);
12652 else
12653 drm_vblank_off(dev, crtc->pipe);
12654
24929352 12655 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
12656 * disable the crtc (and hence change the state) if it is wrong. Note
12657 * that gen4+ has a fixed plane -> pipe mapping. */
12658 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
12659 struct intel_connector *connector;
12660 bool plane;
12661
24929352
DV
12662 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
12663 crtc->base.base.id);
12664
12665 /* Pipe has the wrong plane attached and the plane is active.
12666 * Temporarily change the plane mapping and disable everything
12667 * ... */
12668 plane = crtc->plane;
12669 crtc->plane = !plane;
12670 dev_priv->display.crtc_disable(&crtc->base);
12671 crtc->plane = plane;
12672
12673 /* ... and break all links. */
12674 list_for_each_entry(connector, &dev->mode_config.connector_list,
12675 base.head) {
12676 if (connector->encoder->base.crtc != &crtc->base)
12677 continue;
12678
7f1950fb
EE
12679 connector->base.dpms = DRM_MODE_DPMS_OFF;
12680 connector->base.encoder = NULL;
24929352 12681 }
7f1950fb
EE
12682 /* multiple connectors may have the same encoder:
12683 * handle them and break crtc link separately */
12684 list_for_each_entry(connector, &dev->mode_config.connector_list,
12685 base.head)
12686 if (connector->encoder->base.crtc == &crtc->base) {
12687 connector->encoder->base.crtc = NULL;
12688 connector->encoder->connectors_active = false;
12689 }
24929352
DV
12690
12691 WARN_ON(crtc->active);
12692 crtc->base.enabled = false;
12693 }
24929352 12694
7fad798e
DV
12695 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
12696 crtc->pipe == PIPE_A && !crtc->active) {
12697 /* BIOS forgot to enable pipe A, this mostly happens after
12698 * resume. Force-enable the pipe to fix this, the update_dpms
12699 * call below we restore the pipe to the right state, but leave
12700 * the required bits on. */
12701 intel_enable_pipe_a(dev);
12702 }
12703
24929352
DV
12704 /* Adjust the state of the output pipe according to whether we
12705 * have active connectors/encoders. */
12706 intel_crtc_update_dpms(&crtc->base);
12707
12708 if (crtc->active != crtc->base.enabled) {
12709 struct intel_encoder *encoder;
12710
12711 /* This can happen either due to bugs in the get_hw_state
12712 * functions or because the pipe is force-enabled due to the
12713 * pipe A quirk. */
12714 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
12715 crtc->base.base.id,
12716 crtc->base.enabled ? "enabled" : "disabled",
12717 crtc->active ? "enabled" : "disabled");
12718
12719 crtc->base.enabled = crtc->active;
12720
12721 /* Because we only establish the connector -> encoder ->
12722 * crtc links if something is active, this means the
12723 * crtc is now deactivated. Break the links. connector
12724 * -> encoder links are only establish when things are
12725 * actually up, hence no need to break them. */
12726 WARN_ON(crtc->active);
12727
12728 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
12729 WARN_ON(encoder->connectors_active);
12730 encoder->base.crtc = NULL;
12731 }
12732 }
c5ab3bc0
DV
12733
12734 if (crtc->active || IS_VALLEYVIEW(dev) || INTEL_INFO(dev)->gen < 5) {
4cc31489
DV
12735 /*
12736 * We start out with underrun reporting disabled to avoid races.
12737 * For correct bookkeeping mark this on active crtcs.
12738 *
c5ab3bc0
DV
12739 * Also on gmch platforms we dont have any hardware bits to
12740 * disable the underrun reporting. Which means we need to start
12741 * out with underrun reporting disabled also on inactive pipes,
12742 * since otherwise we'll complain about the garbage we read when
12743 * e.g. coming up after runtime pm.
12744 *
4cc31489
DV
12745 * No protection against concurrent access is required - at
12746 * worst a fifo underrun happens which also sets this to false.
12747 */
12748 crtc->cpu_fifo_underrun_disabled = true;
12749 crtc->pch_fifo_underrun_disabled = true;
80715b2f
VS
12750
12751 update_scanline_offset(crtc);
4cc31489 12752 }
24929352
DV
12753}
12754
12755static void intel_sanitize_encoder(struct intel_encoder *encoder)
12756{
12757 struct intel_connector *connector;
12758 struct drm_device *dev = encoder->base.dev;
12759
12760 /* We need to check both for a crtc link (meaning that the
12761 * encoder is active and trying to read from a pipe) and the
12762 * pipe itself being active. */
12763 bool has_active_crtc = encoder->base.crtc &&
12764 to_intel_crtc(encoder->base.crtc)->active;
12765
12766 if (encoder->connectors_active && !has_active_crtc) {
12767 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
12768 encoder->base.base.id,
8e329a03 12769 encoder->base.name);
24929352
DV
12770
12771 /* Connector is active, but has no active pipe. This is
12772 * fallout from our resume register restoring. Disable
12773 * the encoder manually again. */
12774 if (encoder->base.crtc) {
12775 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
12776 encoder->base.base.id,
8e329a03 12777 encoder->base.name);
24929352 12778 encoder->disable(encoder);
a62d1497
VS
12779 if (encoder->post_disable)
12780 encoder->post_disable(encoder);
24929352 12781 }
7f1950fb
EE
12782 encoder->base.crtc = NULL;
12783 encoder->connectors_active = false;
24929352
DV
12784
12785 /* Inconsistent output/port/pipe state happens presumably due to
12786 * a bug in one of the get_hw_state functions. Or someplace else
12787 * in our code, like the register restore mess on resume. Clamp
12788 * things to off as a safer default. */
12789 list_for_each_entry(connector,
12790 &dev->mode_config.connector_list,
12791 base.head) {
12792 if (connector->encoder != encoder)
12793 continue;
7f1950fb
EE
12794 connector->base.dpms = DRM_MODE_DPMS_OFF;
12795 connector->base.encoder = NULL;
24929352
DV
12796 }
12797 }
12798 /* Enabled encoders without active connectors will be fixed in
12799 * the crtc fixup. */
12800}
12801
04098753 12802void i915_redisable_vga_power_on(struct drm_device *dev)
0fde901f
KM
12803{
12804 struct drm_i915_private *dev_priv = dev->dev_private;
766aa1c4 12805 u32 vga_reg = i915_vgacntrl_reg(dev);
0fde901f 12806
04098753
ID
12807 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
12808 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
12809 i915_disable_vga(dev);
12810 }
12811}
12812
12813void i915_redisable_vga(struct drm_device *dev)
12814{
12815 struct drm_i915_private *dev_priv = dev->dev_private;
12816
8dc8a27c
PZ
12817 /* This function can be called both from intel_modeset_setup_hw_state or
12818 * at a very early point in our resume sequence, where the power well
12819 * structures are not yet restored. Since this function is at a very
12820 * paranoid "someone might have enabled VGA while we were not looking"
12821 * level, just check if the power well is enabled instead of trying to
12822 * follow the "don't touch the power well if we don't need it" policy
12823 * the rest of the driver uses. */
04098753 12824 if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_VGA))
8dc8a27c
PZ
12825 return;
12826
04098753 12827 i915_redisable_vga_power_on(dev);
0fde901f
KM
12828}
12829
98ec7739
VS
12830static bool primary_get_hw_state(struct intel_crtc *crtc)
12831{
12832 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
12833
12834 if (!crtc->active)
12835 return false;
12836
12837 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
12838}
12839
30e984df 12840static void intel_modeset_readout_hw_state(struct drm_device *dev)
24929352
DV
12841{
12842 struct drm_i915_private *dev_priv = dev->dev_private;
12843 enum pipe pipe;
24929352
DV
12844 struct intel_crtc *crtc;
12845 struct intel_encoder *encoder;
12846 struct intel_connector *connector;
5358901f 12847 int i;
24929352 12848
d3fcc808 12849 for_each_intel_crtc(dev, crtc) {
88adfff1 12850 memset(&crtc->config, 0, sizeof(crtc->config));
3b117c8f 12851
9953599b
DV
12852 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
12853
0e8ffe1b
DV
12854 crtc->active = dev_priv->display.get_pipe_config(crtc,
12855 &crtc->config);
24929352
DV
12856
12857 crtc->base.enabled = crtc->active;
98ec7739 12858 crtc->primary_enabled = primary_get_hw_state(crtc);
24929352
DV
12859
12860 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
12861 crtc->base.base.id,
12862 crtc->active ? "enabled" : "disabled");
12863 }
12864
5358901f
DV
12865 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12866 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12867
12868 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
12869 pll->active = 0;
d3fcc808 12870 for_each_intel_crtc(dev, crtc) {
5358901f
DV
12871 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12872 pll->active++;
12873 }
12874 pll->refcount = pll->active;
12875
35c95375
DV
12876 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
12877 pll->name, pll->refcount, pll->on);
bd2bb1b9
PZ
12878
12879 if (pll->refcount)
12880 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5358901f
DV
12881 }
12882
24929352
DV
12883 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
12884 base.head) {
12885 pipe = 0;
12886
12887 if (encoder->get_hw_state(encoder, &pipe)) {
045ac3b5
JB
12888 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
12889 encoder->base.crtc = &crtc->base;
1d37b689 12890 encoder->get_config(encoder, &crtc->config);
24929352
DV
12891 } else {
12892 encoder->base.crtc = NULL;
12893 }
12894
12895 encoder->connectors_active = false;
6f2bcceb 12896 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
24929352 12897 encoder->base.base.id,
8e329a03 12898 encoder->base.name,
24929352 12899 encoder->base.crtc ? "enabled" : "disabled",
6f2bcceb 12900 pipe_name(pipe));
24929352
DV
12901 }
12902
12903 list_for_each_entry(connector, &dev->mode_config.connector_list,
12904 base.head) {
12905 if (connector->get_hw_state(connector)) {
12906 connector->base.dpms = DRM_MODE_DPMS_ON;
12907 connector->encoder->connectors_active = true;
12908 connector->base.encoder = &connector->encoder->base;
12909 } else {
12910 connector->base.dpms = DRM_MODE_DPMS_OFF;
12911 connector->base.encoder = NULL;
12912 }
12913 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
12914 connector->base.base.id,
c23cc417 12915 connector->base.name,
24929352
DV
12916 connector->base.encoder ? "enabled" : "disabled");
12917 }
30e984df
DV
12918}
12919
12920/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
12921 * and i915 state tracking structures. */
12922void intel_modeset_setup_hw_state(struct drm_device *dev,
12923 bool force_restore)
12924{
12925 struct drm_i915_private *dev_priv = dev->dev_private;
12926 enum pipe pipe;
30e984df
DV
12927 struct intel_crtc *crtc;
12928 struct intel_encoder *encoder;
35c95375 12929 int i;
30e984df
DV
12930
12931 intel_modeset_readout_hw_state(dev);
24929352 12932
babea61d
JB
12933 /*
12934 * Now that we have the config, copy it to each CRTC struct
12935 * Note that this could go away if we move to using crtc_config
12936 * checking everywhere.
12937 */
d3fcc808 12938 for_each_intel_crtc(dev, crtc) {
d330a953 12939 if (crtc->active && i915.fastboot) {
f6a83288 12940 intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
babea61d
JB
12941 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
12942 crtc->base.base.id);
12943 drm_mode_debug_printmodeline(&crtc->base.mode);
12944 }
12945 }
12946
24929352
DV
12947 /* HW state is read out, now we need to sanitize this mess. */
12948 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
12949 base.head) {
12950 intel_sanitize_encoder(encoder);
12951 }
12952
12953 for_each_pipe(pipe) {
12954 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
12955 intel_sanitize_crtc(crtc);
c0b03411 12956 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
24929352 12957 }
9a935856 12958
35c95375
DV
12959 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12960 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12961
12962 if (!pll->on || pll->active)
12963 continue;
12964
12965 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
12966
12967 pll->disable(dev_priv, pll);
12968 pll->on = false;
12969 }
12970
96f90c54 12971 if (HAS_PCH_SPLIT(dev))
243e6a44
VS
12972 ilk_wm_get_hw_state(dev);
12973
45e2b5f6 12974 if (force_restore) {
7d0bc1ea
VS
12975 i915_redisable_vga(dev);
12976
f30da187
DV
12977 /*
12978 * We need to use raw interfaces for restoring state to avoid
12979 * checking (bogus) intermediate states.
12980 */
45e2b5f6 12981 for_each_pipe(pipe) {
b5644d05
JB
12982 struct drm_crtc *crtc =
12983 dev_priv->pipe_to_crtc_mapping[pipe];
f30da187
DV
12984
12985 __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
f4510a27 12986 crtc->primary->fb);
45e2b5f6
DV
12987 }
12988 } else {
12989 intel_modeset_update_staged_output_state(dev);
12990 }
8af6cf88
DV
12991
12992 intel_modeset_check_state(dev);
2c7111db
CW
12993}
12994
12995void intel_modeset_gem_init(struct drm_device *dev)
12996{
484b41dd 12997 struct drm_crtc *c;
2ff8fde1 12998 struct drm_i915_gem_object *obj;
484b41dd 12999
ae48434c
ID
13000 mutex_lock(&dev->struct_mutex);
13001 intel_init_gt_powersave(dev);
13002 mutex_unlock(&dev->struct_mutex);
13003
1833b134 13004 intel_modeset_init_hw(dev);
02e792fb
DV
13005
13006 intel_setup_overlay(dev);
484b41dd
JB
13007
13008 /*
13009 * Make sure any fbs we allocated at startup are properly
13010 * pinned & fenced. When we do the allocation it's too early
13011 * for this.
13012 */
13013 mutex_lock(&dev->struct_mutex);
70e1e0ec 13014 for_each_crtc(dev, c) {
2ff8fde1
MR
13015 obj = intel_fb_obj(c->primary->fb);
13016 if (obj == NULL)
484b41dd
JB
13017 continue;
13018
2ff8fde1 13019 if (intel_pin_and_fence_fb_obj(dev, obj, NULL)) {
484b41dd
JB
13020 DRM_ERROR("failed to pin boot fb on pipe %d\n",
13021 to_intel_crtc(c)->pipe);
66e514c1
DA
13022 drm_framebuffer_unreference(c->primary->fb);
13023 c->primary->fb = NULL;
484b41dd
JB
13024 }
13025 }
13026 mutex_unlock(&dev->struct_mutex);
79e53945
JB
13027}
13028
4932e2c3
ID
13029void intel_connector_unregister(struct intel_connector *intel_connector)
13030{
13031 struct drm_connector *connector = &intel_connector->base;
13032
13033 intel_panel_destroy_backlight(connector);
13034 drm_sysfs_connector_remove(connector);
13035}
13036
79e53945
JB
13037void intel_modeset_cleanup(struct drm_device *dev)
13038{
652c393a 13039 struct drm_i915_private *dev_priv = dev->dev_private;
d9255d57 13040 struct drm_connector *connector;
652c393a 13041
fd0c0642
DV
13042 /*
13043 * Interrupts and polling as the first thing to avoid creating havoc.
13044 * Too much stuff here (turning of rps, connectors, ...) would
13045 * experience fancy races otherwise.
13046 */
13047 drm_irq_uninstall(dev);
13048 cancel_work_sync(&dev_priv->hotplug_work);
eb21b92b
JB
13049 dev_priv->pm._irqs_disabled = true;
13050
fd0c0642
DV
13051 /*
13052 * Due to the hpd irq storm handling the hotplug work can re-arm the
13053 * poll handlers. Hence disable polling after hpd handling is shut down.
13054 */
f87ea761 13055 drm_kms_helper_poll_fini(dev);
fd0c0642 13056
652c393a
JB
13057 mutex_lock(&dev->struct_mutex);
13058
723bfd70
JB
13059 intel_unregister_dsm_handler();
13060
973d04f9 13061 intel_disable_fbc(dev);
e70236a8 13062
8090c6b9 13063 intel_disable_gt_powersave(dev);
0cdab21f 13064
930ebb46
DV
13065 ironlake_teardown_rc6(dev);
13066
69341a5e
KH
13067 mutex_unlock(&dev->struct_mutex);
13068
1630fe75
CW
13069 /* flush any delayed tasks or pending work */
13070 flush_scheduled_work();
13071
db31af1d
JN
13072 /* destroy the backlight and sysfs files before encoders/connectors */
13073 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4932e2c3
ID
13074 struct intel_connector *intel_connector;
13075
13076 intel_connector = to_intel_connector(connector);
13077 intel_connector->unregister(intel_connector);
db31af1d 13078 }
d9255d57 13079
79e53945 13080 drm_mode_config_cleanup(dev);
4d7bb011
DV
13081
13082 intel_cleanup_overlay(dev);
ae48434c
ID
13083
13084 mutex_lock(&dev->struct_mutex);
13085 intel_cleanup_gt_powersave(dev);
13086 mutex_unlock(&dev->struct_mutex);
79e53945
JB
13087}
13088
f1c79df3
ZW
13089/*
13090 * Return which encoder is currently attached for connector.
13091 */
df0e9248 13092struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 13093{
df0e9248
CW
13094 return &intel_attached_encoder(connector)->base;
13095}
f1c79df3 13096
df0e9248
CW
13097void intel_connector_attach_encoder(struct intel_connector *connector,
13098 struct intel_encoder *encoder)
13099{
13100 connector->encoder = encoder;
13101 drm_mode_connector_attach_encoder(&connector->base,
13102 &encoder->base);
79e53945 13103}
28d52043
DA
13104
13105/*
13106 * set vga decode state - true == enable VGA decode
13107 */
13108int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13109{
13110 struct drm_i915_private *dev_priv = dev->dev_private;
a885b3cc 13111 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
28d52043
DA
13112 u16 gmch_ctrl;
13113
75fa041d
CW
13114 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13115 DRM_ERROR("failed to read control word\n");
13116 return -EIO;
13117 }
13118
c0cc8a55
CW
13119 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13120 return 0;
13121
28d52043
DA
13122 if (state)
13123 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13124 else
13125 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
75fa041d
CW
13126
13127 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13128 DRM_ERROR("failed to write control word\n");
13129 return -EIO;
13130 }
13131
28d52043
DA
13132 return 0;
13133}
c4a1d9e4 13134
c4a1d9e4 13135struct intel_display_error_state {
ff57f1b0
PZ
13136
13137 u32 power_well_driver;
13138
63b66e5b
CW
13139 int num_transcoders;
13140
c4a1d9e4
CW
13141 struct intel_cursor_error_state {
13142 u32 control;
13143 u32 position;
13144 u32 base;
13145 u32 size;
52331309 13146 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
13147
13148 struct intel_pipe_error_state {
ddf9c536 13149 bool power_domain_on;
c4a1d9e4 13150 u32 source;
f301b1e1 13151 u32 stat;
52331309 13152 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
13153
13154 struct intel_plane_error_state {
13155 u32 control;
13156 u32 stride;
13157 u32 size;
13158 u32 pos;
13159 u32 addr;
13160 u32 surface;
13161 u32 tile_offset;
52331309 13162 } plane[I915_MAX_PIPES];
63b66e5b
CW
13163
13164 struct intel_transcoder_error_state {
ddf9c536 13165 bool power_domain_on;
63b66e5b
CW
13166 enum transcoder cpu_transcoder;
13167
13168 u32 conf;
13169
13170 u32 htotal;
13171 u32 hblank;
13172 u32 hsync;
13173 u32 vtotal;
13174 u32 vblank;
13175 u32 vsync;
13176 } transcoder[4];
c4a1d9e4
CW
13177};
13178
13179struct intel_display_error_state *
13180intel_display_capture_error_state(struct drm_device *dev)
13181{
fbee40df 13182 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4 13183 struct intel_display_error_state *error;
63b66e5b
CW
13184 int transcoders[] = {
13185 TRANSCODER_A,
13186 TRANSCODER_B,
13187 TRANSCODER_C,
13188 TRANSCODER_EDP,
13189 };
c4a1d9e4
CW
13190 int i;
13191
63b66e5b
CW
13192 if (INTEL_INFO(dev)->num_pipes == 0)
13193 return NULL;
13194
9d1cb914 13195 error = kzalloc(sizeof(*error), GFP_ATOMIC);
c4a1d9e4
CW
13196 if (error == NULL)
13197 return NULL;
13198
190be112 13199 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
ff57f1b0
PZ
13200 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13201
52331309 13202 for_each_pipe(i) {
ddf9c536 13203 error->pipe[i].power_domain_on =
bfafe93a
ID
13204 intel_display_power_enabled_unlocked(dev_priv,
13205 POWER_DOMAIN_PIPE(i));
ddf9c536 13206 if (!error->pipe[i].power_domain_on)
9d1cb914
PZ
13207 continue;
13208
5efb3e28
VS
13209 error->cursor[i].control = I915_READ(CURCNTR(i));
13210 error->cursor[i].position = I915_READ(CURPOS(i));
13211 error->cursor[i].base = I915_READ(CURBASE(i));
c4a1d9e4
CW
13212
13213 error->plane[i].control = I915_READ(DSPCNTR(i));
13214 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
80ca378b 13215 if (INTEL_INFO(dev)->gen <= 3) {
51889b35 13216 error->plane[i].size = I915_READ(DSPSIZE(i));
80ca378b
PZ
13217 error->plane[i].pos = I915_READ(DSPPOS(i));
13218 }
ca291363
PZ
13219 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13220 error->plane[i].addr = I915_READ(DSPADDR(i));
c4a1d9e4
CW
13221 if (INTEL_INFO(dev)->gen >= 4) {
13222 error->plane[i].surface = I915_READ(DSPSURF(i));
13223 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13224 }
13225
c4a1d9e4 13226 error->pipe[i].source = I915_READ(PIPESRC(i));
f301b1e1 13227
3abfce77 13228 if (HAS_GMCH_DISPLAY(dev))
f301b1e1 13229 error->pipe[i].stat = I915_READ(PIPESTAT(i));
63b66e5b
CW
13230 }
13231
13232 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13233 if (HAS_DDI(dev_priv->dev))
13234 error->num_transcoders++; /* Account for eDP. */
13235
13236 for (i = 0; i < error->num_transcoders; i++) {
13237 enum transcoder cpu_transcoder = transcoders[i];
13238
ddf9c536 13239 error->transcoder[i].power_domain_on =
bfafe93a 13240 intel_display_power_enabled_unlocked(dev_priv,
38cc1daf 13241 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
ddf9c536 13242 if (!error->transcoder[i].power_domain_on)
9d1cb914
PZ
13243 continue;
13244
63b66e5b
CW
13245 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13246
13247 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13248 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13249 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13250 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13251 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13252 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13253 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
c4a1d9e4
CW
13254 }
13255
13256 return error;
13257}
13258
edc3d884
MK
13259#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13260
c4a1d9e4 13261void
edc3d884 13262intel_display_print_error_state(struct drm_i915_error_state_buf *m,
c4a1d9e4
CW
13263 struct drm_device *dev,
13264 struct intel_display_error_state *error)
13265{
13266 int i;
13267
63b66e5b
CW
13268 if (!error)
13269 return;
13270
edc3d884 13271 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
190be112 13272 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
edc3d884 13273 err_printf(m, "PWR_WELL_CTL2: %08x\n",
ff57f1b0 13274 error->power_well_driver);
52331309 13275 for_each_pipe(i) {
edc3d884 13276 err_printf(m, "Pipe [%d]:\n", i);
ddf9c536
ID
13277 err_printf(m, " Power: %s\n",
13278 error->pipe[i].power_domain_on ? "on" : "off");
edc3d884 13279 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
f301b1e1 13280 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
edc3d884
MK
13281
13282 err_printf(m, "Plane [%d]:\n", i);
13283 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
13284 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
80ca378b 13285 if (INTEL_INFO(dev)->gen <= 3) {
edc3d884
MK
13286 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
13287 err_printf(m, " POS: %08x\n", error->plane[i].pos);
80ca378b 13288 }
4b71a570 13289 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
edc3d884 13290 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
c4a1d9e4 13291 if (INTEL_INFO(dev)->gen >= 4) {
edc3d884
MK
13292 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
13293 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
c4a1d9e4
CW
13294 }
13295
edc3d884
MK
13296 err_printf(m, "Cursor [%d]:\n", i);
13297 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
13298 err_printf(m, " POS: %08x\n", error->cursor[i].position);
13299 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
c4a1d9e4 13300 }
63b66e5b
CW
13301
13302 for (i = 0; i < error->num_transcoders; i++) {
1cf84bb6 13303 err_printf(m, "CPU transcoder: %c\n",
63b66e5b 13304 transcoder_name(error->transcoder[i].cpu_transcoder));
ddf9c536
ID
13305 err_printf(m, " Power: %s\n",
13306 error->transcoder[i].power_domain_on ? "on" : "off");
63b66e5b
CW
13307 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
13308 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
13309 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
13310 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
13311 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
13312 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
13313 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
13314 }
c4a1d9e4 13315}