]> git.proxmox.com Git - mirror_ubuntu-disco-kernel.git/blame - drivers/gpu/drm/i915/intel_lrc.c
drm/i915/bdw: Add WaForceEnableNonCoherent label
[mirror_ubuntu-disco-kernel.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1
OM
133 */
134
135#include <drm/drmP.h>
136#include <drm/i915_drm.h>
137#include "i915_drv.h"
127f1003 138
468c6816 139#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
8c857917
OM
140#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
141#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
142
e981e7b1
TD
143#define RING_EXECLIST_QFULL (1 << 0x2)
144#define RING_EXECLIST1_VALID (1 << 0x3)
145#define RING_EXECLIST0_VALID (1 << 0x4)
146#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
147#define RING_EXECLIST1_ACTIVE (1 << 0x11)
148#define RING_EXECLIST0_ACTIVE (1 << 0x12)
149
150#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
151#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
152#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
153#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
154#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
155#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9
OM
156
157#define CTX_LRI_HEADER_0 0x01
158#define CTX_CONTEXT_CONTROL 0x02
159#define CTX_RING_HEAD 0x04
160#define CTX_RING_TAIL 0x06
161#define CTX_RING_BUFFER_START 0x08
162#define CTX_RING_BUFFER_CONTROL 0x0a
163#define CTX_BB_HEAD_U 0x0c
164#define CTX_BB_HEAD_L 0x0e
165#define CTX_BB_STATE 0x10
166#define CTX_SECOND_BB_HEAD_U 0x12
167#define CTX_SECOND_BB_HEAD_L 0x14
168#define CTX_SECOND_BB_STATE 0x16
169#define CTX_BB_PER_CTX_PTR 0x18
170#define CTX_RCS_INDIRECT_CTX 0x1a
171#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
172#define CTX_LRI_HEADER_1 0x21
173#define CTX_CTX_TIMESTAMP 0x22
174#define CTX_PDP3_UDW 0x24
175#define CTX_PDP3_LDW 0x26
176#define CTX_PDP2_UDW 0x28
177#define CTX_PDP2_LDW 0x2a
178#define CTX_PDP1_UDW 0x2c
179#define CTX_PDP1_LDW 0x2e
180#define CTX_PDP0_UDW 0x30
181#define CTX_PDP0_LDW 0x32
182#define CTX_LRI_HEADER_2 0x41
183#define CTX_R_PWR_CLK_STATE 0x42
184#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
185
84b790f8
BW
186#define GEN8_CTX_VALID (1<<0)
187#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
188#define GEN8_CTX_FORCE_RESTORE (1<<2)
189#define GEN8_CTX_L3LLC_COHERENT (1<<5)
190#define GEN8_CTX_PRIVILEGE (1<<8)
191enum {
192 ADVANCED_CONTEXT = 0,
193 LEGACY_CONTEXT,
194 ADVANCED_AD_CONTEXT,
195 LEGACY_64B_CONTEXT
196};
197#define GEN8_CTX_MODE_SHIFT 3
198enum {
199 FAULT_AND_HANG = 0,
200 FAULT_AND_HALT, /* Debug only */
201 FAULT_AND_STREAM,
202 FAULT_AND_CONTINUE /* Unsupported */
203};
204#define GEN8_CTX_ID_SHIFT 32
205
7ba717cf
TD
206static int intel_lr_context_pin(struct intel_engine_cs *ring,
207 struct intel_context *ctx);
208
73e4d07f
OM
209/**
210 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
211 * @dev: DRM device.
212 * @enable_execlists: value of i915.enable_execlists module parameter.
213 *
214 * Only certain platforms support Execlists (the prerequisites being
215 * support for Logical Ring Contexts and Aliasing PPGTT or better),
216 * and only when enabled via module parameter.
217 *
218 * Return: 1 if Execlists is supported and has to be enabled.
219 */
127f1003
OM
220int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
221{
bd84b1e9
DV
222 WARN_ON(i915.enable_ppgtt == -1);
223
70ee45e1
DL
224 if (INTEL_INFO(dev)->gen >= 9)
225 return 1;
226
127f1003
OM
227 if (enable_execlists == 0)
228 return 0;
229
14bf993e
OM
230 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
231 i915.use_mmio_flip >= 0)
127f1003
OM
232 return 1;
233
234 return 0;
235}
ede7d42b 236
73e4d07f
OM
237/**
238 * intel_execlists_ctx_id() - get the Execlists Context ID
239 * @ctx_obj: Logical Ring Context backing object.
240 *
241 * Do not confuse with ctx->id! Unfortunately we have a name overload
242 * here: the old context ID we pass to userspace as a handler so that
243 * they can refer to a context, and the new context ID we pass to the
244 * ELSP so that the GPU can inform us of the context status via
245 * interrupts.
246 *
247 * Return: 20-bits globally unique context ID.
248 */
84b790f8
BW
249u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
250{
251 u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);
252
253 /* LRCA is required to be 4K aligned so the more significant 20 bits
254 * are globally unique */
255 return lrca >> 12;
256}
257
258static uint64_t execlists_ctx_descriptor(struct drm_i915_gem_object *ctx_obj)
259{
260 uint64_t desc;
261 uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
acdd884a
MT
262
263 WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
84b790f8
BW
264
265 desc = GEN8_CTX_VALID;
266 desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
267 desc |= GEN8_CTX_L3LLC_COHERENT;
268 desc |= GEN8_CTX_PRIVILEGE;
269 desc |= lrca;
270 desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
271
272 /* TODO: WaDisableLiteRestore when we start using semaphore
273 * signalling between Command Streamers */
274 /* desc |= GEN8_CTX_FORCE_RESTORE; */
275
276 return desc;
277}
278
279static void execlists_elsp_write(struct intel_engine_cs *ring,
280 struct drm_i915_gem_object *ctx_obj0,
281 struct drm_i915_gem_object *ctx_obj1)
282{
6e7cc470
TU
283 struct drm_device *dev = ring->dev;
284 struct drm_i915_private *dev_priv = dev->dev_private;
84b790f8
BW
285 uint64_t temp = 0;
286 uint32_t desc[4];
e981e7b1 287 unsigned long flags;
84b790f8
BW
288
289 /* XXX: You must always write both descriptors in the order below. */
290 if (ctx_obj1)
291 temp = execlists_ctx_descriptor(ctx_obj1);
292 else
293 temp = 0;
294 desc[1] = (u32)(temp >> 32);
295 desc[0] = (u32)temp;
296
297 temp = execlists_ctx_descriptor(ctx_obj0);
298 desc[3] = (u32)(temp >> 32);
299 desc[2] = (u32)temp;
300
e981e7b1
TD
301 /* Set Force Wakeup bit to prevent GT from entering C6 while ELSP writes
302 * are in progress.
303 *
304 * The other problem is that we can't just call gen6_gt_force_wake_get()
305 * because that function calls intel_runtime_pm_get(), which might sleep.
306 * Instead, we do the runtime_pm_get/put when creating/destroying requests.
307 */
308 spin_lock_irqsave(&dev_priv->uncore.lock, flags);
6e7cc470 309 if (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen >= 9) {
a01b0e94
D
310 if (dev_priv->uncore.fw_rendercount++ == 0)
311 dev_priv->uncore.funcs.force_wake_get(dev_priv,
312 FORCEWAKE_RENDER);
313 if (dev_priv->uncore.fw_mediacount++ == 0)
314 dev_priv->uncore.funcs.force_wake_get(dev_priv,
315 FORCEWAKE_MEDIA);
6e7cc470
TU
316 if (INTEL_INFO(dev)->gen >= 9) {
317 if (dev_priv->uncore.fw_blittercount++ == 0)
318 dev_priv->uncore.funcs.force_wake_get(dev_priv,
319 FORCEWAKE_BLITTER);
320 }
a01b0e94
D
321 } else {
322 if (dev_priv->uncore.forcewake_count++ == 0)
323 dev_priv->uncore.funcs.force_wake_get(dev_priv,
324 FORCEWAKE_ALL);
325 }
e981e7b1 326 spin_unlock_irqrestore(&dev_priv->uncore.lock, flags);
84b790f8
BW
327
328 I915_WRITE(RING_ELSP(ring), desc[1]);
329 I915_WRITE(RING_ELSP(ring), desc[0]);
330 I915_WRITE(RING_ELSP(ring), desc[3]);
331 /* The context is automatically loaded after the following */
332 I915_WRITE(RING_ELSP(ring), desc[2]);
333
334 /* ELSP is a wo register, so use another nearby reg for posting instead */
335 POSTING_READ(RING_EXECLIST_STATUS(ring));
336
e981e7b1
TD
337 /* Release Force Wakeup (see the big comment above). */
338 spin_lock_irqsave(&dev_priv->uncore.lock, flags);
6e7cc470 339 if (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen >= 9) {
a01b0e94
D
340 if (--dev_priv->uncore.fw_rendercount == 0)
341 dev_priv->uncore.funcs.force_wake_put(dev_priv,
342 FORCEWAKE_RENDER);
343 if (--dev_priv->uncore.fw_mediacount == 0)
344 dev_priv->uncore.funcs.force_wake_put(dev_priv,
345 FORCEWAKE_MEDIA);
6e7cc470
TU
346 if (INTEL_INFO(dev)->gen >= 9) {
347 if (--dev_priv->uncore.fw_blittercount == 0)
348 dev_priv->uncore.funcs.force_wake_put(dev_priv,
349 FORCEWAKE_BLITTER);
350 }
a01b0e94
D
351 } else {
352 if (--dev_priv->uncore.forcewake_count == 0)
353 dev_priv->uncore.funcs.force_wake_put(dev_priv,
354 FORCEWAKE_ALL);
355 }
356
e981e7b1 357 spin_unlock_irqrestore(&dev_priv->uncore.lock, flags);
84b790f8
BW
358}
359
7ba717cf
TD
360static int execlists_update_context(struct drm_i915_gem_object *ctx_obj,
361 struct drm_i915_gem_object *ring_obj,
362 u32 tail)
ae1250b9
OM
363{
364 struct page *page;
365 uint32_t *reg_state;
366
367 page = i915_gem_object_get_page(ctx_obj, 1);
368 reg_state = kmap_atomic(page);
369
370 reg_state[CTX_RING_TAIL+1] = tail;
7ba717cf 371 reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(ring_obj);
ae1250b9
OM
372
373 kunmap_atomic(reg_state);
374
375 return 0;
376}
377
cd0707cb
DG
378static void execlists_submit_contexts(struct intel_engine_cs *ring,
379 struct intel_context *to0, u32 tail0,
380 struct intel_context *to1, u32 tail1)
84b790f8 381{
7ba717cf
TD
382 struct drm_i915_gem_object *ctx_obj0 = to0->engine[ring->id].state;
383 struct intel_ringbuffer *ringbuf0 = to0->engine[ring->id].ringbuf;
84b790f8 384 struct drm_i915_gem_object *ctx_obj1 = NULL;
7ba717cf 385 struct intel_ringbuffer *ringbuf1 = NULL;
84b790f8 386
84b790f8 387 BUG_ON(!ctx_obj0);
acdd884a 388 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj0));
7ba717cf 389 WARN_ON(!i915_gem_obj_is_pinned(ringbuf0->obj));
84b790f8 390
7ba717cf 391 execlists_update_context(ctx_obj0, ringbuf0->obj, tail0);
ae1250b9 392
84b790f8 393 if (to1) {
7ba717cf 394 ringbuf1 = to1->engine[ring->id].ringbuf;
84b790f8
BW
395 ctx_obj1 = to1->engine[ring->id].state;
396 BUG_ON(!ctx_obj1);
acdd884a 397 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj1));
7ba717cf 398 WARN_ON(!i915_gem_obj_is_pinned(ringbuf1->obj));
ae1250b9 399
7ba717cf 400 execlists_update_context(ctx_obj1, ringbuf1->obj, tail1);
84b790f8
BW
401 }
402
403 execlists_elsp_write(ring, ctx_obj0, ctx_obj1);
84b790f8
BW
404}
405
acdd884a
MT
406static void execlists_context_unqueue(struct intel_engine_cs *ring)
407{
408 struct intel_ctx_submit_request *req0 = NULL, *req1 = NULL;
409 struct intel_ctx_submit_request *cursor = NULL, *tmp = NULL;
e981e7b1
TD
410
411 assert_spin_locked(&ring->execlist_lock);
acdd884a
MT
412
413 if (list_empty(&ring->execlist_queue))
414 return;
415
416 /* Try to read in pairs */
417 list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
418 execlist_link) {
419 if (!req0) {
420 req0 = cursor;
421 } else if (req0->ctx == cursor->ctx) {
422 /* Same ctx: ignore first request, as second request
423 * will update tail past first request's workload */
e1fee72c 424 cursor->elsp_submitted = req0->elsp_submitted;
acdd884a 425 list_del(&req0->execlist_link);
c86ee3a9
TD
426 list_add_tail(&req0->execlist_link,
427 &ring->execlist_retired_req_list);
acdd884a
MT
428 req0 = cursor;
429 } else {
430 req1 = cursor;
431 break;
432 }
433 }
434
e1fee72c
OM
435 WARN_ON(req1 && req1->elsp_submitted);
436
cd0707cb
DG
437 execlists_submit_contexts(ring, req0->ctx, req0->tail,
438 req1 ? req1->ctx : NULL,
439 req1 ? req1->tail : 0);
e1fee72c
OM
440
441 req0->elsp_submitted++;
442 if (req1)
443 req1->elsp_submitted++;
acdd884a
MT
444}
445
e981e7b1
TD
446static bool execlists_check_remove_request(struct intel_engine_cs *ring,
447 u32 request_id)
448{
e981e7b1
TD
449 struct intel_ctx_submit_request *head_req;
450
451 assert_spin_locked(&ring->execlist_lock);
452
453 head_req = list_first_entry_or_null(&ring->execlist_queue,
454 struct intel_ctx_submit_request,
455 execlist_link);
456
457 if (head_req != NULL) {
458 struct drm_i915_gem_object *ctx_obj =
459 head_req->ctx->engine[ring->id].state;
460 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
e1fee72c
OM
461 WARN(head_req->elsp_submitted == 0,
462 "Never submitted head request\n");
463
464 if (--head_req->elsp_submitted <= 0) {
465 list_del(&head_req->execlist_link);
c86ee3a9
TD
466 list_add_tail(&head_req->execlist_link,
467 &ring->execlist_retired_req_list);
e1fee72c
OM
468 return true;
469 }
e981e7b1
TD
470 }
471 }
472
473 return false;
474}
475
73e4d07f
OM
476/**
477 * intel_execlists_handle_ctx_events() - handle Context Switch interrupts
478 * @ring: Engine Command Streamer to handle.
479 *
480 * Check the unread Context Status Buffers and manage the submission of new
481 * contexts to the ELSP accordingly.
482 */
e981e7b1
TD
483void intel_execlists_handle_ctx_events(struct intel_engine_cs *ring)
484{
485 struct drm_i915_private *dev_priv = ring->dev->dev_private;
486 u32 status_pointer;
487 u8 read_pointer;
488 u8 write_pointer;
489 u32 status;
490 u32 status_id;
491 u32 submit_contexts = 0;
492
493 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
494
495 read_pointer = ring->next_context_status_buffer;
496 write_pointer = status_pointer & 0x07;
497 if (read_pointer > write_pointer)
498 write_pointer += 6;
499
500 spin_lock(&ring->execlist_lock);
501
502 while (read_pointer < write_pointer) {
503 read_pointer++;
504 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
505 (read_pointer % 6) * 8);
506 status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
507 (read_pointer % 6) * 8 + 4);
508
e1fee72c
OM
509 if (status & GEN8_CTX_STATUS_PREEMPTED) {
510 if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
511 if (execlists_check_remove_request(ring, status_id))
512 WARN(1, "Lite Restored request removed from queue\n");
513 } else
514 WARN(1, "Preemption without Lite Restore\n");
515 }
516
517 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
518 (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
e981e7b1
TD
519 if (execlists_check_remove_request(ring, status_id))
520 submit_contexts++;
521 }
522 }
523
524 if (submit_contexts != 0)
525 execlists_context_unqueue(ring);
526
527 spin_unlock(&ring->execlist_lock);
528
529 WARN(submit_contexts > 2, "More than two context complete events?\n");
530 ring->next_context_status_buffer = write_pointer % 6;
531
532 I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
533 ((u32)ring->next_context_status_buffer & 0x07) << 8);
534}
535
acdd884a
MT
536static int execlists_context_queue(struct intel_engine_cs *ring,
537 struct intel_context *to,
538 u32 tail)
539{
f1ad5a1f 540 struct intel_ctx_submit_request *req = NULL, *cursor;
e981e7b1 541 struct drm_i915_private *dev_priv = ring->dev->dev_private;
acdd884a 542 unsigned long flags;
f1ad5a1f 543 int num_elements = 0;
acdd884a
MT
544
545 req = kzalloc(sizeof(*req), GFP_KERNEL);
546 if (req == NULL)
547 return -ENOMEM;
548 req->ctx = to;
549 i915_gem_context_reference(req->ctx);
7ba717cf
TD
550
551 if (to != ring->default_context)
552 intel_lr_context_pin(ring, to);
553
acdd884a
MT
554 req->ring = ring;
555 req->tail = tail;
e981e7b1
TD
556
557 intel_runtime_pm_get(dev_priv);
acdd884a
MT
558
559 spin_lock_irqsave(&ring->execlist_lock, flags);
560
f1ad5a1f
OM
561 list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
562 if (++num_elements > 2)
563 break;
564
565 if (num_elements > 2) {
566 struct intel_ctx_submit_request *tail_req;
567
568 tail_req = list_last_entry(&ring->execlist_queue,
569 struct intel_ctx_submit_request,
570 execlist_link);
571
572 if (to == tail_req->ctx) {
573 WARN(tail_req->elsp_submitted != 0,
7ba717cf 574 "More than 2 already-submitted reqs queued\n");
f1ad5a1f 575 list_del(&tail_req->execlist_link);
c86ee3a9
TD
576 list_add_tail(&tail_req->execlist_link,
577 &ring->execlist_retired_req_list);
f1ad5a1f
OM
578 }
579 }
580
acdd884a 581 list_add_tail(&req->execlist_link, &ring->execlist_queue);
f1ad5a1f 582 if (num_elements == 0)
acdd884a
MT
583 execlists_context_unqueue(ring);
584
585 spin_unlock_irqrestore(&ring->execlist_lock, flags);
586
587 return 0;
588}
589
ba8b7ccb
OM
590static int logical_ring_invalidate_all_caches(struct intel_ringbuffer *ringbuf)
591{
592 struct intel_engine_cs *ring = ringbuf->ring;
593 uint32_t flush_domains;
594 int ret;
595
596 flush_domains = 0;
597 if (ring->gpu_caches_dirty)
598 flush_domains = I915_GEM_GPU_DOMAINS;
599
600 ret = ring->emit_flush(ringbuf, I915_GEM_GPU_DOMAINS, flush_domains);
601 if (ret)
602 return ret;
603
604 ring->gpu_caches_dirty = false;
605 return 0;
606}
607
608static int execlists_move_to_gpu(struct intel_ringbuffer *ringbuf,
609 struct list_head *vmas)
610{
611 struct intel_engine_cs *ring = ringbuf->ring;
612 struct i915_vma *vma;
613 uint32_t flush_domains = 0;
614 bool flush_chipset = false;
615 int ret;
616
617 list_for_each_entry(vma, vmas, exec_list) {
618 struct drm_i915_gem_object *obj = vma->obj;
619
620 ret = i915_gem_object_sync(obj, ring);
621 if (ret)
622 return ret;
623
624 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
625 flush_chipset |= i915_gem_clflush_object(obj, false);
626
627 flush_domains |= obj->base.write_domain;
628 }
629
630 if (flush_domains & I915_GEM_DOMAIN_GTT)
631 wmb();
632
633 /* Unconditionally invalidate gpu caches and ensure that we do flush
634 * any residual writes from the previous batch.
635 */
636 return logical_ring_invalidate_all_caches(ringbuf);
637}
638
73e4d07f
OM
639/**
640 * execlists_submission() - submit a batchbuffer for execution, Execlists style
641 * @dev: DRM device.
642 * @file: DRM file.
643 * @ring: Engine Command Streamer to submit to.
644 * @ctx: Context to employ for this submission.
645 * @args: execbuffer call arguments.
646 * @vmas: list of vmas.
647 * @batch_obj: the batchbuffer to submit.
648 * @exec_start: batchbuffer start virtual address pointer.
649 * @flags: translated execbuffer call flags.
650 *
651 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
652 * away the submission details of the execbuffer ioctl call.
653 *
654 * Return: non-zero if the submission fails.
655 */
454afebd
OM
656int intel_execlists_submission(struct drm_device *dev, struct drm_file *file,
657 struct intel_engine_cs *ring,
658 struct intel_context *ctx,
659 struct drm_i915_gem_execbuffer2 *args,
660 struct list_head *vmas,
661 struct drm_i915_gem_object *batch_obj,
662 u64 exec_start, u32 flags)
663{
ba8b7ccb
OM
664 struct drm_i915_private *dev_priv = dev->dev_private;
665 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
666 int instp_mode;
667 u32 instp_mask;
668 int ret;
669
670 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
671 instp_mask = I915_EXEC_CONSTANTS_MASK;
672 switch (instp_mode) {
673 case I915_EXEC_CONSTANTS_REL_GENERAL:
674 case I915_EXEC_CONSTANTS_ABSOLUTE:
675 case I915_EXEC_CONSTANTS_REL_SURFACE:
676 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
677 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
678 return -EINVAL;
679 }
680
681 if (instp_mode != dev_priv->relative_constants_mode) {
682 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
683 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
684 return -EINVAL;
685 }
686
687 /* The HW changed the meaning on this bit on gen6 */
688 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
689 }
690 break;
691 default:
692 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
693 return -EINVAL;
694 }
695
696 if (args->num_cliprects != 0) {
697 DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
698 return -EINVAL;
699 } else {
700 if (args->DR4 == 0xffffffff) {
701 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
702 args->DR4 = 0;
703 }
704
705 if (args->DR1 || args->DR4 || args->cliprects_ptr) {
706 DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
707 return -EINVAL;
708 }
709 }
710
711 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
712 DRM_DEBUG("sol reset is gen7 only\n");
713 return -EINVAL;
714 }
715
716 ret = execlists_move_to_gpu(ringbuf, vmas);
717 if (ret)
718 return ret;
719
720 if (ring == &dev_priv->ring[RCS] &&
721 instp_mode != dev_priv->relative_constants_mode) {
722 ret = intel_logical_ring_begin(ringbuf, 4);
723 if (ret)
724 return ret;
725
726 intel_logical_ring_emit(ringbuf, MI_NOOP);
727 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
728 intel_logical_ring_emit(ringbuf, INSTPM);
729 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
730 intel_logical_ring_advance(ringbuf);
731
732 dev_priv->relative_constants_mode = instp_mode;
733 }
734
735 ret = ring->emit_bb_start(ringbuf, exec_start, flags);
736 if (ret)
737 return ret;
738
739 i915_gem_execbuffer_move_to_active(vmas, ring);
740 i915_gem_execbuffer_retire_commands(dev, file, ring, batch_obj);
741
454afebd
OM
742 return 0;
743}
744
c86ee3a9
TD
745void intel_execlists_retire_requests(struct intel_engine_cs *ring)
746{
747 struct intel_ctx_submit_request *req, *tmp;
748 struct drm_i915_private *dev_priv = ring->dev->dev_private;
749 unsigned long flags;
750 struct list_head retired_list;
751
752 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
753 if (list_empty(&ring->execlist_retired_req_list))
754 return;
755
756 INIT_LIST_HEAD(&retired_list);
757 spin_lock_irqsave(&ring->execlist_lock, flags);
758 list_replace_init(&ring->execlist_retired_req_list, &retired_list);
759 spin_unlock_irqrestore(&ring->execlist_lock, flags);
760
761 list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
7ba717cf
TD
762 struct intel_context *ctx = req->ctx;
763 struct drm_i915_gem_object *ctx_obj =
764 ctx->engine[ring->id].state;
765
766 if (ctx_obj && (ctx != ring->default_context))
767 intel_lr_context_unpin(ring, ctx);
c86ee3a9
TD
768 intel_runtime_pm_put(dev_priv);
769 i915_gem_context_unreference(req->ctx);
770 list_del(&req->execlist_link);
771 kfree(req);
772 }
773}
774
454afebd
OM
775void intel_logical_ring_stop(struct intel_engine_cs *ring)
776{
9832b9da
OM
777 struct drm_i915_private *dev_priv = ring->dev->dev_private;
778 int ret;
779
780 if (!intel_ring_initialized(ring))
781 return;
782
783 ret = intel_ring_idle(ring);
784 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
785 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
786 ring->name, ret);
787
788 /* TODO: Is this correct with Execlists enabled? */
789 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
790 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
791 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
792 return;
793 }
794 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
454afebd
OM
795}
796
48e29f55
OM
797int logical_ring_flush_all_caches(struct intel_ringbuffer *ringbuf)
798{
799 struct intel_engine_cs *ring = ringbuf->ring;
800 int ret;
801
802 if (!ring->gpu_caches_dirty)
803 return 0;
804
805 ret = ring->emit_flush(ringbuf, 0, I915_GEM_GPU_DOMAINS);
806 if (ret)
807 return ret;
808
809 ring->gpu_caches_dirty = false;
810 return 0;
811}
812
73e4d07f
OM
813/**
814 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
815 * @ringbuf: Logical Ringbuffer to advance.
816 *
817 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
818 * really happens during submission is that the context and current tail will be placed
819 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
820 * point, the tail *inside* the context is updated and the ELSP written to.
821 */
82e104cc
OM
822void intel_logical_ring_advance_and_submit(struct intel_ringbuffer *ringbuf)
823{
84b790f8
BW
824 struct intel_engine_cs *ring = ringbuf->ring;
825 struct intel_context *ctx = ringbuf->FIXME_lrc_ctx;
826
82e104cc
OM
827 intel_logical_ring_advance(ringbuf);
828
84b790f8 829 if (intel_ring_stopped(ring))
82e104cc
OM
830 return;
831
acdd884a 832 execlists_context_queue(ring, ctx, ringbuf->tail);
82e104cc
OM
833}
834
dcb4c12a
OM
835static int intel_lr_context_pin(struct intel_engine_cs *ring,
836 struct intel_context *ctx)
837{
838 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
7ba717cf 839 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
dcb4c12a
OM
840 int ret = 0;
841
842 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
843 if (ctx->engine[ring->id].unpin_count++ == 0) {
844 ret = i915_gem_obj_ggtt_pin(ctx_obj,
845 GEN8_LR_CONTEXT_ALIGN, 0);
846 if (ret)
7ba717cf
TD
847 goto reset_unpin_count;
848
849 ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
850 if (ret)
851 goto unpin_ctx_obj;
dcb4c12a
OM
852 }
853
7ba717cf
TD
854 return ret;
855
856unpin_ctx_obj:
857 i915_gem_object_ggtt_unpin(ctx_obj);
858reset_unpin_count:
859 ctx->engine[ring->id].unpin_count = 0;
860
dcb4c12a
OM
861 return ret;
862}
863
864void intel_lr_context_unpin(struct intel_engine_cs *ring,
865 struct intel_context *ctx)
866{
867 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
7ba717cf 868 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
dcb4c12a
OM
869
870 if (ctx_obj) {
871 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
7ba717cf
TD
872 if (--ctx->engine[ring->id].unpin_count == 0) {
873 intel_unpin_ringbuffer_obj(ringbuf);
dcb4c12a 874 i915_gem_object_ggtt_unpin(ctx_obj);
7ba717cf 875 }
dcb4c12a
OM
876 }
877}
878
6259cead
JH
879static int logical_ring_alloc_request(struct intel_engine_cs *ring,
880 struct intel_context *ctx)
82e104cc 881{
9eba5d4a 882 struct drm_i915_gem_request *request;
67e2937b 883 struct drm_i915_private *dev_private = ring->dev->dev_private;
dcb4c12a
OM
884 int ret;
885
6259cead 886 if (ring->outstanding_lazy_request)
9eba5d4a 887 return 0;
82e104cc 888
aaeb1ba0 889 request = kzalloc(sizeof(*request), GFP_KERNEL);
9eba5d4a
JH
890 if (request == NULL)
891 return -ENOMEM;
82e104cc 892
9eba5d4a
JH
893 if (ctx != ring->default_context) {
894 ret = intel_lr_context_pin(ring, ctx);
895 if (ret) {
896 kfree(request);
897 return ret;
dcb4c12a 898 }
9eba5d4a 899 }
dcb4c12a 900
abfe262a 901 kref_init(&request->ref);
ff79e857 902 request->ring = ring;
67e2937b 903 request->uniq = dev_private->request_uniq++;
abfe262a 904
6259cead 905 ret = i915_gem_get_seqno(ring->dev, &request->seqno);
9eba5d4a
JH
906 if (ret) {
907 intel_lr_context_unpin(ring, ctx);
908 kfree(request);
909 return ret;
82e104cc
OM
910 }
911
9eba5d4a
JH
912 /* Hold a reference to the context this request belongs to
913 * (we will need it when the time comes to emit/retire the
914 * request).
915 */
916 request->ctx = ctx;
917 i915_gem_context_reference(request->ctx);
918
6259cead 919 ring->outstanding_lazy_request = request;
9eba5d4a 920 return 0;
82e104cc
OM
921}
922
923static int logical_ring_wait_request(struct intel_ringbuffer *ringbuf,
924 int bytes)
925{
926 struct intel_engine_cs *ring = ringbuf->ring;
927 struct drm_i915_gem_request *request;
82e104cc
OM
928 int ret;
929
ebd0fd4b
DG
930 if (intel_ring_space(ringbuf) >= bytes)
931 return 0;
82e104cc
OM
932
933 list_for_each_entry(request, &ring->request_list, list) {
57e21513
DG
934 /*
935 * The request queue is per-engine, so can contain requests
936 * from multiple ringbuffers. Here, we must ignore any that
937 * aren't from the ringbuffer we're considering.
938 */
939 struct intel_context *ctx = request->ctx;
940 if (ctx->engine[ring->id].ringbuf != ringbuf)
941 continue;
942
943 /* Would completion of this request free enough space? */
82e104cc
OM
944 if (__intel_ring_space(request->tail, ringbuf->tail,
945 ringbuf->size) >= bytes) {
82e104cc
OM
946 break;
947 }
948 }
949
a4b3a571 950 if (&request->list == &ring->request_list)
82e104cc
OM
951 return -ENOSPC;
952
a4b3a571 953 ret = i915_wait_request(request);
82e104cc
OM
954 if (ret)
955 return ret;
956
82e104cc 957 i915_gem_retire_requests_ring(ring);
82e104cc 958
ebd0fd4b 959 return intel_ring_space(ringbuf) >= bytes ? 0 : -ENOSPC;
82e104cc
OM
960}
961
962static int logical_ring_wait_for_space(struct intel_ringbuffer *ringbuf,
963 int bytes)
964{
965 struct intel_engine_cs *ring = ringbuf->ring;
966 struct drm_device *dev = ring->dev;
967 struct drm_i915_private *dev_priv = dev->dev_private;
968 unsigned long end;
969 int ret;
970
971 ret = logical_ring_wait_request(ringbuf, bytes);
972 if (ret != -ENOSPC)
973 return ret;
974
975 /* Force the context submission in case we have been skipping it */
976 intel_logical_ring_advance_and_submit(ringbuf);
977
978 /* With GEM the hangcheck timer should kick us out of the loop,
979 * leaving it early runs the risk of corrupting GEM state (due
980 * to running on almost untested codepaths). But on resume
981 * timers don't work yet, so prevent a complete hang in that
982 * case by choosing an insanely large timeout. */
983 end = jiffies + 60 * HZ;
984
ebd0fd4b 985 ret = 0;
82e104cc 986 do {
ebd0fd4b 987 if (intel_ring_space(ringbuf) >= bytes)
82e104cc 988 break;
82e104cc
OM
989
990 msleep(1);
991
992 if (dev_priv->mm.interruptible && signal_pending(current)) {
993 ret = -ERESTARTSYS;
994 break;
995 }
996
997 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
998 dev_priv->mm.interruptible);
999 if (ret)
1000 break;
1001
1002 if (time_after(jiffies, end)) {
1003 ret = -EBUSY;
1004 break;
1005 }
1006 } while (1);
1007
1008 return ret;
1009}
1010
1011static int logical_ring_wrap_buffer(struct intel_ringbuffer *ringbuf)
1012{
1013 uint32_t __iomem *virt;
1014 int rem = ringbuf->size - ringbuf->tail;
1015
1016 if (ringbuf->space < rem) {
1017 int ret = logical_ring_wait_for_space(ringbuf, rem);
1018
1019 if (ret)
1020 return ret;
1021 }
1022
1023 virt = ringbuf->virtual_start + ringbuf->tail;
1024 rem /= 4;
1025 while (rem--)
1026 iowrite32(MI_NOOP, virt++);
1027
1028 ringbuf->tail = 0;
ebd0fd4b 1029 intel_ring_update_space(ringbuf);
82e104cc
OM
1030
1031 return 0;
1032}
1033
1034static int logical_ring_prepare(struct intel_ringbuffer *ringbuf, int bytes)
1035{
1036 int ret;
1037
1038 if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
1039 ret = logical_ring_wrap_buffer(ringbuf);
1040 if (unlikely(ret))
1041 return ret;
1042 }
1043
1044 if (unlikely(ringbuf->space < bytes)) {
1045 ret = logical_ring_wait_for_space(ringbuf, bytes);
1046 if (unlikely(ret))
1047 return ret;
1048 }
1049
1050 return 0;
1051}
1052
73e4d07f
OM
1053/**
1054 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
1055 *
1056 * @ringbuf: Logical ringbuffer.
1057 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
1058 *
1059 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
1060 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
1061 * and also preallocates a request (every workload submission is still mediated through
1062 * requests, same as it did with legacy ringbuffer submission).
1063 *
1064 * Return: non-zero if the ringbuffer is not ready to be written to.
1065 */
82e104cc
OM
1066int intel_logical_ring_begin(struct intel_ringbuffer *ringbuf, int num_dwords)
1067{
1068 struct intel_engine_cs *ring = ringbuf->ring;
1069 struct drm_device *dev = ring->dev;
1070 struct drm_i915_private *dev_priv = dev->dev_private;
1071 int ret;
1072
1073 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1074 dev_priv->mm.interruptible);
1075 if (ret)
1076 return ret;
1077
1078 ret = logical_ring_prepare(ringbuf, num_dwords * sizeof(uint32_t));
1079 if (ret)
1080 return ret;
1081
1082 /* Preallocate the olr before touching the ring */
6259cead 1083 ret = logical_ring_alloc_request(ring, ringbuf->FIXME_lrc_ctx);
82e104cc
OM
1084 if (ret)
1085 return ret;
1086
1087 ringbuf->space -= num_dwords * sizeof(uint32_t);
1088 return 0;
1089}
1090
771b9a53
MT
1091static int intel_logical_ring_workarounds_emit(struct intel_engine_cs *ring,
1092 struct intel_context *ctx)
1093{
1094 int ret, i;
1095 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1096 struct drm_device *dev = ring->dev;
1097 struct drm_i915_private *dev_priv = dev->dev_private;
1098 struct i915_workarounds *w = &dev_priv->workarounds;
1099
1100 if (WARN_ON(w->count == 0))
1101 return 0;
1102
1103 ring->gpu_caches_dirty = true;
1104 ret = logical_ring_flush_all_caches(ringbuf);
1105 if (ret)
1106 return ret;
1107
1108 ret = intel_logical_ring_begin(ringbuf, w->count * 2 + 2);
1109 if (ret)
1110 return ret;
1111
1112 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1113 for (i = 0; i < w->count; i++) {
1114 intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1115 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1116 }
1117 intel_logical_ring_emit(ringbuf, MI_NOOP);
1118
1119 intel_logical_ring_advance(ringbuf);
1120
1121 ring->gpu_caches_dirty = true;
1122 ret = logical_ring_flush_all_caches(ringbuf);
1123 if (ret)
1124 return ret;
1125
1126 return 0;
1127}
1128
9b1136d5
OM
1129static int gen8_init_common_ring(struct intel_engine_cs *ring)
1130{
1131 struct drm_device *dev = ring->dev;
1132 struct drm_i915_private *dev_priv = dev->dev_private;
1133
73d477f6
OM
1134 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1135 I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1136
9b1136d5
OM
1137 I915_WRITE(RING_MODE_GEN7(ring),
1138 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1139 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1140 POSTING_READ(RING_MODE_GEN7(ring));
1141 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1142
1143 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1144
1145 return 0;
1146}
1147
1148static int gen8_init_render_ring(struct intel_engine_cs *ring)
1149{
1150 struct drm_device *dev = ring->dev;
1151 struct drm_i915_private *dev_priv = dev->dev_private;
1152 int ret;
1153
1154 ret = gen8_init_common_ring(ring);
1155 if (ret)
1156 return ret;
1157
1158 /* We need to disable the AsyncFlip performance optimisations in order
1159 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1160 * programmed to '1' on all products.
1161 *
1162 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1163 */
1164 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1165
9b1136d5
OM
1166 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1167
771b9a53 1168 return init_workarounds_ring(ring);
9b1136d5
OM
1169}
1170
15648585
OM
1171static int gen8_emit_bb_start(struct intel_ringbuffer *ringbuf,
1172 u64 offset, unsigned flags)
1173{
15648585
OM
1174 bool ppgtt = !(flags & I915_DISPATCH_SECURE);
1175 int ret;
1176
1177 ret = intel_logical_ring_begin(ringbuf, 4);
1178 if (ret)
1179 return ret;
1180
1181 /* FIXME(BDW): Address space and security selectors. */
1182 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1183 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1184 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1185 intel_logical_ring_emit(ringbuf, MI_NOOP);
1186 intel_logical_ring_advance(ringbuf);
1187
1188 return 0;
1189}
1190
73d477f6
OM
1191static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1192{
1193 struct drm_device *dev = ring->dev;
1194 struct drm_i915_private *dev_priv = dev->dev_private;
1195 unsigned long flags;
1196
7cd512f1 1197 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
73d477f6
OM
1198 return false;
1199
1200 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1201 if (ring->irq_refcount++ == 0) {
1202 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1203 POSTING_READ(RING_IMR(ring->mmio_base));
1204 }
1205 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1206
1207 return true;
1208}
1209
1210static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1211{
1212 struct drm_device *dev = ring->dev;
1213 struct drm_i915_private *dev_priv = dev->dev_private;
1214 unsigned long flags;
1215
1216 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1217 if (--ring->irq_refcount == 0) {
1218 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1219 POSTING_READ(RING_IMR(ring->mmio_base));
1220 }
1221 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1222}
1223
4712274c
OM
1224static int gen8_emit_flush(struct intel_ringbuffer *ringbuf,
1225 u32 invalidate_domains,
1226 u32 unused)
1227{
1228 struct intel_engine_cs *ring = ringbuf->ring;
1229 struct drm_device *dev = ring->dev;
1230 struct drm_i915_private *dev_priv = dev->dev_private;
1231 uint32_t cmd;
1232 int ret;
1233
1234 ret = intel_logical_ring_begin(ringbuf, 4);
1235 if (ret)
1236 return ret;
1237
1238 cmd = MI_FLUSH_DW + 1;
1239
1240 if (ring == &dev_priv->ring[VCS]) {
1241 if (invalidate_domains & I915_GEM_GPU_DOMAINS)
1242 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1243 MI_FLUSH_DW_STORE_INDEX |
1244 MI_FLUSH_DW_OP_STOREDW;
1245 } else {
1246 if (invalidate_domains & I915_GEM_DOMAIN_RENDER)
1247 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
1248 MI_FLUSH_DW_OP_STOREDW;
1249 }
1250
1251 intel_logical_ring_emit(ringbuf, cmd);
1252 intel_logical_ring_emit(ringbuf,
1253 I915_GEM_HWS_SCRATCH_ADDR |
1254 MI_FLUSH_DW_USE_GTT);
1255 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1256 intel_logical_ring_emit(ringbuf, 0); /* value */
1257 intel_logical_ring_advance(ringbuf);
1258
1259 return 0;
1260}
1261
1262static int gen8_emit_flush_render(struct intel_ringbuffer *ringbuf,
1263 u32 invalidate_domains,
1264 u32 flush_domains)
1265{
1266 struct intel_engine_cs *ring = ringbuf->ring;
1267 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1268 u32 flags = 0;
1269 int ret;
1270
1271 flags |= PIPE_CONTROL_CS_STALL;
1272
1273 if (flush_domains) {
1274 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1275 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1276 }
1277
1278 if (invalidate_domains) {
1279 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1280 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1281 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1282 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1283 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1284 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1285 flags |= PIPE_CONTROL_QW_WRITE;
1286 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1287 }
1288
1289 ret = intel_logical_ring_begin(ringbuf, 6);
1290 if (ret)
1291 return ret;
1292
1293 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1294 intel_logical_ring_emit(ringbuf, flags);
1295 intel_logical_ring_emit(ringbuf, scratch_addr);
1296 intel_logical_ring_emit(ringbuf, 0);
1297 intel_logical_ring_emit(ringbuf, 0);
1298 intel_logical_ring_emit(ringbuf, 0);
1299 intel_logical_ring_advance(ringbuf);
1300
1301 return 0;
1302}
1303
e94e37ad
OM
1304static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1305{
1306 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1307}
1308
1309static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1310{
1311 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1312}
1313
4da46e1e
OM
1314static int gen8_emit_request(struct intel_ringbuffer *ringbuf)
1315{
1316 struct intel_engine_cs *ring = ringbuf->ring;
1317 u32 cmd;
1318 int ret;
1319
1320 ret = intel_logical_ring_begin(ringbuf, 6);
1321 if (ret)
1322 return ret;
1323
8edfbb8b 1324 cmd = MI_STORE_DWORD_IMM_GEN4;
4da46e1e
OM
1325 cmd |= MI_GLOBAL_GTT;
1326
1327 intel_logical_ring_emit(ringbuf, cmd);
1328 intel_logical_ring_emit(ringbuf,
1329 (ring->status_page.gfx_addr +
1330 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1331 intel_logical_ring_emit(ringbuf, 0);
6259cead
JH
1332 intel_logical_ring_emit(ringbuf,
1333 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
4da46e1e
OM
1334 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1335 intel_logical_ring_emit(ringbuf, MI_NOOP);
1336 intel_logical_ring_advance_and_submit(ringbuf);
1337
1338 return 0;
1339}
1340
e7778be1
TD
1341static int gen8_init_rcs_context(struct intel_engine_cs *ring,
1342 struct intel_context *ctx)
1343{
1344 int ret;
1345
1346 ret = intel_logical_ring_workarounds_emit(ring, ctx);
1347 if (ret)
1348 return ret;
1349
1350 return intel_lr_context_render_state_init(ring, ctx);
1351}
1352
73e4d07f
OM
1353/**
1354 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1355 *
1356 * @ring: Engine Command Streamer.
1357 *
1358 */
454afebd
OM
1359void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1360{
6402c330 1361 struct drm_i915_private *dev_priv;
9832b9da 1362
48d82387
OM
1363 if (!intel_ring_initialized(ring))
1364 return;
1365
6402c330
JH
1366 dev_priv = ring->dev->dev_private;
1367
9832b9da
OM
1368 intel_logical_ring_stop(ring);
1369 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
6259cead 1370 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
48d82387
OM
1371
1372 if (ring->cleanup)
1373 ring->cleanup(ring);
1374
1375 i915_cmd_parser_fini_ring(ring);
1376
1377 if (ring->status_page.obj) {
1378 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1379 ring->status_page.obj = NULL;
1380 }
454afebd
OM
1381}
1382
1383static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1384{
48d82387 1385 int ret;
48d82387
OM
1386
1387 /* Intentionally left blank. */
1388 ring->buffer = NULL;
1389
1390 ring->dev = dev;
1391 INIT_LIST_HEAD(&ring->active_list);
1392 INIT_LIST_HEAD(&ring->request_list);
1393 init_waitqueue_head(&ring->irq_queue);
1394
acdd884a 1395 INIT_LIST_HEAD(&ring->execlist_queue);
c86ee3a9 1396 INIT_LIST_HEAD(&ring->execlist_retired_req_list);
acdd884a 1397 spin_lock_init(&ring->execlist_lock);
e981e7b1 1398 ring->next_context_status_buffer = 0;
acdd884a 1399
48d82387
OM
1400 ret = i915_cmd_parser_init_ring(ring);
1401 if (ret)
1402 return ret;
1403
564ddb2f
OM
1404 ret = intel_lr_context_deferred_create(ring->default_context, ring);
1405
1406 return ret;
454afebd
OM
1407}
1408
1409static int logical_render_ring_init(struct drm_device *dev)
1410{
1411 struct drm_i915_private *dev_priv = dev->dev_private;
1412 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
99be1dfe 1413 int ret;
454afebd
OM
1414
1415 ring->name = "render ring";
1416 ring->id = RCS;
1417 ring->mmio_base = RENDER_RING_BASE;
1418 ring->irq_enable_mask =
1419 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
73d477f6
OM
1420 ring->irq_keep_mask =
1421 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1422 if (HAS_L3_DPF(dev))
1423 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
454afebd 1424
ecfe00d8 1425 ring->init_hw = gen8_init_render_ring;
e7778be1 1426 ring->init_context = gen8_init_rcs_context;
9b1136d5 1427 ring->cleanup = intel_fini_pipe_control;
e94e37ad
OM
1428 ring->get_seqno = gen8_get_seqno;
1429 ring->set_seqno = gen8_set_seqno;
4da46e1e 1430 ring->emit_request = gen8_emit_request;
4712274c 1431 ring->emit_flush = gen8_emit_flush_render;
73d477f6
OM
1432 ring->irq_get = gen8_logical_ring_get_irq;
1433 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1434 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1435
99be1dfe
DV
1436 ring->dev = dev;
1437 ret = logical_ring_init(dev, ring);
1438 if (ret)
1439 return ret;
1440
1441 return intel_init_pipe_control(ring);
454afebd
OM
1442}
1443
1444static int logical_bsd_ring_init(struct drm_device *dev)
1445{
1446 struct drm_i915_private *dev_priv = dev->dev_private;
1447 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1448
1449 ring->name = "bsd ring";
1450 ring->id = VCS;
1451 ring->mmio_base = GEN6_BSD_RING_BASE;
1452 ring->irq_enable_mask =
1453 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
73d477f6
OM
1454 ring->irq_keep_mask =
1455 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
454afebd 1456
ecfe00d8 1457 ring->init_hw = gen8_init_common_ring;
e94e37ad
OM
1458 ring->get_seqno = gen8_get_seqno;
1459 ring->set_seqno = gen8_set_seqno;
4da46e1e 1460 ring->emit_request = gen8_emit_request;
4712274c 1461 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
1462 ring->irq_get = gen8_logical_ring_get_irq;
1463 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1464 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1465
454afebd
OM
1466 return logical_ring_init(dev, ring);
1467}
1468
1469static int logical_bsd2_ring_init(struct drm_device *dev)
1470{
1471 struct drm_i915_private *dev_priv = dev->dev_private;
1472 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
1473
1474 ring->name = "bds2 ring";
1475 ring->id = VCS2;
1476 ring->mmio_base = GEN8_BSD2_RING_BASE;
1477 ring->irq_enable_mask =
1478 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
73d477f6
OM
1479 ring->irq_keep_mask =
1480 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
454afebd 1481
ecfe00d8 1482 ring->init_hw = gen8_init_common_ring;
e94e37ad
OM
1483 ring->get_seqno = gen8_get_seqno;
1484 ring->set_seqno = gen8_set_seqno;
4da46e1e 1485 ring->emit_request = gen8_emit_request;
4712274c 1486 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
1487 ring->irq_get = gen8_logical_ring_get_irq;
1488 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1489 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1490
454afebd
OM
1491 return logical_ring_init(dev, ring);
1492}
1493
1494static int logical_blt_ring_init(struct drm_device *dev)
1495{
1496 struct drm_i915_private *dev_priv = dev->dev_private;
1497 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
1498
1499 ring->name = "blitter ring";
1500 ring->id = BCS;
1501 ring->mmio_base = BLT_RING_BASE;
1502 ring->irq_enable_mask =
1503 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
73d477f6
OM
1504 ring->irq_keep_mask =
1505 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
454afebd 1506
ecfe00d8 1507 ring->init_hw = gen8_init_common_ring;
e94e37ad
OM
1508 ring->get_seqno = gen8_get_seqno;
1509 ring->set_seqno = gen8_set_seqno;
4da46e1e 1510 ring->emit_request = gen8_emit_request;
4712274c 1511 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
1512 ring->irq_get = gen8_logical_ring_get_irq;
1513 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1514 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1515
454afebd
OM
1516 return logical_ring_init(dev, ring);
1517}
1518
1519static int logical_vebox_ring_init(struct drm_device *dev)
1520{
1521 struct drm_i915_private *dev_priv = dev->dev_private;
1522 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
1523
1524 ring->name = "video enhancement ring";
1525 ring->id = VECS;
1526 ring->mmio_base = VEBOX_RING_BASE;
1527 ring->irq_enable_mask =
1528 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
73d477f6
OM
1529 ring->irq_keep_mask =
1530 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
454afebd 1531
ecfe00d8 1532 ring->init_hw = gen8_init_common_ring;
e94e37ad
OM
1533 ring->get_seqno = gen8_get_seqno;
1534 ring->set_seqno = gen8_set_seqno;
4da46e1e 1535 ring->emit_request = gen8_emit_request;
4712274c 1536 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
1537 ring->irq_get = gen8_logical_ring_get_irq;
1538 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1539 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1540
454afebd
OM
1541 return logical_ring_init(dev, ring);
1542}
1543
73e4d07f
OM
1544/**
1545 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
1546 * @dev: DRM device.
1547 *
1548 * This function inits the engines for an Execlists submission style (the equivalent in the
1549 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
1550 * those engines that are present in the hardware.
1551 *
1552 * Return: non-zero if the initialization failed.
1553 */
454afebd
OM
1554int intel_logical_rings_init(struct drm_device *dev)
1555{
1556 struct drm_i915_private *dev_priv = dev->dev_private;
1557 int ret;
1558
1559 ret = logical_render_ring_init(dev);
1560 if (ret)
1561 return ret;
1562
1563 if (HAS_BSD(dev)) {
1564 ret = logical_bsd_ring_init(dev);
1565 if (ret)
1566 goto cleanup_render_ring;
1567 }
1568
1569 if (HAS_BLT(dev)) {
1570 ret = logical_blt_ring_init(dev);
1571 if (ret)
1572 goto cleanup_bsd_ring;
1573 }
1574
1575 if (HAS_VEBOX(dev)) {
1576 ret = logical_vebox_ring_init(dev);
1577 if (ret)
1578 goto cleanup_blt_ring;
1579 }
1580
1581 if (HAS_BSD2(dev)) {
1582 ret = logical_bsd2_ring_init(dev);
1583 if (ret)
1584 goto cleanup_vebox_ring;
1585 }
1586
1587 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
1588 if (ret)
1589 goto cleanup_bsd2_ring;
1590
1591 return 0;
1592
1593cleanup_bsd2_ring:
1594 intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
1595cleanup_vebox_ring:
1596 intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
1597cleanup_blt_ring:
1598 intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
1599cleanup_bsd_ring:
1600 intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
1601cleanup_render_ring:
1602 intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
1603
1604 return ret;
1605}
1606
564ddb2f
OM
1607int intel_lr_context_render_state_init(struct intel_engine_cs *ring,
1608 struct intel_context *ctx)
1609{
1610 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1611 struct render_state so;
1612 struct drm_i915_file_private *file_priv = ctx->file_priv;
1613 struct drm_file *file = file_priv ? file_priv->file : NULL;
1614 int ret;
1615
1616 ret = i915_gem_render_state_prepare(ring, &so);
1617 if (ret)
1618 return ret;
1619
1620 if (so.rodata == NULL)
1621 return 0;
1622
1623 ret = ring->emit_bb_start(ringbuf,
1624 so.ggtt_offset,
1625 I915_DISPATCH_SECURE);
1626 if (ret)
1627 goto out;
1628
1629 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), ring);
1630
9400ae5c 1631 ret = __i915_add_request(ring, file, so.obj);
564ddb2f
OM
1632 /* intel_logical_ring_add_request moves object to inactive if it
1633 * fails */
1634out:
1635 i915_gem_render_state_fini(&so);
1636 return ret;
1637}
1638
8670d6f9
OM
1639static int
1640populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
1641 struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
1642{
2d965536
TD
1643 struct drm_device *dev = ring->dev;
1644 struct drm_i915_private *dev_priv = dev->dev_private;
ae6c4806 1645 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
8670d6f9
OM
1646 struct page *page;
1647 uint32_t *reg_state;
1648 int ret;
1649
2d965536
TD
1650 if (!ppgtt)
1651 ppgtt = dev_priv->mm.aliasing_ppgtt;
1652
8670d6f9
OM
1653 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1654 if (ret) {
1655 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1656 return ret;
1657 }
1658
1659 ret = i915_gem_object_get_pages(ctx_obj);
1660 if (ret) {
1661 DRM_DEBUG_DRIVER("Could not get object pages\n");
1662 return ret;
1663 }
1664
1665 i915_gem_object_pin_pages(ctx_obj);
1666
1667 /* The second page of the context object contains some fields which must
1668 * be set up prior to the first execution. */
1669 page = i915_gem_object_get_page(ctx_obj, 1);
1670 reg_state = kmap_atomic(page);
1671
1672 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1673 * commands followed by (reg, value) pairs. The values we are setting here are
1674 * only for the first context restore: on a subsequent save, the GPU will
1675 * recreate this batchbuffer with new values (including all the missing
1676 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1677 if (ring->id == RCS)
1678 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
1679 else
1680 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
1681 reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
1682 reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
1683 reg_state[CTX_CONTEXT_CONTROL+1] =
1684 _MASKED_BIT_ENABLE((1<<3) | MI_RESTORE_INHIBIT);
1685 reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
1686 reg_state[CTX_RING_HEAD+1] = 0;
1687 reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
1688 reg_state[CTX_RING_TAIL+1] = 0;
1689 reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
7ba717cf
TD
1690 /* Ring buffer start address is not known until the buffer is pinned.
1691 * It is written to the context image in execlists_update_context()
1692 */
8670d6f9
OM
1693 reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
1694 reg_state[CTX_RING_BUFFER_CONTROL+1] =
1695 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
1696 reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
1697 reg_state[CTX_BB_HEAD_U+1] = 0;
1698 reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
1699 reg_state[CTX_BB_HEAD_L+1] = 0;
1700 reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
1701 reg_state[CTX_BB_STATE+1] = (1<<5);
1702 reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
1703 reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
1704 reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
1705 reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
1706 reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
1707 reg_state[CTX_SECOND_BB_STATE+1] = 0;
1708 if (ring->id == RCS) {
1709 /* TODO: according to BSpec, the register state context
1710 * for CHV does not have these. OTOH, these registers do
1711 * exist in CHV. I'm waiting for a clarification */
1712 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
1713 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
1714 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
1715 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
1716 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
1717 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
1718 }
1719 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
1720 reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
1721 reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
1722 reg_state[CTX_CTX_TIMESTAMP+1] = 0;
1723 reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
1724 reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
1725 reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
1726 reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
1727 reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
1728 reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
1729 reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
1730 reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
1731 reg_state[CTX_PDP3_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[3]);
1732 reg_state[CTX_PDP3_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[3]);
1733 reg_state[CTX_PDP2_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[2]);
1734 reg_state[CTX_PDP2_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[2]);
1735 reg_state[CTX_PDP1_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[1]);
1736 reg_state[CTX_PDP1_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[1]);
1737 reg_state[CTX_PDP0_UDW+1] = upper_32_bits(ppgtt->pd_dma_addr[0]);
1738 reg_state[CTX_PDP0_LDW+1] = lower_32_bits(ppgtt->pd_dma_addr[0]);
1739 if (ring->id == RCS) {
1740 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
1741 reg_state[CTX_R_PWR_CLK_STATE] = 0x20c8;
1742 reg_state[CTX_R_PWR_CLK_STATE+1] = 0;
1743 }
1744
1745 kunmap_atomic(reg_state);
1746
1747 ctx_obj->dirty = 1;
1748 set_page_dirty(page);
1749 i915_gem_object_unpin_pages(ctx_obj);
1750
1751 return 0;
1752}
1753
73e4d07f
OM
1754/**
1755 * intel_lr_context_free() - free the LRC specific bits of a context
1756 * @ctx: the LR context to free.
1757 *
1758 * The real context freeing is done in i915_gem_context_free: this only
1759 * takes care of the bits that are LRC related: the per-engine backing
1760 * objects and the logical ringbuffer.
1761 */
ede7d42b
OM
1762void intel_lr_context_free(struct intel_context *ctx)
1763{
8c857917
OM
1764 int i;
1765
1766 for (i = 0; i < I915_NUM_RINGS; i++) {
1767 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
84c2377f 1768
8c857917 1769 if (ctx_obj) {
dcb4c12a
OM
1770 struct intel_ringbuffer *ringbuf =
1771 ctx->engine[i].ringbuf;
1772 struct intel_engine_cs *ring = ringbuf->ring;
1773
7ba717cf
TD
1774 if (ctx == ring->default_context) {
1775 intel_unpin_ringbuffer_obj(ringbuf);
1776 i915_gem_object_ggtt_unpin(ctx_obj);
1777 }
84c2377f
OM
1778 intel_destroy_ringbuffer_obj(ringbuf);
1779 kfree(ringbuf);
8c857917
OM
1780 drm_gem_object_unreference(&ctx_obj->base);
1781 }
1782 }
1783}
1784
1785static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
1786{
1787 int ret = 0;
1788
468c6816 1789 WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
8c857917
OM
1790
1791 switch (ring->id) {
1792 case RCS:
468c6816
MN
1793 if (INTEL_INFO(ring->dev)->gen >= 9)
1794 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
1795 else
1796 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
8c857917
OM
1797 break;
1798 case VCS:
1799 case BCS:
1800 case VECS:
1801 case VCS2:
1802 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
1803 break;
1804 }
1805
1806 return ret;
ede7d42b
OM
1807}
1808
70b0ea86 1809static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
1df06b75
TD
1810 struct drm_i915_gem_object *default_ctx_obj)
1811{
1812 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1813
1814 /* The status page is offset 0 from the default context object
1815 * in LRC mode. */
1816 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj);
1817 ring->status_page.page_addr =
1818 kmap(sg_page(default_ctx_obj->pages->sgl));
1df06b75
TD
1819 ring->status_page.obj = default_ctx_obj;
1820
1821 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1822 (u32)ring->status_page.gfx_addr);
1823 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1df06b75
TD
1824}
1825
73e4d07f
OM
1826/**
1827 * intel_lr_context_deferred_create() - create the LRC specific bits of a context
1828 * @ctx: LR context to create.
1829 * @ring: engine to be used with the context.
1830 *
1831 * This function can be called more than once, with different engines, if we plan
1832 * to use the context with them. The context backing objects and the ringbuffers
1833 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
1834 * the creation is a deferred call: it's better to make sure first that we need to use
1835 * a given ring with the context.
1836 *
32197aab 1837 * Return: non-zero on error.
73e4d07f 1838 */
ede7d42b
OM
1839int intel_lr_context_deferred_create(struct intel_context *ctx,
1840 struct intel_engine_cs *ring)
1841{
dcb4c12a 1842 const bool is_global_default_ctx = (ctx == ring->default_context);
8c857917
OM
1843 struct drm_device *dev = ring->dev;
1844 struct drm_i915_gem_object *ctx_obj;
1845 uint32_t context_size;
84c2377f 1846 struct intel_ringbuffer *ringbuf;
8c857917
OM
1847 int ret;
1848
ede7d42b 1849 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
bfc882b4 1850 WARN_ON(ctx->engine[ring->id].state);
ede7d42b 1851
8c857917
OM
1852 context_size = round_up(get_lr_context_size(ring), 4096);
1853
1854 ctx_obj = i915_gem_alloc_context_obj(dev, context_size);
1855 if (IS_ERR(ctx_obj)) {
1856 ret = PTR_ERR(ctx_obj);
1857 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed: %d\n", ret);
1858 return ret;
1859 }
1860
dcb4c12a
OM
1861 if (is_global_default_ctx) {
1862 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
1863 if (ret) {
1864 DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
1865 ret);
1866 drm_gem_object_unreference(&ctx_obj->base);
1867 return ret;
1868 }
8c857917
OM
1869 }
1870
84c2377f
OM
1871 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1872 if (!ringbuf) {
1873 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
1874 ring->name);
84c2377f 1875 ret = -ENOMEM;
7ba717cf 1876 goto error_unpin_ctx;
84c2377f
OM
1877 }
1878
0c7dd53b 1879 ringbuf->ring = ring;
582d67f0
OM
1880 ringbuf->FIXME_lrc_ctx = ctx;
1881
84c2377f
OM
1882 ringbuf->size = 32 * PAGE_SIZE;
1883 ringbuf->effective_size = ringbuf->size;
1884 ringbuf->head = 0;
1885 ringbuf->tail = 0;
84c2377f 1886 ringbuf->last_retired_head = -1;
ebd0fd4b 1887 intel_ring_update_space(ringbuf);
84c2377f 1888
7ba717cf
TD
1889 if (ringbuf->obj == NULL) {
1890 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1891 if (ret) {
1892 DRM_DEBUG_DRIVER(
1893 "Failed to allocate ringbuffer obj %s: %d\n",
84c2377f 1894 ring->name, ret);
7ba717cf
TD
1895 goto error_free_rbuf;
1896 }
1897
1898 if (is_global_default_ctx) {
1899 ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
1900 if (ret) {
1901 DRM_ERROR(
1902 "Failed to pin and map ringbuffer %s: %d\n",
1903 ring->name, ret);
1904 goto error_destroy_rbuf;
1905 }
1906 }
1907
8670d6f9
OM
1908 }
1909
1910 ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
1911 if (ret) {
1912 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
8670d6f9 1913 goto error;
84c2377f
OM
1914 }
1915
1916 ctx->engine[ring->id].ringbuf = ringbuf;
8c857917 1917 ctx->engine[ring->id].state = ctx_obj;
ede7d42b 1918
70b0ea86
DV
1919 if (ctx == ring->default_context)
1920 lrc_setup_hardware_status_page(ring, ctx_obj);
e7778be1 1921 else if (ring->id == RCS && !ctx->rcs_initialized) {
771b9a53
MT
1922 if (ring->init_context) {
1923 ret = ring->init_context(ring, ctx);
e7778be1 1924 if (ret) {
771b9a53 1925 DRM_ERROR("ring init context: %d\n", ret);
e7778be1
TD
1926 ctx->engine[ring->id].ringbuf = NULL;
1927 ctx->engine[ring->id].state = NULL;
1928 goto error;
1929 }
771b9a53
MT
1930 }
1931
564ddb2f
OM
1932 ctx->rcs_initialized = true;
1933 }
1934
ede7d42b 1935 return 0;
8670d6f9
OM
1936
1937error:
7ba717cf
TD
1938 if (is_global_default_ctx)
1939 intel_unpin_ringbuffer_obj(ringbuf);
1940error_destroy_rbuf:
1941 intel_destroy_ringbuffer_obj(ringbuf);
1942error_free_rbuf:
8670d6f9 1943 kfree(ringbuf);
7ba717cf 1944error_unpin_ctx:
dcb4c12a
OM
1945 if (is_global_default_ctx)
1946 i915_gem_object_ggtt_unpin(ctx_obj);
8670d6f9
OM
1947 drm_gem_object_unreference(&ctx_obj->base);
1948 return ret;
ede7d42b 1949}