]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - drivers/gpu/drm/i915/intel_display.c
agp/intel-gtt: Remove get/put_pages
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
760285e7 37#include <drm/i915_drm.h>
79e53945 38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
760285e7
DH
40#include <drm/drm_dp_helper.h>
41#include <drm/drm_crtc_helper.h>
465c120c
MR
42#include <drm/drm_plane_helper.h>
43#include <drm/drm_rect.h>
c0f372b3 44#include <linux/dma_remapping.h>
79e53945 45
465c120c
MR
46/* Primary plane formats supported by all gen */
47#define COMMON_PRIMARY_FORMATS \
48 DRM_FORMAT_C8, \
49 DRM_FORMAT_RGB565, \
50 DRM_FORMAT_XRGB8888, \
51 DRM_FORMAT_ARGB8888
52
53/* Primary plane formats for gen <= 3 */
54static const uint32_t intel_primary_formats_gen2[] = {
55 COMMON_PRIMARY_FORMATS,
56 DRM_FORMAT_XRGB1555,
57 DRM_FORMAT_ARGB1555,
58};
59
60/* Primary plane formats for gen >= 4 */
61static const uint32_t intel_primary_formats_gen4[] = {
62 COMMON_PRIMARY_FORMATS, \
63 DRM_FORMAT_XBGR8888,
64 DRM_FORMAT_ABGR8888,
65 DRM_FORMAT_XRGB2101010,
66 DRM_FORMAT_ARGB2101010,
67 DRM_FORMAT_XBGR2101010,
68 DRM_FORMAT_ABGR2101010,
69};
70
3d7d6510
MR
71/* Cursor formats */
72static const uint32_t intel_cursor_formats[] = {
73 DRM_FORMAT_ARGB8888,
74};
75
ef9348c8 76#define DIV_ROUND_CLOSEST_ULL(ll, d) \
465c120c 77({ unsigned long long _tmp = (ll)+(d)/2; do_div(_tmp, d); _tmp; })
ef9348c8 78
cc36513c
DV
79static void intel_increase_pllclock(struct drm_device *dev,
80 enum pipe pipe);
6b383a7f 81static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945 82
f1f644dc
JB
83static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
84 struct intel_crtc_config *pipe_config);
18442d08
VS
85static void ironlake_pch_clock_get(struct intel_crtc *crtc,
86 struct intel_crtc_config *pipe_config);
f1f644dc 87
e7457a9a
DL
88static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
89 int x, int y, struct drm_framebuffer *old_fb);
eb1bfe80
JB
90static int intel_framebuffer_init(struct drm_device *dev,
91 struct intel_framebuffer *ifb,
92 struct drm_mode_fb_cmd2 *mode_cmd,
93 struct drm_i915_gem_object *obj);
5b18e57c
DV
94static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
95static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
29407aab 96static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
97 struct intel_link_m_n *m_n,
98 struct intel_link_m_n *m2_n2);
29407aab 99static void ironlake_set_pipeconf(struct drm_crtc *crtc);
229fca97
DV
100static void haswell_set_pipeconf(struct drm_crtc *crtc);
101static void intel_set_pipe_csc(struct drm_crtc *crtc);
bdd4b6a6 102static void vlv_prepare_pll(struct intel_crtc *crtc);
1ae0d137 103static void chv_prepare_pll(struct intel_crtc *crtc);
e7457a9a 104
0e32b39c
DA
105static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
106{
107 if (!connector->mst_port)
108 return connector->encoder;
109 else
110 return &connector->mst_port->mst_encoders[pipe]->base;
111}
112
79e53945 113typedef struct {
0206e353 114 int min, max;
79e53945
JB
115} intel_range_t;
116
117typedef struct {
0206e353
AJ
118 int dot_limit;
119 int p2_slow, p2_fast;
79e53945
JB
120} intel_p2_t;
121
d4906093
ML
122typedef struct intel_limit intel_limit_t;
123struct intel_limit {
0206e353
AJ
124 intel_range_t dot, vco, n, m, m1, m2, p, p1;
125 intel_p2_t p2;
d4906093 126};
79e53945 127
d2acd215
DV
128int
129intel_pch_rawclk(struct drm_device *dev)
130{
131 struct drm_i915_private *dev_priv = dev->dev_private;
132
133 WARN_ON(!HAS_PCH_SPLIT(dev));
134
135 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
136}
137
021357ac
CW
138static inline u32 /* units of 100MHz */
139intel_fdi_link_freq(struct drm_device *dev)
140{
8b99e68c
CW
141 if (IS_GEN5(dev)) {
142 struct drm_i915_private *dev_priv = dev->dev_private;
143 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
144 } else
145 return 27;
021357ac
CW
146}
147
5d536e28 148static const intel_limit_t intel_limits_i8xx_dac = {
0206e353 149 .dot = { .min = 25000, .max = 350000 },
9c333719 150 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 151 .n = { .min = 2, .max = 16 },
0206e353
AJ
152 .m = { .min = 96, .max = 140 },
153 .m1 = { .min = 18, .max = 26 },
154 .m2 = { .min = 6, .max = 16 },
155 .p = { .min = 4, .max = 128 },
156 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
157 .p2 = { .dot_limit = 165000,
158 .p2_slow = 4, .p2_fast = 2 },
e4b36699
KP
159};
160
5d536e28
DV
161static const intel_limit_t intel_limits_i8xx_dvo = {
162 .dot = { .min = 25000, .max = 350000 },
9c333719 163 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 164 .n = { .min = 2, .max = 16 },
5d536e28
DV
165 .m = { .min = 96, .max = 140 },
166 .m1 = { .min = 18, .max = 26 },
167 .m2 = { .min = 6, .max = 16 },
168 .p = { .min = 4, .max = 128 },
169 .p1 = { .min = 2, .max = 33 },
170 .p2 = { .dot_limit = 165000,
171 .p2_slow = 4, .p2_fast = 4 },
172};
173
e4b36699 174static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353 175 .dot = { .min = 25000, .max = 350000 },
9c333719 176 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 177 .n = { .min = 2, .max = 16 },
0206e353
AJ
178 .m = { .min = 96, .max = 140 },
179 .m1 = { .min = 18, .max = 26 },
180 .m2 = { .min = 6, .max = 16 },
181 .p = { .min = 4, .max = 128 },
182 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
183 .p2 = { .dot_limit = 165000,
184 .p2_slow = 14, .p2_fast = 7 },
e4b36699 185};
273e27ca 186
e4b36699 187static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
188 .dot = { .min = 20000, .max = 400000 },
189 .vco = { .min = 1400000, .max = 2800000 },
190 .n = { .min = 1, .max = 6 },
191 .m = { .min = 70, .max = 120 },
4f7dfb67
PJ
192 .m1 = { .min = 8, .max = 18 },
193 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
194 .p = { .min = 5, .max = 80 },
195 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
196 .p2 = { .dot_limit = 200000,
197 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
198};
199
200static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
201 .dot = { .min = 20000, .max = 400000 },
202 .vco = { .min = 1400000, .max = 2800000 },
203 .n = { .min = 1, .max = 6 },
204 .m = { .min = 70, .max = 120 },
53a7d2d1
PJ
205 .m1 = { .min = 8, .max = 18 },
206 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
207 .p = { .min = 7, .max = 98 },
208 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
209 .p2 = { .dot_limit = 112000,
210 .p2_slow = 14, .p2_fast = 7 },
e4b36699
KP
211};
212
273e27ca 213
e4b36699 214static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
215 .dot = { .min = 25000, .max = 270000 },
216 .vco = { .min = 1750000, .max = 3500000},
217 .n = { .min = 1, .max = 4 },
218 .m = { .min = 104, .max = 138 },
219 .m1 = { .min = 17, .max = 23 },
220 .m2 = { .min = 5, .max = 11 },
221 .p = { .min = 10, .max = 30 },
222 .p1 = { .min = 1, .max = 3},
223 .p2 = { .dot_limit = 270000,
224 .p2_slow = 10,
225 .p2_fast = 10
044c7c41 226 },
e4b36699
KP
227};
228
229static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
230 .dot = { .min = 22000, .max = 400000 },
231 .vco = { .min = 1750000, .max = 3500000},
232 .n = { .min = 1, .max = 4 },
233 .m = { .min = 104, .max = 138 },
234 .m1 = { .min = 16, .max = 23 },
235 .m2 = { .min = 5, .max = 11 },
236 .p = { .min = 5, .max = 80 },
237 .p1 = { .min = 1, .max = 8},
238 .p2 = { .dot_limit = 165000,
239 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
240};
241
242static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
243 .dot = { .min = 20000, .max = 115000 },
244 .vco = { .min = 1750000, .max = 3500000 },
245 .n = { .min = 1, .max = 3 },
246 .m = { .min = 104, .max = 138 },
247 .m1 = { .min = 17, .max = 23 },
248 .m2 = { .min = 5, .max = 11 },
249 .p = { .min = 28, .max = 112 },
250 .p1 = { .min = 2, .max = 8 },
251 .p2 = { .dot_limit = 0,
252 .p2_slow = 14, .p2_fast = 14
044c7c41 253 },
e4b36699
KP
254};
255
256static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
257 .dot = { .min = 80000, .max = 224000 },
258 .vco = { .min = 1750000, .max = 3500000 },
259 .n = { .min = 1, .max = 3 },
260 .m = { .min = 104, .max = 138 },
261 .m1 = { .min = 17, .max = 23 },
262 .m2 = { .min = 5, .max = 11 },
263 .p = { .min = 14, .max = 42 },
264 .p1 = { .min = 2, .max = 6 },
265 .p2 = { .dot_limit = 0,
266 .p2_slow = 7, .p2_fast = 7
044c7c41 267 },
e4b36699
KP
268};
269
f2b115e6 270static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
271 .dot = { .min = 20000, .max = 400000},
272 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 273 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
274 .n = { .min = 3, .max = 6 },
275 .m = { .min = 2, .max = 256 },
273e27ca 276 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
277 .m1 = { .min = 0, .max = 0 },
278 .m2 = { .min = 0, .max = 254 },
279 .p = { .min = 5, .max = 80 },
280 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
281 .p2 = { .dot_limit = 200000,
282 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
283};
284
f2b115e6 285static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
286 .dot = { .min = 20000, .max = 400000 },
287 .vco = { .min = 1700000, .max = 3500000 },
288 .n = { .min = 3, .max = 6 },
289 .m = { .min = 2, .max = 256 },
290 .m1 = { .min = 0, .max = 0 },
291 .m2 = { .min = 0, .max = 254 },
292 .p = { .min = 7, .max = 112 },
293 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
294 .p2 = { .dot_limit = 112000,
295 .p2_slow = 14, .p2_fast = 14 },
e4b36699
KP
296};
297
273e27ca
EA
298/* Ironlake / Sandybridge
299 *
300 * We calculate clock using (register_value + 2) for N/M1/M2, so here
301 * the range value for them is (actual_value - 2).
302 */
b91ad0ec 303static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
304 .dot = { .min = 25000, .max = 350000 },
305 .vco = { .min = 1760000, .max = 3510000 },
306 .n = { .min = 1, .max = 5 },
307 .m = { .min = 79, .max = 127 },
308 .m1 = { .min = 12, .max = 22 },
309 .m2 = { .min = 5, .max = 9 },
310 .p = { .min = 5, .max = 80 },
311 .p1 = { .min = 1, .max = 8 },
312 .p2 = { .dot_limit = 225000,
313 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
314};
315
b91ad0ec 316static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
317 .dot = { .min = 25000, .max = 350000 },
318 .vco = { .min = 1760000, .max = 3510000 },
319 .n = { .min = 1, .max = 3 },
320 .m = { .min = 79, .max = 118 },
321 .m1 = { .min = 12, .max = 22 },
322 .m2 = { .min = 5, .max = 9 },
323 .p = { .min = 28, .max = 112 },
324 .p1 = { .min = 2, .max = 8 },
325 .p2 = { .dot_limit = 225000,
326 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
327};
328
329static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
330 .dot = { .min = 25000, .max = 350000 },
331 .vco = { .min = 1760000, .max = 3510000 },
332 .n = { .min = 1, .max = 3 },
333 .m = { .min = 79, .max = 127 },
334 .m1 = { .min = 12, .max = 22 },
335 .m2 = { .min = 5, .max = 9 },
336 .p = { .min = 14, .max = 56 },
337 .p1 = { .min = 2, .max = 8 },
338 .p2 = { .dot_limit = 225000,
339 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
340};
341
273e27ca 342/* LVDS 100mhz refclk limits. */
b91ad0ec 343static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
344 .dot = { .min = 25000, .max = 350000 },
345 .vco = { .min = 1760000, .max = 3510000 },
346 .n = { .min = 1, .max = 2 },
347 .m = { .min = 79, .max = 126 },
348 .m1 = { .min = 12, .max = 22 },
349 .m2 = { .min = 5, .max = 9 },
350 .p = { .min = 28, .max = 112 },
0206e353 351 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
352 .p2 = { .dot_limit = 225000,
353 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
354};
355
356static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
357 .dot = { .min = 25000, .max = 350000 },
358 .vco = { .min = 1760000, .max = 3510000 },
359 .n = { .min = 1, .max = 3 },
360 .m = { .min = 79, .max = 126 },
361 .m1 = { .min = 12, .max = 22 },
362 .m2 = { .min = 5, .max = 9 },
363 .p = { .min = 14, .max = 42 },
0206e353 364 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
365 .p2 = { .dot_limit = 225000,
366 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
367};
368
dc730512 369static const intel_limit_t intel_limits_vlv = {
f01b7962
VS
370 /*
371 * These are the data rate limits (measured in fast clocks)
372 * since those are the strictest limits we have. The fast
373 * clock and actual rate limits are more relaxed, so checking
374 * them would make no difference.
375 */
376 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
75e53986 377 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 378 .n = { .min = 1, .max = 7 },
a0c4da24
JB
379 .m1 = { .min = 2, .max = 3 },
380 .m2 = { .min = 11, .max = 156 },
b99ab663 381 .p1 = { .min = 2, .max = 3 },
5fdc9c49 382 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
a0c4da24
JB
383};
384
ef9348c8
CML
385static const intel_limit_t intel_limits_chv = {
386 /*
387 * These are the data rate limits (measured in fast clocks)
388 * since those are the strictest limits we have. The fast
389 * clock and actual rate limits are more relaxed, so checking
390 * them would make no difference.
391 */
392 .dot = { .min = 25000 * 5, .max = 540000 * 5},
393 .vco = { .min = 4860000, .max = 6700000 },
394 .n = { .min = 1, .max = 1 },
395 .m1 = { .min = 2, .max = 2 },
396 .m2 = { .min = 24 << 22, .max = 175 << 22 },
397 .p1 = { .min = 2, .max = 4 },
398 .p2 = { .p2_slow = 1, .p2_fast = 14 },
399};
400
6b4bf1c4
VS
401static void vlv_clock(int refclk, intel_clock_t *clock)
402{
403 clock->m = clock->m1 * clock->m2;
404 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
405 if (WARN_ON(clock->n == 0 || clock->p == 0))
406 return;
fb03ac01
VS
407 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
408 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
6b4bf1c4
VS
409}
410
e0638cdf
PZ
411/**
412 * Returns whether any output on the specified pipe is of the specified type
413 */
414static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
415{
416 struct drm_device *dev = crtc->dev;
417 struct intel_encoder *encoder;
418
419 for_each_encoder_on_crtc(dev, crtc, encoder)
420 if (encoder->type == type)
421 return true;
422
423 return false;
424}
425
1b894b59
CW
426static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
427 int refclk)
2c07245f 428{
b91ad0ec 429 struct drm_device *dev = crtc->dev;
2c07245f 430 const intel_limit_t *limit;
b91ad0ec
ZW
431
432 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 433 if (intel_is_dual_link_lvds(dev)) {
1b894b59 434 if (refclk == 100000)
b91ad0ec
ZW
435 limit = &intel_limits_ironlake_dual_lvds_100m;
436 else
437 limit = &intel_limits_ironlake_dual_lvds;
438 } else {
1b894b59 439 if (refclk == 100000)
b91ad0ec
ZW
440 limit = &intel_limits_ironlake_single_lvds_100m;
441 else
442 limit = &intel_limits_ironlake_single_lvds;
443 }
c6bb3538 444 } else
b91ad0ec 445 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
446
447 return limit;
448}
449
044c7c41
ML
450static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
451{
452 struct drm_device *dev = crtc->dev;
044c7c41
ML
453 const intel_limit_t *limit;
454
455 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 456 if (intel_is_dual_link_lvds(dev))
e4b36699 457 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41 458 else
e4b36699 459 limit = &intel_limits_g4x_single_channel_lvds;
044c7c41
ML
460 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
461 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
e4b36699 462 limit = &intel_limits_g4x_hdmi;
044c7c41 463 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
e4b36699 464 limit = &intel_limits_g4x_sdvo;
044c7c41 465 } else /* The option is for other outputs */
e4b36699 466 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
467
468 return limit;
469}
470
1b894b59 471static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
79e53945
JB
472{
473 struct drm_device *dev = crtc->dev;
474 const intel_limit_t *limit;
475
bad720ff 476 if (HAS_PCH_SPLIT(dev))
1b894b59 477 limit = intel_ironlake_limit(crtc, refclk);
2c07245f 478 else if (IS_G4X(dev)) {
044c7c41 479 limit = intel_g4x_limit(crtc);
f2b115e6 480 } else if (IS_PINEVIEW(dev)) {
2177832f 481 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
f2b115e6 482 limit = &intel_limits_pineview_lvds;
2177832f 483 else
f2b115e6 484 limit = &intel_limits_pineview_sdvo;
ef9348c8
CML
485 } else if (IS_CHERRYVIEW(dev)) {
486 limit = &intel_limits_chv;
a0c4da24 487 } else if (IS_VALLEYVIEW(dev)) {
dc730512 488 limit = &intel_limits_vlv;
a6c45cf0
CW
489 } else if (!IS_GEN2(dev)) {
490 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
491 limit = &intel_limits_i9xx_lvds;
492 else
493 limit = &intel_limits_i9xx_sdvo;
79e53945
JB
494 } else {
495 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 496 limit = &intel_limits_i8xx_lvds;
5d536e28 497 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
e4b36699 498 limit = &intel_limits_i8xx_dvo;
5d536e28
DV
499 else
500 limit = &intel_limits_i8xx_dac;
79e53945
JB
501 }
502 return limit;
503}
504
f2b115e6
AJ
505/* m1 is reserved as 0 in Pineview, n is a ring counter */
506static void pineview_clock(int refclk, intel_clock_t *clock)
79e53945 507{
2177832f
SL
508 clock->m = clock->m2 + 2;
509 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
510 if (WARN_ON(clock->n == 0 || clock->p == 0))
511 return;
fb03ac01
VS
512 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
513 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
2177832f
SL
514}
515
7429e9d4
DV
516static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
517{
518 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
519}
520
ac58c3f0 521static void i9xx_clock(int refclk, intel_clock_t *clock)
2177832f 522{
7429e9d4 523 clock->m = i9xx_dpll_compute_m(clock);
79e53945 524 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
525 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
526 return;
fb03ac01
VS
527 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
528 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
79e53945
JB
529}
530
ef9348c8
CML
531static void chv_clock(int refclk, intel_clock_t *clock)
532{
533 clock->m = clock->m1 * clock->m2;
534 clock->p = clock->p1 * clock->p2;
535 if (WARN_ON(clock->n == 0 || clock->p == 0))
536 return;
537 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
538 clock->n << 22);
539 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
540}
541
7c04d1d9 542#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
543/**
544 * Returns whether the given set of divisors are valid for a given refclk with
545 * the given connectors.
546 */
547
1b894b59
CW
548static bool intel_PLL_is_valid(struct drm_device *dev,
549 const intel_limit_t *limit,
550 const intel_clock_t *clock)
79e53945 551{
f01b7962
VS
552 if (clock->n < limit->n.min || limit->n.max < clock->n)
553 INTELPllInvalid("n out of range\n");
79e53945 554 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 555 INTELPllInvalid("p1 out of range\n");
79e53945 556 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 557 INTELPllInvalid("m2 out of range\n");
79e53945 558 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 559 INTELPllInvalid("m1 out of range\n");
f01b7962
VS
560
561 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
562 if (clock->m1 <= clock->m2)
563 INTELPllInvalid("m1 <= m2\n");
564
565 if (!IS_VALLEYVIEW(dev)) {
566 if (clock->p < limit->p.min || limit->p.max < clock->p)
567 INTELPllInvalid("p out of range\n");
568 if (clock->m < limit->m.min || limit->m.max < clock->m)
569 INTELPllInvalid("m out of range\n");
570 }
571
79e53945 572 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 573 INTELPllInvalid("vco out of range\n");
79e53945
JB
574 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
575 * connector, etc., rather than just a single range.
576 */
577 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 578 INTELPllInvalid("dot out of range\n");
79e53945
JB
579
580 return true;
581}
582
d4906093 583static bool
ee9300bb 584i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
585 int target, int refclk, intel_clock_t *match_clock,
586 intel_clock_t *best_clock)
79e53945
JB
587{
588 struct drm_device *dev = crtc->dev;
79e53945 589 intel_clock_t clock;
79e53945
JB
590 int err = target;
591
a210b028 592 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 593 /*
a210b028
DV
594 * For LVDS just rely on its current settings for dual-channel.
595 * We haven't figured out how to reliably set up different
596 * single/dual channel state, if we even can.
79e53945 597 */
1974cad0 598 if (intel_is_dual_link_lvds(dev))
79e53945
JB
599 clock.p2 = limit->p2.p2_fast;
600 else
601 clock.p2 = limit->p2.p2_slow;
602 } else {
603 if (target < limit->p2.dot_limit)
604 clock.p2 = limit->p2.p2_slow;
605 else
606 clock.p2 = limit->p2.p2_fast;
607 }
608
0206e353 609 memset(best_clock, 0, sizeof(*best_clock));
79e53945 610
42158660
ZY
611 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
612 clock.m1++) {
613 for (clock.m2 = limit->m2.min;
614 clock.m2 <= limit->m2.max; clock.m2++) {
c0efc387 615 if (clock.m2 >= clock.m1)
42158660
ZY
616 break;
617 for (clock.n = limit->n.min;
618 clock.n <= limit->n.max; clock.n++) {
619 for (clock.p1 = limit->p1.min;
620 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
621 int this_err;
622
ac58c3f0
DV
623 i9xx_clock(refclk, &clock);
624 if (!intel_PLL_is_valid(dev, limit,
625 &clock))
626 continue;
627 if (match_clock &&
628 clock.p != match_clock->p)
629 continue;
630
631 this_err = abs(clock.dot - target);
632 if (this_err < err) {
633 *best_clock = clock;
634 err = this_err;
635 }
636 }
637 }
638 }
639 }
640
641 return (err != target);
642}
643
644static bool
ee9300bb
DV
645pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
646 int target, int refclk, intel_clock_t *match_clock,
647 intel_clock_t *best_clock)
79e53945
JB
648{
649 struct drm_device *dev = crtc->dev;
79e53945 650 intel_clock_t clock;
79e53945
JB
651 int err = target;
652
a210b028 653 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 654 /*
a210b028
DV
655 * For LVDS just rely on its current settings for dual-channel.
656 * We haven't figured out how to reliably set up different
657 * single/dual channel state, if we even can.
79e53945 658 */
1974cad0 659 if (intel_is_dual_link_lvds(dev))
79e53945
JB
660 clock.p2 = limit->p2.p2_fast;
661 else
662 clock.p2 = limit->p2.p2_slow;
663 } else {
664 if (target < limit->p2.dot_limit)
665 clock.p2 = limit->p2.p2_slow;
666 else
667 clock.p2 = limit->p2.p2_fast;
668 }
669
0206e353 670 memset(best_clock, 0, sizeof(*best_clock));
79e53945 671
42158660
ZY
672 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
673 clock.m1++) {
674 for (clock.m2 = limit->m2.min;
675 clock.m2 <= limit->m2.max; clock.m2++) {
42158660
ZY
676 for (clock.n = limit->n.min;
677 clock.n <= limit->n.max; clock.n++) {
678 for (clock.p1 = limit->p1.min;
679 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
680 int this_err;
681
ac58c3f0 682 pineview_clock(refclk, &clock);
1b894b59
CW
683 if (!intel_PLL_is_valid(dev, limit,
684 &clock))
79e53945 685 continue;
cec2f356
SP
686 if (match_clock &&
687 clock.p != match_clock->p)
688 continue;
79e53945
JB
689
690 this_err = abs(clock.dot - target);
691 if (this_err < err) {
692 *best_clock = clock;
693 err = this_err;
694 }
695 }
696 }
697 }
698 }
699
700 return (err != target);
701}
702
d4906093 703static bool
ee9300bb
DV
704g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
705 int target, int refclk, intel_clock_t *match_clock,
706 intel_clock_t *best_clock)
d4906093
ML
707{
708 struct drm_device *dev = crtc->dev;
d4906093
ML
709 intel_clock_t clock;
710 int max_n;
711 bool found;
6ba770dc
AJ
712 /* approximately equals target * 0.00585 */
713 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
714 found = false;
715
716 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 717 if (intel_is_dual_link_lvds(dev))
d4906093
ML
718 clock.p2 = limit->p2.p2_fast;
719 else
720 clock.p2 = limit->p2.p2_slow;
721 } else {
722 if (target < limit->p2.dot_limit)
723 clock.p2 = limit->p2.p2_slow;
724 else
725 clock.p2 = limit->p2.p2_fast;
726 }
727
728 memset(best_clock, 0, sizeof(*best_clock));
729 max_n = limit->n.max;
f77f13e2 730 /* based on hardware requirement, prefer smaller n to precision */
d4906093 731 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 732 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
733 for (clock.m1 = limit->m1.max;
734 clock.m1 >= limit->m1.min; clock.m1--) {
735 for (clock.m2 = limit->m2.max;
736 clock.m2 >= limit->m2.min; clock.m2--) {
737 for (clock.p1 = limit->p1.max;
738 clock.p1 >= limit->p1.min; clock.p1--) {
739 int this_err;
740
ac58c3f0 741 i9xx_clock(refclk, &clock);
1b894b59
CW
742 if (!intel_PLL_is_valid(dev, limit,
743 &clock))
d4906093 744 continue;
1b894b59
CW
745
746 this_err = abs(clock.dot - target);
d4906093
ML
747 if (this_err < err_most) {
748 *best_clock = clock;
749 err_most = this_err;
750 max_n = clock.n;
751 found = true;
752 }
753 }
754 }
755 }
756 }
2c07245f
ZW
757 return found;
758}
759
a0c4da24 760static bool
ee9300bb
DV
761vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
762 int target, int refclk, intel_clock_t *match_clock,
763 intel_clock_t *best_clock)
a0c4da24 764{
f01b7962 765 struct drm_device *dev = crtc->dev;
6b4bf1c4 766 intel_clock_t clock;
69e4f900 767 unsigned int bestppm = 1000000;
27e639bf
VS
768 /* min update 19.2 MHz */
769 int max_n = min(limit->n.max, refclk / 19200);
49e497ef 770 bool found = false;
a0c4da24 771
6b4bf1c4
VS
772 target *= 5; /* fast clock */
773
774 memset(best_clock, 0, sizeof(*best_clock));
a0c4da24
JB
775
776 /* based on hardware requirement, prefer smaller n to precision */
27e639bf 777 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
811bbf05 778 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
889059d8 779 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
c1a9ae43 780 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
6b4bf1c4 781 clock.p = clock.p1 * clock.p2;
a0c4da24 782 /* based on hardware requirement, prefer bigger m1,m2 values */
6b4bf1c4 783 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
69e4f900
VS
784 unsigned int ppm, diff;
785
6b4bf1c4
VS
786 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
787 refclk * clock.m1);
788
789 vlv_clock(refclk, &clock);
43b0ac53 790
f01b7962
VS
791 if (!intel_PLL_is_valid(dev, limit,
792 &clock))
43b0ac53
VS
793 continue;
794
6b4bf1c4
VS
795 diff = abs(clock.dot - target);
796 ppm = div_u64(1000000ULL * diff, target);
797
798 if (ppm < 100 && clock.p > best_clock->p) {
43b0ac53 799 bestppm = 0;
6b4bf1c4 800 *best_clock = clock;
49e497ef 801 found = true;
43b0ac53 802 }
6b4bf1c4 803
c686122c 804 if (bestppm >= 10 && ppm < bestppm - 10) {
69e4f900 805 bestppm = ppm;
6b4bf1c4 806 *best_clock = clock;
49e497ef 807 found = true;
a0c4da24
JB
808 }
809 }
810 }
811 }
812 }
a0c4da24 813
49e497ef 814 return found;
a0c4da24 815}
a4fc5ed6 816
ef9348c8
CML
817static bool
818chv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
819 int target, int refclk, intel_clock_t *match_clock,
820 intel_clock_t *best_clock)
821{
822 struct drm_device *dev = crtc->dev;
823 intel_clock_t clock;
824 uint64_t m2;
825 int found = false;
826
827 memset(best_clock, 0, sizeof(*best_clock));
828
829 /*
830 * Based on hardware doc, the n always set to 1, and m1 always
831 * set to 2. If requires to support 200Mhz refclk, we need to
832 * revisit this because n may not 1 anymore.
833 */
834 clock.n = 1, clock.m1 = 2;
835 target *= 5; /* fast clock */
836
837 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
838 for (clock.p2 = limit->p2.p2_fast;
839 clock.p2 >= limit->p2.p2_slow;
840 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
841
842 clock.p = clock.p1 * clock.p2;
843
844 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
845 clock.n) << 22, refclk * clock.m1);
846
847 if (m2 > INT_MAX/clock.m1)
848 continue;
849
850 clock.m2 = m2;
851
852 chv_clock(refclk, &clock);
853
854 if (!intel_PLL_is_valid(dev, limit, &clock))
855 continue;
856
857 /* based on hardware requirement, prefer bigger p
858 */
859 if (clock.p > best_clock->p) {
860 *best_clock = clock;
861 found = true;
862 }
863 }
864 }
865
866 return found;
867}
868
20ddf665
VS
869bool intel_crtc_active(struct drm_crtc *crtc)
870{
871 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
872
873 /* Be paranoid as we can arrive here with only partial
874 * state retrieved from the hardware during setup.
875 *
241bfc38 876 * We can ditch the adjusted_mode.crtc_clock check as soon
20ddf665
VS
877 * as Haswell has gained clock readout/fastboot support.
878 *
66e514c1 879 * We can ditch the crtc->primary->fb check as soon as we can
20ddf665
VS
880 * properly reconstruct framebuffers.
881 */
f4510a27 882 return intel_crtc->active && crtc->primary->fb &&
241bfc38 883 intel_crtc->config.adjusted_mode.crtc_clock;
20ddf665
VS
884}
885
a5c961d1
PZ
886enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
887 enum pipe pipe)
888{
889 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
890 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
891
3b117c8f 892 return intel_crtc->config.cpu_transcoder;
a5c961d1
PZ
893}
894
57e22f4a 895static void g4x_wait_for_vblank(struct drm_device *dev, int pipe)
a928d536
PZ
896{
897 struct drm_i915_private *dev_priv = dev->dev_private;
57e22f4a 898 u32 frame, frame_reg = PIPE_FRMCOUNT_GM45(pipe);
a928d536
PZ
899
900 frame = I915_READ(frame_reg);
901
902 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
31e4b89a
DL
903 WARN(1, "vblank wait on pipe %c timed out\n",
904 pipe_name(pipe));
a928d536
PZ
905}
906
9d0498a2
JB
907/**
908 * intel_wait_for_vblank - wait for vblank on a given pipe
909 * @dev: drm device
910 * @pipe: pipe to wait for
911 *
912 * Wait for vblank to occur on a given pipe. Needed for various bits of
913 * mode setting code.
914 */
915void intel_wait_for_vblank(struct drm_device *dev, int pipe)
79e53945 916{
9d0498a2 917 struct drm_i915_private *dev_priv = dev->dev_private;
9db4a9c7 918 int pipestat_reg = PIPESTAT(pipe);
9d0498a2 919
57e22f4a
VS
920 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
921 g4x_wait_for_vblank(dev, pipe);
a928d536
PZ
922 return;
923 }
924
300387c0
CW
925 /* Clear existing vblank status. Note this will clear any other
926 * sticky status fields as well.
927 *
928 * This races with i915_driver_irq_handler() with the result
929 * that either function could miss a vblank event. Here it is not
930 * fatal, as we will either wait upon the next vblank interrupt or
931 * timeout. Generally speaking intel_wait_for_vblank() is only
932 * called during modeset at which time the GPU should be idle and
933 * should *not* be performing page flips and thus not waiting on
934 * vblanks...
935 * Currently, the result of us stealing a vblank from the irq
936 * handler is that a single frame will be skipped during swapbuffers.
937 */
938 I915_WRITE(pipestat_reg,
939 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
940
9d0498a2 941 /* Wait for vblank interrupt bit to set */
481b6af3
CW
942 if (wait_for(I915_READ(pipestat_reg) &
943 PIPE_VBLANK_INTERRUPT_STATUS,
944 50))
31e4b89a
DL
945 DRM_DEBUG_KMS("vblank wait on pipe %c timed out\n",
946 pipe_name(pipe));
9d0498a2
JB
947}
948
fbf49ea2
VS
949static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
950{
951 struct drm_i915_private *dev_priv = dev->dev_private;
952 u32 reg = PIPEDSL(pipe);
953 u32 line1, line2;
954 u32 line_mask;
955
956 if (IS_GEN2(dev))
957 line_mask = DSL_LINEMASK_GEN2;
958 else
959 line_mask = DSL_LINEMASK_GEN3;
960
961 line1 = I915_READ(reg) & line_mask;
962 mdelay(5);
963 line2 = I915_READ(reg) & line_mask;
964
965 return line1 == line2;
966}
967
ab7ad7f6
KP
968/*
969 * intel_wait_for_pipe_off - wait for pipe to turn off
575f7ab7 970 * @crtc: crtc whose pipe to wait for
9d0498a2
JB
971 *
972 * After disabling a pipe, we can't wait for vblank in the usual way,
973 * spinning on the vblank interrupt status bit, since we won't actually
974 * see an interrupt when the pipe is disabled.
975 *
ab7ad7f6
KP
976 * On Gen4 and above:
977 * wait for the pipe register state bit to turn off
978 *
979 * Otherwise:
980 * wait for the display line value to settle (it usually
981 * ends up stopping at the start of the next frame).
58e10eb9 982 *
9d0498a2 983 */
575f7ab7 984static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
9d0498a2 985{
575f7ab7 986 struct drm_device *dev = crtc->base.dev;
9d0498a2 987 struct drm_i915_private *dev_priv = dev->dev_private;
575f7ab7
VS
988 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
989 enum pipe pipe = crtc->pipe;
ab7ad7f6
KP
990
991 if (INTEL_INFO(dev)->gen >= 4) {
702e7a56 992 int reg = PIPECONF(cpu_transcoder);
ab7ad7f6
KP
993
994 /* Wait for the Pipe State to go off */
58e10eb9
CW
995 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
996 100))
284637d9 997 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 998 } else {
ab7ad7f6 999 /* Wait for the display line to settle */
fbf49ea2 1000 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
284637d9 1001 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1002 }
79e53945
JB
1003}
1004
b0ea7d37
DL
1005/*
1006 * ibx_digital_port_connected - is the specified port connected?
1007 * @dev_priv: i915 private structure
1008 * @port: the port to test
1009 *
1010 * Returns true if @port is connected, false otherwise.
1011 */
1012bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1013 struct intel_digital_port *port)
1014{
1015 u32 bit;
1016
c36346e3 1017 if (HAS_PCH_IBX(dev_priv->dev)) {
eba905b2 1018 switch (port->port) {
c36346e3
DL
1019 case PORT_B:
1020 bit = SDE_PORTB_HOTPLUG;
1021 break;
1022 case PORT_C:
1023 bit = SDE_PORTC_HOTPLUG;
1024 break;
1025 case PORT_D:
1026 bit = SDE_PORTD_HOTPLUG;
1027 break;
1028 default:
1029 return true;
1030 }
1031 } else {
eba905b2 1032 switch (port->port) {
c36346e3
DL
1033 case PORT_B:
1034 bit = SDE_PORTB_HOTPLUG_CPT;
1035 break;
1036 case PORT_C:
1037 bit = SDE_PORTC_HOTPLUG_CPT;
1038 break;
1039 case PORT_D:
1040 bit = SDE_PORTD_HOTPLUG_CPT;
1041 break;
1042 default:
1043 return true;
1044 }
b0ea7d37
DL
1045 }
1046
1047 return I915_READ(SDEISR) & bit;
1048}
1049
b24e7179
JB
1050static const char *state_string(bool enabled)
1051{
1052 return enabled ? "on" : "off";
1053}
1054
1055/* Only for pre-ILK configs */
55607e8a
DV
1056void assert_pll(struct drm_i915_private *dev_priv,
1057 enum pipe pipe, bool state)
b24e7179
JB
1058{
1059 int reg;
1060 u32 val;
1061 bool cur_state;
1062
1063 reg = DPLL(pipe);
1064 val = I915_READ(reg);
1065 cur_state = !!(val & DPLL_VCO_ENABLE);
1066 WARN(cur_state != state,
1067 "PLL state assertion failure (expected %s, current %s)\n",
1068 state_string(state), state_string(cur_state));
1069}
b24e7179 1070
23538ef1
JN
1071/* XXX: the dsi pll is shared between MIPI DSI ports */
1072static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1073{
1074 u32 val;
1075 bool cur_state;
1076
1077 mutex_lock(&dev_priv->dpio_lock);
1078 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1079 mutex_unlock(&dev_priv->dpio_lock);
1080
1081 cur_state = val & DSI_PLL_VCO_EN;
1082 WARN(cur_state != state,
1083 "DSI PLL state assertion failure (expected %s, current %s)\n",
1084 state_string(state), state_string(cur_state));
1085}
1086#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1087#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1088
55607e8a 1089struct intel_shared_dpll *
e2b78267
DV
1090intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1091{
1092 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1093
a43f6e0f 1094 if (crtc->config.shared_dpll < 0)
e2b78267
DV
1095 return NULL;
1096
a43f6e0f 1097 return &dev_priv->shared_dplls[crtc->config.shared_dpll];
e2b78267
DV
1098}
1099
040484af 1100/* For ILK+ */
55607e8a
DV
1101void assert_shared_dpll(struct drm_i915_private *dev_priv,
1102 struct intel_shared_dpll *pll,
1103 bool state)
040484af 1104{
040484af 1105 bool cur_state;
5358901f 1106 struct intel_dpll_hw_state hw_state;
040484af 1107
92b27b08 1108 if (WARN (!pll,
46edb027 1109 "asserting DPLL %s with no DPLL\n", state_string(state)))
ee7b9f93 1110 return;
ee7b9f93 1111
5358901f 1112 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
92b27b08 1113 WARN(cur_state != state,
5358901f
DV
1114 "%s assertion failure (expected %s, current %s)\n",
1115 pll->name, state_string(state), state_string(cur_state));
040484af 1116}
040484af
JB
1117
1118static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1119 enum pipe pipe, bool state)
1120{
1121 int reg;
1122 u32 val;
1123 bool cur_state;
ad80a810
PZ
1124 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1125 pipe);
040484af 1126
affa9354
PZ
1127 if (HAS_DDI(dev_priv->dev)) {
1128 /* DDI does not have a specific FDI_TX register */
ad80a810 1129 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
bf507ef7 1130 val = I915_READ(reg);
ad80a810 1131 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
bf507ef7
ED
1132 } else {
1133 reg = FDI_TX_CTL(pipe);
1134 val = I915_READ(reg);
1135 cur_state = !!(val & FDI_TX_ENABLE);
1136 }
040484af
JB
1137 WARN(cur_state != state,
1138 "FDI TX state assertion failure (expected %s, current %s)\n",
1139 state_string(state), state_string(cur_state));
1140}
1141#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1142#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1143
1144static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1145 enum pipe pipe, bool state)
1146{
1147 int reg;
1148 u32 val;
1149 bool cur_state;
1150
d63fa0dc
PZ
1151 reg = FDI_RX_CTL(pipe);
1152 val = I915_READ(reg);
1153 cur_state = !!(val & FDI_RX_ENABLE);
040484af
JB
1154 WARN(cur_state != state,
1155 "FDI RX state assertion failure (expected %s, current %s)\n",
1156 state_string(state), state_string(cur_state));
1157}
1158#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1159#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1160
1161static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1162 enum pipe pipe)
1163{
1164 int reg;
1165 u32 val;
1166
1167 /* ILK FDI PLL is always enabled */
3d13ef2e 1168 if (INTEL_INFO(dev_priv->dev)->gen == 5)
040484af
JB
1169 return;
1170
bf507ef7 1171 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
affa9354 1172 if (HAS_DDI(dev_priv->dev))
bf507ef7
ED
1173 return;
1174
040484af
JB
1175 reg = FDI_TX_CTL(pipe);
1176 val = I915_READ(reg);
1177 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1178}
1179
55607e8a
DV
1180void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1181 enum pipe pipe, bool state)
040484af
JB
1182{
1183 int reg;
1184 u32 val;
55607e8a 1185 bool cur_state;
040484af
JB
1186
1187 reg = FDI_RX_CTL(pipe);
1188 val = I915_READ(reg);
55607e8a
DV
1189 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1190 WARN(cur_state != state,
1191 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1192 state_string(state), state_string(cur_state));
040484af
JB
1193}
1194
ea0760cf
JB
1195static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1196 enum pipe pipe)
1197{
bedd4dba
JN
1198 struct drm_device *dev = dev_priv->dev;
1199 int pp_reg;
ea0760cf
JB
1200 u32 val;
1201 enum pipe panel_pipe = PIPE_A;
0de3b485 1202 bool locked = true;
ea0760cf 1203
bedd4dba
JN
1204 if (WARN_ON(HAS_DDI(dev)))
1205 return;
1206
1207 if (HAS_PCH_SPLIT(dev)) {
1208 u32 port_sel;
1209
ea0760cf 1210 pp_reg = PCH_PP_CONTROL;
bedd4dba
JN
1211 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1212
1213 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1214 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1215 panel_pipe = PIPE_B;
1216 /* XXX: else fix for eDP */
1217 } else if (IS_VALLEYVIEW(dev)) {
1218 /* presumably write lock depends on pipe, not port select */
1219 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1220 panel_pipe = pipe;
ea0760cf
JB
1221 } else {
1222 pp_reg = PP_CONTROL;
bedd4dba
JN
1223 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1224 panel_pipe = PIPE_B;
ea0760cf
JB
1225 }
1226
1227 val = I915_READ(pp_reg);
1228 if (!(val & PANEL_POWER_ON) ||
ec49ba2d 1229 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
ea0760cf
JB
1230 locked = false;
1231
ea0760cf
JB
1232 WARN(panel_pipe == pipe && locked,
1233 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1234 pipe_name(pipe));
ea0760cf
JB
1235}
1236
93ce0ba6
JN
1237static void assert_cursor(struct drm_i915_private *dev_priv,
1238 enum pipe pipe, bool state)
1239{
1240 struct drm_device *dev = dev_priv->dev;
1241 bool cur_state;
1242
d9d82081 1243 if (IS_845G(dev) || IS_I865G(dev))
93ce0ba6 1244 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
d9d82081 1245 else
5efb3e28 1246 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
93ce0ba6
JN
1247
1248 WARN(cur_state != state,
1249 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1250 pipe_name(pipe), state_string(state), state_string(cur_state));
1251}
1252#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1253#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1254
b840d907
JB
1255void assert_pipe(struct drm_i915_private *dev_priv,
1256 enum pipe pipe, bool state)
b24e7179
JB
1257{
1258 int reg;
1259 u32 val;
63d7bbe9 1260 bool cur_state;
702e7a56
PZ
1261 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1262 pipe);
b24e7179 1263
b6b5d049
VS
1264 /* if we need the pipe quirk it must be always on */
1265 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1266 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
8e636784
DV
1267 state = true;
1268
da7e29bd 1269 if (!intel_display_power_enabled(dev_priv,
b97186f0 1270 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
69310161
PZ
1271 cur_state = false;
1272 } else {
1273 reg = PIPECONF(cpu_transcoder);
1274 val = I915_READ(reg);
1275 cur_state = !!(val & PIPECONF_ENABLE);
1276 }
1277
63d7bbe9
JB
1278 WARN(cur_state != state,
1279 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 1280 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179
JB
1281}
1282
931872fc
CW
1283static void assert_plane(struct drm_i915_private *dev_priv,
1284 enum plane plane, bool state)
b24e7179
JB
1285{
1286 int reg;
1287 u32 val;
931872fc 1288 bool cur_state;
b24e7179
JB
1289
1290 reg = DSPCNTR(plane);
1291 val = I915_READ(reg);
931872fc
CW
1292 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1293 WARN(cur_state != state,
1294 "plane %c assertion failure (expected %s, current %s)\n",
1295 plane_name(plane), state_string(state), state_string(cur_state));
b24e7179
JB
1296}
1297
931872fc
CW
1298#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1299#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1300
b24e7179
JB
1301static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1302 enum pipe pipe)
1303{
653e1026 1304 struct drm_device *dev = dev_priv->dev;
b24e7179
JB
1305 int reg, i;
1306 u32 val;
1307 int cur_pipe;
1308
653e1026
VS
1309 /* Primary planes are fixed to pipes on gen4+ */
1310 if (INTEL_INFO(dev)->gen >= 4) {
28c05794
AJ
1311 reg = DSPCNTR(pipe);
1312 val = I915_READ(reg);
83f26f16 1313 WARN(val & DISPLAY_PLANE_ENABLE,
28c05794
AJ
1314 "plane %c assertion failure, should be disabled but not\n",
1315 plane_name(pipe));
19ec1358 1316 return;
28c05794 1317 }
19ec1358 1318
b24e7179 1319 /* Need to check both planes against the pipe */
055e393f 1320 for_each_pipe(dev_priv, i) {
b24e7179
JB
1321 reg = DSPCNTR(i);
1322 val = I915_READ(reg);
1323 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1324 DISPPLANE_SEL_PIPE_SHIFT;
1325 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1326 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1327 plane_name(i), pipe_name(pipe));
b24e7179
JB
1328 }
1329}
1330
19332d7a
JB
1331static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1332 enum pipe pipe)
1333{
20674eef 1334 struct drm_device *dev = dev_priv->dev;
1fe47785 1335 int reg, sprite;
19332d7a
JB
1336 u32 val;
1337
20674eef 1338 if (IS_VALLEYVIEW(dev)) {
1fe47785
DL
1339 for_each_sprite(pipe, sprite) {
1340 reg = SPCNTR(pipe, sprite);
20674eef 1341 val = I915_READ(reg);
83f26f16 1342 WARN(val & SP_ENABLE,
20674eef 1343 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1fe47785 1344 sprite_name(pipe, sprite), pipe_name(pipe));
20674eef
VS
1345 }
1346 } else if (INTEL_INFO(dev)->gen >= 7) {
1347 reg = SPRCTL(pipe);
19332d7a 1348 val = I915_READ(reg);
83f26f16 1349 WARN(val & SPRITE_ENABLE,
06da8da2 1350 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef
VS
1351 plane_name(pipe), pipe_name(pipe));
1352 } else if (INTEL_INFO(dev)->gen >= 5) {
1353 reg = DVSCNTR(pipe);
19332d7a 1354 val = I915_READ(reg);
83f26f16 1355 WARN(val & DVS_ENABLE,
06da8da2 1356 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef 1357 plane_name(pipe), pipe_name(pipe));
19332d7a
JB
1358 }
1359}
1360
08c71e5e
VS
1361static void assert_vblank_disabled(struct drm_crtc *crtc)
1362{
1363 if (WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1364 drm_crtc_vblank_put(crtc);
1365}
1366
89eff4be 1367static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
92f2584a
JB
1368{
1369 u32 val;
1370 bool enabled;
1371
89eff4be 1372 WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
9d82aa17 1373
92f2584a
JB
1374 val = I915_READ(PCH_DREF_CONTROL);
1375 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1376 DREF_SUPERSPREAD_SOURCE_MASK));
1377 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1378}
1379
ab9412ba
DV
1380static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1381 enum pipe pipe)
92f2584a
JB
1382{
1383 int reg;
1384 u32 val;
1385 bool enabled;
1386
ab9412ba 1387 reg = PCH_TRANSCONF(pipe);
92f2584a
JB
1388 val = I915_READ(reg);
1389 enabled = !!(val & TRANS_ENABLE);
9db4a9c7
JB
1390 WARN(enabled,
1391 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1392 pipe_name(pipe));
92f2584a
JB
1393}
1394
4e634389
KP
1395static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1396 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1397{
1398 if ((val & DP_PORT_EN) == 0)
1399 return false;
1400
1401 if (HAS_PCH_CPT(dev_priv->dev)) {
1402 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1403 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1404 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1405 return false;
44f37d1f
CML
1406 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1407 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1408 return false;
f0575e92
KP
1409 } else {
1410 if ((val & DP_PIPE_MASK) != (pipe << 30))
1411 return false;
1412 }
1413 return true;
1414}
1415
1519b995
KP
1416static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1417 enum pipe pipe, u32 val)
1418{
dc0fa718 1419 if ((val & SDVO_ENABLE) == 0)
1519b995
KP
1420 return false;
1421
1422 if (HAS_PCH_CPT(dev_priv->dev)) {
dc0fa718 1423 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1519b995 1424 return false;
44f37d1f
CML
1425 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1426 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1427 return false;
1519b995 1428 } else {
dc0fa718 1429 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1519b995
KP
1430 return false;
1431 }
1432 return true;
1433}
1434
1435static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1436 enum pipe pipe, u32 val)
1437{
1438 if ((val & LVDS_PORT_EN) == 0)
1439 return false;
1440
1441 if (HAS_PCH_CPT(dev_priv->dev)) {
1442 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1443 return false;
1444 } else {
1445 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1446 return false;
1447 }
1448 return true;
1449}
1450
1451static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1452 enum pipe pipe, u32 val)
1453{
1454 if ((val & ADPA_DAC_ENABLE) == 0)
1455 return false;
1456 if (HAS_PCH_CPT(dev_priv->dev)) {
1457 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1458 return false;
1459 } else {
1460 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1461 return false;
1462 }
1463 return true;
1464}
1465
291906f1 1466static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1467 enum pipe pipe, int reg, u32 port_sel)
291906f1 1468{
47a05eca 1469 u32 val = I915_READ(reg);
4e634389 1470 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1471 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1472 reg, pipe_name(pipe));
de9a35ab 1473
75c5da27
DV
1474 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1475 && (val & DP_PIPEB_SELECT),
de9a35ab 1476 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1477}
1478
1479static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1480 enum pipe pipe, int reg)
1481{
47a05eca 1482 u32 val = I915_READ(reg);
b70ad586 1483 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1484 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1485 reg, pipe_name(pipe));
de9a35ab 1486
dc0fa718 1487 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
75c5da27 1488 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1489 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1490}
1491
1492static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1493 enum pipe pipe)
1494{
1495 int reg;
1496 u32 val;
291906f1 1497
f0575e92
KP
1498 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1499 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1500 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1
JB
1501
1502 reg = PCH_ADPA;
1503 val = I915_READ(reg);
b70ad586 1504 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1505 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1506 pipe_name(pipe));
291906f1
JB
1507
1508 reg = PCH_LVDS;
1509 val = I915_READ(reg);
b70ad586 1510 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1511 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1512 pipe_name(pipe));
291906f1 1513
e2debe91
PZ
1514 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1515 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1516 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
291906f1
JB
1517}
1518
40e9cf64
JB
1519static void intel_init_dpio(struct drm_device *dev)
1520{
1521 struct drm_i915_private *dev_priv = dev->dev_private;
1522
1523 if (!IS_VALLEYVIEW(dev))
1524 return;
1525
a09caddd
CML
1526 /*
1527 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1528 * CHV x1 PHY (DP/HDMI D)
1529 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1530 */
1531 if (IS_CHERRYVIEW(dev)) {
1532 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1533 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1534 } else {
1535 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1536 }
5382f5f3
JB
1537}
1538
426115cf 1539static void vlv_enable_pll(struct intel_crtc *crtc)
87442f73 1540{
426115cf
DV
1541 struct drm_device *dev = crtc->base.dev;
1542 struct drm_i915_private *dev_priv = dev->dev_private;
1543 int reg = DPLL(crtc->pipe);
1544 u32 dpll = crtc->config.dpll_hw_state.dpll;
87442f73 1545
426115cf 1546 assert_pipe_disabled(dev_priv, crtc->pipe);
87442f73
DV
1547
1548 /* No really, not for ILK+ */
1549 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1550
1551 /* PLL is protected by panel, make sure we can write it */
6a9e7363 1552 if (IS_MOBILE(dev_priv->dev))
426115cf 1553 assert_panel_unlocked(dev_priv, crtc->pipe);
87442f73 1554
426115cf
DV
1555 I915_WRITE(reg, dpll);
1556 POSTING_READ(reg);
1557 udelay(150);
1558
1559 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1560 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1561
1562 I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1563 POSTING_READ(DPLL_MD(crtc->pipe));
87442f73
DV
1564
1565 /* We do this three times for luck */
426115cf 1566 I915_WRITE(reg, dpll);
87442f73
DV
1567 POSTING_READ(reg);
1568 udelay(150); /* wait for warmup */
426115cf 1569 I915_WRITE(reg, dpll);
87442f73
DV
1570 POSTING_READ(reg);
1571 udelay(150); /* wait for warmup */
426115cf 1572 I915_WRITE(reg, dpll);
87442f73
DV
1573 POSTING_READ(reg);
1574 udelay(150); /* wait for warmup */
1575}
1576
9d556c99
CML
1577static void chv_enable_pll(struct intel_crtc *crtc)
1578{
1579 struct drm_device *dev = crtc->base.dev;
1580 struct drm_i915_private *dev_priv = dev->dev_private;
1581 int pipe = crtc->pipe;
1582 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9d556c99
CML
1583 u32 tmp;
1584
1585 assert_pipe_disabled(dev_priv, crtc->pipe);
1586
1587 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1588
1589 mutex_lock(&dev_priv->dpio_lock);
1590
1591 /* Enable back the 10bit clock to display controller */
1592 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1593 tmp |= DPIO_DCLKP_EN;
1594 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1595
1596 /*
1597 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1598 */
1599 udelay(1);
1600
1601 /* Enable PLL */
a11b0703 1602 I915_WRITE(DPLL(pipe), crtc->config.dpll_hw_state.dpll);
9d556c99
CML
1603
1604 /* Check PLL is locked */
a11b0703 1605 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
9d556c99
CML
1606 DRM_ERROR("PLL %d failed to lock\n", pipe);
1607
a11b0703
VS
1608 /* not sure when this should be written */
1609 I915_WRITE(DPLL_MD(pipe), crtc->config.dpll_hw_state.dpll_md);
1610 POSTING_READ(DPLL_MD(pipe));
1611
9d556c99
CML
1612 mutex_unlock(&dev_priv->dpio_lock);
1613}
1614
1c4e0274
VS
1615static int intel_num_dvo_pipes(struct drm_device *dev)
1616{
1617 struct intel_crtc *crtc;
1618 int count = 0;
1619
1620 for_each_intel_crtc(dev, crtc)
1621 count += crtc->active &&
1622 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO);
1623
1624 return count;
1625}
1626
66e3d5c0 1627static void i9xx_enable_pll(struct intel_crtc *crtc)
63d7bbe9 1628{
66e3d5c0
DV
1629 struct drm_device *dev = crtc->base.dev;
1630 struct drm_i915_private *dev_priv = dev->dev_private;
1631 int reg = DPLL(crtc->pipe);
1632 u32 dpll = crtc->config.dpll_hw_state.dpll;
63d7bbe9 1633
66e3d5c0 1634 assert_pipe_disabled(dev_priv, crtc->pipe);
58c6eaa2 1635
63d7bbe9 1636 /* No really, not for ILK+ */
3d13ef2e 1637 BUG_ON(INTEL_INFO(dev)->gen >= 5);
63d7bbe9
JB
1638
1639 /* PLL is protected by panel, make sure we can write it */
66e3d5c0
DV
1640 if (IS_MOBILE(dev) && !IS_I830(dev))
1641 assert_panel_unlocked(dev_priv, crtc->pipe);
63d7bbe9 1642
1c4e0274
VS
1643 /* Enable DVO 2x clock on both PLLs if necessary */
1644 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1645 /*
1646 * It appears to be important that we don't enable this
1647 * for the current pipe before otherwise configuring the
1648 * PLL. No idea how this should be handled if multiple
1649 * DVO outputs are enabled simultaneosly.
1650 */
1651 dpll |= DPLL_DVO_2X_MODE;
1652 I915_WRITE(DPLL(!crtc->pipe),
1653 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1654 }
66e3d5c0
DV
1655
1656 /* Wait for the clocks to stabilize. */
1657 POSTING_READ(reg);
1658 udelay(150);
1659
1660 if (INTEL_INFO(dev)->gen >= 4) {
1661 I915_WRITE(DPLL_MD(crtc->pipe),
1662 crtc->config.dpll_hw_state.dpll_md);
1663 } else {
1664 /* The pixel multiplier can only be updated once the
1665 * DPLL is enabled and the clocks are stable.
1666 *
1667 * So write it again.
1668 */
1669 I915_WRITE(reg, dpll);
1670 }
63d7bbe9
JB
1671
1672 /* We do this three times for luck */
66e3d5c0 1673 I915_WRITE(reg, dpll);
63d7bbe9
JB
1674 POSTING_READ(reg);
1675 udelay(150); /* wait for warmup */
66e3d5c0 1676 I915_WRITE(reg, dpll);
63d7bbe9
JB
1677 POSTING_READ(reg);
1678 udelay(150); /* wait for warmup */
66e3d5c0 1679 I915_WRITE(reg, dpll);
63d7bbe9
JB
1680 POSTING_READ(reg);
1681 udelay(150); /* wait for warmup */
1682}
1683
1684/**
50b44a44 1685 * i9xx_disable_pll - disable a PLL
63d7bbe9
JB
1686 * @dev_priv: i915 private structure
1687 * @pipe: pipe PLL to disable
1688 *
1689 * Disable the PLL for @pipe, making sure the pipe is off first.
1690 *
1691 * Note! This is for pre-ILK only.
1692 */
1c4e0274 1693static void i9xx_disable_pll(struct intel_crtc *crtc)
63d7bbe9 1694{
1c4e0274
VS
1695 struct drm_device *dev = crtc->base.dev;
1696 struct drm_i915_private *dev_priv = dev->dev_private;
1697 enum pipe pipe = crtc->pipe;
1698
1699 /* Disable DVO 2x clock on both PLLs if necessary */
1700 if (IS_I830(dev) &&
1701 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO) &&
1702 intel_num_dvo_pipes(dev) == 1) {
1703 I915_WRITE(DPLL(PIPE_B),
1704 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1705 I915_WRITE(DPLL(PIPE_A),
1706 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1707 }
1708
b6b5d049
VS
1709 /* Don't disable pipe or pipe PLLs if needed */
1710 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1711 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
63d7bbe9
JB
1712 return;
1713
1714 /* Make sure the pipe isn't still relying on us */
1715 assert_pipe_disabled(dev_priv, pipe);
1716
50b44a44
DV
1717 I915_WRITE(DPLL(pipe), 0);
1718 POSTING_READ(DPLL(pipe));
63d7bbe9
JB
1719}
1720
f6071166
JB
1721static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1722{
1723 u32 val = 0;
1724
1725 /* Make sure the pipe isn't still relying on us */
1726 assert_pipe_disabled(dev_priv, pipe);
1727
e5cbfbfb
ID
1728 /*
1729 * Leave integrated clock source and reference clock enabled for pipe B.
1730 * The latter is needed for VGA hotplug / manual detection.
1731 */
f6071166 1732 if (pipe == PIPE_B)
e5cbfbfb 1733 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
f6071166
JB
1734 I915_WRITE(DPLL(pipe), val);
1735 POSTING_READ(DPLL(pipe));
076ed3b2
CML
1736
1737}
1738
1739static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1740{
d752048d 1741 enum dpio_channel port = vlv_pipe_to_channel(pipe);
076ed3b2
CML
1742 u32 val;
1743
a11b0703
VS
1744 /* Make sure the pipe isn't still relying on us */
1745 assert_pipe_disabled(dev_priv, pipe);
076ed3b2 1746
a11b0703 1747 /* Set PLL en = 0 */
d17ec4ce 1748 val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
a11b0703
VS
1749 if (pipe != PIPE_A)
1750 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1751 I915_WRITE(DPLL(pipe), val);
1752 POSTING_READ(DPLL(pipe));
d752048d
VS
1753
1754 mutex_lock(&dev_priv->dpio_lock);
1755
1756 /* Disable 10bit clock to display controller */
1757 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1758 val &= ~DPIO_DCLKP_EN;
1759 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1760
61407f6d
VS
1761 /* disable left/right clock distribution */
1762 if (pipe != PIPE_B) {
1763 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1764 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1765 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1766 } else {
1767 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1768 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1769 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1770 }
1771
d752048d 1772 mutex_unlock(&dev_priv->dpio_lock);
f6071166
JB
1773}
1774
e4607fcf
CML
1775void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1776 struct intel_digital_port *dport)
89b667f8
JB
1777{
1778 u32 port_mask;
00fc31b7 1779 int dpll_reg;
89b667f8 1780
e4607fcf
CML
1781 switch (dport->port) {
1782 case PORT_B:
89b667f8 1783 port_mask = DPLL_PORTB_READY_MASK;
00fc31b7 1784 dpll_reg = DPLL(0);
e4607fcf
CML
1785 break;
1786 case PORT_C:
89b667f8 1787 port_mask = DPLL_PORTC_READY_MASK;
00fc31b7
CML
1788 dpll_reg = DPLL(0);
1789 break;
1790 case PORT_D:
1791 port_mask = DPLL_PORTD_READY_MASK;
1792 dpll_reg = DPIO_PHY_STATUS;
e4607fcf
CML
1793 break;
1794 default:
1795 BUG();
1796 }
89b667f8 1797
00fc31b7 1798 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
89b667f8 1799 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
00fc31b7 1800 port_name(dport->port), I915_READ(dpll_reg));
89b667f8
JB
1801}
1802
b14b1055
DV
1803static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1804{
1805 struct drm_device *dev = crtc->base.dev;
1806 struct drm_i915_private *dev_priv = dev->dev_private;
1807 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1808
be19f0ff
CW
1809 if (WARN_ON(pll == NULL))
1810 return;
1811
b14b1055
DV
1812 WARN_ON(!pll->refcount);
1813 if (pll->active == 0) {
1814 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1815 WARN_ON(pll->on);
1816 assert_shared_dpll_disabled(dev_priv, pll);
1817
1818 pll->mode_set(dev_priv, pll);
1819 }
1820}
1821
92f2584a 1822/**
85b3894f 1823 * intel_enable_shared_dpll - enable PCH PLL
92f2584a
JB
1824 * @dev_priv: i915 private structure
1825 * @pipe: pipe PLL to enable
1826 *
1827 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1828 * drives the transcoder clock.
1829 */
85b3894f 1830static void intel_enable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1831{
3d13ef2e
DL
1832 struct drm_device *dev = crtc->base.dev;
1833 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1834 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
92f2584a 1835
87a875bb 1836 if (WARN_ON(pll == NULL))
48da64a8
CW
1837 return;
1838
1839 if (WARN_ON(pll->refcount == 0))
1840 return;
ee7b9f93 1841
74dd6928 1842 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
46edb027 1843 pll->name, pll->active, pll->on,
e2b78267 1844 crtc->base.base.id);
92f2584a 1845
cdbd2316
DV
1846 if (pll->active++) {
1847 WARN_ON(!pll->on);
e9d6944e 1848 assert_shared_dpll_enabled(dev_priv, pll);
ee7b9f93
JB
1849 return;
1850 }
f4a091c7 1851 WARN_ON(pll->on);
ee7b9f93 1852
bd2bb1b9
PZ
1853 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1854
46edb027 1855 DRM_DEBUG_KMS("enabling %s\n", pll->name);
e7b903d2 1856 pll->enable(dev_priv, pll);
ee7b9f93 1857 pll->on = true;
92f2584a
JB
1858}
1859
f6daaec2 1860static void intel_disable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1861{
3d13ef2e
DL
1862 struct drm_device *dev = crtc->base.dev;
1863 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1864 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4c609cb8 1865
92f2584a 1866 /* PCH only available on ILK+ */
3d13ef2e 1867 BUG_ON(INTEL_INFO(dev)->gen < 5);
87a875bb 1868 if (WARN_ON(pll == NULL))
ee7b9f93 1869 return;
92f2584a 1870
48da64a8
CW
1871 if (WARN_ON(pll->refcount == 0))
1872 return;
7a419866 1873
46edb027
DV
1874 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1875 pll->name, pll->active, pll->on,
e2b78267 1876 crtc->base.base.id);
7a419866 1877
48da64a8 1878 if (WARN_ON(pll->active == 0)) {
e9d6944e 1879 assert_shared_dpll_disabled(dev_priv, pll);
48da64a8
CW
1880 return;
1881 }
1882
e9d6944e 1883 assert_shared_dpll_enabled(dev_priv, pll);
f4a091c7 1884 WARN_ON(!pll->on);
cdbd2316 1885 if (--pll->active)
7a419866 1886 return;
ee7b9f93 1887
46edb027 1888 DRM_DEBUG_KMS("disabling %s\n", pll->name);
e7b903d2 1889 pll->disable(dev_priv, pll);
ee7b9f93 1890 pll->on = false;
bd2bb1b9
PZ
1891
1892 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
92f2584a
JB
1893}
1894
b8a4f404
PZ
1895static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1896 enum pipe pipe)
040484af 1897{
23670b32 1898 struct drm_device *dev = dev_priv->dev;
7c26e5c6 1899 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
e2b78267 1900 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
23670b32 1901 uint32_t reg, val, pipeconf_val;
040484af
JB
1902
1903 /* PCH only available on ILK+ */
55522f37 1904 BUG_ON(!HAS_PCH_SPLIT(dev));
040484af
JB
1905
1906 /* Make sure PCH DPLL is enabled */
e72f9fbf 1907 assert_shared_dpll_enabled(dev_priv,
e9d6944e 1908 intel_crtc_to_shared_dpll(intel_crtc));
040484af
JB
1909
1910 /* FDI must be feeding us bits for PCH ports */
1911 assert_fdi_tx_enabled(dev_priv, pipe);
1912 assert_fdi_rx_enabled(dev_priv, pipe);
1913
23670b32
DV
1914 if (HAS_PCH_CPT(dev)) {
1915 /* Workaround: Set the timing override bit before enabling the
1916 * pch transcoder. */
1917 reg = TRANS_CHICKEN2(pipe);
1918 val = I915_READ(reg);
1919 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1920 I915_WRITE(reg, val);
59c859d6 1921 }
23670b32 1922
ab9412ba 1923 reg = PCH_TRANSCONF(pipe);
040484af 1924 val = I915_READ(reg);
5f7f726d 1925 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c
JB
1926
1927 if (HAS_PCH_IBX(dev_priv->dev)) {
1928 /*
1929 * make the BPC in transcoder be consistent with
1930 * that in pipeconf reg.
1931 */
dfd07d72
DV
1932 val &= ~PIPECONF_BPC_MASK;
1933 val |= pipeconf_val & PIPECONF_BPC_MASK;
e9bcff5c 1934 }
5f7f726d
PZ
1935
1936 val &= ~TRANS_INTERLACE_MASK;
1937 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
7c26e5c6
PZ
1938 if (HAS_PCH_IBX(dev_priv->dev) &&
1939 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1940 val |= TRANS_LEGACY_INTERLACED_ILK;
1941 else
1942 val |= TRANS_INTERLACED;
5f7f726d
PZ
1943 else
1944 val |= TRANS_PROGRESSIVE;
1945
040484af
JB
1946 I915_WRITE(reg, val | TRANS_ENABLE);
1947 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
4bb6f1f3 1948 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
040484af
JB
1949}
1950
8fb033d7 1951static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
937bb610 1952 enum transcoder cpu_transcoder)
040484af 1953{
8fb033d7 1954 u32 val, pipeconf_val;
8fb033d7
PZ
1955
1956 /* PCH only available on ILK+ */
55522f37 1957 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
8fb033d7 1958
8fb033d7 1959 /* FDI must be feeding us bits for PCH ports */
1a240d4d 1960 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
937bb610 1961 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
8fb033d7 1962
223a6fdf
PZ
1963 /* Workaround: set timing override bit. */
1964 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1965 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf
PZ
1966 I915_WRITE(_TRANSA_CHICKEN2, val);
1967
25f3ef11 1968 val = TRANS_ENABLE;
937bb610 1969 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
8fb033d7 1970
9a76b1c6
PZ
1971 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1972 PIPECONF_INTERLACED_ILK)
a35f2679 1973 val |= TRANS_INTERLACED;
8fb033d7
PZ
1974 else
1975 val |= TRANS_PROGRESSIVE;
1976
ab9412ba
DV
1977 I915_WRITE(LPT_TRANSCONF, val);
1978 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
937bb610 1979 DRM_ERROR("Failed to enable PCH transcoder\n");
8fb033d7
PZ
1980}
1981
b8a4f404
PZ
1982static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1983 enum pipe pipe)
040484af 1984{
23670b32
DV
1985 struct drm_device *dev = dev_priv->dev;
1986 uint32_t reg, val;
040484af
JB
1987
1988 /* FDI relies on the transcoder */
1989 assert_fdi_tx_disabled(dev_priv, pipe);
1990 assert_fdi_rx_disabled(dev_priv, pipe);
1991
291906f1
JB
1992 /* Ports must be off as well */
1993 assert_pch_ports_disabled(dev_priv, pipe);
1994
ab9412ba 1995 reg = PCH_TRANSCONF(pipe);
040484af
JB
1996 val = I915_READ(reg);
1997 val &= ~TRANS_ENABLE;
1998 I915_WRITE(reg, val);
1999 /* wait for PCH transcoder off, transcoder state */
2000 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4bb6f1f3 2001 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
23670b32
DV
2002
2003 if (!HAS_PCH_IBX(dev)) {
2004 /* Workaround: Clear the timing override chicken bit again. */
2005 reg = TRANS_CHICKEN2(pipe);
2006 val = I915_READ(reg);
2007 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2008 I915_WRITE(reg, val);
2009 }
040484af
JB
2010}
2011
ab4d966c 2012static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
8fb033d7 2013{
8fb033d7
PZ
2014 u32 val;
2015
ab9412ba 2016 val = I915_READ(LPT_TRANSCONF);
8fb033d7 2017 val &= ~TRANS_ENABLE;
ab9412ba 2018 I915_WRITE(LPT_TRANSCONF, val);
8fb033d7 2019 /* wait for PCH transcoder off, transcoder state */
ab9412ba 2020 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
8a52fd9f 2021 DRM_ERROR("Failed to disable PCH transcoder\n");
223a6fdf
PZ
2022
2023 /* Workaround: clear timing override bit. */
2024 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 2025 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf 2026 I915_WRITE(_TRANSA_CHICKEN2, val);
040484af
JB
2027}
2028
b24e7179 2029/**
309cfea8 2030 * intel_enable_pipe - enable a pipe, asserting requirements
0372264a 2031 * @crtc: crtc responsible for the pipe
b24e7179 2032 *
0372264a 2033 * Enable @crtc's pipe, making sure that various hardware specific requirements
b24e7179 2034 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
b24e7179 2035 */
e1fdc473 2036static void intel_enable_pipe(struct intel_crtc *crtc)
b24e7179 2037{
0372264a
PZ
2038 struct drm_device *dev = crtc->base.dev;
2039 struct drm_i915_private *dev_priv = dev->dev_private;
2040 enum pipe pipe = crtc->pipe;
702e7a56
PZ
2041 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2042 pipe);
1a240d4d 2043 enum pipe pch_transcoder;
b24e7179
JB
2044 int reg;
2045 u32 val;
2046
58c6eaa2 2047 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2048 assert_cursor_disabled(dev_priv, pipe);
58c6eaa2
DV
2049 assert_sprites_disabled(dev_priv, pipe);
2050
681e5811 2051 if (HAS_PCH_LPT(dev_priv->dev))
cc391bbb
PZ
2052 pch_transcoder = TRANSCODER_A;
2053 else
2054 pch_transcoder = pipe;
2055
b24e7179
JB
2056 /*
2057 * A pipe without a PLL won't actually be able to drive bits from
2058 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2059 * need the check.
2060 */
2061 if (!HAS_PCH_SPLIT(dev_priv->dev))
fbf3218a 2062 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DSI))
23538ef1
JN
2063 assert_dsi_pll_enabled(dev_priv);
2064 else
2065 assert_pll_enabled(dev_priv, pipe);
040484af 2066 else {
30421c4f 2067 if (crtc->config.has_pch_encoder) {
040484af 2068 /* if driving the PCH, we need FDI enabled */
cc391bbb 2069 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1a240d4d
DV
2070 assert_fdi_tx_pll_enabled(dev_priv,
2071 (enum pipe) cpu_transcoder);
040484af
JB
2072 }
2073 /* FIXME: assert CPU port conditions for SNB+ */
2074 }
b24e7179 2075
702e7a56 2076 reg = PIPECONF(cpu_transcoder);
b24e7179 2077 val = I915_READ(reg);
7ad25d48 2078 if (val & PIPECONF_ENABLE) {
b6b5d049
VS
2079 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2080 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
00d70b15 2081 return;
7ad25d48 2082 }
00d70b15
CW
2083
2084 I915_WRITE(reg, val | PIPECONF_ENABLE);
851855d8 2085 POSTING_READ(reg);
b24e7179
JB
2086}
2087
2088/**
309cfea8 2089 * intel_disable_pipe - disable a pipe, asserting requirements
575f7ab7 2090 * @crtc: crtc whose pipes is to be disabled
b24e7179 2091 *
575f7ab7
VS
2092 * Disable the pipe of @crtc, making sure that various hardware
2093 * specific requirements are met, if applicable, e.g. plane
2094 * disabled, panel fitter off, etc.
b24e7179
JB
2095 *
2096 * Will wait until the pipe has shut down before returning.
2097 */
575f7ab7 2098static void intel_disable_pipe(struct intel_crtc *crtc)
b24e7179 2099{
575f7ab7
VS
2100 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2101 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
2102 enum pipe pipe = crtc->pipe;
b24e7179
JB
2103 int reg;
2104 u32 val;
2105
2106 /*
2107 * Make sure planes won't keep trying to pump pixels to us,
2108 * or we might hang the display.
2109 */
2110 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2111 assert_cursor_disabled(dev_priv, pipe);
19332d7a 2112 assert_sprites_disabled(dev_priv, pipe);
b24e7179 2113
702e7a56 2114 reg = PIPECONF(cpu_transcoder);
b24e7179 2115 val = I915_READ(reg);
00d70b15
CW
2116 if ((val & PIPECONF_ENABLE) == 0)
2117 return;
2118
67adc644
VS
2119 /*
2120 * Double wide has implications for planes
2121 * so best keep it disabled when not needed.
2122 */
2123 if (crtc->config.double_wide)
2124 val &= ~PIPECONF_DOUBLE_WIDE;
2125
2126 /* Don't disable pipe or pipe PLLs if needed */
b6b5d049
VS
2127 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2128 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
67adc644
VS
2129 val &= ~PIPECONF_ENABLE;
2130
2131 I915_WRITE(reg, val);
2132 if ((val & PIPECONF_ENABLE) == 0)
2133 intel_wait_for_pipe_off(crtc);
b24e7179
JB
2134}
2135
d74362c9
KP
2136/*
2137 * Plane regs are double buffered, going from enabled->disabled needs a
2138 * trigger in order to latch. The display address reg provides this.
2139 */
1dba99f4
VS
2140void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2141 enum plane plane)
d74362c9 2142{
3d13ef2e
DL
2143 struct drm_device *dev = dev_priv->dev;
2144 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
1dba99f4
VS
2145
2146 I915_WRITE(reg, I915_READ(reg));
2147 POSTING_READ(reg);
d74362c9
KP
2148}
2149
b24e7179 2150/**
262ca2b0 2151 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
fdd508a6
VS
2152 * @plane: plane to be enabled
2153 * @crtc: crtc for the plane
b24e7179 2154 *
fdd508a6 2155 * Enable @plane on @crtc, making sure that the pipe is running first.
b24e7179 2156 */
fdd508a6
VS
2157static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2158 struct drm_crtc *crtc)
b24e7179 2159{
fdd508a6
VS
2160 struct drm_device *dev = plane->dev;
2161 struct drm_i915_private *dev_priv = dev->dev_private;
2162 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
b24e7179
JB
2163
2164 /* If the pipe isn't enabled, we can't pump pixels and may hang */
fdd508a6 2165 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
b24e7179 2166
98ec7739
VS
2167 if (intel_crtc->primary_enabled)
2168 return;
0037f71c 2169
4c445e0e 2170 intel_crtc->primary_enabled = true;
939c2fe8 2171
fdd508a6
VS
2172 dev_priv->display.update_primary_plane(crtc, plane->fb,
2173 crtc->x, crtc->y);
33c3b0d1
VS
2174
2175 /*
2176 * BDW signals flip done immediately if the plane
2177 * is disabled, even if the plane enable is already
2178 * armed to occur at the next vblank :(
2179 */
2180 if (IS_BROADWELL(dev))
2181 intel_wait_for_vblank(dev, intel_crtc->pipe);
b24e7179
JB
2182}
2183
b24e7179 2184/**
262ca2b0 2185 * intel_disable_primary_hw_plane - disable the primary hardware plane
fdd508a6
VS
2186 * @plane: plane to be disabled
2187 * @crtc: crtc for the plane
b24e7179 2188 *
fdd508a6 2189 * Disable @plane on @crtc, making sure that the pipe is running first.
b24e7179 2190 */
fdd508a6
VS
2191static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2192 struct drm_crtc *crtc)
b24e7179 2193{
fdd508a6
VS
2194 struct drm_device *dev = plane->dev;
2195 struct drm_i915_private *dev_priv = dev->dev_private;
2196 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2197
2198 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
b24e7179 2199
98ec7739
VS
2200 if (!intel_crtc->primary_enabled)
2201 return;
0037f71c 2202
4c445e0e 2203 intel_crtc->primary_enabled = false;
939c2fe8 2204
fdd508a6
VS
2205 dev_priv->display.update_primary_plane(crtc, plane->fb,
2206 crtc->x, crtc->y);
b24e7179
JB
2207}
2208
693db184
CW
2209static bool need_vtd_wa(struct drm_device *dev)
2210{
2211#ifdef CONFIG_INTEL_IOMMU
2212 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2213 return true;
2214#endif
2215 return false;
2216}
2217
a57ce0b2
JB
2218static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2219{
2220 int tile_height;
2221
2222 tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2223 return ALIGN(height, tile_height);
2224}
2225
127bd2ac 2226int
48b956c5 2227intel_pin_and_fence_fb_obj(struct drm_device *dev,
05394f39 2228 struct drm_i915_gem_object *obj,
a4872ba6 2229 struct intel_engine_cs *pipelined)
6b95a207 2230{
ce453d81 2231 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
2232 u32 alignment;
2233 int ret;
2234
ebcdd39e
MR
2235 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2236
05394f39 2237 switch (obj->tiling_mode) {
6b95a207 2238 case I915_TILING_NONE:
534843da
CW
2239 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2240 alignment = 128 * 1024;
a6c45cf0 2241 else if (INTEL_INFO(dev)->gen >= 4)
534843da
CW
2242 alignment = 4 * 1024;
2243 else
2244 alignment = 64 * 1024;
6b95a207
KH
2245 break;
2246 case I915_TILING_X:
2247 /* pin() will align the object as required by fence */
2248 alignment = 0;
2249 break;
2250 case I915_TILING_Y:
80075d49 2251 WARN(1, "Y tiled bo slipped through, driver bug!\n");
6b95a207
KH
2252 return -EINVAL;
2253 default:
2254 BUG();
2255 }
2256
693db184
CW
2257 /* Note that the w/a also requires 64 PTE of padding following the
2258 * bo. We currently fill all unused PTE with the shadow page and so
2259 * we should always have valid PTE following the scanout preventing
2260 * the VT-d warning.
2261 */
2262 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2263 alignment = 256 * 1024;
2264
d6dd6843
PZ
2265 /*
2266 * Global gtt pte registers are special registers which actually forward
2267 * writes to a chunk of system memory. Which means that there is no risk
2268 * that the register values disappear as soon as we call
2269 * intel_runtime_pm_put(), so it is correct to wrap only the
2270 * pin/unpin/fence and not more.
2271 */
2272 intel_runtime_pm_get(dev_priv);
2273
ce453d81 2274 dev_priv->mm.interruptible = false;
2da3b9b9 2275 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
48b956c5 2276 if (ret)
ce453d81 2277 goto err_interruptible;
6b95a207
KH
2278
2279 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2280 * fence, whereas 965+ only requires a fence if using
2281 * framebuffer compression. For simplicity, we always install
2282 * a fence as the cost is not that onerous.
2283 */
06d98131 2284 ret = i915_gem_object_get_fence(obj);
9a5a53b3
CW
2285 if (ret)
2286 goto err_unpin;
1690e1eb 2287
9a5a53b3 2288 i915_gem_object_pin_fence(obj);
6b95a207 2289
ce453d81 2290 dev_priv->mm.interruptible = true;
d6dd6843 2291 intel_runtime_pm_put(dev_priv);
6b95a207 2292 return 0;
48b956c5
CW
2293
2294err_unpin:
cc98b413 2295 i915_gem_object_unpin_from_display_plane(obj);
ce453d81
CW
2296err_interruptible:
2297 dev_priv->mm.interruptible = true;
d6dd6843 2298 intel_runtime_pm_put(dev_priv);
48b956c5 2299 return ret;
6b95a207
KH
2300}
2301
1690e1eb
CW
2302void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2303{
ebcdd39e
MR
2304 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2305
1690e1eb 2306 i915_gem_object_unpin_fence(obj);
cc98b413 2307 i915_gem_object_unpin_from_display_plane(obj);
1690e1eb
CW
2308}
2309
c2c75131
DV
2310/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2311 * is assumed to be a power-of-two. */
bc752862
CW
2312unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2313 unsigned int tiling_mode,
2314 unsigned int cpp,
2315 unsigned int pitch)
c2c75131 2316{
bc752862
CW
2317 if (tiling_mode != I915_TILING_NONE) {
2318 unsigned int tile_rows, tiles;
c2c75131 2319
bc752862
CW
2320 tile_rows = *y / 8;
2321 *y %= 8;
c2c75131 2322
bc752862
CW
2323 tiles = *x / (512/cpp);
2324 *x %= 512/cpp;
2325
2326 return tile_rows * pitch * 8 + tiles * 4096;
2327 } else {
2328 unsigned int offset;
2329
2330 offset = *y * pitch + *x * cpp;
2331 *y = 0;
2332 *x = (offset & 4095) / cpp;
2333 return offset & -4096;
2334 }
c2c75131
DV
2335}
2336
46f297fb
JB
2337int intel_format_to_fourcc(int format)
2338{
2339 switch (format) {
2340 case DISPPLANE_8BPP:
2341 return DRM_FORMAT_C8;
2342 case DISPPLANE_BGRX555:
2343 return DRM_FORMAT_XRGB1555;
2344 case DISPPLANE_BGRX565:
2345 return DRM_FORMAT_RGB565;
2346 default:
2347 case DISPPLANE_BGRX888:
2348 return DRM_FORMAT_XRGB8888;
2349 case DISPPLANE_RGBX888:
2350 return DRM_FORMAT_XBGR8888;
2351 case DISPPLANE_BGRX101010:
2352 return DRM_FORMAT_XRGB2101010;
2353 case DISPPLANE_RGBX101010:
2354 return DRM_FORMAT_XBGR2101010;
2355 }
2356}
2357
484b41dd 2358static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
46f297fb
JB
2359 struct intel_plane_config *plane_config)
2360{
2361 struct drm_device *dev = crtc->base.dev;
2362 struct drm_i915_gem_object *obj = NULL;
2363 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2364 u32 base = plane_config->base;
2365
ff2652ea
CW
2366 if (plane_config->size == 0)
2367 return false;
2368
46f297fb
JB
2369 obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2370 plane_config->size);
2371 if (!obj)
484b41dd 2372 return false;
46f297fb
JB
2373
2374 if (plane_config->tiled) {
2375 obj->tiling_mode = I915_TILING_X;
66e514c1 2376 obj->stride = crtc->base.primary->fb->pitches[0];
46f297fb
JB
2377 }
2378
66e514c1
DA
2379 mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2380 mode_cmd.width = crtc->base.primary->fb->width;
2381 mode_cmd.height = crtc->base.primary->fb->height;
2382 mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
46f297fb
JB
2383
2384 mutex_lock(&dev->struct_mutex);
2385
66e514c1 2386 if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
484b41dd 2387 &mode_cmd, obj)) {
46f297fb
JB
2388 DRM_DEBUG_KMS("intel fb init failed\n");
2389 goto out_unref_obj;
2390 }
2391
a071fa00 2392 obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
46f297fb 2393 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2394
2395 DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2396 return true;
46f297fb
JB
2397
2398out_unref_obj:
2399 drm_gem_object_unreference(&obj->base);
2400 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2401 return false;
2402}
2403
2404static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2405 struct intel_plane_config *plane_config)
2406{
2407 struct drm_device *dev = intel_crtc->base.dev;
2408 struct drm_crtc *c;
2409 struct intel_crtc *i;
2ff8fde1 2410 struct drm_i915_gem_object *obj;
484b41dd 2411
66e514c1 2412 if (!intel_crtc->base.primary->fb)
484b41dd
JB
2413 return;
2414
2415 if (intel_alloc_plane_obj(intel_crtc, plane_config))
2416 return;
2417
66e514c1
DA
2418 kfree(intel_crtc->base.primary->fb);
2419 intel_crtc->base.primary->fb = NULL;
484b41dd
JB
2420
2421 /*
2422 * Failed to alloc the obj, check to see if we should share
2423 * an fb with another CRTC instead
2424 */
70e1e0ec 2425 for_each_crtc(dev, c) {
484b41dd
JB
2426 i = to_intel_crtc(c);
2427
2428 if (c == &intel_crtc->base)
2429 continue;
2430
2ff8fde1
MR
2431 if (!i->active)
2432 continue;
2433
2434 obj = intel_fb_obj(c->primary->fb);
2435 if (obj == NULL)
484b41dd
JB
2436 continue;
2437
2ff8fde1 2438 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
66e514c1
DA
2439 drm_framebuffer_reference(c->primary->fb);
2440 intel_crtc->base.primary->fb = c->primary->fb;
2ff8fde1 2441 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
484b41dd
JB
2442 break;
2443 }
2444 }
46f297fb
JB
2445}
2446
29b9bde6
DV
2447static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2448 struct drm_framebuffer *fb,
2449 int x, int y)
81255565
JB
2450{
2451 struct drm_device *dev = crtc->dev;
2452 struct drm_i915_private *dev_priv = dev->dev_private;
2453 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c9ba6fad 2454 struct drm_i915_gem_object *obj;
81255565 2455 int plane = intel_crtc->plane;
e506a0c6 2456 unsigned long linear_offset;
81255565 2457 u32 dspcntr;
f45651ba 2458 u32 reg = DSPCNTR(plane);
48404c1e 2459 int pixel_size;
f45651ba 2460
fdd508a6
VS
2461 if (!intel_crtc->primary_enabled) {
2462 I915_WRITE(reg, 0);
2463 if (INTEL_INFO(dev)->gen >= 4)
2464 I915_WRITE(DSPSURF(plane), 0);
2465 else
2466 I915_WRITE(DSPADDR(plane), 0);
2467 POSTING_READ(reg);
2468 return;
2469 }
2470
c9ba6fad
VS
2471 obj = intel_fb_obj(fb);
2472 if (WARN_ON(obj == NULL))
2473 return;
2474
2475 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2476
f45651ba
VS
2477 dspcntr = DISPPLANE_GAMMA_ENABLE;
2478
fdd508a6 2479 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2480
2481 if (INTEL_INFO(dev)->gen < 4) {
2482 if (intel_crtc->pipe == PIPE_B)
2483 dspcntr |= DISPPLANE_SEL_PIPE_B;
2484
2485 /* pipesrc and dspsize control the size that is scaled from,
2486 * which should always be the user's requested size.
2487 */
2488 I915_WRITE(DSPSIZE(plane),
2489 ((intel_crtc->config.pipe_src_h - 1) << 16) |
2490 (intel_crtc->config.pipe_src_w - 1));
2491 I915_WRITE(DSPPOS(plane), 0);
2492 }
81255565 2493
57779d06
VS
2494 switch (fb->pixel_format) {
2495 case DRM_FORMAT_C8:
81255565
JB
2496 dspcntr |= DISPPLANE_8BPP;
2497 break;
57779d06
VS
2498 case DRM_FORMAT_XRGB1555:
2499 case DRM_FORMAT_ARGB1555:
2500 dspcntr |= DISPPLANE_BGRX555;
81255565 2501 break;
57779d06
VS
2502 case DRM_FORMAT_RGB565:
2503 dspcntr |= DISPPLANE_BGRX565;
2504 break;
2505 case DRM_FORMAT_XRGB8888:
2506 case DRM_FORMAT_ARGB8888:
2507 dspcntr |= DISPPLANE_BGRX888;
2508 break;
2509 case DRM_FORMAT_XBGR8888:
2510 case DRM_FORMAT_ABGR8888:
2511 dspcntr |= DISPPLANE_RGBX888;
2512 break;
2513 case DRM_FORMAT_XRGB2101010:
2514 case DRM_FORMAT_ARGB2101010:
2515 dspcntr |= DISPPLANE_BGRX101010;
2516 break;
2517 case DRM_FORMAT_XBGR2101010:
2518 case DRM_FORMAT_ABGR2101010:
2519 dspcntr |= DISPPLANE_RGBX101010;
81255565
JB
2520 break;
2521 default:
baba133a 2522 BUG();
81255565 2523 }
57779d06 2524
f45651ba
VS
2525 if (INTEL_INFO(dev)->gen >= 4 &&
2526 obj->tiling_mode != I915_TILING_NONE)
2527 dspcntr |= DISPPLANE_TILED;
81255565 2528
de1aa629
VS
2529 if (IS_G4X(dev))
2530 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2531
b9897127 2532 linear_offset = y * fb->pitches[0] + x * pixel_size;
81255565 2533
c2c75131
DV
2534 if (INTEL_INFO(dev)->gen >= 4) {
2535 intel_crtc->dspaddr_offset =
bc752862 2536 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
b9897127 2537 pixel_size,
bc752862 2538 fb->pitches[0]);
c2c75131
DV
2539 linear_offset -= intel_crtc->dspaddr_offset;
2540 } else {
e506a0c6 2541 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2542 }
e506a0c6 2543
48404c1e
SJ
2544 if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2545 dspcntr |= DISPPLANE_ROTATE_180;
2546
2547 x += (intel_crtc->config.pipe_src_w - 1);
2548 y += (intel_crtc->config.pipe_src_h - 1);
2549
2550 /* Finding the last pixel of the last line of the display
2551 data and adding to linear_offset*/
2552 linear_offset +=
2553 (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2554 (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2555 }
2556
2557 I915_WRITE(reg, dspcntr);
2558
f343c5f6
BW
2559 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2560 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2561 fb->pitches[0]);
01f2c773 2562 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2563 if (INTEL_INFO(dev)->gen >= 4) {
85ba7b7d
DV
2564 I915_WRITE(DSPSURF(plane),
2565 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
5eddb70b 2566 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2567 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2568 } else
f343c5f6 2569 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
5eddb70b 2570 POSTING_READ(reg);
17638cd6
JB
2571}
2572
29b9bde6
DV
2573static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2574 struct drm_framebuffer *fb,
2575 int x, int y)
17638cd6
JB
2576{
2577 struct drm_device *dev = crtc->dev;
2578 struct drm_i915_private *dev_priv = dev->dev_private;
2579 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c9ba6fad 2580 struct drm_i915_gem_object *obj;
17638cd6 2581 int plane = intel_crtc->plane;
e506a0c6 2582 unsigned long linear_offset;
17638cd6 2583 u32 dspcntr;
f45651ba 2584 u32 reg = DSPCNTR(plane);
48404c1e 2585 int pixel_size;
f45651ba 2586
fdd508a6
VS
2587 if (!intel_crtc->primary_enabled) {
2588 I915_WRITE(reg, 0);
2589 I915_WRITE(DSPSURF(plane), 0);
2590 POSTING_READ(reg);
2591 return;
2592 }
2593
c9ba6fad
VS
2594 obj = intel_fb_obj(fb);
2595 if (WARN_ON(obj == NULL))
2596 return;
2597
2598 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2599
f45651ba
VS
2600 dspcntr = DISPPLANE_GAMMA_ENABLE;
2601
fdd508a6 2602 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2603
2604 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2605 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
17638cd6 2606
57779d06
VS
2607 switch (fb->pixel_format) {
2608 case DRM_FORMAT_C8:
17638cd6
JB
2609 dspcntr |= DISPPLANE_8BPP;
2610 break;
57779d06
VS
2611 case DRM_FORMAT_RGB565:
2612 dspcntr |= DISPPLANE_BGRX565;
17638cd6 2613 break;
57779d06
VS
2614 case DRM_FORMAT_XRGB8888:
2615 case DRM_FORMAT_ARGB8888:
2616 dspcntr |= DISPPLANE_BGRX888;
2617 break;
2618 case DRM_FORMAT_XBGR8888:
2619 case DRM_FORMAT_ABGR8888:
2620 dspcntr |= DISPPLANE_RGBX888;
2621 break;
2622 case DRM_FORMAT_XRGB2101010:
2623 case DRM_FORMAT_ARGB2101010:
2624 dspcntr |= DISPPLANE_BGRX101010;
2625 break;
2626 case DRM_FORMAT_XBGR2101010:
2627 case DRM_FORMAT_ABGR2101010:
2628 dspcntr |= DISPPLANE_RGBX101010;
17638cd6
JB
2629 break;
2630 default:
baba133a 2631 BUG();
17638cd6
JB
2632 }
2633
2634 if (obj->tiling_mode != I915_TILING_NONE)
2635 dspcntr |= DISPPLANE_TILED;
17638cd6 2636
f45651ba 2637 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
1f5d76db 2638 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
17638cd6 2639
b9897127 2640 linear_offset = y * fb->pitches[0] + x * pixel_size;
c2c75131 2641 intel_crtc->dspaddr_offset =
bc752862 2642 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
b9897127 2643 pixel_size,
bc752862 2644 fb->pitches[0]);
c2c75131 2645 linear_offset -= intel_crtc->dspaddr_offset;
48404c1e
SJ
2646 if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2647 dspcntr |= DISPPLANE_ROTATE_180;
2648
2649 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2650 x += (intel_crtc->config.pipe_src_w - 1);
2651 y += (intel_crtc->config.pipe_src_h - 1);
2652
2653 /* Finding the last pixel of the last line of the display
2654 data and adding to linear_offset*/
2655 linear_offset +=
2656 (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2657 (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2658 }
2659 }
2660
2661 I915_WRITE(reg, dspcntr);
17638cd6 2662
f343c5f6
BW
2663 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2664 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2665 fb->pitches[0]);
01f2c773 2666 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
85ba7b7d
DV
2667 I915_WRITE(DSPSURF(plane),
2668 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
b3dc685e 2669 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
bc1c91eb
DL
2670 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2671 } else {
2672 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2673 I915_WRITE(DSPLINOFF(plane), linear_offset);
2674 }
17638cd6 2675 POSTING_READ(reg);
17638cd6
JB
2676}
2677
2678/* Assume fb object is pinned & idle & fenced and just update base pointers */
2679static int
2680intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2681 int x, int y, enum mode_set_atomic state)
2682{
2683 struct drm_device *dev = crtc->dev;
2684 struct drm_i915_private *dev_priv = dev->dev_private;
17638cd6 2685
6b8e6ed0
CW
2686 if (dev_priv->display.disable_fbc)
2687 dev_priv->display.disable_fbc(dev);
cc36513c 2688 intel_increase_pllclock(dev, to_intel_crtc(crtc)->pipe);
81255565 2689
29b9bde6
DV
2690 dev_priv->display.update_primary_plane(crtc, fb, x, y);
2691
2692 return 0;
81255565
JB
2693}
2694
96a02917
VS
2695void intel_display_handle_reset(struct drm_device *dev)
2696{
2697 struct drm_i915_private *dev_priv = dev->dev_private;
2698 struct drm_crtc *crtc;
2699
2700 /*
2701 * Flips in the rings have been nuked by the reset,
2702 * so complete all pending flips so that user space
2703 * will get its events and not get stuck.
2704 *
2705 * Also update the base address of all primary
2706 * planes to the the last fb to make sure we're
2707 * showing the correct fb after a reset.
2708 *
2709 * Need to make two loops over the crtcs so that we
2710 * don't try to grab a crtc mutex before the
2711 * pending_flip_queue really got woken up.
2712 */
2713
70e1e0ec 2714 for_each_crtc(dev, crtc) {
96a02917
VS
2715 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2716 enum plane plane = intel_crtc->plane;
2717
2718 intel_prepare_page_flip(dev, plane);
2719 intel_finish_page_flip_plane(dev, plane);
2720 }
2721
70e1e0ec 2722 for_each_crtc(dev, crtc) {
96a02917
VS
2723 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2724
51fd371b 2725 drm_modeset_lock(&crtc->mutex, NULL);
947fdaad
CW
2726 /*
2727 * FIXME: Once we have proper support for primary planes (and
2728 * disabling them without disabling the entire crtc) allow again
66e514c1 2729 * a NULL crtc->primary->fb.
947fdaad 2730 */
f4510a27 2731 if (intel_crtc->active && crtc->primary->fb)
262ca2b0 2732 dev_priv->display.update_primary_plane(crtc,
66e514c1 2733 crtc->primary->fb,
262ca2b0
MR
2734 crtc->x,
2735 crtc->y);
51fd371b 2736 drm_modeset_unlock(&crtc->mutex);
96a02917
VS
2737 }
2738}
2739
14667a4b
CW
2740static int
2741intel_finish_fb(struct drm_framebuffer *old_fb)
2742{
2ff8fde1 2743 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
14667a4b
CW
2744 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2745 bool was_interruptible = dev_priv->mm.interruptible;
2746 int ret;
2747
14667a4b
CW
2748 /* Big Hammer, we also need to ensure that any pending
2749 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2750 * current scanout is retired before unpinning the old
2751 * framebuffer.
2752 *
2753 * This should only fail upon a hung GPU, in which case we
2754 * can safely continue.
2755 */
2756 dev_priv->mm.interruptible = false;
2757 ret = i915_gem_object_finish_gpu(obj);
2758 dev_priv->mm.interruptible = was_interruptible;
2759
2760 return ret;
2761}
2762
7d5e3799
CW
2763static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2764{
2765 struct drm_device *dev = crtc->dev;
2766 struct drm_i915_private *dev_priv = dev->dev_private;
2767 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2768 unsigned long flags;
2769 bool pending;
2770
2771 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2772 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2773 return false;
2774
2775 spin_lock_irqsave(&dev->event_lock, flags);
2776 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2777 spin_unlock_irqrestore(&dev->event_lock, flags);
2778
2779 return pending;
2780}
2781
e30e8f75
GP
2782static void intel_update_pipe_size(struct intel_crtc *crtc)
2783{
2784 struct drm_device *dev = crtc->base.dev;
2785 struct drm_i915_private *dev_priv = dev->dev_private;
2786 const struct drm_display_mode *adjusted_mode;
2787
2788 if (!i915.fastboot)
2789 return;
2790
2791 /*
2792 * Update pipe size and adjust fitter if needed: the reason for this is
2793 * that in compute_mode_changes we check the native mode (not the pfit
2794 * mode) to see if we can flip rather than do a full mode set. In the
2795 * fastboot case, we'll flip, but if we don't update the pipesrc and
2796 * pfit state, we'll end up with a big fb scanned out into the wrong
2797 * sized surface.
2798 *
2799 * To fix this properly, we need to hoist the checks up into
2800 * compute_mode_changes (or above), check the actual pfit state and
2801 * whether the platform allows pfit disable with pipe active, and only
2802 * then update the pipesrc and pfit state, even on the flip path.
2803 */
2804
2805 adjusted_mode = &crtc->config.adjusted_mode;
2806
2807 I915_WRITE(PIPESRC(crtc->pipe),
2808 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2809 (adjusted_mode->crtc_vdisplay - 1));
2810 if (!crtc->config.pch_pfit.enabled &&
2811 (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) ||
2812 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))) {
2813 I915_WRITE(PF_CTL(crtc->pipe), 0);
2814 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
2815 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
2816 }
2817 crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2818 crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
2819}
2820
5c3b82e2 2821static int
3c4fdcfb 2822intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
94352cf9 2823 struct drm_framebuffer *fb)
79e53945
JB
2824{
2825 struct drm_device *dev = crtc->dev;
6b8e6ed0 2826 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 2827 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 2828 enum pipe pipe = intel_crtc->pipe;
2ff8fde1
MR
2829 struct drm_framebuffer *old_fb = crtc->primary->fb;
2830 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2831 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
5c3b82e2 2832 int ret;
79e53945 2833
7d5e3799
CW
2834 if (intel_crtc_has_pending_flip(crtc)) {
2835 DRM_ERROR("pipe is still busy with an old pageflip\n");
2836 return -EBUSY;
2837 }
2838
79e53945 2839 /* no fb bound */
94352cf9 2840 if (!fb) {
a5071c2f 2841 DRM_ERROR("No FB bound\n");
5c3b82e2
CW
2842 return 0;
2843 }
2844
7eb552ae 2845 if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
84f44ce7
VS
2846 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2847 plane_name(intel_crtc->plane),
2848 INTEL_INFO(dev)->num_pipes);
5c3b82e2 2849 return -EINVAL;
79e53945
JB
2850 }
2851
5c3b82e2 2852 mutex_lock(&dev->struct_mutex);
a071fa00
DV
2853 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
2854 if (ret == 0)
91565c85 2855 i915_gem_track_fb(old_obj, obj,
a071fa00 2856 INTEL_FRONTBUFFER_PRIMARY(pipe));
8ac36ec1 2857 mutex_unlock(&dev->struct_mutex);
5c3b82e2 2858 if (ret != 0) {
a5071c2f 2859 DRM_ERROR("pin & fence failed\n");
5c3b82e2
CW
2860 return ret;
2861 }
79e53945 2862
e30e8f75 2863 intel_update_pipe_size(intel_crtc);
4d6a3e63 2864
29b9bde6 2865 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3c4fdcfb 2866
f99d7069
DV
2867 if (intel_crtc->active)
2868 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
2869
f4510a27 2870 crtc->primary->fb = fb;
6c4c86f5
DV
2871 crtc->x = x;
2872 crtc->y = y;
94352cf9 2873
b7f1de28 2874 if (old_fb) {
d7697eea
DV
2875 if (intel_crtc->active && old_fb != fb)
2876 intel_wait_for_vblank(dev, intel_crtc->pipe);
8ac36ec1 2877 mutex_lock(&dev->struct_mutex);
2ff8fde1 2878 intel_unpin_fb_obj(old_obj);
8ac36ec1 2879 mutex_unlock(&dev->struct_mutex);
b7f1de28 2880 }
652c393a 2881
8ac36ec1 2882 mutex_lock(&dev->struct_mutex);
6b8e6ed0 2883 intel_update_fbc(dev);
5c3b82e2 2884 mutex_unlock(&dev->struct_mutex);
79e53945 2885
5c3b82e2 2886 return 0;
79e53945
JB
2887}
2888
5e84e1a4
ZW
2889static void intel_fdi_normal_train(struct drm_crtc *crtc)
2890{
2891 struct drm_device *dev = crtc->dev;
2892 struct drm_i915_private *dev_priv = dev->dev_private;
2893 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2894 int pipe = intel_crtc->pipe;
2895 u32 reg, temp;
2896
2897 /* enable normal train */
2898 reg = FDI_TX_CTL(pipe);
2899 temp = I915_READ(reg);
61e499bf 2900 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
2901 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2902 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
2903 } else {
2904 temp &= ~FDI_LINK_TRAIN_NONE;
2905 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 2906 }
5e84e1a4
ZW
2907 I915_WRITE(reg, temp);
2908
2909 reg = FDI_RX_CTL(pipe);
2910 temp = I915_READ(reg);
2911 if (HAS_PCH_CPT(dev)) {
2912 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2913 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2914 } else {
2915 temp &= ~FDI_LINK_TRAIN_NONE;
2916 temp |= FDI_LINK_TRAIN_NONE;
2917 }
2918 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2919
2920 /* wait one idle pattern time */
2921 POSTING_READ(reg);
2922 udelay(1000);
357555c0
JB
2923
2924 /* IVB wants error correction enabled */
2925 if (IS_IVYBRIDGE(dev))
2926 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2927 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
2928}
2929
1fbc0d78 2930static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
1e833f40 2931{
1fbc0d78
DV
2932 return crtc->base.enabled && crtc->active &&
2933 crtc->config.has_pch_encoder;
1e833f40
DV
2934}
2935
01a415fd
DV
2936static void ivb_modeset_global_resources(struct drm_device *dev)
2937{
2938 struct drm_i915_private *dev_priv = dev->dev_private;
2939 struct intel_crtc *pipe_B_crtc =
2940 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2941 struct intel_crtc *pipe_C_crtc =
2942 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2943 uint32_t temp;
2944
1e833f40
DV
2945 /*
2946 * When everything is off disable fdi C so that we could enable fdi B
2947 * with all lanes. Note that we don't care about enabled pipes without
2948 * an enabled pch encoder.
2949 */
2950 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2951 !pipe_has_enabled_pch(pipe_C_crtc)) {
01a415fd
DV
2952 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2953 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2954
2955 temp = I915_READ(SOUTH_CHICKEN1);
2956 temp &= ~FDI_BC_BIFURCATION_SELECT;
2957 DRM_DEBUG_KMS("disabling fdi C rx\n");
2958 I915_WRITE(SOUTH_CHICKEN1, temp);
2959 }
2960}
2961
8db9d77b
ZW
2962/* The FDI link training functions for ILK/Ibexpeak. */
2963static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2964{
2965 struct drm_device *dev = crtc->dev;
2966 struct drm_i915_private *dev_priv = dev->dev_private;
2967 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2968 int pipe = intel_crtc->pipe;
5eddb70b 2969 u32 reg, temp, tries;
8db9d77b 2970
1c8562f6 2971 /* FDI needs bits from pipe first */
0fc932b8 2972 assert_pipe_enabled(dev_priv, pipe);
0fc932b8 2973
e1a44743
AJ
2974 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2975 for train result */
5eddb70b
CW
2976 reg = FDI_RX_IMR(pipe);
2977 temp = I915_READ(reg);
e1a44743
AJ
2978 temp &= ~FDI_RX_SYMBOL_LOCK;
2979 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2980 I915_WRITE(reg, temp);
2981 I915_READ(reg);
e1a44743
AJ
2982 udelay(150);
2983
8db9d77b 2984 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2985 reg = FDI_TX_CTL(pipe);
2986 temp = I915_READ(reg);
627eb5a3
DV
2987 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2988 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
8db9d77b
ZW
2989 temp &= ~FDI_LINK_TRAIN_NONE;
2990 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 2991 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2992
5eddb70b
CW
2993 reg = FDI_RX_CTL(pipe);
2994 temp = I915_READ(reg);
8db9d77b
ZW
2995 temp &= ~FDI_LINK_TRAIN_NONE;
2996 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
2997 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2998
2999 POSTING_READ(reg);
8db9d77b
ZW
3000 udelay(150);
3001
5b2adf89 3002 /* Ironlake workaround, enable clock pointer after FDI enable*/
8f5718a6
DV
3003 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3004 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3005 FDI_RX_PHASE_SYNC_POINTER_EN);
5b2adf89 3006
5eddb70b 3007 reg = FDI_RX_IIR(pipe);
e1a44743 3008 for (tries = 0; tries < 5; tries++) {
5eddb70b 3009 temp = I915_READ(reg);
8db9d77b
ZW
3010 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3011
3012 if ((temp & FDI_RX_BIT_LOCK)) {
3013 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 3014 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
3015 break;
3016 }
8db9d77b 3017 }
e1a44743 3018 if (tries == 5)
5eddb70b 3019 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3020
3021 /* Train 2 */
5eddb70b
CW
3022 reg = FDI_TX_CTL(pipe);
3023 temp = I915_READ(reg);
8db9d77b
ZW
3024 temp &= ~FDI_LINK_TRAIN_NONE;
3025 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3026 I915_WRITE(reg, temp);
8db9d77b 3027
5eddb70b
CW
3028 reg = FDI_RX_CTL(pipe);
3029 temp = I915_READ(reg);
8db9d77b
ZW
3030 temp &= ~FDI_LINK_TRAIN_NONE;
3031 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3032 I915_WRITE(reg, temp);
8db9d77b 3033
5eddb70b
CW
3034 POSTING_READ(reg);
3035 udelay(150);
8db9d77b 3036
5eddb70b 3037 reg = FDI_RX_IIR(pipe);
e1a44743 3038 for (tries = 0; tries < 5; tries++) {
5eddb70b 3039 temp = I915_READ(reg);
8db9d77b
ZW
3040 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3041
3042 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 3043 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
3044 DRM_DEBUG_KMS("FDI train 2 done.\n");
3045 break;
3046 }
8db9d77b 3047 }
e1a44743 3048 if (tries == 5)
5eddb70b 3049 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3050
3051 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 3052
8db9d77b
ZW
3053}
3054
0206e353 3055static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
3056 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3057 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3058 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3059 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3060};
3061
3062/* The FDI link training functions for SNB/Cougarpoint. */
3063static void gen6_fdi_link_train(struct drm_crtc *crtc)
3064{
3065 struct drm_device *dev = crtc->dev;
3066 struct drm_i915_private *dev_priv = dev->dev_private;
3067 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3068 int pipe = intel_crtc->pipe;
fa37d39e 3069 u32 reg, temp, i, retry;
8db9d77b 3070
e1a44743
AJ
3071 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3072 for train result */
5eddb70b
CW
3073 reg = FDI_RX_IMR(pipe);
3074 temp = I915_READ(reg);
e1a44743
AJ
3075 temp &= ~FDI_RX_SYMBOL_LOCK;
3076 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3077 I915_WRITE(reg, temp);
3078
3079 POSTING_READ(reg);
e1a44743
AJ
3080 udelay(150);
3081
8db9d77b 3082 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3083 reg = FDI_TX_CTL(pipe);
3084 temp = I915_READ(reg);
627eb5a3
DV
3085 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3086 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
8db9d77b
ZW
3087 temp &= ~FDI_LINK_TRAIN_NONE;
3088 temp |= FDI_LINK_TRAIN_PATTERN_1;
3089 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3090 /* SNB-B */
3091 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 3092 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3093
d74cf324
DV
3094 I915_WRITE(FDI_RX_MISC(pipe),
3095 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3096
5eddb70b
CW
3097 reg = FDI_RX_CTL(pipe);
3098 temp = I915_READ(reg);
8db9d77b
ZW
3099 if (HAS_PCH_CPT(dev)) {
3100 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3101 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3102 } else {
3103 temp &= ~FDI_LINK_TRAIN_NONE;
3104 temp |= FDI_LINK_TRAIN_PATTERN_1;
3105 }
5eddb70b
CW
3106 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3107
3108 POSTING_READ(reg);
8db9d77b
ZW
3109 udelay(150);
3110
0206e353 3111 for (i = 0; i < 4; i++) {
5eddb70b
CW
3112 reg = FDI_TX_CTL(pipe);
3113 temp = I915_READ(reg);
8db9d77b
ZW
3114 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3115 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3116 I915_WRITE(reg, temp);
3117
3118 POSTING_READ(reg);
8db9d77b
ZW
3119 udelay(500);
3120
fa37d39e
SP
3121 for (retry = 0; retry < 5; retry++) {
3122 reg = FDI_RX_IIR(pipe);
3123 temp = I915_READ(reg);
3124 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3125 if (temp & FDI_RX_BIT_LOCK) {
3126 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3127 DRM_DEBUG_KMS("FDI train 1 done.\n");
3128 break;
3129 }
3130 udelay(50);
8db9d77b 3131 }
fa37d39e
SP
3132 if (retry < 5)
3133 break;
8db9d77b
ZW
3134 }
3135 if (i == 4)
5eddb70b 3136 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3137
3138 /* Train 2 */
5eddb70b
CW
3139 reg = FDI_TX_CTL(pipe);
3140 temp = I915_READ(reg);
8db9d77b
ZW
3141 temp &= ~FDI_LINK_TRAIN_NONE;
3142 temp |= FDI_LINK_TRAIN_PATTERN_2;
3143 if (IS_GEN6(dev)) {
3144 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3145 /* SNB-B */
3146 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3147 }
5eddb70b 3148 I915_WRITE(reg, temp);
8db9d77b 3149
5eddb70b
CW
3150 reg = FDI_RX_CTL(pipe);
3151 temp = I915_READ(reg);
8db9d77b
ZW
3152 if (HAS_PCH_CPT(dev)) {
3153 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3154 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3155 } else {
3156 temp &= ~FDI_LINK_TRAIN_NONE;
3157 temp |= FDI_LINK_TRAIN_PATTERN_2;
3158 }
5eddb70b
CW
3159 I915_WRITE(reg, temp);
3160
3161 POSTING_READ(reg);
8db9d77b
ZW
3162 udelay(150);
3163
0206e353 3164 for (i = 0; i < 4; i++) {
5eddb70b
CW
3165 reg = FDI_TX_CTL(pipe);
3166 temp = I915_READ(reg);
8db9d77b
ZW
3167 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3168 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3169 I915_WRITE(reg, temp);
3170
3171 POSTING_READ(reg);
8db9d77b
ZW
3172 udelay(500);
3173
fa37d39e
SP
3174 for (retry = 0; retry < 5; retry++) {
3175 reg = FDI_RX_IIR(pipe);
3176 temp = I915_READ(reg);
3177 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3178 if (temp & FDI_RX_SYMBOL_LOCK) {
3179 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3180 DRM_DEBUG_KMS("FDI train 2 done.\n");
3181 break;
3182 }
3183 udelay(50);
8db9d77b 3184 }
fa37d39e
SP
3185 if (retry < 5)
3186 break;
8db9d77b
ZW
3187 }
3188 if (i == 4)
5eddb70b 3189 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3190
3191 DRM_DEBUG_KMS("FDI train done.\n");
3192}
3193
357555c0
JB
3194/* Manual link training for Ivy Bridge A0 parts */
3195static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3196{
3197 struct drm_device *dev = crtc->dev;
3198 struct drm_i915_private *dev_priv = dev->dev_private;
3199 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3200 int pipe = intel_crtc->pipe;
139ccd3f 3201 u32 reg, temp, i, j;
357555c0
JB
3202
3203 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3204 for train result */
3205 reg = FDI_RX_IMR(pipe);
3206 temp = I915_READ(reg);
3207 temp &= ~FDI_RX_SYMBOL_LOCK;
3208 temp &= ~FDI_RX_BIT_LOCK;
3209 I915_WRITE(reg, temp);
3210
3211 POSTING_READ(reg);
3212 udelay(150);
3213
01a415fd
DV
3214 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3215 I915_READ(FDI_RX_IIR(pipe)));
3216
139ccd3f
JB
3217 /* Try each vswing and preemphasis setting twice before moving on */
3218 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3219 /* disable first in case we need to retry */
3220 reg = FDI_TX_CTL(pipe);
3221 temp = I915_READ(reg);
3222 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3223 temp &= ~FDI_TX_ENABLE;
3224 I915_WRITE(reg, temp);
357555c0 3225
139ccd3f
JB
3226 reg = FDI_RX_CTL(pipe);
3227 temp = I915_READ(reg);
3228 temp &= ~FDI_LINK_TRAIN_AUTO;
3229 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3230 temp &= ~FDI_RX_ENABLE;
3231 I915_WRITE(reg, temp);
357555c0 3232
139ccd3f 3233 /* enable CPU FDI TX and PCH FDI RX */
357555c0
JB
3234 reg = FDI_TX_CTL(pipe);
3235 temp = I915_READ(reg);
139ccd3f
JB
3236 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3237 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3238 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
357555c0 3239 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
139ccd3f
JB
3240 temp |= snb_b_fdi_train_param[j/2];
3241 temp |= FDI_COMPOSITE_SYNC;
3242 I915_WRITE(reg, temp | FDI_TX_ENABLE);
357555c0 3243
139ccd3f
JB
3244 I915_WRITE(FDI_RX_MISC(pipe),
3245 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
357555c0 3246
139ccd3f 3247 reg = FDI_RX_CTL(pipe);
357555c0 3248 temp = I915_READ(reg);
139ccd3f
JB
3249 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3250 temp |= FDI_COMPOSITE_SYNC;
3251 I915_WRITE(reg, temp | FDI_RX_ENABLE);
357555c0 3252
139ccd3f
JB
3253 POSTING_READ(reg);
3254 udelay(1); /* should be 0.5us */
357555c0 3255
139ccd3f
JB
3256 for (i = 0; i < 4; i++) {
3257 reg = FDI_RX_IIR(pipe);
3258 temp = I915_READ(reg);
3259 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3260
139ccd3f
JB
3261 if (temp & FDI_RX_BIT_LOCK ||
3262 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3263 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3264 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3265 i);
3266 break;
3267 }
3268 udelay(1); /* should be 0.5us */
3269 }
3270 if (i == 4) {
3271 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3272 continue;
3273 }
357555c0 3274
139ccd3f 3275 /* Train 2 */
357555c0
JB
3276 reg = FDI_TX_CTL(pipe);
3277 temp = I915_READ(reg);
139ccd3f
JB
3278 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3279 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3280 I915_WRITE(reg, temp);
3281
3282 reg = FDI_RX_CTL(pipe);
3283 temp = I915_READ(reg);
3284 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3285 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
357555c0
JB
3286 I915_WRITE(reg, temp);
3287
3288 POSTING_READ(reg);
139ccd3f 3289 udelay(2); /* should be 1.5us */
357555c0 3290
139ccd3f
JB
3291 for (i = 0; i < 4; i++) {
3292 reg = FDI_RX_IIR(pipe);
3293 temp = I915_READ(reg);
3294 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3295
139ccd3f
JB
3296 if (temp & FDI_RX_SYMBOL_LOCK ||
3297 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3298 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3299 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3300 i);
3301 goto train_done;
3302 }
3303 udelay(2); /* should be 1.5us */
357555c0 3304 }
139ccd3f
JB
3305 if (i == 4)
3306 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
357555c0 3307 }
357555c0 3308
139ccd3f 3309train_done:
357555c0
JB
3310 DRM_DEBUG_KMS("FDI train done.\n");
3311}
3312
88cefb6c 3313static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 3314{
88cefb6c 3315 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 3316 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 3317 int pipe = intel_crtc->pipe;
5eddb70b 3318 u32 reg, temp;
79e53945 3319
c64e311e 3320
c98e9dcf 3321 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
3322 reg = FDI_RX_CTL(pipe);
3323 temp = I915_READ(reg);
627eb5a3
DV
3324 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3325 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
dfd07d72 3326 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5eddb70b
CW
3327 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3328
3329 POSTING_READ(reg);
c98e9dcf
JB
3330 udelay(200);
3331
3332 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
3333 temp = I915_READ(reg);
3334 I915_WRITE(reg, temp | FDI_PCDCLK);
3335
3336 POSTING_READ(reg);
c98e9dcf
JB
3337 udelay(200);
3338
20749730
PZ
3339 /* Enable CPU FDI TX PLL, always on for Ironlake */
3340 reg = FDI_TX_CTL(pipe);
3341 temp = I915_READ(reg);
3342 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3343 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 3344
20749730
PZ
3345 POSTING_READ(reg);
3346 udelay(100);
6be4a607 3347 }
0e23b99d
JB
3348}
3349
88cefb6c
DV
3350static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3351{
3352 struct drm_device *dev = intel_crtc->base.dev;
3353 struct drm_i915_private *dev_priv = dev->dev_private;
3354 int pipe = intel_crtc->pipe;
3355 u32 reg, temp;
3356
3357 /* Switch from PCDclk to Rawclk */
3358 reg = FDI_RX_CTL(pipe);
3359 temp = I915_READ(reg);
3360 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3361
3362 /* Disable CPU FDI TX PLL */
3363 reg = FDI_TX_CTL(pipe);
3364 temp = I915_READ(reg);
3365 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3366
3367 POSTING_READ(reg);
3368 udelay(100);
3369
3370 reg = FDI_RX_CTL(pipe);
3371 temp = I915_READ(reg);
3372 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3373
3374 /* Wait for the clocks to turn off. */
3375 POSTING_READ(reg);
3376 udelay(100);
3377}
3378
0fc932b8
JB
3379static void ironlake_fdi_disable(struct drm_crtc *crtc)
3380{
3381 struct drm_device *dev = crtc->dev;
3382 struct drm_i915_private *dev_priv = dev->dev_private;
3383 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3384 int pipe = intel_crtc->pipe;
3385 u32 reg, temp;
3386
3387 /* disable CPU FDI tx and PCH FDI rx */
3388 reg = FDI_TX_CTL(pipe);
3389 temp = I915_READ(reg);
3390 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3391 POSTING_READ(reg);
3392
3393 reg = FDI_RX_CTL(pipe);
3394 temp = I915_READ(reg);
3395 temp &= ~(0x7 << 16);
dfd07d72 3396 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3397 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3398
3399 POSTING_READ(reg);
3400 udelay(100);
3401
3402 /* Ironlake workaround, disable clock pointer after downing FDI */
eba905b2 3403 if (HAS_PCH_IBX(dev))
6f06ce18 3404 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
3405
3406 /* still set train pattern 1 */
3407 reg = FDI_TX_CTL(pipe);
3408 temp = I915_READ(reg);
3409 temp &= ~FDI_LINK_TRAIN_NONE;
3410 temp |= FDI_LINK_TRAIN_PATTERN_1;
3411 I915_WRITE(reg, temp);
3412
3413 reg = FDI_RX_CTL(pipe);
3414 temp = I915_READ(reg);
3415 if (HAS_PCH_CPT(dev)) {
3416 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3417 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3418 } else {
3419 temp &= ~FDI_LINK_TRAIN_NONE;
3420 temp |= FDI_LINK_TRAIN_PATTERN_1;
3421 }
3422 /* BPC in FDI rx is consistent with that in PIPECONF */
3423 temp &= ~(0x07 << 16);
dfd07d72 3424 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3425 I915_WRITE(reg, temp);
3426
3427 POSTING_READ(reg);
3428 udelay(100);
3429}
3430
5dce5b93
CW
3431bool intel_has_pending_fb_unpin(struct drm_device *dev)
3432{
3433 struct intel_crtc *crtc;
3434
3435 /* Note that we don't need to be called with mode_config.lock here
3436 * as our list of CRTC objects is static for the lifetime of the
3437 * device and so cannot disappear as we iterate. Similarly, we can
3438 * happily treat the predicates as racy, atomic checks as userspace
3439 * cannot claim and pin a new fb without at least acquring the
3440 * struct_mutex and so serialising with us.
3441 */
d3fcc808 3442 for_each_intel_crtc(dev, crtc) {
5dce5b93
CW
3443 if (atomic_read(&crtc->unpin_work_count) == 0)
3444 continue;
3445
3446 if (crtc->unpin_work)
3447 intel_wait_for_vblank(dev, crtc->pipe);
3448
3449 return true;
3450 }
3451
3452 return false;
3453}
3454
d6bbafa1
CW
3455static void page_flip_completed(struct intel_crtc *intel_crtc)
3456{
3457 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3458 struct intel_unpin_work *work = intel_crtc->unpin_work;
3459
3460 /* ensure that the unpin work is consistent wrt ->pending. */
3461 smp_rmb();
3462 intel_crtc->unpin_work = NULL;
3463
3464 if (work->event)
3465 drm_send_vblank_event(intel_crtc->base.dev,
3466 intel_crtc->pipe,
3467 work->event);
3468
3469 drm_crtc_vblank_put(&intel_crtc->base);
3470
3471 wake_up_all(&dev_priv->pending_flip_queue);
3472 queue_work(dev_priv->wq, &work->work);
3473
3474 trace_i915_flip_complete(intel_crtc->plane,
3475 work->pending_flip_obj);
3476}
3477
46a55d30 3478void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
e6c3a2a6 3479{
0f91128d 3480 struct drm_device *dev = crtc->dev;
5bb61643 3481 struct drm_i915_private *dev_priv = dev->dev_private;
e6c3a2a6 3482
2c10d571 3483 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
9c787942
CW
3484 if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3485 !intel_crtc_has_pending_flip(crtc),
3486 60*HZ) == 0)) {
3487 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3488 unsigned long flags;
2c10d571 3489
9c787942
CW
3490 spin_lock_irqsave(&dev->event_lock, flags);
3491 if (intel_crtc->unpin_work) {
3492 WARN_ONCE(1, "Removing stuck page flip\n");
3493 page_flip_completed(intel_crtc);
3494 }
3495 spin_unlock_irqrestore(&dev->event_lock, flags);
3496 }
5bb61643 3497
975d568a
CW
3498 if (crtc->primary->fb) {
3499 mutex_lock(&dev->struct_mutex);
3500 intel_finish_fb(crtc->primary->fb);
3501 mutex_unlock(&dev->struct_mutex);
3502 }
e6c3a2a6
CW
3503}
3504
e615efe4
ED
3505/* Program iCLKIP clock to the desired frequency */
3506static void lpt_program_iclkip(struct drm_crtc *crtc)
3507{
3508 struct drm_device *dev = crtc->dev;
3509 struct drm_i915_private *dev_priv = dev->dev_private;
241bfc38 3510 int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
e615efe4
ED
3511 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3512 u32 temp;
3513
09153000
DV
3514 mutex_lock(&dev_priv->dpio_lock);
3515
e615efe4
ED
3516 /* It is necessary to ungate the pixclk gate prior to programming
3517 * the divisors, and gate it back when it is done.
3518 */
3519 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3520
3521 /* Disable SSCCTL */
3522 intel_sbi_write(dev_priv, SBI_SSCCTL6,
988d6ee8
PZ
3523 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3524 SBI_SSCCTL_DISABLE,
3525 SBI_ICLK);
e615efe4
ED
3526
3527 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
12d7ceed 3528 if (clock == 20000) {
e615efe4
ED
3529 auxdiv = 1;
3530 divsel = 0x41;
3531 phaseinc = 0x20;
3532 } else {
3533 /* The iCLK virtual clock root frequency is in MHz,
241bfc38
DL
3534 * but the adjusted_mode->crtc_clock in in KHz. To get the
3535 * divisors, it is necessary to divide one by another, so we
e615efe4
ED
3536 * convert the virtual clock precision to KHz here for higher
3537 * precision.
3538 */
3539 u32 iclk_virtual_root_freq = 172800 * 1000;
3540 u32 iclk_pi_range = 64;
3541 u32 desired_divisor, msb_divisor_value, pi_value;
3542
12d7ceed 3543 desired_divisor = (iclk_virtual_root_freq / clock);
e615efe4
ED
3544 msb_divisor_value = desired_divisor / iclk_pi_range;
3545 pi_value = desired_divisor % iclk_pi_range;
3546
3547 auxdiv = 0;
3548 divsel = msb_divisor_value - 2;
3549 phaseinc = pi_value;
3550 }
3551
3552 /* This should not happen with any sane values */
3553 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3554 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3555 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3556 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3557
3558 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
12d7ceed 3559 clock,
e615efe4
ED
3560 auxdiv,
3561 divsel,
3562 phasedir,
3563 phaseinc);
3564
3565 /* Program SSCDIVINTPHASE6 */
988d6ee8 3566 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
e615efe4
ED
3567 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3568 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3569 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3570 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3571 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3572 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
988d6ee8 3573 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
e615efe4
ED
3574
3575 /* Program SSCAUXDIV */
988d6ee8 3576 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
e615efe4
ED
3577 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3578 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
988d6ee8 3579 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
e615efe4
ED
3580
3581 /* Enable modulator and associated divider */
988d6ee8 3582 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
e615efe4 3583 temp &= ~SBI_SSCCTL_DISABLE;
988d6ee8 3584 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
e615efe4
ED
3585
3586 /* Wait for initialization time */
3587 udelay(24);
3588
3589 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
09153000
DV
3590
3591 mutex_unlock(&dev_priv->dpio_lock);
e615efe4
ED
3592}
3593
275f01b2
DV
3594static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3595 enum pipe pch_transcoder)
3596{
3597 struct drm_device *dev = crtc->base.dev;
3598 struct drm_i915_private *dev_priv = dev->dev_private;
3599 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3600
3601 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3602 I915_READ(HTOTAL(cpu_transcoder)));
3603 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3604 I915_READ(HBLANK(cpu_transcoder)));
3605 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3606 I915_READ(HSYNC(cpu_transcoder)));
3607
3608 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3609 I915_READ(VTOTAL(cpu_transcoder)));
3610 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3611 I915_READ(VBLANK(cpu_transcoder)));
3612 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3613 I915_READ(VSYNC(cpu_transcoder)));
3614 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3615 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3616}
3617
1fbc0d78
DV
3618static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3619{
3620 struct drm_i915_private *dev_priv = dev->dev_private;
3621 uint32_t temp;
3622
3623 temp = I915_READ(SOUTH_CHICKEN1);
3624 if (temp & FDI_BC_BIFURCATION_SELECT)
3625 return;
3626
3627 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3628 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3629
3630 temp |= FDI_BC_BIFURCATION_SELECT;
3631 DRM_DEBUG_KMS("enabling fdi C rx\n");
3632 I915_WRITE(SOUTH_CHICKEN1, temp);
3633 POSTING_READ(SOUTH_CHICKEN1);
3634}
3635
3636static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3637{
3638 struct drm_device *dev = intel_crtc->base.dev;
3639 struct drm_i915_private *dev_priv = dev->dev_private;
3640
3641 switch (intel_crtc->pipe) {
3642 case PIPE_A:
3643 break;
3644 case PIPE_B:
3645 if (intel_crtc->config.fdi_lanes > 2)
3646 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3647 else
3648 cpt_enable_fdi_bc_bifurcation(dev);
3649
3650 break;
3651 case PIPE_C:
3652 cpt_enable_fdi_bc_bifurcation(dev);
3653
3654 break;
3655 default:
3656 BUG();
3657 }
3658}
3659
f67a559d
JB
3660/*
3661 * Enable PCH resources required for PCH ports:
3662 * - PCH PLLs
3663 * - FDI training & RX/TX
3664 * - update transcoder timings
3665 * - DP transcoding bits
3666 * - transcoder
3667 */
3668static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
3669{
3670 struct drm_device *dev = crtc->dev;
3671 struct drm_i915_private *dev_priv = dev->dev_private;
3672 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3673 int pipe = intel_crtc->pipe;
ee7b9f93 3674 u32 reg, temp;
2c07245f 3675
ab9412ba 3676 assert_pch_transcoder_disabled(dev_priv, pipe);
e7e164db 3677
1fbc0d78
DV
3678 if (IS_IVYBRIDGE(dev))
3679 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3680
cd986abb
DV
3681 /* Write the TU size bits before fdi link training, so that error
3682 * detection works. */
3683 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3684 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3685
c98e9dcf 3686 /* For PCH output, training FDI link */
674cf967 3687 dev_priv->display.fdi_link_train(crtc);
2c07245f 3688
3ad8a208
DV
3689 /* We need to program the right clock selection before writing the pixel
3690 * mutliplier into the DPLL. */
303b81e0 3691 if (HAS_PCH_CPT(dev)) {
ee7b9f93 3692 u32 sel;
4b645f14 3693
c98e9dcf 3694 temp = I915_READ(PCH_DPLL_SEL);
11887397
DV
3695 temp |= TRANS_DPLL_ENABLE(pipe);
3696 sel = TRANS_DPLLB_SEL(pipe);
a43f6e0f 3697 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
ee7b9f93
JB
3698 temp |= sel;
3699 else
3700 temp &= ~sel;
c98e9dcf 3701 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 3702 }
5eddb70b 3703
3ad8a208
DV
3704 /* XXX: pch pll's can be enabled any time before we enable the PCH
3705 * transcoder, and we actually should do this to not upset any PCH
3706 * transcoder that already use the clock when we share it.
3707 *
3708 * Note that enable_shared_dpll tries to do the right thing, but
3709 * get_shared_dpll unconditionally resets the pll - we need that to have
3710 * the right LVDS enable sequence. */
85b3894f 3711 intel_enable_shared_dpll(intel_crtc);
3ad8a208 3712
d9b6cb56
JB
3713 /* set transcoder timing, panel must allow it */
3714 assert_panel_unlocked(dev_priv, pipe);
275f01b2 3715 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
8db9d77b 3716
303b81e0 3717 intel_fdi_normal_train(crtc);
5e84e1a4 3718
c98e9dcf
JB
3719 /* For PCH DP, enable TRANS_DP_CTL */
3720 if (HAS_PCH_CPT(dev) &&
417e822d
KP
3721 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3722 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
dfd07d72 3723 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
5eddb70b
CW
3724 reg = TRANS_DP_CTL(pipe);
3725 temp = I915_READ(reg);
3726 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
3727 TRANS_DP_SYNC_MASK |
3728 TRANS_DP_BPC_MASK);
5eddb70b
CW
3729 temp |= (TRANS_DP_OUTPUT_ENABLE |
3730 TRANS_DP_ENH_FRAMING);
9325c9f0 3731 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
3732
3733 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 3734 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 3735 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 3736 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
3737
3738 switch (intel_trans_dp_port_sel(crtc)) {
3739 case PCH_DP_B:
5eddb70b 3740 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
3741 break;
3742 case PCH_DP_C:
5eddb70b 3743 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
3744 break;
3745 case PCH_DP_D:
5eddb70b 3746 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
3747 break;
3748 default:
e95d41e1 3749 BUG();
32f9d658 3750 }
2c07245f 3751
5eddb70b 3752 I915_WRITE(reg, temp);
6be4a607 3753 }
b52eb4dc 3754
b8a4f404 3755 ironlake_enable_pch_transcoder(dev_priv, pipe);
f67a559d
JB
3756}
3757
1507e5bd
PZ
3758static void lpt_pch_enable(struct drm_crtc *crtc)
3759{
3760 struct drm_device *dev = crtc->dev;
3761 struct drm_i915_private *dev_priv = dev->dev_private;
3762 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3b117c8f 3763 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
1507e5bd 3764
ab9412ba 3765 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
1507e5bd 3766
8c52b5e8 3767 lpt_program_iclkip(crtc);
1507e5bd 3768
0540e488 3769 /* Set transcoder timing. */
275f01b2 3770 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
1507e5bd 3771
937bb610 3772 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
f67a559d
JB
3773}
3774
716c2e55 3775void intel_put_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 3776{
e2b78267 3777 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
ee7b9f93
JB
3778
3779 if (pll == NULL)
3780 return;
3781
3782 if (pll->refcount == 0) {
46edb027 3783 WARN(1, "bad %s refcount\n", pll->name);
ee7b9f93
JB
3784 return;
3785 }
3786
f4a091c7
DV
3787 if (--pll->refcount == 0) {
3788 WARN_ON(pll->on);
3789 WARN_ON(pll->active);
3790 }
3791
a43f6e0f 3792 crtc->config.shared_dpll = DPLL_ID_PRIVATE;
ee7b9f93
JB
3793}
3794
716c2e55 3795struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 3796{
e2b78267
DV
3797 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3798 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3799 enum intel_dpll_id i;
ee7b9f93 3800
ee7b9f93 3801 if (pll) {
46edb027
DV
3802 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3803 crtc->base.base.id, pll->name);
e2b78267 3804 intel_put_shared_dpll(crtc);
ee7b9f93
JB
3805 }
3806
98b6bd99
DV
3807 if (HAS_PCH_IBX(dev_priv->dev)) {
3808 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
d94ab068 3809 i = (enum intel_dpll_id) crtc->pipe;
e72f9fbf 3810 pll = &dev_priv->shared_dplls[i];
98b6bd99 3811
46edb027
DV
3812 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3813 crtc->base.base.id, pll->name);
98b6bd99 3814
f2a69f44
DV
3815 WARN_ON(pll->refcount);
3816
98b6bd99
DV
3817 goto found;
3818 }
3819
e72f9fbf
DV
3820 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3821 pll = &dev_priv->shared_dplls[i];
ee7b9f93
JB
3822
3823 /* Only want to check enabled timings first */
3824 if (pll->refcount == 0)
3825 continue;
3826
b89a1d39
DV
3827 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3828 sizeof(pll->hw_state)) == 0) {
46edb027 3829 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
e2b78267 3830 crtc->base.base.id,
46edb027 3831 pll->name, pll->refcount, pll->active);
ee7b9f93
JB
3832
3833 goto found;
3834 }
3835 }
3836
3837 /* Ok no matching timings, maybe there's a free one? */
e72f9fbf
DV
3838 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3839 pll = &dev_priv->shared_dplls[i];
ee7b9f93 3840 if (pll->refcount == 0) {
46edb027
DV
3841 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3842 crtc->base.base.id, pll->name);
ee7b9f93
JB
3843 goto found;
3844 }
3845 }
3846
3847 return NULL;
3848
3849found:
f2a69f44
DV
3850 if (pll->refcount == 0)
3851 pll->hw_state = crtc->config.dpll_hw_state;
3852
a43f6e0f 3853 crtc->config.shared_dpll = i;
46edb027
DV
3854 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3855 pipe_name(crtc->pipe));
ee7b9f93 3856
cdbd2316 3857 pll->refcount++;
e04c7350 3858
ee7b9f93
JB
3859 return pll;
3860}
3861
a1520318 3862static void cpt_verify_modeset(struct drm_device *dev, int pipe)
d4270e57
JB
3863{
3864 struct drm_i915_private *dev_priv = dev->dev_private;
23670b32 3865 int dslreg = PIPEDSL(pipe);
d4270e57
JB
3866 u32 temp;
3867
3868 temp = I915_READ(dslreg);
3869 udelay(500);
3870 if (wait_for(I915_READ(dslreg) != temp, 5)) {
d4270e57 3871 if (wait_for(I915_READ(dslreg) != temp, 5))
84f44ce7 3872 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
d4270e57
JB
3873 }
3874}
3875
b074cec8
JB
3876static void ironlake_pfit_enable(struct intel_crtc *crtc)
3877{
3878 struct drm_device *dev = crtc->base.dev;
3879 struct drm_i915_private *dev_priv = dev->dev_private;
3880 int pipe = crtc->pipe;
3881
fd4daa9c 3882 if (crtc->config.pch_pfit.enabled) {
b074cec8
JB
3883 /* Force use of hard-coded filter coefficients
3884 * as some pre-programmed values are broken,
3885 * e.g. x201.
3886 */
3887 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3888 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3889 PF_PIPE_SEL_IVB(pipe));
3890 else
3891 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3892 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3893 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
d4270e57
JB
3894 }
3895}
3896
bb53d4ae
VS
3897static void intel_enable_planes(struct drm_crtc *crtc)
3898{
3899 struct drm_device *dev = crtc->dev;
3900 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 3901 struct drm_plane *plane;
bb53d4ae
VS
3902 struct intel_plane *intel_plane;
3903
af2b653b
MR
3904 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3905 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
3906 if (intel_plane->pipe == pipe)
3907 intel_plane_restore(&intel_plane->base);
af2b653b 3908 }
bb53d4ae
VS
3909}
3910
3911static void intel_disable_planes(struct drm_crtc *crtc)
3912{
3913 struct drm_device *dev = crtc->dev;
3914 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 3915 struct drm_plane *plane;
bb53d4ae
VS
3916 struct intel_plane *intel_plane;
3917
af2b653b
MR
3918 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3919 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
3920 if (intel_plane->pipe == pipe)
3921 intel_plane_disable(&intel_plane->base);
af2b653b 3922 }
bb53d4ae
VS
3923}
3924
20bc8673 3925void hsw_enable_ips(struct intel_crtc *crtc)
d77e4531 3926{
cea165c3
VS
3927 struct drm_device *dev = crtc->base.dev;
3928 struct drm_i915_private *dev_priv = dev->dev_private;
d77e4531
PZ
3929
3930 if (!crtc->config.ips_enabled)
3931 return;
3932
cea165c3
VS
3933 /* We can only enable IPS after we enable a plane and wait for a vblank */
3934 intel_wait_for_vblank(dev, crtc->pipe);
3935
d77e4531 3936 assert_plane_enabled(dev_priv, crtc->plane);
cea165c3 3937 if (IS_BROADWELL(dev)) {
2a114cc1
BW
3938 mutex_lock(&dev_priv->rps.hw_lock);
3939 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3940 mutex_unlock(&dev_priv->rps.hw_lock);
3941 /* Quoting Art Runyan: "its not safe to expect any particular
3942 * value in IPS_CTL bit 31 after enabling IPS through the
e59150dc
JB
3943 * mailbox." Moreover, the mailbox may return a bogus state,
3944 * so we need to just enable it and continue on.
2a114cc1
BW
3945 */
3946 } else {
3947 I915_WRITE(IPS_CTL, IPS_ENABLE);
3948 /* The bit only becomes 1 in the next vblank, so this wait here
3949 * is essentially intel_wait_for_vblank. If we don't have this
3950 * and don't wait for vblanks until the end of crtc_enable, then
3951 * the HW state readout code will complain that the expected
3952 * IPS_CTL value is not the one we read. */
3953 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3954 DRM_ERROR("Timed out waiting for IPS enable\n");
3955 }
d77e4531
PZ
3956}
3957
20bc8673 3958void hsw_disable_ips(struct intel_crtc *crtc)
d77e4531
PZ
3959{
3960 struct drm_device *dev = crtc->base.dev;
3961 struct drm_i915_private *dev_priv = dev->dev_private;
3962
3963 if (!crtc->config.ips_enabled)
3964 return;
3965
3966 assert_plane_enabled(dev_priv, crtc->plane);
23d0b130 3967 if (IS_BROADWELL(dev)) {
2a114cc1
BW
3968 mutex_lock(&dev_priv->rps.hw_lock);
3969 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
3970 mutex_unlock(&dev_priv->rps.hw_lock);
23d0b130
BW
3971 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
3972 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
3973 DRM_ERROR("Timed out waiting for IPS disable\n");
e59150dc 3974 } else {
2a114cc1 3975 I915_WRITE(IPS_CTL, 0);
e59150dc
JB
3976 POSTING_READ(IPS_CTL);
3977 }
d77e4531
PZ
3978
3979 /* We need to wait for a vblank before we can disable the plane. */
3980 intel_wait_for_vblank(dev, crtc->pipe);
3981}
3982
3983/** Loads the palette/gamma unit for the CRTC with the prepared values */
3984static void intel_crtc_load_lut(struct drm_crtc *crtc)
3985{
3986 struct drm_device *dev = crtc->dev;
3987 struct drm_i915_private *dev_priv = dev->dev_private;
3988 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3989 enum pipe pipe = intel_crtc->pipe;
3990 int palreg = PALETTE(pipe);
3991 int i;
3992 bool reenable_ips = false;
3993
3994 /* The clocks have to be on to load the palette. */
3995 if (!crtc->enabled || !intel_crtc->active)
3996 return;
3997
3998 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3999 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
4000 assert_dsi_pll_enabled(dev_priv);
4001 else
4002 assert_pll_enabled(dev_priv, pipe);
4003 }
4004
4005 /* use legacy palette for Ironlake */
7a1db49a 4006 if (!HAS_GMCH_DISPLAY(dev))
d77e4531
PZ
4007 palreg = LGC_PALETTE(pipe);
4008
4009 /* Workaround : Do not read or write the pipe palette/gamma data while
4010 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4011 */
41e6fc4c 4012 if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
d77e4531
PZ
4013 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4014 GAMMA_MODE_MODE_SPLIT)) {
4015 hsw_disable_ips(intel_crtc);
4016 reenable_ips = true;
4017 }
4018
4019 for (i = 0; i < 256; i++) {
4020 I915_WRITE(palreg + 4 * i,
4021 (intel_crtc->lut_r[i] << 16) |
4022 (intel_crtc->lut_g[i] << 8) |
4023 intel_crtc->lut_b[i]);
4024 }
4025
4026 if (reenable_ips)
4027 hsw_enable_ips(intel_crtc);
4028}
4029
d3eedb1a
VS
4030static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
4031{
4032 if (!enable && intel_crtc->overlay) {
4033 struct drm_device *dev = intel_crtc->base.dev;
4034 struct drm_i915_private *dev_priv = dev->dev_private;
4035
4036 mutex_lock(&dev->struct_mutex);
4037 dev_priv->mm.interruptible = false;
4038 (void) intel_overlay_switch_off(intel_crtc->overlay);
4039 dev_priv->mm.interruptible = true;
4040 mutex_unlock(&dev->struct_mutex);
4041 }
4042
4043 /* Let userspace switch the overlay on again. In most cases userspace
4044 * has to recompute where to put it anyway.
4045 */
4046}
4047
d3eedb1a 4048static void intel_crtc_enable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
4049{
4050 struct drm_device *dev = crtc->dev;
a5c4d7bc
VS
4051 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4052 int pipe = intel_crtc->pipe;
a5c4d7bc 4053
08c71e5e
VS
4054 assert_vblank_disabled(crtc);
4055
f98551ae
VS
4056 drm_vblank_on(dev, pipe);
4057
fdd508a6 4058 intel_enable_primary_hw_plane(crtc->primary, crtc);
a5c4d7bc
VS
4059 intel_enable_planes(crtc);
4060 intel_crtc_update_cursor(crtc, true);
d3eedb1a 4061 intel_crtc_dpms_overlay(intel_crtc, true);
a5c4d7bc
VS
4062
4063 hsw_enable_ips(intel_crtc);
4064
4065 mutex_lock(&dev->struct_mutex);
4066 intel_update_fbc(dev);
4067 mutex_unlock(&dev->struct_mutex);
f99d7069
DV
4068
4069 /*
4070 * FIXME: Once we grow proper nuclear flip support out of this we need
4071 * to compute the mask of flip planes precisely. For the time being
4072 * consider this a flip from a NULL plane.
4073 */
4074 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
4075}
4076
d3eedb1a 4077static void intel_crtc_disable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
4078{
4079 struct drm_device *dev = crtc->dev;
4080 struct drm_i915_private *dev_priv = dev->dev_private;
4081 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4082 int pipe = intel_crtc->pipe;
4083 int plane = intel_crtc->plane;
4084
4085 intel_crtc_wait_for_pending_flips(crtc);
a5c4d7bc
VS
4086
4087 if (dev_priv->fbc.plane == plane)
4088 intel_disable_fbc(dev);
4089
4090 hsw_disable_ips(intel_crtc);
4091
d3eedb1a 4092 intel_crtc_dpms_overlay(intel_crtc, false);
a5c4d7bc
VS
4093 intel_crtc_update_cursor(crtc, false);
4094 intel_disable_planes(crtc);
fdd508a6 4095 intel_disable_primary_hw_plane(crtc->primary, crtc);
f98551ae 4096
f99d7069
DV
4097 /*
4098 * FIXME: Once we grow proper nuclear flip support out of this we need
4099 * to compute the mask of flip planes precisely. For the time being
4100 * consider this a flip to a NULL plane.
4101 */
4102 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4103
f98551ae 4104 drm_vblank_off(dev, pipe);
08c71e5e
VS
4105
4106 assert_vblank_disabled(crtc);
a5c4d7bc
VS
4107}
4108
f67a559d
JB
4109static void ironlake_crtc_enable(struct drm_crtc *crtc)
4110{
4111 struct drm_device *dev = crtc->dev;
4112 struct drm_i915_private *dev_priv = dev->dev_private;
4113 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4114 struct intel_encoder *encoder;
f67a559d 4115 int pipe = intel_crtc->pipe;
f67a559d 4116
08a48469
DV
4117 WARN_ON(!crtc->enabled);
4118
f67a559d
JB
4119 if (intel_crtc->active)
4120 return;
4121
b14b1055
DV
4122 if (intel_crtc->config.has_pch_encoder)
4123 intel_prepare_shared_dpll(intel_crtc);
4124
29407aab
DV
4125 if (intel_crtc->config.has_dp_encoder)
4126 intel_dp_set_m_n(intel_crtc);
4127
4128 intel_set_pipe_timings(intel_crtc);
4129
4130 if (intel_crtc->config.has_pch_encoder) {
4131 intel_cpu_transcoder_set_m_n(intel_crtc,
f769cd24 4132 &intel_crtc->config.fdi_m_n, NULL);
29407aab
DV
4133 }
4134
4135 ironlake_set_pipeconf(crtc);
4136
f67a559d 4137 intel_crtc->active = true;
8664281b
PZ
4138
4139 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4140 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
4141
f6736a1a 4142 for_each_encoder_on_crtc(dev, crtc, encoder)
952735ee
DV
4143 if (encoder->pre_enable)
4144 encoder->pre_enable(encoder);
f67a559d 4145
5bfe2ac0 4146 if (intel_crtc->config.has_pch_encoder) {
fff367c7
DV
4147 /* Note: FDI PLL enabling _must_ be done before we enable the
4148 * cpu pipes, hence this is separate from all the other fdi/pch
4149 * enabling. */
88cefb6c 4150 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
4151 } else {
4152 assert_fdi_tx_disabled(dev_priv, pipe);
4153 assert_fdi_rx_disabled(dev_priv, pipe);
4154 }
f67a559d 4155
b074cec8 4156 ironlake_pfit_enable(intel_crtc);
f67a559d 4157
9c54c0dd
JB
4158 /*
4159 * On ILK+ LUT must be loaded before the pipe is running but with
4160 * clocks enabled
4161 */
4162 intel_crtc_load_lut(crtc);
4163
f37fcc2a 4164 intel_update_watermarks(crtc);
e1fdc473 4165 intel_enable_pipe(intel_crtc);
f67a559d 4166
5bfe2ac0 4167 if (intel_crtc->config.has_pch_encoder)
f67a559d 4168 ironlake_pch_enable(crtc);
c98e9dcf 4169
fa5c73b1
DV
4170 for_each_encoder_on_crtc(dev, crtc, encoder)
4171 encoder->enable(encoder);
61b77ddd
DV
4172
4173 if (HAS_PCH_CPT(dev))
a1520318 4174 cpt_verify_modeset(dev, intel_crtc->pipe);
6ce94100 4175
d3eedb1a 4176 intel_crtc_enable_planes(crtc);
6be4a607
JB
4177}
4178
42db64ef
PZ
4179/* IPS only exists on ULT machines and is tied to pipe A. */
4180static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4181{
f5adf94e 4182 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
42db64ef
PZ
4183}
4184
e4916946
PZ
4185/*
4186 * This implements the workaround described in the "notes" section of the mode
4187 * set sequence documentation. When going from no pipes or single pipe to
4188 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4189 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4190 */
4191static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4192{
4193 struct drm_device *dev = crtc->base.dev;
4194 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4195
4196 /* We want to get the other_active_crtc only if there's only 1 other
4197 * active crtc. */
d3fcc808 4198 for_each_intel_crtc(dev, crtc_it) {
e4916946
PZ
4199 if (!crtc_it->active || crtc_it == crtc)
4200 continue;
4201
4202 if (other_active_crtc)
4203 return;
4204
4205 other_active_crtc = crtc_it;
4206 }
4207 if (!other_active_crtc)
4208 return;
4209
4210 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4211 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4212}
4213
4f771f10
PZ
4214static void haswell_crtc_enable(struct drm_crtc *crtc)
4215{
4216 struct drm_device *dev = crtc->dev;
4217 struct drm_i915_private *dev_priv = dev->dev_private;
4218 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4219 struct intel_encoder *encoder;
4220 int pipe = intel_crtc->pipe;
4f771f10
PZ
4221
4222 WARN_ON(!crtc->enabled);
4223
4224 if (intel_crtc->active)
4225 return;
4226
df8ad70c
DV
4227 if (intel_crtc_to_shared_dpll(intel_crtc))
4228 intel_enable_shared_dpll(intel_crtc);
4229
229fca97
DV
4230 if (intel_crtc->config.has_dp_encoder)
4231 intel_dp_set_m_n(intel_crtc);
4232
4233 intel_set_pipe_timings(intel_crtc);
4234
4235 if (intel_crtc->config.has_pch_encoder) {
4236 intel_cpu_transcoder_set_m_n(intel_crtc,
f769cd24 4237 &intel_crtc->config.fdi_m_n, NULL);
229fca97
DV
4238 }
4239
4240 haswell_set_pipeconf(crtc);
4241
4242 intel_set_pipe_csc(crtc);
4243
4f771f10 4244 intel_crtc->active = true;
8664281b
PZ
4245
4246 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4f771f10
PZ
4247 for_each_encoder_on_crtc(dev, crtc, encoder)
4248 if (encoder->pre_enable)
4249 encoder->pre_enable(encoder);
4250
4fe9467d
ID
4251 if (intel_crtc->config.has_pch_encoder) {
4252 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4253 dev_priv->display.fdi_link_train(crtc);
4254 }
4255
1f544388 4256 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 4257
b074cec8 4258 ironlake_pfit_enable(intel_crtc);
4f771f10
PZ
4259
4260 /*
4261 * On ILK+ LUT must be loaded before the pipe is running but with
4262 * clocks enabled
4263 */
4264 intel_crtc_load_lut(crtc);
4265
1f544388 4266 intel_ddi_set_pipe_settings(crtc);
8228c251 4267 intel_ddi_enable_transcoder_func(crtc);
4f771f10 4268
f37fcc2a 4269 intel_update_watermarks(crtc);
e1fdc473 4270 intel_enable_pipe(intel_crtc);
42db64ef 4271
5bfe2ac0 4272 if (intel_crtc->config.has_pch_encoder)
1507e5bd 4273 lpt_pch_enable(crtc);
4f771f10 4274
0e32b39c
DA
4275 if (intel_crtc->config.dp_encoder_is_mst)
4276 intel_ddi_set_vc_payload_alloc(crtc, true);
4277
8807e55b 4278 for_each_encoder_on_crtc(dev, crtc, encoder) {
4f771f10 4279 encoder->enable(encoder);
8807e55b
JN
4280 intel_opregion_notify_encoder(encoder, true);
4281 }
4f771f10 4282
e4916946
PZ
4283 /* If we change the relative order between pipe/planes enabling, we need
4284 * to change the workaround. */
4285 haswell_mode_set_planes_workaround(intel_crtc);
d3eedb1a 4286 intel_crtc_enable_planes(crtc);
4f771f10
PZ
4287}
4288
3f8dce3a
DV
4289static void ironlake_pfit_disable(struct intel_crtc *crtc)
4290{
4291 struct drm_device *dev = crtc->base.dev;
4292 struct drm_i915_private *dev_priv = dev->dev_private;
4293 int pipe = crtc->pipe;
4294
4295 /* To avoid upsetting the power well on haswell only disable the pfit if
4296 * it's in use. The hw state code will make sure we get this right. */
fd4daa9c 4297 if (crtc->config.pch_pfit.enabled) {
3f8dce3a
DV
4298 I915_WRITE(PF_CTL(pipe), 0);
4299 I915_WRITE(PF_WIN_POS(pipe), 0);
4300 I915_WRITE(PF_WIN_SZ(pipe), 0);
4301 }
4302}
4303
6be4a607
JB
4304static void ironlake_crtc_disable(struct drm_crtc *crtc)
4305{
4306 struct drm_device *dev = crtc->dev;
4307 struct drm_i915_private *dev_priv = dev->dev_private;
4308 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4309 struct intel_encoder *encoder;
6be4a607 4310 int pipe = intel_crtc->pipe;
5eddb70b 4311 u32 reg, temp;
b52eb4dc 4312
f7abfe8b
CW
4313 if (!intel_crtc->active)
4314 return;
4315
d3eedb1a 4316 intel_crtc_disable_planes(crtc);
a5c4d7bc 4317
ea9d758d
DV
4318 for_each_encoder_on_crtc(dev, crtc, encoder)
4319 encoder->disable(encoder);
4320
d925c59a
DV
4321 if (intel_crtc->config.has_pch_encoder)
4322 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
4323
575f7ab7 4324 intel_disable_pipe(intel_crtc);
32f9d658 4325
3f8dce3a 4326 ironlake_pfit_disable(intel_crtc);
2c07245f 4327
bf49ec8c
DV
4328 for_each_encoder_on_crtc(dev, crtc, encoder)
4329 if (encoder->post_disable)
4330 encoder->post_disable(encoder);
2c07245f 4331
d925c59a
DV
4332 if (intel_crtc->config.has_pch_encoder) {
4333 ironlake_fdi_disable(crtc);
913d8d11 4334
d925c59a
DV
4335 ironlake_disable_pch_transcoder(dev_priv, pipe);
4336 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
6be4a607 4337
d925c59a
DV
4338 if (HAS_PCH_CPT(dev)) {
4339 /* disable TRANS_DP_CTL */
4340 reg = TRANS_DP_CTL(pipe);
4341 temp = I915_READ(reg);
4342 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4343 TRANS_DP_PORT_SEL_MASK);
4344 temp |= TRANS_DP_PORT_SEL_NONE;
4345 I915_WRITE(reg, temp);
4346
4347 /* disable DPLL_SEL */
4348 temp = I915_READ(PCH_DPLL_SEL);
11887397 4349 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
d925c59a 4350 I915_WRITE(PCH_DPLL_SEL, temp);
9db4a9c7 4351 }
e3421a18 4352
d925c59a 4353 /* disable PCH DPLL */
e72f9fbf 4354 intel_disable_shared_dpll(intel_crtc);
8db9d77b 4355
d925c59a
DV
4356 ironlake_fdi_pll_disable(intel_crtc);
4357 }
6b383a7f 4358
f7abfe8b 4359 intel_crtc->active = false;
46ba614c 4360 intel_update_watermarks(crtc);
d1ebd816
BW
4361
4362 mutex_lock(&dev->struct_mutex);
6b383a7f 4363 intel_update_fbc(dev);
d1ebd816 4364 mutex_unlock(&dev->struct_mutex);
6be4a607 4365}
1b3c7a47 4366
4f771f10 4367static void haswell_crtc_disable(struct drm_crtc *crtc)
ee7b9f93 4368{
4f771f10
PZ
4369 struct drm_device *dev = crtc->dev;
4370 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93 4371 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4f771f10 4372 struct intel_encoder *encoder;
3b117c8f 4373 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
ee7b9f93 4374
4f771f10
PZ
4375 if (!intel_crtc->active)
4376 return;
4377
d3eedb1a 4378 intel_crtc_disable_planes(crtc);
dda9a66a 4379
8807e55b
JN
4380 for_each_encoder_on_crtc(dev, crtc, encoder) {
4381 intel_opregion_notify_encoder(encoder, false);
4f771f10 4382 encoder->disable(encoder);
8807e55b 4383 }
4f771f10 4384
8664281b
PZ
4385 if (intel_crtc->config.has_pch_encoder)
4386 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
575f7ab7 4387 intel_disable_pipe(intel_crtc);
4f771f10 4388
a4bf214f
VS
4389 if (intel_crtc->config.dp_encoder_is_mst)
4390 intel_ddi_set_vc_payload_alloc(crtc, false);
4391
ad80a810 4392 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4f771f10 4393
3f8dce3a 4394 ironlake_pfit_disable(intel_crtc);
4f771f10 4395
1f544388 4396 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10 4397
88adfff1 4398 if (intel_crtc->config.has_pch_encoder) {
ab4d966c 4399 lpt_disable_pch_transcoder(dev_priv);
8664281b 4400 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
1ad960f2 4401 intel_ddi_fdi_disable(crtc);
83616634 4402 }
4f771f10 4403
97b040aa
ID
4404 for_each_encoder_on_crtc(dev, crtc, encoder)
4405 if (encoder->post_disable)
4406 encoder->post_disable(encoder);
4407
4f771f10 4408 intel_crtc->active = false;
46ba614c 4409 intel_update_watermarks(crtc);
4f771f10
PZ
4410
4411 mutex_lock(&dev->struct_mutex);
4412 intel_update_fbc(dev);
4413 mutex_unlock(&dev->struct_mutex);
df8ad70c
DV
4414
4415 if (intel_crtc_to_shared_dpll(intel_crtc))
4416 intel_disable_shared_dpll(intel_crtc);
4f771f10
PZ
4417}
4418
ee7b9f93
JB
4419static void ironlake_crtc_off(struct drm_crtc *crtc)
4420{
4421 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
e72f9fbf 4422 intel_put_shared_dpll(intel_crtc);
ee7b9f93
JB
4423}
4424
6441ab5f 4425
2dd24552
JB
4426static void i9xx_pfit_enable(struct intel_crtc *crtc)
4427{
4428 struct drm_device *dev = crtc->base.dev;
4429 struct drm_i915_private *dev_priv = dev->dev_private;
4430 struct intel_crtc_config *pipe_config = &crtc->config;
4431
328d8e82 4432 if (!crtc->config.gmch_pfit.control)
2dd24552
JB
4433 return;
4434
2dd24552 4435 /*
c0b03411
DV
4436 * The panel fitter should only be adjusted whilst the pipe is disabled,
4437 * according to register description and PRM.
2dd24552 4438 */
c0b03411
DV
4439 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4440 assert_pipe_disabled(dev_priv, crtc->pipe);
2dd24552 4441
b074cec8
JB
4442 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4443 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5a80c45c
DV
4444
4445 /* Border color in case we don't scale up to the full screen. Black by
4446 * default, change to something else for debugging. */
4447 I915_WRITE(BCLRPAT(crtc->pipe), 0);
2dd24552
JB
4448}
4449
d05410f9
DA
4450static enum intel_display_power_domain port_to_power_domain(enum port port)
4451{
4452 switch (port) {
4453 case PORT_A:
4454 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4455 case PORT_B:
4456 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4457 case PORT_C:
4458 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4459 case PORT_D:
4460 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4461 default:
4462 WARN_ON_ONCE(1);
4463 return POWER_DOMAIN_PORT_OTHER;
4464 }
4465}
4466
77d22dca
ID
4467#define for_each_power_domain(domain, mask) \
4468 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
4469 if ((1 << (domain)) & (mask))
4470
319be8ae
ID
4471enum intel_display_power_domain
4472intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4473{
4474 struct drm_device *dev = intel_encoder->base.dev;
4475 struct intel_digital_port *intel_dig_port;
4476
4477 switch (intel_encoder->type) {
4478 case INTEL_OUTPUT_UNKNOWN:
4479 /* Only DDI platforms should ever use this output type */
4480 WARN_ON_ONCE(!HAS_DDI(dev));
4481 case INTEL_OUTPUT_DISPLAYPORT:
4482 case INTEL_OUTPUT_HDMI:
4483 case INTEL_OUTPUT_EDP:
4484 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
d05410f9 4485 return port_to_power_domain(intel_dig_port->port);
0e32b39c
DA
4486 case INTEL_OUTPUT_DP_MST:
4487 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4488 return port_to_power_domain(intel_dig_port->port);
319be8ae
ID
4489 case INTEL_OUTPUT_ANALOG:
4490 return POWER_DOMAIN_PORT_CRT;
4491 case INTEL_OUTPUT_DSI:
4492 return POWER_DOMAIN_PORT_DSI;
4493 default:
4494 return POWER_DOMAIN_PORT_OTHER;
4495 }
4496}
4497
4498static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
77d22dca 4499{
319be8ae
ID
4500 struct drm_device *dev = crtc->dev;
4501 struct intel_encoder *intel_encoder;
4502 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4503 enum pipe pipe = intel_crtc->pipe;
77d22dca
ID
4504 unsigned long mask;
4505 enum transcoder transcoder;
4506
4507 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4508
4509 mask = BIT(POWER_DOMAIN_PIPE(pipe));
4510 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
fabf6e51
DV
4511 if (intel_crtc->config.pch_pfit.enabled ||
4512 intel_crtc->config.pch_pfit.force_thru)
77d22dca
ID
4513 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4514
319be8ae
ID
4515 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4516 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4517
77d22dca
ID
4518 return mask;
4519}
4520
4521void intel_display_set_init_power(struct drm_i915_private *dev_priv,
4522 bool enable)
4523{
4524 if (dev_priv->power_domains.init_power_on == enable)
4525 return;
4526
4527 if (enable)
4528 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
4529 else
4530 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
4531
4532 dev_priv->power_domains.init_power_on = enable;
4533}
4534
4535static void modeset_update_crtc_power_domains(struct drm_device *dev)
4536{
4537 struct drm_i915_private *dev_priv = dev->dev_private;
4538 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4539 struct intel_crtc *crtc;
4540
4541 /*
4542 * First get all needed power domains, then put all unneeded, to avoid
4543 * any unnecessary toggling of the power wells.
4544 */
d3fcc808 4545 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4546 enum intel_display_power_domain domain;
4547
4548 if (!crtc->base.enabled)
4549 continue;
4550
319be8ae 4551 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
77d22dca
ID
4552
4553 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4554 intel_display_power_get(dev_priv, domain);
4555 }
4556
d3fcc808 4557 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4558 enum intel_display_power_domain domain;
4559
4560 for_each_power_domain(domain, crtc->enabled_power_domains)
4561 intel_display_power_put(dev_priv, domain);
4562
4563 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4564 }
4565
4566 intel_display_set_init_power(dev_priv, false);
4567}
4568
dfcab17e 4569/* returns HPLL frequency in kHz */
f8bf63fd 4570static int valleyview_get_vco(struct drm_i915_private *dev_priv)
30a970c6 4571{
586f49dc 4572 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
30a970c6 4573
586f49dc
JB
4574 /* Obtain SKU information */
4575 mutex_lock(&dev_priv->dpio_lock);
4576 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4577 CCK_FUSE_HPLL_FREQ_MASK;
4578 mutex_unlock(&dev_priv->dpio_lock);
30a970c6 4579
dfcab17e 4580 return vco_freq[hpll_freq] * 1000;
30a970c6
JB
4581}
4582
f8bf63fd
VS
4583static void vlv_update_cdclk(struct drm_device *dev)
4584{
4585 struct drm_i915_private *dev_priv = dev->dev_private;
4586
4587 dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
4588 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz",
4589 dev_priv->vlv_cdclk_freq);
4590
4591 /*
4592 * Program the gmbus_freq based on the cdclk frequency.
4593 * BSpec erroneously claims we should aim for 4MHz, but
4594 * in fact 1MHz is the correct frequency.
4595 */
4596 I915_WRITE(GMBUSFREQ_VLV, dev_priv->vlv_cdclk_freq);
4597}
4598
30a970c6
JB
4599/* Adjust CDclk dividers to allow high res or save power if possible */
4600static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4601{
4602 struct drm_i915_private *dev_priv = dev->dev_private;
4603 u32 val, cmd;
4604
d197b7d3 4605 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
d60c4473 4606
dfcab17e 4607 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
30a970c6 4608 cmd = 2;
dfcab17e 4609 else if (cdclk == 266667)
30a970c6
JB
4610 cmd = 1;
4611 else
4612 cmd = 0;
4613
4614 mutex_lock(&dev_priv->rps.hw_lock);
4615 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4616 val &= ~DSPFREQGUAR_MASK;
4617 val |= (cmd << DSPFREQGUAR_SHIFT);
4618 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4619 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4620 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4621 50)) {
4622 DRM_ERROR("timed out waiting for CDclk change\n");
4623 }
4624 mutex_unlock(&dev_priv->rps.hw_lock);
4625
dfcab17e 4626 if (cdclk == 400000) {
30a970c6
JB
4627 u32 divider, vco;
4628
4629 vco = valleyview_get_vco(dev_priv);
dfcab17e 4630 divider = DIV_ROUND_CLOSEST(vco << 1, cdclk) - 1;
30a970c6
JB
4631
4632 mutex_lock(&dev_priv->dpio_lock);
4633 /* adjust cdclk divider */
4634 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
9cf33db5 4635 val &= ~DISPLAY_FREQUENCY_VALUES;
30a970c6
JB
4636 val |= divider;
4637 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
a877e801
VS
4638
4639 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4640 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4641 50))
4642 DRM_ERROR("timed out waiting for CDclk change\n");
30a970c6
JB
4643 mutex_unlock(&dev_priv->dpio_lock);
4644 }
4645
4646 mutex_lock(&dev_priv->dpio_lock);
4647 /* adjust self-refresh exit latency value */
4648 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4649 val &= ~0x7f;
4650
4651 /*
4652 * For high bandwidth configs, we set a higher latency in the bunit
4653 * so that the core display fetch happens in time to avoid underruns.
4654 */
dfcab17e 4655 if (cdclk == 400000)
30a970c6
JB
4656 val |= 4500 / 250; /* 4.5 usec */
4657 else
4658 val |= 3000 / 250; /* 3.0 usec */
4659 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4660 mutex_unlock(&dev_priv->dpio_lock);
4661
f8bf63fd 4662 vlv_update_cdclk(dev);
30a970c6
JB
4663}
4664
383c5a6a
VS
4665static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
4666{
4667 struct drm_i915_private *dev_priv = dev->dev_private;
4668 u32 val, cmd;
4669
4670 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4671
4672 switch (cdclk) {
4673 case 400000:
4674 cmd = 3;
4675 break;
4676 case 333333:
4677 case 320000:
4678 cmd = 2;
4679 break;
4680 case 266667:
4681 cmd = 1;
4682 break;
4683 case 200000:
4684 cmd = 0;
4685 break;
4686 default:
4687 WARN_ON(1);
4688 return;
4689 }
4690
4691 mutex_lock(&dev_priv->rps.hw_lock);
4692 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4693 val &= ~DSPFREQGUAR_MASK_CHV;
4694 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
4695 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4696 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4697 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
4698 50)) {
4699 DRM_ERROR("timed out waiting for CDclk change\n");
4700 }
4701 mutex_unlock(&dev_priv->rps.hw_lock);
4702
4703 vlv_update_cdclk(dev);
4704}
4705
30a970c6
JB
4706static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4707 int max_pixclk)
4708{
29dc7ef3
VS
4709 int vco = valleyview_get_vco(dev_priv);
4710 int freq_320 = (vco << 1) % 320000 != 0 ? 333333 : 320000;
4711
d49a340d
VS
4712 /* FIXME: Punit isn't quite ready yet */
4713 if (IS_CHERRYVIEW(dev_priv->dev))
4714 return 400000;
4715
30a970c6
JB
4716 /*
4717 * Really only a few cases to deal with, as only 4 CDclks are supported:
4718 * 200MHz
4719 * 267MHz
29dc7ef3 4720 * 320/333MHz (depends on HPLL freq)
30a970c6
JB
4721 * 400MHz
4722 * So we check to see whether we're above 90% of the lower bin and
4723 * adjust if needed.
e37c67a1
VS
4724 *
4725 * We seem to get an unstable or solid color picture at 200MHz.
4726 * Not sure what's wrong. For now use 200MHz only when all pipes
4727 * are off.
30a970c6 4728 */
29dc7ef3 4729 if (max_pixclk > freq_320*9/10)
dfcab17e
VS
4730 return 400000;
4731 else if (max_pixclk > 266667*9/10)
29dc7ef3 4732 return freq_320;
e37c67a1 4733 else if (max_pixclk > 0)
dfcab17e 4734 return 266667;
e37c67a1
VS
4735 else
4736 return 200000;
30a970c6
JB
4737}
4738
2f2d7aa1
VS
4739/* compute the max pixel clock for new configuration */
4740static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
30a970c6
JB
4741{
4742 struct drm_device *dev = dev_priv->dev;
4743 struct intel_crtc *intel_crtc;
4744 int max_pixclk = 0;
4745
d3fcc808 4746 for_each_intel_crtc(dev, intel_crtc) {
2f2d7aa1 4747 if (intel_crtc->new_enabled)
30a970c6 4748 max_pixclk = max(max_pixclk,
2f2d7aa1 4749 intel_crtc->new_config->adjusted_mode.crtc_clock);
30a970c6
JB
4750 }
4751
4752 return max_pixclk;
4753}
4754
4755static void valleyview_modeset_global_pipes(struct drm_device *dev,
2f2d7aa1 4756 unsigned *prepare_pipes)
30a970c6
JB
4757{
4758 struct drm_i915_private *dev_priv = dev->dev_private;
4759 struct intel_crtc *intel_crtc;
2f2d7aa1 4760 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6 4761
d60c4473
ID
4762 if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4763 dev_priv->vlv_cdclk_freq)
30a970c6
JB
4764 return;
4765
2f2d7aa1 4766 /* disable/enable all currently active pipes while we change cdclk */
d3fcc808 4767 for_each_intel_crtc(dev, intel_crtc)
30a970c6
JB
4768 if (intel_crtc->base.enabled)
4769 *prepare_pipes |= (1 << intel_crtc->pipe);
4770}
4771
4772static void valleyview_modeset_global_resources(struct drm_device *dev)
4773{
4774 struct drm_i915_private *dev_priv = dev->dev_private;
2f2d7aa1 4775 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6
JB
4776 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4777
383c5a6a
VS
4778 if (req_cdclk != dev_priv->vlv_cdclk_freq) {
4779 if (IS_CHERRYVIEW(dev))
4780 cherryview_set_cdclk(dev, req_cdclk);
4781 else
4782 valleyview_set_cdclk(dev, req_cdclk);
4783 }
4784
77961eb9 4785 modeset_update_crtc_power_domains(dev);
30a970c6
JB
4786}
4787
89b667f8
JB
4788static void valleyview_crtc_enable(struct drm_crtc *crtc)
4789{
4790 struct drm_device *dev = crtc->dev;
89b667f8
JB
4791 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4792 struct intel_encoder *encoder;
4793 int pipe = intel_crtc->pipe;
23538ef1 4794 bool is_dsi;
89b667f8
JB
4795
4796 WARN_ON(!crtc->enabled);
4797
4798 if (intel_crtc->active)
4799 return;
4800
8525a235
SK
4801 is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
4802
1ae0d137
VS
4803 if (!is_dsi) {
4804 if (IS_CHERRYVIEW(dev))
4805 chv_prepare_pll(intel_crtc);
4806 else
4807 vlv_prepare_pll(intel_crtc);
4808 }
5b18e57c
DV
4809
4810 if (intel_crtc->config.has_dp_encoder)
4811 intel_dp_set_m_n(intel_crtc);
4812
4813 intel_set_pipe_timings(intel_crtc);
4814
5b18e57c
DV
4815 i9xx_set_pipeconf(intel_crtc);
4816
89b667f8 4817 intel_crtc->active = true;
89b667f8 4818
4a3436e8
VS
4819 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4820
89b667f8
JB
4821 for_each_encoder_on_crtc(dev, crtc, encoder)
4822 if (encoder->pre_pll_enable)
4823 encoder->pre_pll_enable(encoder);
4824
9d556c99
CML
4825 if (!is_dsi) {
4826 if (IS_CHERRYVIEW(dev))
4827 chv_enable_pll(intel_crtc);
4828 else
4829 vlv_enable_pll(intel_crtc);
4830 }
89b667f8
JB
4831
4832 for_each_encoder_on_crtc(dev, crtc, encoder)
4833 if (encoder->pre_enable)
4834 encoder->pre_enable(encoder);
4835
2dd24552
JB
4836 i9xx_pfit_enable(intel_crtc);
4837
63cbb074
VS
4838 intel_crtc_load_lut(crtc);
4839
f37fcc2a 4840 intel_update_watermarks(crtc);
e1fdc473 4841 intel_enable_pipe(intel_crtc);
be6a6f8e 4842
5004945f
JN
4843 for_each_encoder_on_crtc(dev, crtc, encoder)
4844 encoder->enable(encoder);
9ab0460b
VS
4845
4846 intel_crtc_enable_planes(crtc);
d40d9187 4847
56b80e1f
VS
4848 /* Underruns don't raise interrupts, so check manually. */
4849 i9xx_check_fifo_underruns(dev);
89b667f8
JB
4850}
4851
f13c2ef3
DV
4852static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
4853{
4854 struct drm_device *dev = crtc->base.dev;
4855 struct drm_i915_private *dev_priv = dev->dev_private;
4856
4857 I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
4858 I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
4859}
4860
0b8765c6 4861static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
4862{
4863 struct drm_device *dev = crtc->dev;
79e53945 4864 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4865 struct intel_encoder *encoder;
79e53945 4866 int pipe = intel_crtc->pipe;
79e53945 4867
08a48469
DV
4868 WARN_ON(!crtc->enabled);
4869
f7abfe8b
CW
4870 if (intel_crtc->active)
4871 return;
4872
f13c2ef3
DV
4873 i9xx_set_pll_dividers(intel_crtc);
4874
5b18e57c
DV
4875 if (intel_crtc->config.has_dp_encoder)
4876 intel_dp_set_m_n(intel_crtc);
4877
4878 intel_set_pipe_timings(intel_crtc);
4879
5b18e57c
DV
4880 i9xx_set_pipeconf(intel_crtc);
4881
f7abfe8b 4882 intel_crtc->active = true;
6b383a7f 4883
4a3436e8
VS
4884 if (!IS_GEN2(dev))
4885 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4886
9d6d9f19
MK
4887 for_each_encoder_on_crtc(dev, crtc, encoder)
4888 if (encoder->pre_enable)
4889 encoder->pre_enable(encoder);
4890
f6736a1a
DV
4891 i9xx_enable_pll(intel_crtc);
4892
2dd24552
JB
4893 i9xx_pfit_enable(intel_crtc);
4894
63cbb074
VS
4895 intel_crtc_load_lut(crtc);
4896
f37fcc2a 4897 intel_update_watermarks(crtc);
e1fdc473 4898 intel_enable_pipe(intel_crtc);
be6a6f8e 4899
fa5c73b1
DV
4900 for_each_encoder_on_crtc(dev, crtc, encoder)
4901 encoder->enable(encoder);
9ab0460b
VS
4902
4903 intel_crtc_enable_planes(crtc);
d40d9187 4904
4a3436e8
VS
4905 /*
4906 * Gen2 reports pipe underruns whenever all planes are disabled.
4907 * So don't enable underrun reporting before at least some planes
4908 * are enabled.
4909 * FIXME: Need to fix the logic to work when we turn off all planes
4910 * but leave the pipe running.
4911 */
4912 if (IS_GEN2(dev))
4913 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4914
56b80e1f
VS
4915 /* Underruns don't raise interrupts, so check manually. */
4916 i9xx_check_fifo_underruns(dev);
0b8765c6 4917}
79e53945 4918
87476d63
DV
4919static void i9xx_pfit_disable(struct intel_crtc *crtc)
4920{
4921 struct drm_device *dev = crtc->base.dev;
4922 struct drm_i915_private *dev_priv = dev->dev_private;
87476d63 4923
328d8e82
DV
4924 if (!crtc->config.gmch_pfit.control)
4925 return;
87476d63 4926
328d8e82 4927 assert_pipe_disabled(dev_priv, crtc->pipe);
87476d63 4928
328d8e82
DV
4929 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4930 I915_READ(PFIT_CONTROL));
4931 I915_WRITE(PFIT_CONTROL, 0);
87476d63
DV
4932}
4933
0b8765c6
JB
4934static void i9xx_crtc_disable(struct drm_crtc *crtc)
4935{
4936 struct drm_device *dev = crtc->dev;
4937 struct drm_i915_private *dev_priv = dev->dev_private;
4938 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4939 struct intel_encoder *encoder;
0b8765c6 4940 int pipe = intel_crtc->pipe;
ef9c3aee 4941
f7abfe8b
CW
4942 if (!intel_crtc->active)
4943 return;
4944
4a3436e8
VS
4945 /*
4946 * Gen2 reports pipe underruns whenever all planes are disabled.
4947 * So diasble underrun reporting before all the planes get disabled.
4948 * FIXME: Need to fix the logic to work when we turn off all planes
4949 * but leave the pipe running.
4950 */
4951 if (IS_GEN2(dev))
4952 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4953
564ed191
ID
4954 /*
4955 * Vblank time updates from the shadow to live plane control register
4956 * are blocked if the memory self-refresh mode is active at that
4957 * moment. So to make sure the plane gets truly disabled, disable
4958 * first the self-refresh mode. The self-refresh enable bit in turn
4959 * will be checked/applied by the HW only at the next frame start
4960 * event which is after the vblank start event, so we need to have a
4961 * wait-for-vblank between disabling the plane and the pipe.
4962 */
4963 intel_set_memory_cxsr(dev_priv, false);
9ab0460b
VS
4964 intel_crtc_disable_planes(crtc);
4965
ea9d758d
DV
4966 for_each_encoder_on_crtc(dev, crtc, encoder)
4967 encoder->disable(encoder);
4968
6304cd91
VS
4969 /*
4970 * On gen2 planes are double buffered but the pipe isn't, so we must
4971 * wait for planes to fully turn off before disabling the pipe.
564ed191
ID
4972 * We also need to wait on all gmch platforms because of the
4973 * self-refresh mode constraint explained above.
6304cd91 4974 */
564ed191 4975 intel_wait_for_vblank(dev, pipe);
6304cd91 4976
575f7ab7 4977 intel_disable_pipe(intel_crtc);
24a1f16d 4978
87476d63 4979 i9xx_pfit_disable(intel_crtc);
24a1f16d 4980
89b667f8
JB
4981 for_each_encoder_on_crtc(dev, crtc, encoder)
4982 if (encoder->post_disable)
4983 encoder->post_disable(encoder);
4984
076ed3b2
CML
4985 if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI)) {
4986 if (IS_CHERRYVIEW(dev))
4987 chv_disable_pll(dev_priv, pipe);
4988 else if (IS_VALLEYVIEW(dev))
4989 vlv_disable_pll(dev_priv, pipe);
4990 else
1c4e0274 4991 i9xx_disable_pll(intel_crtc);
076ed3b2 4992 }
0b8765c6 4993
4a3436e8
VS
4994 if (!IS_GEN2(dev))
4995 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4996
f7abfe8b 4997 intel_crtc->active = false;
46ba614c 4998 intel_update_watermarks(crtc);
f37fcc2a 4999
efa9624e 5000 mutex_lock(&dev->struct_mutex);
6b383a7f 5001 intel_update_fbc(dev);
efa9624e 5002 mutex_unlock(&dev->struct_mutex);
0b8765c6
JB
5003}
5004
ee7b9f93
JB
5005static void i9xx_crtc_off(struct drm_crtc *crtc)
5006{
5007}
5008
976f8a20
DV
5009static void intel_crtc_update_sarea(struct drm_crtc *crtc,
5010 bool enabled)
2c07245f
ZW
5011{
5012 struct drm_device *dev = crtc->dev;
5013 struct drm_i915_master_private *master_priv;
5014 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5015 int pipe = intel_crtc->pipe;
79e53945
JB
5016
5017 if (!dev->primary->master)
5018 return;
5019
5020 master_priv = dev->primary->master->driver_priv;
5021 if (!master_priv->sarea_priv)
5022 return;
5023
79e53945
JB
5024 switch (pipe) {
5025 case 0:
5026 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
5027 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
5028 break;
5029 case 1:
5030 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
5031 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
5032 break;
5033 default:
9db4a9c7 5034 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
79e53945
JB
5035 break;
5036 }
79e53945
JB
5037}
5038
b04c5bd6
BF
5039/* Master function to enable/disable CRTC and corresponding power wells */
5040void intel_crtc_control(struct drm_crtc *crtc, bool enable)
976f8a20
DV
5041{
5042 struct drm_device *dev = crtc->dev;
5043 struct drm_i915_private *dev_priv = dev->dev_private;
0e572fe7 5044 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
0e572fe7
DV
5045 enum intel_display_power_domain domain;
5046 unsigned long domains;
976f8a20 5047
0e572fe7
DV
5048 if (enable) {
5049 if (!intel_crtc->active) {
e1e9fb84
DV
5050 domains = get_crtc_power_domains(crtc);
5051 for_each_power_domain(domain, domains)
5052 intel_display_power_get(dev_priv, domain);
5053 intel_crtc->enabled_power_domains = domains;
0e572fe7
DV
5054
5055 dev_priv->display.crtc_enable(crtc);
5056 }
5057 } else {
5058 if (intel_crtc->active) {
5059 dev_priv->display.crtc_disable(crtc);
5060
e1e9fb84
DV
5061 domains = intel_crtc->enabled_power_domains;
5062 for_each_power_domain(domain, domains)
5063 intel_display_power_put(dev_priv, domain);
5064 intel_crtc->enabled_power_domains = 0;
0e572fe7
DV
5065 }
5066 }
b04c5bd6
BF
5067}
5068
5069/**
5070 * Sets the power management mode of the pipe and plane.
5071 */
5072void intel_crtc_update_dpms(struct drm_crtc *crtc)
5073{
5074 struct drm_device *dev = crtc->dev;
5075 struct intel_encoder *intel_encoder;
5076 bool enable = false;
5077
5078 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5079 enable |= intel_encoder->connectors_active;
5080
5081 intel_crtc_control(crtc, enable);
976f8a20
DV
5082
5083 intel_crtc_update_sarea(crtc, enable);
5084}
5085
cdd59983
CW
5086static void intel_crtc_disable(struct drm_crtc *crtc)
5087{
cdd59983 5088 struct drm_device *dev = crtc->dev;
976f8a20 5089 struct drm_connector *connector;
ee7b9f93 5090 struct drm_i915_private *dev_priv = dev->dev_private;
2ff8fde1 5091 struct drm_i915_gem_object *old_obj = intel_fb_obj(crtc->primary->fb);
a071fa00 5092 enum pipe pipe = to_intel_crtc(crtc)->pipe;
cdd59983 5093
976f8a20
DV
5094 /* crtc should still be enabled when we disable it. */
5095 WARN_ON(!crtc->enabled);
5096
5097 dev_priv->display.crtc_disable(crtc);
5098 intel_crtc_update_sarea(crtc, false);
ee7b9f93
JB
5099 dev_priv->display.off(crtc);
5100
f4510a27 5101 if (crtc->primary->fb) {
cdd59983 5102 mutex_lock(&dev->struct_mutex);
a071fa00
DV
5103 intel_unpin_fb_obj(old_obj);
5104 i915_gem_track_fb(old_obj, NULL,
5105 INTEL_FRONTBUFFER_PRIMARY(pipe));
cdd59983 5106 mutex_unlock(&dev->struct_mutex);
f4510a27 5107 crtc->primary->fb = NULL;
976f8a20
DV
5108 }
5109
5110 /* Update computed state. */
5111 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
5112 if (!connector->encoder || !connector->encoder->crtc)
5113 continue;
5114
5115 if (connector->encoder->crtc != crtc)
5116 continue;
5117
5118 connector->dpms = DRM_MODE_DPMS_OFF;
5119 to_intel_encoder(connector->encoder)->connectors_active = false;
cdd59983
CW
5120 }
5121}
5122
ea5b213a 5123void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 5124{
4ef69c7a 5125 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 5126
ea5b213a
CW
5127 drm_encoder_cleanup(encoder);
5128 kfree(intel_encoder);
7e7d76c3
JB
5129}
5130
9237329d 5131/* Simple dpms helper for encoders with just one connector, no cloning and only
5ab432ef
DV
5132 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5133 * state of the entire output pipe. */
9237329d 5134static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
7e7d76c3 5135{
5ab432ef
DV
5136 if (mode == DRM_MODE_DPMS_ON) {
5137 encoder->connectors_active = true;
5138
b2cabb0e 5139 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef
DV
5140 } else {
5141 encoder->connectors_active = false;
5142
b2cabb0e 5143 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef 5144 }
79e53945
JB
5145}
5146
0a91ca29
DV
5147/* Cross check the actual hw state with our own modeset state tracking (and it's
5148 * internal consistency). */
b980514c 5149static void intel_connector_check_state(struct intel_connector *connector)
79e53945 5150{
0a91ca29
DV
5151 if (connector->get_hw_state(connector)) {
5152 struct intel_encoder *encoder = connector->encoder;
5153 struct drm_crtc *crtc;
5154 bool encoder_enabled;
5155 enum pipe pipe;
5156
5157 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5158 connector->base.base.id,
c23cc417 5159 connector->base.name);
0a91ca29 5160
0e32b39c
DA
5161 /* there is no real hw state for MST connectors */
5162 if (connector->mst_port)
5163 return;
5164
0a91ca29
DV
5165 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5166 "wrong connector dpms state\n");
5167 WARN(connector->base.encoder != &encoder->base,
5168 "active connector not linked to encoder\n");
0a91ca29 5169
36cd7444
DA
5170 if (encoder) {
5171 WARN(!encoder->connectors_active,
5172 "encoder->connectors_active not set\n");
5173
5174 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5175 WARN(!encoder_enabled, "encoder not enabled\n");
5176 if (WARN_ON(!encoder->base.crtc))
5177 return;
0a91ca29 5178
36cd7444 5179 crtc = encoder->base.crtc;
0a91ca29 5180
36cd7444
DA
5181 WARN(!crtc->enabled, "crtc not enabled\n");
5182 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5183 WARN(pipe != to_intel_crtc(crtc)->pipe,
5184 "encoder active on the wrong pipe\n");
5185 }
0a91ca29 5186 }
79e53945
JB
5187}
5188
5ab432ef
DV
5189/* Even simpler default implementation, if there's really no special case to
5190 * consider. */
5191void intel_connector_dpms(struct drm_connector *connector, int mode)
79e53945 5192{
5ab432ef
DV
5193 /* All the simple cases only support two dpms states. */
5194 if (mode != DRM_MODE_DPMS_ON)
5195 mode = DRM_MODE_DPMS_OFF;
d4270e57 5196
5ab432ef
DV
5197 if (mode == connector->dpms)
5198 return;
5199
5200 connector->dpms = mode;
5201
5202 /* Only need to change hw state when actually enabled */
c9976dcf
CW
5203 if (connector->encoder)
5204 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
0a91ca29 5205
b980514c 5206 intel_modeset_check_state(connector->dev);
79e53945
JB
5207}
5208
f0947c37
DV
5209/* Simple connector->get_hw_state implementation for encoders that support only
5210 * one connector and no cloning and hence the encoder state determines the state
5211 * of the connector. */
5212bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 5213{
24929352 5214 enum pipe pipe = 0;
f0947c37 5215 struct intel_encoder *encoder = connector->encoder;
ea5b213a 5216
f0947c37 5217 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
5218}
5219
1857e1da
DV
5220static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5221 struct intel_crtc_config *pipe_config)
5222{
5223 struct drm_i915_private *dev_priv = dev->dev_private;
5224 struct intel_crtc *pipe_B_crtc =
5225 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5226
5227 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5228 pipe_name(pipe), pipe_config->fdi_lanes);
5229 if (pipe_config->fdi_lanes > 4) {
5230 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5231 pipe_name(pipe), pipe_config->fdi_lanes);
5232 return false;
5233 }
5234
bafb6553 5235 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1857e1da
DV
5236 if (pipe_config->fdi_lanes > 2) {
5237 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5238 pipe_config->fdi_lanes);
5239 return false;
5240 } else {
5241 return true;
5242 }
5243 }
5244
5245 if (INTEL_INFO(dev)->num_pipes == 2)
5246 return true;
5247
5248 /* Ivybridge 3 pipe is really complicated */
5249 switch (pipe) {
5250 case PIPE_A:
5251 return true;
5252 case PIPE_B:
5253 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5254 pipe_config->fdi_lanes > 2) {
5255 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5256 pipe_name(pipe), pipe_config->fdi_lanes);
5257 return false;
5258 }
5259 return true;
5260 case PIPE_C:
1e833f40 5261 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
1857e1da
DV
5262 pipe_B_crtc->config.fdi_lanes <= 2) {
5263 if (pipe_config->fdi_lanes > 2) {
5264 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5265 pipe_name(pipe), pipe_config->fdi_lanes);
5266 return false;
5267 }
5268 } else {
5269 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5270 return false;
5271 }
5272 return true;
5273 default:
5274 BUG();
5275 }
5276}
5277
e29c22c0
DV
5278#define RETRY 1
5279static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5280 struct intel_crtc_config *pipe_config)
877d48d5 5281{
1857e1da 5282 struct drm_device *dev = intel_crtc->base.dev;
877d48d5 5283 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
ff9a6750 5284 int lane, link_bw, fdi_dotclock;
e29c22c0 5285 bool setup_ok, needs_recompute = false;
877d48d5 5286
e29c22c0 5287retry:
877d48d5
DV
5288 /* FDI is a binary signal running at ~2.7GHz, encoding
5289 * each output octet as 10 bits. The actual frequency
5290 * is stored as a divider into a 100MHz clock, and the
5291 * mode pixel clock is stored in units of 1KHz.
5292 * Hence the bw of each lane in terms of the mode signal
5293 * is:
5294 */
5295 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5296
241bfc38 5297 fdi_dotclock = adjusted_mode->crtc_clock;
877d48d5 5298
2bd89a07 5299 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
877d48d5
DV
5300 pipe_config->pipe_bpp);
5301
5302 pipe_config->fdi_lanes = lane;
5303
2bd89a07 5304 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
877d48d5 5305 link_bw, &pipe_config->fdi_m_n);
1857e1da 5306
e29c22c0
DV
5307 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5308 intel_crtc->pipe, pipe_config);
5309 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5310 pipe_config->pipe_bpp -= 2*3;
5311 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5312 pipe_config->pipe_bpp);
5313 needs_recompute = true;
5314 pipe_config->bw_constrained = true;
5315
5316 goto retry;
5317 }
5318
5319 if (needs_recompute)
5320 return RETRY;
5321
5322 return setup_ok ? 0 : -EINVAL;
877d48d5
DV
5323}
5324
42db64ef
PZ
5325static void hsw_compute_ips_config(struct intel_crtc *crtc,
5326 struct intel_crtc_config *pipe_config)
5327{
d330a953 5328 pipe_config->ips_enabled = i915.enable_ips &&
3c4ca58c 5329 hsw_crtc_supports_ips(crtc) &&
b6dfdc9b 5330 pipe_config->pipe_bpp <= 24;
42db64ef
PZ
5331}
5332
a43f6e0f 5333static int intel_crtc_compute_config(struct intel_crtc *crtc,
e29c22c0 5334 struct intel_crtc_config *pipe_config)
79e53945 5335{
a43f6e0f 5336 struct drm_device *dev = crtc->base.dev;
b8cecdf5 5337 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
89749350 5338
ad3a4479 5339 /* FIXME should check pixel clock limits on all platforms */
cf532bb2
VS
5340 if (INTEL_INFO(dev)->gen < 4) {
5341 struct drm_i915_private *dev_priv = dev->dev_private;
5342 int clock_limit =
5343 dev_priv->display.get_display_clock_speed(dev);
5344
5345 /*
5346 * Enable pixel doubling when the dot clock
5347 * is > 90% of the (display) core speed.
5348 *
b397c96b
VS
5349 * GDG double wide on either pipe,
5350 * otherwise pipe A only.
cf532bb2 5351 */
b397c96b 5352 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
241bfc38 5353 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
ad3a4479 5354 clock_limit *= 2;
cf532bb2 5355 pipe_config->double_wide = true;
ad3a4479
VS
5356 }
5357
241bfc38 5358 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
e29c22c0 5359 return -EINVAL;
2c07245f 5360 }
89749350 5361
1d1d0e27
VS
5362 /*
5363 * Pipe horizontal size must be even in:
5364 * - DVO ganged mode
5365 * - LVDS dual channel mode
5366 * - Double wide pipe
5367 */
5368 if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5369 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5370 pipe_config->pipe_src_w &= ~1;
5371
8693a824
DL
5372 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5373 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
44f46b42
CW
5374 */
5375 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5376 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
e29c22c0 5377 return -EINVAL;
44f46b42 5378
bd080ee5 5379 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5d2d38dd 5380 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
bd080ee5 5381 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5d2d38dd
DV
5382 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5383 * for lvds. */
5384 pipe_config->pipe_bpp = 8*3;
5385 }
5386
f5adf94e 5387 if (HAS_IPS(dev))
a43f6e0f
DV
5388 hsw_compute_ips_config(crtc, pipe_config);
5389
12030431
DV
5390 /*
5391 * XXX: PCH/WRPLL clock sharing is done in ->mode_set, so make sure the
5392 * old clock survives for now.
5393 */
5394 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev) || HAS_DDI(dev))
a43f6e0f 5395 pipe_config->shared_dpll = crtc->config.shared_dpll;
42db64ef 5396
877d48d5 5397 if (pipe_config->has_pch_encoder)
a43f6e0f 5398 return ironlake_fdi_compute_config(crtc, pipe_config);
877d48d5 5399
e29c22c0 5400 return 0;
79e53945
JB
5401}
5402
25eb05fc
JB
5403static int valleyview_get_display_clock_speed(struct drm_device *dev)
5404{
d197b7d3
VS
5405 struct drm_i915_private *dev_priv = dev->dev_private;
5406 int vco = valleyview_get_vco(dev_priv);
5407 u32 val;
5408 int divider;
5409
d49a340d
VS
5410 /* FIXME: Punit isn't quite ready yet */
5411 if (IS_CHERRYVIEW(dev))
5412 return 400000;
5413
d197b7d3
VS
5414 mutex_lock(&dev_priv->dpio_lock);
5415 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5416 mutex_unlock(&dev_priv->dpio_lock);
5417
5418 divider = val & DISPLAY_FREQUENCY_VALUES;
5419
7d007f40
VS
5420 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5421 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5422 "cdclk change in progress\n");
5423
d197b7d3 5424 return DIV_ROUND_CLOSEST(vco << 1, divider + 1);
25eb05fc
JB
5425}
5426
e70236a8
JB
5427static int i945_get_display_clock_speed(struct drm_device *dev)
5428{
5429 return 400000;
5430}
79e53945 5431
e70236a8 5432static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 5433{
e70236a8
JB
5434 return 333000;
5435}
79e53945 5436
e70236a8
JB
5437static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5438{
5439 return 200000;
5440}
79e53945 5441
257a7ffc
DV
5442static int pnv_get_display_clock_speed(struct drm_device *dev)
5443{
5444 u16 gcfgc = 0;
5445
5446 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5447
5448 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5449 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5450 return 267000;
5451 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5452 return 333000;
5453 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5454 return 444000;
5455 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5456 return 200000;
5457 default:
5458 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5459 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5460 return 133000;
5461 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5462 return 167000;
5463 }
5464}
5465
e70236a8
JB
5466static int i915gm_get_display_clock_speed(struct drm_device *dev)
5467{
5468 u16 gcfgc = 0;
79e53945 5469
e70236a8
JB
5470 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5471
5472 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5473 return 133000;
5474 else {
5475 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5476 case GC_DISPLAY_CLOCK_333_MHZ:
5477 return 333000;
5478 default:
5479 case GC_DISPLAY_CLOCK_190_200_MHZ:
5480 return 190000;
79e53945 5481 }
e70236a8
JB
5482 }
5483}
5484
5485static int i865_get_display_clock_speed(struct drm_device *dev)
5486{
5487 return 266000;
5488}
5489
5490static int i855_get_display_clock_speed(struct drm_device *dev)
5491{
5492 u16 hpllcc = 0;
5493 /* Assume that the hardware is in the high speed state. This
5494 * should be the default.
5495 */
5496 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5497 case GC_CLOCK_133_200:
5498 case GC_CLOCK_100_200:
5499 return 200000;
5500 case GC_CLOCK_166_250:
5501 return 250000;
5502 case GC_CLOCK_100_133:
79e53945 5503 return 133000;
e70236a8 5504 }
79e53945 5505
e70236a8
JB
5506 /* Shouldn't happen */
5507 return 0;
5508}
79e53945 5509
e70236a8
JB
5510static int i830_get_display_clock_speed(struct drm_device *dev)
5511{
5512 return 133000;
79e53945
JB
5513}
5514
2c07245f 5515static void
a65851af 5516intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
2c07245f 5517{
a65851af
VS
5518 while (*num > DATA_LINK_M_N_MASK ||
5519 *den > DATA_LINK_M_N_MASK) {
2c07245f
ZW
5520 *num >>= 1;
5521 *den >>= 1;
5522 }
5523}
5524
a65851af
VS
5525static void compute_m_n(unsigned int m, unsigned int n,
5526 uint32_t *ret_m, uint32_t *ret_n)
5527{
5528 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5529 *ret_m = div_u64((uint64_t) m * *ret_n, n);
5530 intel_reduce_m_n_ratio(ret_m, ret_n);
5531}
5532
e69d0bc1
DV
5533void
5534intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5535 int pixel_clock, int link_clock,
5536 struct intel_link_m_n *m_n)
2c07245f 5537{
e69d0bc1 5538 m_n->tu = 64;
a65851af
VS
5539
5540 compute_m_n(bits_per_pixel * pixel_clock,
5541 link_clock * nlanes * 8,
5542 &m_n->gmch_m, &m_n->gmch_n);
5543
5544 compute_m_n(pixel_clock, link_clock,
5545 &m_n->link_m, &m_n->link_n);
2c07245f
ZW
5546}
5547
a7615030
CW
5548static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5549{
d330a953
JN
5550 if (i915.panel_use_ssc >= 0)
5551 return i915.panel_use_ssc != 0;
41aa3448 5552 return dev_priv->vbt.lvds_use_ssc
435793df 5553 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
5554}
5555
c65d77d8
JB
5556static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5557{
5558 struct drm_device *dev = crtc->dev;
5559 struct drm_i915_private *dev_priv = dev->dev_private;
5560 int refclk;
5561
a0c4da24 5562 if (IS_VALLEYVIEW(dev)) {
9a0ea498 5563 refclk = 100000;
a0c4da24 5564 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
c65d77d8 5565 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b
VS
5566 refclk = dev_priv->vbt.lvds_ssc_freq;
5567 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
c65d77d8
JB
5568 } else if (!IS_GEN2(dev)) {
5569 refclk = 96000;
5570 } else {
5571 refclk = 48000;
5572 }
5573
5574 return refclk;
5575}
5576
7429e9d4 5577static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
c65d77d8 5578{
7df00d7a 5579 return (1 << dpll->n) << 16 | dpll->m2;
7429e9d4 5580}
f47709a9 5581
7429e9d4
DV
5582static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5583{
5584 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
c65d77d8
JB
5585}
5586
f47709a9 5587static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
a7516a05
JB
5588 intel_clock_t *reduced_clock)
5589{
f47709a9 5590 struct drm_device *dev = crtc->base.dev;
a7516a05
JB
5591 u32 fp, fp2 = 0;
5592
5593 if (IS_PINEVIEW(dev)) {
7429e9d4 5594 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
a7516a05 5595 if (reduced_clock)
7429e9d4 5596 fp2 = pnv_dpll_compute_fp(reduced_clock);
a7516a05 5597 } else {
7429e9d4 5598 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
a7516a05 5599 if (reduced_clock)
7429e9d4 5600 fp2 = i9xx_dpll_compute_fp(reduced_clock);
a7516a05
JB
5601 }
5602
8bcc2795 5603 crtc->config.dpll_hw_state.fp0 = fp;
a7516a05 5604
f47709a9
DV
5605 crtc->lowfreq_avail = false;
5606 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
d330a953 5607 reduced_clock && i915.powersave) {
8bcc2795 5608 crtc->config.dpll_hw_state.fp1 = fp2;
f47709a9 5609 crtc->lowfreq_avail = true;
a7516a05 5610 } else {
8bcc2795 5611 crtc->config.dpll_hw_state.fp1 = fp;
a7516a05
JB
5612 }
5613}
5614
5e69f97f
CML
5615static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5616 pipe)
89b667f8
JB
5617{
5618 u32 reg_val;
5619
5620 /*
5621 * PLLB opamp always calibrates to max value of 0x3f, force enable it
5622 * and set it to a reasonable value instead.
5623 */
ab3c759a 5624 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8
JB
5625 reg_val &= 0xffffff00;
5626 reg_val |= 0x00000030;
ab3c759a 5627 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5628
ab3c759a 5629 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5630 reg_val &= 0x8cffffff;
5631 reg_val = 0x8c000000;
ab3c759a 5632 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8 5633
ab3c759a 5634 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8 5635 reg_val &= 0xffffff00;
ab3c759a 5636 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5637
ab3c759a 5638 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5639 reg_val &= 0x00ffffff;
5640 reg_val |= 0xb0000000;
ab3c759a 5641 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8
JB
5642}
5643
b551842d
DV
5644static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5645 struct intel_link_m_n *m_n)
5646{
5647 struct drm_device *dev = crtc->base.dev;
5648 struct drm_i915_private *dev_priv = dev->dev_private;
5649 int pipe = crtc->pipe;
5650
e3b95f1e
DV
5651 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5652 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5653 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5654 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
b551842d
DV
5655}
5656
5657static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
5658 struct intel_link_m_n *m_n,
5659 struct intel_link_m_n *m2_n2)
b551842d
DV
5660{
5661 struct drm_device *dev = crtc->base.dev;
5662 struct drm_i915_private *dev_priv = dev->dev_private;
5663 int pipe = crtc->pipe;
5664 enum transcoder transcoder = crtc->config.cpu_transcoder;
5665
5666 if (INTEL_INFO(dev)->gen >= 5) {
5667 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5668 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5669 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5670 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
f769cd24
VK
5671 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
5672 * for gen < 8) and if DRRS is supported (to make sure the
5673 * registers are not unnecessarily accessed).
5674 */
5675 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
5676 crtc->config.has_drrs) {
5677 I915_WRITE(PIPE_DATA_M2(transcoder),
5678 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
5679 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
5680 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
5681 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
5682 }
b551842d 5683 } else {
e3b95f1e
DV
5684 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5685 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5686 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5687 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
b551842d
DV
5688 }
5689}
5690
f769cd24 5691void intel_dp_set_m_n(struct intel_crtc *crtc)
03afc4a2
DV
5692{
5693 if (crtc->config.has_pch_encoder)
5694 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5695 else
f769cd24
VK
5696 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n,
5697 &crtc->config.dp_m2_n2);
03afc4a2
DV
5698}
5699
f47709a9 5700static void vlv_update_pll(struct intel_crtc *crtc)
bdd4b6a6
DV
5701{
5702 u32 dpll, dpll_md;
5703
5704 /*
5705 * Enable DPIO clock input. We should never disable the reference
5706 * clock for pipe B, since VGA hotplug / manual detection depends
5707 * on it.
5708 */
5709 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5710 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5711 /* We should never disable this, set it here for state tracking */
5712 if (crtc->pipe == PIPE_B)
5713 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5714 dpll |= DPLL_VCO_ENABLE;
5715 crtc->config.dpll_hw_state.dpll = dpll;
5716
5717 dpll_md = (crtc->config.pixel_multiplier - 1)
5718 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5719 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5720}
5721
5722static void vlv_prepare_pll(struct intel_crtc *crtc)
a0c4da24 5723{
f47709a9 5724 struct drm_device *dev = crtc->base.dev;
a0c4da24 5725 struct drm_i915_private *dev_priv = dev->dev_private;
f47709a9 5726 int pipe = crtc->pipe;
bdd4b6a6 5727 u32 mdiv;
a0c4da24 5728 u32 bestn, bestm1, bestm2, bestp1, bestp2;
bdd4b6a6 5729 u32 coreclk, reg_val;
a0c4da24 5730
09153000
DV
5731 mutex_lock(&dev_priv->dpio_lock);
5732
f47709a9
DV
5733 bestn = crtc->config.dpll.n;
5734 bestm1 = crtc->config.dpll.m1;
5735 bestm2 = crtc->config.dpll.m2;
5736 bestp1 = crtc->config.dpll.p1;
5737 bestp2 = crtc->config.dpll.p2;
a0c4da24 5738
89b667f8
JB
5739 /* See eDP HDMI DPIO driver vbios notes doc */
5740
5741 /* PLL B needs special handling */
bdd4b6a6 5742 if (pipe == PIPE_B)
5e69f97f 5743 vlv_pllb_recal_opamp(dev_priv, pipe);
89b667f8
JB
5744
5745 /* Set up Tx target for periodic Rcomp update */
ab3c759a 5746 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
89b667f8
JB
5747
5748 /* Disable target IRef on PLL */
ab3c759a 5749 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
89b667f8 5750 reg_val &= 0x00ffffff;
ab3c759a 5751 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
89b667f8
JB
5752
5753 /* Disable fast lock */
ab3c759a 5754 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
89b667f8
JB
5755
5756 /* Set idtafcrecal before PLL is enabled */
a0c4da24
JB
5757 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5758 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5759 mdiv |= ((bestn << DPIO_N_SHIFT));
a0c4da24 5760 mdiv |= (1 << DPIO_K_SHIFT);
7df5080b
JB
5761
5762 /*
5763 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5764 * but we don't support that).
5765 * Note: don't use the DAC post divider as it seems unstable.
5766 */
5767 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
ab3c759a 5768 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5769
a0c4da24 5770 mdiv |= DPIO_ENABLE_CALIBRATION;
ab3c759a 5771 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5772
89b667f8 5773 /* Set HBR and RBR LPF coefficients */
ff9a6750 5774 if (crtc->config.port_clock == 162000 ||
99750bd4 5775 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
89b667f8 5776 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
ab3c759a 5777 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
885b0120 5778 0x009f0003);
89b667f8 5779 else
ab3c759a 5780 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
89b667f8
JB
5781 0x00d0000f);
5782
5783 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
5784 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
5785 /* Use SSC source */
bdd4b6a6 5786 if (pipe == PIPE_A)
ab3c759a 5787 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5788 0x0df40000);
5789 else
ab3c759a 5790 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5791 0x0df70000);
5792 } else { /* HDMI or VGA */
5793 /* Use bend source */
bdd4b6a6 5794 if (pipe == PIPE_A)
ab3c759a 5795 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5796 0x0df70000);
5797 else
ab3c759a 5798 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5799 0x0df40000);
5800 }
a0c4da24 5801
ab3c759a 5802 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
89b667f8
JB
5803 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5804 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
5805 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
5806 coreclk |= 0x01000000;
ab3c759a 5807 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
a0c4da24 5808
ab3c759a 5809 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
09153000 5810 mutex_unlock(&dev_priv->dpio_lock);
a0c4da24
JB
5811}
5812
9d556c99 5813static void chv_update_pll(struct intel_crtc *crtc)
1ae0d137
VS
5814{
5815 crtc->config.dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
5816 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5817 DPLL_VCO_ENABLE;
5818 if (crtc->pipe != PIPE_A)
5819 crtc->config.dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5820
5821 crtc->config.dpll_hw_state.dpll_md =
5822 (crtc->config.pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5823}
5824
5825static void chv_prepare_pll(struct intel_crtc *crtc)
9d556c99
CML
5826{
5827 struct drm_device *dev = crtc->base.dev;
5828 struct drm_i915_private *dev_priv = dev->dev_private;
5829 int pipe = crtc->pipe;
5830 int dpll_reg = DPLL(crtc->pipe);
5831 enum dpio_channel port = vlv_pipe_to_channel(pipe);
580d3811 5832 u32 loopfilter, intcoeff;
9d556c99
CML
5833 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5834 int refclk;
5835
9d556c99
CML
5836 bestn = crtc->config.dpll.n;
5837 bestm2_frac = crtc->config.dpll.m2 & 0x3fffff;
5838 bestm1 = crtc->config.dpll.m1;
5839 bestm2 = crtc->config.dpll.m2 >> 22;
5840 bestp1 = crtc->config.dpll.p1;
5841 bestp2 = crtc->config.dpll.p2;
5842
5843 /*
5844 * Enable Refclk and SSC
5845 */
a11b0703
VS
5846 I915_WRITE(dpll_reg,
5847 crtc->config.dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
5848
5849 mutex_lock(&dev_priv->dpio_lock);
9d556c99 5850
9d556c99
CML
5851 /* p1 and p2 divider */
5852 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
5853 5 << DPIO_CHV_S1_DIV_SHIFT |
5854 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
5855 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
5856 1 << DPIO_CHV_K_DIV_SHIFT);
5857
5858 /* Feedback post-divider - m2 */
5859 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
5860
5861 /* Feedback refclk divider - n and m1 */
5862 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
5863 DPIO_CHV_M1_DIV_BY_2 |
5864 1 << DPIO_CHV_N_DIV_SHIFT);
5865
5866 /* M2 fraction division */
5867 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
5868
5869 /* M2 fraction division enable */
5870 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
5871 DPIO_CHV_FRAC_DIV_EN |
5872 (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
5873
5874 /* Loop filter */
5875 refclk = i9xx_get_refclk(&crtc->base, 0);
5876 loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
5877 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
5878 if (refclk == 100000)
5879 intcoeff = 11;
5880 else if (refclk == 38400)
5881 intcoeff = 10;
5882 else
5883 intcoeff = 9;
5884 loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
5885 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
5886
5887 /* AFC Recal */
5888 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
5889 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
5890 DPIO_AFC_RECAL);
5891
5892 mutex_unlock(&dev_priv->dpio_lock);
5893}
5894
f47709a9
DV
5895static void i9xx_update_pll(struct intel_crtc *crtc,
5896 intel_clock_t *reduced_clock,
eb1cbe48
DV
5897 int num_connectors)
5898{
f47709a9 5899 struct drm_device *dev = crtc->base.dev;
eb1cbe48 5900 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48
DV
5901 u32 dpll;
5902 bool is_sdvo;
f47709a9 5903 struct dpll *clock = &crtc->config.dpll;
eb1cbe48 5904
f47709a9 5905 i9xx_update_pll_dividers(crtc, reduced_clock);
2a8f64ca 5906
f47709a9
DV
5907 is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
5908 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
eb1cbe48
DV
5909
5910 dpll = DPLL_VGA_MODE_DIS;
5911
f47709a9 5912 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
eb1cbe48
DV
5913 dpll |= DPLLB_MODE_LVDS;
5914 else
5915 dpll |= DPLLB_MODE_DAC_SERIAL;
6cc5f341 5916
ef1b460d 5917 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
198a037f
DV
5918 dpll |= (crtc->config.pixel_multiplier - 1)
5919 << SDVO_MULTIPLIER_SHIFT_HIRES;
eb1cbe48 5920 }
198a037f
DV
5921
5922 if (is_sdvo)
4a33e48d 5923 dpll |= DPLL_SDVO_HIGH_SPEED;
198a037f 5924
f47709a9 5925 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4a33e48d 5926 dpll |= DPLL_SDVO_HIGH_SPEED;
eb1cbe48
DV
5927
5928 /* compute bitmask from p1 value */
5929 if (IS_PINEVIEW(dev))
5930 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5931 else {
5932 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5933 if (IS_G4X(dev) && reduced_clock)
5934 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5935 }
5936 switch (clock->p2) {
5937 case 5:
5938 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5939 break;
5940 case 7:
5941 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5942 break;
5943 case 10:
5944 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5945 break;
5946 case 14:
5947 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5948 break;
5949 }
5950 if (INTEL_INFO(dev)->gen >= 4)
5951 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5952
09ede541 5953 if (crtc->config.sdvo_tv_clock)
eb1cbe48 5954 dpll |= PLL_REF_INPUT_TVCLKINBC;
f47709a9 5955 else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
5956 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5957 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5958 else
5959 dpll |= PLL_REF_INPUT_DREFCLK;
5960
5961 dpll |= DPLL_VCO_ENABLE;
8bcc2795
DV
5962 crtc->config.dpll_hw_state.dpll = dpll;
5963
eb1cbe48 5964 if (INTEL_INFO(dev)->gen >= 4) {
ef1b460d
DV
5965 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
5966 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8bcc2795 5967 crtc->config.dpll_hw_state.dpll_md = dpll_md;
eb1cbe48
DV
5968 }
5969}
5970
f47709a9 5971static void i8xx_update_pll(struct intel_crtc *crtc,
f47709a9 5972 intel_clock_t *reduced_clock,
eb1cbe48
DV
5973 int num_connectors)
5974{
f47709a9 5975 struct drm_device *dev = crtc->base.dev;
eb1cbe48 5976 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48 5977 u32 dpll;
f47709a9 5978 struct dpll *clock = &crtc->config.dpll;
eb1cbe48 5979
f47709a9 5980 i9xx_update_pll_dividers(crtc, reduced_clock);
2a8f64ca 5981
eb1cbe48
DV
5982 dpll = DPLL_VGA_MODE_DIS;
5983
f47709a9 5984 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
eb1cbe48
DV
5985 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5986 } else {
5987 if (clock->p1 == 2)
5988 dpll |= PLL_P1_DIVIDE_BY_TWO;
5989 else
5990 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5991 if (clock->p2 == 4)
5992 dpll |= PLL_P2_DIVIDE_BY_4;
5993 }
5994
1c4e0274 5995 if (!IS_I830(dev) && intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
4a33e48d
DV
5996 dpll |= DPLL_DVO_2X_MODE;
5997
f47709a9 5998 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
5999 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6000 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6001 else
6002 dpll |= PLL_REF_INPUT_DREFCLK;
6003
6004 dpll |= DPLL_VCO_ENABLE;
8bcc2795 6005 crtc->config.dpll_hw_state.dpll = dpll;
eb1cbe48
DV
6006}
6007
8a654f3b 6008static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
b0e77b9c
PZ
6009{
6010 struct drm_device *dev = intel_crtc->base.dev;
6011 struct drm_i915_private *dev_priv = dev->dev_private;
6012 enum pipe pipe = intel_crtc->pipe;
3b117c8f 6013 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8a654f3b
DV
6014 struct drm_display_mode *adjusted_mode =
6015 &intel_crtc->config.adjusted_mode;
1caea6e9
VS
6016 uint32_t crtc_vtotal, crtc_vblank_end;
6017 int vsyncshift = 0;
4d8a62ea
DV
6018
6019 /* We need to be careful not to changed the adjusted mode, for otherwise
6020 * the hw state checker will get angry at the mismatch. */
6021 crtc_vtotal = adjusted_mode->crtc_vtotal;
6022 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
b0e77b9c 6023
609aeaca 6024 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
b0e77b9c 6025 /* the chip adds 2 halflines automatically */
4d8a62ea
DV
6026 crtc_vtotal -= 1;
6027 crtc_vblank_end -= 1;
609aeaca
VS
6028
6029 if (intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
6030 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6031 else
6032 vsyncshift = adjusted_mode->crtc_hsync_start -
6033 adjusted_mode->crtc_htotal / 2;
1caea6e9
VS
6034 if (vsyncshift < 0)
6035 vsyncshift += adjusted_mode->crtc_htotal;
b0e77b9c
PZ
6036 }
6037
6038 if (INTEL_INFO(dev)->gen > 3)
fe2b8f9d 6039 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
b0e77b9c 6040
fe2b8f9d 6041 I915_WRITE(HTOTAL(cpu_transcoder),
b0e77b9c
PZ
6042 (adjusted_mode->crtc_hdisplay - 1) |
6043 ((adjusted_mode->crtc_htotal - 1) << 16));
fe2b8f9d 6044 I915_WRITE(HBLANK(cpu_transcoder),
b0e77b9c
PZ
6045 (adjusted_mode->crtc_hblank_start - 1) |
6046 ((adjusted_mode->crtc_hblank_end - 1) << 16));
fe2b8f9d 6047 I915_WRITE(HSYNC(cpu_transcoder),
b0e77b9c
PZ
6048 (adjusted_mode->crtc_hsync_start - 1) |
6049 ((adjusted_mode->crtc_hsync_end - 1) << 16));
6050
fe2b8f9d 6051 I915_WRITE(VTOTAL(cpu_transcoder),
b0e77b9c 6052 (adjusted_mode->crtc_vdisplay - 1) |
4d8a62ea 6053 ((crtc_vtotal - 1) << 16));
fe2b8f9d 6054 I915_WRITE(VBLANK(cpu_transcoder),
b0e77b9c 6055 (adjusted_mode->crtc_vblank_start - 1) |
4d8a62ea 6056 ((crtc_vblank_end - 1) << 16));
fe2b8f9d 6057 I915_WRITE(VSYNC(cpu_transcoder),
b0e77b9c
PZ
6058 (adjusted_mode->crtc_vsync_start - 1) |
6059 ((adjusted_mode->crtc_vsync_end - 1) << 16));
6060
b5e508d4
PZ
6061 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6062 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6063 * documented on the DDI_FUNC_CTL register description, EDP Input Select
6064 * bits. */
6065 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
6066 (pipe == PIPE_B || pipe == PIPE_C))
6067 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6068
b0e77b9c
PZ
6069 /* pipesrc controls the size that is scaled from, which should
6070 * always be the user's requested size.
6071 */
6072 I915_WRITE(PIPESRC(pipe),
37327abd
VS
6073 ((intel_crtc->config.pipe_src_w - 1) << 16) |
6074 (intel_crtc->config.pipe_src_h - 1));
b0e77b9c
PZ
6075}
6076
1bd1bd80
DV
6077static void intel_get_pipe_timings(struct intel_crtc *crtc,
6078 struct intel_crtc_config *pipe_config)
6079{
6080 struct drm_device *dev = crtc->base.dev;
6081 struct drm_i915_private *dev_priv = dev->dev_private;
6082 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6083 uint32_t tmp;
6084
6085 tmp = I915_READ(HTOTAL(cpu_transcoder));
6086 pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6087 pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
6088 tmp = I915_READ(HBLANK(cpu_transcoder));
6089 pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6090 pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
6091 tmp = I915_READ(HSYNC(cpu_transcoder));
6092 pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6093 pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
6094
6095 tmp = I915_READ(VTOTAL(cpu_transcoder));
6096 pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6097 pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
6098 tmp = I915_READ(VBLANK(cpu_transcoder));
6099 pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6100 pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
6101 tmp = I915_READ(VSYNC(cpu_transcoder));
6102 pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6103 pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
6104
6105 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
6106 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6107 pipe_config->adjusted_mode.crtc_vtotal += 1;
6108 pipe_config->adjusted_mode.crtc_vblank_end += 1;
6109 }
6110
6111 tmp = I915_READ(PIPESRC(crtc->pipe));
37327abd
VS
6112 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6113 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6114
6115 pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
6116 pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
1bd1bd80
DV
6117}
6118
f6a83288
DV
6119void intel_mode_from_pipe_config(struct drm_display_mode *mode,
6120 struct intel_crtc_config *pipe_config)
babea61d 6121{
f6a83288
DV
6122 mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
6123 mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
6124 mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
6125 mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
babea61d 6126
f6a83288
DV
6127 mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
6128 mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
6129 mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
6130 mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
babea61d 6131
f6a83288 6132 mode->flags = pipe_config->adjusted_mode.flags;
babea61d 6133
f6a83288
DV
6134 mode->clock = pipe_config->adjusted_mode.crtc_clock;
6135 mode->flags |= pipe_config->adjusted_mode.flags;
babea61d
JB
6136}
6137
84b046f3
DV
6138static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6139{
6140 struct drm_device *dev = intel_crtc->base.dev;
6141 struct drm_i915_private *dev_priv = dev->dev_private;
6142 uint32_t pipeconf;
6143
9f11a9e4 6144 pipeconf = 0;
84b046f3 6145
b6b5d049
VS
6146 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
6147 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
6148 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
67c72a12 6149
cf532bb2
VS
6150 if (intel_crtc->config.double_wide)
6151 pipeconf |= PIPECONF_DOUBLE_WIDE;
84b046f3 6152
ff9ce46e
DV
6153 /* only g4x and later have fancy bpc/dither controls */
6154 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
ff9ce46e
DV
6155 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6156 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
6157 pipeconf |= PIPECONF_DITHER_EN |
84b046f3 6158 PIPECONF_DITHER_TYPE_SP;
84b046f3 6159
ff9ce46e
DV
6160 switch (intel_crtc->config.pipe_bpp) {
6161 case 18:
6162 pipeconf |= PIPECONF_6BPC;
6163 break;
6164 case 24:
6165 pipeconf |= PIPECONF_8BPC;
6166 break;
6167 case 30:
6168 pipeconf |= PIPECONF_10BPC;
6169 break;
6170 default:
6171 /* Case prevented by intel_choose_pipe_bpp_dither. */
6172 BUG();
84b046f3
DV
6173 }
6174 }
6175
6176 if (HAS_PIPE_CXSR(dev)) {
6177 if (intel_crtc->lowfreq_avail) {
6178 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6179 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6180 } else {
6181 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
84b046f3
DV
6182 }
6183 }
6184
efc2cfff
VS
6185 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6186 if (INTEL_INFO(dev)->gen < 4 ||
6187 intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
6188 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6189 else
6190 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6191 } else
84b046f3
DV
6192 pipeconf |= PIPECONF_PROGRESSIVE;
6193
9f11a9e4
DV
6194 if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
6195 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
9c8e09b7 6196
84b046f3
DV
6197 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6198 POSTING_READ(PIPECONF(intel_crtc->pipe));
6199}
6200
f564048e 6201static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
f564048e 6202 int x, int y,
94352cf9 6203 struct drm_framebuffer *fb)
79e53945
JB
6204{
6205 struct drm_device *dev = crtc->dev;
6206 struct drm_i915_private *dev_priv = dev->dev_private;
6207 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c751ce4f 6208 int refclk, num_connectors = 0;
652c393a 6209 intel_clock_t clock, reduced_clock;
a16af721 6210 bool ok, has_reduced_clock = false;
e9fd1c02 6211 bool is_lvds = false, is_dsi = false;
5eddb70b 6212 struct intel_encoder *encoder;
d4906093 6213 const intel_limit_t *limit;
79e53945 6214
6c2b7c12 6215 for_each_encoder_on_crtc(dev, crtc, encoder) {
5eddb70b 6216 switch (encoder->type) {
79e53945
JB
6217 case INTEL_OUTPUT_LVDS:
6218 is_lvds = true;
6219 break;
e9fd1c02
JN
6220 case INTEL_OUTPUT_DSI:
6221 is_dsi = true;
6222 break;
79e53945 6223 }
43565a06 6224
c751ce4f 6225 num_connectors++;
79e53945
JB
6226 }
6227
f2335330 6228 if (is_dsi)
5b18e57c 6229 return 0;
f2335330
JN
6230
6231 if (!intel_crtc->config.clock_set) {
6232 refclk = i9xx_get_refclk(crtc, num_connectors);
79e53945 6233
e9fd1c02
JN
6234 /*
6235 * Returns a set of divisors for the desired target clock with
6236 * the given refclk, or FALSE. The returned values represent
6237 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6238 * 2) / p1 / p2.
6239 */
6240 limit = intel_limit(crtc, refclk);
6241 ok = dev_priv->display.find_dpll(limit, crtc,
6242 intel_crtc->config.port_clock,
6243 refclk, NULL, &clock);
f2335330 6244 if (!ok) {
e9fd1c02
JN
6245 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6246 return -EINVAL;
6247 }
79e53945 6248
f2335330
JN
6249 if (is_lvds && dev_priv->lvds_downclock_avail) {
6250 /*
6251 * Ensure we match the reduced clock's P to the target
6252 * clock. If the clocks don't match, we can't switch
6253 * the display clock by using the FP0/FP1. In such case
6254 * we will disable the LVDS downclock feature.
6255 */
6256 has_reduced_clock =
6257 dev_priv->display.find_dpll(limit, crtc,
6258 dev_priv->lvds_downclock,
6259 refclk, &clock,
6260 &reduced_clock);
6261 }
6262 /* Compat-code for transition, will disappear. */
f47709a9
DV
6263 intel_crtc->config.dpll.n = clock.n;
6264 intel_crtc->config.dpll.m1 = clock.m1;
6265 intel_crtc->config.dpll.m2 = clock.m2;
6266 intel_crtc->config.dpll.p1 = clock.p1;
6267 intel_crtc->config.dpll.p2 = clock.p2;
6268 }
7026d4ac 6269
e9fd1c02 6270 if (IS_GEN2(dev)) {
8a654f3b 6271 i8xx_update_pll(intel_crtc,
2a8f64ca
VP
6272 has_reduced_clock ? &reduced_clock : NULL,
6273 num_connectors);
9d556c99
CML
6274 } else if (IS_CHERRYVIEW(dev)) {
6275 chv_update_pll(intel_crtc);
e9fd1c02 6276 } else if (IS_VALLEYVIEW(dev)) {
f2335330 6277 vlv_update_pll(intel_crtc);
e9fd1c02 6278 } else {
f47709a9 6279 i9xx_update_pll(intel_crtc,
eb1cbe48 6280 has_reduced_clock ? &reduced_clock : NULL,
eba905b2 6281 num_connectors);
e9fd1c02 6282 }
79e53945 6283
c8f7a0db 6284 return 0;
f564048e
EA
6285}
6286
2fa2fe9a
DV
6287static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6288 struct intel_crtc_config *pipe_config)
6289{
6290 struct drm_device *dev = crtc->base.dev;
6291 struct drm_i915_private *dev_priv = dev->dev_private;
6292 uint32_t tmp;
6293
dc9e7dec
VS
6294 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6295 return;
6296
2fa2fe9a 6297 tmp = I915_READ(PFIT_CONTROL);
06922821
DV
6298 if (!(tmp & PFIT_ENABLE))
6299 return;
2fa2fe9a 6300
06922821 6301 /* Check whether the pfit is attached to our pipe. */
2fa2fe9a
DV
6302 if (INTEL_INFO(dev)->gen < 4) {
6303 if (crtc->pipe != PIPE_B)
6304 return;
2fa2fe9a
DV
6305 } else {
6306 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6307 return;
6308 }
6309
06922821 6310 pipe_config->gmch_pfit.control = tmp;
2fa2fe9a
DV
6311 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6312 if (INTEL_INFO(dev)->gen < 5)
6313 pipe_config->gmch_pfit.lvds_border_bits =
6314 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6315}
6316
acbec814
JB
6317static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6318 struct intel_crtc_config *pipe_config)
6319{
6320 struct drm_device *dev = crtc->base.dev;
6321 struct drm_i915_private *dev_priv = dev->dev_private;
6322 int pipe = pipe_config->cpu_transcoder;
6323 intel_clock_t clock;
6324 u32 mdiv;
662c6ecb 6325 int refclk = 100000;
acbec814 6326
f573de5a
SK
6327 /* In case of MIPI DPLL will not even be used */
6328 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6329 return;
6330
acbec814 6331 mutex_lock(&dev_priv->dpio_lock);
ab3c759a 6332 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
acbec814
JB
6333 mutex_unlock(&dev_priv->dpio_lock);
6334
6335 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6336 clock.m2 = mdiv & DPIO_M2DIV_MASK;
6337 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6338 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6339 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6340
f646628b 6341 vlv_clock(refclk, &clock);
acbec814 6342
f646628b
VS
6343 /* clock.dot is the fast clock */
6344 pipe_config->port_clock = clock.dot / 5;
acbec814
JB
6345}
6346
1ad292b5
JB
6347static void i9xx_get_plane_config(struct intel_crtc *crtc,
6348 struct intel_plane_config *plane_config)
6349{
6350 struct drm_device *dev = crtc->base.dev;
6351 struct drm_i915_private *dev_priv = dev->dev_private;
6352 u32 val, base, offset;
6353 int pipe = crtc->pipe, plane = crtc->plane;
6354 int fourcc, pixel_format;
6355 int aligned_height;
6356
66e514c1
DA
6357 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6358 if (!crtc->base.primary->fb) {
1ad292b5
JB
6359 DRM_DEBUG_KMS("failed to alloc fb\n");
6360 return;
6361 }
6362
6363 val = I915_READ(DSPCNTR(plane));
6364
6365 if (INTEL_INFO(dev)->gen >= 4)
6366 if (val & DISPPLANE_TILED)
6367 plane_config->tiled = true;
6368
6369 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6370 fourcc = intel_format_to_fourcc(pixel_format);
66e514c1
DA
6371 crtc->base.primary->fb->pixel_format = fourcc;
6372 crtc->base.primary->fb->bits_per_pixel =
1ad292b5
JB
6373 drm_format_plane_cpp(fourcc, 0) * 8;
6374
6375 if (INTEL_INFO(dev)->gen >= 4) {
6376 if (plane_config->tiled)
6377 offset = I915_READ(DSPTILEOFF(plane));
6378 else
6379 offset = I915_READ(DSPLINOFF(plane));
6380 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6381 } else {
6382 base = I915_READ(DSPADDR(plane));
6383 }
6384 plane_config->base = base;
6385
6386 val = I915_READ(PIPESRC(pipe));
66e514c1
DA
6387 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6388 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
1ad292b5
JB
6389
6390 val = I915_READ(DSPSTRIDE(pipe));
026b96e2 6391 crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
1ad292b5 6392
66e514c1 6393 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
1ad292b5
JB
6394 plane_config->tiled);
6395
1267a26b
FF
6396 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
6397 aligned_height);
1ad292b5
JB
6398
6399 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
66e514c1
DA
6400 pipe, plane, crtc->base.primary->fb->width,
6401 crtc->base.primary->fb->height,
6402 crtc->base.primary->fb->bits_per_pixel, base,
6403 crtc->base.primary->fb->pitches[0],
1ad292b5
JB
6404 plane_config->size);
6405
6406}
6407
70b23a98
VS
6408static void chv_crtc_clock_get(struct intel_crtc *crtc,
6409 struct intel_crtc_config *pipe_config)
6410{
6411 struct drm_device *dev = crtc->base.dev;
6412 struct drm_i915_private *dev_priv = dev->dev_private;
6413 int pipe = pipe_config->cpu_transcoder;
6414 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6415 intel_clock_t clock;
6416 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6417 int refclk = 100000;
6418
6419 mutex_lock(&dev_priv->dpio_lock);
6420 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6421 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6422 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6423 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6424 mutex_unlock(&dev_priv->dpio_lock);
6425
6426 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6427 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6428 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6429 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6430 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6431
6432 chv_clock(refclk, &clock);
6433
6434 /* clock.dot is the fast clock */
6435 pipe_config->port_clock = clock.dot / 5;
6436}
6437
0e8ffe1b
DV
6438static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6439 struct intel_crtc_config *pipe_config)
6440{
6441 struct drm_device *dev = crtc->base.dev;
6442 struct drm_i915_private *dev_priv = dev->dev_private;
6443 uint32_t tmp;
6444
b5482bd0
ID
6445 if (!intel_display_power_enabled(dev_priv,
6446 POWER_DOMAIN_PIPE(crtc->pipe)))
6447 return false;
6448
e143a21c 6449 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 6450 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 6451
0e8ffe1b
DV
6452 tmp = I915_READ(PIPECONF(crtc->pipe));
6453 if (!(tmp & PIPECONF_ENABLE))
6454 return false;
6455
42571aef
VS
6456 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6457 switch (tmp & PIPECONF_BPC_MASK) {
6458 case PIPECONF_6BPC:
6459 pipe_config->pipe_bpp = 18;
6460 break;
6461 case PIPECONF_8BPC:
6462 pipe_config->pipe_bpp = 24;
6463 break;
6464 case PIPECONF_10BPC:
6465 pipe_config->pipe_bpp = 30;
6466 break;
6467 default:
6468 break;
6469 }
6470 }
6471
b5a9fa09
DV
6472 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6473 pipe_config->limited_color_range = true;
6474
282740f7
VS
6475 if (INTEL_INFO(dev)->gen < 4)
6476 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6477
1bd1bd80
DV
6478 intel_get_pipe_timings(crtc, pipe_config);
6479
2fa2fe9a
DV
6480 i9xx_get_pfit_config(crtc, pipe_config);
6481
6c49f241
DV
6482 if (INTEL_INFO(dev)->gen >= 4) {
6483 tmp = I915_READ(DPLL_MD(crtc->pipe));
6484 pipe_config->pixel_multiplier =
6485 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6486 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8bcc2795 6487 pipe_config->dpll_hw_state.dpll_md = tmp;
6c49f241
DV
6488 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6489 tmp = I915_READ(DPLL(crtc->pipe));
6490 pipe_config->pixel_multiplier =
6491 ((tmp & SDVO_MULTIPLIER_MASK)
6492 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6493 } else {
6494 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6495 * port and will be fixed up in the encoder->get_config
6496 * function. */
6497 pipe_config->pixel_multiplier = 1;
6498 }
8bcc2795
DV
6499 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6500 if (!IS_VALLEYVIEW(dev)) {
1c4e0274
VS
6501 /*
6502 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
6503 * on 830. Filter it out here so that we don't
6504 * report errors due to that.
6505 */
6506 if (IS_I830(dev))
6507 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
6508
8bcc2795
DV
6509 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6510 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
165e901c
VS
6511 } else {
6512 /* Mask out read-only status bits. */
6513 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6514 DPLL_PORTC_READY_MASK |
6515 DPLL_PORTB_READY_MASK);
8bcc2795 6516 }
6c49f241 6517
70b23a98
VS
6518 if (IS_CHERRYVIEW(dev))
6519 chv_crtc_clock_get(crtc, pipe_config);
6520 else if (IS_VALLEYVIEW(dev))
acbec814
JB
6521 vlv_crtc_clock_get(crtc, pipe_config);
6522 else
6523 i9xx_crtc_clock_get(crtc, pipe_config);
18442d08 6524
0e8ffe1b
DV
6525 return true;
6526}
6527
dde86e2d 6528static void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
6529{
6530 struct drm_i915_private *dev_priv = dev->dev_private;
13d83a67 6531 struct intel_encoder *encoder;
74cfd7ac 6532 u32 val, final;
13d83a67 6533 bool has_lvds = false;
199e5d79 6534 bool has_cpu_edp = false;
199e5d79 6535 bool has_panel = false;
99eb6a01
KP
6536 bool has_ck505 = false;
6537 bool can_ssc = false;
13d83a67
JB
6538
6539 /* We need to take the global config into account */
b2784e15 6540 for_each_intel_encoder(dev, encoder) {
199e5d79
KP
6541 switch (encoder->type) {
6542 case INTEL_OUTPUT_LVDS:
6543 has_panel = true;
6544 has_lvds = true;
6545 break;
6546 case INTEL_OUTPUT_EDP:
6547 has_panel = true;
2de6905f 6548 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
199e5d79
KP
6549 has_cpu_edp = true;
6550 break;
13d83a67
JB
6551 }
6552 }
6553
99eb6a01 6554 if (HAS_PCH_IBX(dev)) {
41aa3448 6555 has_ck505 = dev_priv->vbt.display_clock_mode;
99eb6a01
KP
6556 can_ssc = has_ck505;
6557 } else {
6558 has_ck505 = false;
6559 can_ssc = true;
6560 }
6561
2de6905f
ID
6562 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6563 has_panel, has_lvds, has_ck505);
13d83a67
JB
6564
6565 /* Ironlake: try to setup display ref clock before DPLL
6566 * enabling. This is only under driver's control after
6567 * PCH B stepping, previous chipset stepping should be
6568 * ignoring this setting.
6569 */
74cfd7ac
CW
6570 val = I915_READ(PCH_DREF_CONTROL);
6571
6572 /* As we must carefully and slowly disable/enable each source in turn,
6573 * compute the final state we want first and check if we need to
6574 * make any changes at all.
6575 */
6576 final = val;
6577 final &= ~DREF_NONSPREAD_SOURCE_MASK;
6578 if (has_ck505)
6579 final |= DREF_NONSPREAD_CK505_ENABLE;
6580 else
6581 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6582
6583 final &= ~DREF_SSC_SOURCE_MASK;
6584 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6585 final &= ~DREF_SSC1_ENABLE;
6586
6587 if (has_panel) {
6588 final |= DREF_SSC_SOURCE_ENABLE;
6589
6590 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6591 final |= DREF_SSC1_ENABLE;
6592
6593 if (has_cpu_edp) {
6594 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6595 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6596 else
6597 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6598 } else
6599 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6600 } else {
6601 final |= DREF_SSC_SOURCE_DISABLE;
6602 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6603 }
6604
6605 if (final == val)
6606 return;
6607
13d83a67 6608 /* Always enable nonspread source */
74cfd7ac 6609 val &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 6610
99eb6a01 6611 if (has_ck505)
74cfd7ac 6612 val |= DREF_NONSPREAD_CK505_ENABLE;
99eb6a01 6613 else
74cfd7ac 6614 val |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 6615
199e5d79 6616 if (has_panel) {
74cfd7ac
CW
6617 val &= ~DREF_SSC_SOURCE_MASK;
6618 val |= DREF_SSC_SOURCE_ENABLE;
13d83a67 6619
199e5d79 6620 /* SSC must be turned on before enabling the CPU output */
99eb6a01 6621 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6622 DRM_DEBUG_KMS("Using SSC on panel\n");
74cfd7ac 6623 val |= DREF_SSC1_ENABLE;
e77166b5 6624 } else
74cfd7ac 6625 val &= ~DREF_SSC1_ENABLE;
199e5d79
KP
6626
6627 /* Get SSC going before enabling the outputs */
74cfd7ac 6628 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6629 POSTING_READ(PCH_DREF_CONTROL);
6630 udelay(200);
6631
74cfd7ac 6632 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
13d83a67
JB
6633
6634 /* Enable CPU source on CPU attached eDP */
199e5d79 6635 if (has_cpu_edp) {
99eb6a01 6636 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6637 DRM_DEBUG_KMS("Using SSC on eDP\n");
74cfd7ac 6638 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
eba905b2 6639 } else
74cfd7ac 6640 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79 6641 } else
74cfd7ac 6642 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6643
74cfd7ac 6644 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6645 POSTING_READ(PCH_DREF_CONTROL);
6646 udelay(200);
6647 } else {
6648 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6649
74cfd7ac 6650 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
199e5d79
KP
6651
6652 /* Turn off CPU output */
74cfd7ac 6653 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6654
74cfd7ac 6655 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6656 POSTING_READ(PCH_DREF_CONTROL);
6657 udelay(200);
6658
6659 /* Turn off the SSC source */
74cfd7ac
CW
6660 val &= ~DREF_SSC_SOURCE_MASK;
6661 val |= DREF_SSC_SOURCE_DISABLE;
199e5d79
KP
6662
6663 /* Turn off SSC1 */
74cfd7ac 6664 val &= ~DREF_SSC1_ENABLE;
199e5d79 6665
74cfd7ac 6666 I915_WRITE(PCH_DREF_CONTROL, val);
13d83a67
JB
6667 POSTING_READ(PCH_DREF_CONTROL);
6668 udelay(200);
6669 }
74cfd7ac
CW
6670
6671 BUG_ON(val != final);
13d83a67
JB
6672}
6673
f31f2d55 6674static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
dde86e2d 6675{
f31f2d55 6676 uint32_t tmp;
dde86e2d 6677
0ff066a9
PZ
6678 tmp = I915_READ(SOUTH_CHICKEN2);
6679 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6680 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6681
0ff066a9
PZ
6682 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6683 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6684 DRM_ERROR("FDI mPHY reset assert timeout\n");
dde86e2d 6685
0ff066a9
PZ
6686 tmp = I915_READ(SOUTH_CHICKEN2);
6687 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6688 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6689
0ff066a9
PZ
6690 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6691 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6692 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
f31f2d55
PZ
6693}
6694
6695/* WaMPhyProgramming:hsw */
6696static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6697{
6698 uint32_t tmp;
dde86e2d
PZ
6699
6700 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6701 tmp &= ~(0xFF << 24);
6702 tmp |= (0x12 << 24);
6703 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6704
dde86e2d
PZ
6705 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6706 tmp |= (1 << 11);
6707 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6708
6709 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6710 tmp |= (1 << 11);
6711 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6712
dde86e2d
PZ
6713 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6714 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6715 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6716
6717 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6718 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6719 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6720
0ff066a9
PZ
6721 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6722 tmp &= ~(7 << 13);
6723 tmp |= (5 << 13);
6724 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
dde86e2d 6725
0ff066a9
PZ
6726 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6727 tmp &= ~(7 << 13);
6728 tmp |= (5 << 13);
6729 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
dde86e2d
PZ
6730
6731 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6732 tmp &= ~0xFF;
6733 tmp |= 0x1C;
6734 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6735
6736 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6737 tmp &= ~0xFF;
6738 tmp |= 0x1C;
6739 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6740
6741 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6742 tmp &= ~(0xFF << 16);
6743 tmp |= (0x1C << 16);
6744 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6745
6746 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6747 tmp &= ~(0xFF << 16);
6748 tmp |= (0x1C << 16);
6749 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6750
0ff066a9
PZ
6751 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6752 tmp |= (1 << 27);
6753 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
dde86e2d 6754
0ff066a9
PZ
6755 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6756 tmp |= (1 << 27);
6757 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
dde86e2d 6758
0ff066a9
PZ
6759 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6760 tmp &= ~(0xF << 28);
6761 tmp |= (4 << 28);
6762 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
dde86e2d 6763
0ff066a9
PZ
6764 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6765 tmp &= ~(0xF << 28);
6766 tmp |= (4 << 28);
6767 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
f31f2d55
PZ
6768}
6769
2fa86a1f
PZ
6770/* Implements 3 different sequences from BSpec chapter "Display iCLK
6771 * Programming" based on the parameters passed:
6772 * - Sequence to enable CLKOUT_DP
6773 * - Sequence to enable CLKOUT_DP without spread
6774 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6775 */
6776static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6777 bool with_fdi)
f31f2d55
PZ
6778{
6779 struct drm_i915_private *dev_priv = dev->dev_private;
2fa86a1f
PZ
6780 uint32_t reg, tmp;
6781
6782 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6783 with_spread = true;
6784 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6785 with_fdi, "LP PCH doesn't have FDI\n"))
6786 with_fdi = false;
f31f2d55
PZ
6787
6788 mutex_lock(&dev_priv->dpio_lock);
6789
6790 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6791 tmp &= ~SBI_SSCCTL_DISABLE;
6792 tmp |= SBI_SSCCTL_PATHALT;
6793 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6794
6795 udelay(24);
6796
2fa86a1f
PZ
6797 if (with_spread) {
6798 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6799 tmp &= ~SBI_SSCCTL_PATHALT;
6800 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
f31f2d55 6801
2fa86a1f
PZ
6802 if (with_fdi) {
6803 lpt_reset_fdi_mphy(dev_priv);
6804 lpt_program_fdi_mphy(dev_priv);
6805 }
6806 }
dde86e2d 6807
2fa86a1f
PZ
6808 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6809 SBI_GEN0 : SBI_DBUFF0;
6810 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6811 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6812 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
c00db246
DV
6813
6814 mutex_unlock(&dev_priv->dpio_lock);
dde86e2d
PZ
6815}
6816
47701c3b
PZ
6817/* Sequence to disable CLKOUT_DP */
6818static void lpt_disable_clkout_dp(struct drm_device *dev)
6819{
6820 struct drm_i915_private *dev_priv = dev->dev_private;
6821 uint32_t reg, tmp;
6822
6823 mutex_lock(&dev_priv->dpio_lock);
6824
6825 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6826 SBI_GEN0 : SBI_DBUFF0;
6827 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6828 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6829 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6830
6831 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6832 if (!(tmp & SBI_SSCCTL_DISABLE)) {
6833 if (!(tmp & SBI_SSCCTL_PATHALT)) {
6834 tmp |= SBI_SSCCTL_PATHALT;
6835 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6836 udelay(32);
6837 }
6838 tmp |= SBI_SSCCTL_DISABLE;
6839 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6840 }
6841
6842 mutex_unlock(&dev_priv->dpio_lock);
6843}
6844
bf8fa3d3
PZ
6845static void lpt_init_pch_refclk(struct drm_device *dev)
6846{
bf8fa3d3
PZ
6847 struct intel_encoder *encoder;
6848 bool has_vga = false;
6849
b2784e15 6850 for_each_intel_encoder(dev, encoder) {
bf8fa3d3
PZ
6851 switch (encoder->type) {
6852 case INTEL_OUTPUT_ANALOG:
6853 has_vga = true;
6854 break;
6855 }
6856 }
6857
47701c3b
PZ
6858 if (has_vga)
6859 lpt_enable_clkout_dp(dev, true, true);
6860 else
6861 lpt_disable_clkout_dp(dev);
bf8fa3d3
PZ
6862}
6863
dde86e2d
PZ
6864/*
6865 * Initialize reference clocks when the driver loads
6866 */
6867void intel_init_pch_refclk(struct drm_device *dev)
6868{
6869 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
6870 ironlake_init_pch_refclk(dev);
6871 else if (HAS_PCH_LPT(dev))
6872 lpt_init_pch_refclk(dev);
6873}
6874
d9d444cb
JB
6875static int ironlake_get_refclk(struct drm_crtc *crtc)
6876{
6877 struct drm_device *dev = crtc->dev;
6878 struct drm_i915_private *dev_priv = dev->dev_private;
6879 struct intel_encoder *encoder;
d9d444cb
JB
6880 int num_connectors = 0;
6881 bool is_lvds = false;
6882
6c2b7c12 6883 for_each_encoder_on_crtc(dev, crtc, encoder) {
d9d444cb
JB
6884 switch (encoder->type) {
6885 case INTEL_OUTPUT_LVDS:
6886 is_lvds = true;
6887 break;
d9d444cb
JB
6888 }
6889 num_connectors++;
6890 }
6891
6892 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b 6893 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
41aa3448 6894 dev_priv->vbt.lvds_ssc_freq);
e91e941b 6895 return dev_priv->vbt.lvds_ssc_freq;
d9d444cb
JB
6896 }
6897
6898 return 120000;
6899}
6900
6ff93609 6901static void ironlake_set_pipeconf(struct drm_crtc *crtc)
79e53945 6902{
c8203565 6903 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
79e53945
JB
6904 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6905 int pipe = intel_crtc->pipe;
c8203565
PZ
6906 uint32_t val;
6907
78114071 6908 val = 0;
c8203565 6909
965e0c48 6910 switch (intel_crtc->config.pipe_bpp) {
c8203565 6911 case 18:
dfd07d72 6912 val |= PIPECONF_6BPC;
c8203565
PZ
6913 break;
6914 case 24:
dfd07d72 6915 val |= PIPECONF_8BPC;
c8203565
PZ
6916 break;
6917 case 30:
dfd07d72 6918 val |= PIPECONF_10BPC;
c8203565
PZ
6919 break;
6920 case 36:
dfd07d72 6921 val |= PIPECONF_12BPC;
c8203565
PZ
6922 break;
6923 default:
cc769b62
PZ
6924 /* Case prevented by intel_choose_pipe_bpp_dither. */
6925 BUG();
c8203565
PZ
6926 }
6927
d8b32247 6928 if (intel_crtc->config.dither)
c8203565
PZ
6929 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6930
6ff93609 6931 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
c8203565
PZ
6932 val |= PIPECONF_INTERLACED_ILK;
6933 else
6934 val |= PIPECONF_PROGRESSIVE;
6935
50f3b016 6936 if (intel_crtc->config.limited_color_range)
3685a8f3 6937 val |= PIPECONF_COLOR_RANGE_SELECT;
3685a8f3 6938
c8203565
PZ
6939 I915_WRITE(PIPECONF(pipe), val);
6940 POSTING_READ(PIPECONF(pipe));
6941}
6942
86d3efce
VS
6943/*
6944 * Set up the pipe CSC unit.
6945 *
6946 * Currently only full range RGB to limited range RGB conversion
6947 * is supported, but eventually this should handle various
6948 * RGB<->YCbCr scenarios as well.
6949 */
50f3b016 6950static void intel_set_pipe_csc(struct drm_crtc *crtc)
86d3efce
VS
6951{
6952 struct drm_device *dev = crtc->dev;
6953 struct drm_i915_private *dev_priv = dev->dev_private;
6954 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6955 int pipe = intel_crtc->pipe;
6956 uint16_t coeff = 0x7800; /* 1.0 */
6957
6958 /*
6959 * TODO: Check what kind of values actually come out of the pipe
6960 * with these coeff/postoff values and adjust to get the best
6961 * accuracy. Perhaps we even need to take the bpc value into
6962 * consideration.
6963 */
6964
50f3b016 6965 if (intel_crtc->config.limited_color_range)
86d3efce
VS
6966 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
6967
6968 /*
6969 * GY/GU and RY/RU should be the other way around according
6970 * to BSpec, but reality doesn't agree. Just set them up in
6971 * a way that results in the correct picture.
6972 */
6973 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
6974 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
6975
6976 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
6977 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
6978
6979 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
6980 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
6981
6982 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
6983 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
6984 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
6985
6986 if (INTEL_INFO(dev)->gen > 6) {
6987 uint16_t postoff = 0;
6988
50f3b016 6989 if (intel_crtc->config.limited_color_range)
32cf0cb0 6990 postoff = (16 * (1 << 12) / 255) & 0x1fff;
86d3efce
VS
6991
6992 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
6993 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
6994 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
6995
6996 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
6997 } else {
6998 uint32_t mode = CSC_MODE_YUV_TO_RGB;
6999
50f3b016 7000 if (intel_crtc->config.limited_color_range)
86d3efce
VS
7001 mode |= CSC_BLACK_SCREEN_OFFSET;
7002
7003 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
7004 }
7005}
7006
6ff93609 7007static void haswell_set_pipeconf(struct drm_crtc *crtc)
ee2b0b38 7008{
756f85cf
PZ
7009 struct drm_device *dev = crtc->dev;
7010 struct drm_i915_private *dev_priv = dev->dev_private;
ee2b0b38 7011 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756f85cf 7012 enum pipe pipe = intel_crtc->pipe;
3b117c8f 7013 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
ee2b0b38
PZ
7014 uint32_t val;
7015
3eff4faa 7016 val = 0;
ee2b0b38 7017
756f85cf 7018 if (IS_HASWELL(dev) && intel_crtc->config.dither)
ee2b0b38
PZ
7019 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7020
6ff93609 7021 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
ee2b0b38
PZ
7022 val |= PIPECONF_INTERLACED_ILK;
7023 else
7024 val |= PIPECONF_PROGRESSIVE;
7025
702e7a56
PZ
7026 I915_WRITE(PIPECONF(cpu_transcoder), val);
7027 POSTING_READ(PIPECONF(cpu_transcoder));
3eff4faa
DV
7028
7029 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
7030 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
756f85cf
PZ
7031
7032 if (IS_BROADWELL(dev)) {
7033 val = 0;
7034
7035 switch (intel_crtc->config.pipe_bpp) {
7036 case 18:
7037 val |= PIPEMISC_DITHER_6_BPC;
7038 break;
7039 case 24:
7040 val |= PIPEMISC_DITHER_8_BPC;
7041 break;
7042 case 30:
7043 val |= PIPEMISC_DITHER_10_BPC;
7044 break;
7045 case 36:
7046 val |= PIPEMISC_DITHER_12_BPC;
7047 break;
7048 default:
7049 /* Case prevented by pipe_config_set_bpp. */
7050 BUG();
7051 }
7052
7053 if (intel_crtc->config.dither)
7054 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
7055
7056 I915_WRITE(PIPEMISC(pipe), val);
7057 }
ee2b0b38
PZ
7058}
7059
6591c6e4 7060static bool ironlake_compute_clocks(struct drm_crtc *crtc,
6591c6e4
PZ
7061 intel_clock_t *clock,
7062 bool *has_reduced_clock,
7063 intel_clock_t *reduced_clock)
7064{
7065 struct drm_device *dev = crtc->dev;
7066 struct drm_i915_private *dev_priv = dev->dev_private;
7067 struct intel_encoder *intel_encoder;
7068 int refclk;
d4906093 7069 const intel_limit_t *limit;
a16af721 7070 bool ret, is_lvds = false;
79e53945 7071
6591c6e4
PZ
7072 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
7073 switch (intel_encoder->type) {
79e53945
JB
7074 case INTEL_OUTPUT_LVDS:
7075 is_lvds = true;
7076 break;
79e53945
JB
7077 }
7078 }
7079
d9d444cb 7080 refclk = ironlake_get_refclk(crtc);
79e53945 7081
d4906093
ML
7082 /*
7083 * Returns a set of divisors for the desired target clock with the given
7084 * refclk, or FALSE. The returned values represent the clock equation:
7085 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
7086 */
1b894b59 7087 limit = intel_limit(crtc, refclk);
ff9a6750
DV
7088 ret = dev_priv->display.find_dpll(limit, crtc,
7089 to_intel_crtc(crtc)->config.port_clock,
ee9300bb 7090 refclk, NULL, clock);
6591c6e4
PZ
7091 if (!ret)
7092 return false;
cda4b7d3 7093
ddc9003c 7094 if (is_lvds && dev_priv->lvds_downclock_avail) {
cec2f356
SP
7095 /*
7096 * Ensure we match the reduced clock's P to the target clock.
7097 * If the clocks don't match, we can't switch the display clock
7098 * by using the FP0/FP1. In such case we will disable the LVDS
7099 * downclock feature.
7100 */
ee9300bb
DV
7101 *has_reduced_clock =
7102 dev_priv->display.find_dpll(limit, crtc,
7103 dev_priv->lvds_downclock,
7104 refclk, clock,
7105 reduced_clock);
652c393a 7106 }
61e9653f 7107
6591c6e4
PZ
7108 return true;
7109}
7110
d4b1931c
PZ
7111int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
7112{
7113 /*
7114 * Account for spread spectrum to avoid
7115 * oversubscribing the link. Max center spread
7116 * is 2.5%; use 5% for safety's sake.
7117 */
7118 u32 bps = target_clock * bpp * 21 / 20;
619d4d04 7119 return DIV_ROUND_UP(bps, link_bw * 8);
d4b1931c
PZ
7120}
7121
7429e9d4 7122static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6cf86a5e 7123{
7429e9d4 7124 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
f48d8f23
PZ
7125}
7126
de13a2e3 7127static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7429e9d4 7128 u32 *fp,
9a7c7890 7129 intel_clock_t *reduced_clock, u32 *fp2)
79e53945 7130{
de13a2e3 7131 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
7132 struct drm_device *dev = crtc->dev;
7133 struct drm_i915_private *dev_priv = dev->dev_private;
de13a2e3
PZ
7134 struct intel_encoder *intel_encoder;
7135 uint32_t dpll;
6cc5f341 7136 int factor, num_connectors = 0;
09ede541 7137 bool is_lvds = false, is_sdvo = false;
79e53945 7138
de13a2e3
PZ
7139 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
7140 switch (intel_encoder->type) {
79e53945
JB
7141 case INTEL_OUTPUT_LVDS:
7142 is_lvds = true;
7143 break;
7144 case INTEL_OUTPUT_SDVO:
7d57382e 7145 case INTEL_OUTPUT_HDMI:
79e53945 7146 is_sdvo = true;
79e53945 7147 break;
79e53945 7148 }
43565a06 7149
c751ce4f 7150 num_connectors++;
79e53945 7151 }
79e53945 7152
c1858123 7153 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
7154 factor = 21;
7155 if (is_lvds) {
7156 if ((intel_panel_use_ssc(dev_priv) &&
e91e941b 7157 dev_priv->vbt.lvds_ssc_freq == 100000) ||
f0b44056 7158 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8febb297 7159 factor = 25;
09ede541 7160 } else if (intel_crtc->config.sdvo_tv_clock)
8febb297 7161 factor = 20;
c1858123 7162
7429e9d4 7163 if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
7d0ac5b7 7164 *fp |= FP_CB_TUNE;
2c07245f 7165
9a7c7890
DV
7166 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7167 *fp2 |= FP_CB_TUNE;
7168
5eddb70b 7169 dpll = 0;
2c07245f 7170
a07d6787
EA
7171 if (is_lvds)
7172 dpll |= DPLLB_MODE_LVDS;
7173 else
7174 dpll |= DPLLB_MODE_DAC_SERIAL;
198a037f 7175
ef1b460d
DV
7176 dpll |= (intel_crtc->config.pixel_multiplier - 1)
7177 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
198a037f
DV
7178
7179 if (is_sdvo)
4a33e48d 7180 dpll |= DPLL_SDVO_HIGH_SPEED;
9566e9af 7181 if (intel_crtc->config.has_dp_encoder)
4a33e48d 7182 dpll |= DPLL_SDVO_HIGH_SPEED;
79e53945 7183
a07d6787 7184 /* compute bitmask from p1 value */
7429e9d4 7185 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 7186 /* also FPA1 */
7429e9d4 7187 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 7188
7429e9d4 7189 switch (intel_crtc->config.dpll.p2) {
a07d6787
EA
7190 case 5:
7191 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7192 break;
7193 case 7:
7194 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7195 break;
7196 case 10:
7197 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7198 break;
7199 case 14:
7200 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7201 break;
79e53945
JB
7202 }
7203
b4c09f3b 7204 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 7205 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
7206 else
7207 dpll |= PLL_REF_INPUT_DREFCLK;
7208
959e16d6 7209 return dpll | DPLL_VCO_ENABLE;
de13a2e3
PZ
7210}
7211
7212static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
de13a2e3
PZ
7213 int x, int y,
7214 struct drm_framebuffer *fb)
7215{
7216 struct drm_device *dev = crtc->dev;
de13a2e3 7217 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
de13a2e3
PZ
7218 int num_connectors = 0;
7219 intel_clock_t clock, reduced_clock;
cbbab5bd 7220 u32 dpll = 0, fp = 0, fp2 = 0;
e2f12b07 7221 bool ok, has_reduced_clock = false;
8b47047b 7222 bool is_lvds = false;
de13a2e3 7223 struct intel_encoder *encoder;
e2b78267 7224 struct intel_shared_dpll *pll;
de13a2e3
PZ
7225
7226 for_each_encoder_on_crtc(dev, crtc, encoder) {
7227 switch (encoder->type) {
7228 case INTEL_OUTPUT_LVDS:
7229 is_lvds = true;
7230 break;
de13a2e3
PZ
7231 }
7232
7233 num_connectors++;
a07d6787 7234 }
79e53945 7235
5dc5298b
PZ
7236 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7237 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
a07d6787 7238
ff9a6750 7239 ok = ironlake_compute_clocks(crtc, &clock,
de13a2e3 7240 &has_reduced_clock, &reduced_clock);
ee9300bb 7241 if (!ok && !intel_crtc->config.clock_set) {
de13a2e3
PZ
7242 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7243 return -EINVAL;
79e53945 7244 }
f47709a9
DV
7245 /* Compat-code for transition, will disappear. */
7246 if (!intel_crtc->config.clock_set) {
7247 intel_crtc->config.dpll.n = clock.n;
7248 intel_crtc->config.dpll.m1 = clock.m1;
7249 intel_crtc->config.dpll.m2 = clock.m2;
7250 intel_crtc->config.dpll.p1 = clock.p1;
7251 intel_crtc->config.dpll.p2 = clock.p2;
7252 }
79e53945 7253
5dc5298b 7254 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8b47047b 7255 if (intel_crtc->config.has_pch_encoder) {
7429e9d4 7256 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
cbbab5bd 7257 if (has_reduced_clock)
7429e9d4 7258 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
cbbab5bd 7259
7429e9d4 7260 dpll = ironlake_compute_dpll(intel_crtc,
cbbab5bd
DV
7261 &fp, &reduced_clock,
7262 has_reduced_clock ? &fp2 : NULL);
7263
959e16d6 7264 intel_crtc->config.dpll_hw_state.dpll = dpll;
66e985c0
DV
7265 intel_crtc->config.dpll_hw_state.fp0 = fp;
7266 if (has_reduced_clock)
7267 intel_crtc->config.dpll_hw_state.fp1 = fp2;
7268 else
7269 intel_crtc->config.dpll_hw_state.fp1 = fp;
7270
b89a1d39 7271 pll = intel_get_shared_dpll(intel_crtc);
ee7b9f93 7272 if (pll == NULL) {
84f44ce7 7273 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
29407aab 7274 pipe_name(intel_crtc->pipe));
4b645f14
JB
7275 return -EINVAL;
7276 }
ee7b9f93 7277 } else
e72f9fbf 7278 intel_put_shared_dpll(intel_crtc);
79e53945 7279
d330a953 7280 if (is_lvds && has_reduced_clock && i915.powersave)
bcd644e0
DV
7281 intel_crtc->lowfreq_avail = true;
7282 else
7283 intel_crtc->lowfreq_avail = false;
e2b78267 7284
c8f7a0db 7285 return 0;
79e53945
JB
7286}
7287
eb14cb74
VS
7288static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7289 struct intel_link_m_n *m_n)
7290{
7291 struct drm_device *dev = crtc->base.dev;
7292 struct drm_i915_private *dev_priv = dev->dev_private;
7293 enum pipe pipe = crtc->pipe;
7294
7295 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7296 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7297 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7298 & ~TU_SIZE_MASK;
7299 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7300 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7301 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7302}
7303
7304static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7305 enum transcoder transcoder,
b95af8be
VK
7306 struct intel_link_m_n *m_n,
7307 struct intel_link_m_n *m2_n2)
72419203
DV
7308{
7309 struct drm_device *dev = crtc->base.dev;
7310 struct drm_i915_private *dev_priv = dev->dev_private;
eb14cb74 7311 enum pipe pipe = crtc->pipe;
72419203 7312
eb14cb74
VS
7313 if (INTEL_INFO(dev)->gen >= 5) {
7314 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7315 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7316 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7317 & ~TU_SIZE_MASK;
7318 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7319 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7320 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
b95af8be
VK
7321 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7322 * gen < 8) and if DRRS is supported (to make sure the
7323 * registers are not unnecessarily read).
7324 */
7325 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
7326 crtc->config.has_drrs) {
7327 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7328 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7329 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7330 & ~TU_SIZE_MASK;
7331 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7332 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7333 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7334 }
eb14cb74
VS
7335 } else {
7336 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7337 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7338 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7339 & ~TU_SIZE_MASK;
7340 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7341 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7342 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7343 }
7344}
7345
7346void intel_dp_get_m_n(struct intel_crtc *crtc,
7347 struct intel_crtc_config *pipe_config)
7348{
7349 if (crtc->config.has_pch_encoder)
7350 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7351 else
7352 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be
VK
7353 &pipe_config->dp_m_n,
7354 &pipe_config->dp_m2_n2);
eb14cb74 7355}
72419203 7356
eb14cb74
VS
7357static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7358 struct intel_crtc_config *pipe_config)
7359{
7360 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be 7361 &pipe_config->fdi_m_n, NULL);
72419203
DV
7362}
7363
2fa2fe9a
DV
7364static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7365 struct intel_crtc_config *pipe_config)
7366{
7367 struct drm_device *dev = crtc->base.dev;
7368 struct drm_i915_private *dev_priv = dev->dev_private;
7369 uint32_t tmp;
7370
7371 tmp = I915_READ(PF_CTL(crtc->pipe));
7372
7373 if (tmp & PF_ENABLE) {
fd4daa9c 7374 pipe_config->pch_pfit.enabled = true;
2fa2fe9a
DV
7375 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7376 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
cb8b2a30
DV
7377
7378 /* We currently do not free assignements of panel fitters on
7379 * ivb/hsw (since we don't use the higher upscaling modes which
7380 * differentiates them) so just WARN about this case for now. */
7381 if (IS_GEN7(dev)) {
7382 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7383 PF_PIPE_SEL_IVB(crtc->pipe));
7384 }
2fa2fe9a 7385 }
79e53945
JB
7386}
7387
4c6baa59
JB
7388static void ironlake_get_plane_config(struct intel_crtc *crtc,
7389 struct intel_plane_config *plane_config)
7390{
7391 struct drm_device *dev = crtc->base.dev;
7392 struct drm_i915_private *dev_priv = dev->dev_private;
7393 u32 val, base, offset;
7394 int pipe = crtc->pipe, plane = crtc->plane;
7395 int fourcc, pixel_format;
7396 int aligned_height;
7397
66e514c1
DA
7398 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7399 if (!crtc->base.primary->fb) {
4c6baa59
JB
7400 DRM_DEBUG_KMS("failed to alloc fb\n");
7401 return;
7402 }
7403
7404 val = I915_READ(DSPCNTR(plane));
7405
7406 if (INTEL_INFO(dev)->gen >= 4)
7407 if (val & DISPPLANE_TILED)
7408 plane_config->tiled = true;
7409
7410 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7411 fourcc = intel_format_to_fourcc(pixel_format);
66e514c1
DA
7412 crtc->base.primary->fb->pixel_format = fourcc;
7413 crtc->base.primary->fb->bits_per_pixel =
4c6baa59
JB
7414 drm_format_plane_cpp(fourcc, 0) * 8;
7415
7416 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7417 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7418 offset = I915_READ(DSPOFFSET(plane));
7419 } else {
7420 if (plane_config->tiled)
7421 offset = I915_READ(DSPTILEOFF(plane));
7422 else
7423 offset = I915_READ(DSPLINOFF(plane));
7424 }
7425 plane_config->base = base;
7426
7427 val = I915_READ(PIPESRC(pipe));
66e514c1
DA
7428 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7429 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
4c6baa59
JB
7430
7431 val = I915_READ(DSPSTRIDE(pipe));
026b96e2 7432 crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
4c6baa59 7433
66e514c1 7434 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
4c6baa59
JB
7435 plane_config->tiled);
7436
1267a26b
FF
7437 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
7438 aligned_height);
4c6baa59
JB
7439
7440 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
66e514c1
DA
7441 pipe, plane, crtc->base.primary->fb->width,
7442 crtc->base.primary->fb->height,
7443 crtc->base.primary->fb->bits_per_pixel, base,
7444 crtc->base.primary->fb->pitches[0],
4c6baa59
JB
7445 plane_config->size);
7446}
7447
0e8ffe1b
DV
7448static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7449 struct intel_crtc_config *pipe_config)
7450{
7451 struct drm_device *dev = crtc->base.dev;
7452 struct drm_i915_private *dev_priv = dev->dev_private;
7453 uint32_t tmp;
7454
930e8c9e
PZ
7455 if (!intel_display_power_enabled(dev_priv,
7456 POWER_DOMAIN_PIPE(crtc->pipe)))
7457 return false;
7458
e143a21c 7459 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 7460 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 7461
0e8ffe1b
DV
7462 tmp = I915_READ(PIPECONF(crtc->pipe));
7463 if (!(tmp & PIPECONF_ENABLE))
7464 return false;
7465
42571aef
VS
7466 switch (tmp & PIPECONF_BPC_MASK) {
7467 case PIPECONF_6BPC:
7468 pipe_config->pipe_bpp = 18;
7469 break;
7470 case PIPECONF_8BPC:
7471 pipe_config->pipe_bpp = 24;
7472 break;
7473 case PIPECONF_10BPC:
7474 pipe_config->pipe_bpp = 30;
7475 break;
7476 case PIPECONF_12BPC:
7477 pipe_config->pipe_bpp = 36;
7478 break;
7479 default:
7480 break;
7481 }
7482
b5a9fa09
DV
7483 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7484 pipe_config->limited_color_range = true;
7485
ab9412ba 7486 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
66e985c0
DV
7487 struct intel_shared_dpll *pll;
7488
88adfff1
DV
7489 pipe_config->has_pch_encoder = true;
7490
627eb5a3
DV
7491 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7492 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7493 FDI_DP_PORT_WIDTH_SHIFT) + 1;
72419203
DV
7494
7495 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6c49f241 7496
c0d43d62 7497 if (HAS_PCH_IBX(dev_priv->dev)) {
d94ab068
DV
7498 pipe_config->shared_dpll =
7499 (enum intel_dpll_id) crtc->pipe;
c0d43d62
DV
7500 } else {
7501 tmp = I915_READ(PCH_DPLL_SEL);
7502 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7503 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7504 else
7505 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7506 }
66e985c0
DV
7507
7508 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7509
7510 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7511 &pipe_config->dpll_hw_state));
c93f54cf
DV
7512
7513 tmp = pipe_config->dpll_hw_state.dpll;
7514 pipe_config->pixel_multiplier =
7515 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7516 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
18442d08
VS
7517
7518 ironlake_pch_clock_get(crtc, pipe_config);
6c49f241
DV
7519 } else {
7520 pipe_config->pixel_multiplier = 1;
627eb5a3
DV
7521 }
7522
1bd1bd80
DV
7523 intel_get_pipe_timings(crtc, pipe_config);
7524
2fa2fe9a
DV
7525 ironlake_get_pfit_config(crtc, pipe_config);
7526
0e8ffe1b
DV
7527 return true;
7528}
7529
be256dc7
PZ
7530static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7531{
7532 struct drm_device *dev = dev_priv->dev;
be256dc7 7533 struct intel_crtc *crtc;
be256dc7 7534
d3fcc808 7535 for_each_intel_crtc(dev, crtc)
798183c5 7536 WARN(crtc->active, "CRTC for pipe %c enabled\n",
be256dc7
PZ
7537 pipe_name(crtc->pipe));
7538
7539 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
8cc3e169
DV
7540 WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7541 WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7542 WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
be256dc7
PZ
7543 WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7544 WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7545 "CPU PWM1 enabled\n");
c5107b87
PZ
7546 if (IS_HASWELL(dev))
7547 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7548 "CPU PWM2 enabled\n");
be256dc7
PZ
7549 WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7550 "PCH PWM1 enabled\n");
7551 WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7552 "Utility pin enabled\n");
7553 WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7554
9926ada1
PZ
7555 /*
7556 * In theory we can still leave IRQs enabled, as long as only the HPD
7557 * interrupts remain enabled. We used to check for that, but since it's
7558 * gen-specific and since we only disable LCPLL after we fully disable
7559 * the interrupts, the check below should be enough.
7560 */
9df7575f 7561 WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
be256dc7
PZ
7562}
7563
9ccd5aeb
PZ
7564static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7565{
7566 struct drm_device *dev = dev_priv->dev;
7567
7568 if (IS_HASWELL(dev))
7569 return I915_READ(D_COMP_HSW);
7570 else
7571 return I915_READ(D_COMP_BDW);
7572}
7573
3c4c9b81
PZ
7574static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7575{
7576 struct drm_device *dev = dev_priv->dev;
7577
7578 if (IS_HASWELL(dev)) {
7579 mutex_lock(&dev_priv->rps.hw_lock);
7580 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7581 val))
f475dadf 7582 DRM_ERROR("Failed to write to D_COMP\n");
3c4c9b81
PZ
7583 mutex_unlock(&dev_priv->rps.hw_lock);
7584 } else {
9ccd5aeb
PZ
7585 I915_WRITE(D_COMP_BDW, val);
7586 POSTING_READ(D_COMP_BDW);
3c4c9b81 7587 }
be256dc7
PZ
7588}
7589
7590/*
7591 * This function implements pieces of two sequences from BSpec:
7592 * - Sequence for display software to disable LCPLL
7593 * - Sequence for display software to allow package C8+
7594 * The steps implemented here are just the steps that actually touch the LCPLL
7595 * register. Callers should take care of disabling all the display engine
7596 * functions, doing the mode unset, fixing interrupts, etc.
7597 */
6ff58d53
PZ
7598static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7599 bool switch_to_fclk, bool allow_power_down)
be256dc7
PZ
7600{
7601 uint32_t val;
7602
7603 assert_can_disable_lcpll(dev_priv);
7604
7605 val = I915_READ(LCPLL_CTL);
7606
7607 if (switch_to_fclk) {
7608 val |= LCPLL_CD_SOURCE_FCLK;
7609 I915_WRITE(LCPLL_CTL, val);
7610
7611 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7612 LCPLL_CD_SOURCE_FCLK_DONE, 1))
7613 DRM_ERROR("Switching to FCLK failed\n");
7614
7615 val = I915_READ(LCPLL_CTL);
7616 }
7617
7618 val |= LCPLL_PLL_DISABLE;
7619 I915_WRITE(LCPLL_CTL, val);
7620 POSTING_READ(LCPLL_CTL);
7621
7622 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7623 DRM_ERROR("LCPLL still locked\n");
7624
9ccd5aeb 7625 val = hsw_read_dcomp(dev_priv);
be256dc7 7626 val |= D_COMP_COMP_DISABLE;
3c4c9b81 7627 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7628 ndelay(100);
7629
9ccd5aeb
PZ
7630 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
7631 1))
be256dc7
PZ
7632 DRM_ERROR("D_COMP RCOMP still in progress\n");
7633
7634 if (allow_power_down) {
7635 val = I915_READ(LCPLL_CTL);
7636 val |= LCPLL_POWER_DOWN_ALLOW;
7637 I915_WRITE(LCPLL_CTL, val);
7638 POSTING_READ(LCPLL_CTL);
7639 }
7640}
7641
7642/*
7643 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7644 * source.
7645 */
6ff58d53 7646static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
be256dc7
PZ
7647{
7648 uint32_t val;
a8a8bd54 7649 unsigned long irqflags;
be256dc7
PZ
7650
7651 val = I915_READ(LCPLL_CTL);
7652
7653 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7654 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7655 return;
7656
a8a8bd54
PZ
7657 /*
7658 * Make sure we're not on PC8 state before disabling PC8, otherwise
7659 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7660 *
7661 * The other problem is that hsw_restore_lcpll() is called as part of
7662 * the runtime PM resume sequence, so we can't just call
7663 * gen6_gt_force_wake_get() because that function calls
7664 * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7665 * while we are on the resume sequence. So to solve this problem we have
7666 * to call special forcewake code that doesn't touch runtime PM and
7667 * doesn't enable the forcewake delayed work.
7668 */
7669 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7670 if (dev_priv->uncore.forcewake_count++ == 0)
7671 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7672 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
215733fa 7673
be256dc7
PZ
7674 if (val & LCPLL_POWER_DOWN_ALLOW) {
7675 val &= ~LCPLL_POWER_DOWN_ALLOW;
7676 I915_WRITE(LCPLL_CTL, val);
35d8f2eb 7677 POSTING_READ(LCPLL_CTL);
be256dc7
PZ
7678 }
7679
9ccd5aeb 7680 val = hsw_read_dcomp(dev_priv);
be256dc7
PZ
7681 val |= D_COMP_COMP_FORCE;
7682 val &= ~D_COMP_COMP_DISABLE;
3c4c9b81 7683 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7684
7685 val = I915_READ(LCPLL_CTL);
7686 val &= ~LCPLL_PLL_DISABLE;
7687 I915_WRITE(LCPLL_CTL, val);
7688
7689 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7690 DRM_ERROR("LCPLL not locked yet\n");
7691
7692 if (val & LCPLL_CD_SOURCE_FCLK) {
7693 val = I915_READ(LCPLL_CTL);
7694 val &= ~LCPLL_CD_SOURCE_FCLK;
7695 I915_WRITE(LCPLL_CTL, val);
7696
7697 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7698 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7699 DRM_ERROR("Switching back to LCPLL failed\n");
7700 }
215733fa 7701
a8a8bd54
PZ
7702 /* See the big comment above. */
7703 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7704 if (--dev_priv->uncore.forcewake_count == 0)
7705 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7706 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
be256dc7
PZ
7707}
7708
765dab67
PZ
7709/*
7710 * Package states C8 and deeper are really deep PC states that can only be
7711 * reached when all the devices on the system allow it, so even if the graphics
7712 * device allows PC8+, it doesn't mean the system will actually get to these
7713 * states. Our driver only allows PC8+ when going into runtime PM.
7714 *
7715 * The requirements for PC8+ are that all the outputs are disabled, the power
7716 * well is disabled and most interrupts are disabled, and these are also
7717 * requirements for runtime PM. When these conditions are met, we manually do
7718 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7719 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7720 * hang the machine.
7721 *
7722 * When we really reach PC8 or deeper states (not just when we allow it) we lose
7723 * the state of some registers, so when we come back from PC8+ we need to
7724 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7725 * need to take care of the registers kept by RC6. Notice that this happens even
7726 * if we don't put the device in PCI D3 state (which is what currently happens
7727 * because of the runtime PM support).
7728 *
7729 * For more, read "Display Sequences for Package C8" on the hardware
7730 * documentation.
7731 */
a14cb6fc 7732void hsw_enable_pc8(struct drm_i915_private *dev_priv)
c67a470b 7733{
c67a470b
PZ
7734 struct drm_device *dev = dev_priv->dev;
7735 uint32_t val;
7736
c67a470b
PZ
7737 DRM_DEBUG_KMS("Enabling package C8+\n");
7738
c67a470b
PZ
7739 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7740 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7741 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7742 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7743 }
7744
7745 lpt_disable_clkout_dp(dev);
c67a470b
PZ
7746 hsw_disable_lcpll(dev_priv, true, true);
7747}
7748
a14cb6fc 7749void hsw_disable_pc8(struct drm_i915_private *dev_priv)
c67a470b
PZ
7750{
7751 struct drm_device *dev = dev_priv->dev;
7752 uint32_t val;
7753
c67a470b
PZ
7754 DRM_DEBUG_KMS("Disabling package C8+\n");
7755
7756 hsw_restore_lcpll(dev_priv);
c67a470b
PZ
7757 lpt_init_pch_refclk(dev);
7758
7759 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7760 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7761 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7762 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7763 }
7764
7765 intel_prepare_ddi(dev);
c67a470b
PZ
7766}
7767
9a952a0d
PZ
7768static void snb_modeset_global_resources(struct drm_device *dev)
7769{
7770 modeset_update_crtc_power_domains(dev);
7771}
7772
4f074129
ID
7773static void haswell_modeset_global_resources(struct drm_device *dev)
7774{
da723569 7775 modeset_update_crtc_power_domains(dev);
d6dd9eb1
DV
7776}
7777
09b4ddf9 7778static int haswell_crtc_mode_set(struct drm_crtc *crtc,
09b4ddf9
PZ
7779 int x, int y,
7780 struct drm_framebuffer *fb)
7781{
09b4ddf9 7782 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
09b4ddf9 7783
566b734a 7784 if (!intel_ddi_pll_select(intel_crtc))
6441ab5f 7785 return -EINVAL;
716c2e55 7786
644cef34
DV
7787 intel_crtc->lowfreq_avail = false;
7788
c8f7a0db 7789 return 0;
79e53945
JB
7790}
7791
7d2c8175
DL
7792static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
7793 enum port port,
7794 struct intel_crtc_config *pipe_config)
7795{
7796 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
7797
7798 switch (pipe_config->ddi_pll_sel) {
7799 case PORT_CLK_SEL_WRPLL1:
7800 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
7801 break;
7802 case PORT_CLK_SEL_WRPLL2:
7803 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
7804 break;
7805 }
7806}
7807
26804afd
DV
7808static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
7809 struct intel_crtc_config *pipe_config)
7810{
7811 struct drm_device *dev = crtc->base.dev;
7812 struct drm_i915_private *dev_priv = dev->dev_private;
d452c5b6 7813 struct intel_shared_dpll *pll;
26804afd
DV
7814 enum port port;
7815 uint32_t tmp;
7816
7817 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
7818
7819 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
7820
7d2c8175 7821 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9cd86933 7822
d452c5b6
DV
7823 if (pipe_config->shared_dpll >= 0) {
7824 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7825
7826 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7827 &pipe_config->dpll_hw_state));
7828 }
7829
26804afd
DV
7830 /*
7831 * Haswell has only FDI/PCH transcoder A. It is which is connected to
7832 * DDI E. So just check whether this pipe is wired to DDI E and whether
7833 * the PCH transcoder is on.
7834 */
7835 if ((port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
7836 pipe_config->has_pch_encoder = true;
7837
7838 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
7839 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7840 FDI_DP_PORT_WIDTH_SHIFT) + 1;
7841
7842 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7843 }
7844}
7845
0e8ffe1b
DV
7846static bool haswell_get_pipe_config(struct intel_crtc *crtc,
7847 struct intel_crtc_config *pipe_config)
7848{
7849 struct drm_device *dev = crtc->base.dev;
7850 struct drm_i915_private *dev_priv = dev->dev_private;
2fa2fe9a 7851 enum intel_display_power_domain pfit_domain;
0e8ffe1b
DV
7852 uint32_t tmp;
7853
b5482bd0
ID
7854 if (!intel_display_power_enabled(dev_priv,
7855 POWER_DOMAIN_PIPE(crtc->pipe)))
7856 return false;
7857
e143a21c 7858 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62
DV
7859 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7860
eccb140b
DV
7861 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
7862 if (tmp & TRANS_DDI_FUNC_ENABLE) {
7863 enum pipe trans_edp_pipe;
7864 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
7865 default:
7866 WARN(1, "unknown pipe linked to edp transcoder\n");
7867 case TRANS_DDI_EDP_INPUT_A_ONOFF:
7868 case TRANS_DDI_EDP_INPUT_A_ON:
7869 trans_edp_pipe = PIPE_A;
7870 break;
7871 case TRANS_DDI_EDP_INPUT_B_ONOFF:
7872 trans_edp_pipe = PIPE_B;
7873 break;
7874 case TRANS_DDI_EDP_INPUT_C_ONOFF:
7875 trans_edp_pipe = PIPE_C;
7876 break;
7877 }
7878
7879 if (trans_edp_pipe == crtc->pipe)
7880 pipe_config->cpu_transcoder = TRANSCODER_EDP;
7881 }
7882
da7e29bd 7883 if (!intel_display_power_enabled(dev_priv,
eccb140b 7884 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
2bfce950
PZ
7885 return false;
7886
eccb140b 7887 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
0e8ffe1b
DV
7888 if (!(tmp & PIPECONF_ENABLE))
7889 return false;
7890
26804afd 7891 haswell_get_ddi_port_state(crtc, pipe_config);
627eb5a3 7892
1bd1bd80
DV
7893 intel_get_pipe_timings(crtc, pipe_config);
7894
2fa2fe9a 7895 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
da7e29bd 7896 if (intel_display_power_enabled(dev_priv, pfit_domain))
2fa2fe9a 7897 ironlake_get_pfit_config(crtc, pipe_config);
88adfff1 7898
e59150dc
JB
7899 if (IS_HASWELL(dev))
7900 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
7901 (I915_READ(IPS_CTL) & IPS_ENABLE);
42db64ef 7902
6c49f241
DV
7903 pipe_config->pixel_multiplier = 1;
7904
0e8ffe1b
DV
7905 return true;
7906}
7907
1a91510d
JN
7908static struct {
7909 int clock;
7910 u32 config;
7911} hdmi_audio_clock[] = {
7912 { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
7913 { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
7914 { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
7915 { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
7916 { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
7917 { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
7918 { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
7919 { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
7920 { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
7921 { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
7922};
7923
7924/* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
7925static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
7926{
7927 int i;
7928
7929 for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
7930 if (mode->clock == hdmi_audio_clock[i].clock)
7931 break;
7932 }
7933
7934 if (i == ARRAY_SIZE(hdmi_audio_clock)) {
7935 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
7936 i = 1;
7937 }
7938
7939 DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
7940 hdmi_audio_clock[i].clock,
7941 hdmi_audio_clock[i].config);
7942
7943 return hdmi_audio_clock[i].config;
7944}
7945
3a9627f4
WF
7946static bool intel_eld_uptodate(struct drm_connector *connector,
7947 int reg_eldv, uint32_t bits_eldv,
7948 int reg_elda, uint32_t bits_elda,
7949 int reg_edid)
7950{
7951 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7952 uint8_t *eld = connector->eld;
7953 uint32_t i;
7954
7955 i = I915_READ(reg_eldv);
7956 i &= bits_eldv;
7957
7958 if (!eld[0])
7959 return !i;
7960
7961 if (!i)
7962 return false;
7963
7964 i = I915_READ(reg_elda);
7965 i &= ~bits_elda;
7966 I915_WRITE(reg_elda, i);
7967
7968 for (i = 0; i < eld[2]; i++)
7969 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
7970 return false;
7971
7972 return true;
7973}
7974
e0dac65e 7975static void g4x_write_eld(struct drm_connector *connector,
34427052
JN
7976 struct drm_crtc *crtc,
7977 struct drm_display_mode *mode)
e0dac65e
WF
7978{
7979 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7980 uint8_t *eld = connector->eld;
7981 uint32_t eldv;
7982 uint32_t len;
7983 uint32_t i;
7984
7985 i = I915_READ(G4X_AUD_VID_DID);
7986
7987 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
7988 eldv = G4X_ELDV_DEVCL_DEVBLC;
7989 else
7990 eldv = G4X_ELDV_DEVCTG;
7991
3a9627f4
WF
7992 if (intel_eld_uptodate(connector,
7993 G4X_AUD_CNTL_ST, eldv,
7994 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
7995 G4X_HDMIW_HDMIEDID))
7996 return;
7997
e0dac65e
WF
7998 i = I915_READ(G4X_AUD_CNTL_ST);
7999 i &= ~(eldv | G4X_ELD_ADDR);
8000 len = (i >> 9) & 0x1f; /* ELD buffer size */
8001 I915_WRITE(G4X_AUD_CNTL_ST, i);
8002
8003 if (!eld[0])
8004 return;
8005
8006 len = min_t(uint8_t, eld[2], len);
8007 DRM_DEBUG_DRIVER("ELD size %d\n", len);
8008 for (i = 0; i < len; i++)
8009 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
8010
8011 i = I915_READ(G4X_AUD_CNTL_ST);
8012 i |= eldv;
8013 I915_WRITE(G4X_AUD_CNTL_ST, i);
8014}
8015
83358c85 8016static void haswell_write_eld(struct drm_connector *connector,
34427052
JN
8017 struct drm_crtc *crtc,
8018 struct drm_display_mode *mode)
83358c85
WX
8019{
8020 struct drm_i915_private *dev_priv = connector->dev->dev_private;
8021 uint8_t *eld = connector->eld;
83358c85
WX
8022 uint32_t eldv;
8023 uint32_t i;
8024 int len;
8025 int pipe = to_intel_crtc(crtc)->pipe;
8026 int tmp;
8027
8028 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
8029 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
8030 int aud_config = HSW_AUD_CFG(pipe);
8031 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
8032
83358c85
WX
8033 /* Audio output enable */
8034 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
8035 tmp = I915_READ(aud_cntrl_st2);
8036 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
8037 I915_WRITE(aud_cntrl_st2, tmp);
c7905792 8038 POSTING_READ(aud_cntrl_st2);
83358c85 8039
c7905792 8040 assert_pipe_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
83358c85
WX
8041
8042 /* Set ELD valid state */
8043 tmp = I915_READ(aud_cntrl_st2);
7e7cb34f 8044 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
83358c85
WX
8045 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
8046 I915_WRITE(aud_cntrl_st2, tmp);
8047 tmp = I915_READ(aud_cntrl_st2);
7e7cb34f 8048 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
83358c85
WX
8049
8050 /* Enable HDMI mode */
8051 tmp = I915_READ(aud_config);
7e7cb34f 8052 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
83358c85
WX
8053 /* clear N_programing_enable and N_value_index */
8054 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
8055 I915_WRITE(aud_config, tmp);
8056
8057 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
8058
8059 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
8060
8061 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
8062 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
8063 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
8064 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
1a91510d
JN
8065 } else {
8066 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
8067 }
83358c85
WX
8068
8069 if (intel_eld_uptodate(connector,
8070 aud_cntrl_st2, eldv,
8071 aud_cntl_st, IBX_ELD_ADDRESS,
8072 hdmiw_hdmiedid))
8073 return;
8074
8075 i = I915_READ(aud_cntrl_st2);
8076 i &= ~eldv;
8077 I915_WRITE(aud_cntrl_st2, i);
8078
8079 if (!eld[0])
8080 return;
8081
8082 i = I915_READ(aud_cntl_st);
8083 i &= ~IBX_ELD_ADDRESS;
8084 I915_WRITE(aud_cntl_st, i);
8085 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
8086 DRM_DEBUG_DRIVER("port num:%d\n", i);
8087
8088 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
8089 DRM_DEBUG_DRIVER("ELD size %d\n", len);
8090 for (i = 0; i < len; i++)
8091 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
8092
8093 i = I915_READ(aud_cntrl_st2);
8094 i |= eldv;
8095 I915_WRITE(aud_cntrl_st2, i);
8096
8097}
8098
e0dac65e 8099static void ironlake_write_eld(struct drm_connector *connector,
34427052
JN
8100 struct drm_crtc *crtc,
8101 struct drm_display_mode *mode)
e0dac65e
WF
8102{
8103 struct drm_i915_private *dev_priv = connector->dev->dev_private;
8104 uint8_t *eld = connector->eld;
8105 uint32_t eldv;
8106 uint32_t i;
8107 int len;
8108 int hdmiw_hdmiedid;
b6daa025 8109 int aud_config;
e0dac65e
WF
8110 int aud_cntl_st;
8111 int aud_cntrl_st2;
9b138a83 8112 int pipe = to_intel_crtc(crtc)->pipe;
e0dac65e 8113
b3f33cbf 8114 if (HAS_PCH_IBX(connector->dev)) {
9b138a83
WX
8115 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
8116 aud_config = IBX_AUD_CFG(pipe);
8117 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
1202b4c6 8118 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
9ca2fe73
ML
8119 } else if (IS_VALLEYVIEW(connector->dev)) {
8120 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
8121 aud_config = VLV_AUD_CFG(pipe);
8122 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
8123 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
e0dac65e 8124 } else {
9b138a83
WX
8125 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
8126 aud_config = CPT_AUD_CFG(pipe);
8127 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
1202b4c6 8128 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
e0dac65e
WF
8129 }
8130
9b138a83 8131 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
e0dac65e 8132
9ca2fe73
ML
8133 if (IS_VALLEYVIEW(connector->dev)) {
8134 struct intel_encoder *intel_encoder;
8135 struct intel_digital_port *intel_dig_port;
8136
8137 intel_encoder = intel_attached_encoder(connector);
8138 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
8139 i = intel_dig_port->port;
8140 } else {
8141 i = I915_READ(aud_cntl_st);
8142 i = (i >> 29) & DIP_PORT_SEL_MASK;
8143 /* DIP_Port_Select, 0x1 = PortB */
8144 }
8145
e0dac65e
WF
8146 if (!i) {
8147 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
8148 /* operate blindly on all ports */
1202b4c6
WF
8149 eldv = IBX_ELD_VALIDB;
8150 eldv |= IBX_ELD_VALIDB << 4;
8151 eldv |= IBX_ELD_VALIDB << 8;
e0dac65e 8152 } else {
2582a850 8153 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
1202b4c6 8154 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
e0dac65e
WF
8155 }
8156
3a9627f4
WF
8157 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
8158 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
8159 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
b6daa025 8160 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
1a91510d
JN
8161 } else {
8162 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
8163 }
e0dac65e 8164
3a9627f4
WF
8165 if (intel_eld_uptodate(connector,
8166 aud_cntrl_st2, eldv,
8167 aud_cntl_st, IBX_ELD_ADDRESS,
8168 hdmiw_hdmiedid))
8169 return;
8170
e0dac65e
WF
8171 i = I915_READ(aud_cntrl_st2);
8172 i &= ~eldv;
8173 I915_WRITE(aud_cntrl_st2, i);
8174
8175 if (!eld[0])
8176 return;
8177
e0dac65e 8178 i = I915_READ(aud_cntl_st);
1202b4c6 8179 i &= ~IBX_ELD_ADDRESS;
e0dac65e
WF
8180 I915_WRITE(aud_cntl_st, i);
8181
8182 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
8183 DRM_DEBUG_DRIVER("ELD size %d\n", len);
8184 for (i = 0; i < len; i++)
8185 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
8186
8187 i = I915_READ(aud_cntrl_st2);
8188 i |= eldv;
8189 I915_WRITE(aud_cntrl_st2, i);
8190}
8191
8192void intel_write_eld(struct drm_encoder *encoder,
8193 struct drm_display_mode *mode)
8194{
8195 struct drm_crtc *crtc = encoder->crtc;
8196 struct drm_connector *connector;
8197 struct drm_device *dev = encoder->dev;
8198 struct drm_i915_private *dev_priv = dev->dev_private;
8199
8200 connector = drm_select_eld(encoder, mode);
8201 if (!connector)
8202 return;
8203
8204 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8205 connector->base.id,
c23cc417 8206 connector->name,
e0dac65e 8207 connector->encoder->base.id,
8e329a03 8208 connector->encoder->name);
e0dac65e
WF
8209
8210 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
8211
8212 if (dev_priv->display.write_eld)
34427052 8213 dev_priv->display.write_eld(connector, crtc, mode);
e0dac65e
WF
8214}
8215
560b85bb
CW
8216static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8217{
8218 struct drm_device *dev = crtc->dev;
8219 struct drm_i915_private *dev_priv = dev->dev_private;
8220 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
dc41c154 8221 uint32_t cntl = 0, size = 0;
560b85bb 8222
dc41c154
VS
8223 if (base) {
8224 unsigned int width = intel_crtc->cursor_width;
8225 unsigned int height = intel_crtc->cursor_height;
8226 unsigned int stride = roundup_pow_of_two(width) * 4;
8227
8228 switch (stride) {
8229 default:
8230 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
8231 width, stride);
8232 stride = 256;
8233 /* fallthrough */
8234 case 256:
8235 case 512:
8236 case 1024:
8237 case 2048:
8238 break;
4b0e333e
CW
8239 }
8240
dc41c154
VS
8241 cntl |= CURSOR_ENABLE |
8242 CURSOR_GAMMA_ENABLE |
8243 CURSOR_FORMAT_ARGB |
8244 CURSOR_STRIDE(stride);
8245
8246 size = (height << 12) | width;
4b0e333e 8247 }
560b85bb 8248
dc41c154
VS
8249 if (intel_crtc->cursor_cntl != 0 &&
8250 (intel_crtc->cursor_base != base ||
8251 intel_crtc->cursor_size != size ||
8252 intel_crtc->cursor_cntl != cntl)) {
8253 /* On these chipsets we can only modify the base/size/stride
8254 * whilst the cursor is disabled.
8255 */
8256 I915_WRITE(_CURACNTR, 0);
4b0e333e 8257 POSTING_READ(_CURACNTR);
dc41c154 8258 intel_crtc->cursor_cntl = 0;
4b0e333e 8259 }
560b85bb 8260
dc41c154 8261 if (intel_crtc->cursor_base != base)
9db4a9c7 8262 I915_WRITE(_CURABASE, base);
4726e0b0 8263
dc41c154
VS
8264 if (intel_crtc->cursor_size != size) {
8265 I915_WRITE(CURSIZE, size);
8266 intel_crtc->cursor_size = size;
4b0e333e 8267 }
560b85bb 8268
4b0e333e 8269 if (intel_crtc->cursor_cntl != cntl) {
4b0e333e
CW
8270 I915_WRITE(_CURACNTR, cntl);
8271 POSTING_READ(_CURACNTR);
4b0e333e 8272 intel_crtc->cursor_cntl = cntl;
560b85bb 8273 }
560b85bb
CW
8274}
8275
560b85bb 8276static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
65a21cd6
JB
8277{
8278 struct drm_device *dev = crtc->dev;
8279 struct drm_i915_private *dev_priv = dev->dev_private;
8280 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8281 int pipe = intel_crtc->pipe;
4b0e333e
CW
8282 uint32_t cntl;
8283
8284 cntl = 0;
8285 if (base) {
8286 cntl = MCURSOR_GAMMA_ENABLE;
8287 switch (intel_crtc->cursor_width) {
4726e0b0
SK
8288 case 64:
8289 cntl |= CURSOR_MODE_64_ARGB_AX;
8290 break;
8291 case 128:
8292 cntl |= CURSOR_MODE_128_ARGB_AX;
8293 break;
8294 case 256:
8295 cntl |= CURSOR_MODE_256_ARGB_AX;
8296 break;
8297 default:
8298 WARN_ON(1);
8299 return;
65a21cd6 8300 }
4b0e333e 8301 cntl |= pipe << 28; /* Connect to correct pipe */
4b0e333e
CW
8302 }
8303 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8304 cntl |= CURSOR_PIPE_CSC_ENABLE;
65a21cd6 8305
4b0e333e
CW
8306 if (intel_crtc->cursor_cntl != cntl) {
8307 I915_WRITE(CURCNTR(pipe), cntl);
8308 POSTING_READ(CURCNTR(pipe));
8309 intel_crtc->cursor_cntl = cntl;
65a21cd6 8310 }
4b0e333e 8311
65a21cd6 8312 /* and commit changes on next vblank */
5efb3e28
VS
8313 I915_WRITE(CURBASE(pipe), base);
8314 POSTING_READ(CURBASE(pipe));
65a21cd6
JB
8315}
8316
cda4b7d3 8317/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
8318static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8319 bool on)
cda4b7d3
CW
8320{
8321 struct drm_device *dev = crtc->dev;
8322 struct drm_i915_private *dev_priv = dev->dev_private;
8323 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8324 int pipe = intel_crtc->pipe;
3d7d6510
MR
8325 int x = crtc->cursor_x;
8326 int y = crtc->cursor_y;
d6e4db15 8327 u32 base = 0, pos = 0;
cda4b7d3 8328
d6e4db15 8329 if (on)
cda4b7d3 8330 base = intel_crtc->cursor_addr;
cda4b7d3 8331
d6e4db15
VS
8332 if (x >= intel_crtc->config.pipe_src_w)
8333 base = 0;
8334
8335 if (y >= intel_crtc->config.pipe_src_h)
cda4b7d3
CW
8336 base = 0;
8337
8338 if (x < 0) {
efc9064e 8339 if (x + intel_crtc->cursor_width <= 0)
cda4b7d3
CW
8340 base = 0;
8341
8342 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8343 x = -x;
8344 }
8345 pos |= x << CURSOR_X_SHIFT;
8346
8347 if (y < 0) {
efc9064e 8348 if (y + intel_crtc->cursor_height <= 0)
cda4b7d3
CW
8349 base = 0;
8350
8351 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8352 y = -y;
8353 }
8354 pos |= y << CURSOR_Y_SHIFT;
8355
4b0e333e 8356 if (base == 0 && intel_crtc->cursor_base == 0)
cda4b7d3
CW
8357 return;
8358
5efb3e28
VS
8359 I915_WRITE(CURPOS(pipe), pos);
8360
8ac54669 8361 if (IS_845G(dev) || IS_I865G(dev))
5efb3e28
VS
8362 i845_update_cursor(crtc, base);
8363 else
8364 i9xx_update_cursor(crtc, base);
4b0e333e 8365 intel_crtc->cursor_base = base;
cda4b7d3
CW
8366}
8367
dc41c154
VS
8368static bool cursor_size_ok(struct drm_device *dev,
8369 uint32_t width, uint32_t height)
8370{
8371 if (width == 0 || height == 0)
8372 return false;
8373
8374 /*
8375 * 845g/865g are special in that they are only limited by
8376 * the width of their cursors, the height is arbitrary up to
8377 * the precision of the register. Everything else requires
8378 * square cursors, limited to a few power-of-two sizes.
8379 */
8380 if (IS_845G(dev) || IS_I865G(dev)) {
8381 if ((width & 63) != 0)
8382 return false;
8383
8384 if (width > (IS_845G(dev) ? 64 : 512))
8385 return false;
8386
8387 if (height > 1023)
8388 return false;
8389 } else {
8390 switch (width | height) {
8391 case 256:
8392 case 128:
8393 if (IS_GEN2(dev))
8394 return false;
8395 case 64:
8396 break;
8397 default:
8398 return false;
8399 }
8400 }
8401
8402 return true;
8403}
8404
e3287951
MR
8405/*
8406 * intel_crtc_cursor_set_obj - Set cursor to specified GEM object
8407 *
8408 * Note that the object's reference will be consumed if the update fails. If
8409 * the update succeeds, the reference of the old object (if any) will be
8410 * consumed.
8411 */
8412static int intel_crtc_cursor_set_obj(struct drm_crtc *crtc,
8413 struct drm_i915_gem_object *obj,
8414 uint32_t width, uint32_t height)
79e53945
JB
8415{
8416 struct drm_device *dev = crtc->dev;
8417 struct drm_i915_private *dev_priv = dev->dev_private;
8418 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 8419 enum pipe pipe = intel_crtc->pipe;
dc41c154 8420 unsigned old_width, stride;
cda4b7d3 8421 uint32_t addr;
3f8bc370 8422 int ret;
79e53945 8423
79e53945 8424 /* if we want to turn off the cursor ignore width and height */
e3287951 8425 if (!obj) {
28c97730 8426 DRM_DEBUG_KMS("cursor off\n");
3f8bc370 8427 addr = 0;
5004417d 8428 mutex_lock(&dev->struct_mutex);
3f8bc370 8429 goto finish;
79e53945
JB
8430 }
8431
4726e0b0 8432 /* Check for which cursor types we support */
dc41c154 8433 if (!cursor_size_ok(dev, width, height)) {
4726e0b0 8434 DRM_DEBUG("Cursor dimension not supported\n");
79e53945
JB
8435 return -EINVAL;
8436 }
8437
dc41c154
VS
8438 stride = roundup_pow_of_two(width) * 4;
8439 if (obj->base.size < stride * height) {
e3287951 8440 DRM_DEBUG_KMS("buffer is too small\n");
34b8686e
DA
8441 ret = -ENOMEM;
8442 goto fail;
79e53945
JB
8443 }
8444
71acb5eb 8445 /* we only need to pin inside GTT if cursor is non-phy */
7f9872e0 8446 mutex_lock(&dev->struct_mutex);
3d13ef2e 8447 if (!INTEL_INFO(dev)->cursor_needs_physical) {
693db184
CW
8448 unsigned alignment;
8449
d9e86c0e 8450 if (obj->tiling_mode) {
3b25b31f 8451 DRM_DEBUG_KMS("cursor cannot be tiled\n");
d9e86c0e
CW
8452 ret = -EINVAL;
8453 goto fail_locked;
8454 }
8455
d6dd6843
PZ
8456 /*
8457 * Global gtt pte registers are special registers which actually
8458 * forward writes to a chunk of system memory. Which means that
8459 * there is no risk that the register values disappear as soon
8460 * as we call intel_runtime_pm_put(), so it is correct to wrap
8461 * only the pin/unpin/fence and not more.
8462 */
8463 intel_runtime_pm_get(dev_priv);
8464
693db184
CW
8465 /* Note that the w/a also requires 2 PTE of padding following
8466 * the bo. We currently fill all unused PTE with the shadow
8467 * page and so we should always have valid PTE following the
8468 * cursor preventing the VT-d warning.
8469 */
8470 alignment = 0;
8471 if (need_vtd_wa(dev))
8472 alignment = 64*1024;
8473
8474 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
e7b526bb 8475 if (ret) {
3b25b31f 8476 DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
d6dd6843 8477 intel_runtime_pm_put(dev_priv);
2da3b9b9 8478 goto fail_locked;
e7b526bb
CW
8479 }
8480
d9e86c0e
CW
8481 ret = i915_gem_object_put_fence(obj);
8482 if (ret) {
3b25b31f 8483 DRM_DEBUG_KMS("failed to release fence for cursor");
d6dd6843 8484 intel_runtime_pm_put(dev_priv);
d9e86c0e
CW
8485 goto fail_unpin;
8486 }
8487
f343c5f6 8488 addr = i915_gem_obj_ggtt_offset(obj);
d6dd6843
PZ
8489
8490 intel_runtime_pm_put(dev_priv);
71acb5eb 8491 } else {
6eeefaf3 8492 int align = IS_I830(dev) ? 16 * 1024 : 256;
00731155 8493 ret = i915_gem_object_attach_phys(obj, align);
71acb5eb 8494 if (ret) {
3b25b31f 8495 DRM_DEBUG_KMS("failed to attach phys object\n");
7f9872e0 8496 goto fail_locked;
71acb5eb 8497 }
00731155 8498 addr = obj->phys_handle->busaddr;
3f8bc370
KH
8499 }
8500
3f8bc370 8501 finish:
3f8bc370 8502 if (intel_crtc->cursor_bo) {
00731155 8503 if (!INTEL_INFO(dev)->cursor_needs_physical)
cc98b413 8504 i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
3f8bc370 8505 }
80824003 8506
a071fa00
DV
8507 i915_gem_track_fb(intel_crtc->cursor_bo, obj,
8508 INTEL_FRONTBUFFER_CURSOR(pipe));
7f9872e0 8509 mutex_unlock(&dev->struct_mutex);
3f8bc370 8510
64f962e3
CW
8511 old_width = intel_crtc->cursor_width;
8512
3f8bc370 8513 intel_crtc->cursor_addr = addr;
05394f39 8514 intel_crtc->cursor_bo = obj;
cda4b7d3
CW
8515 intel_crtc->cursor_width = width;
8516 intel_crtc->cursor_height = height;
8517
64f962e3
CW
8518 if (intel_crtc->active) {
8519 if (old_width != width)
8520 intel_update_watermarks(crtc);
f2f5f771 8521 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
64f962e3 8522 }
3f8bc370 8523
f99d7069
DV
8524 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe));
8525
79e53945 8526 return 0;
e7b526bb 8527fail_unpin:
cc98b413 8528 i915_gem_object_unpin_from_display_plane(obj);
7f9872e0 8529fail_locked:
34b8686e 8530 mutex_unlock(&dev->struct_mutex);
bc9025bd 8531fail:
05394f39 8532 drm_gem_object_unreference_unlocked(&obj->base);
34b8686e 8533 return ret;
79e53945
JB
8534}
8535
79e53945 8536static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 8537 u16 *blue, uint32_t start, uint32_t size)
79e53945 8538{
7203425a 8539 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 8540 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8541
7203425a 8542 for (i = start; i < end; i++) {
79e53945
JB
8543 intel_crtc->lut_r[i] = red[i] >> 8;
8544 intel_crtc->lut_g[i] = green[i] >> 8;
8545 intel_crtc->lut_b[i] = blue[i] >> 8;
8546 }
8547
8548 intel_crtc_load_lut(crtc);
8549}
8550
79e53945
JB
8551/* VESA 640x480x72Hz mode to set on the pipe */
8552static struct drm_display_mode load_detect_mode = {
8553 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8554 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8555};
8556
a8bb6818
DV
8557struct drm_framebuffer *
8558__intel_framebuffer_create(struct drm_device *dev,
8559 struct drm_mode_fb_cmd2 *mode_cmd,
8560 struct drm_i915_gem_object *obj)
d2dff872
CW
8561{
8562 struct intel_framebuffer *intel_fb;
8563 int ret;
8564
8565 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8566 if (!intel_fb) {
8567 drm_gem_object_unreference_unlocked(&obj->base);
8568 return ERR_PTR(-ENOMEM);
8569 }
8570
8571 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
dd4916c5
DV
8572 if (ret)
8573 goto err;
d2dff872
CW
8574
8575 return &intel_fb->base;
dd4916c5
DV
8576err:
8577 drm_gem_object_unreference_unlocked(&obj->base);
8578 kfree(intel_fb);
8579
8580 return ERR_PTR(ret);
d2dff872
CW
8581}
8582
b5ea642a 8583static struct drm_framebuffer *
a8bb6818
DV
8584intel_framebuffer_create(struct drm_device *dev,
8585 struct drm_mode_fb_cmd2 *mode_cmd,
8586 struct drm_i915_gem_object *obj)
8587{
8588 struct drm_framebuffer *fb;
8589 int ret;
8590
8591 ret = i915_mutex_lock_interruptible(dev);
8592 if (ret)
8593 return ERR_PTR(ret);
8594 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8595 mutex_unlock(&dev->struct_mutex);
8596
8597 return fb;
8598}
8599
d2dff872
CW
8600static u32
8601intel_framebuffer_pitch_for_width(int width, int bpp)
8602{
8603 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8604 return ALIGN(pitch, 64);
8605}
8606
8607static u32
8608intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8609{
8610 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
1267a26b 8611 return PAGE_ALIGN(pitch * mode->vdisplay);
d2dff872
CW
8612}
8613
8614static struct drm_framebuffer *
8615intel_framebuffer_create_for_mode(struct drm_device *dev,
8616 struct drm_display_mode *mode,
8617 int depth, int bpp)
8618{
8619 struct drm_i915_gem_object *obj;
0fed39bd 8620 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
d2dff872
CW
8621
8622 obj = i915_gem_alloc_object(dev,
8623 intel_framebuffer_size_for_mode(mode, bpp));
8624 if (obj == NULL)
8625 return ERR_PTR(-ENOMEM);
8626
8627 mode_cmd.width = mode->hdisplay;
8628 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
8629 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8630 bpp);
5ca0c34a 8631 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872
CW
8632
8633 return intel_framebuffer_create(dev, &mode_cmd, obj);
8634}
8635
8636static struct drm_framebuffer *
8637mode_fits_in_fbdev(struct drm_device *dev,
8638 struct drm_display_mode *mode)
8639{
4520f53a 8640#ifdef CONFIG_DRM_I915_FBDEV
d2dff872
CW
8641 struct drm_i915_private *dev_priv = dev->dev_private;
8642 struct drm_i915_gem_object *obj;
8643 struct drm_framebuffer *fb;
8644
4c0e5528 8645 if (!dev_priv->fbdev)
d2dff872
CW
8646 return NULL;
8647
4c0e5528 8648 if (!dev_priv->fbdev->fb)
d2dff872
CW
8649 return NULL;
8650
4c0e5528
DV
8651 obj = dev_priv->fbdev->fb->obj;
8652 BUG_ON(!obj);
8653
8bcd4553 8654 fb = &dev_priv->fbdev->fb->base;
01f2c773
VS
8655 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8656 fb->bits_per_pixel))
d2dff872
CW
8657 return NULL;
8658
01f2c773 8659 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
8660 return NULL;
8661
8662 return fb;
4520f53a
DV
8663#else
8664 return NULL;
8665#endif
d2dff872
CW
8666}
8667
d2434ab7 8668bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 8669 struct drm_display_mode *mode,
51fd371b
RC
8670 struct intel_load_detect_pipe *old,
8671 struct drm_modeset_acquire_ctx *ctx)
79e53945
JB
8672{
8673 struct intel_crtc *intel_crtc;
d2434ab7
DV
8674 struct intel_encoder *intel_encoder =
8675 intel_attached_encoder(connector);
79e53945 8676 struct drm_crtc *possible_crtc;
4ef69c7a 8677 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
8678 struct drm_crtc *crtc = NULL;
8679 struct drm_device *dev = encoder->dev;
94352cf9 8680 struct drm_framebuffer *fb;
51fd371b
RC
8681 struct drm_mode_config *config = &dev->mode_config;
8682 int ret, i = -1;
79e53945 8683
d2dff872 8684 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8685 connector->base.id, connector->name,
8e329a03 8686 encoder->base.id, encoder->name);
d2dff872 8687
51fd371b
RC
8688retry:
8689 ret = drm_modeset_lock(&config->connection_mutex, ctx);
8690 if (ret)
8691 goto fail_unlock;
6e9f798d 8692
79e53945
JB
8693 /*
8694 * Algorithm gets a little messy:
7a5e4805 8695 *
79e53945
JB
8696 * - if the connector already has an assigned crtc, use it (but make
8697 * sure it's on first)
7a5e4805 8698 *
79e53945
JB
8699 * - try to find the first unused crtc that can drive this connector,
8700 * and use that if we find one
79e53945
JB
8701 */
8702
8703 /* See if we already have a CRTC for this connector */
8704 if (encoder->crtc) {
8705 crtc = encoder->crtc;
8261b191 8706
51fd371b
RC
8707 ret = drm_modeset_lock(&crtc->mutex, ctx);
8708 if (ret)
8709 goto fail_unlock;
7b24056b 8710
24218aac 8711 old->dpms_mode = connector->dpms;
8261b191
CW
8712 old->load_detect_temp = false;
8713
8714 /* Make sure the crtc and connector are running */
24218aac
DV
8715 if (connector->dpms != DRM_MODE_DPMS_ON)
8716 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8261b191 8717
7173188d 8718 return true;
79e53945
JB
8719 }
8720
8721 /* Find an unused one (if possible) */
70e1e0ec 8722 for_each_crtc(dev, possible_crtc) {
79e53945
JB
8723 i++;
8724 if (!(encoder->possible_crtcs & (1 << i)))
8725 continue;
a459249c
VS
8726 if (possible_crtc->enabled)
8727 continue;
8728 /* This can occur when applying the pipe A quirk on resume. */
8729 if (to_intel_crtc(possible_crtc)->new_enabled)
8730 continue;
8731
8732 crtc = possible_crtc;
8733 break;
79e53945
JB
8734 }
8735
8736 /*
8737 * If we didn't find an unused CRTC, don't use any.
8738 */
8739 if (!crtc) {
7173188d 8740 DRM_DEBUG_KMS("no pipe available for load-detect\n");
51fd371b 8741 goto fail_unlock;
79e53945
JB
8742 }
8743
51fd371b
RC
8744 ret = drm_modeset_lock(&crtc->mutex, ctx);
8745 if (ret)
8746 goto fail_unlock;
fc303101
DV
8747 intel_encoder->new_crtc = to_intel_crtc(crtc);
8748 to_intel_connector(connector)->new_encoder = intel_encoder;
79e53945
JB
8749
8750 intel_crtc = to_intel_crtc(crtc);
412b61d8
VS
8751 intel_crtc->new_enabled = true;
8752 intel_crtc->new_config = &intel_crtc->config;
24218aac 8753 old->dpms_mode = connector->dpms;
8261b191 8754 old->load_detect_temp = true;
d2dff872 8755 old->release_fb = NULL;
79e53945 8756
6492711d
CW
8757 if (!mode)
8758 mode = &load_detect_mode;
79e53945 8759
d2dff872
CW
8760 /* We need a framebuffer large enough to accommodate all accesses
8761 * that the plane may generate whilst we perform load detection.
8762 * We can not rely on the fbcon either being present (we get called
8763 * during its initialisation to detect all boot displays, or it may
8764 * not even exist) or that it is large enough to satisfy the
8765 * requested mode.
8766 */
94352cf9
DV
8767 fb = mode_fits_in_fbdev(dev, mode);
8768 if (fb == NULL) {
d2dff872 8769 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9
DV
8770 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8771 old->release_fb = fb;
d2dff872
CW
8772 } else
8773 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 8774 if (IS_ERR(fb)) {
d2dff872 8775 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
412b61d8 8776 goto fail;
79e53945 8777 }
79e53945 8778
c0c36b94 8779 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6492711d 8780 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
8781 if (old->release_fb)
8782 old->release_fb->funcs->destroy(old->release_fb);
412b61d8 8783 goto fail;
79e53945 8784 }
7173188d 8785
79e53945 8786 /* let the connector get through one full cycle before testing */
9d0498a2 8787 intel_wait_for_vblank(dev, intel_crtc->pipe);
7173188d 8788 return true;
412b61d8
VS
8789
8790 fail:
8791 intel_crtc->new_enabled = crtc->enabled;
8792 if (intel_crtc->new_enabled)
8793 intel_crtc->new_config = &intel_crtc->config;
8794 else
8795 intel_crtc->new_config = NULL;
51fd371b
RC
8796fail_unlock:
8797 if (ret == -EDEADLK) {
8798 drm_modeset_backoff(ctx);
8799 goto retry;
8800 }
8801
412b61d8 8802 return false;
79e53945
JB
8803}
8804
d2434ab7 8805void intel_release_load_detect_pipe(struct drm_connector *connector,
208bf9fd 8806 struct intel_load_detect_pipe *old)
79e53945 8807{
d2434ab7
DV
8808 struct intel_encoder *intel_encoder =
8809 intel_attached_encoder(connector);
4ef69c7a 8810 struct drm_encoder *encoder = &intel_encoder->base;
7b24056b 8811 struct drm_crtc *crtc = encoder->crtc;
412b61d8 8812 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8813
d2dff872 8814 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8815 connector->base.id, connector->name,
8e329a03 8816 encoder->base.id, encoder->name);
d2dff872 8817
8261b191 8818 if (old->load_detect_temp) {
fc303101
DV
8819 to_intel_connector(connector)->new_encoder = NULL;
8820 intel_encoder->new_crtc = NULL;
412b61d8
VS
8821 intel_crtc->new_enabled = false;
8822 intel_crtc->new_config = NULL;
fc303101 8823 intel_set_mode(crtc, NULL, 0, 0, NULL);
d2dff872 8824
36206361
DV
8825 if (old->release_fb) {
8826 drm_framebuffer_unregister_private(old->release_fb);
8827 drm_framebuffer_unreference(old->release_fb);
8828 }
d2dff872 8829
0622a53c 8830 return;
79e53945
JB
8831 }
8832
c751ce4f 8833 /* Switch crtc and encoder back off if necessary */
24218aac
DV
8834 if (old->dpms_mode != DRM_MODE_DPMS_ON)
8835 connector->funcs->dpms(connector, old->dpms_mode);
79e53945
JB
8836}
8837
da4a1efa
VS
8838static int i9xx_pll_refclk(struct drm_device *dev,
8839 const struct intel_crtc_config *pipe_config)
8840{
8841 struct drm_i915_private *dev_priv = dev->dev_private;
8842 u32 dpll = pipe_config->dpll_hw_state.dpll;
8843
8844 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
e91e941b 8845 return dev_priv->vbt.lvds_ssc_freq;
da4a1efa
VS
8846 else if (HAS_PCH_SPLIT(dev))
8847 return 120000;
8848 else if (!IS_GEN2(dev))
8849 return 96000;
8850 else
8851 return 48000;
8852}
8853
79e53945 8854/* Returns the clock of the currently programmed mode of the given pipe. */
f1f644dc
JB
8855static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8856 struct intel_crtc_config *pipe_config)
79e53945 8857{
f1f644dc 8858 struct drm_device *dev = crtc->base.dev;
79e53945 8859 struct drm_i915_private *dev_priv = dev->dev_private;
f1f644dc 8860 int pipe = pipe_config->cpu_transcoder;
293623f7 8861 u32 dpll = pipe_config->dpll_hw_state.dpll;
79e53945
JB
8862 u32 fp;
8863 intel_clock_t clock;
da4a1efa 8864 int refclk = i9xx_pll_refclk(dev, pipe_config);
79e53945
JB
8865
8866 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
293623f7 8867 fp = pipe_config->dpll_hw_state.fp0;
79e53945 8868 else
293623f7 8869 fp = pipe_config->dpll_hw_state.fp1;
79e53945
JB
8870
8871 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
8872 if (IS_PINEVIEW(dev)) {
8873 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8874 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
8875 } else {
8876 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8877 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8878 }
8879
a6c45cf0 8880 if (!IS_GEN2(dev)) {
f2b115e6
AJ
8881 if (IS_PINEVIEW(dev))
8882 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8883 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
8884 else
8885 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
8886 DPLL_FPA01_P1_POST_DIV_SHIFT);
8887
8888 switch (dpll & DPLL_MODE_MASK) {
8889 case DPLLB_MODE_DAC_SERIAL:
8890 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8891 5 : 10;
8892 break;
8893 case DPLLB_MODE_LVDS:
8894 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8895 7 : 14;
8896 break;
8897 default:
28c97730 8898 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945 8899 "mode\n", (int)(dpll & DPLL_MODE_MASK));
f1f644dc 8900 return;
79e53945
JB
8901 }
8902
ac58c3f0 8903 if (IS_PINEVIEW(dev))
da4a1efa 8904 pineview_clock(refclk, &clock);
ac58c3f0 8905 else
da4a1efa 8906 i9xx_clock(refclk, &clock);
79e53945 8907 } else {
0fb58223 8908 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
b1c560d1 8909 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
79e53945
JB
8910
8911 if (is_lvds) {
8912 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8913 DPLL_FPA01_P1_POST_DIV_SHIFT);
b1c560d1
VS
8914
8915 if (lvds & LVDS_CLKB_POWER_UP)
8916 clock.p2 = 7;
8917 else
8918 clock.p2 = 14;
79e53945
JB
8919 } else {
8920 if (dpll & PLL_P1_DIVIDE_BY_TWO)
8921 clock.p1 = 2;
8922 else {
8923 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8924 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8925 }
8926 if (dpll & PLL_P2_DIVIDE_BY_4)
8927 clock.p2 = 4;
8928 else
8929 clock.p2 = 2;
79e53945 8930 }
da4a1efa
VS
8931
8932 i9xx_clock(refclk, &clock);
79e53945
JB
8933 }
8934
18442d08
VS
8935 /*
8936 * This value includes pixel_multiplier. We will use
241bfc38 8937 * port_clock to compute adjusted_mode.crtc_clock in the
18442d08
VS
8938 * encoder's get_config() function.
8939 */
8940 pipe_config->port_clock = clock.dot;
f1f644dc
JB
8941}
8942
6878da05
VS
8943int intel_dotclock_calculate(int link_freq,
8944 const struct intel_link_m_n *m_n)
f1f644dc 8945{
f1f644dc
JB
8946 /*
8947 * The calculation for the data clock is:
1041a02f 8948 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
f1f644dc 8949 * But we want to avoid losing precison if possible, so:
1041a02f 8950 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
f1f644dc
JB
8951 *
8952 * and the link clock is simpler:
1041a02f 8953 * link_clock = (m * link_clock) / n
f1f644dc
JB
8954 */
8955
6878da05
VS
8956 if (!m_n->link_n)
8957 return 0;
f1f644dc 8958
6878da05
VS
8959 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8960}
f1f644dc 8961
18442d08
VS
8962static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8963 struct intel_crtc_config *pipe_config)
6878da05
VS
8964{
8965 struct drm_device *dev = crtc->base.dev;
79e53945 8966
18442d08
VS
8967 /* read out port_clock from the DPLL */
8968 i9xx_crtc_clock_get(crtc, pipe_config);
f1f644dc 8969
f1f644dc 8970 /*
18442d08 8971 * This value does not include pixel_multiplier.
241bfc38 8972 * We will check that port_clock and adjusted_mode.crtc_clock
18442d08
VS
8973 * agree once we know their relationship in the encoder's
8974 * get_config() function.
79e53945 8975 */
241bfc38 8976 pipe_config->adjusted_mode.crtc_clock =
18442d08
VS
8977 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8978 &pipe_config->fdi_m_n);
79e53945
JB
8979}
8980
8981/** Returns the currently programmed mode of the given pipe. */
8982struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8983 struct drm_crtc *crtc)
8984{
548f245b 8985 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 8986 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3b117c8f 8987 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
79e53945 8988 struct drm_display_mode *mode;
f1f644dc 8989 struct intel_crtc_config pipe_config;
fe2b8f9d
PZ
8990 int htot = I915_READ(HTOTAL(cpu_transcoder));
8991 int hsync = I915_READ(HSYNC(cpu_transcoder));
8992 int vtot = I915_READ(VTOTAL(cpu_transcoder));
8993 int vsync = I915_READ(VSYNC(cpu_transcoder));
293623f7 8994 enum pipe pipe = intel_crtc->pipe;
79e53945
JB
8995
8996 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8997 if (!mode)
8998 return NULL;
8999
f1f644dc
JB
9000 /*
9001 * Construct a pipe_config sufficient for getting the clock info
9002 * back out of crtc_clock_get.
9003 *
9004 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
9005 * to use a real value here instead.
9006 */
293623f7 9007 pipe_config.cpu_transcoder = (enum transcoder) pipe;
f1f644dc 9008 pipe_config.pixel_multiplier = 1;
293623f7
VS
9009 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
9010 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
9011 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
f1f644dc
JB
9012 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
9013
773ae034 9014 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
79e53945
JB
9015 mode->hdisplay = (htot & 0xffff) + 1;
9016 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
9017 mode->hsync_start = (hsync & 0xffff) + 1;
9018 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
9019 mode->vdisplay = (vtot & 0xffff) + 1;
9020 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
9021 mode->vsync_start = (vsync & 0xffff) + 1;
9022 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
9023
9024 drm_mode_set_name(mode);
79e53945
JB
9025
9026 return mode;
9027}
9028
cc36513c
DV
9029static void intel_increase_pllclock(struct drm_device *dev,
9030 enum pipe pipe)
652c393a 9031{
fbee40df 9032 struct drm_i915_private *dev_priv = dev->dev_private;
dbdc6479
JB
9033 int dpll_reg = DPLL(pipe);
9034 int dpll;
652c393a 9035
baff296c 9036 if (!HAS_GMCH_DISPLAY(dev))
652c393a
JB
9037 return;
9038
9039 if (!dev_priv->lvds_downclock_avail)
9040 return;
9041
dbdc6479 9042 dpll = I915_READ(dpll_reg);
652c393a 9043 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
44d98a61 9044 DRM_DEBUG_DRIVER("upclocking LVDS\n");
652c393a 9045
8ac5a6d5 9046 assert_panel_unlocked(dev_priv, pipe);
652c393a
JB
9047
9048 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
9049 I915_WRITE(dpll_reg, dpll);
9d0498a2 9050 intel_wait_for_vblank(dev, pipe);
dbdc6479 9051
652c393a
JB
9052 dpll = I915_READ(dpll_reg);
9053 if (dpll & DISPLAY_RATE_SELECT_FPA1)
44d98a61 9054 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
652c393a 9055 }
652c393a
JB
9056}
9057
9058static void intel_decrease_pllclock(struct drm_crtc *crtc)
9059{
9060 struct drm_device *dev = crtc->dev;
fbee40df 9061 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 9062 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
652c393a 9063
baff296c 9064 if (!HAS_GMCH_DISPLAY(dev))
652c393a
JB
9065 return;
9066
9067 if (!dev_priv->lvds_downclock_avail)
9068 return;
9069
9070 /*
9071 * Since this is called by a timer, we should never get here in
9072 * the manual case.
9073 */
9074 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
dc257cf1
DV
9075 int pipe = intel_crtc->pipe;
9076 int dpll_reg = DPLL(pipe);
9077 int dpll;
f6e5b160 9078
44d98a61 9079 DRM_DEBUG_DRIVER("downclocking LVDS\n");
652c393a 9080
8ac5a6d5 9081 assert_panel_unlocked(dev_priv, pipe);
652c393a 9082
dc257cf1 9083 dpll = I915_READ(dpll_reg);
652c393a
JB
9084 dpll |= DISPLAY_RATE_SELECT_FPA1;
9085 I915_WRITE(dpll_reg, dpll);
9d0498a2 9086 intel_wait_for_vblank(dev, pipe);
652c393a
JB
9087 dpll = I915_READ(dpll_reg);
9088 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
44d98a61 9089 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
652c393a
JB
9090 }
9091
9092}
9093
f047e395
CW
9094void intel_mark_busy(struct drm_device *dev)
9095{
c67a470b
PZ
9096 struct drm_i915_private *dev_priv = dev->dev_private;
9097
f62a0076
CW
9098 if (dev_priv->mm.busy)
9099 return;
9100
43694d69 9101 intel_runtime_pm_get(dev_priv);
c67a470b 9102 i915_update_gfx_val(dev_priv);
f62a0076 9103 dev_priv->mm.busy = true;
f047e395
CW
9104}
9105
9106void intel_mark_idle(struct drm_device *dev)
652c393a 9107{
c67a470b 9108 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 9109 struct drm_crtc *crtc;
652c393a 9110
f62a0076
CW
9111 if (!dev_priv->mm.busy)
9112 return;
9113
9114 dev_priv->mm.busy = false;
9115
d330a953 9116 if (!i915.powersave)
bb4cdd53 9117 goto out;
652c393a 9118
70e1e0ec 9119 for_each_crtc(dev, crtc) {
f4510a27 9120 if (!crtc->primary->fb)
652c393a
JB
9121 continue;
9122
725a5b54 9123 intel_decrease_pllclock(crtc);
652c393a 9124 }
b29c19b6 9125
3d13ef2e 9126 if (INTEL_INFO(dev)->gen >= 6)
b29c19b6 9127 gen6_rps_idle(dev->dev_private);
bb4cdd53
PZ
9128
9129out:
43694d69 9130 intel_runtime_pm_put(dev_priv);
652c393a
JB
9131}
9132
7c8f8a70 9133
f99d7069
DV
9134/**
9135 * intel_mark_fb_busy - mark given planes as busy
9136 * @dev: DRM device
9137 * @frontbuffer_bits: bits for the affected planes
9138 * @ring: optional ring for asynchronous commands
9139 *
9140 * This function gets called every time the screen contents change. It can be
9141 * used to keep e.g. the update rate at the nominal refresh rate with DRRS.
9142 */
9143static void intel_mark_fb_busy(struct drm_device *dev,
9144 unsigned frontbuffer_bits,
9145 struct intel_engine_cs *ring)
652c393a 9146{
055e393f 9147 struct drm_i915_private *dev_priv = dev->dev_private;
cc36513c 9148 enum pipe pipe;
652c393a 9149
d330a953 9150 if (!i915.powersave)
acb87dfb
CW
9151 return;
9152
055e393f 9153 for_each_pipe(dev_priv, pipe) {
f99d7069 9154 if (!(frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(pipe)))
c65355bb
CW
9155 continue;
9156
cc36513c 9157 intel_increase_pllclock(dev, pipe);
c65355bb
CW
9158 if (ring && intel_fbc_enabled(dev))
9159 ring->fbc_dirty = true;
652c393a
JB
9160 }
9161}
9162
f99d7069
DV
9163/**
9164 * intel_fb_obj_invalidate - invalidate frontbuffer object
9165 * @obj: GEM object to invalidate
9166 * @ring: set for asynchronous rendering
9167 *
9168 * This function gets called every time rendering on the given object starts and
9169 * frontbuffer caching (fbc, low refresh rate for DRRS, panel self refresh) must
9170 * be invalidated. If @ring is non-NULL any subsequent invalidation will be delayed
9171 * until the rendering completes or a flip on this frontbuffer plane is
9172 * scheduled.
9173 */
9174void intel_fb_obj_invalidate(struct drm_i915_gem_object *obj,
9175 struct intel_engine_cs *ring)
9176{
9177 struct drm_device *dev = obj->base.dev;
9178 struct drm_i915_private *dev_priv = dev->dev_private;
9179
9180 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
9181
9182 if (!obj->frontbuffer_bits)
9183 return;
9184
9185 if (ring) {
9186 mutex_lock(&dev_priv->fb_tracking.lock);
9187 dev_priv->fb_tracking.busy_bits
9188 |= obj->frontbuffer_bits;
9189 dev_priv->fb_tracking.flip_bits
9190 &= ~obj->frontbuffer_bits;
9191 mutex_unlock(&dev_priv->fb_tracking.lock);
9192 }
9193
9194 intel_mark_fb_busy(dev, obj->frontbuffer_bits, ring);
9195
9ca15301 9196 intel_edp_psr_invalidate(dev, obj->frontbuffer_bits);
f99d7069
DV
9197}
9198
9199/**
9200 * intel_frontbuffer_flush - flush frontbuffer
9201 * @dev: DRM device
9202 * @frontbuffer_bits: frontbuffer plane tracking bits
9203 *
9204 * This function gets called every time rendering on the given planes has
9205 * completed and frontbuffer caching can be started again. Flushes will get
9206 * delayed if they're blocked by some oustanding asynchronous rendering.
9207 *
9208 * Can be called without any locks held.
9209 */
9210void intel_frontbuffer_flush(struct drm_device *dev,
9211 unsigned frontbuffer_bits)
9212{
9213 struct drm_i915_private *dev_priv = dev->dev_private;
9214
9215 /* Delay flushing when rings are still busy.*/
9216 mutex_lock(&dev_priv->fb_tracking.lock);
9217 frontbuffer_bits &= ~dev_priv->fb_tracking.busy_bits;
9218 mutex_unlock(&dev_priv->fb_tracking.lock);
9219
9220 intel_mark_fb_busy(dev, frontbuffer_bits, NULL);
9221
9ca15301 9222 intel_edp_psr_flush(dev, frontbuffer_bits);
c5ad011d 9223
c317adcd
VS
9224 /*
9225 * FIXME: Unconditional fbc flushing here is a rather gross hack and
9226 * needs to be reworked into a proper frontbuffer tracking scheme like
9227 * psr employs.
9228 */
9229 if (IS_BROADWELL(dev))
c5ad011d 9230 gen8_fbc_sw_flush(dev, FBC_REND_CACHE_CLEAN);
f99d7069
DV
9231}
9232
9233/**
9234 * intel_fb_obj_flush - flush frontbuffer object
9235 * @obj: GEM object to flush
9236 * @retire: set when retiring asynchronous rendering
9237 *
9238 * This function gets called every time rendering on the given object has
9239 * completed and frontbuffer caching can be started again. If @retire is true
9240 * then any delayed flushes will be unblocked.
9241 */
9242void intel_fb_obj_flush(struct drm_i915_gem_object *obj,
9243 bool retire)
9244{
9245 struct drm_device *dev = obj->base.dev;
9246 struct drm_i915_private *dev_priv = dev->dev_private;
9247 unsigned frontbuffer_bits;
9248
9249 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
9250
9251 if (!obj->frontbuffer_bits)
9252 return;
9253
9254 frontbuffer_bits = obj->frontbuffer_bits;
9255
9256 if (retire) {
9257 mutex_lock(&dev_priv->fb_tracking.lock);
9258 /* Filter out new bits since rendering started. */
9259 frontbuffer_bits &= dev_priv->fb_tracking.busy_bits;
9260
9261 dev_priv->fb_tracking.busy_bits &= ~frontbuffer_bits;
9262 mutex_unlock(&dev_priv->fb_tracking.lock);
9263 }
9264
9265 intel_frontbuffer_flush(dev, frontbuffer_bits);
9266}
9267
9268/**
9269 * intel_frontbuffer_flip_prepare - prepare asnychronous frontbuffer flip
9270 * @dev: DRM device
9271 * @frontbuffer_bits: frontbuffer plane tracking bits
9272 *
9273 * This function gets called after scheduling a flip on @obj. The actual
9274 * frontbuffer flushing will be delayed until completion is signalled with
9275 * intel_frontbuffer_flip_complete. If an invalidate happens in between this
9276 * flush will be cancelled.
9277 *
9278 * Can be called without any locks held.
9279 */
9280void intel_frontbuffer_flip_prepare(struct drm_device *dev,
9281 unsigned frontbuffer_bits)
9282{
9283 struct drm_i915_private *dev_priv = dev->dev_private;
9284
9285 mutex_lock(&dev_priv->fb_tracking.lock);
9286 dev_priv->fb_tracking.flip_bits
9287 |= frontbuffer_bits;
9288 mutex_unlock(&dev_priv->fb_tracking.lock);
9289}
9290
9291/**
9292 * intel_frontbuffer_flip_complete - complete asynchronous frontbuffer flush
9293 * @dev: DRM device
9294 * @frontbuffer_bits: frontbuffer plane tracking bits
9295 *
9296 * This function gets called after the flip has been latched and will complete
9297 * on the next vblank. It will execute the fush if it hasn't been cancalled yet.
9298 *
9299 * Can be called without any locks held.
9300 */
9301void intel_frontbuffer_flip_complete(struct drm_device *dev,
9302 unsigned frontbuffer_bits)
9303{
9304 struct drm_i915_private *dev_priv = dev->dev_private;
9305
9306 mutex_lock(&dev_priv->fb_tracking.lock);
9307 /* Mask any cancelled flips. */
9308 frontbuffer_bits &= dev_priv->fb_tracking.flip_bits;
9309 dev_priv->fb_tracking.flip_bits &= ~frontbuffer_bits;
9310 mutex_unlock(&dev_priv->fb_tracking.lock);
9311
9312 intel_frontbuffer_flush(dev, frontbuffer_bits);
9313}
9314
79e53945
JB
9315static void intel_crtc_destroy(struct drm_crtc *crtc)
9316{
9317 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
9318 struct drm_device *dev = crtc->dev;
9319 struct intel_unpin_work *work;
9320 unsigned long flags;
9321
9322 spin_lock_irqsave(&dev->event_lock, flags);
9323 work = intel_crtc->unpin_work;
9324 intel_crtc->unpin_work = NULL;
9325 spin_unlock_irqrestore(&dev->event_lock, flags);
9326
9327 if (work) {
9328 cancel_work_sync(&work->work);
9329 kfree(work);
9330 }
79e53945
JB
9331
9332 drm_crtc_cleanup(crtc);
67e77c5a 9333
79e53945
JB
9334 kfree(intel_crtc);
9335}
9336
6b95a207
KH
9337static void intel_unpin_work_fn(struct work_struct *__work)
9338{
9339 struct intel_unpin_work *work =
9340 container_of(__work, struct intel_unpin_work, work);
b4a98e57 9341 struct drm_device *dev = work->crtc->dev;
f99d7069 9342 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
6b95a207 9343
b4a98e57 9344 mutex_lock(&dev->struct_mutex);
1690e1eb 9345 intel_unpin_fb_obj(work->old_fb_obj);
05394f39
CW
9346 drm_gem_object_unreference(&work->pending_flip_obj->base);
9347 drm_gem_object_unreference(&work->old_fb_obj->base);
d9e86c0e 9348
b4a98e57
CW
9349 intel_update_fbc(dev);
9350 mutex_unlock(&dev->struct_mutex);
9351
f99d7069
DV
9352 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9353
b4a98e57
CW
9354 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9355 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9356
6b95a207
KH
9357 kfree(work);
9358}
9359
1afe3e9d 9360static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 9361 struct drm_crtc *crtc)
6b95a207 9362{
6b95a207
KH
9363 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9364 struct intel_unpin_work *work;
6b95a207
KH
9365 unsigned long flags;
9366
9367 /* Ignore early vblank irqs */
9368 if (intel_crtc == NULL)
9369 return;
9370
9371 spin_lock_irqsave(&dev->event_lock, flags);
9372 work = intel_crtc->unpin_work;
e7d841ca
CW
9373
9374 /* Ensure we don't miss a work->pending update ... */
9375 smp_rmb();
9376
9377 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
6b95a207
KH
9378 spin_unlock_irqrestore(&dev->event_lock, flags);
9379 return;
9380 }
9381
d6bbafa1 9382 page_flip_completed(intel_crtc);
0af7e4df 9383
6b95a207 9384 spin_unlock_irqrestore(&dev->event_lock, flags);
6b95a207
KH
9385}
9386
1afe3e9d
JB
9387void intel_finish_page_flip(struct drm_device *dev, int pipe)
9388{
fbee40df 9389 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9390 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9391
49b14a5c 9392 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9393}
9394
9395void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9396{
fbee40df 9397 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9398 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9399
49b14a5c 9400 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9401}
9402
75f7f3ec
VS
9403/* Is 'a' after or equal to 'b'? */
9404static bool g4x_flip_count_after_eq(u32 a, u32 b)
9405{
9406 return !((a - b) & 0x80000000);
9407}
9408
9409static bool page_flip_finished(struct intel_crtc *crtc)
9410{
9411 struct drm_device *dev = crtc->base.dev;
9412 struct drm_i915_private *dev_priv = dev->dev_private;
9413
9414 /*
9415 * The relevant registers doen't exist on pre-ctg.
9416 * As the flip done interrupt doesn't trigger for mmio
9417 * flips on gmch platforms, a flip count check isn't
9418 * really needed there. But since ctg has the registers,
9419 * include it in the check anyway.
9420 */
9421 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9422 return true;
9423
9424 /*
9425 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9426 * used the same base address. In that case the mmio flip might
9427 * have completed, but the CS hasn't even executed the flip yet.
9428 *
9429 * A flip count check isn't enough as the CS might have updated
9430 * the base address just after start of vblank, but before we
9431 * managed to process the interrupt. This means we'd complete the
9432 * CS flip too soon.
9433 *
9434 * Combining both checks should get us a good enough result. It may
9435 * still happen that the CS flip has been executed, but has not
9436 * yet actually completed. But in case the base address is the same
9437 * anyway, we don't really care.
9438 */
9439 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9440 crtc->unpin_work->gtt_offset &&
9441 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9442 crtc->unpin_work->flip_count);
9443}
9444
6b95a207
KH
9445void intel_prepare_page_flip(struct drm_device *dev, int plane)
9446{
fbee40df 9447 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
9448 struct intel_crtc *intel_crtc =
9449 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9450 unsigned long flags;
9451
e7d841ca
CW
9452 /* NB: An MMIO update of the plane base pointer will also
9453 * generate a page-flip completion irq, i.e. every modeset
9454 * is also accompanied by a spurious intel_prepare_page_flip().
9455 */
6b95a207 9456 spin_lock_irqsave(&dev->event_lock, flags);
75f7f3ec 9457 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
e7d841ca 9458 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
6b95a207
KH
9459 spin_unlock_irqrestore(&dev->event_lock, flags);
9460}
9461
eba905b2 9462static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
e7d841ca
CW
9463{
9464 /* Ensure that the work item is consistent when activating it ... */
9465 smp_wmb();
9466 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9467 /* and that it is marked active as soon as the irq could fire. */
9468 smp_wmb();
9469}
9470
8c9f3aaf
JB
9471static int intel_gen2_queue_flip(struct drm_device *dev,
9472 struct drm_crtc *crtc,
9473 struct drm_framebuffer *fb,
ed8d1975 9474 struct drm_i915_gem_object *obj,
a4872ba6 9475 struct intel_engine_cs *ring,
ed8d1975 9476 uint32_t flags)
8c9f3aaf 9477{
8c9f3aaf 9478 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9479 u32 flip_mask;
9480 int ret;
9481
6d90c952 9482 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9483 if (ret)
4fa62c89 9484 return ret;
8c9f3aaf
JB
9485
9486 /* Can't queue multiple flips, so wait for the previous
9487 * one to finish before executing the next.
9488 */
9489 if (intel_crtc->plane)
9490 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9491 else
9492 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9493 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9494 intel_ring_emit(ring, MI_NOOP);
9495 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9496 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9497 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9498 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952 9499 intel_ring_emit(ring, 0); /* aux display base address, unused */
e7d841ca
CW
9500
9501 intel_mark_page_flip_active(intel_crtc);
09246732 9502 __intel_ring_advance(ring);
83d4092b 9503 return 0;
8c9f3aaf
JB
9504}
9505
9506static int intel_gen3_queue_flip(struct drm_device *dev,
9507 struct drm_crtc *crtc,
9508 struct drm_framebuffer *fb,
ed8d1975 9509 struct drm_i915_gem_object *obj,
a4872ba6 9510 struct intel_engine_cs *ring,
ed8d1975 9511 uint32_t flags)
8c9f3aaf 9512{
8c9f3aaf 9513 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9514 u32 flip_mask;
9515 int ret;
9516
6d90c952 9517 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9518 if (ret)
4fa62c89 9519 return ret;
8c9f3aaf
JB
9520
9521 if (intel_crtc->plane)
9522 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9523 else
9524 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9525 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9526 intel_ring_emit(ring, MI_NOOP);
9527 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9528 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9529 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9530 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952
DV
9531 intel_ring_emit(ring, MI_NOOP);
9532
e7d841ca 9533 intel_mark_page_flip_active(intel_crtc);
09246732 9534 __intel_ring_advance(ring);
83d4092b 9535 return 0;
8c9f3aaf
JB
9536}
9537
9538static int intel_gen4_queue_flip(struct drm_device *dev,
9539 struct drm_crtc *crtc,
9540 struct drm_framebuffer *fb,
ed8d1975 9541 struct drm_i915_gem_object *obj,
a4872ba6 9542 struct intel_engine_cs *ring,
ed8d1975 9543 uint32_t flags)
8c9f3aaf
JB
9544{
9545 struct drm_i915_private *dev_priv = dev->dev_private;
9546 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9547 uint32_t pf, pipesrc;
9548 int ret;
9549
6d90c952 9550 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9551 if (ret)
4fa62c89 9552 return ret;
8c9f3aaf
JB
9553
9554 /* i965+ uses the linear or tiled offsets from the
9555 * Display Registers (which do not change across a page-flip)
9556 * so we need only reprogram the base address.
9557 */
6d90c952
DV
9558 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9559 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9560 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9561 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
c2c75131 9562 obj->tiling_mode);
8c9f3aaf
JB
9563
9564 /* XXX Enabling the panel-fitter across page-flip is so far
9565 * untested on non-native modes, so ignore it for now.
9566 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9567 */
9568 pf = 0;
9569 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9570 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9571
9572 intel_mark_page_flip_active(intel_crtc);
09246732 9573 __intel_ring_advance(ring);
83d4092b 9574 return 0;
8c9f3aaf
JB
9575}
9576
9577static int intel_gen6_queue_flip(struct drm_device *dev,
9578 struct drm_crtc *crtc,
9579 struct drm_framebuffer *fb,
ed8d1975 9580 struct drm_i915_gem_object *obj,
a4872ba6 9581 struct intel_engine_cs *ring,
ed8d1975 9582 uint32_t flags)
8c9f3aaf
JB
9583{
9584 struct drm_i915_private *dev_priv = dev->dev_private;
9585 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9586 uint32_t pf, pipesrc;
9587 int ret;
9588
6d90c952 9589 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9590 if (ret)
4fa62c89 9591 return ret;
8c9f3aaf 9592
6d90c952
DV
9593 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9594 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9595 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
75f7f3ec 9596 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
8c9f3aaf 9597
dc257cf1
DV
9598 /* Contrary to the suggestions in the documentation,
9599 * "Enable Panel Fitter" does not seem to be required when page
9600 * flipping with a non-native mode, and worse causes a normal
9601 * modeset to fail.
9602 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9603 */
9604 pf = 0;
8c9f3aaf 9605 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9606 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9607
9608 intel_mark_page_flip_active(intel_crtc);
09246732 9609 __intel_ring_advance(ring);
83d4092b 9610 return 0;
8c9f3aaf
JB
9611}
9612
7c9017e5
JB
9613static int intel_gen7_queue_flip(struct drm_device *dev,
9614 struct drm_crtc *crtc,
9615 struct drm_framebuffer *fb,
ed8d1975 9616 struct drm_i915_gem_object *obj,
a4872ba6 9617 struct intel_engine_cs *ring,
ed8d1975 9618 uint32_t flags)
7c9017e5 9619{
7c9017e5 9620 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cb05d8de 9621 uint32_t plane_bit = 0;
ffe74d75
CW
9622 int len, ret;
9623
eba905b2 9624 switch (intel_crtc->plane) {
cb05d8de
DV
9625 case PLANE_A:
9626 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9627 break;
9628 case PLANE_B:
9629 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9630 break;
9631 case PLANE_C:
9632 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9633 break;
9634 default:
9635 WARN_ONCE(1, "unknown plane in flip command\n");
4fa62c89 9636 return -ENODEV;
cb05d8de
DV
9637 }
9638
ffe74d75 9639 len = 4;
f476828a 9640 if (ring->id == RCS) {
ffe74d75 9641 len += 6;
f476828a
DL
9642 /*
9643 * On Gen 8, SRM is now taking an extra dword to accommodate
9644 * 48bits addresses, and we need a NOOP for the batch size to
9645 * stay even.
9646 */
9647 if (IS_GEN8(dev))
9648 len += 2;
9649 }
ffe74d75 9650
f66fab8e
VS
9651 /*
9652 * BSpec MI_DISPLAY_FLIP for IVB:
9653 * "The full packet must be contained within the same cache line."
9654 *
9655 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9656 * cacheline, if we ever start emitting more commands before
9657 * the MI_DISPLAY_FLIP we may need to first emit everything else,
9658 * then do the cacheline alignment, and finally emit the
9659 * MI_DISPLAY_FLIP.
9660 */
9661 ret = intel_ring_cacheline_align(ring);
9662 if (ret)
4fa62c89 9663 return ret;
f66fab8e 9664
ffe74d75 9665 ret = intel_ring_begin(ring, len);
7c9017e5 9666 if (ret)
4fa62c89 9667 return ret;
7c9017e5 9668
ffe74d75
CW
9669 /* Unmask the flip-done completion message. Note that the bspec says that
9670 * we should do this for both the BCS and RCS, and that we must not unmask
9671 * more than one flip event at any time (or ensure that one flip message
9672 * can be sent by waiting for flip-done prior to queueing new flips).
9673 * Experimentation says that BCS works despite DERRMR masking all
9674 * flip-done completion events and that unmasking all planes at once
9675 * for the RCS also doesn't appear to drop events. Setting the DERRMR
9676 * to zero does lead to lockups within MI_DISPLAY_FLIP.
9677 */
9678 if (ring->id == RCS) {
9679 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9680 intel_ring_emit(ring, DERRMR);
9681 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9682 DERRMR_PIPEB_PRI_FLIP_DONE |
9683 DERRMR_PIPEC_PRI_FLIP_DONE));
f476828a
DL
9684 if (IS_GEN8(dev))
9685 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9686 MI_SRM_LRM_GLOBAL_GTT);
9687 else
9688 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9689 MI_SRM_LRM_GLOBAL_GTT);
ffe74d75
CW
9690 intel_ring_emit(ring, DERRMR);
9691 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
f476828a
DL
9692 if (IS_GEN8(dev)) {
9693 intel_ring_emit(ring, 0);
9694 intel_ring_emit(ring, MI_NOOP);
9695 }
ffe74d75
CW
9696 }
9697
cb05d8de 9698 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
01f2c773 9699 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
75f7f3ec 9700 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
7c9017e5 9701 intel_ring_emit(ring, (MI_NOOP));
e7d841ca
CW
9702
9703 intel_mark_page_flip_active(intel_crtc);
09246732 9704 __intel_ring_advance(ring);
83d4092b 9705 return 0;
7c9017e5
JB
9706}
9707
84c33a64
SG
9708static bool use_mmio_flip(struct intel_engine_cs *ring,
9709 struct drm_i915_gem_object *obj)
9710{
9711 /*
9712 * This is not being used for older platforms, because
9713 * non-availability of flip done interrupt forces us to use
9714 * CS flips. Older platforms derive flip done using some clever
9715 * tricks involving the flip_pending status bits and vblank irqs.
9716 * So using MMIO flips there would disrupt this mechanism.
9717 */
9718
8e09bf83
CW
9719 if (ring == NULL)
9720 return true;
9721
84c33a64
SG
9722 if (INTEL_INFO(ring->dev)->gen < 5)
9723 return false;
9724
9725 if (i915.use_mmio_flip < 0)
9726 return false;
9727 else if (i915.use_mmio_flip > 0)
9728 return true;
14bf993e
OM
9729 else if (i915.enable_execlists)
9730 return true;
84c33a64
SG
9731 else
9732 return ring != obj->ring;
9733}
9734
9735static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9736{
9737 struct drm_device *dev = intel_crtc->base.dev;
9738 struct drm_i915_private *dev_priv = dev->dev_private;
9739 struct intel_framebuffer *intel_fb =
9740 to_intel_framebuffer(intel_crtc->base.primary->fb);
9741 struct drm_i915_gem_object *obj = intel_fb->obj;
9742 u32 dspcntr;
9743 u32 reg;
9744
9745 intel_mark_page_flip_active(intel_crtc);
9746
9747 reg = DSPCNTR(intel_crtc->plane);
9748 dspcntr = I915_READ(reg);
9749
9750 if (INTEL_INFO(dev)->gen >= 4) {
9751 if (obj->tiling_mode != I915_TILING_NONE)
9752 dspcntr |= DISPPLANE_TILED;
9753 else
9754 dspcntr &= ~DISPPLANE_TILED;
9755 }
9756 I915_WRITE(reg, dspcntr);
9757
9758 I915_WRITE(DSPSURF(intel_crtc->plane),
9759 intel_crtc->unpin_work->gtt_offset);
9760 POSTING_READ(DSPSURF(intel_crtc->plane));
9761}
9762
9763static int intel_postpone_flip(struct drm_i915_gem_object *obj)
9764{
9765 struct intel_engine_cs *ring;
9766 int ret;
9767
9768 lockdep_assert_held(&obj->base.dev->struct_mutex);
9769
9770 if (!obj->last_write_seqno)
9771 return 0;
9772
9773 ring = obj->ring;
9774
9775 if (i915_seqno_passed(ring->get_seqno(ring, true),
9776 obj->last_write_seqno))
9777 return 0;
9778
9779 ret = i915_gem_check_olr(ring, obj->last_write_seqno);
9780 if (ret)
9781 return ret;
9782
9783 if (WARN_ON(!ring->irq_get(ring)))
9784 return 0;
9785
9786 return 1;
9787}
9788
9789void intel_notify_mmio_flip(struct intel_engine_cs *ring)
9790{
9791 struct drm_i915_private *dev_priv = to_i915(ring->dev);
9792 struct intel_crtc *intel_crtc;
9793 unsigned long irq_flags;
9794 u32 seqno;
9795
9796 seqno = ring->get_seqno(ring, false);
9797
9798 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9799 for_each_intel_crtc(ring->dev, intel_crtc) {
9800 struct intel_mmio_flip *mmio_flip;
9801
9802 mmio_flip = &intel_crtc->mmio_flip;
9803 if (mmio_flip->seqno == 0)
9804 continue;
9805
9806 if (ring->id != mmio_flip->ring_id)
9807 continue;
9808
9809 if (i915_seqno_passed(seqno, mmio_flip->seqno)) {
9810 intel_do_mmio_flip(intel_crtc);
9811 mmio_flip->seqno = 0;
9812 ring->irq_put(ring);
9813 }
9814 }
9815 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9816}
9817
9818static int intel_queue_mmio_flip(struct drm_device *dev,
9819 struct drm_crtc *crtc,
9820 struct drm_framebuffer *fb,
9821 struct drm_i915_gem_object *obj,
9822 struct intel_engine_cs *ring,
9823 uint32_t flags)
9824{
9825 struct drm_i915_private *dev_priv = dev->dev_private;
9826 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9827 unsigned long irq_flags;
9828 int ret;
9829
9830 if (WARN_ON(intel_crtc->mmio_flip.seqno))
9831 return -EBUSY;
9832
9833 ret = intel_postpone_flip(obj);
9834 if (ret < 0)
9835 return ret;
9836 if (ret == 0) {
9837 intel_do_mmio_flip(intel_crtc);
9838 return 0;
9839 }
9840
9841 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9842 intel_crtc->mmio_flip.seqno = obj->last_write_seqno;
9843 intel_crtc->mmio_flip.ring_id = obj->ring->id;
9844 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9845
9846 /*
9847 * Double check to catch cases where irq fired before
9848 * mmio flip data was ready
9849 */
9850 intel_notify_mmio_flip(obj->ring);
9851 return 0;
9852}
9853
8c9f3aaf
JB
9854static int intel_default_queue_flip(struct drm_device *dev,
9855 struct drm_crtc *crtc,
9856 struct drm_framebuffer *fb,
ed8d1975 9857 struct drm_i915_gem_object *obj,
a4872ba6 9858 struct intel_engine_cs *ring,
ed8d1975 9859 uint32_t flags)
8c9f3aaf
JB
9860{
9861 return -ENODEV;
9862}
9863
d6bbafa1
CW
9864static bool __intel_pageflip_stall_check(struct drm_device *dev,
9865 struct drm_crtc *crtc)
9866{
9867 struct drm_i915_private *dev_priv = dev->dev_private;
9868 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9869 struct intel_unpin_work *work = intel_crtc->unpin_work;
9870 u32 addr;
9871
9872 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
9873 return true;
9874
9875 if (!work->enable_stall_check)
9876 return false;
9877
9878 if (work->flip_ready_vblank == 0) {
9879 if (work->flip_queued_ring &&
9880 !i915_seqno_passed(work->flip_queued_ring->get_seqno(work->flip_queued_ring, true),
9881 work->flip_queued_seqno))
9882 return false;
9883
9884 work->flip_ready_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9885 }
9886
9887 if (drm_vblank_count(dev, intel_crtc->pipe) - work->flip_ready_vblank < 3)
9888 return false;
9889
9890 /* Potential stall - if we see that the flip has happened,
9891 * assume a missed interrupt. */
9892 if (INTEL_INFO(dev)->gen >= 4)
9893 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
9894 else
9895 addr = I915_READ(DSPADDR(intel_crtc->plane));
9896
9897 /* There is a potential issue here with a false positive after a flip
9898 * to the same address. We could address this by checking for a
9899 * non-incrementing frame counter.
9900 */
9901 return addr == work->gtt_offset;
9902}
9903
9904void intel_check_page_flip(struct drm_device *dev, int pipe)
9905{
9906 struct drm_i915_private *dev_priv = dev->dev_private;
9907 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9908 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9909 unsigned long flags;
9910
9911 if (crtc == NULL)
9912 return;
9913
9914 spin_lock_irqsave(&dev->event_lock, flags);
9915 if (intel_crtc->unpin_work && __intel_pageflip_stall_check(dev, crtc)) {
9916 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
9917 intel_crtc->unpin_work->flip_queued_vblank, drm_vblank_count(dev, pipe));
9918 page_flip_completed(intel_crtc);
9919 }
9920 spin_unlock_irqrestore(&dev->event_lock, flags);
9921}
9922
6b95a207
KH
9923static int intel_crtc_page_flip(struct drm_crtc *crtc,
9924 struct drm_framebuffer *fb,
ed8d1975
KP
9925 struct drm_pending_vblank_event *event,
9926 uint32_t page_flip_flags)
6b95a207
KH
9927{
9928 struct drm_device *dev = crtc->dev;
9929 struct drm_i915_private *dev_priv = dev->dev_private;
f4510a27 9930 struct drm_framebuffer *old_fb = crtc->primary->fb;
2ff8fde1 9931 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6b95a207 9932 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 9933 enum pipe pipe = intel_crtc->pipe;
6b95a207 9934 struct intel_unpin_work *work;
a4872ba6 9935 struct intel_engine_cs *ring;
8c9f3aaf 9936 unsigned long flags;
52e68630 9937 int ret;
6b95a207 9938
c76bb61a
DS
9939 //trigger software GT busyness calculation
9940 gen8_flip_interrupt(dev);
9941
2ff8fde1
MR
9942 /*
9943 * drm_mode_page_flip_ioctl() should already catch this, but double
9944 * check to be safe. In the future we may enable pageflipping from
9945 * a disabled primary plane.
9946 */
9947 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9948 return -EBUSY;
9949
e6a595d2 9950 /* Can't change pixel format via MI display flips. */
f4510a27 9951 if (fb->pixel_format != crtc->primary->fb->pixel_format)
e6a595d2
VS
9952 return -EINVAL;
9953
9954 /*
9955 * TILEOFF/LINOFF registers can't be changed via MI display flips.
9956 * Note that pitch changes could also affect these register.
9957 */
9958 if (INTEL_INFO(dev)->gen > 3 &&
f4510a27
MR
9959 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9960 fb->pitches[0] != crtc->primary->fb->pitches[0]))
e6a595d2
VS
9961 return -EINVAL;
9962
f900db47
CW
9963 if (i915_terminally_wedged(&dev_priv->gpu_error))
9964 goto out_hang;
9965
b14c5679 9966 work = kzalloc(sizeof(*work), GFP_KERNEL);
6b95a207
KH
9967 if (work == NULL)
9968 return -ENOMEM;
9969
6b95a207 9970 work->event = event;
b4a98e57 9971 work->crtc = crtc;
2ff8fde1 9972 work->old_fb_obj = intel_fb_obj(old_fb);
6b95a207
KH
9973 INIT_WORK(&work->work, intel_unpin_work_fn);
9974
87b6b101 9975 ret = drm_crtc_vblank_get(crtc);
7317c75e
JB
9976 if (ret)
9977 goto free_work;
9978
6b95a207
KH
9979 /* We borrow the event spin lock for protecting unpin_work */
9980 spin_lock_irqsave(&dev->event_lock, flags);
9981 if (intel_crtc->unpin_work) {
d6bbafa1
CW
9982 /* Before declaring the flip queue wedged, check if
9983 * the hardware completed the operation behind our backs.
9984 */
9985 if (__intel_pageflip_stall_check(dev, crtc)) {
9986 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
9987 page_flip_completed(intel_crtc);
9988 } else {
9989 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
9990 spin_unlock_irqrestore(&dev->event_lock, flags);
468f0b44 9991
d6bbafa1
CW
9992 drm_crtc_vblank_put(crtc);
9993 kfree(work);
9994 return -EBUSY;
9995 }
6b95a207
KH
9996 }
9997 intel_crtc->unpin_work = work;
9998 spin_unlock_irqrestore(&dev->event_lock, flags);
9999
b4a98e57
CW
10000 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
10001 flush_workqueue(dev_priv->wq);
10002
79158103
CW
10003 ret = i915_mutex_lock_interruptible(dev);
10004 if (ret)
10005 goto cleanup;
6b95a207 10006
75dfca80 10007 /* Reference the objects for the scheduled work. */
05394f39
CW
10008 drm_gem_object_reference(&work->old_fb_obj->base);
10009 drm_gem_object_reference(&obj->base);
6b95a207 10010
f4510a27 10011 crtc->primary->fb = fb;
96b099fd 10012
e1f99ce6 10013 work->pending_flip_obj = obj;
e1f99ce6 10014
b4a98e57 10015 atomic_inc(&intel_crtc->unpin_work_count);
10d83730 10016 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
e1f99ce6 10017
75f7f3ec 10018 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
a071fa00 10019 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
75f7f3ec 10020
4fa62c89
VS
10021 if (IS_VALLEYVIEW(dev)) {
10022 ring = &dev_priv->ring[BCS];
8e09bf83
CW
10023 if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
10024 /* vlv: DISPLAY_FLIP fails to change tiling */
10025 ring = NULL;
2a92d5bc
CW
10026 } else if (IS_IVYBRIDGE(dev)) {
10027 ring = &dev_priv->ring[BCS];
4fa62c89
VS
10028 } else if (INTEL_INFO(dev)->gen >= 7) {
10029 ring = obj->ring;
10030 if (ring == NULL || ring->id != RCS)
10031 ring = &dev_priv->ring[BCS];
10032 } else {
10033 ring = &dev_priv->ring[RCS];
10034 }
10035
10036 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf
JB
10037 if (ret)
10038 goto cleanup_pending;
6b95a207 10039
4fa62c89
VS
10040 work->gtt_offset =
10041 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
10042
d6bbafa1 10043 if (use_mmio_flip(ring, obj)) {
84c33a64
SG
10044 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
10045 page_flip_flags);
d6bbafa1
CW
10046 if (ret)
10047 goto cleanup_unpin;
10048
10049 work->flip_queued_seqno = obj->last_write_seqno;
10050 work->flip_queued_ring = obj->ring;
10051 } else {
84c33a64 10052 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
d6bbafa1
CW
10053 page_flip_flags);
10054 if (ret)
10055 goto cleanup_unpin;
10056
10057 work->flip_queued_seqno = intel_ring_get_seqno(ring);
10058 work->flip_queued_ring = ring;
10059 }
10060
10061 work->flip_queued_vblank = drm_vblank_count(dev, intel_crtc->pipe);
10062 work->enable_stall_check = true;
4fa62c89 10063
a071fa00
DV
10064 i915_gem_track_fb(work->old_fb_obj, obj,
10065 INTEL_FRONTBUFFER_PRIMARY(pipe));
10066
7782de3b 10067 intel_disable_fbc(dev);
f99d7069 10068 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
6b95a207
KH
10069 mutex_unlock(&dev->struct_mutex);
10070
e5510fac
JB
10071 trace_i915_flip_request(intel_crtc->plane, obj);
10072
6b95a207 10073 return 0;
96b099fd 10074
4fa62c89
VS
10075cleanup_unpin:
10076 intel_unpin_fb_obj(obj);
8c9f3aaf 10077cleanup_pending:
b4a98e57 10078 atomic_dec(&intel_crtc->unpin_work_count);
f4510a27 10079 crtc->primary->fb = old_fb;
05394f39
CW
10080 drm_gem_object_unreference(&work->old_fb_obj->base);
10081 drm_gem_object_unreference(&obj->base);
96b099fd
CW
10082 mutex_unlock(&dev->struct_mutex);
10083
79158103 10084cleanup:
96b099fd
CW
10085 spin_lock_irqsave(&dev->event_lock, flags);
10086 intel_crtc->unpin_work = NULL;
10087 spin_unlock_irqrestore(&dev->event_lock, flags);
10088
87b6b101 10089 drm_crtc_vblank_put(crtc);
7317c75e 10090free_work:
96b099fd
CW
10091 kfree(work);
10092
f900db47
CW
10093 if (ret == -EIO) {
10094out_hang:
10095 intel_crtc_wait_for_pending_flips(crtc);
10096 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
f0d3dad3
CW
10097 if (ret == 0 && event) {
10098 spin_lock_irqsave(&dev->event_lock, flags);
a071fa00 10099 drm_send_vblank_event(dev, pipe, event);
f0d3dad3
CW
10100 spin_unlock_irqrestore(&dev->event_lock, flags);
10101 }
f900db47 10102 }
96b099fd 10103 return ret;
6b95a207
KH
10104}
10105
f6e5b160 10106static struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160
CW
10107 .mode_set_base_atomic = intel_pipe_set_base_atomic,
10108 .load_lut = intel_crtc_load_lut,
f6e5b160
CW
10109};
10110
9a935856
DV
10111/**
10112 * intel_modeset_update_staged_output_state
10113 *
10114 * Updates the staged output configuration state, e.g. after we've read out the
10115 * current hw state.
10116 */
10117static void intel_modeset_update_staged_output_state(struct drm_device *dev)
f6e5b160 10118{
7668851f 10119 struct intel_crtc *crtc;
9a935856
DV
10120 struct intel_encoder *encoder;
10121 struct intel_connector *connector;
f6e5b160 10122
9a935856
DV
10123 list_for_each_entry(connector, &dev->mode_config.connector_list,
10124 base.head) {
10125 connector->new_encoder =
10126 to_intel_encoder(connector->base.encoder);
10127 }
f6e5b160 10128
b2784e15 10129 for_each_intel_encoder(dev, encoder) {
9a935856
DV
10130 encoder->new_crtc =
10131 to_intel_crtc(encoder->base.crtc);
10132 }
7668851f 10133
d3fcc808 10134 for_each_intel_crtc(dev, crtc) {
7668851f 10135 crtc->new_enabled = crtc->base.enabled;
7bd0a8e7
VS
10136
10137 if (crtc->new_enabled)
10138 crtc->new_config = &crtc->config;
10139 else
10140 crtc->new_config = NULL;
7668851f 10141 }
f6e5b160
CW
10142}
10143
9a935856
DV
10144/**
10145 * intel_modeset_commit_output_state
10146 *
10147 * This function copies the stage display pipe configuration to the real one.
10148 */
10149static void intel_modeset_commit_output_state(struct drm_device *dev)
10150{
7668851f 10151 struct intel_crtc *crtc;
9a935856
DV
10152 struct intel_encoder *encoder;
10153 struct intel_connector *connector;
f6e5b160 10154
9a935856
DV
10155 list_for_each_entry(connector, &dev->mode_config.connector_list,
10156 base.head) {
10157 connector->base.encoder = &connector->new_encoder->base;
10158 }
f6e5b160 10159
b2784e15 10160 for_each_intel_encoder(dev, encoder) {
9a935856
DV
10161 encoder->base.crtc = &encoder->new_crtc->base;
10162 }
7668851f 10163
d3fcc808 10164 for_each_intel_crtc(dev, crtc) {
7668851f
VS
10165 crtc->base.enabled = crtc->new_enabled;
10166 }
9a935856
DV
10167}
10168
050f7aeb 10169static void
eba905b2 10170connected_sink_compute_bpp(struct intel_connector *connector,
050f7aeb
DV
10171 struct intel_crtc_config *pipe_config)
10172{
10173 int bpp = pipe_config->pipe_bpp;
10174
10175 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
10176 connector->base.base.id,
c23cc417 10177 connector->base.name);
050f7aeb
DV
10178
10179 /* Don't use an invalid EDID bpc value */
10180 if (connector->base.display_info.bpc &&
10181 connector->base.display_info.bpc * 3 < bpp) {
10182 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
10183 bpp, connector->base.display_info.bpc*3);
10184 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
10185 }
10186
10187 /* Clamp bpp to 8 on screens without EDID 1.4 */
10188 if (connector->base.display_info.bpc == 0 && bpp > 24) {
10189 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
10190 bpp);
10191 pipe_config->pipe_bpp = 24;
10192 }
10193}
10194
4e53c2e0 10195static int
050f7aeb
DV
10196compute_baseline_pipe_bpp(struct intel_crtc *crtc,
10197 struct drm_framebuffer *fb,
10198 struct intel_crtc_config *pipe_config)
4e53c2e0 10199{
050f7aeb
DV
10200 struct drm_device *dev = crtc->base.dev;
10201 struct intel_connector *connector;
4e53c2e0
DV
10202 int bpp;
10203
d42264b1
DV
10204 switch (fb->pixel_format) {
10205 case DRM_FORMAT_C8:
4e53c2e0
DV
10206 bpp = 8*3; /* since we go through a colormap */
10207 break;
d42264b1
DV
10208 case DRM_FORMAT_XRGB1555:
10209 case DRM_FORMAT_ARGB1555:
10210 /* checked in intel_framebuffer_init already */
10211 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
10212 return -EINVAL;
10213 case DRM_FORMAT_RGB565:
4e53c2e0
DV
10214 bpp = 6*3; /* min is 18bpp */
10215 break;
d42264b1
DV
10216 case DRM_FORMAT_XBGR8888:
10217 case DRM_FORMAT_ABGR8888:
10218 /* checked in intel_framebuffer_init already */
10219 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10220 return -EINVAL;
10221 case DRM_FORMAT_XRGB8888:
10222 case DRM_FORMAT_ARGB8888:
4e53c2e0
DV
10223 bpp = 8*3;
10224 break;
d42264b1
DV
10225 case DRM_FORMAT_XRGB2101010:
10226 case DRM_FORMAT_ARGB2101010:
10227 case DRM_FORMAT_XBGR2101010:
10228 case DRM_FORMAT_ABGR2101010:
10229 /* checked in intel_framebuffer_init already */
10230 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
baba133a 10231 return -EINVAL;
4e53c2e0
DV
10232 bpp = 10*3;
10233 break;
baba133a 10234 /* TODO: gen4+ supports 16 bpc floating point, too. */
4e53c2e0
DV
10235 default:
10236 DRM_DEBUG_KMS("unsupported depth\n");
10237 return -EINVAL;
10238 }
10239
4e53c2e0
DV
10240 pipe_config->pipe_bpp = bpp;
10241
10242 /* Clamp display bpp to EDID value */
10243 list_for_each_entry(connector, &dev->mode_config.connector_list,
050f7aeb 10244 base.head) {
1b829e05
DV
10245 if (!connector->new_encoder ||
10246 connector->new_encoder->new_crtc != crtc)
4e53c2e0
DV
10247 continue;
10248
050f7aeb 10249 connected_sink_compute_bpp(connector, pipe_config);
4e53c2e0
DV
10250 }
10251
10252 return bpp;
10253}
10254
644db711
DV
10255static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
10256{
10257 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
10258 "type: 0x%x flags: 0x%x\n",
1342830c 10259 mode->crtc_clock,
644db711
DV
10260 mode->crtc_hdisplay, mode->crtc_hsync_start,
10261 mode->crtc_hsync_end, mode->crtc_htotal,
10262 mode->crtc_vdisplay, mode->crtc_vsync_start,
10263 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
10264}
10265
c0b03411
DV
10266static void intel_dump_pipe_config(struct intel_crtc *crtc,
10267 struct intel_crtc_config *pipe_config,
10268 const char *context)
10269{
10270 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
10271 context, pipe_name(crtc->pipe));
10272
10273 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
10274 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
10275 pipe_config->pipe_bpp, pipe_config->dither);
10276 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10277 pipe_config->has_pch_encoder,
10278 pipe_config->fdi_lanes,
10279 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
10280 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
10281 pipe_config->fdi_m_n.tu);
eb14cb74
VS
10282 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10283 pipe_config->has_dp_encoder,
10284 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
10285 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
10286 pipe_config->dp_m_n.tu);
b95af8be
VK
10287
10288 DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
10289 pipe_config->has_dp_encoder,
10290 pipe_config->dp_m2_n2.gmch_m,
10291 pipe_config->dp_m2_n2.gmch_n,
10292 pipe_config->dp_m2_n2.link_m,
10293 pipe_config->dp_m2_n2.link_n,
10294 pipe_config->dp_m2_n2.tu);
10295
c0b03411
DV
10296 DRM_DEBUG_KMS("requested mode:\n");
10297 drm_mode_debug_printmodeline(&pipe_config->requested_mode);
10298 DRM_DEBUG_KMS("adjusted mode:\n");
10299 drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
644db711 10300 intel_dump_crtc_timings(&pipe_config->adjusted_mode);
d71b8d4a 10301 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
37327abd
VS
10302 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
10303 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
c0b03411
DV
10304 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
10305 pipe_config->gmch_pfit.control,
10306 pipe_config->gmch_pfit.pgm_ratios,
10307 pipe_config->gmch_pfit.lvds_border_bits);
fd4daa9c 10308 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
c0b03411 10309 pipe_config->pch_pfit.pos,
fd4daa9c
CW
10310 pipe_config->pch_pfit.size,
10311 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
42db64ef 10312 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
cf532bb2 10313 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
c0b03411
DV
10314}
10315
bc079e8b
VS
10316static bool encoders_cloneable(const struct intel_encoder *a,
10317 const struct intel_encoder *b)
accfc0c5 10318{
bc079e8b
VS
10319 /* masks could be asymmetric, so check both ways */
10320 return a == b || (a->cloneable & (1 << b->type) &&
10321 b->cloneable & (1 << a->type));
10322}
10323
10324static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10325 struct intel_encoder *encoder)
10326{
10327 struct drm_device *dev = crtc->base.dev;
10328 struct intel_encoder *source_encoder;
10329
b2784e15 10330 for_each_intel_encoder(dev, source_encoder) {
bc079e8b
VS
10331 if (source_encoder->new_crtc != crtc)
10332 continue;
10333
10334 if (!encoders_cloneable(encoder, source_encoder))
10335 return false;
10336 }
10337
10338 return true;
10339}
10340
10341static bool check_encoder_cloning(struct intel_crtc *crtc)
10342{
10343 struct drm_device *dev = crtc->base.dev;
accfc0c5
DV
10344 struct intel_encoder *encoder;
10345
b2784e15 10346 for_each_intel_encoder(dev, encoder) {
bc079e8b 10347 if (encoder->new_crtc != crtc)
accfc0c5
DV
10348 continue;
10349
bc079e8b
VS
10350 if (!check_single_encoder_cloning(crtc, encoder))
10351 return false;
accfc0c5
DV
10352 }
10353
bc079e8b 10354 return true;
accfc0c5
DV
10355}
10356
b8cecdf5
DV
10357static struct intel_crtc_config *
10358intel_modeset_pipe_config(struct drm_crtc *crtc,
4e53c2e0 10359 struct drm_framebuffer *fb,
b8cecdf5 10360 struct drm_display_mode *mode)
ee7b9f93 10361{
7758a113 10362 struct drm_device *dev = crtc->dev;
7758a113 10363 struct intel_encoder *encoder;
b8cecdf5 10364 struct intel_crtc_config *pipe_config;
e29c22c0
DV
10365 int plane_bpp, ret = -EINVAL;
10366 bool retry = true;
ee7b9f93 10367
bc079e8b 10368 if (!check_encoder_cloning(to_intel_crtc(crtc))) {
accfc0c5
DV
10369 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10370 return ERR_PTR(-EINVAL);
10371 }
10372
b8cecdf5
DV
10373 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10374 if (!pipe_config)
7758a113
DV
10375 return ERR_PTR(-ENOMEM);
10376
b8cecdf5
DV
10377 drm_mode_copy(&pipe_config->adjusted_mode, mode);
10378 drm_mode_copy(&pipe_config->requested_mode, mode);
37327abd 10379
e143a21c
DV
10380 pipe_config->cpu_transcoder =
10381 (enum transcoder) to_intel_crtc(crtc)->pipe;
c0d43d62 10382 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
b8cecdf5 10383
2960bc9c
ID
10384 /*
10385 * Sanitize sync polarity flags based on requested ones. If neither
10386 * positive or negative polarity is requested, treat this as meaning
10387 * negative polarity.
10388 */
10389 if (!(pipe_config->adjusted_mode.flags &
10390 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10391 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10392
10393 if (!(pipe_config->adjusted_mode.flags &
10394 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10395 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10396
050f7aeb
DV
10397 /* Compute a starting value for pipe_config->pipe_bpp taking the source
10398 * plane pixel format and any sink constraints into account. Returns the
10399 * source plane bpp so that dithering can be selected on mismatches
10400 * after encoders and crtc also have had their say. */
10401 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10402 fb, pipe_config);
4e53c2e0
DV
10403 if (plane_bpp < 0)
10404 goto fail;
10405
e41a56be
VS
10406 /*
10407 * Determine the real pipe dimensions. Note that stereo modes can
10408 * increase the actual pipe size due to the frame doubling and
10409 * insertion of additional space for blanks between the frame. This
10410 * is stored in the crtc timings. We use the requested mode to do this
10411 * computation to clearly distinguish it from the adjusted mode, which
10412 * can be changed by the connectors in the below retry loop.
10413 */
10414 drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
10415 pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
10416 pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
10417
e29c22c0 10418encoder_retry:
ef1b460d 10419 /* Ensure the port clock defaults are reset when retrying. */
ff9a6750 10420 pipe_config->port_clock = 0;
ef1b460d 10421 pipe_config->pixel_multiplier = 1;
ff9a6750 10422
135c81b8 10423 /* Fill in default crtc timings, allow encoders to overwrite them. */
6ce70f5e 10424 drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
135c81b8 10425
7758a113
DV
10426 /* Pass our mode to the connectors and the CRTC to give them a chance to
10427 * adjust it according to limitations or connector properties, and also
10428 * a chance to reject the mode entirely.
47f1c6c9 10429 */
b2784e15 10430 for_each_intel_encoder(dev, encoder) {
47f1c6c9 10431
7758a113
DV
10432 if (&encoder->new_crtc->base != crtc)
10433 continue;
7ae89233 10434
efea6e8e
DV
10435 if (!(encoder->compute_config(encoder, pipe_config))) {
10436 DRM_DEBUG_KMS("Encoder config failure\n");
7758a113
DV
10437 goto fail;
10438 }
ee7b9f93 10439 }
47f1c6c9 10440
ff9a6750
DV
10441 /* Set default port clock if not overwritten by the encoder. Needs to be
10442 * done afterwards in case the encoder adjusts the mode. */
10443 if (!pipe_config->port_clock)
241bfc38
DL
10444 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
10445 * pipe_config->pixel_multiplier;
ff9a6750 10446
a43f6e0f 10447 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
e29c22c0 10448 if (ret < 0) {
7758a113
DV
10449 DRM_DEBUG_KMS("CRTC fixup failed\n");
10450 goto fail;
ee7b9f93 10451 }
e29c22c0
DV
10452
10453 if (ret == RETRY) {
10454 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10455 ret = -EINVAL;
10456 goto fail;
10457 }
10458
10459 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10460 retry = false;
10461 goto encoder_retry;
10462 }
10463
4e53c2e0
DV
10464 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10465 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10466 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10467
b8cecdf5 10468 return pipe_config;
7758a113 10469fail:
b8cecdf5 10470 kfree(pipe_config);
e29c22c0 10471 return ERR_PTR(ret);
ee7b9f93 10472}
47f1c6c9 10473
e2e1ed41
DV
10474/* Computes which crtcs are affected and sets the relevant bits in the mask. For
10475 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10476static void
10477intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10478 unsigned *prepare_pipes, unsigned *disable_pipes)
79e53945
JB
10479{
10480 struct intel_crtc *intel_crtc;
e2e1ed41
DV
10481 struct drm_device *dev = crtc->dev;
10482 struct intel_encoder *encoder;
10483 struct intel_connector *connector;
10484 struct drm_crtc *tmp_crtc;
79e53945 10485
e2e1ed41 10486 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
79e53945 10487
e2e1ed41
DV
10488 /* Check which crtcs have changed outputs connected to them, these need
10489 * to be part of the prepare_pipes mask. We don't (yet) support global
10490 * modeset across multiple crtcs, so modeset_pipes will only have one
10491 * bit set at most. */
10492 list_for_each_entry(connector, &dev->mode_config.connector_list,
10493 base.head) {
10494 if (connector->base.encoder == &connector->new_encoder->base)
10495 continue;
79e53945 10496
e2e1ed41
DV
10497 if (connector->base.encoder) {
10498 tmp_crtc = connector->base.encoder->crtc;
10499
10500 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10501 }
10502
10503 if (connector->new_encoder)
10504 *prepare_pipes |=
10505 1 << connector->new_encoder->new_crtc->pipe;
79e53945
JB
10506 }
10507
b2784e15 10508 for_each_intel_encoder(dev, encoder) {
e2e1ed41
DV
10509 if (encoder->base.crtc == &encoder->new_crtc->base)
10510 continue;
10511
10512 if (encoder->base.crtc) {
10513 tmp_crtc = encoder->base.crtc;
10514
10515 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10516 }
10517
10518 if (encoder->new_crtc)
10519 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
80824003
JB
10520 }
10521
7668851f 10522 /* Check for pipes that will be enabled/disabled ... */
d3fcc808 10523 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10524 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
e2e1ed41 10525 continue;
7e7d76c3 10526
7668851f 10527 if (!intel_crtc->new_enabled)
e2e1ed41 10528 *disable_pipes |= 1 << intel_crtc->pipe;
7668851f
VS
10529 else
10530 *prepare_pipes |= 1 << intel_crtc->pipe;
7e7d76c3
JB
10531 }
10532
e2e1ed41
DV
10533
10534 /* set_mode is also used to update properties on life display pipes. */
10535 intel_crtc = to_intel_crtc(crtc);
7668851f 10536 if (intel_crtc->new_enabled)
e2e1ed41
DV
10537 *prepare_pipes |= 1 << intel_crtc->pipe;
10538
b6c5164d
DV
10539 /*
10540 * For simplicity do a full modeset on any pipe where the output routing
10541 * changed. We could be more clever, but that would require us to be
10542 * more careful with calling the relevant encoder->mode_set functions.
10543 */
e2e1ed41
DV
10544 if (*prepare_pipes)
10545 *modeset_pipes = *prepare_pipes;
10546
10547 /* ... and mask these out. */
10548 *modeset_pipes &= ~(*disable_pipes);
10549 *prepare_pipes &= ~(*disable_pipes);
b6c5164d
DV
10550
10551 /*
10552 * HACK: We don't (yet) fully support global modesets. intel_set_config
10553 * obies this rule, but the modeset restore mode of
10554 * intel_modeset_setup_hw_state does not.
10555 */
10556 *modeset_pipes &= 1 << intel_crtc->pipe;
10557 *prepare_pipes &= 1 << intel_crtc->pipe;
e3641d3f
DV
10558
10559 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10560 *modeset_pipes, *prepare_pipes, *disable_pipes);
47f1c6c9 10561}
79e53945 10562
ea9d758d 10563static bool intel_crtc_in_use(struct drm_crtc *crtc)
f6e5b160 10564{
ea9d758d 10565 struct drm_encoder *encoder;
f6e5b160 10566 struct drm_device *dev = crtc->dev;
f6e5b160 10567
ea9d758d
DV
10568 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10569 if (encoder->crtc == crtc)
10570 return true;
10571
10572 return false;
10573}
10574
10575static void
10576intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10577{
10578 struct intel_encoder *intel_encoder;
10579 struct intel_crtc *intel_crtc;
10580 struct drm_connector *connector;
10581
b2784e15 10582 for_each_intel_encoder(dev, intel_encoder) {
ea9d758d
DV
10583 if (!intel_encoder->base.crtc)
10584 continue;
10585
10586 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10587
10588 if (prepare_pipes & (1 << intel_crtc->pipe))
10589 intel_encoder->connectors_active = false;
10590 }
10591
10592 intel_modeset_commit_output_state(dev);
10593
7668851f 10594 /* Double check state. */
d3fcc808 10595 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10596 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
7bd0a8e7
VS
10597 WARN_ON(intel_crtc->new_config &&
10598 intel_crtc->new_config != &intel_crtc->config);
10599 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
ea9d758d
DV
10600 }
10601
10602 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10603 if (!connector->encoder || !connector->encoder->crtc)
10604 continue;
10605
10606 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10607
10608 if (prepare_pipes & (1 << intel_crtc->pipe)) {
68d34720
DV
10609 struct drm_property *dpms_property =
10610 dev->mode_config.dpms_property;
10611
ea9d758d 10612 connector->dpms = DRM_MODE_DPMS_ON;
662595df 10613 drm_object_property_set_value(&connector->base,
68d34720
DV
10614 dpms_property,
10615 DRM_MODE_DPMS_ON);
ea9d758d
DV
10616
10617 intel_encoder = to_intel_encoder(connector->encoder);
10618 intel_encoder->connectors_active = true;
10619 }
10620 }
10621
10622}
10623
3bd26263 10624static bool intel_fuzzy_clock_check(int clock1, int clock2)
f1f644dc 10625{
3bd26263 10626 int diff;
f1f644dc
JB
10627
10628 if (clock1 == clock2)
10629 return true;
10630
10631 if (!clock1 || !clock2)
10632 return false;
10633
10634 diff = abs(clock1 - clock2);
10635
10636 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10637 return true;
10638
10639 return false;
10640}
10641
25c5b266
DV
10642#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10643 list_for_each_entry((intel_crtc), \
10644 &(dev)->mode_config.crtc_list, \
10645 base.head) \
0973f18f 10646 if (mask & (1 <<(intel_crtc)->pipe))
25c5b266 10647
0e8ffe1b 10648static bool
2fa2fe9a
DV
10649intel_pipe_config_compare(struct drm_device *dev,
10650 struct intel_crtc_config *current_config,
0e8ffe1b
DV
10651 struct intel_crtc_config *pipe_config)
10652{
66e985c0
DV
10653#define PIPE_CONF_CHECK_X(name) \
10654 if (current_config->name != pipe_config->name) { \
10655 DRM_ERROR("mismatch in " #name " " \
10656 "(expected 0x%08x, found 0x%08x)\n", \
10657 current_config->name, \
10658 pipe_config->name); \
10659 return false; \
10660 }
10661
08a24034
DV
10662#define PIPE_CONF_CHECK_I(name) \
10663 if (current_config->name != pipe_config->name) { \
10664 DRM_ERROR("mismatch in " #name " " \
10665 "(expected %i, found %i)\n", \
10666 current_config->name, \
10667 pipe_config->name); \
10668 return false; \
88adfff1
DV
10669 }
10670
b95af8be
VK
10671/* This is required for BDW+ where there is only one set of registers for
10672 * switching between high and low RR.
10673 * This macro can be used whenever a comparison has to be made between one
10674 * hw state and multiple sw state variables.
10675 */
10676#define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10677 if ((current_config->name != pipe_config->name) && \
10678 (current_config->alt_name != pipe_config->name)) { \
10679 DRM_ERROR("mismatch in " #name " " \
10680 "(expected %i or %i, found %i)\n", \
10681 current_config->name, \
10682 current_config->alt_name, \
10683 pipe_config->name); \
10684 return false; \
10685 }
10686
1bd1bd80
DV
10687#define PIPE_CONF_CHECK_FLAGS(name, mask) \
10688 if ((current_config->name ^ pipe_config->name) & (mask)) { \
6f02488e 10689 DRM_ERROR("mismatch in " #name "(" #mask ") " \
1bd1bd80
DV
10690 "(expected %i, found %i)\n", \
10691 current_config->name & (mask), \
10692 pipe_config->name & (mask)); \
10693 return false; \
10694 }
10695
5e550656
VS
10696#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10697 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10698 DRM_ERROR("mismatch in " #name " " \
10699 "(expected %i, found %i)\n", \
10700 current_config->name, \
10701 pipe_config->name); \
10702 return false; \
10703 }
10704
bb760063
DV
10705#define PIPE_CONF_QUIRK(quirk) \
10706 ((current_config->quirks | pipe_config->quirks) & (quirk))
10707
eccb140b
DV
10708 PIPE_CONF_CHECK_I(cpu_transcoder);
10709
08a24034
DV
10710 PIPE_CONF_CHECK_I(has_pch_encoder);
10711 PIPE_CONF_CHECK_I(fdi_lanes);
72419203
DV
10712 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10713 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10714 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10715 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10716 PIPE_CONF_CHECK_I(fdi_m_n.tu);
08a24034 10717
eb14cb74 10718 PIPE_CONF_CHECK_I(has_dp_encoder);
b95af8be
VK
10719
10720 if (INTEL_INFO(dev)->gen < 8) {
10721 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10722 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10723 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10724 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10725 PIPE_CONF_CHECK_I(dp_m_n.tu);
10726
10727 if (current_config->has_drrs) {
10728 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
10729 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
10730 PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
10731 PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
10732 PIPE_CONF_CHECK_I(dp_m2_n2.tu);
10733 }
10734 } else {
10735 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
10736 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
10737 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
10738 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
10739 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
10740 }
eb14cb74 10741
1bd1bd80
DV
10742 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
10743 PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
10744 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
10745 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
10746 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
10747 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
10748
10749 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
10750 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
10751 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
10752 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
10753 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
10754 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
10755
c93f54cf 10756 PIPE_CONF_CHECK_I(pixel_multiplier);
6897b4b5 10757 PIPE_CONF_CHECK_I(has_hdmi_sink);
b5a9fa09
DV
10758 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10759 IS_VALLEYVIEW(dev))
10760 PIPE_CONF_CHECK_I(limited_color_range);
6c49f241 10761
9ed109a7
DV
10762 PIPE_CONF_CHECK_I(has_audio);
10763
1bd1bd80
DV
10764 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10765 DRM_MODE_FLAG_INTERLACE);
10766
bb760063
DV
10767 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10768 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10769 DRM_MODE_FLAG_PHSYNC);
10770 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10771 DRM_MODE_FLAG_NHSYNC);
10772 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10773 DRM_MODE_FLAG_PVSYNC);
10774 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10775 DRM_MODE_FLAG_NVSYNC);
10776 }
045ac3b5 10777
37327abd
VS
10778 PIPE_CONF_CHECK_I(pipe_src_w);
10779 PIPE_CONF_CHECK_I(pipe_src_h);
1bd1bd80 10780
9953599b
DV
10781 /*
10782 * FIXME: BIOS likes to set up a cloned config with lvds+external
10783 * screen. Since we don't yet re-compute the pipe config when moving
10784 * just the lvds port away to another pipe the sw tracking won't match.
10785 *
10786 * Proper atomic modesets with recomputed global state will fix this.
10787 * Until then just don't check gmch state for inherited modes.
10788 */
10789 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10790 PIPE_CONF_CHECK_I(gmch_pfit.control);
10791 /* pfit ratios are autocomputed by the hw on gen4+ */
10792 if (INTEL_INFO(dev)->gen < 4)
10793 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10794 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10795 }
10796
fd4daa9c
CW
10797 PIPE_CONF_CHECK_I(pch_pfit.enabled);
10798 if (current_config->pch_pfit.enabled) {
10799 PIPE_CONF_CHECK_I(pch_pfit.pos);
10800 PIPE_CONF_CHECK_I(pch_pfit.size);
10801 }
2fa2fe9a 10802
e59150dc
JB
10803 /* BDW+ don't expose a synchronous way to read the state */
10804 if (IS_HASWELL(dev))
10805 PIPE_CONF_CHECK_I(ips_enabled);
42db64ef 10806
282740f7
VS
10807 PIPE_CONF_CHECK_I(double_wide);
10808
26804afd
DV
10809 PIPE_CONF_CHECK_X(ddi_pll_sel);
10810
c0d43d62 10811 PIPE_CONF_CHECK_I(shared_dpll);
66e985c0 10812 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8bcc2795 10813 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
66e985c0
DV
10814 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10815 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
d452c5b6 10816 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
c0d43d62 10817
42571aef
VS
10818 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10819 PIPE_CONF_CHECK_I(pipe_bpp);
10820
a9a7e98a
JB
10821 PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10822 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
5e550656 10823
66e985c0 10824#undef PIPE_CONF_CHECK_X
08a24034 10825#undef PIPE_CONF_CHECK_I
b95af8be 10826#undef PIPE_CONF_CHECK_I_ALT
1bd1bd80 10827#undef PIPE_CONF_CHECK_FLAGS
5e550656 10828#undef PIPE_CONF_CHECK_CLOCK_FUZZY
bb760063 10829#undef PIPE_CONF_QUIRK
88adfff1 10830
0e8ffe1b
DV
10831 return true;
10832}
10833
91d1b4bd
DV
10834static void
10835check_connector_state(struct drm_device *dev)
8af6cf88 10836{
8af6cf88
DV
10837 struct intel_connector *connector;
10838
10839 list_for_each_entry(connector, &dev->mode_config.connector_list,
10840 base.head) {
10841 /* This also checks the encoder/connector hw state with the
10842 * ->get_hw_state callbacks. */
10843 intel_connector_check_state(connector);
10844
10845 WARN(&connector->new_encoder->base != connector->base.encoder,
10846 "connector's staged encoder doesn't match current encoder\n");
10847 }
91d1b4bd
DV
10848}
10849
10850static void
10851check_encoder_state(struct drm_device *dev)
10852{
10853 struct intel_encoder *encoder;
10854 struct intel_connector *connector;
8af6cf88 10855
b2784e15 10856 for_each_intel_encoder(dev, encoder) {
8af6cf88
DV
10857 bool enabled = false;
10858 bool active = false;
10859 enum pipe pipe, tracked_pipe;
10860
10861 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10862 encoder->base.base.id,
8e329a03 10863 encoder->base.name);
8af6cf88
DV
10864
10865 WARN(&encoder->new_crtc->base != encoder->base.crtc,
10866 "encoder's stage crtc doesn't match current crtc\n");
10867 WARN(encoder->connectors_active && !encoder->base.crtc,
10868 "encoder's active_connectors set, but no crtc\n");
10869
10870 list_for_each_entry(connector, &dev->mode_config.connector_list,
10871 base.head) {
10872 if (connector->base.encoder != &encoder->base)
10873 continue;
10874 enabled = true;
10875 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10876 active = true;
10877 }
0e32b39c
DA
10878 /*
10879 * for MST connectors if we unplug the connector is gone
10880 * away but the encoder is still connected to a crtc
10881 * until a modeset happens in response to the hotplug.
10882 */
10883 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
10884 continue;
10885
8af6cf88
DV
10886 WARN(!!encoder->base.crtc != enabled,
10887 "encoder's enabled state mismatch "
10888 "(expected %i, found %i)\n",
10889 !!encoder->base.crtc, enabled);
10890 WARN(active && !encoder->base.crtc,
10891 "active encoder with no crtc\n");
10892
10893 WARN(encoder->connectors_active != active,
10894 "encoder's computed active state doesn't match tracked active state "
10895 "(expected %i, found %i)\n", active, encoder->connectors_active);
10896
10897 active = encoder->get_hw_state(encoder, &pipe);
10898 WARN(active != encoder->connectors_active,
10899 "encoder's hw state doesn't match sw tracking "
10900 "(expected %i, found %i)\n",
10901 encoder->connectors_active, active);
10902
10903 if (!encoder->base.crtc)
10904 continue;
10905
10906 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10907 WARN(active && pipe != tracked_pipe,
10908 "active encoder's pipe doesn't match"
10909 "(expected %i, found %i)\n",
10910 tracked_pipe, pipe);
10911
10912 }
91d1b4bd
DV
10913}
10914
10915static void
10916check_crtc_state(struct drm_device *dev)
10917{
fbee40df 10918 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10919 struct intel_crtc *crtc;
10920 struct intel_encoder *encoder;
10921 struct intel_crtc_config pipe_config;
8af6cf88 10922
d3fcc808 10923 for_each_intel_crtc(dev, crtc) {
8af6cf88
DV
10924 bool enabled = false;
10925 bool active = false;
10926
045ac3b5
JB
10927 memset(&pipe_config, 0, sizeof(pipe_config));
10928
8af6cf88
DV
10929 DRM_DEBUG_KMS("[CRTC:%d]\n",
10930 crtc->base.base.id);
10931
10932 WARN(crtc->active && !crtc->base.enabled,
10933 "active crtc, but not enabled in sw tracking\n");
10934
b2784e15 10935 for_each_intel_encoder(dev, encoder) {
8af6cf88
DV
10936 if (encoder->base.crtc != &crtc->base)
10937 continue;
10938 enabled = true;
10939 if (encoder->connectors_active)
10940 active = true;
10941 }
6c49f241 10942
8af6cf88
DV
10943 WARN(active != crtc->active,
10944 "crtc's computed active state doesn't match tracked active state "
10945 "(expected %i, found %i)\n", active, crtc->active);
10946 WARN(enabled != crtc->base.enabled,
10947 "crtc's computed enabled state doesn't match tracked enabled state "
10948 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10949
0e8ffe1b
DV
10950 active = dev_priv->display.get_pipe_config(crtc,
10951 &pipe_config);
d62cf62a 10952
b6b5d049
VS
10953 /* hw state is inconsistent with the pipe quirk */
10954 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
10955 (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
d62cf62a
DV
10956 active = crtc->active;
10957
b2784e15 10958 for_each_intel_encoder(dev, encoder) {
3eaba51c 10959 enum pipe pipe;
6c49f241
DV
10960 if (encoder->base.crtc != &crtc->base)
10961 continue;
1d37b689 10962 if (encoder->get_hw_state(encoder, &pipe))
6c49f241
DV
10963 encoder->get_config(encoder, &pipe_config);
10964 }
10965
0e8ffe1b
DV
10966 WARN(crtc->active != active,
10967 "crtc active state doesn't match with hw state "
10968 "(expected %i, found %i)\n", crtc->active, active);
10969
c0b03411
DV
10970 if (active &&
10971 !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10972 WARN(1, "pipe state doesn't match!\n");
10973 intel_dump_pipe_config(crtc, &pipe_config,
10974 "[hw state]");
10975 intel_dump_pipe_config(crtc, &crtc->config,
10976 "[sw state]");
10977 }
8af6cf88
DV
10978 }
10979}
10980
91d1b4bd
DV
10981static void
10982check_shared_dpll_state(struct drm_device *dev)
10983{
fbee40df 10984 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10985 struct intel_crtc *crtc;
10986 struct intel_dpll_hw_state dpll_hw_state;
10987 int i;
5358901f
DV
10988
10989 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10990 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10991 int enabled_crtcs = 0, active_crtcs = 0;
10992 bool active;
10993
10994 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10995
10996 DRM_DEBUG_KMS("%s\n", pll->name);
10997
10998 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10999
11000 WARN(pll->active > pll->refcount,
11001 "more active pll users than references: %i vs %i\n",
11002 pll->active, pll->refcount);
11003 WARN(pll->active && !pll->on,
11004 "pll in active use but not on in sw tracking\n");
35c95375
DV
11005 WARN(pll->on && !pll->active,
11006 "pll in on but not on in use in sw tracking\n");
5358901f
DV
11007 WARN(pll->on != active,
11008 "pll on state mismatch (expected %i, found %i)\n",
11009 pll->on, active);
11010
d3fcc808 11011 for_each_intel_crtc(dev, crtc) {
5358901f
DV
11012 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
11013 enabled_crtcs++;
11014 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
11015 active_crtcs++;
11016 }
11017 WARN(pll->active != active_crtcs,
11018 "pll active crtcs mismatch (expected %i, found %i)\n",
11019 pll->active, active_crtcs);
11020 WARN(pll->refcount != enabled_crtcs,
11021 "pll enabled crtcs mismatch (expected %i, found %i)\n",
11022 pll->refcount, enabled_crtcs);
66e985c0
DV
11023
11024 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
11025 sizeof(dpll_hw_state)),
11026 "pll hw state mismatch\n");
5358901f 11027 }
8af6cf88
DV
11028}
11029
91d1b4bd
DV
11030void
11031intel_modeset_check_state(struct drm_device *dev)
11032{
11033 check_connector_state(dev);
11034 check_encoder_state(dev);
11035 check_crtc_state(dev);
11036 check_shared_dpll_state(dev);
11037}
11038
18442d08
VS
11039void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
11040 int dotclock)
11041{
11042 /*
11043 * FDI already provided one idea for the dotclock.
11044 * Yell if the encoder disagrees.
11045 */
241bfc38 11046 WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
18442d08 11047 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
241bfc38 11048 pipe_config->adjusted_mode.crtc_clock, dotclock);
18442d08
VS
11049}
11050
80715b2f
VS
11051static void update_scanline_offset(struct intel_crtc *crtc)
11052{
11053 struct drm_device *dev = crtc->base.dev;
11054
11055 /*
11056 * The scanline counter increments at the leading edge of hsync.
11057 *
11058 * On most platforms it starts counting from vtotal-1 on the
11059 * first active line. That means the scanline counter value is
11060 * always one less than what we would expect. Ie. just after
11061 * start of vblank, which also occurs at start of hsync (on the
11062 * last active line), the scanline counter will read vblank_start-1.
11063 *
11064 * On gen2 the scanline counter starts counting from 1 instead
11065 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
11066 * to keep the value positive), instead of adding one.
11067 *
11068 * On HSW+ the behaviour of the scanline counter depends on the output
11069 * type. For DP ports it behaves like most other platforms, but on HDMI
11070 * there's an extra 1 line difference. So we need to add two instead of
11071 * one to the value.
11072 */
11073 if (IS_GEN2(dev)) {
11074 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
11075 int vtotal;
11076
11077 vtotal = mode->crtc_vtotal;
11078 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
11079 vtotal /= 2;
11080
11081 crtc->scanline_offset = vtotal - 1;
11082 } else if (HAS_DDI(dev) &&
11083 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI)) {
11084 crtc->scanline_offset = 2;
11085 } else
11086 crtc->scanline_offset = 1;
11087}
11088
f30da187
DV
11089static int __intel_set_mode(struct drm_crtc *crtc,
11090 struct drm_display_mode *mode,
11091 int x, int y, struct drm_framebuffer *fb)
a6778b3c
DV
11092{
11093 struct drm_device *dev = crtc->dev;
fbee40df 11094 struct drm_i915_private *dev_priv = dev->dev_private;
4b4b9238 11095 struct drm_display_mode *saved_mode;
b8cecdf5 11096 struct intel_crtc_config *pipe_config = NULL;
25c5b266
DV
11097 struct intel_crtc *intel_crtc;
11098 unsigned disable_pipes, prepare_pipes, modeset_pipes;
c0c36b94 11099 int ret = 0;
a6778b3c 11100
4b4b9238 11101 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
c0c36b94
CW
11102 if (!saved_mode)
11103 return -ENOMEM;
a6778b3c 11104
e2e1ed41 11105 intel_modeset_affected_pipes(crtc, &modeset_pipes,
25c5b266
DV
11106 &prepare_pipes, &disable_pipes);
11107
3ac18232 11108 *saved_mode = crtc->mode;
a6778b3c 11109
25c5b266
DV
11110 /* Hack: Because we don't (yet) support global modeset on multiple
11111 * crtcs, we don't keep track of the new mode for more than one crtc.
11112 * Hence simply check whether any bit is set in modeset_pipes in all the
11113 * pieces of code that are not yet converted to deal with mutliple crtcs
11114 * changing their mode at the same time. */
25c5b266 11115 if (modeset_pipes) {
4e53c2e0 11116 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
b8cecdf5
DV
11117 if (IS_ERR(pipe_config)) {
11118 ret = PTR_ERR(pipe_config);
11119 pipe_config = NULL;
11120
3ac18232 11121 goto out;
25c5b266 11122 }
c0b03411
DV
11123 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
11124 "[modeset]");
50741abc 11125 to_intel_crtc(crtc)->new_config = pipe_config;
25c5b266 11126 }
a6778b3c 11127
30a970c6
JB
11128 /*
11129 * See if the config requires any additional preparation, e.g.
11130 * to adjust global state with pipes off. We need to do this
11131 * here so we can get the modeset_pipe updated config for the new
11132 * mode set on this crtc. For other crtcs we need to use the
11133 * adjusted_mode bits in the crtc directly.
11134 */
c164f833 11135 if (IS_VALLEYVIEW(dev)) {
2f2d7aa1 11136 valleyview_modeset_global_pipes(dev, &prepare_pipes);
30a970c6 11137
c164f833
VS
11138 /* may have added more to prepare_pipes than we should */
11139 prepare_pipes &= ~disable_pipes;
11140 }
11141
460da916
DV
11142 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
11143 intel_crtc_disable(&intel_crtc->base);
11144
ea9d758d
DV
11145 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11146 if (intel_crtc->base.enabled)
11147 dev_priv->display.crtc_disable(&intel_crtc->base);
11148 }
a6778b3c 11149
6c4c86f5
DV
11150 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
11151 * to set it here already despite that we pass it down the callchain.
f6e5b160 11152 */
b8cecdf5 11153 if (modeset_pipes) {
25c5b266 11154 crtc->mode = *mode;
b8cecdf5
DV
11155 /* mode_set/enable/disable functions rely on a correct pipe
11156 * config. */
11157 to_intel_crtc(crtc)->config = *pipe_config;
50741abc 11158 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
c326c0a9
VS
11159
11160 /*
11161 * Calculate and store various constants which
11162 * are later needed by vblank and swap-completion
11163 * timestamping. They are derived from true hwmode.
11164 */
11165 drm_calc_timestamping_constants(crtc,
11166 &pipe_config->adjusted_mode);
b8cecdf5 11167 }
7758a113 11168
ea9d758d
DV
11169 /* Only after disabling all output pipelines that will be changed can we
11170 * update the the output configuration. */
11171 intel_modeset_update_state(dev, prepare_pipes);
f6e5b160 11172
47fab737
DV
11173 if (dev_priv->display.modeset_global_resources)
11174 dev_priv->display.modeset_global_resources(dev);
11175
a6778b3c
DV
11176 /* Set up the DPLL and any encoders state that needs to adjust or depend
11177 * on the DPLL.
f6e5b160 11178 */
25c5b266 11179 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
2ff8fde1
MR
11180 struct drm_framebuffer *old_fb = crtc->primary->fb;
11181 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
11182 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
4c10794f
DV
11183
11184 mutex_lock(&dev->struct_mutex);
11185 ret = intel_pin_and_fence_fb_obj(dev,
a071fa00 11186 obj,
4c10794f
DV
11187 NULL);
11188 if (ret != 0) {
11189 DRM_ERROR("pin & fence failed\n");
11190 mutex_unlock(&dev->struct_mutex);
11191 goto done;
11192 }
2ff8fde1 11193 if (old_fb)
a071fa00 11194 intel_unpin_fb_obj(old_obj);
a071fa00
DV
11195 i915_gem_track_fb(old_obj, obj,
11196 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
4c10794f
DV
11197 mutex_unlock(&dev->struct_mutex);
11198
11199 crtc->primary->fb = fb;
11200 crtc->x = x;
11201 crtc->y = y;
11202
4271b753
DV
11203 ret = dev_priv->display.crtc_mode_set(&intel_crtc->base,
11204 x, y, fb);
c0c36b94
CW
11205 if (ret)
11206 goto done;
a6778b3c
DV
11207 }
11208
11209 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
80715b2f
VS
11210 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11211 update_scanline_offset(intel_crtc);
11212
25c5b266 11213 dev_priv->display.crtc_enable(&intel_crtc->base);
80715b2f 11214 }
a6778b3c 11215
a6778b3c
DV
11216 /* FIXME: add subpixel order */
11217done:
4b4b9238 11218 if (ret && crtc->enabled)
3ac18232 11219 crtc->mode = *saved_mode;
a6778b3c 11220
3ac18232 11221out:
b8cecdf5 11222 kfree(pipe_config);
3ac18232 11223 kfree(saved_mode);
a6778b3c 11224 return ret;
f6e5b160
CW
11225}
11226
e7457a9a
DL
11227static int intel_set_mode(struct drm_crtc *crtc,
11228 struct drm_display_mode *mode,
11229 int x, int y, struct drm_framebuffer *fb)
f30da187
DV
11230{
11231 int ret;
11232
11233 ret = __intel_set_mode(crtc, mode, x, y, fb);
11234
11235 if (ret == 0)
11236 intel_modeset_check_state(crtc->dev);
11237
11238 return ret;
11239}
11240
c0c36b94
CW
11241void intel_crtc_restore_mode(struct drm_crtc *crtc)
11242{
f4510a27 11243 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
c0c36b94
CW
11244}
11245
25c5b266
DV
11246#undef for_each_intel_crtc_masked
11247
d9e55608
DV
11248static void intel_set_config_free(struct intel_set_config *config)
11249{
11250 if (!config)
11251 return;
11252
1aa4b628
DV
11253 kfree(config->save_connector_encoders);
11254 kfree(config->save_encoder_crtcs);
7668851f 11255 kfree(config->save_crtc_enabled);
d9e55608
DV
11256 kfree(config);
11257}
11258
85f9eb71
DV
11259static int intel_set_config_save_state(struct drm_device *dev,
11260 struct intel_set_config *config)
11261{
7668851f 11262 struct drm_crtc *crtc;
85f9eb71
DV
11263 struct drm_encoder *encoder;
11264 struct drm_connector *connector;
11265 int count;
11266
7668851f
VS
11267 config->save_crtc_enabled =
11268 kcalloc(dev->mode_config.num_crtc,
11269 sizeof(bool), GFP_KERNEL);
11270 if (!config->save_crtc_enabled)
11271 return -ENOMEM;
11272
1aa4b628
DV
11273 config->save_encoder_crtcs =
11274 kcalloc(dev->mode_config.num_encoder,
11275 sizeof(struct drm_crtc *), GFP_KERNEL);
11276 if (!config->save_encoder_crtcs)
85f9eb71
DV
11277 return -ENOMEM;
11278
1aa4b628
DV
11279 config->save_connector_encoders =
11280 kcalloc(dev->mode_config.num_connector,
11281 sizeof(struct drm_encoder *), GFP_KERNEL);
11282 if (!config->save_connector_encoders)
85f9eb71
DV
11283 return -ENOMEM;
11284
11285 /* Copy data. Note that driver private data is not affected.
11286 * Should anything bad happen only the expected state is
11287 * restored, not the drivers personal bookkeeping.
11288 */
7668851f 11289 count = 0;
70e1e0ec 11290 for_each_crtc(dev, crtc) {
7668851f
VS
11291 config->save_crtc_enabled[count++] = crtc->enabled;
11292 }
11293
85f9eb71
DV
11294 count = 0;
11295 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
1aa4b628 11296 config->save_encoder_crtcs[count++] = encoder->crtc;
85f9eb71
DV
11297 }
11298
11299 count = 0;
11300 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1aa4b628 11301 config->save_connector_encoders[count++] = connector->encoder;
85f9eb71
DV
11302 }
11303
11304 return 0;
11305}
11306
11307static void intel_set_config_restore_state(struct drm_device *dev,
11308 struct intel_set_config *config)
11309{
7668851f 11310 struct intel_crtc *crtc;
9a935856
DV
11311 struct intel_encoder *encoder;
11312 struct intel_connector *connector;
85f9eb71
DV
11313 int count;
11314
7668851f 11315 count = 0;
d3fcc808 11316 for_each_intel_crtc(dev, crtc) {
7668851f 11317 crtc->new_enabled = config->save_crtc_enabled[count++];
7bd0a8e7
VS
11318
11319 if (crtc->new_enabled)
11320 crtc->new_config = &crtc->config;
11321 else
11322 crtc->new_config = NULL;
7668851f
VS
11323 }
11324
85f9eb71 11325 count = 0;
b2784e15 11326 for_each_intel_encoder(dev, encoder) {
9a935856
DV
11327 encoder->new_crtc =
11328 to_intel_crtc(config->save_encoder_crtcs[count++]);
85f9eb71
DV
11329 }
11330
11331 count = 0;
9a935856
DV
11332 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11333 connector->new_encoder =
11334 to_intel_encoder(config->save_connector_encoders[count++]);
85f9eb71
DV
11335 }
11336}
11337
e3de42b6 11338static bool
2e57f47d 11339is_crtc_connector_off(struct drm_mode_set *set)
e3de42b6
ID
11340{
11341 int i;
11342
2e57f47d
CW
11343 if (set->num_connectors == 0)
11344 return false;
11345
11346 if (WARN_ON(set->connectors == NULL))
11347 return false;
11348
11349 for (i = 0; i < set->num_connectors; i++)
11350 if (set->connectors[i]->encoder &&
11351 set->connectors[i]->encoder->crtc == set->crtc &&
11352 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
e3de42b6
ID
11353 return true;
11354
11355 return false;
11356}
11357
5e2b584e
DV
11358static void
11359intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11360 struct intel_set_config *config)
11361{
11362
11363 /* We should be able to check here if the fb has the same properties
11364 * and then just flip_or_move it */
2e57f47d
CW
11365 if (is_crtc_connector_off(set)) {
11366 config->mode_changed = true;
f4510a27 11367 } else if (set->crtc->primary->fb != set->fb) {
3b150f08
MR
11368 /*
11369 * If we have no fb, we can only flip as long as the crtc is
11370 * active, otherwise we need a full mode set. The crtc may
11371 * be active if we've only disabled the primary plane, or
11372 * in fastboot situations.
11373 */
f4510a27 11374 if (set->crtc->primary->fb == NULL) {
319d9827
JB
11375 struct intel_crtc *intel_crtc =
11376 to_intel_crtc(set->crtc);
11377
3b150f08 11378 if (intel_crtc->active) {
319d9827
JB
11379 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11380 config->fb_changed = true;
11381 } else {
11382 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11383 config->mode_changed = true;
11384 }
5e2b584e
DV
11385 } else if (set->fb == NULL) {
11386 config->mode_changed = true;
72f4901e 11387 } else if (set->fb->pixel_format !=
f4510a27 11388 set->crtc->primary->fb->pixel_format) {
5e2b584e 11389 config->mode_changed = true;
e3de42b6 11390 } else {
5e2b584e 11391 config->fb_changed = true;
e3de42b6 11392 }
5e2b584e
DV
11393 }
11394
835c5873 11395 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
5e2b584e
DV
11396 config->fb_changed = true;
11397
11398 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11399 DRM_DEBUG_KMS("modes are different, full mode set\n");
11400 drm_mode_debug_printmodeline(&set->crtc->mode);
11401 drm_mode_debug_printmodeline(set->mode);
11402 config->mode_changed = true;
11403 }
a1d95703
CW
11404
11405 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11406 set->crtc->base.id, config->mode_changed, config->fb_changed);
5e2b584e
DV
11407}
11408
2e431051 11409static int
9a935856
DV
11410intel_modeset_stage_output_state(struct drm_device *dev,
11411 struct drm_mode_set *set,
11412 struct intel_set_config *config)
50f56119 11413{
9a935856
DV
11414 struct intel_connector *connector;
11415 struct intel_encoder *encoder;
7668851f 11416 struct intel_crtc *crtc;
f3f08572 11417 int ro;
50f56119 11418
9abdda74 11419 /* The upper layers ensure that we either disable a crtc or have a list
9a935856
DV
11420 * of connectors. For paranoia, double-check this. */
11421 WARN_ON(!set->fb && (set->num_connectors != 0));
11422 WARN_ON(set->fb && (set->num_connectors == 0));
11423
9a935856
DV
11424 list_for_each_entry(connector, &dev->mode_config.connector_list,
11425 base.head) {
11426 /* Otherwise traverse passed in connector list and get encoders
11427 * for them. */
50f56119 11428 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11429 if (set->connectors[ro] == &connector->base) {
0e32b39c 11430 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
50f56119
DV
11431 break;
11432 }
11433 }
11434
9a935856
DV
11435 /* If we disable the crtc, disable all its connectors. Also, if
11436 * the connector is on the changing crtc but not on the new
11437 * connector list, disable it. */
11438 if ((!set->fb || ro == set->num_connectors) &&
11439 connector->base.encoder &&
11440 connector->base.encoder->crtc == set->crtc) {
11441 connector->new_encoder = NULL;
11442
11443 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11444 connector->base.base.id,
c23cc417 11445 connector->base.name);
9a935856
DV
11446 }
11447
11448
11449 if (&connector->new_encoder->base != connector->base.encoder) {
50f56119 11450 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
5e2b584e 11451 config->mode_changed = true;
50f56119
DV
11452 }
11453 }
9a935856 11454 /* connector->new_encoder is now updated for all connectors. */
50f56119 11455
9a935856 11456 /* Update crtc of enabled connectors. */
9a935856
DV
11457 list_for_each_entry(connector, &dev->mode_config.connector_list,
11458 base.head) {
7668851f
VS
11459 struct drm_crtc *new_crtc;
11460
9a935856 11461 if (!connector->new_encoder)
50f56119
DV
11462 continue;
11463
9a935856 11464 new_crtc = connector->new_encoder->base.crtc;
50f56119
DV
11465
11466 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11467 if (set->connectors[ro] == &connector->base)
50f56119
DV
11468 new_crtc = set->crtc;
11469 }
11470
11471 /* Make sure the new CRTC will work with the encoder */
14509916
TR
11472 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11473 new_crtc)) {
5e2b584e 11474 return -EINVAL;
50f56119 11475 }
0e32b39c 11476 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
9a935856
DV
11477
11478 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11479 connector->base.base.id,
c23cc417 11480 connector->base.name,
9a935856
DV
11481 new_crtc->base.id);
11482 }
11483
11484 /* Check for any encoders that needs to be disabled. */
b2784e15 11485 for_each_intel_encoder(dev, encoder) {
5a65f358 11486 int num_connectors = 0;
9a935856
DV
11487 list_for_each_entry(connector,
11488 &dev->mode_config.connector_list,
11489 base.head) {
11490 if (connector->new_encoder == encoder) {
11491 WARN_ON(!connector->new_encoder->new_crtc);
5a65f358 11492 num_connectors++;
9a935856
DV
11493 }
11494 }
5a65f358
PZ
11495
11496 if (num_connectors == 0)
11497 encoder->new_crtc = NULL;
11498 else if (num_connectors > 1)
11499 return -EINVAL;
11500
9a935856
DV
11501 /* Only now check for crtc changes so we don't miss encoders
11502 * that will be disabled. */
11503 if (&encoder->new_crtc->base != encoder->base.crtc) {
50f56119 11504 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
5e2b584e 11505 config->mode_changed = true;
50f56119
DV
11506 }
11507 }
9a935856 11508 /* Now we've also updated encoder->new_crtc for all encoders. */
0e32b39c
DA
11509 list_for_each_entry(connector, &dev->mode_config.connector_list,
11510 base.head) {
11511 if (connector->new_encoder)
11512 if (connector->new_encoder != connector->encoder)
11513 connector->encoder = connector->new_encoder;
11514 }
d3fcc808 11515 for_each_intel_crtc(dev, crtc) {
7668851f
VS
11516 crtc->new_enabled = false;
11517
b2784e15 11518 for_each_intel_encoder(dev, encoder) {
7668851f
VS
11519 if (encoder->new_crtc == crtc) {
11520 crtc->new_enabled = true;
11521 break;
11522 }
11523 }
11524
11525 if (crtc->new_enabled != crtc->base.enabled) {
11526 DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11527 crtc->new_enabled ? "en" : "dis");
11528 config->mode_changed = true;
11529 }
7bd0a8e7
VS
11530
11531 if (crtc->new_enabled)
11532 crtc->new_config = &crtc->config;
11533 else
11534 crtc->new_config = NULL;
7668851f
VS
11535 }
11536
2e431051
DV
11537 return 0;
11538}
11539
7d00a1f5
VS
11540static void disable_crtc_nofb(struct intel_crtc *crtc)
11541{
11542 struct drm_device *dev = crtc->base.dev;
11543 struct intel_encoder *encoder;
11544 struct intel_connector *connector;
11545
11546 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11547 pipe_name(crtc->pipe));
11548
11549 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11550 if (connector->new_encoder &&
11551 connector->new_encoder->new_crtc == crtc)
11552 connector->new_encoder = NULL;
11553 }
11554
b2784e15 11555 for_each_intel_encoder(dev, encoder) {
7d00a1f5
VS
11556 if (encoder->new_crtc == crtc)
11557 encoder->new_crtc = NULL;
11558 }
11559
11560 crtc->new_enabled = false;
7bd0a8e7 11561 crtc->new_config = NULL;
7d00a1f5
VS
11562}
11563
2e431051
DV
11564static int intel_crtc_set_config(struct drm_mode_set *set)
11565{
11566 struct drm_device *dev;
2e431051
DV
11567 struct drm_mode_set save_set;
11568 struct intel_set_config *config;
11569 int ret;
2e431051 11570
8d3e375e
DV
11571 BUG_ON(!set);
11572 BUG_ON(!set->crtc);
11573 BUG_ON(!set->crtc->helper_private);
2e431051 11574
7e53f3a4
DV
11575 /* Enforce sane interface api - has been abused by the fb helper. */
11576 BUG_ON(!set->mode && set->fb);
11577 BUG_ON(set->fb && set->num_connectors == 0);
431e50f7 11578
2e431051
DV
11579 if (set->fb) {
11580 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11581 set->crtc->base.id, set->fb->base.id,
11582 (int)set->num_connectors, set->x, set->y);
11583 } else {
11584 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
2e431051
DV
11585 }
11586
11587 dev = set->crtc->dev;
11588
11589 ret = -ENOMEM;
11590 config = kzalloc(sizeof(*config), GFP_KERNEL);
11591 if (!config)
11592 goto out_config;
11593
11594 ret = intel_set_config_save_state(dev, config);
11595 if (ret)
11596 goto out_config;
11597
11598 save_set.crtc = set->crtc;
11599 save_set.mode = &set->crtc->mode;
11600 save_set.x = set->crtc->x;
11601 save_set.y = set->crtc->y;
f4510a27 11602 save_set.fb = set->crtc->primary->fb;
2e431051
DV
11603
11604 /* Compute whether we need a full modeset, only an fb base update or no
11605 * change at all. In the future we might also check whether only the
11606 * mode changed, e.g. for LVDS where we only change the panel fitter in
11607 * such cases. */
11608 intel_set_config_compute_mode_changes(set, config);
11609
9a935856 11610 ret = intel_modeset_stage_output_state(dev, set, config);
2e431051
DV
11611 if (ret)
11612 goto fail;
11613
5e2b584e 11614 if (config->mode_changed) {
c0c36b94
CW
11615 ret = intel_set_mode(set->crtc, set->mode,
11616 set->x, set->y, set->fb);
5e2b584e 11617 } else if (config->fb_changed) {
3b150f08
MR
11618 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11619
4878cae2
VS
11620 intel_crtc_wait_for_pending_flips(set->crtc);
11621
4f660f49 11622 ret = intel_pipe_set_base(set->crtc,
94352cf9 11623 set->x, set->y, set->fb);
3b150f08
MR
11624
11625 /*
11626 * We need to make sure the primary plane is re-enabled if it
11627 * has previously been turned off.
11628 */
11629 if (!intel_crtc->primary_enabled && ret == 0) {
11630 WARN_ON(!intel_crtc->active);
fdd508a6 11631 intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
3b150f08
MR
11632 }
11633
7ca51a3a
JB
11634 /*
11635 * In the fastboot case this may be our only check of the
11636 * state after boot. It would be better to only do it on
11637 * the first update, but we don't have a nice way of doing that
11638 * (and really, set_config isn't used much for high freq page
11639 * flipping, so increasing its cost here shouldn't be a big
11640 * deal).
11641 */
d330a953 11642 if (i915.fastboot && ret == 0)
7ca51a3a 11643 intel_modeset_check_state(set->crtc->dev);
50f56119
DV
11644 }
11645
2d05eae1 11646 if (ret) {
bf67dfeb
DV
11647 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11648 set->crtc->base.id, ret);
50f56119 11649fail:
2d05eae1 11650 intel_set_config_restore_state(dev, config);
50f56119 11651
7d00a1f5
VS
11652 /*
11653 * HACK: if the pipe was on, but we didn't have a framebuffer,
11654 * force the pipe off to avoid oopsing in the modeset code
11655 * due to fb==NULL. This should only happen during boot since
11656 * we don't yet reconstruct the FB from the hardware state.
11657 */
11658 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11659 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11660
2d05eae1
CW
11661 /* Try to restore the config */
11662 if (config->mode_changed &&
11663 intel_set_mode(save_set.crtc, save_set.mode,
11664 save_set.x, save_set.y, save_set.fb))
11665 DRM_ERROR("failed to restore config after modeset failure\n");
11666 }
50f56119 11667
d9e55608
DV
11668out_config:
11669 intel_set_config_free(config);
50f56119
DV
11670 return ret;
11671}
f6e5b160
CW
11672
11673static const struct drm_crtc_funcs intel_crtc_funcs = {
f6e5b160 11674 .gamma_set = intel_crtc_gamma_set,
50f56119 11675 .set_config = intel_crtc_set_config,
f6e5b160
CW
11676 .destroy = intel_crtc_destroy,
11677 .page_flip = intel_crtc_page_flip,
11678};
11679
5358901f
DV
11680static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11681 struct intel_shared_dpll *pll,
11682 struct intel_dpll_hw_state *hw_state)
ee7b9f93 11683{
5358901f 11684 uint32_t val;
ee7b9f93 11685
bd2bb1b9
PZ
11686 if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_PLLS))
11687 return false;
11688
5358901f 11689 val = I915_READ(PCH_DPLL(pll->id));
66e985c0
DV
11690 hw_state->dpll = val;
11691 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11692 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
5358901f
DV
11693
11694 return val & DPLL_VCO_ENABLE;
11695}
11696
15bdd4cf
DV
11697static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11698 struct intel_shared_dpll *pll)
11699{
11700 I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
11701 I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
11702}
11703
e7b903d2
DV
11704static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11705 struct intel_shared_dpll *pll)
11706{
e7b903d2 11707 /* PCH refclock must be enabled first */
89eff4be 11708 ibx_assert_pch_refclk_enabled(dev_priv);
e7b903d2 11709
15bdd4cf
DV
11710 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11711
11712 /* Wait for the clocks to stabilize. */
11713 POSTING_READ(PCH_DPLL(pll->id));
11714 udelay(150);
11715
11716 /* The pixel multiplier can only be updated once the
11717 * DPLL is enabled and the clocks are stable.
11718 *
11719 * So write it again.
11720 */
11721 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11722 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11723 udelay(200);
11724}
11725
11726static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11727 struct intel_shared_dpll *pll)
11728{
11729 struct drm_device *dev = dev_priv->dev;
11730 struct intel_crtc *crtc;
e7b903d2
DV
11731
11732 /* Make sure no transcoder isn't still depending on us. */
d3fcc808 11733 for_each_intel_crtc(dev, crtc) {
e7b903d2
DV
11734 if (intel_crtc_to_shared_dpll(crtc) == pll)
11735 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
ee7b9f93
JB
11736 }
11737
15bdd4cf
DV
11738 I915_WRITE(PCH_DPLL(pll->id), 0);
11739 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11740 udelay(200);
11741}
11742
46edb027
DV
11743static char *ibx_pch_dpll_names[] = {
11744 "PCH DPLL A",
11745 "PCH DPLL B",
11746};
11747
7c74ade1 11748static void ibx_pch_dpll_init(struct drm_device *dev)
ee7b9f93 11749{
e7b903d2 11750 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93
JB
11751 int i;
11752
7c74ade1 11753 dev_priv->num_shared_dpll = 2;
ee7b9f93 11754
e72f9fbf 11755 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
46edb027
DV
11756 dev_priv->shared_dplls[i].id = i;
11757 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
15bdd4cf 11758 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
e7b903d2
DV
11759 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11760 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
5358901f
DV
11761 dev_priv->shared_dplls[i].get_hw_state =
11762 ibx_pch_dpll_get_hw_state;
ee7b9f93
JB
11763 }
11764}
11765
7c74ade1
DV
11766static void intel_shared_dpll_init(struct drm_device *dev)
11767{
e7b903d2 11768 struct drm_i915_private *dev_priv = dev->dev_private;
7c74ade1 11769
9cd86933
DV
11770 if (HAS_DDI(dev))
11771 intel_ddi_pll_init(dev);
11772 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7c74ade1
DV
11773 ibx_pch_dpll_init(dev);
11774 else
11775 dev_priv->num_shared_dpll = 0;
11776
11777 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
7c74ade1
DV
11778}
11779
465c120c
MR
11780static int
11781intel_primary_plane_disable(struct drm_plane *plane)
11782{
11783 struct drm_device *dev = plane->dev;
465c120c
MR
11784 struct intel_crtc *intel_crtc;
11785
11786 if (!plane->fb)
11787 return 0;
11788
11789 BUG_ON(!plane->crtc);
11790
11791 intel_crtc = to_intel_crtc(plane->crtc);
11792
11793 /*
11794 * Even though we checked plane->fb above, it's still possible that
11795 * the primary plane has been implicitly disabled because the crtc
11796 * coordinates given weren't visible, or because we detected
11797 * that it was 100% covered by a sprite plane. Or, the CRTC may be
11798 * off and we've set a fb, but haven't actually turned on the CRTC yet.
11799 * In either case, we need to unpin the FB and let the fb pointer get
11800 * updated, but otherwise we don't need to touch the hardware.
11801 */
11802 if (!intel_crtc->primary_enabled)
11803 goto disable_unpin;
11804
11805 intel_crtc_wait_for_pending_flips(plane->crtc);
fdd508a6
VS
11806 intel_disable_primary_hw_plane(plane, plane->crtc);
11807
465c120c 11808disable_unpin:
4c34574f 11809 mutex_lock(&dev->struct_mutex);
2ff8fde1 11810 i915_gem_track_fb(intel_fb_obj(plane->fb), NULL,
a071fa00 11811 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
2ff8fde1 11812 intel_unpin_fb_obj(intel_fb_obj(plane->fb));
4c34574f 11813 mutex_unlock(&dev->struct_mutex);
465c120c
MR
11814 plane->fb = NULL;
11815
11816 return 0;
11817}
11818
11819static int
3c692a41
GP
11820intel_check_primary_plane(struct drm_plane *plane,
11821 struct intel_plane_state *state)
11822{
11823 struct drm_crtc *crtc = state->crtc;
11824 struct drm_framebuffer *fb = state->fb;
11825 struct drm_rect *dest = &state->dst;
11826 struct drm_rect *src = &state->src;
11827 const struct drm_rect *clip = &state->clip;
11828
11829 return drm_plane_helper_check_update(plane, crtc, fb,
11830 src, dest, clip,
11831 DRM_PLANE_HELPER_NO_SCALING,
11832 DRM_PLANE_HELPER_NO_SCALING,
11833 false, true, &state->visible);
11834}
11835
11836static int
11837intel_commit_primary_plane(struct drm_plane *plane,
11838 struct intel_plane_state *state)
465c120c 11839{
3c692a41
GP
11840 struct drm_crtc *crtc = state->crtc;
11841 struct drm_framebuffer *fb = state->fb;
465c120c 11842 struct drm_device *dev = crtc->dev;
48404c1e 11843 struct drm_i915_private *dev_priv = dev->dev_private;
465c120c 11844 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2ff8fde1
MR
11845 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11846 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
ce54d85a 11847 struct intel_plane *intel_plane = to_intel_plane(plane);
3c692a41 11848 struct drm_rect *src = &state->src;
465c120c
MR
11849 int ret;
11850
465c120c
MR
11851 intel_crtc_wait_for_pending_flips(crtc);
11852
11853 /*
11854 * If clipping results in a non-visible primary plane, we'll disable
11855 * the primary plane. Note that this is a bit different than what
11856 * happens if userspace explicitly disables the plane by passing fb=0
11857 * because plane->fb still gets set and pinned.
11858 */
3c692a41 11859 if (!state->visible) {
4c34574f
MR
11860 mutex_lock(&dev->struct_mutex);
11861
465c120c
MR
11862 /*
11863 * Try to pin the new fb first so that we can bail out if we
11864 * fail.
11865 */
11866 if (plane->fb != fb) {
a071fa00 11867 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
4c34574f
MR
11868 if (ret) {
11869 mutex_unlock(&dev->struct_mutex);
465c120c 11870 return ret;
4c34574f 11871 }
465c120c
MR
11872 }
11873
a071fa00
DV
11874 i915_gem_track_fb(old_obj, obj,
11875 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11876
465c120c 11877 if (intel_crtc->primary_enabled)
fdd508a6 11878 intel_disable_primary_hw_plane(plane, crtc);
465c120c
MR
11879
11880
11881 if (plane->fb != fb)
11882 if (plane->fb)
a071fa00 11883 intel_unpin_fb_obj(old_obj);
465c120c 11884
4c34574f
MR
11885 mutex_unlock(&dev->struct_mutex);
11886
ce54d85a 11887 } else {
48404c1e
SJ
11888 if (intel_crtc && intel_crtc->active &&
11889 intel_crtc->primary_enabled) {
11890 /*
11891 * FBC does not work on some platforms for rotated
11892 * planes, so disable it when rotation is not 0 and
11893 * update it when rotation is set back to 0.
11894 *
11895 * FIXME: This is redundant with the fbc update done in
11896 * the primary plane enable function except that that
11897 * one is done too late. We eventually need to unify
11898 * this.
11899 */
11900 if (INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11901 dev_priv->fbc.plane == intel_crtc->plane &&
11902 intel_plane->rotation != BIT(DRM_ROTATE_0)) {
11903 intel_disable_fbc(dev);
11904 }
11905 }
3c692a41 11906 ret = intel_pipe_set_base(crtc, src->x1, src->y1, fb);
ce54d85a
SJ
11907 if (ret)
11908 return ret;
465c120c 11909
ce54d85a
SJ
11910 if (!intel_crtc->primary_enabled)
11911 intel_enable_primary_hw_plane(plane, crtc);
11912 }
465c120c 11913
3c692a41
GP
11914 intel_plane->crtc_x = state->orig_dst.x1;
11915 intel_plane->crtc_y = state->orig_dst.y1;
11916 intel_plane->crtc_w = drm_rect_width(&state->orig_dst);
11917 intel_plane->crtc_h = drm_rect_height(&state->orig_dst);
11918 intel_plane->src_x = state->orig_src.x1;
11919 intel_plane->src_y = state->orig_src.y1;
11920 intel_plane->src_w = drm_rect_width(&state->orig_src);
11921 intel_plane->src_h = drm_rect_height(&state->orig_src);
ce54d85a 11922 intel_plane->obj = obj;
465c120c
MR
11923
11924 return 0;
11925}
11926
3c692a41
GP
11927static int
11928intel_primary_plane_setplane(struct drm_plane *plane, struct drm_crtc *crtc,
11929 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11930 unsigned int crtc_w, unsigned int crtc_h,
11931 uint32_t src_x, uint32_t src_y,
11932 uint32_t src_w, uint32_t src_h)
11933{
11934 struct intel_plane_state state;
11935 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11936 int ret;
11937
11938 state.crtc = crtc;
11939 state.fb = fb;
11940
11941 /* sample coordinates in 16.16 fixed point */
11942 state.src.x1 = src_x;
11943 state.src.x2 = src_x + src_w;
11944 state.src.y1 = src_y;
11945 state.src.y2 = src_y + src_h;
11946
11947 /* integer pixels */
11948 state.dst.x1 = crtc_x;
11949 state.dst.x2 = crtc_x + crtc_w;
11950 state.dst.y1 = crtc_y;
11951 state.dst.y2 = crtc_y + crtc_h;
11952
11953 state.clip.x1 = 0;
11954 state.clip.y1 = 0;
11955 state.clip.x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0;
11956 state.clip.y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0;
11957
11958 state.orig_src = state.src;
11959 state.orig_dst = state.dst;
11960
11961 ret = intel_check_primary_plane(plane, &state);
11962 if (ret)
11963 return ret;
11964
11965 intel_commit_primary_plane(plane, &state);
11966
11967 return 0;
11968}
11969
3d7d6510
MR
11970/* Common destruction function for both primary and cursor planes */
11971static void intel_plane_destroy(struct drm_plane *plane)
465c120c
MR
11972{
11973 struct intel_plane *intel_plane = to_intel_plane(plane);
11974 drm_plane_cleanup(plane);
11975 kfree(intel_plane);
11976}
11977
11978static const struct drm_plane_funcs intel_primary_plane_funcs = {
11979 .update_plane = intel_primary_plane_setplane,
11980 .disable_plane = intel_primary_plane_disable,
3d7d6510 11981 .destroy = intel_plane_destroy,
48404c1e 11982 .set_property = intel_plane_set_property
465c120c
MR
11983};
11984
11985static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
11986 int pipe)
11987{
11988 struct intel_plane *primary;
11989 const uint32_t *intel_primary_formats;
11990 int num_formats;
11991
11992 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
11993 if (primary == NULL)
11994 return NULL;
11995
11996 primary->can_scale = false;
11997 primary->max_downscale = 1;
11998 primary->pipe = pipe;
11999 primary->plane = pipe;
48404c1e 12000 primary->rotation = BIT(DRM_ROTATE_0);
465c120c
MR
12001 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
12002 primary->plane = !pipe;
12003
12004 if (INTEL_INFO(dev)->gen <= 3) {
12005 intel_primary_formats = intel_primary_formats_gen2;
12006 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
12007 } else {
12008 intel_primary_formats = intel_primary_formats_gen4;
12009 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
12010 }
12011
12012 drm_universal_plane_init(dev, &primary->base, 0,
12013 &intel_primary_plane_funcs,
12014 intel_primary_formats, num_formats,
12015 DRM_PLANE_TYPE_PRIMARY);
48404c1e
SJ
12016
12017 if (INTEL_INFO(dev)->gen >= 4) {
12018 if (!dev->mode_config.rotation_property)
12019 dev->mode_config.rotation_property =
12020 drm_mode_create_rotation_property(dev,
12021 BIT(DRM_ROTATE_0) |
12022 BIT(DRM_ROTATE_180));
12023 if (dev->mode_config.rotation_property)
12024 drm_object_attach_property(&primary->base.base,
12025 dev->mode_config.rotation_property,
12026 primary->rotation);
12027 }
12028
465c120c
MR
12029 return &primary->base;
12030}
12031
3d7d6510
MR
12032static int
12033intel_cursor_plane_disable(struct drm_plane *plane)
12034{
12035 if (!plane->fb)
12036 return 0;
12037
12038 BUG_ON(!plane->crtc);
12039
12040 return intel_crtc_cursor_set_obj(plane->crtc, NULL, 0, 0);
12041}
12042
12043static int
852e787c
GP
12044intel_check_cursor_plane(struct drm_plane *plane,
12045 struct intel_plane_state *state)
3d7d6510 12046{
852e787c
GP
12047 struct drm_crtc *crtc = state->crtc;
12048 struct drm_framebuffer *fb = state->fb;
12049 struct drm_rect *dest = &state->dst;
12050 struct drm_rect *src = &state->src;
12051 const struct drm_rect *clip = &state->clip;
3d7d6510 12052
852e787c
GP
12053 return drm_plane_helper_check_update(plane, crtc, fb,
12054 src, dest, clip,
3d7d6510
MR
12055 DRM_PLANE_HELPER_NO_SCALING,
12056 DRM_PLANE_HELPER_NO_SCALING,
852e787c
GP
12057 true, true, &state->visible);
12058}
3d7d6510 12059
852e787c
GP
12060static int
12061intel_commit_cursor_plane(struct drm_plane *plane,
12062 struct intel_plane_state *state)
12063{
12064 struct drm_crtc *crtc = state->crtc;
12065 struct drm_framebuffer *fb = state->fb;
12066 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12067 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12068 struct drm_i915_gem_object *obj = intel_fb->obj;
12069 int crtc_w, crtc_h;
12070
12071 crtc->cursor_x = state->orig_dst.x1;
12072 crtc->cursor_y = state->orig_dst.y1;
3d7d6510 12073 if (fb != crtc->cursor->fb) {
852e787c
GP
12074 crtc_w = drm_rect_width(&state->orig_dst);
12075 crtc_h = drm_rect_height(&state->orig_dst);
3d7d6510
MR
12076 return intel_crtc_cursor_set_obj(crtc, obj, crtc_w, crtc_h);
12077 } else {
852e787c 12078 intel_crtc_update_cursor(crtc, state->visible);
4ed91096
DV
12079
12080 intel_frontbuffer_flip(crtc->dev,
12081 INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe));
12082
3d7d6510
MR
12083 return 0;
12084 }
12085}
852e787c
GP
12086
12087static int
12088intel_cursor_plane_update(struct drm_plane *plane, struct drm_crtc *crtc,
12089 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
12090 unsigned int crtc_w, unsigned int crtc_h,
12091 uint32_t src_x, uint32_t src_y,
12092 uint32_t src_w, uint32_t src_h)
12093{
12094 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12095 struct intel_plane_state state;
12096 int ret;
12097
12098 state.crtc = crtc;
12099 state.fb = fb;
12100
12101 /* sample coordinates in 16.16 fixed point */
12102 state.src.x1 = src_x;
12103 state.src.x2 = src_x + src_w;
12104 state.src.y1 = src_y;
12105 state.src.y2 = src_y + src_h;
12106
12107 /* integer pixels */
12108 state.dst.x1 = crtc_x;
12109 state.dst.x2 = crtc_x + crtc_w;
12110 state.dst.y1 = crtc_y;
12111 state.dst.y2 = crtc_y + crtc_h;
12112
12113 state.clip.x1 = 0;
12114 state.clip.y1 = 0;
12115 state.clip.x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0;
12116 state.clip.y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0;
12117
12118 state.orig_src = state.src;
12119 state.orig_dst = state.dst;
12120
12121 ret = intel_check_cursor_plane(plane, &state);
12122 if (ret)
12123 return ret;
12124
12125 return intel_commit_cursor_plane(plane, &state);
12126}
12127
3d7d6510
MR
12128static const struct drm_plane_funcs intel_cursor_plane_funcs = {
12129 .update_plane = intel_cursor_plane_update,
12130 .disable_plane = intel_cursor_plane_disable,
12131 .destroy = intel_plane_destroy,
12132};
12133
12134static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
12135 int pipe)
12136{
12137 struct intel_plane *cursor;
12138
12139 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
12140 if (cursor == NULL)
12141 return NULL;
12142
12143 cursor->can_scale = false;
12144 cursor->max_downscale = 1;
12145 cursor->pipe = pipe;
12146 cursor->plane = pipe;
12147
12148 drm_universal_plane_init(dev, &cursor->base, 0,
12149 &intel_cursor_plane_funcs,
12150 intel_cursor_formats,
12151 ARRAY_SIZE(intel_cursor_formats),
12152 DRM_PLANE_TYPE_CURSOR);
12153 return &cursor->base;
12154}
12155
b358d0a6 12156static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 12157{
fbee40df 12158 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 12159 struct intel_crtc *intel_crtc;
3d7d6510
MR
12160 struct drm_plane *primary = NULL;
12161 struct drm_plane *cursor = NULL;
465c120c 12162 int i, ret;
79e53945 12163
955382f3 12164 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
79e53945
JB
12165 if (intel_crtc == NULL)
12166 return;
12167
465c120c 12168 primary = intel_primary_plane_create(dev, pipe);
3d7d6510
MR
12169 if (!primary)
12170 goto fail;
12171
12172 cursor = intel_cursor_plane_create(dev, pipe);
12173 if (!cursor)
12174 goto fail;
12175
465c120c 12176 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
3d7d6510
MR
12177 cursor, &intel_crtc_funcs);
12178 if (ret)
12179 goto fail;
79e53945
JB
12180
12181 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
12182 for (i = 0; i < 256; i++) {
12183 intel_crtc->lut_r[i] = i;
12184 intel_crtc->lut_g[i] = i;
12185 intel_crtc->lut_b[i] = i;
12186 }
12187
1f1c2e24
VS
12188 /*
12189 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
8c0f92e1 12190 * is hooked to pipe B. Hence we want plane A feeding pipe B.
1f1c2e24 12191 */
80824003
JB
12192 intel_crtc->pipe = pipe;
12193 intel_crtc->plane = pipe;
3a77c4c4 12194 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
28c97730 12195 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 12196 intel_crtc->plane = !pipe;
80824003
JB
12197 }
12198
4b0e333e
CW
12199 intel_crtc->cursor_base = ~0;
12200 intel_crtc->cursor_cntl = ~0;
dc41c154 12201 intel_crtc->cursor_size = ~0;
8d7849db 12202
22fd0fab
JB
12203 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
12204 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
12205 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
12206 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
12207
79e53945 12208 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
87b6b101
DV
12209
12210 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
3d7d6510
MR
12211 return;
12212
12213fail:
12214 if (primary)
12215 drm_plane_cleanup(primary);
12216 if (cursor)
12217 drm_plane_cleanup(cursor);
12218 kfree(intel_crtc);
79e53945
JB
12219}
12220
752aa88a
JB
12221enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
12222{
12223 struct drm_encoder *encoder = connector->base.encoder;
6e9f798d 12224 struct drm_device *dev = connector->base.dev;
752aa88a 12225
51fd371b 12226 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
752aa88a
JB
12227
12228 if (!encoder)
12229 return INVALID_PIPE;
12230
12231 return to_intel_crtc(encoder->crtc)->pipe;
12232}
12233
08d7b3d1 12234int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 12235 struct drm_file *file)
08d7b3d1 12236{
08d7b3d1 12237 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7707e653 12238 struct drm_crtc *drmmode_crtc;
c05422d5 12239 struct intel_crtc *crtc;
08d7b3d1 12240
1cff8f6b
DV
12241 if (!drm_core_check_feature(dev, DRIVER_MODESET))
12242 return -ENODEV;
08d7b3d1 12243
7707e653 12244 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
08d7b3d1 12245
7707e653 12246 if (!drmmode_crtc) {
08d7b3d1 12247 DRM_ERROR("no such CRTC id\n");
3f2c2057 12248 return -ENOENT;
08d7b3d1
CW
12249 }
12250
7707e653 12251 crtc = to_intel_crtc(drmmode_crtc);
c05422d5 12252 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 12253
c05422d5 12254 return 0;
08d7b3d1
CW
12255}
12256
66a9278e 12257static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 12258{
66a9278e
DV
12259 struct drm_device *dev = encoder->base.dev;
12260 struct intel_encoder *source_encoder;
79e53945 12261 int index_mask = 0;
79e53945
JB
12262 int entry = 0;
12263
b2784e15 12264 for_each_intel_encoder(dev, source_encoder) {
bc079e8b 12265 if (encoders_cloneable(encoder, source_encoder))
66a9278e
DV
12266 index_mask |= (1 << entry);
12267
79e53945
JB
12268 entry++;
12269 }
4ef69c7a 12270
79e53945
JB
12271 return index_mask;
12272}
12273
4d302442
CW
12274static bool has_edp_a(struct drm_device *dev)
12275{
12276 struct drm_i915_private *dev_priv = dev->dev_private;
12277
12278 if (!IS_MOBILE(dev))
12279 return false;
12280
12281 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
12282 return false;
12283
e3589908 12284 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
4d302442
CW
12285 return false;
12286
12287 return true;
12288}
12289
ba0fbca4
DL
12290const char *intel_output_name(int output)
12291{
12292 static const char *names[] = {
12293 [INTEL_OUTPUT_UNUSED] = "Unused",
12294 [INTEL_OUTPUT_ANALOG] = "Analog",
12295 [INTEL_OUTPUT_DVO] = "DVO",
12296 [INTEL_OUTPUT_SDVO] = "SDVO",
12297 [INTEL_OUTPUT_LVDS] = "LVDS",
12298 [INTEL_OUTPUT_TVOUT] = "TV",
12299 [INTEL_OUTPUT_HDMI] = "HDMI",
12300 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
12301 [INTEL_OUTPUT_EDP] = "eDP",
12302 [INTEL_OUTPUT_DSI] = "DSI",
12303 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
12304 };
12305
12306 if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
12307 return "Invalid";
12308
12309 return names[output];
12310}
12311
84b4e042
JB
12312static bool intel_crt_present(struct drm_device *dev)
12313{
12314 struct drm_i915_private *dev_priv = dev->dev_private;
12315
12316 if (IS_ULT(dev))
12317 return false;
12318
12319 if (IS_CHERRYVIEW(dev))
12320 return false;
12321
12322 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
12323 return false;
12324
12325 return true;
12326}
12327
79e53945
JB
12328static void intel_setup_outputs(struct drm_device *dev)
12329{
725e30ad 12330 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 12331 struct intel_encoder *encoder;
cb0953d7 12332 bool dpd_is_edp = false;
79e53945 12333
c9093354 12334 intel_lvds_init(dev);
79e53945 12335
84b4e042 12336 if (intel_crt_present(dev))
79935fca 12337 intel_crt_init(dev);
cb0953d7 12338
affa9354 12339 if (HAS_DDI(dev)) {
0e72a5b5
ED
12340 int found;
12341
12342 /* Haswell uses DDI functions to detect digital outputs */
12343 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
12344 /* DDI A only supports eDP */
12345 if (found)
12346 intel_ddi_init(dev, PORT_A);
12347
12348 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
12349 * register */
12350 found = I915_READ(SFUSE_STRAP);
12351
12352 if (found & SFUSE_STRAP_DDIB_DETECTED)
12353 intel_ddi_init(dev, PORT_B);
12354 if (found & SFUSE_STRAP_DDIC_DETECTED)
12355 intel_ddi_init(dev, PORT_C);
12356 if (found & SFUSE_STRAP_DDID_DETECTED)
12357 intel_ddi_init(dev, PORT_D);
12358 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7 12359 int found;
5d8a7752 12360 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
270b3042
DV
12361
12362 if (has_edp_a(dev))
12363 intel_dp_init(dev, DP_A, PORT_A);
cb0953d7 12364
dc0fa718 12365 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
461ed3ca 12366 /* PCH SDVOB multiplex with HDMIB */
eef4eacb 12367 found = intel_sdvo_init(dev, PCH_SDVOB, true);
30ad48b7 12368 if (!found)
e2debe91 12369 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
5eb08b69 12370 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 12371 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
12372 }
12373
dc0fa718 12374 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
e2debe91 12375 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
30ad48b7 12376
dc0fa718 12377 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
e2debe91 12378 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
30ad48b7 12379
5eb08b69 12380 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 12381 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 12382
270b3042 12383 if (I915_READ(PCH_DP_D) & DP_DETECTED)
ab9d7c30 12384 intel_dp_init(dev, PCH_DP_D, PORT_D);
4a87d65d 12385 } else if (IS_VALLEYVIEW(dev)) {
585a94b8
AB
12386 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
12387 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
12388 PORT_B);
12389 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
12390 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
12391 }
12392
6f6005a5
JB
12393 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
12394 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
12395 PORT_C);
12396 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
5d8a7752 12397 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
6f6005a5 12398 }
19c03924 12399
9418c1f1
VS
12400 if (IS_CHERRYVIEW(dev)) {
12401 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED) {
12402 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
12403 PORT_D);
12404 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
12405 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
12406 }
12407 }
12408
3cfca973 12409 intel_dsi_init(dev);
103a196f 12410 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
27185ae1 12411 bool found = false;
7d57382e 12412
e2debe91 12413 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 12414 DRM_DEBUG_KMS("probing SDVOB\n");
e2debe91 12415 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
b01f2c3a
JB
12416 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12417 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
e2debe91 12418 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
b01f2c3a 12419 }
27185ae1 12420
e7281eab 12421 if (!found && SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 12422 intel_dp_init(dev, DP_B, PORT_B);
725e30ad 12423 }
13520b05
KH
12424
12425 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 12426
e2debe91 12427 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 12428 DRM_DEBUG_KMS("probing SDVOC\n");
e2debe91 12429 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
b01f2c3a 12430 }
27185ae1 12431
e2debe91 12432 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
27185ae1 12433
b01f2c3a
JB
12434 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12435 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
e2debe91 12436 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
b01f2c3a 12437 }
e7281eab 12438 if (SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 12439 intel_dp_init(dev, DP_C, PORT_C);
725e30ad 12440 }
27185ae1 12441
b01f2c3a 12442 if (SUPPORTS_INTEGRATED_DP(dev) &&
e7281eab 12443 (I915_READ(DP_D) & DP_DETECTED))
ab9d7c30 12444 intel_dp_init(dev, DP_D, PORT_D);
bad720ff 12445 } else if (IS_GEN2(dev))
79e53945
JB
12446 intel_dvo_init(dev);
12447
103a196f 12448 if (SUPPORTS_TV(dev))
79e53945
JB
12449 intel_tv_init(dev);
12450
7c8f8a70
RV
12451 intel_edp_psr_init(dev);
12452
b2784e15 12453 for_each_intel_encoder(dev, encoder) {
4ef69c7a
CW
12454 encoder->base.possible_crtcs = encoder->crtc_mask;
12455 encoder->base.possible_clones =
66a9278e 12456 intel_encoder_clones(encoder);
79e53945 12457 }
47356eb6 12458
dde86e2d 12459 intel_init_pch_refclk(dev);
270b3042
DV
12460
12461 drm_helper_move_panel_connectors_to_head(dev);
79e53945
JB
12462}
12463
12464static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12465{
60a5ca01 12466 struct drm_device *dev = fb->dev;
79e53945 12467 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945 12468
ef2d633e 12469 drm_framebuffer_cleanup(fb);
60a5ca01 12470 mutex_lock(&dev->struct_mutex);
ef2d633e 12471 WARN_ON(!intel_fb->obj->framebuffer_references--);
60a5ca01
VS
12472 drm_gem_object_unreference(&intel_fb->obj->base);
12473 mutex_unlock(&dev->struct_mutex);
79e53945
JB
12474 kfree(intel_fb);
12475}
12476
12477static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 12478 struct drm_file *file,
79e53945
JB
12479 unsigned int *handle)
12480{
12481 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 12482 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 12483
05394f39 12484 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
12485}
12486
12487static const struct drm_framebuffer_funcs intel_fb_funcs = {
12488 .destroy = intel_user_framebuffer_destroy,
12489 .create_handle = intel_user_framebuffer_create_handle,
12490};
12491
b5ea642a
DV
12492static int intel_framebuffer_init(struct drm_device *dev,
12493 struct intel_framebuffer *intel_fb,
12494 struct drm_mode_fb_cmd2 *mode_cmd,
12495 struct drm_i915_gem_object *obj)
79e53945 12496{
a57ce0b2 12497 int aligned_height;
a35cdaa0 12498 int pitch_limit;
79e53945
JB
12499 int ret;
12500
dd4916c5
DV
12501 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12502
c16ed4be
CW
12503 if (obj->tiling_mode == I915_TILING_Y) {
12504 DRM_DEBUG("hardware does not support tiling Y\n");
57cd6508 12505 return -EINVAL;
c16ed4be 12506 }
57cd6508 12507
c16ed4be
CW
12508 if (mode_cmd->pitches[0] & 63) {
12509 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12510 mode_cmd->pitches[0]);
57cd6508 12511 return -EINVAL;
c16ed4be 12512 }
57cd6508 12513
a35cdaa0
CW
12514 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12515 pitch_limit = 32*1024;
12516 } else if (INTEL_INFO(dev)->gen >= 4) {
12517 if (obj->tiling_mode)
12518 pitch_limit = 16*1024;
12519 else
12520 pitch_limit = 32*1024;
12521 } else if (INTEL_INFO(dev)->gen >= 3) {
12522 if (obj->tiling_mode)
12523 pitch_limit = 8*1024;
12524 else
12525 pitch_limit = 16*1024;
12526 } else
12527 /* XXX DSPC is limited to 4k tiled */
12528 pitch_limit = 8*1024;
12529
12530 if (mode_cmd->pitches[0] > pitch_limit) {
12531 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12532 obj->tiling_mode ? "tiled" : "linear",
12533 mode_cmd->pitches[0], pitch_limit);
5d7bd705 12534 return -EINVAL;
c16ed4be 12535 }
5d7bd705
VS
12536
12537 if (obj->tiling_mode != I915_TILING_NONE &&
c16ed4be
CW
12538 mode_cmd->pitches[0] != obj->stride) {
12539 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12540 mode_cmd->pitches[0], obj->stride);
5d7bd705 12541 return -EINVAL;
c16ed4be 12542 }
5d7bd705 12543
57779d06 12544 /* Reject formats not supported by any plane early. */
308e5bcb 12545 switch (mode_cmd->pixel_format) {
57779d06 12546 case DRM_FORMAT_C8:
04b3924d
VS
12547 case DRM_FORMAT_RGB565:
12548 case DRM_FORMAT_XRGB8888:
12549 case DRM_FORMAT_ARGB8888:
57779d06
VS
12550 break;
12551 case DRM_FORMAT_XRGB1555:
12552 case DRM_FORMAT_ARGB1555:
c16ed4be 12553 if (INTEL_INFO(dev)->gen > 3) {
4ee62c76
VS
12554 DRM_DEBUG("unsupported pixel format: %s\n",
12555 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12556 return -EINVAL;
c16ed4be 12557 }
57779d06
VS
12558 break;
12559 case DRM_FORMAT_XBGR8888:
12560 case DRM_FORMAT_ABGR8888:
04b3924d
VS
12561 case DRM_FORMAT_XRGB2101010:
12562 case DRM_FORMAT_ARGB2101010:
57779d06
VS
12563 case DRM_FORMAT_XBGR2101010:
12564 case DRM_FORMAT_ABGR2101010:
c16ed4be 12565 if (INTEL_INFO(dev)->gen < 4) {
4ee62c76
VS
12566 DRM_DEBUG("unsupported pixel format: %s\n",
12567 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12568 return -EINVAL;
c16ed4be 12569 }
b5626747 12570 break;
04b3924d
VS
12571 case DRM_FORMAT_YUYV:
12572 case DRM_FORMAT_UYVY:
12573 case DRM_FORMAT_YVYU:
12574 case DRM_FORMAT_VYUY:
c16ed4be 12575 if (INTEL_INFO(dev)->gen < 5) {
4ee62c76
VS
12576 DRM_DEBUG("unsupported pixel format: %s\n",
12577 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12578 return -EINVAL;
c16ed4be 12579 }
57cd6508
CW
12580 break;
12581 default:
4ee62c76
VS
12582 DRM_DEBUG("unsupported pixel format: %s\n",
12583 drm_get_format_name(mode_cmd->pixel_format));
57cd6508
CW
12584 return -EINVAL;
12585 }
12586
90f9a336
VS
12587 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12588 if (mode_cmd->offsets[0] != 0)
12589 return -EINVAL;
12590
a57ce0b2
JB
12591 aligned_height = intel_align_height(dev, mode_cmd->height,
12592 obj->tiling_mode);
53155c0a
DV
12593 /* FIXME drm helper for size checks (especially planar formats)? */
12594 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12595 return -EINVAL;
12596
c7d73f6a
DV
12597 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12598 intel_fb->obj = obj;
80075d49 12599 intel_fb->obj->framebuffer_references++;
c7d73f6a 12600
79e53945
JB
12601 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12602 if (ret) {
12603 DRM_ERROR("framebuffer init failed %d\n", ret);
12604 return ret;
12605 }
12606
79e53945
JB
12607 return 0;
12608}
12609
79e53945
JB
12610static struct drm_framebuffer *
12611intel_user_framebuffer_create(struct drm_device *dev,
12612 struct drm_file *filp,
308e5bcb 12613 struct drm_mode_fb_cmd2 *mode_cmd)
79e53945 12614{
05394f39 12615 struct drm_i915_gem_object *obj;
79e53945 12616
308e5bcb
JB
12617 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12618 mode_cmd->handles[0]));
c8725226 12619 if (&obj->base == NULL)
cce13ff7 12620 return ERR_PTR(-ENOENT);
79e53945 12621
d2dff872 12622 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
12623}
12624
4520f53a 12625#ifndef CONFIG_DRM_I915_FBDEV
0632fef6 12626static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
4520f53a
DV
12627{
12628}
12629#endif
12630
79e53945 12631static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 12632 .fb_create = intel_user_framebuffer_create,
0632fef6 12633 .output_poll_changed = intel_fbdev_output_poll_changed,
79e53945
JB
12634};
12635
e70236a8
JB
12636/* Set up chip specific display functions */
12637static void intel_init_display(struct drm_device *dev)
12638{
12639 struct drm_i915_private *dev_priv = dev->dev_private;
12640
ee9300bb
DV
12641 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12642 dev_priv->display.find_dpll = g4x_find_best_dpll;
ef9348c8
CML
12643 else if (IS_CHERRYVIEW(dev))
12644 dev_priv->display.find_dpll = chv_find_best_dpll;
ee9300bb
DV
12645 else if (IS_VALLEYVIEW(dev))
12646 dev_priv->display.find_dpll = vlv_find_best_dpll;
12647 else if (IS_PINEVIEW(dev))
12648 dev_priv->display.find_dpll = pnv_find_best_dpll;
12649 else
12650 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12651
affa9354 12652 if (HAS_DDI(dev)) {
0e8ffe1b 12653 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
4c6baa59 12654 dev_priv->display.get_plane_config = ironlake_get_plane_config;
09b4ddf9 12655 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
4f771f10
PZ
12656 dev_priv->display.crtc_enable = haswell_crtc_enable;
12657 dev_priv->display.crtc_disable = haswell_crtc_disable;
df8ad70c 12658 dev_priv->display.off = ironlake_crtc_off;
262ca2b0
MR
12659 dev_priv->display.update_primary_plane =
12660 ironlake_update_primary_plane;
09b4ddf9 12661 } else if (HAS_PCH_SPLIT(dev)) {
0e8ffe1b 12662 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
4c6baa59 12663 dev_priv->display.get_plane_config = ironlake_get_plane_config;
f564048e 12664 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
76e5a89c
DV
12665 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12666 dev_priv->display.crtc_disable = ironlake_crtc_disable;
ee7b9f93 12667 dev_priv->display.off = ironlake_crtc_off;
262ca2b0
MR
12668 dev_priv->display.update_primary_plane =
12669 ironlake_update_primary_plane;
89b667f8
JB
12670 } else if (IS_VALLEYVIEW(dev)) {
12671 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
1ad292b5 12672 dev_priv->display.get_plane_config = i9xx_get_plane_config;
89b667f8
JB
12673 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12674 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12675 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12676 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12677 dev_priv->display.update_primary_plane =
12678 i9xx_update_primary_plane;
f564048e 12679 } else {
0e8ffe1b 12680 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
1ad292b5 12681 dev_priv->display.get_plane_config = i9xx_get_plane_config;
f564048e 12682 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
76e5a89c
DV
12683 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12684 dev_priv->display.crtc_disable = i9xx_crtc_disable;
ee7b9f93 12685 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12686 dev_priv->display.update_primary_plane =
12687 i9xx_update_primary_plane;
f564048e 12688 }
e70236a8 12689
e70236a8 12690 /* Returns the core display clock speed */
25eb05fc
JB
12691 if (IS_VALLEYVIEW(dev))
12692 dev_priv->display.get_display_clock_speed =
12693 valleyview_get_display_clock_speed;
12694 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
e70236a8
JB
12695 dev_priv->display.get_display_clock_speed =
12696 i945_get_display_clock_speed;
12697 else if (IS_I915G(dev))
12698 dev_priv->display.get_display_clock_speed =
12699 i915_get_display_clock_speed;
257a7ffc 12700 else if (IS_I945GM(dev) || IS_845G(dev))
e70236a8
JB
12701 dev_priv->display.get_display_clock_speed =
12702 i9xx_misc_get_display_clock_speed;
257a7ffc
DV
12703 else if (IS_PINEVIEW(dev))
12704 dev_priv->display.get_display_clock_speed =
12705 pnv_get_display_clock_speed;
e70236a8
JB
12706 else if (IS_I915GM(dev))
12707 dev_priv->display.get_display_clock_speed =
12708 i915gm_get_display_clock_speed;
12709 else if (IS_I865G(dev))
12710 dev_priv->display.get_display_clock_speed =
12711 i865_get_display_clock_speed;
f0f8a9ce 12712 else if (IS_I85X(dev))
e70236a8
JB
12713 dev_priv->display.get_display_clock_speed =
12714 i855_get_display_clock_speed;
12715 else /* 852, 830 */
12716 dev_priv->display.get_display_clock_speed =
12717 i830_get_display_clock_speed;
12718
3bb11b53 12719 if (IS_G4X(dev)) {
e0dac65e 12720 dev_priv->display.write_eld = g4x_write_eld;
3bb11b53
SJ
12721 } else if (IS_GEN5(dev)) {
12722 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
12723 dev_priv->display.write_eld = ironlake_write_eld;
12724 } else if (IS_GEN6(dev)) {
12725 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
12726 dev_priv->display.write_eld = ironlake_write_eld;
12727 dev_priv->display.modeset_global_resources =
12728 snb_modeset_global_resources;
12729 } else if (IS_IVYBRIDGE(dev)) {
12730 /* FIXME: detect B0+ stepping and use auto training */
12731 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
12732 dev_priv->display.write_eld = ironlake_write_eld;
12733 dev_priv->display.modeset_global_resources =
12734 ivb_modeset_global_resources;
059b2fe9 12735 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3bb11b53
SJ
12736 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
12737 dev_priv->display.write_eld = haswell_write_eld;
12738 dev_priv->display.modeset_global_resources =
12739 haswell_modeset_global_resources;
30a970c6
JB
12740 } else if (IS_VALLEYVIEW(dev)) {
12741 dev_priv->display.modeset_global_resources =
12742 valleyview_modeset_global_resources;
9ca2fe73 12743 dev_priv->display.write_eld = ironlake_write_eld;
e70236a8 12744 }
8c9f3aaf
JB
12745
12746 /* Default just returns -ENODEV to indicate unsupported */
12747 dev_priv->display.queue_flip = intel_default_queue_flip;
12748
12749 switch (INTEL_INFO(dev)->gen) {
12750 case 2:
12751 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12752 break;
12753
12754 case 3:
12755 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12756 break;
12757
12758 case 4:
12759 case 5:
12760 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12761 break;
12762
12763 case 6:
12764 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12765 break;
7c9017e5 12766 case 7:
4e0bbc31 12767 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
7c9017e5
JB
12768 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12769 break;
8c9f3aaf 12770 }
7bd688cd
JN
12771
12772 intel_panel_init_backlight_funcs(dev);
e39b999a
VS
12773
12774 mutex_init(&dev_priv->pps_mutex);
e70236a8
JB
12775}
12776
b690e96c
JB
12777/*
12778 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12779 * resume, or other times. This quirk makes sure that's the case for
12780 * affected systems.
12781 */
0206e353 12782static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
12783{
12784 struct drm_i915_private *dev_priv = dev->dev_private;
12785
12786 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 12787 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
12788}
12789
b6b5d049
VS
12790static void quirk_pipeb_force(struct drm_device *dev)
12791{
12792 struct drm_i915_private *dev_priv = dev->dev_private;
12793
12794 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
12795 DRM_INFO("applying pipe b force quirk\n");
12796}
12797
435793df
KP
12798/*
12799 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12800 */
12801static void quirk_ssc_force_disable(struct drm_device *dev)
12802{
12803 struct drm_i915_private *dev_priv = dev->dev_private;
12804 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 12805 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
12806}
12807
4dca20ef 12808/*
5a15ab5b
CE
12809 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12810 * brightness value
4dca20ef
CE
12811 */
12812static void quirk_invert_brightness(struct drm_device *dev)
12813{
12814 struct drm_i915_private *dev_priv = dev->dev_private;
12815 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 12816 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
12817}
12818
9c72cc6f
SD
12819/* Some VBT's incorrectly indicate no backlight is present */
12820static void quirk_backlight_present(struct drm_device *dev)
12821{
12822 struct drm_i915_private *dev_priv = dev->dev_private;
12823 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
12824 DRM_INFO("applying backlight present quirk\n");
12825}
12826
b690e96c
JB
12827struct intel_quirk {
12828 int device;
12829 int subsystem_vendor;
12830 int subsystem_device;
12831 void (*hook)(struct drm_device *dev);
12832};
12833
5f85f176
EE
12834/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
12835struct intel_dmi_quirk {
12836 void (*hook)(struct drm_device *dev);
12837 const struct dmi_system_id (*dmi_id_list)[];
12838};
12839
12840static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
12841{
12842 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
12843 return 1;
12844}
12845
12846static const struct intel_dmi_quirk intel_dmi_quirks[] = {
12847 {
12848 .dmi_id_list = &(const struct dmi_system_id[]) {
12849 {
12850 .callback = intel_dmi_reverse_brightness,
12851 .ident = "NCR Corporation",
12852 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
12853 DMI_MATCH(DMI_PRODUCT_NAME, ""),
12854 },
12855 },
12856 { } /* terminating entry */
12857 },
12858 .hook = quirk_invert_brightness,
12859 },
12860};
12861
c43b5634 12862static struct intel_quirk intel_quirks[] = {
b690e96c 12863 /* HP Mini needs pipe A force quirk (LP: #322104) */
0206e353 12864 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
b690e96c 12865
b690e96c
JB
12866 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
12867 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
12868
b690e96c
JB
12869 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
12870 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
12871
5f080c0f
VS
12872 /* 830 needs to leave pipe A & dpll A up */
12873 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
12874
b6b5d049
VS
12875 /* 830 needs to leave pipe B & dpll B up */
12876 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
12877
435793df
KP
12878 /* Lenovo U160 cannot use SSC on LVDS */
12879 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
12880
12881 /* Sony Vaio Y cannot use SSC on LVDS */
12882 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b 12883
be505f64
AH
12884 /* Acer Aspire 5734Z must invert backlight brightness */
12885 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
12886
12887 /* Acer/eMachines G725 */
12888 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
12889
12890 /* Acer/eMachines e725 */
12891 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
12892
12893 /* Acer/Packard Bell NCL20 */
12894 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
12895
12896 /* Acer Aspire 4736Z */
12897 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
0f540c3a
JN
12898
12899 /* Acer Aspire 5336 */
12900 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
2e93a1aa
SD
12901
12902 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
12903 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
d4967d8c 12904
dfb3d47b
SD
12905 /* Acer C720 Chromebook (Core i3 4005U) */
12906 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
12907
d4967d8c
SD
12908 /* Toshiba CB35 Chromebook (Celeron 2955U) */
12909 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
724cb06f
SD
12910
12911 /* HP Chromebook 14 (Celeron 2955U) */
12912 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
b690e96c
JB
12913};
12914
12915static void intel_init_quirks(struct drm_device *dev)
12916{
12917 struct pci_dev *d = dev->pdev;
12918 int i;
12919
12920 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
12921 struct intel_quirk *q = &intel_quirks[i];
12922
12923 if (d->device == q->device &&
12924 (d->subsystem_vendor == q->subsystem_vendor ||
12925 q->subsystem_vendor == PCI_ANY_ID) &&
12926 (d->subsystem_device == q->subsystem_device ||
12927 q->subsystem_device == PCI_ANY_ID))
12928 q->hook(dev);
12929 }
5f85f176
EE
12930 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
12931 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
12932 intel_dmi_quirks[i].hook(dev);
12933 }
b690e96c
JB
12934}
12935
9cce37f4
JB
12936/* Disable the VGA plane that we never use */
12937static void i915_disable_vga(struct drm_device *dev)
12938{
12939 struct drm_i915_private *dev_priv = dev->dev_private;
12940 u8 sr1;
766aa1c4 12941 u32 vga_reg = i915_vgacntrl_reg(dev);
9cce37f4 12942
2b37c616 12943 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
9cce37f4 12944 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 12945 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
12946 sr1 = inb(VGA_SR_DATA);
12947 outb(sr1 | 1<<5, VGA_SR_DATA);
12948 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
12949 udelay(300);
12950
69769f9a
VS
12951 /*
12952 * Fujitsu-Siemens Lifebook S6010 (830) has problems resuming
12953 * from S3 without preserving (some of?) the other bits.
12954 */
12955 I915_WRITE(vga_reg, dev_priv->bios_vgacntr | VGA_DISP_DISABLE);
9cce37f4
JB
12956 POSTING_READ(vga_reg);
12957}
12958
f817586c
DV
12959void intel_modeset_init_hw(struct drm_device *dev)
12960{
a8f78b58
ED
12961 intel_prepare_ddi(dev);
12962
f8bf63fd
VS
12963 if (IS_VALLEYVIEW(dev))
12964 vlv_update_cdclk(dev);
12965
f817586c
DV
12966 intel_init_clock_gating(dev);
12967
8090c6b9 12968 intel_enable_gt_powersave(dev);
f817586c
DV
12969}
12970
7d708ee4
ID
12971void intel_modeset_suspend_hw(struct drm_device *dev)
12972{
12973 intel_suspend_hw(dev);
12974}
12975
79e53945
JB
12976void intel_modeset_init(struct drm_device *dev)
12977{
652c393a 12978 struct drm_i915_private *dev_priv = dev->dev_private;
1fe47785 12979 int sprite, ret;
8cc87b75 12980 enum pipe pipe;
46f297fb 12981 struct intel_crtc *crtc;
79e53945
JB
12982
12983 drm_mode_config_init(dev);
12984
12985 dev->mode_config.min_width = 0;
12986 dev->mode_config.min_height = 0;
12987
019d96cb
DA
12988 dev->mode_config.preferred_depth = 24;
12989 dev->mode_config.prefer_shadow = 1;
12990
e6ecefaa 12991 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 12992
b690e96c
JB
12993 intel_init_quirks(dev);
12994
1fa61106
ED
12995 intel_init_pm(dev);
12996
e3c74757
BW
12997 if (INTEL_INFO(dev)->num_pipes == 0)
12998 return;
12999
e70236a8
JB
13000 intel_init_display(dev);
13001
a6c45cf0
CW
13002 if (IS_GEN2(dev)) {
13003 dev->mode_config.max_width = 2048;
13004 dev->mode_config.max_height = 2048;
13005 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
13006 dev->mode_config.max_width = 4096;
13007 dev->mode_config.max_height = 4096;
79e53945 13008 } else {
a6c45cf0
CW
13009 dev->mode_config.max_width = 8192;
13010 dev->mode_config.max_height = 8192;
79e53945 13011 }
068be561 13012
dc41c154
VS
13013 if (IS_845G(dev) || IS_I865G(dev)) {
13014 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
13015 dev->mode_config.cursor_height = 1023;
13016 } else if (IS_GEN2(dev)) {
068be561
DL
13017 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
13018 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
13019 } else {
13020 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
13021 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
13022 }
13023
5d4545ae 13024 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
79e53945 13025
28c97730 13026 DRM_DEBUG_KMS("%d display pipe%s available.\n",
7eb552ae
BW
13027 INTEL_INFO(dev)->num_pipes,
13028 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
79e53945 13029
055e393f 13030 for_each_pipe(dev_priv, pipe) {
8cc87b75 13031 intel_crtc_init(dev, pipe);
1fe47785
DL
13032 for_each_sprite(pipe, sprite) {
13033 ret = intel_plane_init(dev, pipe, sprite);
7f1f3851 13034 if (ret)
06da8da2 13035 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
1fe47785 13036 pipe_name(pipe), sprite_name(pipe, sprite), ret);
7f1f3851 13037 }
79e53945
JB
13038 }
13039
f42bb70d
JB
13040 intel_init_dpio(dev);
13041
e72f9fbf 13042 intel_shared_dpll_init(dev);
ee7b9f93 13043
69769f9a
VS
13044 /* save the BIOS value before clobbering it */
13045 dev_priv->bios_vgacntr = I915_READ(i915_vgacntrl_reg(dev));
9cce37f4
JB
13046 /* Just disable it once at startup */
13047 i915_disable_vga(dev);
79e53945 13048 intel_setup_outputs(dev);
11be49eb
CW
13049
13050 /* Just in case the BIOS is doing something questionable. */
13051 intel_disable_fbc(dev);
fa9fa083 13052
6e9f798d 13053 drm_modeset_lock_all(dev);
fa9fa083 13054 intel_modeset_setup_hw_state(dev, false);
6e9f798d 13055 drm_modeset_unlock_all(dev);
46f297fb 13056
d3fcc808 13057 for_each_intel_crtc(dev, crtc) {
46f297fb
JB
13058 if (!crtc->active)
13059 continue;
13060
46f297fb 13061 /*
46f297fb
JB
13062 * Note that reserving the BIOS fb up front prevents us
13063 * from stuffing other stolen allocations like the ring
13064 * on top. This prevents some ugliness at boot time, and
13065 * can even allow for smooth boot transitions if the BIOS
13066 * fb is large enough for the active pipe configuration.
13067 */
13068 if (dev_priv->display.get_plane_config) {
13069 dev_priv->display.get_plane_config(crtc,
13070 &crtc->plane_config);
13071 /*
13072 * If the fb is shared between multiple heads, we'll
13073 * just get the first one.
13074 */
484b41dd 13075 intel_find_plane_obj(crtc, &crtc->plane_config);
46f297fb 13076 }
46f297fb 13077 }
2c7111db
CW
13078}
13079
7fad798e
DV
13080static void intel_enable_pipe_a(struct drm_device *dev)
13081{
13082 struct intel_connector *connector;
13083 struct drm_connector *crt = NULL;
13084 struct intel_load_detect_pipe load_detect_temp;
208bf9fd 13085 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
7fad798e
DV
13086
13087 /* We can't just switch on the pipe A, we need to set things up with a
13088 * proper mode and output configuration. As a gross hack, enable pipe A
13089 * by enabling the load detect pipe once. */
13090 list_for_each_entry(connector,
13091 &dev->mode_config.connector_list,
13092 base.head) {
13093 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
13094 crt = &connector->base;
13095 break;
13096 }
13097 }
13098
13099 if (!crt)
13100 return;
13101
208bf9fd
VS
13102 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
13103 intel_release_load_detect_pipe(crt, &load_detect_temp);
7fad798e
DV
13104}
13105
fa555837
DV
13106static bool
13107intel_check_plane_mapping(struct intel_crtc *crtc)
13108{
7eb552ae
BW
13109 struct drm_device *dev = crtc->base.dev;
13110 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837
DV
13111 u32 reg, val;
13112
7eb552ae 13113 if (INTEL_INFO(dev)->num_pipes == 1)
fa555837
DV
13114 return true;
13115
13116 reg = DSPCNTR(!crtc->plane);
13117 val = I915_READ(reg);
13118
13119 if ((val & DISPLAY_PLANE_ENABLE) &&
13120 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
13121 return false;
13122
13123 return true;
13124}
13125
24929352
DV
13126static void intel_sanitize_crtc(struct intel_crtc *crtc)
13127{
13128 struct drm_device *dev = crtc->base.dev;
13129 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837 13130 u32 reg;
24929352 13131
24929352 13132 /* Clear any frame start delays used for debugging left by the BIOS */
3b117c8f 13133 reg = PIPECONF(crtc->config.cpu_transcoder);
24929352
DV
13134 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
13135
d3eaf884 13136 /* restore vblank interrupts to correct state */
d297e103
VS
13137 if (crtc->active) {
13138 update_scanline_offset(crtc);
d3eaf884 13139 drm_vblank_on(dev, crtc->pipe);
d297e103 13140 } else
d3eaf884
VS
13141 drm_vblank_off(dev, crtc->pipe);
13142
24929352 13143 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
13144 * disable the crtc (and hence change the state) if it is wrong. Note
13145 * that gen4+ has a fixed plane -> pipe mapping. */
13146 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
13147 struct intel_connector *connector;
13148 bool plane;
13149
24929352
DV
13150 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
13151 crtc->base.base.id);
13152
13153 /* Pipe has the wrong plane attached and the plane is active.
13154 * Temporarily change the plane mapping and disable everything
13155 * ... */
13156 plane = crtc->plane;
13157 crtc->plane = !plane;
9c8958bc 13158 crtc->primary_enabled = true;
24929352
DV
13159 dev_priv->display.crtc_disable(&crtc->base);
13160 crtc->plane = plane;
13161
13162 /* ... and break all links. */
13163 list_for_each_entry(connector, &dev->mode_config.connector_list,
13164 base.head) {
13165 if (connector->encoder->base.crtc != &crtc->base)
13166 continue;
13167
7f1950fb
EE
13168 connector->base.dpms = DRM_MODE_DPMS_OFF;
13169 connector->base.encoder = NULL;
24929352 13170 }
7f1950fb
EE
13171 /* multiple connectors may have the same encoder:
13172 * handle them and break crtc link separately */
13173 list_for_each_entry(connector, &dev->mode_config.connector_list,
13174 base.head)
13175 if (connector->encoder->base.crtc == &crtc->base) {
13176 connector->encoder->base.crtc = NULL;
13177 connector->encoder->connectors_active = false;
13178 }
24929352
DV
13179
13180 WARN_ON(crtc->active);
13181 crtc->base.enabled = false;
13182 }
24929352 13183
7fad798e
DV
13184 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
13185 crtc->pipe == PIPE_A && !crtc->active) {
13186 /* BIOS forgot to enable pipe A, this mostly happens after
13187 * resume. Force-enable the pipe to fix this, the update_dpms
13188 * call below we restore the pipe to the right state, but leave
13189 * the required bits on. */
13190 intel_enable_pipe_a(dev);
13191 }
13192
24929352
DV
13193 /* Adjust the state of the output pipe according to whether we
13194 * have active connectors/encoders. */
13195 intel_crtc_update_dpms(&crtc->base);
13196
13197 if (crtc->active != crtc->base.enabled) {
13198 struct intel_encoder *encoder;
13199
13200 /* This can happen either due to bugs in the get_hw_state
13201 * functions or because the pipe is force-enabled due to the
13202 * pipe A quirk. */
13203 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
13204 crtc->base.base.id,
13205 crtc->base.enabled ? "enabled" : "disabled",
13206 crtc->active ? "enabled" : "disabled");
13207
13208 crtc->base.enabled = crtc->active;
13209
13210 /* Because we only establish the connector -> encoder ->
13211 * crtc links if something is active, this means the
13212 * crtc is now deactivated. Break the links. connector
13213 * -> encoder links are only establish when things are
13214 * actually up, hence no need to break them. */
13215 WARN_ON(crtc->active);
13216
13217 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
13218 WARN_ON(encoder->connectors_active);
13219 encoder->base.crtc = NULL;
13220 }
13221 }
c5ab3bc0 13222
a3ed6aad 13223 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
4cc31489
DV
13224 /*
13225 * We start out with underrun reporting disabled to avoid races.
13226 * For correct bookkeeping mark this on active crtcs.
13227 *
c5ab3bc0
DV
13228 * Also on gmch platforms we dont have any hardware bits to
13229 * disable the underrun reporting. Which means we need to start
13230 * out with underrun reporting disabled also on inactive pipes,
13231 * since otherwise we'll complain about the garbage we read when
13232 * e.g. coming up after runtime pm.
13233 *
4cc31489
DV
13234 * No protection against concurrent access is required - at
13235 * worst a fifo underrun happens which also sets this to false.
13236 */
13237 crtc->cpu_fifo_underrun_disabled = true;
13238 crtc->pch_fifo_underrun_disabled = true;
13239 }
24929352
DV
13240}
13241
13242static void intel_sanitize_encoder(struct intel_encoder *encoder)
13243{
13244 struct intel_connector *connector;
13245 struct drm_device *dev = encoder->base.dev;
13246
13247 /* We need to check both for a crtc link (meaning that the
13248 * encoder is active and trying to read from a pipe) and the
13249 * pipe itself being active. */
13250 bool has_active_crtc = encoder->base.crtc &&
13251 to_intel_crtc(encoder->base.crtc)->active;
13252
13253 if (encoder->connectors_active && !has_active_crtc) {
13254 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
13255 encoder->base.base.id,
8e329a03 13256 encoder->base.name);
24929352
DV
13257
13258 /* Connector is active, but has no active pipe. This is
13259 * fallout from our resume register restoring. Disable
13260 * the encoder manually again. */
13261 if (encoder->base.crtc) {
13262 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
13263 encoder->base.base.id,
8e329a03 13264 encoder->base.name);
24929352 13265 encoder->disable(encoder);
a62d1497
VS
13266 if (encoder->post_disable)
13267 encoder->post_disable(encoder);
24929352 13268 }
7f1950fb
EE
13269 encoder->base.crtc = NULL;
13270 encoder->connectors_active = false;
24929352
DV
13271
13272 /* Inconsistent output/port/pipe state happens presumably due to
13273 * a bug in one of the get_hw_state functions. Or someplace else
13274 * in our code, like the register restore mess on resume. Clamp
13275 * things to off as a safer default. */
13276 list_for_each_entry(connector,
13277 &dev->mode_config.connector_list,
13278 base.head) {
13279 if (connector->encoder != encoder)
13280 continue;
7f1950fb
EE
13281 connector->base.dpms = DRM_MODE_DPMS_OFF;
13282 connector->base.encoder = NULL;
24929352
DV
13283 }
13284 }
13285 /* Enabled encoders without active connectors will be fixed in
13286 * the crtc fixup. */
13287}
13288
04098753 13289void i915_redisable_vga_power_on(struct drm_device *dev)
0fde901f
KM
13290{
13291 struct drm_i915_private *dev_priv = dev->dev_private;
766aa1c4 13292 u32 vga_reg = i915_vgacntrl_reg(dev);
0fde901f 13293
04098753
ID
13294 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
13295 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
13296 i915_disable_vga(dev);
13297 }
13298}
13299
13300void i915_redisable_vga(struct drm_device *dev)
13301{
13302 struct drm_i915_private *dev_priv = dev->dev_private;
13303
8dc8a27c
PZ
13304 /* This function can be called both from intel_modeset_setup_hw_state or
13305 * at a very early point in our resume sequence, where the power well
13306 * structures are not yet restored. Since this function is at a very
13307 * paranoid "someone might have enabled VGA while we were not looking"
13308 * level, just check if the power well is enabled instead of trying to
13309 * follow the "don't touch the power well if we don't need it" policy
13310 * the rest of the driver uses. */
04098753 13311 if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_VGA))
8dc8a27c
PZ
13312 return;
13313
04098753 13314 i915_redisable_vga_power_on(dev);
0fde901f
KM
13315}
13316
98ec7739
VS
13317static bool primary_get_hw_state(struct intel_crtc *crtc)
13318{
13319 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
13320
13321 if (!crtc->active)
13322 return false;
13323
13324 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
13325}
13326
30e984df 13327static void intel_modeset_readout_hw_state(struct drm_device *dev)
24929352
DV
13328{
13329 struct drm_i915_private *dev_priv = dev->dev_private;
13330 enum pipe pipe;
24929352
DV
13331 struct intel_crtc *crtc;
13332 struct intel_encoder *encoder;
13333 struct intel_connector *connector;
5358901f 13334 int i;
24929352 13335
d3fcc808 13336 for_each_intel_crtc(dev, crtc) {
88adfff1 13337 memset(&crtc->config, 0, sizeof(crtc->config));
3b117c8f 13338
9953599b
DV
13339 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
13340
0e8ffe1b
DV
13341 crtc->active = dev_priv->display.get_pipe_config(crtc,
13342 &crtc->config);
24929352
DV
13343
13344 crtc->base.enabled = crtc->active;
98ec7739 13345 crtc->primary_enabled = primary_get_hw_state(crtc);
24929352
DV
13346
13347 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
13348 crtc->base.base.id,
13349 crtc->active ? "enabled" : "disabled");
13350 }
13351
5358901f
DV
13352 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13353 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13354
13355 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
13356 pll->active = 0;
d3fcc808 13357 for_each_intel_crtc(dev, crtc) {
5358901f
DV
13358 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
13359 pll->active++;
13360 }
13361 pll->refcount = pll->active;
13362
35c95375
DV
13363 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
13364 pll->name, pll->refcount, pll->on);
bd2bb1b9
PZ
13365
13366 if (pll->refcount)
13367 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5358901f
DV
13368 }
13369
b2784e15 13370 for_each_intel_encoder(dev, encoder) {
24929352
DV
13371 pipe = 0;
13372
13373 if (encoder->get_hw_state(encoder, &pipe)) {
045ac3b5
JB
13374 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13375 encoder->base.crtc = &crtc->base;
1d37b689 13376 encoder->get_config(encoder, &crtc->config);
24929352
DV
13377 } else {
13378 encoder->base.crtc = NULL;
13379 }
13380
13381 encoder->connectors_active = false;
6f2bcceb 13382 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
24929352 13383 encoder->base.base.id,
8e329a03 13384 encoder->base.name,
24929352 13385 encoder->base.crtc ? "enabled" : "disabled",
6f2bcceb 13386 pipe_name(pipe));
24929352
DV
13387 }
13388
13389 list_for_each_entry(connector, &dev->mode_config.connector_list,
13390 base.head) {
13391 if (connector->get_hw_state(connector)) {
13392 connector->base.dpms = DRM_MODE_DPMS_ON;
13393 connector->encoder->connectors_active = true;
13394 connector->base.encoder = &connector->encoder->base;
13395 } else {
13396 connector->base.dpms = DRM_MODE_DPMS_OFF;
13397 connector->base.encoder = NULL;
13398 }
13399 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
13400 connector->base.base.id,
c23cc417 13401 connector->base.name,
24929352
DV
13402 connector->base.encoder ? "enabled" : "disabled");
13403 }
30e984df
DV
13404}
13405
13406/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
13407 * and i915 state tracking structures. */
13408void intel_modeset_setup_hw_state(struct drm_device *dev,
13409 bool force_restore)
13410{
13411 struct drm_i915_private *dev_priv = dev->dev_private;
13412 enum pipe pipe;
30e984df
DV
13413 struct intel_crtc *crtc;
13414 struct intel_encoder *encoder;
35c95375 13415 int i;
30e984df
DV
13416
13417 intel_modeset_readout_hw_state(dev);
24929352 13418
babea61d
JB
13419 /*
13420 * Now that we have the config, copy it to each CRTC struct
13421 * Note that this could go away if we move to using crtc_config
13422 * checking everywhere.
13423 */
d3fcc808 13424 for_each_intel_crtc(dev, crtc) {
d330a953 13425 if (crtc->active && i915.fastboot) {
f6a83288 13426 intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
babea61d
JB
13427 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
13428 crtc->base.base.id);
13429 drm_mode_debug_printmodeline(&crtc->base.mode);
13430 }
13431 }
13432
24929352 13433 /* HW state is read out, now we need to sanitize this mess. */
b2784e15 13434 for_each_intel_encoder(dev, encoder) {
24929352
DV
13435 intel_sanitize_encoder(encoder);
13436 }
13437
055e393f 13438 for_each_pipe(dev_priv, pipe) {
24929352
DV
13439 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13440 intel_sanitize_crtc(crtc);
c0b03411 13441 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
24929352 13442 }
9a935856 13443
35c95375
DV
13444 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13445 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13446
13447 if (!pll->on || pll->active)
13448 continue;
13449
13450 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13451
13452 pll->disable(dev_priv, pll);
13453 pll->on = false;
13454 }
13455
96f90c54 13456 if (HAS_PCH_SPLIT(dev))
243e6a44
VS
13457 ilk_wm_get_hw_state(dev);
13458
45e2b5f6 13459 if (force_restore) {
7d0bc1ea
VS
13460 i915_redisable_vga(dev);
13461
f30da187
DV
13462 /*
13463 * We need to use raw interfaces for restoring state to avoid
13464 * checking (bogus) intermediate states.
13465 */
055e393f 13466 for_each_pipe(dev_priv, pipe) {
b5644d05
JB
13467 struct drm_crtc *crtc =
13468 dev_priv->pipe_to_crtc_mapping[pipe];
f30da187
DV
13469
13470 __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
f4510a27 13471 crtc->primary->fb);
45e2b5f6
DV
13472 }
13473 } else {
13474 intel_modeset_update_staged_output_state(dev);
13475 }
8af6cf88
DV
13476
13477 intel_modeset_check_state(dev);
2c7111db
CW
13478}
13479
13480void intel_modeset_gem_init(struct drm_device *dev)
13481{
484b41dd 13482 struct drm_crtc *c;
2ff8fde1 13483 struct drm_i915_gem_object *obj;
484b41dd 13484
ae48434c
ID
13485 mutex_lock(&dev->struct_mutex);
13486 intel_init_gt_powersave(dev);
13487 mutex_unlock(&dev->struct_mutex);
13488
1833b134 13489 intel_modeset_init_hw(dev);
02e792fb
DV
13490
13491 intel_setup_overlay(dev);
484b41dd
JB
13492
13493 /*
13494 * Make sure any fbs we allocated at startup are properly
13495 * pinned & fenced. When we do the allocation it's too early
13496 * for this.
13497 */
13498 mutex_lock(&dev->struct_mutex);
70e1e0ec 13499 for_each_crtc(dev, c) {
2ff8fde1
MR
13500 obj = intel_fb_obj(c->primary->fb);
13501 if (obj == NULL)
484b41dd
JB
13502 continue;
13503
2ff8fde1 13504 if (intel_pin_and_fence_fb_obj(dev, obj, NULL)) {
484b41dd
JB
13505 DRM_ERROR("failed to pin boot fb on pipe %d\n",
13506 to_intel_crtc(c)->pipe);
66e514c1
DA
13507 drm_framebuffer_unreference(c->primary->fb);
13508 c->primary->fb = NULL;
484b41dd
JB
13509 }
13510 }
13511 mutex_unlock(&dev->struct_mutex);
79e53945
JB
13512}
13513
4932e2c3
ID
13514void intel_connector_unregister(struct intel_connector *intel_connector)
13515{
13516 struct drm_connector *connector = &intel_connector->base;
13517
13518 intel_panel_destroy_backlight(connector);
34ea3d38 13519 drm_connector_unregister(connector);
4932e2c3
ID
13520}
13521
79e53945
JB
13522void intel_modeset_cleanup(struct drm_device *dev)
13523{
652c393a 13524 struct drm_i915_private *dev_priv = dev->dev_private;
d9255d57 13525 struct drm_connector *connector;
652c393a 13526
fd0c0642
DV
13527 /*
13528 * Interrupts and polling as the first thing to avoid creating havoc.
13529 * Too much stuff here (turning of rps, connectors, ...) would
13530 * experience fancy races otherwise.
13531 */
13532 drm_irq_uninstall(dev);
1d0d343a 13533 intel_hpd_cancel_work(dev_priv);
eb21b92b
JB
13534 dev_priv->pm._irqs_disabled = true;
13535
fd0c0642
DV
13536 /*
13537 * Due to the hpd irq storm handling the hotplug work can re-arm the
13538 * poll handlers. Hence disable polling after hpd handling is shut down.
13539 */
f87ea761 13540 drm_kms_helper_poll_fini(dev);
fd0c0642 13541
652c393a
JB
13542 mutex_lock(&dev->struct_mutex);
13543
723bfd70
JB
13544 intel_unregister_dsm_handler();
13545
973d04f9 13546 intel_disable_fbc(dev);
e70236a8 13547
8090c6b9 13548 intel_disable_gt_powersave(dev);
0cdab21f 13549
930ebb46
DV
13550 ironlake_teardown_rc6(dev);
13551
69341a5e
KH
13552 mutex_unlock(&dev->struct_mutex);
13553
1630fe75
CW
13554 /* flush any delayed tasks or pending work */
13555 flush_scheduled_work();
13556
db31af1d
JN
13557 /* destroy the backlight and sysfs files before encoders/connectors */
13558 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4932e2c3
ID
13559 struct intel_connector *intel_connector;
13560
13561 intel_connector = to_intel_connector(connector);
13562 intel_connector->unregister(intel_connector);
db31af1d 13563 }
d9255d57 13564
79e53945 13565 drm_mode_config_cleanup(dev);
4d7bb011
DV
13566
13567 intel_cleanup_overlay(dev);
ae48434c
ID
13568
13569 mutex_lock(&dev->struct_mutex);
13570 intel_cleanup_gt_powersave(dev);
13571 mutex_unlock(&dev->struct_mutex);
79e53945
JB
13572}
13573
f1c79df3
ZW
13574/*
13575 * Return which encoder is currently attached for connector.
13576 */
df0e9248 13577struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 13578{
df0e9248
CW
13579 return &intel_attached_encoder(connector)->base;
13580}
f1c79df3 13581
df0e9248
CW
13582void intel_connector_attach_encoder(struct intel_connector *connector,
13583 struct intel_encoder *encoder)
13584{
13585 connector->encoder = encoder;
13586 drm_mode_connector_attach_encoder(&connector->base,
13587 &encoder->base);
79e53945 13588}
28d52043
DA
13589
13590/*
13591 * set vga decode state - true == enable VGA decode
13592 */
13593int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13594{
13595 struct drm_i915_private *dev_priv = dev->dev_private;
a885b3cc 13596 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
28d52043
DA
13597 u16 gmch_ctrl;
13598
75fa041d
CW
13599 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13600 DRM_ERROR("failed to read control word\n");
13601 return -EIO;
13602 }
13603
c0cc8a55
CW
13604 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13605 return 0;
13606
28d52043
DA
13607 if (state)
13608 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13609 else
13610 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
75fa041d
CW
13611
13612 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13613 DRM_ERROR("failed to write control word\n");
13614 return -EIO;
13615 }
13616
28d52043
DA
13617 return 0;
13618}
c4a1d9e4 13619
c4a1d9e4 13620struct intel_display_error_state {
ff57f1b0
PZ
13621
13622 u32 power_well_driver;
13623
63b66e5b
CW
13624 int num_transcoders;
13625
c4a1d9e4
CW
13626 struct intel_cursor_error_state {
13627 u32 control;
13628 u32 position;
13629 u32 base;
13630 u32 size;
52331309 13631 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
13632
13633 struct intel_pipe_error_state {
ddf9c536 13634 bool power_domain_on;
c4a1d9e4 13635 u32 source;
f301b1e1 13636 u32 stat;
52331309 13637 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
13638
13639 struct intel_plane_error_state {
13640 u32 control;
13641 u32 stride;
13642 u32 size;
13643 u32 pos;
13644 u32 addr;
13645 u32 surface;
13646 u32 tile_offset;
52331309 13647 } plane[I915_MAX_PIPES];
63b66e5b
CW
13648
13649 struct intel_transcoder_error_state {
ddf9c536 13650 bool power_domain_on;
63b66e5b
CW
13651 enum transcoder cpu_transcoder;
13652
13653 u32 conf;
13654
13655 u32 htotal;
13656 u32 hblank;
13657 u32 hsync;
13658 u32 vtotal;
13659 u32 vblank;
13660 u32 vsync;
13661 } transcoder[4];
c4a1d9e4
CW
13662};
13663
13664struct intel_display_error_state *
13665intel_display_capture_error_state(struct drm_device *dev)
13666{
fbee40df 13667 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4 13668 struct intel_display_error_state *error;
63b66e5b
CW
13669 int transcoders[] = {
13670 TRANSCODER_A,
13671 TRANSCODER_B,
13672 TRANSCODER_C,
13673 TRANSCODER_EDP,
13674 };
c4a1d9e4
CW
13675 int i;
13676
63b66e5b
CW
13677 if (INTEL_INFO(dev)->num_pipes == 0)
13678 return NULL;
13679
9d1cb914 13680 error = kzalloc(sizeof(*error), GFP_ATOMIC);
c4a1d9e4
CW
13681 if (error == NULL)
13682 return NULL;
13683
190be112 13684 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
ff57f1b0
PZ
13685 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13686
055e393f 13687 for_each_pipe(dev_priv, i) {
ddf9c536 13688 error->pipe[i].power_domain_on =
bfafe93a
ID
13689 intel_display_power_enabled_unlocked(dev_priv,
13690 POWER_DOMAIN_PIPE(i));
ddf9c536 13691 if (!error->pipe[i].power_domain_on)
9d1cb914
PZ
13692 continue;
13693
5efb3e28
VS
13694 error->cursor[i].control = I915_READ(CURCNTR(i));
13695 error->cursor[i].position = I915_READ(CURPOS(i));
13696 error->cursor[i].base = I915_READ(CURBASE(i));
c4a1d9e4
CW
13697
13698 error->plane[i].control = I915_READ(DSPCNTR(i));
13699 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
80ca378b 13700 if (INTEL_INFO(dev)->gen <= 3) {
51889b35 13701 error->plane[i].size = I915_READ(DSPSIZE(i));
80ca378b
PZ
13702 error->plane[i].pos = I915_READ(DSPPOS(i));
13703 }
ca291363
PZ
13704 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13705 error->plane[i].addr = I915_READ(DSPADDR(i));
c4a1d9e4
CW
13706 if (INTEL_INFO(dev)->gen >= 4) {
13707 error->plane[i].surface = I915_READ(DSPSURF(i));
13708 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13709 }
13710
c4a1d9e4 13711 error->pipe[i].source = I915_READ(PIPESRC(i));
f301b1e1 13712
3abfce77 13713 if (HAS_GMCH_DISPLAY(dev))
f301b1e1 13714 error->pipe[i].stat = I915_READ(PIPESTAT(i));
63b66e5b
CW
13715 }
13716
13717 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13718 if (HAS_DDI(dev_priv->dev))
13719 error->num_transcoders++; /* Account for eDP. */
13720
13721 for (i = 0; i < error->num_transcoders; i++) {
13722 enum transcoder cpu_transcoder = transcoders[i];
13723
ddf9c536 13724 error->transcoder[i].power_domain_on =
bfafe93a 13725 intel_display_power_enabled_unlocked(dev_priv,
38cc1daf 13726 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
ddf9c536 13727 if (!error->transcoder[i].power_domain_on)
9d1cb914
PZ
13728 continue;
13729
63b66e5b
CW
13730 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13731
13732 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13733 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13734 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13735 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13736 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13737 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13738 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
c4a1d9e4
CW
13739 }
13740
13741 return error;
13742}
13743
edc3d884
MK
13744#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13745
c4a1d9e4 13746void
edc3d884 13747intel_display_print_error_state(struct drm_i915_error_state_buf *m,
c4a1d9e4
CW
13748 struct drm_device *dev,
13749 struct intel_display_error_state *error)
13750{
055e393f 13751 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4
CW
13752 int i;
13753
63b66e5b
CW
13754 if (!error)
13755 return;
13756
edc3d884 13757 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
190be112 13758 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
edc3d884 13759 err_printf(m, "PWR_WELL_CTL2: %08x\n",
ff57f1b0 13760 error->power_well_driver);
055e393f 13761 for_each_pipe(dev_priv, i) {
edc3d884 13762 err_printf(m, "Pipe [%d]:\n", i);
ddf9c536
ID
13763 err_printf(m, " Power: %s\n",
13764 error->pipe[i].power_domain_on ? "on" : "off");
edc3d884 13765 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
f301b1e1 13766 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
edc3d884
MK
13767
13768 err_printf(m, "Plane [%d]:\n", i);
13769 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
13770 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
80ca378b 13771 if (INTEL_INFO(dev)->gen <= 3) {
edc3d884
MK
13772 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
13773 err_printf(m, " POS: %08x\n", error->plane[i].pos);
80ca378b 13774 }
4b71a570 13775 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
edc3d884 13776 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
c4a1d9e4 13777 if (INTEL_INFO(dev)->gen >= 4) {
edc3d884
MK
13778 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
13779 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
c4a1d9e4
CW
13780 }
13781
edc3d884
MK
13782 err_printf(m, "Cursor [%d]:\n", i);
13783 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
13784 err_printf(m, " POS: %08x\n", error->cursor[i].position);
13785 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
c4a1d9e4 13786 }
63b66e5b
CW
13787
13788 for (i = 0; i < error->num_transcoders; i++) {
1cf84bb6 13789 err_printf(m, "CPU transcoder: %c\n",
63b66e5b 13790 transcoder_name(error->transcoder[i].cpu_transcoder));
ddf9c536
ID
13791 err_printf(m, " Power: %s\n",
13792 error->transcoder[i].power_domain_on ? "on" : "off");
63b66e5b
CW
13793 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
13794 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
13795 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
13796 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
13797 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
13798 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
13799 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
13800 }
c4a1d9e4 13801}
e2fcdaa9
VS
13802
13803void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
13804{
13805 struct intel_crtc *crtc;
13806
13807 for_each_intel_crtc(dev, crtc) {
13808 struct intel_unpin_work *work;
13809 unsigned long irqflags;
13810
13811 spin_lock_irqsave(&dev->event_lock, irqflags);
13812
13813 work = crtc->unpin_work;
13814
13815 if (work && work->event &&
13816 work->event->base.file_priv == file) {
13817 kfree(work->event);
13818 work->event = NULL;
13819 }
13820
13821 spin_unlock_irqrestore(&dev->event_lock, irqflags);
13822 }
13823}