]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/net/ethernet/intel/igb/igb_main.c
Merge remote-tracking branches 'asoc/topic/tas2552', 'asoc/topic/tegra', 'asoc/topic...
[mirror_ubuntu-zesty-kernel.git] / drivers / net / ethernet / intel / igb / igb_main.c
CommitLineData
e52c0f96
CW
1/* Intel(R) Gigabit Ethernet Linux driver
2 * Copyright(c) 2007-2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, see <http://www.gnu.org/licenses/>.
15 *
16 * The full GNU General Public License is included in this distribution in
17 * the file called "COPYING".
18 *
19 * Contact Information:
20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22 */
9d5c8243 23
876d2d6f
JK
24#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
9d5c8243
AK
26#include <linux/module.h>
27#include <linux/types.h>
28#include <linux/init.h>
b2cb09b1 29#include <linux/bitops.h>
9d5c8243
AK
30#include <linux/vmalloc.h>
31#include <linux/pagemap.h>
32#include <linux/netdevice.h>
9d5c8243 33#include <linux/ipv6.h>
5a0e3ad6 34#include <linux/slab.h>
9d5c8243
AK
35#include <net/checksum.h>
36#include <net/ip6_checksum.h>
c6cb090b 37#include <linux/net_tstamp.h>
9d5c8243
AK
38#include <linux/mii.h>
39#include <linux/ethtool.h>
01789349 40#include <linux/if.h>
9d5c8243
AK
41#include <linux/if_vlan.h>
42#include <linux/pci.h>
c54106bb 43#include <linux/pci-aspm.h>
9d5c8243
AK
44#include <linux/delay.h>
45#include <linux/interrupt.h>
7d13a7d0
AD
46#include <linux/ip.h>
47#include <linux/tcp.h>
48#include <linux/sctp.h>
9d5c8243 49#include <linux/if_ether.h>
40a914fa 50#include <linux/aer.h>
70c71606 51#include <linux/prefetch.h>
749ab2cd 52#include <linux/pm_runtime.h>
421e02f0 53#ifdef CONFIG_IGB_DCA
fe4506b6
JC
54#include <linux/dca.h>
55#endif
441fc6fd 56#include <linux/i2c.h>
9d5c8243
AK
57#include "igb.h"
58
67b1b903 59#define MAJ 5
bf22a6bd 60#define MIN 2
b5d130c4 61#define BUILD 15
0d1fe82d 62#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
929dd047 63__stringify(BUILD) "-k"
9d5c8243
AK
64char igb_driver_name[] = "igb";
65char igb_driver_version[] = DRV_VERSION;
66static const char igb_driver_string[] =
67 "Intel(R) Gigabit Ethernet Network Driver";
4b9ea462 68static const char igb_copyright[] =
74cfb2e1 69 "Copyright (c) 2007-2014 Intel Corporation.";
9d5c8243 70
9d5c8243
AK
71static const struct e1000_info *igb_info_tbl[] = {
72 [board_82575] = &e1000_82575_info,
73};
74
cd1631ce 75static const struct pci_device_id igb_pci_tbl[] = {
ceb5f13b
CW
76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
f96a8a0b
CW
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
53b87ce3
CW
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
d2ba2ed8
AD
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
55cac248
AD
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
6493d24f 92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
55cac248
AD
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
308fb39a
JG
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
1b5dda33
GJ
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
2d064c06 100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
9eb2341d 101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
747d49ba 102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
2d064c06
AD
103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
104 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
4703bf73 105 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
b894fa26 106 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
c8ea5ea9 107 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
9d5c8243
AK
108 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
109 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
110 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
111 /* required last entry */
112 {0, }
113};
114
115MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
116
9d5c8243
AK
117static int igb_setup_all_tx_resources(struct igb_adapter *);
118static int igb_setup_all_rx_resources(struct igb_adapter *);
119static void igb_free_all_tx_resources(struct igb_adapter *);
120static void igb_free_all_rx_resources(struct igb_adapter *);
06cf2666 121static void igb_setup_mrqc(struct igb_adapter *);
9d5c8243 122static int igb_probe(struct pci_dev *, const struct pci_device_id *);
9f9a12f8 123static void igb_remove(struct pci_dev *pdev);
9d5c8243
AK
124static int igb_sw_init(struct igb_adapter *);
125static int igb_open(struct net_device *);
126static int igb_close(struct net_device *);
53c7d064 127static void igb_configure(struct igb_adapter *);
9d5c8243
AK
128static void igb_configure_tx(struct igb_adapter *);
129static void igb_configure_rx(struct igb_adapter *);
9d5c8243
AK
130static void igb_clean_all_tx_rings(struct igb_adapter *);
131static void igb_clean_all_rx_rings(struct igb_adapter *);
3b644cf6
MW
132static void igb_clean_tx_ring(struct igb_ring *);
133static void igb_clean_rx_ring(struct igb_ring *);
ff41f8dc 134static void igb_set_rx_mode(struct net_device *);
9d5c8243
AK
135static void igb_update_phy_info(unsigned long);
136static void igb_watchdog(unsigned long);
137static void igb_watchdog_task(struct work_struct *);
cd392f5c 138static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
12dcd86b 139static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
c502ea2e 140 struct rtnl_link_stats64 *stats);
9d5c8243
AK
141static int igb_change_mtu(struct net_device *, int);
142static int igb_set_mac(struct net_device *, void *);
68d480c4 143static void igb_set_uta(struct igb_adapter *adapter);
9d5c8243
AK
144static irqreturn_t igb_intr(int irq, void *);
145static irqreturn_t igb_intr_msi(int irq, void *);
146static irqreturn_t igb_msix_other(int irq, void *);
047e0030 147static irqreturn_t igb_msix_ring(int irq, void *);
421e02f0 148#ifdef CONFIG_IGB_DCA
047e0030 149static void igb_update_dca(struct igb_q_vector *);
fe4506b6 150static void igb_setup_dca(struct igb_adapter *);
421e02f0 151#endif /* CONFIG_IGB_DCA */
661086df 152static int igb_poll(struct napi_struct *, int);
13fde97a 153static bool igb_clean_tx_irq(struct igb_q_vector *);
cd392f5c 154static bool igb_clean_rx_irq(struct igb_q_vector *, int);
9d5c8243
AK
155static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
156static void igb_tx_timeout(struct net_device *);
157static void igb_reset_task(struct work_struct *);
c502ea2e
CW
158static void igb_vlan_mode(struct net_device *netdev,
159 netdev_features_t features);
80d5c368
PM
160static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
161static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
9d5c8243 162static void igb_restore_vlan(struct igb_adapter *);
26ad9178 163static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
4ae196df
AD
164static void igb_ping_all_vfs(struct igb_adapter *);
165static void igb_msg_task(struct igb_adapter *);
4ae196df 166static void igb_vmm_control(struct igb_adapter *);
f2ca0dbe 167static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
4ae196df 168static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
8151d294
WM
169static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
170static int igb_ndo_set_vf_vlan(struct net_device *netdev,
171 int vf, u16 vlan, u8 qos);
ed616689 172static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
70ea4783
LL
173static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
174 bool setting);
8151d294
WM
175static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
176 struct ifla_vf_info *ivi);
17dc566c 177static void igb_check_vf_rate_limit(struct igb_adapter *);
46a01698
RL
178
179#ifdef CONFIG_PCI_IOV
0224d663 180static int igb_vf_configure(struct igb_adapter *adapter, int vf);
781798a1 181static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
46a01698 182#endif
9d5c8243 183
9d5c8243 184#ifdef CONFIG_PM
d9dd966d 185#ifdef CONFIG_PM_SLEEP
749ab2cd 186static int igb_suspend(struct device *);
d9dd966d 187#endif
749ab2cd
YZ
188static int igb_resume(struct device *);
189#ifdef CONFIG_PM_RUNTIME
190static int igb_runtime_suspend(struct device *dev);
191static int igb_runtime_resume(struct device *dev);
192static int igb_runtime_idle(struct device *dev);
193#endif
194static const struct dev_pm_ops igb_pm_ops = {
195 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
196 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
197 igb_runtime_idle)
198};
9d5c8243
AK
199#endif
200static void igb_shutdown(struct pci_dev *);
fa44f2f1 201static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
421e02f0 202#ifdef CONFIG_IGB_DCA
fe4506b6
JC
203static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
204static struct notifier_block dca_notifier = {
205 .notifier_call = igb_notify_dca,
206 .next = NULL,
207 .priority = 0
208};
209#endif
9d5c8243
AK
210#ifdef CONFIG_NET_POLL_CONTROLLER
211/* for netdump / net console */
212static void igb_netpoll(struct net_device *);
213#endif
37680117 214#ifdef CONFIG_PCI_IOV
6dd6d2b7 215static unsigned int max_vfs;
2a3abf6d 216module_param(max_vfs, uint, 0);
c75c4edf 217MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
2a3abf6d
AD
218#endif /* CONFIG_PCI_IOV */
219
9d5c8243
AK
220static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
221 pci_channel_state_t);
222static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
223static void igb_io_resume(struct pci_dev *);
224
3646f0e5 225static const struct pci_error_handlers igb_err_handler = {
9d5c8243
AK
226 .error_detected = igb_io_error_detected,
227 .slot_reset = igb_io_slot_reset,
228 .resume = igb_io_resume,
229};
230
b6e0c419 231static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
9d5c8243
AK
232
233static struct pci_driver igb_driver = {
234 .name = igb_driver_name,
235 .id_table = igb_pci_tbl,
236 .probe = igb_probe,
9f9a12f8 237 .remove = igb_remove,
9d5c8243 238#ifdef CONFIG_PM
749ab2cd 239 .driver.pm = &igb_pm_ops,
9d5c8243
AK
240#endif
241 .shutdown = igb_shutdown,
fa44f2f1 242 .sriov_configure = igb_pci_sriov_configure,
9d5c8243
AK
243 .err_handler = &igb_err_handler
244};
245
246MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
247MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
248MODULE_LICENSE("GPL");
249MODULE_VERSION(DRV_VERSION);
250
b3f4d599 251#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
252static int debug = -1;
253module_param(debug, int, 0);
254MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
255
c97ec42a
TI
256struct igb_reg_info {
257 u32 ofs;
258 char *name;
259};
260
261static const struct igb_reg_info igb_reg_info_tbl[] = {
262
263 /* General Registers */
264 {E1000_CTRL, "CTRL"},
265 {E1000_STATUS, "STATUS"},
266 {E1000_CTRL_EXT, "CTRL_EXT"},
267
268 /* Interrupt Registers */
269 {E1000_ICR, "ICR"},
270
271 /* RX Registers */
272 {E1000_RCTL, "RCTL"},
273 {E1000_RDLEN(0), "RDLEN"},
274 {E1000_RDH(0), "RDH"},
275 {E1000_RDT(0), "RDT"},
276 {E1000_RXDCTL(0), "RXDCTL"},
277 {E1000_RDBAL(0), "RDBAL"},
278 {E1000_RDBAH(0), "RDBAH"},
279
280 /* TX Registers */
281 {E1000_TCTL, "TCTL"},
282 {E1000_TDBAL(0), "TDBAL"},
283 {E1000_TDBAH(0), "TDBAH"},
284 {E1000_TDLEN(0), "TDLEN"},
285 {E1000_TDH(0), "TDH"},
286 {E1000_TDT(0), "TDT"},
287 {E1000_TXDCTL(0), "TXDCTL"},
288 {E1000_TDFH, "TDFH"},
289 {E1000_TDFT, "TDFT"},
290 {E1000_TDFHS, "TDFHS"},
291 {E1000_TDFPC, "TDFPC"},
292
293 /* List Terminator */
294 {}
295};
296
b980ac18 297/* igb_regdump - register printout routine */
c97ec42a
TI
298static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
299{
300 int n = 0;
301 char rname[16];
302 u32 regs[8];
303
304 switch (reginfo->ofs) {
305 case E1000_RDLEN(0):
306 for (n = 0; n < 4; n++)
307 regs[n] = rd32(E1000_RDLEN(n));
308 break;
309 case E1000_RDH(0):
310 for (n = 0; n < 4; n++)
311 regs[n] = rd32(E1000_RDH(n));
312 break;
313 case E1000_RDT(0):
314 for (n = 0; n < 4; n++)
315 regs[n] = rd32(E1000_RDT(n));
316 break;
317 case E1000_RXDCTL(0):
318 for (n = 0; n < 4; n++)
319 regs[n] = rd32(E1000_RXDCTL(n));
320 break;
321 case E1000_RDBAL(0):
322 for (n = 0; n < 4; n++)
323 regs[n] = rd32(E1000_RDBAL(n));
324 break;
325 case E1000_RDBAH(0):
326 for (n = 0; n < 4; n++)
327 regs[n] = rd32(E1000_RDBAH(n));
328 break;
329 case E1000_TDBAL(0):
330 for (n = 0; n < 4; n++)
331 regs[n] = rd32(E1000_RDBAL(n));
332 break;
333 case E1000_TDBAH(0):
334 for (n = 0; n < 4; n++)
335 regs[n] = rd32(E1000_TDBAH(n));
336 break;
337 case E1000_TDLEN(0):
338 for (n = 0; n < 4; n++)
339 regs[n] = rd32(E1000_TDLEN(n));
340 break;
341 case E1000_TDH(0):
342 for (n = 0; n < 4; n++)
343 regs[n] = rd32(E1000_TDH(n));
344 break;
345 case E1000_TDT(0):
346 for (n = 0; n < 4; n++)
347 regs[n] = rd32(E1000_TDT(n));
348 break;
349 case E1000_TXDCTL(0):
350 for (n = 0; n < 4; n++)
351 regs[n] = rd32(E1000_TXDCTL(n));
352 break;
353 default:
876d2d6f 354 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
c97ec42a
TI
355 return;
356 }
357
358 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
876d2d6f
JK
359 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
360 regs[2], regs[3]);
c97ec42a
TI
361}
362
b980ac18 363/* igb_dump - Print registers, Tx-rings and Rx-rings */
c97ec42a
TI
364static void igb_dump(struct igb_adapter *adapter)
365{
366 struct net_device *netdev = adapter->netdev;
367 struct e1000_hw *hw = &adapter->hw;
368 struct igb_reg_info *reginfo;
c97ec42a
TI
369 struct igb_ring *tx_ring;
370 union e1000_adv_tx_desc *tx_desc;
371 struct my_u0 { u64 a; u64 b; } *u0;
c97ec42a
TI
372 struct igb_ring *rx_ring;
373 union e1000_adv_rx_desc *rx_desc;
374 u32 staterr;
6ad4edfc 375 u16 i, n;
c97ec42a
TI
376
377 if (!netif_msg_hw(adapter))
378 return;
379
380 /* Print netdevice Info */
381 if (netdev) {
382 dev_info(&adapter->pdev->dev, "Net device Info\n");
c75c4edf 383 pr_info("Device Name state trans_start last_rx\n");
876d2d6f
JK
384 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
385 netdev->state, netdev->trans_start, netdev->last_rx);
c97ec42a
TI
386 }
387
388 /* Print Registers */
389 dev_info(&adapter->pdev->dev, "Register Dump\n");
876d2d6f 390 pr_info(" Register Name Value\n");
c97ec42a
TI
391 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
392 reginfo->name; reginfo++) {
393 igb_regdump(hw, reginfo);
394 }
395
396 /* Print TX Ring Summary */
397 if (!netdev || !netif_running(netdev))
398 goto exit;
399
400 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
876d2d6f 401 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
c97ec42a 402 for (n = 0; n < adapter->num_tx_queues; n++) {
06034649 403 struct igb_tx_buffer *buffer_info;
c97ec42a 404 tx_ring = adapter->tx_ring[n];
06034649 405 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
876d2d6f
JK
406 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
407 n, tx_ring->next_to_use, tx_ring->next_to_clean,
c9f14bf3
AD
408 (u64)dma_unmap_addr(buffer_info, dma),
409 dma_unmap_len(buffer_info, len),
876d2d6f
JK
410 buffer_info->next_to_watch,
411 (u64)buffer_info->time_stamp);
c97ec42a
TI
412 }
413
414 /* Print TX Rings */
415 if (!netif_msg_tx_done(adapter))
416 goto rx_ring_summary;
417
418 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
419
420 /* Transmit Descriptor Formats
421 *
422 * Advanced Transmit Descriptor
423 * +--------------------------------------------------------------+
424 * 0 | Buffer Address [63:0] |
425 * +--------------------------------------------------------------+
426 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
427 * +--------------------------------------------------------------+
428 * 63 46 45 40 39 38 36 35 32 31 24 15 0
429 */
430
431 for (n = 0; n < adapter->num_tx_queues; n++) {
432 tx_ring = adapter->tx_ring[n];
876d2d6f
JK
433 pr_info("------------------------------------\n");
434 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
435 pr_info("------------------------------------\n");
c75c4edf 436 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n");
c97ec42a
TI
437
438 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
876d2d6f 439 const char *next_desc;
06034649 440 struct igb_tx_buffer *buffer_info;
60136906 441 tx_desc = IGB_TX_DESC(tx_ring, i);
06034649 442 buffer_info = &tx_ring->tx_buffer_info[i];
c97ec42a 443 u0 = (struct my_u0 *)tx_desc;
876d2d6f
JK
444 if (i == tx_ring->next_to_use &&
445 i == tx_ring->next_to_clean)
446 next_desc = " NTC/U";
447 else if (i == tx_ring->next_to_use)
448 next_desc = " NTU";
449 else if (i == tx_ring->next_to_clean)
450 next_desc = " NTC";
451 else
452 next_desc = "";
453
c75c4edf
CW
454 pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n",
455 i, le64_to_cpu(u0->a),
c97ec42a 456 le64_to_cpu(u0->b),
c9f14bf3
AD
457 (u64)dma_unmap_addr(buffer_info, dma),
458 dma_unmap_len(buffer_info, len),
c97ec42a
TI
459 buffer_info->next_to_watch,
460 (u64)buffer_info->time_stamp,
876d2d6f 461 buffer_info->skb, next_desc);
c97ec42a 462
b669588a 463 if (netif_msg_pktdata(adapter) && buffer_info->skb)
c97ec42a
TI
464 print_hex_dump(KERN_INFO, "",
465 DUMP_PREFIX_ADDRESS,
b669588a 466 16, 1, buffer_info->skb->data,
c9f14bf3
AD
467 dma_unmap_len(buffer_info, len),
468 true);
c97ec42a
TI
469 }
470 }
471
472 /* Print RX Rings Summary */
473rx_ring_summary:
474 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
876d2d6f 475 pr_info("Queue [NTU] [NTC]\n");
c97ec42a
TI
476 for (n = 0; n < adapter->num_rx_queues; n++) {
477 rx_ring = adapter->rx_ring[n];
876d2d6f
JK
478 pr_info(" %5d %5X %5X\n",
479 n, rx_ring->next_to_use, rx_ring->next_to_clean);
c97ec42a
TI
480 }
481
482 /* Print RX Rings */
483 if (!netif_msg_rx_status(adapter))
484 goto exit;
485
486 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
487
488 /* Advanced Receive Descriptor (Read) Format
489 * 63 1 0
490 * +-----------------------------------------------------+
491 * 0 | Packet Buffer Address [63:1] |A0/NSE|
492 * +----------------------------------------------+------+
493 * 8 | Header Buffer Address [63:1] | DD |
494 * +-----------------------------------------------------+
495 *
496 *
497 * Advanced Receive Descriptor (Write-Back) Format
498 *
499 * 63 48 47 32 31 30 21 20 17 16 4 3 0
500 * +------------------------------------------------------+
501 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
502 * | Checksum Ident | | | | Type | Type |
503 * +------------------------------------------------------+
504 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
505 * +------------------------------------------------------+
506 * 63 48 47 32 31 20 19 0
507 */
508
509 for (n = 0; n < adapter->num_rx_queues; n++) {
510 rx_ring = adapter->rx_ring[n];
876d2d6f
JK
511 pr_info("------------------------------------\n");
512 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
513 pr_info("------------------------------------\n");
c75c4edf
CW
514 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
515 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
c97ec42a
TI
516
517 for (i = 0; i < rx_ring->count; i++) {
876d2d6f 518 const char *next_desc;
06034649
AD
519 struct igb_rx_buffer *buffer_info;
520 buffer_info = &rx_ring->rx_buffer_info[i];
60136906 521 rx_desc = IGB_RX_DESC(rx_ring, i);
c97ec42a
TI
522 u0 = (struct my_u0 *)rx_desc;
523 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
876d2d6f
JK
524
525 if (i == rx_ring->next_to_use)
526 next_desc = " NTU";
527 else if (i == rx_ring->next_to_clean)
528 next_desc = " NTC";
529 else
530 next_desc = "";
531
c97ec42a
TI
532 if (staterr & E1000_RXD_STAT_DD) {
533 /* Descriptor Done */
1a1c225b
AD
534 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
535 "RWB", i,
c97ec42a
TI
536 le64_to_cpu(u0->a),
537 le64_to_cpu(u0->b),
1a1c225b 538 next_desc);
c97ec42a 539 } else {
1a1c225b
AD
540 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
541 "R ", i,
c97ec42a
TI
542 le64_to_cpu(u0->a),
543 le64_to_cpu(u0->b),
544 (u64)buffer_info->dma,
1a1c225b 545 next_desc);
c97ec42a 546
b669588a 547 if (netif_msg_pktdata(adapter) &&
1a1c225b 548 buffer_info->dma && buffer_info->page) {
44390ca6
AD
549 print_hex_dump(KERN_INFO, "",
550 DUMP_PREFIX_ADDRESS,
551 16, 1,
b669588a
ET
552 page_address(buffer_info->page) +
553 buffer_info->page_offset,
de78d1f9 554 IGB_RX_BUFSZ, true);
c97ec42a
TI
555 }
556 }
c97ec42a
TI
557 }
558 }
559
560exit:
561 return;
562}
563
b980ac18
JK
564/**
565 * igb_get_i2c_data - Reads the I2C SDA data bit
441fc6fd
CW
566 * @hw: pointer to hardware structure
567 * @i2cctl: Current value of I2CCTL register
568 *
569 * Returns the I2C data bit value
b980ac18 570 **/
441fc6fd
CW
571static int igb_get_i2c_data(void *data)
572{
573 struct igb_adapter *adapter = (struct igb_adapter *)data;
574 struct e1000_hw *hw = &adapter->hw;
575 s32 i2cctl = rd32(E1000_I2CPARAMS);
576
da1f1dfe 577 return !!(i2cctl & E1000_I2C_DATA_IN);
441fc6fd
CW
578}
579
b980ac18
JK
580/**
581 * igb_set_i2c_data - Sets the I2C data bit
441fc6fd
CW
582 * @data: pointer to hardware structure
583 * @state: I2C data value (0 or 1) to set
584 *
585 * Sets the I2C data bit
b980ac18 586 **/
441fc6fd
CW
587static void igb_set_i2c_data(void *data, int state)
588{
589 struct igb_adapter *adapter = (struct igb_adapter *)data;
590 struct e1000_hw *hw = &adapter->hw;
591 s32 i2cctl = rd32(E1000_I2CPARAMS);
592
593 if (state)
594 i2cctl |= E1000_I2C_DATA_OUT;
595 else
596 i2cctl &= ~E1000_I2C_DATA_OUT;
597
598 i2cctl &= ~E1000_I2C_DATA_OE_N;
599 i2cctl |= E1000_I2C_CLK_OE_N;
600 wr32(E1000_I2CPARAMS, i2cctl);
601 wrfl();
602
603}
604
b980ac18
JK
605/**
606 * igb_set_i2c_clk - Sets the I2C SCL clock
441fc6fd
CW
607 * @data: pointer to hardware structure
608 * @state: state to set clock
609 *
610 * Sets the I2C clock line to state
b980ac18 611 **/
441fc6fd
CW
612static void igb_set_i2c_clk(void *data, int state)
613{
614 struct igb_adapter *adapter = (struct igb_adapter *)data;
615 struct e1000_hw *hw = &adapter->hw;
616 s32 i2cctl = rd32(E1000_I2CPARAMS);
617
618 if (state) {
619 i2cctl |= E1000_I2C_CLK_OUT;
620 i2cctl &= ~E1000_I2C_CLK_OE_N;
621 } else {
622 i2cctl &= ~E1000_I2C_CLK_OUT;
623 i2cctl &= ~E1000_I2C_CLK_OE_N;
624 }
625 wr32(E1000_I2CPARAMS, i2cctl);
626 wrfl();
627}
628
b980ac18
JK
629/**
630 * igb_get_i2c_clk - Gets the I2C SCL clock state
441fc6fd
CW
631 * @data: pointer to hardware structure
632 *
633 * Gets the I2C clock state
b980ac18 634 **/
441fc6fd
CW
635static int igb_get_i2c_clk(void *data)
636{
637 struct igb_adapter *adapter = (struct igb_adapter *)data;
638 struct e1000_hw *hw = &adapter->hw;
639 s32 i2cctl = rd32(E1000_I2CPARAMS);
640
da1f1dfe 641 return !!(i2cctl & E1000_I2C_CLK_IN);
441fc6fd
CW
642}
643
644static const struct i2c_algo_bit_data igb_i2c_algo = {
645 .setsda = igb_set_i2c_data,
646 .setscl = igb_set_i2c_clk,
647 .getsda = igb_get_i2c_data,
648 .getscl = igb_get_i2c_clk,
649 .udelay = 5,
650 .timeout = 20,
651};
652
9d5c8243 653/**
b980ac18
JK
654 * igb_get_hw_dev - return device
655 * @hw: pointer to hardware structure
656 *
657 * used by hardware layer to print debugging information
9d5c8243 658 **/
c041076a 659struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
9d5c8243
AK
660{
661 struct igb_adapter *adapter = hw->back;
c041076a 662 return adapter->netdev;
9d5c8243 663}
38c845c7 664
9d5c8243 665/**
b980ac18 666 * igb_init_module - Driver Registration Routine
9d5c8243 667 *
b980ac18
JK
668 * igb_init_module is the first routine called when the driver is
669 * loaded. All it does is register with the PCI subsystem.
9d5c8243
AK
670 **/
671static int __init igb_init_module(void)
672{
673 int ret;
9005df38 674
876d2d6f 675 pr_info("%s - version %s\n",
9d5c8243 676 igb_driver_string, igb_driver_version);
876d2d6f 677 pr_info("%s\n", igb_copyright);
9d5c8243 678
421e02f0 679#ifdef CONFIG_IGB_DCA
fe4506b6
JC
680 dca_register_notify(&dca_notifier);
681#endif
bbd98fe4 682 ret = pci_register_driver(&igb_driver);
9d5c8243
AK
683 return ret;
684}
685
686module_init(igb_init_module);
687
688/**
b980ac18 689 * igb_exit_module - Driver Exit Cleanup Routine
9d5c8243 690 *
b980ac18
JK
691 * igb_exit_module is called just before the driver is removed
692 * from memory.
9d5c8243
AK
693 **/
694static void __exit igb_exit_module(void)
695{
421e02f0 696#ifdef CONFIG_IGB_DCA
fe4506b6
JC
697 dca_unregister_notify(&dca_notifier);
698#endif
9d5c8243
AK
699 pci_unregister_driver(&igb_driver);
700}
701
702module_exit(igb_exit_module);
703
26bc19ec
AD
704#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
705/**
b980ac18
JK
706 * igb_cache_ring_register - Descriptor ring to register mapping
707 * @adapter: board private structure to initialize
26bc19ec 708 *
b980ac18
JK
709 * Once we know the feature-set enabled for the device, we'll cache
710 * the register offset the descriptor ring is assigned to.
26bc19ec
AD
711 **/
712static void igb_cache_ring_register(struct igb_adapter *adapter)
713{
ee1b9f06 714 int i = 0, j = 0;
047e0030 715 u32 rbase_offset = adapter->vfs_allocated_count;
26bc19ec
AD
716
717 switch (adapter->hw.mac.type) {
718 case e1000_82576:
719 /* The queues are allocated for virtualization such that VF 0
720 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
721 * In order to avoid collision we start at the first free queue
722 * and continue consuming queues in the same sequence
723 */
ee1b9f06 724 if (adapter->vfs_allocated_count) {
a99955fc 725 for (; i < adapter->rss_queues; i++)
3025a446 726 adapter->rx_ring[i]->reg_idx = rbase_offset +
b980ac18 727 Q_IDX_82576(i);
ee1b9f06 728 }
b26141d4 729 /* Fall through */
26bc19ec 730 case e1000_82575:
55cac248 731 case e1000_82580:
d2ba2ed8 732 case e1000_i350:
ceb5f13b 733 case e1000_i354:
f96a8a0b
CW
734 case e1000_i210:
735 case e1000_i211:
b26141d4 736 /* Fall through */
26bc19ec 737 default:
ee1b9f06 738 for (; i < adapter->num_rx_queues; i++)
3025a446 739 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
ee1b9f06 740 for (; j < adapter->num_tx_queues; j++)
3025a446 741 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
26bc19ec
AD
742 break;
743 }
744}
745
22a8b291
FT
746u32 igb_rd32(struct e1000_hw *hw, u32 reg)
747{
748 struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
749 u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
750 u32 value = 0;
751
752 if (E1000_REMOVED(hw_addr))
753 return ~value;
754
755 value = readl(&hw_addr[reg]);
756
757 /* reads should not return all F's */
758 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
759 struct net_device *netdev = igb->netdev;
760 hw->hw_addr = NULL;
761 netif_device_detach(netdev);
762 netdev_err(netdev, "PCIe link lost, device now detached\n");
763 }
764
765 return value;
766}
767
4be000c8
AD
768/**
769 * igb_write_ivar - configure ivar for given MSI-X vector
770 * @hw: pointer to the HW structure
771 * @msix_vector: vector number we are allocating to a given ring
772 * @index: row index of IVAR register to write within IVAR table
773 * @offset: column offset of in IVAR, should be multiple of 8
774 *
775 * This function is intended to handle the writing of the IVAR register
776 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
777 * each containing an cause allocation for an Rx and Tx ring, and a
778 * variable number of rows depending on the number of queues supported.
779 **/
780static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
781 int index, int offset)
782{
783 u32 ivar = array_rd32(E1000_IVAR0, index);
784
785 /* clear any bits that are currently set */
786 ivar &= ~((u32)0xFF << offset);
787
788 /* write vector and valid bit */
789 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
790
791 array_wr32(E1000_IVAR0, index, ivar);
792}
793
9d5c8243 794#define IGB_N0_QUEUE -1
047e0030 795static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
9d5c8243 796{
047e0030 797 struct igb_adapter *adapter = q_vector->adapter;
9d5c8243 798 struct e1000_hw *hw = &adapter->hw;
047e0030
AD
799 int rx_queue = IGB_N0_QUEUE;
800 int tx_queue = IGB_N0_QUEUE;
4be000c8 801 u32 msixbm = 0;
047e0030 802
0ba82994
AD
803 if (q_vector->rx.ring)
804 rx_queue = q_vector->rx.ring->reg_idx;
805 if (q_vector->tx.ring)
806 tx_queue = q_vector->tx.ring->reg_idx;
2d064c06
AD
807
808 switch (hw->mac.type) {
809 case e1000_82575:
9d5c8243 810 /* The 82575 assigns vectors using a bitmask, which matches the
b980ac18
JK
811 * bitmask for the EICR/EIMS/EIMC registers. To assign one
812 * or more queues to a vector, we write the appropriate bits
813 * into the MSIXBM register for that vector.
814 */
047e0030 815 if (rx_queue > IGB_N0_QUEUE)
9d5c8243 816 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
047e0030 817 if (tx_queue > IGB_N0_QUEUE)
9d5c8243 818 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
cd14ef54 819 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
feeb2721 820 msixbm |= E1000_EIMS_OTHER;
9d5c8243 821 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
047e0030 822 q_vector->eims_value = msixbm;
2d064c06
AD
823 break;
824 case e1000_82576:
b980ac18 825 /* 82576 uses a table that essentially consists of 2 columns
4be000c8
AD
826 * with 8 rows. The ordering is column-major so we use the
827 * lower 3 bits as the row index, and the 4th bit as the
828 * column offset.
829 */
830 if (rx_queue > IGB_N0_QUEUE)
831 igb_write_ivar(hw, msix_vector,
832 rx_queue & 0x7,
833 (rx_queue & 0x8) << 1);
834 if (tx_queue > IGB_N0_QUEUE)
835 igb_write_ivar(hw, msix_vector,
836 tx_queue & 0x7,
837 ((tx_queue & 0x8) << 1) + 8);
047e0030 838 q_vector->eims_value = 1 << msix_vector;
2d064c06 839 break;
55cac248 840 case e1000_82580:
d2ba2ed8 841 case e1000_i350:
ceb5f13b 842 case e1000_i354:
f96a8a0b
CW
843 case e1000_i210:
844 case e1000_i211:
b980ac18 845 /* On 82580 and newer adapters the scheme is similar to 82576
4be000c8
AD
846 * however instead of ordering column-major we have things
847 * ordered row-major. So we traverse the table by using
848 * bit 0 as the column offset, and the remaining bits as the
849 * row index.
850 */
851 if (rx_queue > IGB_N0_QUEUE)
852 igb_write_ivar(hw, msix_vector,
853 rx_queue >> 1,
854 (rx_queue & 0x1) << 4);
855 if (tx_queue > IGB_N0_QUEUE)
856 igb_write_ivar(hw, msix_vector,
857 tx_queue >> 1,
858 ((tx_queue & 0x1) << 4) + 8);
55cac248
AD
859 q_vector->eims_value = 1 << msix_vector;
860 break;
2d064c06
AD
861 default:
862 BUG();
863 break;
864 }
26b39276
AD
865
866 /* add q_vector eims value to global eims_enable_mask */
867 adapter->eims_enable_mask |= q_vector->eims_value;
868
869 /* configure q_vector to set itr on first interrupt */
870 q_vector->set_itr = 1;
9d5c8243
AK
871}
872
873/**
b980ac18
JK
874 * igb_configure_msix - Configure MSI-X hardware
875 * @adapter: board private structure to initialize
9d5c8243 876 *
b980ac18
JK
877 * igb_configure_msix sets up the hardware to properly
878 * generate MSI-X interrupts.
9d5c8243
AK
879 **/
880static void igb_configure_msix(struct igb_adapter *adapter)
881{
882 u32 tmp;
883 int i, vector = 0;
884 struct e1000_hw *hw = &adapter->hw;
885
886 adapter->eims_enable_mask = 0;
9d5c8243
AK
887
888 /* set vector for other causes, i.e. link changes */
2d064c06
AD
889 switch (hw->mac.type) {
890 case e1000_82575:
9d5c8243
AK
891 tmp = rd32(E1000_CTRL_EXT);
892 /* enable MSI-X PBA support*/
893 tmp |= E1000_CTRL_EXT_PBA_CLR;
894
895 /* Auto-Mask interrupts upon ICR read. */
896 tmp |= E1000_CTRL_EXT_EIAME;
897 tmp |= E1000_CTRL_EXT_IRCA;
898
899 wr32(E1000_CTRL_EXT, tmp);
047e0030
AD
900
901 /* enable msix_other interrupt */
b980ac18 902 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
844290e5 903 adapter->eims_other = E1000_EIMS_OTHER;
9d5c8243 904
2d064c06
AD
905 break;
906
907 case e1000_82576:
55cac248 908 case e1000_82580:
d2ba2ed8 909 case e1000_i350:
ceb5f13b 910 case e1000_i354:
f96a8a0b
CW
911 case e1000_i210:
912 case e1000_i211:
047e0030 913 /* Turn on MSI-X capability first, or our settings
b980ac18
JK
914 * won't stick. And it will take days to debug.
915 */
047e0030 916 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
b980ac18
JK
917 E1000_GPIE_PBA | E1000_GPIE_EIAME |
918 E1000_GPIE_NSICR);
047e0030
AD
919
920 /* enable msix_other interrupt */
921 adapter->eims_other = 1 << vector;
2d064c06 922 tmp = (vector++ | E1000_IVAR_VALID) << 8;
2d064c06 923
047e0030 924 wr32(E1000_IVAR_MISC, tmp);
2d064c06
AD
925 break;
926 default:
927 /* do nothing, since nothing else supports MSI-X */
928 break;
929 } /* switch (hw->mac.type) */
047e0030
AD
930
931 adapter->eims_enable_mask |= adapter->eims_other;
932
26b39276
AD
933 for (i = 0; i < adapter->num_q_vectors; i++)
934 igb_assign_vector(adapter->q_vector[i], vector++);
047e0030 935
9d5c8243
AK
936 wrfl();
937}
938
939/**
b980ac18
JK
940 * igb_request_msix - Initialize MSI-X interrupts
941 * @adapter: board private structure to initialize
9d5c8243 942 *
b980ac18
JK
943 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
944 * kernel.
9d5c8243
AK
945 **/
946static int igb_request_msix(struct igb_adapter *adapter)
947{
948 struct net_device *netdev = adapter->netdev;
047e0030 949 struct e1000_hw *hw = &adapter->hw;
52285b76 950 int i, err = 0, vector = 0, free_vector = 0;
9d5c8243 951
047e0030 952 err = request_irq(adapter->msix_entries[vector].vector,
b980ac18 953 igb_msix_other, 0, netdev->name, adapter);
047e0030 954 if (err)
52285b76 955 goto err_out;
047e0030
AD
956
957 for (i = 0; i < adapter->num_q_vectors; i++) {
958 struct igb_q_vector *q_vector = adapter->q_vector[i];
959
52285b76
SA
960 vector++;
961
047e0030
AD
962 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
963
0ba82994 964 if (q_vector->rx.ring && q_vector->tx.ring)
047e0030 965 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
0ba82994
AD
966 q_vector->rx.ring->queue_index);
967 else if (q_vector->tx.ring)
047e0030 968 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
0ba82994
AD
969 q_vector->tx.ring->queue_index);
970 else if (q_vector->rx.ring)
047e0030 971 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
0ba82994 972 q_vector->rx.ring->queue_index);
9d5c8243 973 else
047e0030
AD
974 sprintf(q_vector->name, "%s-unused", netdev->name);
975
9d5c8243 976 err = request_irq(adapter->msix_entries[vector].vector,
b980ac18
JK
977 igb_msix_ring, 0, q_vector->name,
978 q_vector);
9d5c8243 979 if (err)
52285b76 980 goto err_free;
9d5c8243
AK
981 }
982
9d5c8243
AK
983 igb_configure_msix(adapter);
984 return 0;
52285b76
SA
985
986err_free:
987 /* free already assigned IRQs */
988 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
989
990 vector--;
991 for (i = 0; i < vector; i++) {
992 free_irq(adapter->msix_entries[free_vector++].vector,
993 adapter->q_vector[i]);
994 }
995err_out:
9d5c8243
AK
996 return err;
997}
998
5536d210 999/**
b980ac18
JK
1000 * igb_free_q_vector - Free memory allocated for specific interrupt vector
1001 * @adapter: board private structure to initialize
1002 * @v_idx: Index of vector to be freed
5536d210 1003 *
02ef6e1d 1004 * This function frees the memory allocated to the q_vector.
5536d210
AD
1005 **/
1006static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1007{
1008 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1009
02ef6e1d
CW
1010 adapter->q_vector[v_idx] = NULL;
1011
1012 /* igb_get_stats64() might access the rings on this vector,
1013 * we must wait a grace period before freeing it.
1014 */
17a402a0
CW
1015 if (q_vector)
1016 kfree_rcu(q_vector, rcu);
02ef6e1d
CW
1017}
1018
1019/**
1020 * igb_reset_q_vector - Reset config for interrupt vector
1021 * @adapter: board private structure to initialize
1022 * @v_idx: Index of vector to be reset
1023 *
1024 * If NAPI is enabled it will delete any references to the
1025 * NAPI struct. This is preparation for igb_free_q_vector.
1026 **/
1027static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1028{
1029 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1030
cb06d102
CP
1031 /* Coming from igb_set_interrupt_capability, the vectors are not yet
1032 * allocated. So, q_vector is NULL so we should stop here.
1033 */
1034 if (!q_vector)
1035 return;
1036
5536d210
AD
1037 if (q_vector->tx.ring)
1038 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1039
1040 if (q_vector->rx.ring)
1041 adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1042
5536d210
AD
1043 netif_napi_del(&q_vector->napi);
1044
02ef6e1d
CW
1045}
1046
1047static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1048{
1049 int v_idx = adapter->num_q_vectors;
1050
cd14ef54 1051 if (adapter->flags & IGB_FLAG_HAS_MSIX)
02ef6e1d 1052 pci_disable_msix(adapter->pdev);
cd14ef54 1053 else if (adapter->flags & IGB_FLAG_HAS_MSI)
02ef6e1d 1054 pci_disable_msi(adapter->pdev);
02ef6e1d
CW
1055
1056 while (v_idx--)
1057 igb_reset_q_vector(adapter, v_idx);
5536d210
AD
1058}
1059
047e0030 1060/**
b980ac18
JK
1061 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1062 * @adapter: board private structure to initialize
047e0030 1063 *
b980ac18
JK
1064 * This function frees the memory allocated to the q_vectors. In addition if
1065 * NAPI is enabled it will delete any references to the NAPI struct prior
1066 * to freeing the q_vector.
047e0030
AD
1067 **/
1068static void igb_free_q_vectors(struct igb_adapter *adapter)
1069{
5536d210
AD
1070 int v_idx = adapter->num_q_vectors;
1071
1072 adapter->num_tx_queues = 0;
1073 adapter->num_rx_queues = 0;
047e0030 1074 adapter->num_q_vectors = 0;
5536d210 1075
02ef6e1d
CW
1076 while (v_idx--) {
1077 igb_reset_q_vector(adapter, v_idx);
5536d210 1078 igb_free_q_vector(adapter, v_idx);
02ef6e1d 1079 }
047e0030
AD
1080}
1081
1082/**
b980ac18
JK
1083 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1084 * @adapter: board private structure to initialize
047e0030 1085 *
b980ac18
JK
1086 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1087 * MSI-X interrupts allocated.
047e0030
AD
1088 */
1089static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1090{
047e0030
AD
1091 igb_free_q_vectors(adapter);
1092 igb_reset_interrupt_capability(adapter);
1093}
9d5c8243
AK
1094
1095/**
b980ac18
JK
1096 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1097 * @adapter: board private structure to initialize
1098 * @msix: boolean value of MSIX capability
9d5c8243 1099 *
b980ac18
JK
1100 * Attempt to configure interrupts using the best available
1101 * capabilities of the hardware and kernel.
9d5c8243 1102 **/
53c7d064 1103static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
9d5c8243
AK
1104{
1105 int err;
1106 int numvecs, i;
1107
53c7d064
SA
1108 if (!msix)
1109 goto msi_only;
cd14ef54 1110 adapter->flags |= IGB_FLAG_HAS_MSIX;
53c7d064 1111
83b7180d 1112 /* Number of supported queues. */
a99955fc 1113 adapter->num_rx_queues = adapter->rss_queues;
5fa8517f
GR
1114 if (adapter->vfs_allocated_count)
1115 adapter->num_tx_queues = 1;
1116 else
1117 adapter->num_tx_queues = adapter->rss_queues;
83b7180d 1118
b980ac18 1119 /* start with one vector for every Rx queue */
047e0030
AD
1120 numvecs = adapter->num_rx_queues;
1121
b980ac18 1122 /* if Tx handler is separate add 1 for every Tx queue */
a99955fc
AD
1123 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1124 numvecs += adapter->num_tx_queues;
047e0030
AD
1125
1126 /* store the number of vectors reserved for queues */
1127 adapter->num_q_vectors = numvecs;
1128
1129 /* add 1 vector for link status interrupts */
1130 numvecs++;
9d5c8243
AK
1131 for (i = 0; i < numvecs; i++)
1132 adapter->msix_entries[i].entry = i;
1133
479d02df
AG
1134 err = pci_enable_msix_range(adapter->pdev,
1135 adapter->msix_entries,
1136 numvecs,
1137 numvecs);
1138 if (err > 0)
0c2cc02e 1139 return;
9d5c8243
AK
1140
1141 igb_reset_interrupt_capability(adapter);
1142
1143 /* If we can't do MSI-X, try MSI */
1144msi_only:
b709323d 1145 adapter->flags &= ~IGB_FLAG_HAS_MSIX;
2a3abf6d
AD
1146#ifdef CONFIG_PCI_IOV
1147 /* disable SR-IOV for non MSI-X configurations */
1148 if (adapter->vf_data) {
1149 struct e1000_hw *hw = &adapter->hw;
1150 /* disable iov and allow time for transactions to clear */
1151 pci_disable_sriov(adapter->pdev);
1152 msleep(500);
1153
1154 kfree(adapter->vf_data);
1155 adapter->vf_data = NULL;
1156 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
945a5151 1157 wrfl();
2a3abf6d
AD
1158 msleep(100);
1159 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1160 }
1161#endif
4fc82adf 1162 adapter->vfs_allocated_count = 0;
a99955fc 1163 adapter->rss_queues = 1;
4fc82adf 1164 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
9d5c8243 1165 adapter->num_rx_queues = 1;
661086df 1166 adapter->num_tx_queues = 1;
047e0030 1167 adapter->num_q_vectors = 1;
9d5c8243 1168 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 1169 adapter->flags |= IGB_FLAG_HAS_MSI;
9d5c8243
AK
1170}
1171
5536d210
AD
1172static void igb_add_ring(struct igb_ring *ring,
1173 struct igb_ring_container *head)
1174{
1175 head->ring = ring;
1176 head->count++;
1177}
1178
047e0030 1179/**
b980ac18
JK
1180 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1181 * @adapter: board private structure to initialize
1182 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1183 * @v_idx: index of vector in adapter struct
1184 * @txr_count: total number of Tx rings to allocate
1185 * @txr_idx: index of first Tx ring to allocate
1186 * @rxr_count: total number of Rx rings to allocate
1187 * @rxr_idx: index of first Rx ring to allocate
047e0030 1188 *
b980ac18 1189 * We allocate one q_vector. If allocation fails we return -ENOMEM.
047e0030 1190 **/
5536d210
AD
1191static int igb_alloc_q_vector(struct igb_adapter *adapter,
1192 int v_count, int v_idx,
1193 int txr_count, int txr_idx,
1194 int rxr_count, int rxr_idx)
047e0030
AD
1195{
1196 struct igb_q_vector *q_vector;
5536d210
AD
1197 struct igb_ring *ring;
1198 int ring_count, size;
047e0030 1199
5536d210
AD
1200 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1201 if (txr_count > 1 || rxr_count > 1)
1202 return -ENOMEM;
1203
1204 ring_count = txr_count + rxr_count;
1205 size = sizeof(struct igb_q_vector) +
1206 (sizeof(struct igb_ring) * ring_count);
1207
1208 /* allocate q_vector and rings */
02ef6e1d
CW
1209 q_vector = adapter->q_vector[v_idx];
1210 if (!q_vector)
1211 q_vector = kzalloc(size, GFP_KERNEL);
5536d210
AD
1212 if (!q_vector)
1213 return -ENOMEM;
1214
1215 /* initialize NAPI */
1216 netif_napi_add(adapter->netdev, &q_vector->napi,
1217 igb_poll, 64);
1218
1219 /* tie q_vector and adapter together */
1220 adapter->q_vector[v_idx] = q_vector;
1221 q_vector->adapter = adapter;
1222
1223 /* initialize work limits */
1224 q_vector->tx.work_limit = adapter->tx_work_limit;
1225
1226 /* initialize ITR configuration */
1227 q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1228 q_vector->itr_val = IGB_START_ITR;
1229
1230 /* initialize pointer to rings */
1231 ring = q_vector->ring;
1232
4e227667
AD
1233 /* intialize ITR */
1234 if (rxr_count) {
1235 /* rx or rx/tx vector */
1236 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1237 q_vector->itr_val = adapter->rx_itr_setting;
1238 } else {
1239 /* tx only vector */
1240 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1241 q_vector->itr_val = adapter->tx_itr_setting;
1242 }
1243
5536d210
AD
1244 if (txr_count) {
1245 /* assign generic ring traits */
1246 ring->dev = &adapter->pdev->dev;
1247 ring->netdev = adapter->netdev;
1248
1249 /* configure backlink on ring */
1250 ring->q_vector = q_vector;
1251
1252 /* update q_vector Tx values */
1253 igb_add_ring(ring, &q_vector->tx);
1254
1255 /* For 82575, context index must be unique per ring. */
1256 if (adapter->hw.mac.type == e1000_82575)
1257 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1258
1259 /* apply Tx specific ring traits */
1260 ring->count = adapter->tx_ring_count;
1261 ring->queue_index = txr_idx;
1262
827da44c
JS
1263 u64_stats_init(&ring->tx_syncp);
1264 u64_stats_init(&ring->tx_syncp2);
1265
5536d210
AD
1266 /* assign ring to adapter */
1267 adapter->tx_ring[txr_idx] = ring;
1268
1269 /* push pointer to next ring */
1270 ring++;
047e0030 1271 }
81c2fc22 1272
5536d210
AD
1273 if (rxr_count) {
1274 /* assign generic ring traits */
1275 ring->dev = &adapter->pdev->dev;
1276 ring->netdev = adapter->netdev;
047e0030 1277
5536d210
AD
1278 /* configure backlink on ring */
1279 ring->q_vector = q_vector;
047e0030 1280
5536d210
AD
1281 /* update q_vector Rx values */
1282 igb_add_ring(ring, &q_vector->rx);
047e0030 1283
5536d210
AD
1284 /* set flag indicating ring supports SCTP checksum offload */
1285 if (adapter->hw.mac.type >= e1000_82576)
1286 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
047e0030 1287
e52c0f96 1288 /* On i350, i354, i210, and i211, loopback VLAN packets
5536d210 1289 * have the tag byte-swapped.
b980ac18 1290 */
5536d210
AD
1291 if (adapter->hw.mac.type >= e1000_i350)
1292 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
047e0030 1293
5536d210
AD
1294 /* apply Rx specific ring traits */
1295 ring->count = adapter->rx_ring_count;
1296 ring->queue_index = rxr_idx;
1297
827da44c
JS
1298 u64_stats_init(&ring->rx_syncp);
1299
5536d210
AD
1300 /* assign ring to adapter */
1301 adapter->rx_ring[rxr_idx] = ring;
1302 }
1303
1304 return 0;
047e0030
AD
1305}
1306
5536d210 1307
047e0030 1308/**
b980ac18
JK
1309 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1310 * @adapter: board private structure to initialize
047e0030 1311 *
b980ac18
JK
1312 * We allocate one q_vector per queue interrupt. If allocation fails we
1313 * return -ENOMEM.
047e0030 1314 **/
5536d210 1315static int igb_alloc_q_vectors(struct igb_adapter *adapter)
047e0030 1316{
5536d210
AD
1317 int q_vectors = adapter->num_q_vectors;
1318 int rxr_remaining = adapter->num_rx_queues;
1319 int txr_remaining = adapter->num_tx_queues;
1320 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1321 int err;
047e0030 1322
5536d210
AD
1323 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1324 for (; rxr_remaining; v_idx++) {
1325 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1326 0, 0, 1, rxr_idx);
047e0030 1327
5536d210
AD
1328 if (err)
1329 goto err_out;
1330
1331 /* update counts and index */
1332 rxr_remaining--;
1333 rxr_idx++;
047e0030 1334 }
047e0030 1335 }
5536d210
AD
1336
1337 for (; v_idx < q_vectors; v_idx++) {
1338 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1339 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
9005df38 1340
5536d210
AD
1341 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1342 tqpv, txr_idx, rqpv, rxr_idx);
1343
1344 if (err)
1345 goto err_out;
1346
1347 /* update counts and index */
1348 rxr_remaining -= rqpv;
1349 txr_remaining -= tqpv;
1350 rxr_idx++;
1351 txr_idx++;
1352 }
1353
047e0030 1354 return 0;
5536d210
AD
1355
1356err_out:
1357 adapter->num_tx_queues = 0;
1358 adapter->num_rx_queues = 0;
1359 adapter->num_q_vectors = 0;
1360
1361 while (v_idx--)
1362 igb_free_q_vector(adapter, v_idx);
1363
1364 return -ENOMEM;
047e0030
AD
1365}
1366
1367/**
b980ac18
JK
1368 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1369 * @adapter: board private structure to initialize
1370 * @msix: boolean value of MSIX capability
047e0030 1371 *
b980ac18 1372 * This function initializes the interrupts and allocates all of the queues.
047e0030 1373 **/
53c7d064 1374static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
047e0030
AD
1375{
1376 struct pci_dev *pdev = adapter->pdev;
1377 int err;
1378
53c7d064 1379 igb_set_interrupt_capability(adapter, msix);
047e0030
AD
1380
1381 err = igb_alloc_q_vectors(adapter);
1382 if (err) {
1383 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1384 goto err_alloc_q_vectors;
1385 }
1386
5536d210 1387 igb_cache_ring_register(adapter);
047e0030
AD
1388
1389 return 0;
5536d210 1390
047e0030
AD
1391err_alloc_q_vectors:
1392 igb_reset_interrupt_capability(adapter);
1393 return err;
1394}
1395
9d5c8243 1396/**
b980ac18
JK
1397 * igb_request_irq - initialize interrupts
1398 * @adapter: board private structure to initialize
9d5c8243 1399 *
b980ac18
JK
1400 * Attempts to configure interrupts using the best available
1401 * capabilities of the hardware and kernel.
9d5c8243
AK
1402 **/
1403static int igb_request_irq(struct igb_adapter *adapter)
1404{
1405 struct net_device *netdev = adapter->netdev;
047e0030 1406 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
1407 int err = 0;
1408
cd14ef54 1409 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
9d5c8243 1410 err = igb_request_msix(adapter);
844290e5 1411 if (!err)
9d5c8243 1412 goto request_done;
9d5c8243 1413 /* fall back to MSI */
5536d210
AD
1414 igb_free_all_tx_resources(adapter);
1415 igb_free_all_rx_resources(adapter);
53c7d064 1416
047e0030 1417 igb_clear_interrupt_scheme(adapter);
53c7d064
SA
1418 err = igb_init_interrupt_scheme(adapter, false);
1419 if (err)
047e0030 1420 goto request_done;
53c7d064 1421
047e0030
AD
1422 igb_setup_all_tx_resources(adapter);
1423 igb_setup_all_rx_resources(adapter);
53c7d064 1424 igb_configure(adapter);
9d5c8243 1425 }
844290e5 1426
c74d588e
AD
1427 igb_assign_vector(adapter->q_vector[0], 0);
1428
7dfc16fa 1429 if (adapter->flags & IGB_FLAG_HAS_MSI) {
c74d588e 1430 err = request_irq(pdev->irq, igb_intr_msi, 0,
047e0030 1431 netdev->name, adapter);
9d5c8243
AK
1432 if (!err)
1433 goto request_done;
047e0030 1434
9d5c8243
AK
1435 /* fall back to legacy interrupts */
1436 igb_reset_interrupt_capability(adapter);
7dfc16fa 1437 adapter->flags &= ~IGB_FLAG_HAS_MSI;
9d5c8243
AK
1438 }
1439
c74d588e 1440 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
047e0030 1441 netdev->name, adapter);
9d5c8243 1442
6cb5e577 1443 if (err)
c74d588e 1444 dev_err(&pdev->dev, "Error %d getting interrupt\n",
9d5c8243 1445 err);
9d5c8243
AK
1446
1447request_done:
1448 return err;
1449}
1450
1451static void igb_free_irq(struct igb_adapter *adapter)
1452{
cd14ef54 1453 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
9d5c8243
AK
1454 int vector = 0, i;
1455
047e0030 1456 free_irq(adapter->msix_entries[vector++].vector, adapter);
9d5c8243 1457
0d1ae7f4 1458 for (i = 0; i < adapter->num_q_vectors; i++)
047e0030 1459 free_irq(adapter->msix_entries[vector++].vector,
0d1ae7f4 1460 adapter->q_vector[i]);
047e0030
AD
1461 } else {
1462 free_irq(adapter->pdev->irq, adapter);
9d5c8243 1463 }
9d5c8243
AK
1464}
1465
1466/**
b980ac18
JK
1467 * igb_irq_disable - Mask off interrupt generation on the NIC
1468 * @adapter: board private structure
9d5c8243
AK
1469 **/
1470static void igb_irq_disable(struct igb_adapter *adapter)
1471{
1472 struct e1000_hw *hw = &adapter->hw;
1473
b980ac18 1474 /* we need to be careful when disabling interrupts. The VFs are also
25568a53
AD
1475 * mapped into these registers and so clearing the bits can cause
1476 * issues on the VF drivers so we only need to clear what we set
1477 */
cd14ef54 1478 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
2dfd1212 1479 u32 regval = rd32(E1000_EIAM);
9005df38 1480
2dfd1212
AD
1481 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1482 wr32(E1000_EIMC, adapter->eims_enable_mask);
1483 regval = rd32(E1000_EIAC);
1484 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
9d5c8243 1485 }
844290e5
PW
1486
1487 wr32(E1000_IAM, 0);
9d5c8243
AK
1488 wr32(E1000_IMC, ~0);
1489 wrfl();
cd14ef54 1490 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
81a61859 1491 int i;
9005df38 1492
81a61859
ET
1493 for (i = 0; i < adapter->num_q_vectors; i++)
1494 synchronize_irq(adapter->msix_entries[i].vector);
1495 } else {
1496 synchronize_irq(adapter->pdev->irq);
1497 }
9d5c8243
AK
1498}
1499
1500/**
b980ac18
JK
1501 * igb_irq_enable - Enable default interrupt generation settings
1502 * @adapter: board private structure
9d5c8243
AK
1503 **/
1504static void igb_irq_enable(struct igb_adapter *adapter)
1505{
1506 struct e1000_hw *hw = &adapter->hw;
1507
cd14ef54 1508 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
06218a8d 1509 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
2dfd1212 1510 u32 regval = rd32(E1000_EIAC);
9005df38 1511
2dfd1212
AD
1512 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1513 regval = rd32(E1000_EIAM);
1514 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
844290e5 1515 wr32(E1000_EIMS, adapter->eims_enable_mask);
25568a53 1516 if (adapter->vfs_allocated_count) {
4ae196df 1517 wr32(E1000_MBVFIMR, 0xFF);
25568a53
AD
1518 ims |= E1000_IMS_VMMB;
1519 }
1520 wr32(E1000_IMS, ims);
844290e5 1521 } else {
55cac248
AD
1522 wr32(E1000_IMS, IMS_ENABLE_MASK |
1523 E1000_IMS_DRSTA);
1524 wr32(E1000_IAM, IMS_ENABLE_MASK |
1525 E1000_IMS_DRSTA);
844290e5 1526 }
9d5c8243
AK
1527}
1528
1529static void igb_update_mng_vlan(struct igb_adapter *adapter)
1530{
51466239 1531 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1532 u16 vid = adapter->hw.mng_cookie.vlan_id;
1533 u16 old_vid = adapter->mng_vlan_id;
51466239
AD
1534
1535 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1536 /* add VID to filter table */
1537 igb_vfta_set(hw, vid, true);
1538 adapter->mng_vlan_id = vid;
1539 } else {
1540 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1541 }
1542
1543 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1544 (vid != old_vid) &&
b2cb09b1 1545 !test_bit(old_vid, adapter->active_vlans)) {
51466239
AD
1546 /* remove VID from filter table */
1547 igb_vfta_set(hw, old_vid, false);
9d5c8243
AK
1548 }
1549}
1550
1551/**
b980ac18
JK
1552 * igb_release_hw_control - release control of the h/w to f/w
1553 * @adapter: address of board private structure
9d5c8243 1554 *
b980ac18
JK
1555 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1556 * For ASF and Pass Through versions of f/w this means that the
1557 * driver is no longer loaded.
9d5c8243
AK
1558 **/
1559static void igb_release_hw_control(struct igb_adapter *adapter)
1560{
1561 struct e1000_hw *hw = &adapter->hw;
1562 u32 ctrl_ext;
1563
1564 /* Let firmware take over control of h/w */
1565 ctrl_ext = rd32(E1000_CTRL_EXT);
1566 wr32(E1000_CTRL_EXT,
1567 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1568}
1569
9d5c8243 1570/**
b980ac18
JK
1571 * igb_get_hw_control - get control of the h/w from f/w
1572 * @adapter: address of board private structure
9d5c8243 1573 *
b980ac18
JK
1574 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1575 * For ASF and Pass Through versions of f/w this means that
1576 * the driver is loaded.
9d5c8243
AK
1577 **/
1578static void igb_get_hw_control(struct igb_adapter *adapter)
1579{
1580 struct e1000_hw *hw = &adapter->hw;
1581 u32 ctrl_ext;
1582
1583 /* Let firmware know the driver has taken over */
1584 ctrl_ext = rd32(E1000_CTRL_EXT);
1585 wr32(E1000_CTRL_EXT,
1586 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1587}
1588
9d5c8243 1589/**
b980ac18
JK
1590 * igb_configure - configure the hardware for RX and TX
1591 * @adapter: private board structure
9d5c8243
AK
1592 **/
1593static void igb_configure(struct igb_adapter *adapter)
1594{
1595 struct net_device *netdev = adapter->netdev;
1596 int i;
1597
1598 igb_get_hw_control(adapter);
ff41f8dc 1599 igb_set_rx_mode(netdev);
9d5c8243
AK
1600
1601 igb_restore_vlan(adapter);
9d5c8243 1602
85b430b4 1603 igb_setup_tctl(adapter);
06cf2666 1604 igb_setup_mrqc(adapter);
9d5c8243 1605 igb_setup_rctl(adapter);
85b430b4
AD
1606
1607 igb_configure_tx(adapter);
9d5c8243 1608 igb_configure_rx(adapter);
662d7205
AD
1609
1610 igb_rx_fifo_flush_82575(&adapter->hw);
1611
c493ea45 1612 /* call igb_desc_unused which always leaves
9d5c8243 1613 * at least 1 descriptor unused to make sure
b980ac18
JK
1614 * next_to_use != next_to_clean
1615 */
9d5c8243 1616 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 1617 struct igb_ring *ring = adapter->rx_ring[i];
cd392f5c 1618 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
9d5c8243 1619 }
9d5c8243
AK
1620}
1621
88a268c1 1622/**
b980ac18
JK
1623 * igb_power_up_link - Power up the phy/serdes link
1624 * @adapter: address of board private structure
88a268c1
NN
1625 **/
1626void igb_power_up_link(struct igb_adapter *adapter)
1627{
76886596
AA
1628 igb_reset_phy(&adapter->hw);
1629
88a268c1
NN
1630 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1631 igb_power_up_phy_copper(&adapter->hw);
1632 else
1633 igb_power_up_serdes_link_82575(&adapter->hw);
aec653c4
TF
1634
1635 igb_setup_link(&adapter->hw);
88a268c1
NN
1636}
1637
1638/**
b980ac18
JK
1639 * igb_power_down_link - Power down the phy/serdes link
1640 * @adapter: address of board private structure
88a268c1
NN
1641 */
1642static void igb_power_down_link(struct igb_adapter *adapter)
1643{
1644 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1645 igb_power_down_phy_copper_82575(&adapter->hw);
1646 else
1647 igb_shutdown_serdes_link_82575(&adapter->hw);
1648}
9d5c8243 1649
56cec249
CW
1650/**
1651 * Detect and switch function for Media Auto Sense
1652 * @adapter: address of the board private structure
1653 **/
1654static void igb_check_swap_media(struct igb_adapter *adapter)
1655{
1656 struct e1000_hw *hw = &adapter->hw;
1657 u32 ctrl_ext, connsw;
1658 bool swap_now = false;
1659
1660 ctrl_ext = rd32(E1000_CTRL_EXT);
1661 connsw = rd32(E1000_CONNSW);
1662
1663 /* need to live swap if current media is copper and we have fiber/serdes
1664 * to go to.
1665 */
1666
1667 if ((hw->phy.media_type == e1000_media_type_copper) &&
1668 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1669 swap_now = true;
1670 } else if (!(connsw & E1000_CONNSW_SERDESD)) {
1671 /* copper signal takes time to appear */
1672 if (adapter->copper_tries < 4) {
1673 adapter->copper_tries++;
1674 connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1675 wr32(E1000_CONNSW, connsw);
1676 return;
1677 } else {
1678 adapter->copper_tries = 0;
1679 if ((connsw & E1000_CONNSW_PHYSD) &&
1680 (!(connsw & E1000_CONNSW_PHY_PDN))) {
1681 swap_now = true;
1682 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1683 wr32(E1000_CONNSW, connsw);
1684 }
1685 }
1686 }
1687
1688 if (!swap_now)
1689 return;
1690
1691 switch (hw->phy.media_type) {
1692 case e1000_media_type_copper:
1693 netdev_info(adapter->netdev,
1694 "MAS: changing media to fiber/serdes\n");
1695 ctrl_ext |=
1696 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1697 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1698 adapter->copper_tries = 0;
1699 break;
1700 case e1000_media_type_internal_serdes:
1701 case e1000_media_type_fiber:
1702 netdev_info(adapter->netdev,
1703 "MAS: changing media to copper\n");
1704 ctrl_ext &=
1705 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1706 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1707 break;
1708 default:
1709 /* shouldn't get here during regular operation */
1710 netdev_err(adapter->netdev,
1711 "AMS: Invalid media type found, returning\n");
1712 break;
1713 }
1714 wr32(E1000_CTRL_EXT, ctrl_ext);
1715}
1716
9d5c8243 1717/**
b980ac18
JK
1718 * igb_up - Open the interface and prepare it to handle traffic
1719 * @adapter: board private structure
9d5c8243 1720 **/
9d5c8243
AK
1721int igb_up(struct igb_adapter *adapter)
1722{
1723 struct e1000_hw *hw = &adapter->hw;
1724 int i;
1725
1726 /* hardware has been reset, we need to reload some things */
1727 igb_configure(adapter);
1728
1729 clear_bit(__IGB_DOWN, &adapter->state);
1730
0d1ae7f4
AD
1731 for (i = 0; i < adapter->num_q_vectors; i++)
1732 napi_enable(&(adapter->q_vector[i]->napi));
1733
cd14ef54 1734 if (adapter->flags & IGB_FLAG_HAS_MSIX)
9d5c8243 1735 igb_configure_msix(adapter);
feeb2721
AD
1736 else
1737 igb_assign_vector(adapter->q_vector[0], 0);
9d5c8243
AK
1738
1739 /* Clear any pending interrupts. */
1740 rd32(E1000_ICR);
1741 igb_irq_enable(adapter);
1742
d4960307
AD
1743 /* notify VFs that reset has been completed */
1744 if (adapter->vfs_allocated_count) {
1745 u32 reg_data = rd32(E1000_CTRL_EXT);
9005df38 1746
d4960307
AD
1747 reg_data |= E1000_CTRL_EXT_PFRSTD;
1748 wr32(E1000_CTRL_EXT, reg_data);
1749 }
1750
4cb9be7a
JB
1751 netif_tx_start_all_queues(adapter->netdev);
1752
25568a53
AD
1753 /* start the watchdog. */
1754 hw->mac.get_link_status = 1;
1755 schedule_work(&adapter->watchdog_task);
1756
f4c01e96
CW
1757 if ((adapter->flags & IGB_FLAG_EEE) &&
1758 (!hw->dev_spec._82575.eee_disable))
1759 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1760
9d5c8243
AK
1761 return 0;
1762}
1763
1764void igb_down(struct igb_adapter *adapter)
1765{
9d5c8243 1766 struct net_device *netdev = adapter->netdev;
330a6d6a 1767 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1768 u32 tctl, rctl;
1769 int i;
1770
1771 /* signal that we're down so the interrupt handler does not
b980ac18
JK
1772 * reschedule our watchdog timer
1773 */
9d5c8243
AK
1774 set_bit(__IGB_DOWN, &adapter->state);
1775
1776 /* disable receives in the hardware */
1777 rctl = rd32(E1000_RCTL);
1778 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1779 /* flush and sleep below */
1780
fd2ea0a7 1781 netif_tx_stop_all_queues(netdev);
9d5c8243
AK
1782
1783 /* disable transmits in the hardware */
1784 tctl = rd32(E1000_TCTL);
1785 tctl &= ~E1000_TCTL_EN;
1786 wr32(E1000_TCTL, tctl);
1787 /* flush both disables and wait for them to finish */
1788 wrfl();
0d451e79 1789 usleep_range(10000, 11000);
9d5c8243 1790
41f149a2
CW
1791 igb_irq_disable(adapter);
1792
aa9b8cc4
AA
1793 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1794
41f149a2 1795 for (i = 0; i < adapter->num_q_vectors; i++) {
17a402a0
CW
1796 if (adapter->q_vector[i]) {
1797 napi_synchronize(&adapter->q_vector[i]->napi);
1798 napi_disable(&adapter->q_vector[i]->napi);
1799 }
41f149a2 1800 }
9d5c8243 1801
9d5c8243
AK
1802
1803 del_timer_sync(&adapter->watchdog_timer);
1804 del_timer_sync(&adapter->phy_info_timer);
1805
9d5c8243 1806 netif_carrier_off(netdev);
04fe6358
AD
1807
1808 /* record the stats before reset*/
12dcd86b
ED
1809 spin_lock(&adapter->stats64_lock);
1810 igb_update_stats(adapter, &adapter->stats64);
1811 spin_unlock(&adapter->stats64_lock);
04fe6358 1812
9d5c8243
AK
1813 adapter->link_speed = 0;
1814 adapter->link_duplex = 0;
1815
3023682e
JK
1816 if (!pci_channel_offline(adapter->pdev))
1817 igb_reset(adapter);
9d5c8243
AK
1818 igb_clean_all_tx_rings(adapter);
1819 igb_clean_all_rx_rings(adapter);
7e0e99ef
AD
1820#ifdef CONFIG_IGB_DCA
1821
1822 /* since we reset the hardware DCA settings were cleared */
1823 igb_setup_dca(adapter);
1824#endif
9d5c8243
AK
1825}
1826
1827void igb_reinit_locked(struct igb_adapter *adapter)
1828{
1829 WARN_ON(in_interrupt());
1830 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
0d451e79 1831 usleep_range(1000, 2000);
9d5c8243
AK
1832 igb_down(adapter);
1833 igb_up(adapter);
1834 clear_bit(__IGB_RESETTING, &adapter->state);
1835}
1836
56cec249
CW
1837/** igb_enable_mas - Media Autosense re-enable after swap
1838 *
1839 * @adapter: adapter struct
1840 **/
1841static s32 igb_enable_mas(struct igb_adapter *adapter)
1842{
1843 struct e1000_hw *hw = &adapter->hw;
1844 u32 connsw;
1845 s32 ret_val = 0;
1846
1847 connsw = rd32(E1000_CONNSW);
1848 if (!(hw->phy.media_type == e1000_media_type_copper))
1849 return ret_val;
1850
1851 /* configure for SerDes media detect */
1852 if (!(connsw & E1000_CONNSW_SERDESD)) {
1853 connsw |= E1000_CONNSW_ENRGSRC;
1854 connsw |= E1000_CONNSW_AUTOSENSE_EN;
1855 wr32(E1000_CONNSW, connsw);
1856 wrfl();
1857 } else if (connsw & E1000_CONNSW_SERDESD) {
1858 /* already SerDes, no need to enable anything */
1859 return ret_val;
1860 } else {
1861 netdev_info(adapter->netdev,
1862 "MAS: Unable to configure feature, disabling..\n");
1863 adapter->flags &= ~IGB_FLAG_MAS_ENABLE;
1864 }
1865 return ret_val;
1866}
1867
9d5c8243
AK
1868void igb_reset(struct igb_adapter *adapter)
1869{
090b1795 1870 struct pci_dev *pdev = adapter->pdev;
9d5c8243 1871 struct e1000_hw *hw = &adapter->hw;
2d064c06
AD
1872 struct e1000_mac_info *mac = &hw->mac;
1873 struct e1000_fc_info *fc = &hw->fc;
d48507fe 1874 u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
9d5c8243
AK
1875
1876 /* Repartition Pba for greater than 9k mtu
1877 * To take effect CTRL.RST is required.
1878 */
fa4dfae0 1879 switch (mac->type) {
d2ba2ed8 1880 case e1000_i350:
ceb5f13b 1881 case e1000_i354:
55cac248
AD
1882 case e1000_82580:
1883 pba = rd32(E1000_RXPBS);
1884 pba = igb_rxpbs_adjust_82580(pba);
1885 break;
fa4dfae0 1886 case e1000_82576:
d249be54
AD
1887 pba = rd32(E1000_RXPBS);
1888 pba &= E1000_RXPBS_SIZE_MASK_82576;
fa4dfae0
AD
1889 break;
1890 case e1000_82575:
f96a8a0b
CW
1891 case e1000_i210:
1892 case e1000_i211:
fa4dfae0
AD
1893 default:
1894 pba = E1000_PBA_34K;
1895 break;
2d064c06 1896 }
9d5c8243 1897
2d064c06
AD
1898 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1899 (mac->type < e1000_82576)) {
9d5c8243
AK
1900 /* adjust PBA for jumbo frames */
1901 wr32(E1000_PBA, pba);
1902
1903 /* To maintain wire speed transmits, the Tx FIFO should be
1904 * large enough to accommodate two full transmit packets,
1905 * rounded up to the next 1KB and expressed in KB. Likewise,
1906 * the Rx FIFO should be large enough to accommodate at least
1907 * one full receive packet and is similarly rounded up and
b980ac18
JK
1908 * expressed in KB.
1909 */
9d5c8243
AK
1910 pba = rd32(E1000_PBA);
1911 /* upper 16 bits has Tx packet buffer allocation size in KB */
1912 tx_space = pba >> 16;
1913 /* lower 16 bits has Rx packet buffer allocation size in KB */
1914 pba &= 0xffff;
b980ac18
JK
1915 /* the Tx fifo also stores 16 bytes of information about the Tx
1916 * but don't include ethernet FCS because hardware appends it
1917 */
9d5c8243 1918 min_tx_space = (adapter->max_frame_size +
85e8d004 1919 sizeof(union e1000_adv_tx_desc) -
9d5c8243
AK
1920 ETH_FCS_LEN) * 2;
1921 min_tx_space = ALIGN(min_tx_space, 1024);
1922 min_tx_space >>= 10;
1923 /* software strips receive CRC, so leave room for it */
1924 min_rx_space = adapter->max_frame_size;
1925 min_rx_space = ALIGN(min_rx_space, 1024);
1926 min_rx_space >>= 10;
1927
1928 /* If current Tx allocation is less than the min Tx FIFO size,
1929 * and the min Tx FIFO size is less than the current Rx FIFO
b980ac18
JK
1930 * allocation, take space away from current Rx allocation
1931 */
9d5c8243
AK
1932 if (tx_space < min_tx_space &&
1933 ((min_tx_space - tx_space) < pba)) {
1934 pba = pba - (min_tx_space - tx_space);
1935
b980ac18
JK
1936 /* if short on Rx space, Rx wins and must trump Tx
1937 * adjustment
1938 */
9d5c8243
AK
1939 if (pba < min_rx_space)
1940 pba = min_rx_space;
1941 }
2d064c06 1942 wr32(E1000_PBA, pba);
9d5c8243 1943 }
9d5c8243
AK
1944
1945 /* flow control settings */
1946 /* The high water mark must be low enough to fit one full frame
1947 * (or the size used for early receive) above it in the Rx FIFO.
1948 * Set it to the lower of:
1949 * - 90% of the Rx FIFO size, or
b980ac18
JK
1950 * - the full Rx FIFO size minus one full frame
1951 */
9d5c8243 1952 hwm = min(((pba << 10) * 9 / 10),
2d064c06 1953 ((pba << 10) - 2 * adapter->max_frame_size));
9d5c8243 1954
d48507fe 1955 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
d405ea3e 1956 fc->low_water = fc->high_water - 16;
9d5c8243
AK
1957 fc->pause_time = 0xFFFF;
1958 fc->send_xon = 1;
0cce119a 1959 fc->current_mode = fc->requested_mode;
9d5c8243 1960
4ae196df
AD
1961 /* disable receive for all VFs and wait one second */
1962 if (adapter->vfs_allocated_count) {
1963 int i;
9005df38 1964
4ae196df 1965 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
8fa7e0f7 1966 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
4ae196df
AD
1967
1968 /* ping all the active vfs to let them know we are going down */
f2ca0dbe 1969 igb_ping_all_vfs(adapter);
4ae196df
AD
1970
1971 /* disable transmits and receives */
1972 wr32(E1000_VFRE, 0);
1973 wr32(E1000_VFTE, 0);
1974 }
1975
9d5c8243 1976 /* Allow time for pending master requests to run */
330a6d6a 1977 hw->mac.ops.reset_hw(hw);
9d5c8243
AK
1978 wr32(E1000_WUC, 0);
1979
56cec249
CW
1980 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1981 /* need to resetup here after media swap */
1982 adapter->ei.get_invariants(hw);
1983 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1984 }
1985 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
1986 if (igb_enable_mas(adapter))
1987 dev_err(&pdev->dev,
1988 "Error enabling Media Auto Sense\n");
1989 }
330a6d6a 1990 if (hw->mac.ops.init_hw(hw))
090b1795 1991 dev_err(&pdev->dev, "Hardware Error\n");
831ec0b4 1992
b980ac18 1993 /* Flow control settings reset on hardware reset, so guarantee flow
a27416bb
MV
1994 * control is off when forcing speed.
1995 */
1996 if (!hw->mac.autoneg)
1997 igb_force_mac_fc(hw);
1998
b6e0c419 1999 igb_init_dmac(adapter, pba);
e428893b
CW
2000#ifdef CONFIG_IGB_HWMON
2001 /* Re-initialize the thermal sensor on i350 devices. */
2002 if (!test_bit(__IGB_DOWN, &adapter->state)) {
2003 if (mac->type == e1000_i350 && hw->bus.func == 0) {
2004 /* If present, re-initialize the external thermal sensor
2005 * interface.
2006 */
2007 if (adapter->ets)
2008 mac->ops.init_thermal_sensor_thresh(hw);
2009 }
2010 }
2011#endif
b936136d 2012 /* Re-establish EEE setting */
f4c01e96
CW
2013 if (hw->phy.media_type == e1000_media_type_copper) {
2014 switch (mac->type) {
2015 case e1000_i350:
2016 case e1000_i210:
2017 case e1000_i211:
c4c112f1 2018 igb_set_eee_i350(hw, true, true);
f4c01e96
CW
2019 break;
2020 case e1000_i354:
c4c112f1 2021 igb_set_eee_i354(hw, true, true);
f4c01e96
CW
2022 break;
2023 default:
2024 break;
2025 }
2026 }
88a268c1
NN
2027 if (!netif_running(adapter->netdev))
2028 igb_power_down_link(adapter);
2029
9d5c8243
AK
2030 igb_update_mng_vlan(adapter);
2031
2032 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2033 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2034
1f6e8178
MV
2035 /* Re-enable PTP, where applicable. */
2036 igb_ptp_reset(adapter);
1f6e8178 2037
330a6d6a 2038 igb_get_phy_info(hw);
9d5c8243
AK
2039}
2040
c8f44aff
MM
2041static netdev_features_t igb_fix_features(struct net_device *netdev,
2042 netdev_features_t features)
b2cb09b1 2043{
b980ac18
JK
2044 /* Since there is no support for separate Rx/Tx vlan accel
2045 * enable/disable make sure Tx flag is always in same state as Rx.
b2cb09b1 2046 */
f646968f
PM
2047 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2048 features |= NETIF_F_HW_VLAN_CTAG_TX;
b2cb09b1 2049 else
f646968f 2050 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
b2cb09b1
JP
2051
2052 return features;
2053}
2054
c8f44aff
MM
2055static int igb_set_features(struct net_device *netdev,
2056 netdev_features_t features)
ac52caa3 2057{
c8f44aff 2058 netdev_features_t changed = netdev->features ^ features;
89eaefb6 2059 struct igb_adapter *adapter = netdev_priv(netdev);
ac52caa3 2060
f646968f 2061 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
b2cb09b1
JP
2062 igb_vlan_mode(netdev, features);
2063
89eaefb6
BG
2064 if (!(changed & NETIF_F_RXALL))
2065 return 0;
2066
2067 netdev->features = features;
2068
2069 if (netif_running(netdev))
2070 igb_reinit_locked(adapter);
2071 else
2072 igb_reset(adapter);
2073
ac52caa3
MM
2074 return 0;
2075}
2076
2e5c6922 2077static const struct net_device_ops igb_netdev_ops = {
559e9c49 2078 .ndo_open = igb_open,
2e5c6922 2079 .ndo_stop = igb_close,
cd392f5c 2080 .ndo_start_xmit = igb_xmit_frame,
12dcd86b 2081 .ndo_get_stats64 = igb_get_stats64,
ff41f8dc 2082 .ndo_set_rx_mode = igb_set_rx_mode,
2e5c6922
SH
2083 .ndo_set_mac_address = igb_set_mac,
2084 .ndo_change_mtu = igb_change_mtu,
2085 .ndo_do_ioctl = igb_ioctl,
2086 .ndo_tx_timeout = igb_tx_timeout,
2087 .ndo_validate_addr = eth_validate_addr,
2e5c6922
SH
2088 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
2089 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
8151d294
WM
2090 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
2091 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
ed616689 2092 .ndo_set_vf_rate = igb_ndo_set_vf_bw,
70ea4783 2093 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
8151d294 2094 .ndo_get_vf_config = igb_ndo_get_vf_config,
2e5c6922
SH
2095#ifdef CONFIG_NET_POLL_CONTROLLER
2096 .ndo_poll_controller = igb_netpoll,
2097#endif
b2cb09b1
JP
2098 .ndo_fix_features = igb_fix_features,
2099 .ndo_set_features = igb_set_features,
2e5c6922
SH
2100};
2101
d67974f0
CW
2102/**
2103 * igb_set_fw_version - Configure version string for ethtool
2104 * @adapter: adapter struct
d67974f0
CW
2105 **/
2106void igb_set_fw_version(struct igb_adapter *adapter)
2107{
2108 struct e1000_hw *hw = &adapter->hw;
0b1a6f2e
CW
2109 struct e1000_fw_version fw;
2110
2111 igb_get_fw_version(hw, &fw);
2112
2113 switch (hw->mac.type) {
7dc98a62 2114 case e1000_i210:
0b1a6f2e 2115 case e1000_i211:
7dc98a62
CW
2116 if (!(igb_get_flash_presence_i210(hw))) {
2117 snprintf(adapter->fw_version,
2118 sizeof(adapter->fw_version),
2119 "%2d.%2d-%d",
2120 fw.invm_major, fw.invm_minor,
2121 fw.invm_img_type);
2122 break;
2123 }
2124 /* fall through */
0b1a6f2e
CW
2125 default:
2126 /* if option is rom valid, display its version too */
2127 if (fw.or_valid) {
2128 snprintf(adapter->fw_version,
2129 sizeof(adapter->fw_version),
2130 "%d.%d, 0x%08x, %d.%d.%d",
2131 fw.eep_major, fw.eep_minor, fw.etrack_id,
2132 fw.or_major, fw.or_build, fw.or_patch);
2133 /* no option rom */
7dc98a62 2134 } else if (fw.etrack_id != 0X0000) {
0b1a6f2e 2135 snprintf(adapter->fw_version,
7dc98a62
CW
2136 sizeof(adapter->fw_version),
2137 "%d.%d, 0x%08x",
2138 fw.eep_major, fw.eep_minor, fw.etrack_id);
2139 } else {
2140 snprintf(adapter->fw_version,
2141 sizeof(adapter->fw_version),
2142 "%d.%d.%d",
2143 fw.eep_major, fw.eep_minor, fw.eep_build);
0b1a6f2e
CW
2144 }
2145 break;
d67974f0 2146 }
d67974f0
CW
2147}
2148
56cec249
CW
2149/**
2150 * igb_init_mas - init Media Autosense feature if enabled in the NVM
2151 *
2152 * @adapter: adapter struct
2153 **/
2154static void igb_init_mas(struct igb_adapter *adapter)
2155{
2156 struct e1000_hw *hw = &adapter->hw;
2157 u16 eeprom_data;
2158
2159 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2160 switch (hw->bus.func) {
2161 case E1000_FUNC_0:
2162 if (eeprom_data & IGB_MAS_ENABLE_0) {
2163 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2164 netdev_info(adapter->netdev,
2165 "MAS: Enabling Media Autosense for port %d\n",
2166 hw->bus.func);
2167 }
2168 break;
2169 case E1000_FUNC_1:
2170 if (eeprom_data & IGB_MAS_ENABLE_1) {
2171 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2172 netdev_info(adapter->netdev,
2173 "MAS: Enabling Media Autosense for port %d\n",
2174 hw->bus.func);
2175 }
2176 break;
2177 case E1000_FUNC_2:
2178 if (eeprom_data & IGB_MAS_ENABLE_2) {
2179 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2180 netdev_info(adapter->netdev,
2181 "MAS: Enabling Media Autosense for port %d\n",
2182 hw->bus.func);
2183 }
2184 break;
2185 case E1000_FUNC_3:
2186 if (eeprom_data & IGB_MAS_ENABLE_3) {
2187 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2188 netdev_info(adapter->netdev,
2189 "MAS: Enabling Media Autosense for port %d\n",
2190 hw->bus.func);
2191 }
2192 break;
2193 default:
2194 /* Shouldn't get here */
2195 netdev_err(adapter->netdev,
2196 "MAS: Invalid port configuration, returning\n");
2197 break;
2198 }
2199}
2200
b980ac18
JK
2201/**
2202 * igb_init_i2c - Init I2C interface
441fc6fd 2203 * @adapter: pointer to adapter structure
b980ac18 2204 **/
441fc6fd
CW
2205static s32 igb_init_i2c(struct igb_adapter *adapter)
2206{
23d87824 2207 s32 status = 0;
441fc6fd
CW
2208
2209 /* I2C interface supported on i350 devices */
2210 if (adapter->hw.mac.type != e1000_i350)
23d87824 2211 return 0;
441fc6fd
CW
2212
2213 /* Initialize the i2c bus which is controlled by the registers.
2214 * This bus will use the i2c_algo_bit structue that implements
2215 * the protocol through toggling of the 4 bits in the register.
2216 */
2217 adapter->i2c_adap.owner = THIS_MODULE;
2218 adapter->i2c_algo = igb_i2c_algo;
2219 adapter->i2c_algo.data = adapter;
2220 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2221 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2222 strlcpy(adapter->i2c_adap.name, "igb BB",
2223 sizeof(adapter->i2c_adap.name));
2224 status = i2c_bit_add_bus(&adapter->i2c_adap);
2225 return status;
2226}
2227
9d5c8243 2228/**
b980ac18
JK
2229 * igb_probe - Device Initialization Routine
2230 * @pdev: PCI device information struct
2231 * @ent: entry in igb_pci_tbl
9d5c8243 2232 *
b980ac18 2233 * Returns 0 on success, negative on failure
9d5c8243 2234 *
b980ac18
JK
2235 * igb_probe initializes an adapter identified by a pci_dev structure.
2236 * The OS initialization, configuring of the adapter private structure,
2237 * and a hardware reset occur.
9d5c8243 2238 **/
1dd06ae8 2239static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
9d5c8243
AK
2240{
2241 struct net_device *netdev;
2242 struct igb_adapter *adapter;
2243 struct e1000_hw *hw;
4337e993 2244 u16 eeprom_data = 0;
9835fd73 2245 s32 ret_val;
4337e993 2246 static int global_quad_port_a; /* global quad port a indication */
9d5c8243 2247 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2d6a5e95 2248 int err, pci_using_dac;
9835fd73 2249 u8 part_str[E1000_PBANUM_LENGTH];
9d5c8243 2250
bded64a7
AG
2251 /* Catch broken hardware that put the wrong VF device ID in
2252 * the PCIe SR-IOV capability.
2253 */
2254 if (pdev->is_virtfn) {
2255 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
f96a8a0b 2256 pci_name(pdev), pdev->vendor, pdev->device);
bded64a7
AG
2257 return -EINVAL;
2258 }
2259
aed5dec3 2260 err = pci_enable_device_mem(pdev);
9d5c8243
AK
2261 if (err)
2262 return err;
2263
2264 pci_using_dac = 0;
dc4ff9bb 2265 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
9d5c8243 2266 if (!err) {
dc4ff9bb 2267 pci_using_dac = 1;
9d5c8243 2268 } else {
dc4ff9bb 2269 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
9d5c8243 2270 if (err) {
dc4ff9bb
RK
2271 dev_err(&pdev->dev,
2272 "No usable DMA configuration, aborting\n");
2273 goto err_dma;
9d5c8243
AK
2274 }
2275 }
2276
aed5dec3 2277 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
b980ac18
JK
2278 IORESOURCE_MEM),
2279 igb_driver_name);
9d5c8243
AK
2280 if (err)
2281 goto err_pci_reg;
2282
19d5afd4 2283 pci_enable_pcie_error_reporting(pdev);
40a914fa 2284
9d5c8243 2285 pci_set_master(pdev);
c682fc23 2286 pci_save_state(pdev);
9d5c8243
AK
2287
2288 err = -ENOMEM;
1bfaf07b 2289 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1cc3bd87 2290 IGB_MAX_TX_QUEUES);
9d5c8243
AK
2291 if (!netdev)
2292 goto err_alloc_etherdev;
2293
2294 SET_NETDEV_DEV(netdev, &pdev->dev);
2295
2296 pci_set_drvdata(pdev, netdev);
2297 adapter = netdev_priv(netdev);
2298 adapter->netdev = netdev;
2299 adapter->pdev = pdev;
2300 hw = &adapter->hw;
2301 hw->back = adapter;
b3f4d599 2302 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
9d5c8243 2303
9d5c8243 2304 err = -EIO;
89dbefb2 2305 hw->hw_addr = pci_iomap(pdev, 0, 0);
28b0759c 2306 if (!hw->hw_addr)
9d5c8243
AK
2307 goto err_ioremap;
2308
2e5c6922 2309 netdev->netdev_ops = &igb_netdev_ops;
9d5c8243 2310 igb_set_ethtool_ops(netdev);
9d5c8243 2311 netdev->watchdog_timeo = 5 * HZ;
9d5c8243
AK
2312
2313 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2314
89dbefb2
AS
2315 netdev->mem_start = pci_resource_start(pdev, 0);
2316 netdev->mem_end = pci_resource_end(pdev, 0);
9d5c8243 2317
9d5c8243
AK
2318 /* PCI config space info */
2319 hw->vendor_id = pdev->vendor;
2320 hw->device_id = pdev->device;
2321 hw->revision_id = pdev->revision;
2322 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2323 hw->subsystem_device_id = pdev->subsystem_device;
2324
9d5c8243
AK
2325 /* Copy the default MAC, PHY and NVM function pointers */
2326 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2327 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2328 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2329 /* Initialize skew-specific constants */
2330 err = ei->get_invariants(hw);
2331 if (err)
450c87c8 2332 goto err_sw_init;
9d5c8243 2333
450c87c8 2334 /* setup the private structure */
9d5c8243
AK
2335 err = igb_sw_init(adapter);
2336 if (err)
2337 goto err_sw_init;
2338
2339 igb_get_bus_info_pcie(hw);
2340
2341 hw->phy.autoneg_wait_to_complete = false;
9d5c8243
AK
2342
2343 /* Copper options */
2344 if (hw->phy.media_type == e1000_media_type_copper) {
2345 hw->phy.mdix = AUTO_ALL_MODES;
2346 hw->phy.disable_polarity_correction = false;
2347 hw->phy.ms_type = e1000_ms_hw_default;
2348 }
2349
2350 if (igb_check_reset_block(hw))
2351 dev_info(&pdev->dev,
2352 "PHY reset is blocked due to SOL/IDER session.\n");
2353
b980ac18 2354 /* features is initialized to 0 in allocation, it might have bits
077887c3
AD
2355 * set by igb_sw_init so we should use an or instead of an
2356 * assignment.
2357 */
2358 netdev->features |= NETIF_F_SG |
2359 NETIF_F_IP_CSUM |
2360 NETIF_F_IPV6_CSUM |
2361 NETIF_F_TSO |
2362 NETIF_F_TSO6 |
2363 NETIF_F_RXHASH |
2364 NETIF_F_RXCSUM |
f646968f
PM
2365 NETIF_F_HW_VLAN_CTAG_RX |
2366 NETIF_F_HW_VLAN_CTAG_TX;
077887c3
AD
2367
2368 /* copy netdev features into list of user selectable features */
2369 netdev->hw_features |= netdev->features;
89eaefb6 2370 netdev->hw_features |= NETIF_F_RXALL;
077887c3
AD
2371
2372 /* set this bit last since it cannot be part of hw_features */
f646968f 2373 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
077887c3
AD
2374
2375 netdev->vlan_features |= NETIF_F_TSO |
2376 NETIF_F_TSO6 |
2377 NETIF_F_IP_CSUM |
2378 NETIF_F_IPV6_CSUM |
2379 NETIF_F_SG;
48f29ffc 2380
6b8f0922
BG
2381 netdev->priv_flags |= IFF_SUPP_NOFCS;
2382
7b872a55 2383 if (pci_using_dac) {
9d5c8243 2384 netdev->features |= NETIF_F_HIGHDMA;
7b872a55
YZ
2385 netdev->vlan_features |= NETIF_F_HIGHDMA;
2386 }
9d5c8243 2387
ac52caa3
MM
2388 if (hw->mac.type >= e1000_82576) {
2389 netdev->hw_features |= NETIF_F_SCTP_CSUM;
b9473560 2390 netdev->features |= NETIF_F_SCTP_CSUM;
ac52caa3 2391 }
b9473560 2392
01789349
JP
2393 netdev->priv_flags |= IFF_UNICAST_FLT;
2394
330a6d6a 2395 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
9d5c8243
AK
2396
2397 /* before reading the NVM, reset the controller to put the device in a
b980ac18
JK
2398 * known good starting state
2399 */
9d5c8243
AK
2400 hw->mac.ops.reset_hw(hw);
2401
ef3a0092
CW
2402 /* make sure the NVM is good , i211/i210 parts can have special NVM
2403 * that doesn't contain a checksum
f96a8a0b 2404 */
ef3a0092
CW
2405 switch (hw->mac.type) {
2406 case e1000_i210:
2407 case e1000_i211:
2408 if (igb_get_flash_presence_i210(hw)) {
2409 if (hw->nvm.ops.validate(hw) < 0) {
2410 dev_err(&pdev->dev,
2411 "The NVM Checksum Is Not Valid\n");
2412 err = -EIO;
2413 goto err_eeprom;
2414 }
2415 }
2416 break;
2417 default:
f96a8a0b
CW
2418 if (hw->nvm.ops.validate(hw) < 0) {
2419 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2420 err = -EIO;
2421 goto err_eeprom;
2422 }
ef3a0092 2423 break;
9d5c8243
AK
2424 }
2425
2426 /* copy the MAC address out of the NVM */
2427 if (hw->mac.ops.read_mac_addr(hw))
2428 dev_err(&pdev->dev, "NVM Read Error\n");
2429
2430 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
9d5c8243 2431
aaeb6cdf 2432 if (!is_valid_ether_addr(netdev->dev_addr)) {
9d5c8243
AK
2433 dev_err(&pdev->dev, "Invalid MAC Address\n");
2434 err = -EIO;
2435 goto err_eeprom;
2436 }
2437
d67974f0
CW
2438 /* get firmware version for ethtool -i */
2439 igb_set_fw_version(adapter);
2440
27dff8b2
TF
2441 /* configure RXPBSIZE and TXPBSIZE */
2442 if (hw->mac.type == e1000_i210) {
2443 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
2444 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
2445 }
2446
c061b18d 2447 setup_timer(&adapter->watchdog_timer, igb_watchdog,
b980ac18 2448 (unsigned long) adapter);
c061b18d 2449 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
b980ac18 2450 (unsigned long) adapter);
9d5c8243
AK
2451
2452 INIT_WORK(&adapter->reset_task, igb_reset_task);
2453 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2454
450c87c8 2455 /* Initialize link properties that are user-changeable */
9d5c8243
AK
2456 adapter->fc_autoneg = true;
2457 hw->mac.autoneg = true;
2458 hw->phy.autoneg_advertised = 0x2f;
2459
0cce119a
AD
2460 hw->fc.requested_mode = e1000_fc_default;
2461 hw->fc.current_mode = e1000_fc_default;
9d5c8243 2462
9d5c8243
AK
2463 igb_validate_mdi_setting(hw);
2464
63d4a8f9 2465 /* By default, support wake on port A */
a2cf8b6c 2466 if (hw->bus.func == 0)
63d4a8f9
MV
2467 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2468
2469 /* Check the NVM for wake support on non-port A ports */
2470 if (hw->mac.type >= e1000_82580)
55cac248 2471 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
b980ac18
JK
2472 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2473 &eeprom_data);
a2cf8b6c
AD
2474 else if (hw->bus.func == 1)
2475 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
9d5c8243 2476
63d4a8f9
MV
2477 if (eeprom_data & IGB_EEPROM_APME)
2478 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
9d5c8243
AK
2479
2480 /* now that we have the eeprom settings, apply the special cases where
2481 * the eeprom may be wrong or the board simply won't support wake on
b980ac18
JK
2482 * lan on a particular port
2483 */
9d5c8243
AK
2484 switch (pdev->device) {
2485 case E1000_DEV_ID_82575GB_QUAD_COPPER:
63d4a8f9 2486 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
9d5c8243
AK
2487 break;
2488 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2d064c06
AD
2489 case E1000_DEV_ID_82576_FIBER:
2490 case E1000_DEV_ID_82576_SERDES:
9d5c8243 2491 /* Wake events only supported on port A for dual fiber
b980ac18
JK
2492 * regardless of eeprom setting
2493 */
9d5c8243 2494 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
63d4a8f9 2495 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
9d5c8243 2496 break;
c8ea5ea9 2497 case E1000_DEV_ID_82576_QUAD_COPPER:
d5aa2252 2498 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
c8ea5ea9
AD
2499 /* if quad port adapter, disable WoL on all but port A */
2500 if (global_quad_port_a != 0)
63d4a8f9 2501 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
c8ea5ea9
AD
2502 else
2503 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2504 /* Reset for multiple quad port adapters */
2505 if (++global_quad_port_a == 4)
2506 global_quad_port_a = 0;
2507 break;
63d4a8f9
MV
2508 default:
2509 /* If the device can't wake, don't set software support */
2510 if (!device_can_wakeup(&adapter->pdev->dev))
2511 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
9d5c8243
AK
2512 }
2513
2514 /* initialize the wol settings based on the eeprom settings */
63d4a8f9
MV
2515 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2516 adapter->wol |= E1000_WUFC_MAG;
2517
2518 /* Some vendors want WoL disabled by default, but still supported */
2519 if ((hw->mac.type == e1000_i350) &&
2520 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2521 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2522 adapter->wol = 0;
2523 }
2524
2525 device_set_wakeup_enable(&adapter->pdev->dev,
2526 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
9d5c8243
AK
2527
2528 /* reset the hardware with the new settings */
2529 igb_reset(adapter);
2530
441fc6fd
CW
2531 /* Init the I2C interface */
2532 err = igb_init_i2c(adapter);
2533 if (err) {
2534 dev_err(&pdev->dev, "failed to init i2c interface\n");
2535 goto err_eeprom;
2536 }
2537
9d5c8243 2538 /* let the f/w know that the h/w is now under the control of the
e52c0f96
CW
2539 * driver.
2540 */
9d5c8243
AK
2541 igb_get_hw_control(adapter);
2542
9d5c8243
AK
2543 strcpy(netdev->name, "eth%d");
2544 err = register_netdev(netdev);
2545 if (err)
2546 goto err_register;
2547
b168dfc5
JB
2548 /* carrier off reporting is important to ethtool even BEFORE open */
2549 netif_carrier_off(netdev);
2550
421e02f0 2551#ifdef CONFIG_IGB_DCA
bbd98fe4 2552 if (dca_add_requester(&pdev->dev) == 0) {
7dfc16fa 2553 adapter->flags |= IGB_FLAG_DCA_ENABLED;
fe4506b6 2554 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
2555 igb_setup_dca(adapter);
2556 }
fe4506b6 2557
38c845c7 2558#endif
e428893b
CW
2559#ifdef CONFIG_IGB_HWMON
2560 /* Initialize the thermal sensor on i350 devices. */
2561 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2562 u16 ets_word;
3c89f6d0 2563
b980ac18 2564 /* Read the NVM to determine if this i350 device supports an
e428893b
CW
2565 * external thermal sensor.
2566 */
2567 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2568 if (ets_word != 0x0000 && ets_word != 0xFFFF)
2569 adapter->ets = true;
2570 else
2571 adapter->ets = false;
2572 if (igb_sysfs_init(adapter))
2573 dev_err(&pdev->dev,
2574 "failed to allocate sysfs resources\n");
2575 } else {
2576 adapter->ets = false;
2577 }
2578#endif
56cec249
CW
2579 /* Check if Media Autosense is enabled */
2580 adapter->ei = *ei;
2581 if (hw->dev_spec._82575.mas_capable)
2582 igb_init_mas(adapter);
2583
673b8b70 2584 /* do hw tstamp init after resetting */
7ebae817 2585 igb_ptp_init(adapter);
673b8b70 2586
9d5c8243 2587 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
ceb5f13b
CW
2588 /* print bus type/speed/width info, not applicable to i354 */
2589 if (hw->mac.type != e1000_i354) {
2590 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2591 netdev->name,
2592 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2593 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2594 "unknown"),
2595 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2596 "Width x4" :
2597 (hw->bus.width == e1000_bus_width_pcie_x2) ?
2598 "Width x2" :
2599 (hw->bus.width == e1000_bus_width_pcie_x1) ?
2600 "Width x1" : "unknown"), netdev->dev_addr);
2601 }
9d5c8243 2602
53ea6c7e
TF
2603 if ((hw->mac.type >= e1000_i210 ||
2604 igb_get_flash_presence_i210(hw))) {
2605 ret_val = igb_read_part_string(hw, part_str,
2606 E1000_PBANUM_LENGTH);
2607 } else {
2608 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2609 }
2610
9835fd73
CW
2611 if (ret_val)
2612 strcpy(part_str, "Unknown");
2613 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
9d5c8243
AK
2614 dev_info(&pdev->dev,
2615 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
cd14ef54 2616 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
7dfc16fa 2617 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
9d5c8243 2618 adapter->num_rx_queues, adapter->num_tx_queues);
f4c01e96
CW
2619 if (hw->phy.media_type == e1000_media_type_copper) {
2620 switch (hw->mac.type) {
2621 case e1000_i350:
2622 case e1000_i210:
2623 case e1000_i211:
2624 /* Enable EEE for internal copper PHY devices */
c4c112f1 2625 err = igb_set_eee_i350(hw, true, true);
f4c01e96
CW
2626 if ((!err) &&
2627 (!hw->dev_spec._82575.eee_disable)) {
2628 adapter->eee_advert =
2629 MDIO_EEE_100TX | MDIO_EEE_1000T;
2630 adapter->flags |= IGB_FLAG_EEE;
2631 }
2632 break;
2633 case e1000_i354:
ceb5f13b 2634 if ((rd32(E1000_CTRL_EXT) &
f4c01e96 2635 E1000_CTRL_EXT_LINK_MODE_SGMII)) {
c4c112f1 2636 err = igb_set_eee_i354(hw, true, true);
f4c01e96
CW
2637 if ((!err) &&
2638 (!hw->dev_spec._82575.eee_disable)) {
2639 adapter->eee_advert =
2640 MDIO_EEE_100TX | MDIO_EEE_1000T;
2641 adapter->flags |= IGB_FLAG_EEE;
2642 }
2643 }
2644 break;
2645 default:
2646 break;
ceb5f13b 2647 }
09b068d4 2648 }
749ab2cd 2649 pm_runtime_put_noidle(&pdev->dev);
9d5c8243
AK
2650 return 0;
2651
2652err_register:
2653 igb_release_hw_control(adapter);
441fc6fd 2654 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
9d5c8243
AK
2655err_eeprom:
2656 if (!igb_check_reset_block(hw))
f5f4cf08 2657 igb_reset_phy(hw);
9d5c8243
AK
2658
2659 if (hw->flash_address)
2660 iounmap(hw->flash_address);
9d5c8243 2661err_sw_init:
047e0030 2662 igb_clear_interrupt_scheme(adapter);
75009b3a 2663 pci_iounmap(pdev, hw->hw_addr);
9d5c8243
AK
2664err_ioremap:
2665 free_netdev(netdev);
2666err_alloc_etherdev:
559e9c49 2667 pci_release_selected_regions(pdev,
b980ac18 2668 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243
AK
2669err_pci_reg:
2670err_dma:
2671 pci_disable_device(pdev);
2672 return err;
2673}
2674
fa44f2f1 2675#ifdef CONFIG_PCI_IOV
781798a1 2676static int igb_disable_sriov(struct pci_dev *pdev)
fa44f2f1
GR
2677{
2678 struct net_device *netdev = pci_get_drvdata(pdev);
2679 struct igb_adapter *adapter = netdev_priv(netdev);
2680 struct e1000_hw *hw = &adapter->hw;
2681
2682 /* reclaim resources allocated to VFs */
2683 if (adapter->vf_data) {
2684 /* disable iov and allow time for transactions to clear */
b09186d2 2685 if (pci_vfs_assigned(pdev)) {
fa44f2f1
GR
2686 dev_warn(&pdev->dev,
2687 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2688 return -EPERM;
2689 } else {
2690 pci_disable_sriov(pdev);
2691 msleep(500);
2692 }
2693
2694 kfree(adapter->vf_data);
2695 adapter->vf_data = NULL;
2696 adapter->vfs_allocated_count = 0;
2697 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2698 wrfl();
2699 msleep(100);
2700 dev_info(&pdev->dev, "IOV Disabled\n");
2701
2702 /* Re-enable DMA Coalescing flag since IOV is turned off */
2703 adapter->flags |= IGB_FLAG_DMAC;
2704 }
2705
2706 return 0;
2707}
2708
2709static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2710{
2711 struct net_device *netdev = pci_get_drvdata(pdev);
2712 struct igb_adapter *adapter = netdev_priv(netdev);
2713 int old_vfs = pci_num_vf(pdev);
2714 int err = 0;
2715 int i;
2716
cd14ef54 2717 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
50267196
MW
2718 err = -EPERM;
2719 goto out;
2720 }
fa44f2f1
GR
2721 if (!num_vfs)
2722 goto out;
fa44f2f1 2723
781798a1
SA
2724 if (old_vfs) {
2725 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2726 old_vfs, max_vfs);
2727 adapter->vfs_allocated_count = old_vfs;
2728 } else
2729 adapter->vfs_allocated_count = num_vfs;
fa44f2f1
GR
2730
2731 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2732 sizeof(struct vf_data_storage), GFP_KERNEL);
2733
2734 /* if allocation failed then we do not support SR-IOV */
2735 if (!adapter->vf_data) {
2736 adapter->vfs_allocated_count = 0;
2737 dev_err(&pdev->dev,
2738 "Unable to allocate memory for VF Data Storage\n");
2739 err = -ENOMEM;
2740 goto out;
2741 }
2742
781798a1
SA
2743 /* only call pci_enable_sriov() if no VFs are allocated already */
2744 if (!old_vfs) {
2745 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2746 if (err)
2747 goto err_out;
2748 }
fa44f2f1
GR
2749 dev_info(&pdev->dev, "%d VFs allocated\n",
2750 adapter->vfs_allocated_count);
2751 for (i = 0; i < adapter->vfs_allocated_count; i++)
2752 igb_vf_configure(adapter, i);
2753
2754 /* DMA Coalescing is not supported in IOV mode. */
2755 adapter->flags &= ~IGB_FLAG_DMAC;
2756 goto out;
2757
2758err_out:
2759 kfree(adapter->vf_data);
2760 adapter->vf_data = NULL;
2761 adapter->vfs_allocated_count = 0;
2762out:
2763 return err;
2764}
2765
2766#endif
b980ac18 2767/**
441fc6fd
CW
2768 * igb_remove_i2c - Cleanup I2C interface
2769 * @adapter: pointer to adapter structure
b980ac18 2770 **/
441fc6fd
CW
2771static void igb_remove_i2c(struct igb_adapter *adapter)
2772{
441fc6fd
CW
2773 /* free the adapter bus structure */
2774 i2c_del_adapter(&adapter->i2c_adap);
2775}
2776
9d5c8243 2777/**
b980ac18
JK
2778 * igb_remove - Device Removal Routine
2779 * @pdev: PCI device information struct
9d5c8243 2780 *
b980ac18
JK
2781 * igb_remove is called by the PCI subsystem to alert the driver
2782 * that it should release a PCI device. The could be caused by a
2783 * Hot-Plug event, or because the driver is going to be removed from
2784 * memory.
9d5c8243 2785 **/
9f9a12f8 2786static void igb_remove(struct pci_dev *pdev)
9d5c8243
AK
2787{
2788 struct net_device *netdev = pci_get_drvdata(pdev);
2789 struct igb_adapter *adapter = netdev_priv(netdev);
fe4506b6 2790 struct e1000_hw *hw = &adapter->hw;
9d5c8243 2791
749ab2cd 2792 pm_runtime_get_noresume(&pdev->dev);
e428893b
CW
2793#ifdef CONFIG_IGB_HWMON
2794 igb_sysfs_exit(adapter);
2795#endif
441fc6fd 2796 igb_remove_i2c(adapter);
a79f4f88 2797 igb_ptp_stop(adapter);
b980ac18 2798 /* The watchdog timer may be rescheduled, so explicitly
760141a5
TH
2799 * disable watchdog from being rescheduled.
2800 */
9d5c8243
AK
2801 set_bit(__IGB_DOWN, &adapter->state);
2802 del_timer_sync(&adapter->watchdog_timer);
2803 del_timer_sync(&adapter->phy_info_timer);
2804
760141a5
TH
2805 cancel_work_sync(&adapter->reset_task);
2806 cancel_work_sync(&adapter->watchdog_task);
9d5c8243 2807
421e02f0 2808#ifdef CONFIG_IGB_DCA
7dfc16fa 2809 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6
JC
2810 dev_info(&pdev->dev, "DCA disabled\n");
2811 dca_remove_requester(&pdev->dev);
7dfc16fa 2812 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 2813 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
2814 }
2815#endif
2816
9d5c8243 2817 /* Release control of h/w to f/w. If f/w is AMT enabled, this
b980ac18
JK
2818 * would have already happened in close and is redundant.
2819 */
9d5c8243
AK
2820 igb_release_hw_control(adapter);
2821
2822 unregister_netdev(netdev);
2823
047e0030 2824 igb_clear_interrupt_scheme(adapter);
9d5c8243 2825
37680117 2826#ifdef CONFIG_PCI_IOV
fa44f2f1 2827 igb_disable_sriov(pdev);
37680117 2828#endif
559e9c49 2829
75009b3a 2830 pci_iounmap(pdev, hw->hw_addr);
28b0759c
AD
2831 if (hw->flash_address)
2832 iounmap(hw->flash_address);
559e9c49 2833 pci_release_selected_regions(pdev,
b980ac18 2834 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243 2835
1128c756 2836 kfree(adapter->shadow_vfta);
9d5c8243
AK
2837 free_netdev(netdev);
2838
19d5afd4 2839 pci_disable_pcie_error_reporting(pdev);
40a914fa 2840
9d5c8243
AK
2841 pci_disable_device(pdev);
2842}
2843
a6b623e0 2844/**
b980ac18
JK
2845 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2846 * @adapter: board private structure to initialize
a6b623e0 2847 *
b980ac18
JK
2848 * This function initializes the vf specific data storage and then attempts to
2849 * allocate the VFs. The reason for ordering it this way is because it is much
2850 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2851 * the memory for the VFs.
a6b623e0 2852 **/
9f9a12f8 2853static void igb_probe_vfs(struct igb_adapter *adapter)
a6b623e0
AD
2854{
2855#ifdef CONFIG_PCI_IOV
2856 struct pci_dev *pdev = adapter->pdev;
f96a8a0b 2857 struct e1000_hw *hw = &adapter->hw;
a6b623e0 2858
f96a8a0b
CW
2859 /* Virtualization features not supported on i210 family. */
2860 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2861 return;
2862
fa44f2f1 2863 pci_sriov_set_totalvfs(pdev, 7);
781798a1 2864 igb_pci_enable_sriov(pdev, max_vfs);
0224d663 2865
a6b623e0
AD
2866#endif /* CONFIG_PCI_IOV */
2867}
2868
fa44f2f1 2869static void igb_init_queue_configuration(struct igb_adapter *adapter)
9d5c8243
AK
2870{
2871 struct e1000_hw *hw = &adapter->hw;
374a542d 2872 u32 max_rss_queues;
9d5c8243 2873
374a542d 2874 /* Determine the maximum number of RSS queues supported. */
f96a8a0b 2875 switch (hw->mac.type) {
374a542d
MV
2876 case e1000_i211:
2877 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2878 break;
2879 case e1000_82575:
f96a8a0b 2880 case e1000_i210:
374a542d
MV
2881 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2882 break;
2883 case e1000_i350:
2884 /* I350 cannot do RSS and SR-IOV at the same time */
2885 if (!!adapter->vfs_allocated_count) {
2886 max_rss_queues = 1;
2887 break;
2888 }
2889 /* fall through */
2890 case e1000_82576:
2891 if (!!adapter->vfs_allocated_count) {
2892 max_rss_queues = 2;
2893 break;
2894 }
2895 /* fall through */
2896 case e1000_82580:
ceb5f13b 2897 case e1000_i354:
374a542d
MV
2898 default:
2899 max_rss_queues = IGB_MAX_RX_QUEUES;
f96a8a0b 2900 break;
374a542d
MV
2901 }
2902
2903 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2904
2905 /* Determine if we need to pair queues. */
2906 switch (hw->mac.type) {
2907 case e1000_82575:
f96a8a0b 2908 case e1000_i211:
374a542d 2909 /* Device supports enough interrupts without queue pairing. */
f96a8a0b 2910 break;
374a542d 2911 case e1000_82576:
b980ac18 2912 /* If VFs are going to be allocated with RSS queues then we
374a542d
MV
2913 * should pair the queues in order to conserve interrupts due
2914 * to limited supply.
2915 */
2916 if ((adapter->rss_queues > 1) &&
2917 (adapter->vfs_allocated_count > 6))
2918 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2919 /* fall through */
2920 case e1000_82580:
2921 case e1000_i350:
ceb5f13b 2922 case e1000_i354:
374a542d 2923 case e1000_i210:
f96a8a0b 2924 default:
b980ac18 2925 /* If rss_queues > half of max_rss_queues, pair the queues in
374a542d
MV
2926 * order to conserve interrupts due to limited supply.
2927 */
2928 if (adapter->rss_queues > (max_rss_queues / 2))
2929 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
f96a8a0b
CW
2930 break;
2931 }
fa44f2f1
GR
2932}
2933
2934/**
b980ac18
JK
2935 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2936 * @adapter: board private structure to initialize
fa44f2f1 2937 *
b980ac18
JK
2938 * igb_sw_init initializes the Adapter private data structure.
2939 * Fields are initialized based on PCI device information and
2940 * OS network device settings (MTU size).
fa44f2f1
GR
2941 **/
2942static int igb_sw_init(struct igb_adapter *adapter)
2943{
2944 struct e1000_hw *hw = &adapter->hw;
2945 struct net_device *netdev = adapter->netdev;
2946 struct pci_dev *pdev = adapter->pdev;
2947
2948 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2949
2950 /* set default ring sizes */
2951 adapter->tx_ring_count = IGB_DEFAULT_TXD;
2952 adapter->rx_ring_count = IGB_DEFAULT_RXD;
2953
2954 /* set default ITR values */
2955 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2956 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2957
2958 /* set default work limits */
2959 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2960
2961 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2962 VLAN_HLEN;
2963 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2964
2965 spin_lock_init(&adapter->stats64_lock);
2966#ifdef CONFIG_PCI_IOV
2967 switch (hw->mac.type) {
2968 case e1000_82576:
2969 case e1000_i350:
2970 if (max_vfs > 7) {
2971 dev_warn(&pdev->dev,
2972 "Maximum of 7 VFs per PF, using max\n");
d0f63acc 2973 max_vfs = adapter->vfs_allocated_count = 7;
fa44f2f1
GR
2974 } else
2975 adapter->vfs_allocated_count = max_vfs;
2976 if (adapter->vfs_allocated_count)
2977 dev_warn(&pdev->dev,
2978 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2979 break;
2980 default:
2981 break;
2982 }
2983#endif /* CONFIG_PCI_IOV */
2984
2985 igb_init_queue_configuration(adapter);
a99955fc 2986
1128c756 2987 /* Setup and initialize a copy of the hw vlan table array */
b2adaca9
JP
2988 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2989 GFP_ATOMIC);
1128c756 2990
a6b623e0 2991 /* This call may decrease the number of queues */
53c7d064 2992 if (igb_init_interrupt_scheme(adapter, true)) {
9d5c8243
AK
2993 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2994 return -ENOMEM;
2995 }
2996
a6b623e0
AD
2997 igb_probe_vfs(adapter);
2998
9d5c8243
AK
2999 /* Explicitly disable IRQ since the NIC can be in any state. */
3000 igb_irq_disable(adapter);
3001
f96a8a0b 3002 if (hw->mac.type >= e1000_i350)
831ec0b4
CW
3003 adapter->flags &= ~IGB_FLAG_DMAC;
3004
9d5c8243
AK
3005 set_bit(__IGB_DOWN, &adapter->state);
3006 return 0;
3007}
3008
3009/**
b980ac18
JK
3010 * igb_open - Called when a network interface is made active
3011 * @netdev: network interface device structure
9d5c8243 3012 *
b980ac18 3013 * Returns 0 on success, negative value on failure
9d5c8243 3014 *
b980ac18
JK
3015 * The open entry point is called when a network interface is made
3016 * active by the system (IFF_UP). At this point all resources needed
3017 * for transmit and receive operations are allocated, the interrupt
3018 * handler is registered with the OS, the watchdog timer is started,
3019 * and the stack is notified that the interface is ready.
9d5c8243 3020 **/
749ab2cd 3021static int __igb_open(struct net_device *netdev, bool resuming)
9d5c8243
AK
3022{
3023 struct igb_adapter *adapter = netdev_priv(netdev);
3024 struct e1000_hw *hw = &adapter->hw;
749ab2cd 3025 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
3026 int err;
3027 int i;
3028
3029 /* disallow open during test */
749ab2cd
YZ
3030 if (test_bit(__IGB_TESTING, &adapter->state)) {
3031 WARN_ON(resuming);
9d5c8243 3032 return -EBUSY;
749ab2cd
YZ
3033 }
3034
3035 if (!resuming)
3036 pm_runtime_get_sync(&pdev->dev);
9d5c8243 3037
b168dfc5
JB
3038 netif_carrier_off(netdev);
3039
9d5c8243
AK
3040 /* allocate transmit descriptors */
3041 err = igb_setup_all_tx_resources(adapter);
3042 if (err)
3043 goto err_setup_tx;
3044
3045 /* allocate receive descriptors */
3046 err = igb_setup_all_rx_resources(adapter);
3047 if (err)
3048 goto err_setup_rx;
3049
88a268c1 3050 igb_power_up_link(adapter);
9d5c8243 3051
9d5c8243
AK
3052 /* before we allocate an interrupt, we must be ready to handle it.
3053 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3054 * as soon as we call pci_request_irq, so we have to setup our
b980ac18
JK
3055 * clean_rx handler before we do so.
3056 */
9d5c8243
AK
3057 igb_configure(adapter);
3058
3059 err = igb_request_irq(adapter);
3060 if (err)
3061 goto err_req_irq;
3062
0c2cc02e
AD
3063 /* Notify the stack of the actual queue counts. */
3064 err = netif_set_real_num_tx_queues(adapter->netdev,
3065 adapter->num_tx_queues);
3066 if (err)
3067 goto err_set_queues;
3068
3069 err = netif_set_real_num_rx_queues(adapter->netdev,
3070 adapter->num_rx_queues);
3071 if (err)
3072 goto err_set_queues;
3073
9d5c8243
AK
3074 /* From here on the code is the same as igb_up() */
3075 clear_bit(__IGB_DOWN, &adapter->state);
3076
0d1ae7f4
AD
3077 for (i = 0; i < adapter->num_q_vectors; i++)
3078 napi_enable(&(adapter->q_vector[i]->napi));
9d5c8243
AK
3079
3080 /* Clear any pending interrupts. */
3081 rd32(E1000_ICR);
844290e5
PW
3082
3083 igb_irq_enable(adapter);
3084
d4960307
AD
3085 /* notify VFs that reset has been completed */
3086 if (adapter->vfs_allocated_count) {
3087 u32 reg_data = rd32(E1000_CTRL_EXT);
9005df38 3088
d4960307
AD
3089 reg_data |= E1000_CTRL_EXT_PFRSTD;
3090 wr32(E1000_CTRL_EXT, reg_data);
3091 }
3092
d55b53ff
JK
3093 netif_tx_start_all_queues(netdev);
3094
749ab2cd
YZ
3095 if (!resuming)
3096 pm_runtime_put(&pdev->dev);
3097
25568a53
AD
3098 /* start the watchdog. */
3099 hw->mac.get_link_status = 1;
3100 schedule_work(&adapter->watchdog_task);
9d5c8243
AK
3101
3102 return 0;
3103
0c2cc02e
AD
3104err_set_queues:
3105 igb_free_irq(adapter);
9d5c8243
AK
3106err_req_irq:
3107 igb_release_hw_control(adapter);
88a268c1 3108 igb_power_down_link(adapter);
9d5c8243
AK
3109 igb_free_all_rx_resources(adapter);
3110err_setup_rx:
3111 igb_free_all_tx_resources(adapter);
3112err_setup_tx:
3113 igb_reset(adapter);
749ab2cd
YZ
3114 if (!resuming)
3115 pm_runtime_put(&pdev->dev);
9d5c8243
AK
3116
3117 return err;
3118}
3119
749ab2cd
YZ
3120static int igb_open(struct net_device *netdev)
3121{
3122 return __igb_open(netdev, false);
3123}
3124
9d5c8243 3125/**
b980ac18
JK
3126 * igb_close - Disables a network interface
3127 * @netdev: network interface device structure
9d5c8243 3128 *
b980ac18 3129 * Returns 0, this is not allowed to fail
9d5c8243 3130 *
b980ac18
JK
3131 * The close entry point is called when an interface is de-activated
3132 * by the OS. The hardware is still under the driver's control, but
3133 * needs to be disabled. A global MAC reset is issued to stop the
3134 * hardware, and all transmit and receive resources are freed.
9d5c8243 3135 **/
749ab2cd 3136static int __igb_close(struct net_device *netdev, bool suspending)
9d5c8243
AK
3137{
3138 struct igb_adapter *adapter = netdev_priv(netdev);
749ab2cd 3139 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
3140
3141 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
9d5c8243 3142
749ab2cd
YZ
3143 if (!suspending)
3144 pm_runtime_get_sync(&pdev->dev);
3145
3146 igb_down(adapter);
9d5c8243
AK
3147 igb_free_irq(adapter);
3148
3149 igb_free_all_tx_resources(adapter);
3150 igb_free_all_rx_resources(adapter);
3151
749ab2cd
YZ
3152 if (!suspending)
3153 pm_runtime_put_sync(&pdev->dev);
9d5c8243
AK
3154 return 0;
3155}
3156
749ab2cd
YZ
3157static int igb_close(struct net_device *netdev)
3158{
3159 return __igb_close(netdev, false);
3160}
3161
9d5c8243 3162/**
b980ac18
JK
3163 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
3164 * @tx_ring: tx descriptor ring (for a specific queue) to setup
9d5c8243 3165 *
b980ac18 3166 * Return 0 on success, negative on failure
9d5c8243 3167 **/
80785298 3168int igb_setup_tx_resources(struct igb_ring *tx_ring)
9d5c8243 3169{
59d71989 3170 struct device *dev = tx_ring->dev;
9d5c8243
AK
3171 int size;
3172
06034649 3173 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
f33005a6
AD
3174
3175 tx_ring->tx_buffer_info = vzalloc(size);
06034649 3176 if (!tx_ring->tx_buffer_info)
9d5c8243 3177 goto err;
9d5c8243
AK
3178
3179 /* round up to nearest 4K */
85e8d004 3180 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
9d5c8243
AK
3181 tx_ring->size = ALIGN(tx_ring->size, 4096);
3182
5536d210
AD
3183 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3184 &tx_ring->dma, GFP_KERNEL);
9d5c8243
AK
3185 if (!tx_ring->desc)
3186 goto err;
3187
9d5c8243
AK
3188 tx_ring->next_to_use = 0;
3189 tx_ring->next_to_clean = 0;
81c2fc22 3190
9d5c8243
AK
3191 return 0;
3192
3193err:
06034649 3194 vfree(tx_ring->tx_buffer_info);
f33005a6
AD
3195 tx_ring->tx_buffer_info = NULL;
3196 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
9d5c8243
AK
3197 return -ENOMEM;
3198}
3199
3200/**
b980ac18
JK
3201 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
3202 * (Descriptors) for all queues
3203 * @adapter: board private structure
9d5c8243 3204 *
b980ac18 3205 * Return 0 on success, negative on failure
9d5c8243
AK
3206 **/
3207static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3208{
439705e1 3209 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
3210 int i, err = 0;
3211
3212 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 3213 err = igb_setup_tx_resources(adapter->tx_ring[i]);
9d5c8243 3214 if (err) {
439705e1 3215 dev_err(&pdev->dev,
9d5c8243
AK
3216 "Allocation for Tx Queue %u failed\n", i);
3217 for (i--; i >= 0; i--)
3025a446 3218 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
3219 break;
3220 }
3221 }
3222
3223 return err;
3224}
3225
3226/**
b980ac18
JK
3227 * igb_setup_tctl - configure the transmit control registers
3228 * @adapter: Board private structure
9d5c8243 3229 **/
d7ee5b3a 3230void igb_setup_tctl(struct igb_adapter *adapter)
9d5c8243 3231{
9d5c8243
AK
3232 struct e1000_hw *hw = &adapter->hw;
3233 u32 tctl;
9d5c8243 3234
85b430b4
AD
3235 /* disable queue 0 which is enabled by default on 82575 and 82576 */
3236 wr32(E1000_TXDCTL(0), 0);
9d5c8243
AK
3237
3238 /* Program the Transmit Control Register */
9d5c8243
AK
3239 tctl = rd32(E1000_TCTL);
3240 tctl &= ~E1000_TCTL_CT;
3241 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3242 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3243
3244 igb_config_collision_dist(hw);
3245
9d5c8243
AK
3246 /* Enable transmits */
3247 tctl |= E1000_TCTL_EN;
3248
3249 wr32(E1000_TCTL, tctl);
3250}
3251
85b430b4 3252/**
b980ac18
JK
3253 * igb_configure_tx_ring - Configure transmit ring after Reset
3254 * @adapter: board private structure
3255 * @ring: tx ring to configure
85b430b4 3256 *
b980ac18 3257 * Configure a transmit ring after a reset.
85b430b4 3258 **/
d7ee5b3a 3259void igb_configure_tx_ring(struct igb_adapter *adapter,
9005df38 3260 struct igb_ring *ring)
85b430b4
AD
3261{
3262 struct e1000_hw *hw = &adapter->hw;
a74420e0 3263 u32 txdctl = 0;
85b430b4
AD
3264 u64 tdba = ring->dma;
3265 int reg_idx = ring->reg_idx;
3266
3267 /* disable the queue */
a74420e0 3268 wr32(E1000_TXDCTL(reg_idx), 0);
85b430b4
AD
3269 wrfl();
3270 mdelay(10);
3271
3272 wr32(E1000_TDLEN(reg_idx),
b980ac18 3273 ring->count * sizeof(union e1000_adv_tx_desc));
85b430b4 3274 wr32(E1000_TDBAL(reg_idx),
b980ac18 3275 tdba & 0x00000000ffffffffULL);
85b430b4
AD
3276 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3277
fce99e34 3278 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
a74420e0 3279 wr32(E1000_TDH(reg_idx), 0);
fce99e34 3280 writel(0, ring->tail);
85b430b4
AD
3281
3282 txdctl |= IGB_TX_PTHRESH;
3283 txdctl |= IGB_TX_HTHRESH << 8;
3284 txdctl |= IGB_TX_WTHRESH << 16;
3285
3286 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3287 wr32(E1000_TXDCTL(reg_idx), txdctl);
3288}
3289
3290/**
b980ac18
JK
3291 * igb_configure_tx - Configure transmit Unit after Reset
3292 * @adapter: board private structure
85b430b4 3293 *
b980ac18 3294 * Configure the Tx unit of the MAC after a reset.
85b430b4
AD
3295 **/
3296static void igb_configure_tx(struct igb_adapter *adapter)
3297{
3298 int i;
3299
3300 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 3301 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
85b430b4
AD
3302}
3303
9d5c8243 3304/**
b980ac18
JK
3305 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
3306 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
9d5c8243 3307 *
b980ac18 3308 * Returns 0 on success, negative on failure
9d5c8243 3309 **/
80785298 3310int igb_setup_rx_resources(struct igb_ring *rx_ring)
9d5c8243 3311{
59d71989 3312 struct device *dev = rx_ring->dev;
f33005a6 3313 int size;
9d5c8243 3314
06034649 3315 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
f33005a6
AD
3316
3317 rx_ring->rx_buffer_info = vzalloc(size);
06034649 3318 if (!rx_ring->rx_buffer_info)
9d5c8243 3319 goto err;
9d5c8243 3320
9d5c8243 3321 /* Round up to nearest 4K */
f33005a6 3322 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
9d5c8243
AK
3323 rx_ring->size = ALIGN(rx_ring->size, 4096);
3324
5536d210
AD
3325 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3326 &rx_ring->dma, GFP_KERNEL);
9d5c8243
AK
3327 if (!rx_ring->desc)
3328 goto err;
3329
cbc8e55f 3330 rx_ring->next_to_alloc = 0;
9d5c8243
AK
3331 rx_ring->next_to_clean = 0;
3332 rx_ring->next_to_use = 0;
9d5c8243 3333
9d5c8243
AK
3334 return 0;
3335
3336err:
06034649
AD
3337 vfree(rx_ring->rx_buffer_info);
3338 rx_ring->rx_buffer_info = NULL;
f33005a6 3339 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
9d5c8243
AK
3340 return -ENOMEM;
3341}
3342
3343/**
b980ac18
JK
3344 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
3345 * (Descriptors) for all queues
3346 * @adapter: board private structure
9d5c8243 3347 *
b980ac18 3348 * Return 0 on success, negative on failure
9d5c8243
AK
3349 **/
3350static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3351{
439705e1 3352 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
3353 int i, err = 0;
3354
3355 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 3356 err = igb_setup_rx_resources(adapter->rx_ring[i]);
9d5c8243 3357 if (err) {
439705e1 3358 dev_err(&pdev->dev,
9d5c8243
AK
3359 "Allocation for Rx Queue %u failed\n", i);
3360 for (i--; i >= 0; i--)
3025a446 3361 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
3362 break;
3363 }
3364 }
3365
3366 return err;
3367}
3368
06cf2666 3369/**
b980ac18
JK
3370 * igb_setup_mrqc - configure the multiple receive queue control registers
3371 * @adapter: Board private structure
06cf2666
AD
3372 **/
3373static void igb_setup_mrqc(struct igb_adapter *adapter)
3374{
3375 struct e1000_hw *hw = &adapter->hw;
3376 u32 mrqc, rxcsum;
ed12cc9a 3377 u32 j, num_rx_queues;
a57fe23e
AD
3378 static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
3379 0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
3380 0xA32DCB77, 0x0CF23080, 0x3BB7426A,
3381 0xFA01ACBE };
06cf2666
AD
3382
3383 /* Fill out hash function seeds */
a57fe23e
AD
3384 for (j = 0; j < 10; j++)
3385 wr32(E1000_RSSRK(j), rsskey[j]);
06cf2666 3386
a99955fc 3387 num_rx_queues = adapter->rss_queues;
06cf2666 3388
797fd4be 3389 switch (hw->mac.type) {
797fd4be
AD
3390 case e1000_82576:
3391 /* 82576 supports 2 RSS queues for SR-IOV */
ed12cc9a 3392 if (adapter->vfs_allocated_count)
06cf2666 3393 num_rx_queues = 2;
797fd4be
AD
3394 break;
3395 default:
3396 break;
06cf2666
AD
3397 }
3398
ed12cc9a
LMV
3399 if (adapter->rss_indir_tbl_init != num_rx_queues) {
3400 for (j = 0; j < IGB_RETA_SIZE; j++)
c502ea2e
CW
3401 adapter->rss_indir_tbl[j] =
3402 (j * num_rx_queues) / IGB_RETA_SIZE;
ed12cc9a 3403 adapter->rss_indir_tbl_init = num_rx_queues;
06cf2666 3404 }
ed12cc9a 3405 igb_write_rss_indir_tbl(adapter);
06cf2666 3406
b980ac18 3407 /* Disable raw packet checksumming so that RSS hash is placed in
06cf2666
AD
3408 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
3409 * offloads as they are enabled by default
3410 */
3411 rxcsum = rd32(E1000_RXCSUM);
3412 rxcsum |= E1000_RXCSUM_PCSD;
3413
3414 if (adapter->hw.mac.type >= e1000_82576)
3415 /* Enable Receive Checksum Offload for SCTP */
3416 rxcsum |= E1000_RXCSUM_CRCOFL;
3417
3418 /* Don't need to set TUOFL or IPOFL, they default to 1 */
3419 wr32(E1000_RXCSUM, rxcsum);
f96a8a0b 3420
039454a8
AA
3421 /* Generate RSS hash based on packet types, TCP/UDP
3422 * port numbers and/or IPv4/v6 src and dst addresses
3423 */
f96a8a0b
CW
3424 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3425 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3426 E1000_MRQC_RSS_FIELD_IPV6 |
3427 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3428 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
06cf2666 3429
039454a8
AA
3430 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3431 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3432 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3433 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3434
06cf2666
AD
3435 /* If VMDq is enabled then we set the appropriate mode for that, else
3436 * we default to RSS so that an RSS hash is calculated per packet even
b980ac18
JK
3437 * if we are only using one queue
3438 */
06cf2666
AD
3439 if (adapter->vfs_allocated_count) {
3440 if (hw->mac.type > e1000_82575) {
3441 /* Set the default pool for the PF's first queue */
3442 u32 vtctl = rd32(E1000_VT_CTL);
9005df38 3443
06cf2666
AD
3444 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3445 E1000_VT_CTL_DISABLE_DEF_POOL);
3446 vtctl |= adapter->vfs_allocated_count <<
3447 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3448 wr32(E1000_VT_CTL, vtctl);
3449 }
a99955fc 3450 if (adapter->rss_queues > 1)
f96a8a0b 3451 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
06cf2666 3452 else
f96a8a0b 3453 mrqc |= E1000_MRQC_ENABLE_VMDQ;
06cf2666 3454 } else {
f96a8a0b
CW
3455 if (hw->mac.type != e1000_i211)
3456 mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
06cf2666
AD
3457 }
3458 igb_vmm_control(adapter);
3459
06cf2666
AD
3460 wr32(E1000_MRQC, mrqc);
3461}
3462
9d5c8243 3463/**
b980ac18
JK
3464 * igb_setup_rctl - configure the receive control registers
3465 * @adapter: Board private structure
9d5c8243 3466 **/
d7ee5b3a 3467void igb_setup_rctl(struct igb_adapter *adapter)
9d5c8243
AK
3468{
3469 struct e1000_hw *hw = &adapter->hw;
3470 u32 rctl;
9d5c8243
AK
3471
3472 rctl = rd32(E1000_RCTL);
3473
3474 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
69d728ba 3475 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
9d5c8243 3476
69d728ba 3477 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
28b0759c 3478 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
9d5c8243 3479
b980ac18 3480 /* enable stripping of CRC. It's unlikely this will break BMC
87cb7e8c
AK
3481 * redirection as it did with e1000. Newer features require
3482 * that the HW strips the CRC.
73cd78f1 3483 */
87cb7e8c 3484 rctl |= E1000_RCTL_SECRC;
9d5c8243 3485
559e9c49 3486 /* disable store bad packets and clear size bits. */
ec54d7d6 3487 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
9d5c8243 3488
6ec43fe6
AD
3489 /* enable LPE to prevent packets larger than max_frame_size */
3490 rctl |= E1000_RCTL_LPE;
9d5c8243 3491
952f72a8
AD
3492 /* disable queue 0 to prevent tail write w/o re-config */
3493 wr32(E1000_RXDCTL(0), 0);
9d5c8243 3494
e1739522
AD
3495 /* Attention!!! For SR-IOV PF driver operations you must enable
3496 * queue drop for all VF and PF queues to prevent head of line blocking
3497 * if an un-trusted VF does not provide descriptors to hardware.
3498 */
3499 if (adapter->vfs_allocated_count) {
e1739522
AD
3500 /* set all queue drop enable bits */
3501 wr32(E1000_QDE, ALL_QUEUES);
e1739522
AD
3502 }
3503
89eaefb6
BG
3504 /* This is useful for sniffing bad packets. */
3505 if (adapter->netdev->features & NETIF_F_RXALL) {
3506 /* UPE and MPE will be handled by normal PROMISC logic
b980ac18
JK
3507 * in e1000e_set_rx_mode
3508 */
89eaefb6
BG
3509 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3510 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3511 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3512
3513 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3514 E1000_RCTL_DPF | /* Allow filtered pause */
3515 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3516 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3517 * and that breaks VLANs.
3518 */
3519 }
3520
9d5c8243
AK
3521 wr32(E1000_RCTL, rctl);
3522}
3523
7d5753f0 3524static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
9005df38 3525 int vfn)
7d5753f0
AD
3526{
3527 struct e1000_hw *hw = &adapter->hw;
3528 u32 vmolr;
3529
3530 /* if it isn't the PF check to see if VFs are enabled and
b980ac18
JK
3531 * increase the size to support vlan tags
3532 */
7d5753f0
AD
3533 if (vfn < adapter->vfs_allocated_count &&
3534 adapter->vf_data[vfn].vlans_enabled)
3535 size += VLAN_TAG_SIZE;
3536
3537 vmolr = rd32(E1000_VMOLR(vfn));
3538 vmolr &= ~E1000_VMOLR_RLPML_MASK;
3539 vmolr |= size | E1000_VMOLR_LPE;
3540 wr32(E1000_VMOLR(vfn), vmolr);
3541
3542 return 0;
3543}
3544
e1739522 3545/**
b980ac18
JK
3546 * igb_rlpml_set - set maximum receive packet size
3547 * @adapter: board private structure
e1739522 3548 *
b980ac18 3549 * Configure maximum receivable packet size.
e1739522
AD
3550 **/
3551static void igb_rlpml_set(struct igb_adapter *adapter)
3552{
153285f9 3553 u32 max_frame_size = adapter->max_frame_size;
e1739522
AD
3554 struct e1000_hw *hw = &adapter->hw;
3555 u16 pf_id = adapter->vfs_allocated_count;
3556
e1739522
AD
3557 if (pf_id) {
3558 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
b980ac18 3559 /* If we're in VMDQ or SR-IOV mode, then set global RLPML
153285f9
AD
3560 * to our max jumbo frame size, in case we need to enable
3561 * jumbo frames on one of the rings later.
3562 * This will not pass over-length frames into the default
3563 * queue because it's gated by the VMOLR.RLPML.
3564 */
7d5753f0 3565 max_frame_size = MAX_JUMBO_FRAME_SIZE;
e1739522
AD
3566 }
3567
3568 wr32(E1000_RLPML, max_frame_size);
3569}
3570
8151d294
WM
3571static inline void igb_set_vmolr(struct igb_adapter *adapter,
3572 int vfn, bool aupe)
7d5753f0
AD
3573{
3574 struct e1000_hw *hw = &adapter->hw;
3575 u32 vmolr;
3576
b980ac18 3577 /* This register exists only on 82576 and newer so if we are older then
7d5753f0
AD
3578 * we should exit and do nothing
3579 */
3580 if (hw->mac.type < e1000_82576)
3581 return;
3582
3583 vmolr = rd32(E1000_VMOLR(vfn));
b980ac18 3584 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
dc1edc67
SA
3585 if (hw->mac.type == e1000_i350) {
3586 u32 dvmolr;
3587
3588 dvmolr = rd32(E1000_DVMOLR(vfn));
3589 dvmolr |= E1000_DVMOLR_STRVLAN;
3590 wr32(E1000_DVMOLR(vfn), dvmolr);
3591 }
8151d294 3592 if (aupe)
b980ac18 3593 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
8151d294
WM
3594 else
3595 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
7d5753f0
AD
3596
3597 /* clear all bits that might not be set */
3598 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3599
a99955fc 3600 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
7d5753f0 3601 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
b980ac18 3602 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
7d5753f0
AD
3603 * multicast packets
3604 */
3605 if (vfn <= adapter->vfs_allocated_count)
b980ac18 3606 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
7d5753f0
AD
3607
3608 wr32(E1000_VMOLR(vfn), vmolr);
3609}
3610
85b430b4 3611/**
b980ac18
JK
3612 * igb_configure_rx_ring - Configure a receive ring after Reset
3613 * @adapter: board private structure
3614 * @ring: receive ring to be configured
85b430b4 3615 *
b980ac18 3616 * Configure the Rx unit of the MAC after a reset.
85b430b4 3617 **/
d7ee5b3a 3618void igb_configure_rx_ring(struct igb_adapter *adapter,
b980ac18 3619 struct igb_ring *ring)
85b430b4
AD
3620{
3621 struct e1000_hw *hw = &adapter->hw;
3622 u64 rdba = ring->dma;
3623 int reg_idx = ring->reg_idx;
a74420e0 3624 u32 srrctl = 0, rxdctl = 0;
85b430b4
AD
3625
3626 /* disable the queue */
a74420e0 3627 wr32(E1000_RXDCTL(reg_idx), 0);
85b430b4
AD
3628
3629 /* Set DMA base address registers */
3630 wr32(E1000_RDBAL(reg_idx),
3631 rdba & 0x00000000ffffffffULL);
3632 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3633 wr32(E1000_RDLEN(reg_idx),
b980ac18 3634 ring->count * sizeof(union e1000_adv_rx_desc));
85b430b4
AD
3635
3636 /* initialize head and tail */
fce99e34 3637 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
a74420e0 3638 wr32(E1000_RDH(reg_idx), 0);
fce99e34 3639 writel(0, ring->tail);
85b430b4 3640
952f72a8 3641 /* set descriptor configuration */
44390ca6 3642 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
de78d1f9 3643 srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1a1c225b 3644 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
06218a8d 3645 if (hw->mac.type >= e1000_82580)
757b77e2 3646 srrctl |= E1000_SRRCTL_TIMESTAMP;
e6bdb6fe
NN
3647 /* Only set Drop Enable if we are supporting multiple queues */
3648 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3649 srrctl |= E1000_SRRCTL_DROP_EN;
952f72a8
AD
3650
3651 wr32(E1000_SRRCTL(reg_idx), srrctl);
3652
7d5753f0 3653 /* set filtering for VMDQ pools */
8151d294 3654 igb_set_vmolr(adapter, reg_idx & 0x7, true);
7d5753f0 3655
85b430b4
AD
3656 rxdctl |= IGB_RX_PTHRESH;
3657 rxdctl |= IGB_RX_HTHRESH << 8;
3658 rxdctl |= IGB_RX_WTHRESH << 16;
a74420e0
AD
3659
3660 /* enable receive descriptor fetching */
3661 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
85b430b4
AD
3662 wr32(E1000_RXDCTL(reg_idx), rxdctl);
3663}
3664
9d5c8243 3665/**
b980ac18
JK
3666 * igb_configure_rx - Configure receive Unit after Reset
3667 * @adapter: board private structure
9d5c8243 3668 *
b980ac18 3669 * Configure the Rx unit of the MAC after a reset.
9d5c8243
AK
3670 **/
3671static void igb_configure_rx(struct igb_adapter *adapter)
3672{
9107584e 3673 int i;
9d5c8243 3674
68d480c4
AD
3675 /* set UTA to appropriate mode */
3676 igb_set_uta(adapter);
3677
26ad9178
AD
3678 /* set the correct pool for the PF default MAC address in entry 0 */
3679 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
b980ac18 3680 adapter->vfs_allocated_count);
26ad9178 3681
06cf2666 3682 /* Setup the HW Rx Head and Tail Descriptor Pointers and
b980ac18
JK
3683 * the Base and Length of the Rx Descriptor Ring
3684 */
f9d40f6a
AD
3685 for (i = 0; i < adapter->num_rx_queues; i++)
3686 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
9d5c8243
AK
3687}
3688
3689/**
b980ac18
JK
3690 * igb_free_tx_resources - Free Tx Resources per Queue
3691 * @tx_ring: Tx descriptor ring for a specific queue
9d5c8243 3692 *
b980ac18 3693 * Free all transmit software resources
9d5c8243 3694 **/
68fd9910 3695void igb_free_tx_resources(struct igb_ring *tx_ring)
9d5c8243 3696{
3b644cf6 3697 igb_clean_tx_ring(tx_ring);
9d5c8243 3698
06034649
AD
3699 vfree(tx_ring->tx_buffer_info);
3700 tx_ring->tx_buffer_info = NULL;
9d5c8243 3701
439705e1
AD
3702 /* if not set, then don't free */
3703 if (!tx_ring->desc)
3704 return;
3705
59d71989
AD
3706 dma_free_coherent(tx_ring->dev, tx_ring->size,
3707 tx_ring->desc, tx_ring->dma);
9d5c8243
AK
3708
3709 tx_ring->desc = NULL;
3710}
3711
3712/**
b980ac18
JK
3713 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3714 * @adapter: board private structure
9d5c8243 3715 *
b980ac18 3716 * Free all transmit software resources
9d5c8243
AK
3717 **/
3718static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3719{
3720 int i;
3721
3722 for (i = 0; i < adapter->num_tx_queues; i++)
17a402a0
CW
3723 if (adapter->tx_ring[i])
3724 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
3725}
3726
ebe42d16
AD
3727void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3728 struct igb_tx_buffer *tx_buffer)
3729{
3730 if (tx_buffer->skb) {
3731 dev_kfree_skb_any(tx_buffer->skb);
c9f14bf3 3732 if (dma_unmap_len(tx_buffer, len))
ebe42d16 3733 dma_unmap_single(ring->dev,
c9f14bf3
AD
3734 dma_unmap_addr(tx_buffer, dma),
3735 dma_unmap_len(tx_buffer, len),
ebe42d16 3736 DMA_TO_DEVICE);
c9f14bf3 3737 } else if (dma_unmap_len(tx_buffer, len)) {
ebe42d16 3738 dma_unmap_page(ring->dev,
c9f14bf3
AD
3739 dma_unmap_addr(tx_buffer, dma),
3740 dma_unmap_len(tx_buffer, len),
ebe42d16
AD
3741 DMA_TO_DEVICE);
3742 }
3743 tx_buffer->next_to_watch = NULL;
3744 tx_buffer->skb = NULL;
c9f14bf3 3745 dma_unmap_len_set(tx_buffer, len, 0);
ebe42d16 3746 /* buffer_info must be completely set up in the transmit path */
9d5c8243
AK
3747}
3748
3749/**
b980ac18
JK
3750 * igb_clean_tx_ring - Free Tx Buffers
3751 * @tx_ring: ring to be cleaned
9d5c8243 3752 **/
3b644cf6 3753static void igb_clean_tx_ring(struct igb_ring *tx_ring)
9d5c8243 3754{
06034649 3755 struct igb_tx_buffer *buffer_info;
9d5c8243 3756 unsigned long size;
6ad4edfc 3757 u16 i;
9d5c8243 3758
06034649 3759 if (!tx_ring->tx_buffer_info)
9d5c8243
AK
3760 return;
3761 /* Free all the Tx ring sk_buffs */
3762
3763 for (i = 0; i < tx_ring->count; i++) {
06034649 3764 buffer_info = &tx_ring->tx_buffer_info[i];
80785298 3765 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
9d5c8243
AK
3766 }
3767
dad8a3b3
JF
3768 netdev_tx_reset_queue(txring_txq(tx_ring));
3769
06034649
AD
3770 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3771 memset(tx_ring->tx_buffer_info, 0, size);
9d5c8243
AK
3772
3773 /* Zero out the descriptor ring */
9d5c8243
AK
3774 memset(tx_ring->desc, 0, tx_ring->size);
3775
3776 tx_ring->next_to_use = 0;
3777 tx_ring->next_to_clean = 0;
9d5c8243
AK
3778}
3779
3780/**
b980ac18
JK
3781 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3782 * @adapter: board private structure
9d5c8243
AK
3783 **/
3784static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3785{
3786 int i;
3787
3788 for (i = 0; i < adapter->num_tx_queues; i++)
17a402a0
CW
3789 if (adapter->tx_ring[i])
3790 igb_clean_tx_ring(adapter->tx_ring[i]);
9d5c8243
AK
3791}
3792
3793/**
b980ac18
JK
3794 * igb_free_rx_resources - Free Rx Resources
3795 * @rx_ring: ring to clean the resources from
9d5c8243 3796 *
b980ac18 3797 * Free all receive software resources
9d5c8243 3798 **/
68fd9910 3799void igb_free_rx_resources(struct igb_ring *rx_ring)
9d5c8243 3800{
3b644cf6 3801 igb_clean_rx_ring(rx_ring);
9d5c8243 3802
06034649
AD
3803 vfree(rx_ring->rx_buffer_info);
3804 rx_ring->rx_buffer_info = NULL;
9d5c8243 3805
439705e1
AD
3806 /* if not set, then don't free */
3807 if (!rx_ring->desc)
3808 return;
3809
59d71989
AD
3810 dma_free_coherent(rx_ring->dev, rx_ring->size,
3811 rx_ring->desc, rx_ring->dma);
9d5c8243
AK
3812
3813 rx_ring->desc = NULL;
3814}
3815
3816/**
b980ac18
JK
3817 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3818 * @adapter: board private structure
9d5c8243 3819 *
b980ac18 3820 * Free all receive software resources
9d5c8243
AK
3821 **/
3822static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3823{
3824 int i;
3825
3826 for (i = 0; i < adapter->num_rx_queues; i++)
17a402a0
CW
3827 if (adapter->rx_ring[i])
3828 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
3829}
3830
3831/**
b980ac18
JK
3832 * igb_clean_rx_ring - Free Rx Buffers per Queue
3833 * @rx_ring: ring to free buffers from
9d5c8243 3834 **/
3b644cf6 3835static void igb_clean_rx_ring(struct igb_ring *rx_ring)
9d5c8243 3836{
9d5c8243 3837 unsigned long size;
c023cd88 3838 u16 i;
9d5c8243 3839
1a1c225b
AD
3840 if (rx_ring->skb)
3841 dev_kfree_skb(rx_ring->skb);
3842 rx_ring->skb = NULL;
3843
06034649 3844 if (!rx_ring->rx_buffer_info)
9d5c8243 3845 return;
439705e1 3846
9d5c8243
AK
3847 /* Free all the Rx ring sk_buffs */
3848 for (i = 0; i < rx_ring->count; i++) {
06034649 3849 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
9d5c8243 3850
cbc8e55f
AD
3851 if (!buffer_info->page)
3852 continue;
3853
3854 dma_unmap_page(rx_ring->dev,
3855 buffer_info->dma,
3856 PAGE_SIZE,
3857 DMA_FROM_DEVICE);
3858 __free_page(buffer_info->page);
3859
1a1c225b 3860 buffer_info->page = NULL;
9d5c8243
AK
3861 }
3862
06034649
AD
3863 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3864 memset(rx_ring->rx_buffer_info, 0, size);
9d5c8243
AK
3865
3866 /* Zero out the descriptor ring */
3867 memset(rx_ring->desc, 0, rx_ring->size);
3868
cbc8e55f 3869 rx_ring->next_to_alloc = 0;
9d5c8243
AK
3870 rx_ring->next_to_clean = 0;
3871 rx_ring->next_to_use = 0;
9d5c8243
AK
3872}
3873
3874/**
b980ac18
JK
3875 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3876 * @adapter: board private structure
9d5c8243
AK
3877 **/
3878static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3879{
3880 int i;
3881
3882 for (i = 0; i < adapter->num_rx_queues; i++)
17a402a0
CW
3883 if (adapter->rx_ring[i])
3884 igb_clean_rx_ring(adapter->rx_ring[i]);
9d5c8243
AK
3885}
3886
3887/**
b980ac18
JK
3888 * igb_set_mac - Change the Ethernet Address of the NIC
3889 * @netdev: network interface device structure
3890 * @p: pointer to an address structure
9d5c8243 3891 *
b980ac18 3892 * Returns 0 on success, negative on failure
9d5c8243
AK
3893 **/
3894static int igb_set_mac(struct net_device *netdev, void *p)
3895{
3896 struct igb_adapter *adapter = netdev_priv(netdev);
28b0759c 3897 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
3898 struct sockaddr *addr = p;
3899
3900 if (!is_valid_ether_addr(addr->sa_data))
3901 return -EADDRNOTAVAIL;
3902
3903 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
28b0759c 3904 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
9d5c8243 3905
26ad9178
AD
3906 /* set the correct pool for the new PF MAC address in entry 0 */
3907 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
b980ac18 3908 adapter->vfs_allocated_count);
e1739522 3909
9d5c8243
AK
3910 return 0;
3911}
3912
3913/**
b980ac18
JK
3914 * igb_write_mc_addr_list - write multicast addresses to MTA
3915 * @netdev: network interface device structure
9d5c8243 3916 *
b980ac18
JK
3917 * Writes multicast address list to the MTA hash table.
3918 * Returns: -ENOMEM on failure
3919 * 0 on no addresses written
3920 * X on writing X addresses to MTA
9d5c8243 3921 **/
68d480c4 3922static int igb_write_mc_addr_list(struct net_device *netdev)
9d5c8243
AK
3923{
3924 struct igb_adapter *adapter = netdev_priv(netdev);
3925 struct e1000_hw *hw = &adapter->hw;
22bedad3 3926 struct netdev_hw_addr *ha;
68d480c4 3927 u8 *mta_list;
9d5c8243
AK
3928 int i;
3929
4cd24eaf 3930 if (netdev_mc_empty(netdev)) {
68d480c4
AD
3931 /* nothing to program, so clear mc list */
3932 igb_update_mc_addr_list(hw, NULL, 0);
3933 igb_restore_vf_multicasts(adapter);
3934 return 0;
3935 }
9d5c8243 3936
4cd24eaf 3937 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
68d480c4
AD
3938 if (!mta_list)
3939 return -ENOMEM;
ff41f8dc 3940
68d480c4 3941 /* The shared function expects a packed array of only addresses. */
48e2f183 3942 i = 0;
22bedad3
JP
3943 netdev_for_each_mc_addr(ha, netdev)
3944 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
68d480c4 3945
68d480c4
AD
3946 igb_update_mc_addr_list(hw, mta_list, i);
3947 kfree(mta_list);
3948
4cd24eaf 3949 return netdev_mc_count(netdev);
68d480c4
AD
3950}
3951
3952/**
b980ac18
JK
3953 * igb_write_uc_addr_list - write unicast addresses to RAR table
3954 * @netdev: network interface device structure
68d480c4 3955 *
b980ac18
JK
3956 * Writes unicast address list to the RAR table.
3957 * Returns: -ENOMEM on failure/insufficient address space
3958 * 0 on no addresses written
3959 * X on writing X addresses to the RAR table
68d480c4
AD
3960 **/
3961static int igb_write_uc_addr_list(struct net_device *netdev)
3962{
3963 struct igb_adapter *adapter = netdev_priv(netdev);
3964 struct e1000_hw *hw = &adapter->hw;
3965 unsigned int vfn = adapter->vfs_allocated_count;
3966 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3967 int count = 0;
3968
3969 /* return ENOMEM indicating insufficient memory for addresses */
32e7bfc4 3970 if (netdev_uc_count(netdev) > rar_entries)
68d480c4 3971 return -ENOMEM;
9d5c8243 3972
32e7bfc4 3973 if (!netdev_uc_empty(netdev) && rar_entries) {
ff41f8dc 3974 struct netdev_hw_addr *ha;
32e7bfc4
JP
3975
3976 netdev_for_each_uc_addr(ha, netdev) {
ff41f8dc
AD
3977 if (!rar_entries)
3978 break;
26ad9178 3979 igb_rar_set_qsel(adapter, ha->addr,
b980ac18
JK
3980 rar_entries--,
3981 vfn);
68d480c4 3982 count++;
ff41f8dc
AD
3983 }
3984 }
3985 /* write the addresses in reverse order to avoid write combining */
3986 for (; rar_entries > 0 ; rar_entries--) {
3987 wr32(E1000_RAH(rar_entries), 0);
3988 wr32(E1000_RAL(rar_entries), 0);
3989 }
3990 wrfl();
3991
68d480c4
AD
3992 return count;
3993}
3994
3995/**
b980ac18
JK
3996 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3997 * @netdev: network interface device structure
68d480c4 3998 *
b980ac18
JK
3999 * The set_rx_mode entry point is called whenever the unicast or multicast
4000 * address lists or the network interface flags are updated. This routine is
4001 * responsible for configuring the hardware for proper unicast, multicast,
4002 * promiscuous mode, and all-multi behavior.
68d480c4
AD
4003 **/
4004static void igb_set_rx_mode(struct net_device *netdev)
4005{
4006 struct igb_adapter *adapter = netdev_priv(netdev);
4007 struct e1000_hw *hw = &adapter->hw;
4008 unsigned int vfn = adapter->vfs_allocated_count;
4009 u32 rctl, vmolr = 0;
4010 int count;
4011
4012 /* Check for Promiscuous and All Multicast modes */
4013 rctl = rd32(E1000_RCTL);
4014
4015 /* clear the effected bits */
4016 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
4017
4018 if (netdev->flags & IFF_PROMISC) {
6f3dc319 4019 /* retain VLAN HW filtering if in VT mode */
7e44892c 4020 if (adapter->vfs_allocated_count)
6f3dc319 4021 rctl |= E1000_RCTL_VFE;
68d480c4
AD
4022 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
4023 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
4024 } else {
4025 if (netdev->flags & IFF_ALLMULTI) {
4026 rctl |= E1000_RCTL_MPE;
4027 vmolr |= E1000_VMOLR_MPME;
4028 } else {
b980ac18 4029 /* Write addresses to the MTA, if the attempt fails
25985edc 4030 * then we should just turn on promiscuous mode so
68d480c4
AD
4031 * that we can at least receive multicast traffic
4032 */
4033 count = igb_write_mc_addr_list(netdev);
4034 if (count < 0) {
4035 rctl |= E1000_RCTL_MPE;
4036 vmolr |= E1000_VMOLR_MPME;
4037 } else if (count) {
4038 vmolr |= E1000_VMOLR_ROMPE;
4039 }
4040 }
b980ac18 4041 /* Write addresses to available RAR registers, if there is not
68d480c4 4042 * sufficient space to store all the addresses then enable
25985edc 4043 * unicast promiscuous mode
68d480c4
AD
4044 */
4045 count = igb_write_uc_addr_list(netdev);
4046 if (count < 0) {
4047 rctl |= E1000_RCTL_UPE;
4048 vmolr |= E1000_VMOLR_ROPE;
4049 }
4050 rctl |= E1000_RCTL_VFE;
28fc06f5 4051 }
68d480c4 4052 wr32(E1000_RCTL, rctl);
28fc06f5 4053
b980ac18 4054 /* In order to support SR-IOV and eventually VMDq it is necessary to set
68d480c4
AD
4055 * the VMOLR to enable the appropriate modes. Without this workaround
4056 * we will have issues with VLAN tag stripping not being done for frames
4057 * that are only arriving because we are the default pool
4058 */
f96a8a0b 4059 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
28fc06f5 4060 return;
9d5c8243 4061
68d480c4 4062 vmolr |= rd32(E1000_VMOLR(vfn)) &
b980ac18 4063 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
68d480c4 4064 wr32(E1000_VMOLR(vfn), vmolr);
28fc06f5 4065 igb_restore_vf_multicasts(adapter);
9d5c8243
AK
4066}
4067
13800469
GR
4068static void igb_check_wvbr(struct igb_adapter *adapter)
4069{
4070 struct e1000_hw *hw = &adapter->hw;
4071 u32 wvbr = 0;
4072
4073 switch (hw->mac.type) {
4074 case e1000_82576:
4075 case e1000_i350:
81ad807b
CW
4076 wvbr = rd32(E1000_WVBR);
4077 if (!wvbr)
13800469
GR
4078 return;
4079 break;
4080 default:
4081 break;
4082 }
4083
4084 adapter->wvbr |= wvbr;
4085}
4086
4087#define IGB_STAGGERED_QUEUE_OFFSET 8
4088
4089static void igb_spoof_check(struct igb_adapter *adapter)
4090{
4091 int j;
4092
4093 if (!adapter->wvbr)
4094 return;
4095
9005df38 4096 for (j = 0; j < adapter->vfs_allocated_count; j++) {
13800469
GR
4097 if (adapter->wvbr & (1 << j) ||
4098 adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
4099 dev_warn(&adapter->pdev->dev,
4100 "Spoof event(s) detected on VF %d\n", j);
4101 adapter->wvbr &=
4102 ~((1 << j) |
4103 (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
4104 }
4105 }
4106}
4107
9d5c8243 4108/* Need to wait a few seconds after link up to get diagnostic information from
b980ac18
JK
4109 * the phy
4110 */
9d5c8243
AK
4111static void igb_update_phy_info(unsigned long data)
4112{
4113 struct igb_adapter *adapter = (struct igb_adapter *) data;
f5f4cf08 4114 igb_get_phy_info(&adapter->hw);
9d5c8243
AK
4115}
4116
4d6b725e 4117/**
b980ac18
JK
4118 * igb_has_link - check shared code for link and determine up/down
4119 * @adapter: pointer to driver private info
4d6b725e 4120 **/
3145535a 4121bool igb_has_link(struct igb_adapter *adapter)
4d6b725e
AD
4122{
4123 struct e1000_hw *hw = &adapter->hw;
4124 bool link_active = false;
4d6b725e
AD
4125
4126 /* get_link_status is set on LSC (link status) interrupt or
4127 * rx sequence error interrupt. get_link_status will stay
4128 * false until the e1000_check_for_link establishes link
4129 * for copper adapters ONLY
4130 */
4131 switch (hw->phy.media_type) {
4132 case e1000_media_type_copper:
e5c3370f
AA
4133 if (!hw->mac.get_link_status)
4134 return true;
4d6b725e 4135 case e1000_media_type_internal_serdes:
e5c3370f
AA
4136 hw->mac.ops.check_for_link(hw);
4137 link_active = !hw->mac.get_link_status;
4d6b725e
AD
4138 break;
4139 default:
4140 case e1000_media_type_unknown:
4141 break;
4142 }
4143
aa9b8cc4
AA
4144 if (((hw->mac.type == e1000_i210) ||
4145 (hw->mac.type == e1000_i211)) &&
4146 (hw->phy.id == I210_I_PHY_ID)) {
4147 if (!netif_carrier_ok(adapter->netdev)) {
4148 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4149 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4150 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4151 adapter->link_check_timeout = jiffies;
4152 }
4153 }
4154
4d6b725e
AD
4155 return link_active;
4156}
4157
563988dc
SA
4158static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4159{
4160 bool ret = false;
4161 u32 ctrl_ext, thstat;
4162
f96a8a0b 4163 /* check for thermal sensor event on i350 copper only */
563988dc
SA
4164 if (hw->mac.type == e1000_i350) {
4165 thstat = rd32(E1000_THSTAT);
4166 ctrl_ext = rd32(E1000_CTRL_EXT);
4167
4168 if ((hw->phy.media_type == e1000_media_type_copper) &&
5c17a203 4169 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
563988dc 4170 ret = !!(thstat & event);
563988dc
SA
4171 }
4172
4173 return ret;
4174}
4175
1516f0a6
CW
4176/**
4177 * igb_check_lvmmc - check for malformed packets received
4178 * and indicated in LVMMC register
4179 * @adapter: pointer to adapter
4180 **/
4181static void igb_check_lvmmc(struct igb_adapter *adapter)
4182{
4183 struct e1000_hw *hw = &adapter->hw;
4184 u32 lvmmc;
4185
4186 lvmmc = rd32(E1000_LVMMC);
4187 if (lvmmc) {
4188 if (unlikely(net_ratelimit())) {
4189 netdev_warn(adapter->netdev,
4190 "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
4191 lvmmc);
4192 }
4193 }
4194}
4195
9d5c8243 4196/**
b980ac18
JK
4197 * igb_watchdog - Timer Call-back
4198 * @data: pointer to adapter cast into an unsigned long
9d5c8243
AK
4199 **/
4200static void igb_watchdog(unsigned long data)
4201{
4202 struct igb_adapter *adapter = (struct igb_adapter *)data;
4203 /* Do the rest outside of interrupt context */
4204 schedule_work(&adapter->watchdog_task);
4205}
4206
4207static void igb_watchdog_task(struct work_struct *work)
4208{
4209 struct igb_adapter *adapter = container_of(work,
b980ac18
JK
4210 struct igb_adapter,
4211 watchdog_task);
9d5c8243 4212 struct e1000_hw *hw = &adapter->hw;
c0ba4778 4213 struct e1000_phy_info *phy = &hw->phy;
9d5c8243 4214 struct net_device *netdev = adapter->netdev;
563988dc 4215 u32 link;
7a6ea550 4216 int i;
56cec249 4217 u32 connsw;
9d5c8243 4218
4d6b725e 4219 link = igb_has_link(adapter);
aa9b8cc4
AA
4220
4221 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4222 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4223 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4224 else
4225 link = false;
4226 }
4227
56cec249
CW
4228 /* Force link down if we have fiber to swap to */
4229 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4230 if (hw->phy.media_type == e1000_media_type_copper) {
4231 connsw = rd32(E1000_CONNSW);
4232 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4233 link = 0;
4234 }
4235 }
9d5c8243 4236 if (link) {
2bdfc4e2
CW
4237 /* Perform a reset if the media type changed. */
4238 if (hw->dev_spec._82575.media_changed) {
4239 hw->dev_spec._82575.media_changed = false;
4240 adapter->flags |= IGB_FLAG_MEDIA_RESET;
4241 igb_reset(adapter);
4242 }
749ab2cd
YZ
4243 /* Cancel scheduled suspend requests. */
4244 pm_runtime_resume(netdev->dev.parent);
4245
9d5c8243
AK
4246 if (!netif_carrier_ok(netdev)) {
4247 u32 ctrl;
9005df38 4248
330a6d6a 4249 hw->mac.ops.get_speed_and_duplex(hw,
b980ac18
JK
4250 &adapter->link_speed,
4251 &adapter->link_duplex);
9d5c8243
AK
4252
4253 ctrl = rd32(E1000_CTRL);
527d47c1 4254 /* Links status message must follow this format */
c75c4edf
CW
4255 netdev_info(netdev,
4256 "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
559e9c49
AD
4257 netdev->name,
4258 adapter->link_speed,
4259 adapter->link_duplex == FULL_DUPLEX ?
876d2d6f
JK
4260 "Full" : "Half",
4261 (ctrl & E1000_CTRL_TFCE) &&
4262 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4263 (ctrl & E1000_CTRL_RFCE) ? "RX" :
4264 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
9d5c8243 4265
f4c01e96
CW
4266 /* disable EEE if enabled */
4267 if ((adapter->flags & IGB_FLAG_EEE) &&
4268 (adapter->link_duplex == HALF_DUPLEX)) {
4269 dev_info(&adapter->pdev->dev,
4270 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4271 adapter->hw.dev_spec._82575.eee_disable = true;
4272 adapter->flags &= ~IGB_FLAG_EEE;
4273 }
4274
c0ba4778
KS
4275 /* check if SmartSpeed worked */
4276 igb_check_downshift(hw);
4277 if (phy->speed_downgraded)
4278 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4279
563988dc 4280 /* check for thermal sensor event */
876d2d6f 4281 if (igb_thermal_sensor_event(hw,
d34a15ab 4282 E1000_THSTAT_LINK_THROTTLE))
c75c4edf 4283 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
563988dc 4284
d07f3e37 4285 /* adjust timeout factor according to speed/duplex */
9d5c8243
AK
4286 adapter->tx_timeout_factor = 1;
4287 switch (adapter->link_speed) {
4288 case SPEED_10:
9d5c8243
AK
4289 adapter->tx_timeout_factor = 14;
4290 break;
4291 case SPEED_100:
9d5c8243
AK
4292 /* maybe add some timeout factor ? */
4293 break;
4294 }
4295
4296 netif_carrier_on(netdev);
9d5c8243 4297
4ae196df 4298 igb_ping_all_vfs(adapter);
17dc566c 4299 igb_check_vf_rate_limit(adapter);
4ae196df 4300
4b1a9877 4301 /* link state has changed, schedule phy info update */
9d5c8243
AK
4302 if (!test_bit(__IGB_DOWN, &adapter->state))
4303 mod_timer(&adapter->phy_info_timer,
4304 round_jiffies(jiffies + 2 * HZ));
4305 }
4306 } else {
4307 if (netif_carrier_ok(netdev)) {
4308 adapter->link_speed = 0;
4309 adapter->link_duplex = 0;
563988dc
SA
4310
4311 /* check for thermal sensor event */
876d2d6f
JK
4312 if (igb_thermal_sensor_event(hw,
4313 E1000_THSTAT_PWR_DOWN)) {
c75c4edf 4314 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
7ef5ed1c 4315 }
563988dc 4316
527d47c1 4317 /* Links status message must follow this format */
c75c4edf 4318 netdev_info(netdev, "igb: %s NIC Link is Down\n",
527d47c1 4319 netdev->name);
9d5c8243 4320 netif_carrier_off(netdev);
4b1a9877 4321
4ae196df
AD
4322 igb_ping_all_vfs(adapter);
4323
4b1a9877 4324 /* link state has changed, schedule phy info update */
9d5c8243
AK
4325 if (!test_bit(__IGB_DOWN, &adapter->state))
4326 mod_timer(&adapter->phy_info_timer,
4327 round_jiffies(jiffies + 2 * HZ));
749ab2cd 4328
56cec249
CW
4329 /* link is down, time to check for alternate media */
4330 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4331 igb_check_swap_media(adapter);
4332 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4333 schedule_work(&adapter->reset_task);
4334 /* return immediately */
4335 return;
4336 }
4337 }
749ab2cd
YZ
4338 pm_schedule_suspend(netdev->dev.parent,
4339 MSEC_PER_SEC * 5);
56cec249
CW
4340
4341 /* also check for alternate media here */
4342 } else if (!netif_carrier_ok(netdev) &&
4343 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4344 igb_check_swap_media(adapter);
4345 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4346 schedule_work(&adapter->reset_task);
4347 /* return immediately */
4348 return;
4349 }
9d5c8243
AK
4350 }
4351 }
4352
12dcd86b
ED
4353 spin_lock(&adapter->stats64_lock);
4354 igb_update_stats(adapter, &adapter->stats64);
4355 spin_unlock(&adapter->stats64_lock);
9d5c8243 4356
dbabb065 4357 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 4358 struct igb_ring *tx_ring = adapter->tx_ring[i];
dbabb065 4359 if (!netif_carrier_ok(netdev)) {
9d5c8243
AK
4360 /* We've lost link, so the controller stops DMA,
4361 * but we've got queued Tx work that's never going
4362 * to get done, so reset controller to flush Tx.
b980ac18
JK
4363 * (Do the reset outside of interrupt context).
4364 */
dbabb065
AD
4365 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4366 adapter->tx_timeout_count++;
4367 schedule_work(&adapter->reset_task);
4368 /* return immediately since reset is imminent */
4369 return;
4370 }
9d5c8243 4371 }
9d5c8243 4372
dbabb065 4373 /* Force detection of hung controller every watchdog period */
6d095fa8 4374 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
dbabb065 4375 }
f7ba205e 4376
b980ac18 4377 /* Cause software interrupt to ensure Rx ring is cleaned */
cd14ef54 4378 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
047e0030 4379 u32 eics = 0;
9005df38 4380
0d1ae7f4
AD
4381 for (i = 0; i < adapter->num_q_vectors; i++)
4382 eics |= adapter->q_vector[i]->eims_value;
7a6ea550
AD
4383 wr32(E1000_EICS, eics);
4384 } else {
4385 wr32(E1000_ICS, E1000_ICS_RXDMT0);
4386 }
9d5c8243 4387
13800469 4388 igb_spoof_check(adapter);
fc580751 4389 igb_ptp_rx_hang(adapter);
13800469 4390
1516f0a6
CW
4391 /* Check LVMMC register on i350/i354 only */
4392 if ((adapter->hw.mac.type == e1000_i350) ||
4393 (adapter->hw.mac.type == e1000_i354))
4394 igb_check_lvmmc(adapter);
4395
9d5c8243 4396 /* Reset the timer */
aa9b8cc4
AA
4397 if (!test_bit(__IGB_DOWN, &adapter->state)) {
4398 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4399 mod_timer(&adapter->watchdog_timer,
4400 round_jiffies(jiffies + HZ));
4401 else
4402 mod_timer(&adapter->watchdog_timer,
4403 round_jiffies(jiffies + 2 * HZ));
4404 }
9d5c8243
AK
4405}
4406
4407enum latency_range {
4408 lowest_latency = 0,
4409 low_latency = 1,
4410 bulk_latency = 2,
4411 latency_invalid = 255
4412};
4413
6eb5a7f1 4414/**
b980ac18
JK
4415 * igb_update_ring_itr - update the dynamic ITR value based on packet size
4416 * @q_vector: pointer to q_vector
6eb5a7f1 4417 *
b980ac18
JK
4418 * Stores a new ITR value based on strictly on packet size. This
4419 * algorithm is less sophisticated than that used in igb_update_itr,
4420 * due to the difficulty of synchronizing statistics across multiple
4421 * receive rings. The divisors and thresholds used by this function
4422 * were determined based on theoretical maximum wire speed and testing
4423 * data, in order to minimize response time while increasing bulk
4424 * throughput.
406d4965 4425 * This functionality is controlled by ethtool's coalescing settings.
b980ac18
JK
4426 * NOTE: This function is called only when operating in a multiqueue
4427 * receive environment.
6eb5a7f1 4428 **/
047e0030 4429static void igb_update_ring_itr(struct igb_q_vector *q_vector)
9d5c8243 4430{
047e0030 4431 int new_val = q_vector->itr_val;
6eb5a7f1 4432 int avg_wire_size = 0;
047e0030 4433 struct igb_adapter *adapter = q_vector->adapter;
12dcd86b 4434 unsigned int packets;
9d5c8243 4435
6eb5a7f1
AD
4436 /* For non-gigabit speeds, just fix the interrupt rate at 4000
4437 * ints/sec - ITR timer value of 120 ticks.
4438 */
4439 if (adapter->link_speed != SPEED_1000) {
0ba82994 4440 new_val = IGB_4K_ITR;
6eb5a7f1 4441 goto set_itr_val;
9d5c8243 4442 }
047e0030 4443
0ba82994
AD
4444 packets = q_vector->rx.total_packets;
4445 if (packets)
4446 avg_wire_size = q_vector->rx.total_bytes / packets;
047e0030 4447
0ba82994
AD
4448 packets = q_vector->tx.total_packets;
4449 if (packets)
4450 avg_wire_size = max_t(u32, avg_wire_size,
4451 q_vector->tx.total_bytes / packets);
047e0030
AD
4452
4453 /* if avg_wire_size isn't set no work was done */
4454 if (!avg_wire_size)
4455 goto clear_counts;
9d5c8243 4456
6eb5a7f1
AD
4457 /* Add 24 bytes to size to account for CRC, preamble, and gap */
4458 avg_wire_size += 24;
4459
4460 /* Don't starve jumbo frames */
4461 avg_wire_size = min(avg_wire_size, 3000);
9d5c8243 4462
6eb5a7f1
AD
4463 /* Give a little boost to mid-size frames */
4464 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4465 new_val = avg_wire_size / 3;
4466 else
4467 new_val = avg_wire_size / 2;
9d5c8243 4468
0ba82994
AD
4469 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4470 if (new_val < IGB_20K_ITR &&
4471 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4472 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4473 new_val = IGB_20K_ITR;
abe1c363 4474
6eb5a7f1 4475set_itr_val:
047e0030
AD
4476 if (new_val != q_vector->itr_val) {
4477 q_vector->itr_val = new_val;
4478 q_vector->set_itr = 1;
9d5c8243 4479 }
6eb5a7f1 4480clear_counts:
0ba82994
AD
4481 q_vector->rx.total_bytes = 0;
4482 q_vector->rx.total_packets = 0;
4483 q_vector->tx.total_bytes = 0;
4484 q_vector->tx.total_packets = 0;
9d5c8243
AK
4485}
4486
4487/**
b980ac18
JK
4488 * igb_update_itr - update the dynamic ITR value based on statistics
4489 * @q_vector: pointer to q_vector
4490 * @ring_container: ring info to update the itr for
4491 *
4492 * Stores a new ITR value based on packets and byte
4493 * counts during the last interrupt. The advantage of per interrupt
4494 * computation is faster updates and more accurate ITR for the current
4495 * traffic pattern. Constants in this function were computed
4496 * based on theoretical maximum wire speed and thresholds were set based
4497 * on testing data as well as attempting to minimize response time
4498 * while increasing bulk throughput.
406d4965 4499 * This functionality is controlled by ethtool's coalescing settings.
b980ac18
JK
4500 * NOTE: These calculations are only valid when operating in a single-
4501 * queue environment.
9d5c8243 4502 **/
0ba82994
AD
4503static void igb_update_itr(struct igb_q_vector *q_vector,
4504 struct igb_ring_container *ring_container)
9d5c8243 4505{
0ba82994
AD
4506 unsigned int packets = ring_container->total_packets;
4507 unsigned int bytes = ring_container->total_bytes;
4508 u8 itrval = ring_container->itr;
9d5c8243 4509
0ba82994 4510 /* no packets, exit with status unchanged */
9d5c8243 4511 if (packets == 0)
0ba82994 4512 return;
9d5c8243 4513
0ba82994 4514 switch (itrval) {
9d5c8243
AK
4515 case lowest_latency:
4516 /* handle TSO and jumbo frames */
4517 if (bytes/packets > 8000)
0ba82994 4518 itrval = bulk_latency;
9d5c8243 4519 else if ((packets < 5) && (bytes > 512))
0ba82994 4520 itrval = low_latency;
9d5c8243
AK
4521 break;
4522 case low_latency: /* 50 usec aka 20000 ints/s */
4523 if (bytes > 10000) {
4524 /* this if handles the TSO accounting */
d34a15ab 4525 if (bytes/packets > 8000)
0ba82994 4526 itrval = bulk_latency;
d34a15ab 4527 else if ((packets < 10) || ((bytes/packets) > 1200))
0ba82994 4528 itrval = bulk_latency;
d34a15ab 4529 else if ((packets > 35))
0ba82994 4530 itrval = lowest_latency;
9d5c8243 4531 } else if (bytes/packets > 2000) {
0ba82994 4532 itrval = bulk_latency;
9d5c8243 4533 } else if (packets <= 2 && bytes < 512) {
0ba82994 4534 itrval = lowest_latency;
9d5c8243
AK
4535 }
4536 break;
4537 case bulk_latency: /* 250 usec aka 4000 ints/s */
4538 if (bytes > 25000) {
4539 if (packets > 35)
0ba82994 4540 itrval = low_latency;
1e5c3d21 4541 } else if (bytes < 1500) {
0ba82994 4542 itrval = low_latency;
9d5c8243
AK
4543 }
4544 break;
4545 }
4546
0ba82994
AD
4547 /* clear work counters since we have the values we need */
4548 ring_container->total_bytes = 0;
4549 ring_container->total_packets = 0;
4550
4551 /* write updated itr to ring container */
4552 ring_container->itr = itrval;
9d5c8243
AK
4553}
4554
0ba82994 4555static void igb_set_itr(struct igb_q_vector *q_vector)
9d5c8243 4556{
0ba82994 4557 struct igb_adapter *adapter = q_vector->adapter;
047e0030 4558 u32 new_itr = q_vector->itr_val;
0ba82994 4559 u8 current_itr = 0;
9d5c8243
AK
4560
4561 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4562 if (adapter->link_speed != SPEED_1000) {
4563 current_itr = 0;
0ba82994 4564 new_itr = IGB_4K_ITR;
9d5c8243
AK
4565 goto set_itr_now;
4566 }
4567
0ba82994
AD
4568 igb_update_itr(q_vector, &q_vector->tx);
4569 igb_update_itr(q_vector, &q_vector->rx);
9d5c8243 4570
0ba82994 4571 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
9d5c8243 4572
6eb5a7f1 4573 /* conservative mode (itr 3) eliminates the lowest_latency setting */
0ba82994
AD
4574 if (current_itr == lowest_latency &&
4575 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4576 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
6eb5a7f1
AD
4577 current_itr = low_latency;
4578
9d5c8243
AK
4579 switch (current_itr) {
4580 /* counts and packets in update_itr are dependent on these numbers */
4581 case lowest_latency:
0ba82994 4582 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
9d5c8243
AK
4583 break;
4584 case low_latency:
0ba82994 4585 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
9d5c8243
AK
4586 break;
4587 case bulk_latency:
0ba82994 4588 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
9d5c8243
AK
4589 break;
4590 default:
4591 break;
4592 }
4593
4594set_itr_now:
047e0030 4595 if (new_itr != q_vector->itr_val) {
9d5c8243
AK
4596 /* this attempts to bias the interrupt rate towards Bulk
4597 * by adding intermediate steps when interrupt rate is
b980ac18
JK
4598 * increasing
4599 */
047e0030 4600 new_itr = new_itr > q_vector->itr_val ?
b980ac18
JK
4601 max((new_itr * q_vector->itr_val) /
4602 (new_itr + (q_vector->itr_val >> 2)),
4603 new_itr) : new_itr;
9d5c8243
AK
4604 /* Don't write the value here; it resets the adapter's
4605 * internal timer, and causes us to delay far longer than
4606 * we should between interrupts. Instead, we write the ITR
4607 * value at the beginning of the next interrupt so the timing
4608 * ends up being correct.
4609 */
047e0030
AD
4610 q_vector->itr_val = new_itr;
4611 q_vector->set_itr = 1;
9d5c8243 4612 }
9d5c8243
AK
4613}
4614
c50b52a0
SH
4615static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4616 u32 type_tucmd, u32 mss_l4len_idx)
7d13a7d0
AD
4617{
4618 struct e1000_adv_tx_context_desc *context_desc;
4619 u16 i = tx_ring->next_to_use;
4620
4621 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4622
4623 i++;
4624 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4625
4626 /* set bits to identify this as an advanced context descriptor */
4627 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4628
4629 /* For 82575, context index must be unique per ring. */
866cff06 4630 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
7d13a7d0
AD
4631 mss_l4len_idx |= tx_ring->reg_idx << 4;
4632
4633 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
4634 context_desc->seqnum_seed = 0;
4635 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
4636 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
4637}
4638
7af40ad9
AD
4639static int igb_tso(struct igb_ring *tx_ring,
4640 struct igb_tx_buffer *first,
4641 u8 *hdr_len)
9d5c8243 4642{
7af40ad9 4643 struct sk_buff *skb = first->skb;
7d13a7d0
AD
4644 u32 vlan_macip_lens, type_tucmd;
4645 u32 mss_l4len_idx, l4len;
06c14e5a 4646 int err;
7d13a7d0 4647
ed6aa105
AD
4648 if (skb->ip_summed != CHECKSUM_PARTIAL)
4649 return 0;
4650
7d13a7d0
AD
4651 if (!skb_is_gso(skb))
4652 return 0;
9d5c8243 4653
06c14e5a
FR
4654 err = skb_cow_head(skb, 0);
4655 if (err < 0)
4656 return err;
9d5c8243 4657
7d13a7d0
AD
4658 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4659 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
9d5c8243 4660
7c4d16ff 4661 if (first->protocol == htons(ETH_P_IP)) {
9d5c8243
AK
4662 struct iphdr *iph = ip_hdr(skb);
4663 iph->tot_len = 0;
4664 iph->check = 0;
4665 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4666 iph->daddr, 0,
4667 IPPROTO_TCP,
4668 0);
7d13a7d0 4669 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
7af40ad9
AD
4670 first->tx_flags |= IGB_TX_FLAGS_TSO |
4671 IGB_TX_FLAGS_CSUM |
4672 IGB_TX_FLAGS_IPV4;
8e1e8a47 4673 } else if (skb_is_gso_v6(skb)) {
9d5c8243
AK
4674 ipv6_hdr(skb)->payload_len = 0;
4675 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4676 &ipv6_hdr(skb)->daddr,
4677 0, IPPROTO_TCP, 0);
7af40ad9
AD
4678 first->tx_flags |= IGB_TX_FLAGS_TSO |
4679 IGB_TX_FLAGS_CSUM;
9d5c8243
AK
4680 }
4681
7af40ad9 4682 /* compute header lengths */
7d13a7d0
AD
4683 l4len = tcp_hdrlen(skb);
4684 *hdr_len = skb_transport_offset(skb) + l4len;
9d5c8243 4685
7af40ad9
AD
4686 /* update gso size and bytecount with header size */
4687 first->gso_segs = skb_shinfo(skb)->gso_segs;
4688 first->bytecount += (first->gso_segs - 1) * *hdr_len;
4689
9d5c8243 4690 /* MSS L4LEN IDX */
7d13a7d0
AD
4691 mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4692 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
9d5c8243 4693
7d13a7d0
AD
4694 /* VLAN MACLEN IPLEN */
4695 vlan_macip_lens = skb_network_header_len(skb);
4696 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
7af40ad9 4697 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
9d5c8243 4698
7d13a7d0 4699 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
9d5c8243 4700
7d13a7d0 4701 return 1;
9d5c8243
AK
4702}
4703
7af40ad9 4704static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
9d5c8243 4705{
7af40ad9 4706 struct sk_buff *skb = first->skb;
7d13a7d0
AD
4707 u32 vlan_macip_lens = 0;
4708 u32 mss_l4len_idx = 0;
4709 u32 type_tucmd = 0;
9d5c8243 4710
7d13a7d0 4711 if (skb->ip_summed != CHECKSUM_PARTIAL) {
7af40ad9
AD
4712 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4713 return;
7d13a7d0
AD
4714 } else {
4715 u8 l4_hdr = 0;
9005df38 4716
7af40ad9 4717 switch (first->protocol) {
7c4d16ff 4718 case htons(ETH_P_IP):
7d13a7d0
AD
4719 vlan_macip_lens |= skb_network_header_len(skb);
4720 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4721 l4_hdr = ip_hdr(skb)->protocol;
4722 break;
7c4d16ff 4723 case htons(ETH_P_IPV6):
7d13a7d0
AD
4724 vlan_macip_lens |= skb_network_header_len(skb);
4725 l4_hdr = ipv6_hdr(skb)->nexthdr;
4726 break;
4727 default:
4728 if (unlikely(net_ratelimit())) {
4729 dev_warn(tx_ring->dev,
b980ac18
JK
4730 "partial checksum but proto=%x!\n",
4731 first->protocol);
fa4a7ef3 4732 }
7d13a7d0
AD
4733 break;
4734 }
fa4a7ef3 4735
7d13a7d0
AD
4736 switch (l4_hdr) {
4737 case IPPROTO_TCP:
4738 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4739 mss_l4len_idx = tcp_hdrlen(skb) <<
4740 E1000_ADVTXD_L4LEN_SHIFT;
4741 break;
4742 case IPPROTO_SCTP:
4743 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4744 mss_l4len_idx = sizeof(struct sctphdr) <<
4745 E1000_ADVTXD_L4LEN_SHIFT;
4746 break;
4747 case IPPROTO_UDP:
4748 mss_l4len_idx = sizeof(struct udphdr) <<
4749 E1000_ADVTXD_L4LEN_SHIFT;
4750 break;
4751 default:
4752 if (unlikely(net_ratelimit())) {
4753 dev_warn(tx_ring->dev,
b980ac18
JK
4754 "partial checksum but l4 proto=%x!\n",
4755 l4_hdr);
44b0cda3 4756 }
7d13a7d0 4757 break;
9d5c8243 4758 }
7af40ad9
AD
4759
4760 /* update TX checksum flag */
4761 first->tx_flags |= IGB_TX_FLAGS_CSUM;
7d13a7d0 4762 }
9d5c8243 4763
7d13a7d0 4764 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
7af40ad9 4765 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
9d5c8243 4766
7d13a7d0 4767 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
9d5c8243
AK
4768}
4769
1d9daf45
AD
4770#define IGB_SET_FLAG(_input, _flag, _result) \
4771 ((_flag <= _result) ? \
4772 ((u32)(_input & _flag) * (_result / _flag)) : \
4773 ((u32)(_input & _flag) / (_flag / _result)))
4774
4775static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
e032afc8
AD
4776{
4777 /* set type for advanced descriptor with frame checksum insertion */
1d9daf45
AD
4778 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4779 E1000_ADVTXD_DCMD_DEXT |
4780 E1000_ADVTXD_DCMD_IFCS;
e032afc8
AD
4781
4782 /* set HW vlan bit if vlan is present */
1d9daf45
AD
4783 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4784 (E1000_ADVTXD_DCMD_VLE));
4785
4786 /* set segmentation bits for TSO */
4787 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4788 (E1000_ADVTXD_DCMD_TSE));
e032afc8
AD
4789
4790 /* set timestamp bit if present */
1d9daf45
AD
4791 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4792 (E1000_ADVTXD_MAC_TSTAMP));
e032afc8 4793
1d9daf45
AD
4794 /* insert frame checksum */
4795 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
e032afc8
AD
4796
4797 return cmd_type;
4798}
4799
7af40ad9
AD
4800static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4801 union e1000_adv_tx_desc *tx_desc,
4802 u32 tx_flags, unsigned int paylen)
e032afc8
AD
4803{
4804 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4805
1d9daf45
AD
4806 /* 82575 requires a unique index per ring */
4807 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
e032afc8
AD
4808 olinfo_status |= tx_ring->reg_idx << 4;
4809
4810 /* insert L4 checksum */
1d9daf45
AD
4811 olinfo_status |= IGB_SET_FLAG(tx_flags,
4812 IGB_TX_FLAGS_CSUM,
4813 (E1000_TXD_POPTS_TXSM << 8));
e032afc8 4814
1d9daf45
AD
4815 /* insert IPv4 checksum */
4816 olinfo_status |= IGB_SET_FLAG(tx_flags,
4817 IGB_TX_FLAGS_IPV4,
4818 (E1000_TXD_POPTS_IXSM << 8));
e032afc8 4819
7af40ad9 4820 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
e032afc8
AD
4821}
4822
6f19e12f
DM
4823static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4824{
4825 struct net_device *netdev = tx_ring->netdev;
4826
4827 netif_stop_subqueue(netdev, tx_ring->queue_index);
4828
4829 /* Herbert's original patch had:
4830 * smp_mb__after_netif_stop_queue();
4831 * but since that doesn't exist yet, just open code it.
4832 */
4833 smp_mb();
4834
4835 /* We need to check again in a case another CPU has just
4836 * made room available.
4837 */
4838 if (igb_desc_unused(tx_ring) < size)
4839 return -EBUSY;
4840
4841 /* A reprieve! */
4842 netif_wake_subqueue(netdev, tx_ring->queue_index);
4843
4844 u64_stats_update_begin(&tx_ring->tx_syncp2);
4845 tx_ring->tx_stats.restart_queue2++;
4846 u64_stats_update_end(&tx_ring->tx_syncp2);
4847
4848 return 0;
4849}
4850
4851static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4852{
4853 if (igb_desc_unused(tx_ring) >= size)
4854 return 0;
4855 return __igb_maybe_stop_tx(tx_ring, size);
4856}
4857
7af40ad9
AD
4858static void igb_tx_map(struct igb_ring *tx_ring,
4859 struct igb_tx_buffer *first,
ebe42d16 4860 const u8 hdr_len)
9d5c8243 4861{
7af40ad9 4862 struct sk_buff *skb = first->skb;
c9f14bf3 4863 struct igb_tx_buffer *tx_buffer;
ebe42d16 4864 union e1000_adv_tx_desc *tx_desc;
80d0759e 4865 struct skb_frag_struct *frag;
ebe42d16 4866 dma_addr_t dma;
80d0759e 4867 unsigned int data_len, size;
7af40ad9 4868 u32 tx_flags = first->tx_flags;
1d9daf45 4869 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
ebe42d16 4870 u16 i = tx_ring->next_to_use;
ebe42d16
AD
4871
4872 tx_desc = IGB_TX_DESC(tx_ring, i);
4873
80d0759e
AD
4874 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4875
4876 size = skb_headlen(skb);
4877 data_len = skb->data_len;
ebe42d16
AD
4878
4879 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
9d5c8243 4880
80d0759e
AD
4881 tx_buffer = first;
4882
4883 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4884 if (dma_mapping_error(tx_ring->dev, dma))
4885 goto dma_error;
4886
4887 /* record length, and DMA address */
4888 dma_unmap_len_set(tx_buffer, len, size);
4889 dma_unmap_addr_set(tx_buffer, dma, dma);
4890
4891 tx_desc->read.buffer_addr = cpu_to_le64(dma);
ebe42d16 4892
ebe42d16
AD
4893 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4894 tx_desc->read.cmd_type_len =
1d9daf45 4895 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
ebe42d16
AD
4896
4897 i++;
4898 tx_desc++;
4899 if (i == tx_ring->count) {
4900 tx_desc = IGB_TX_DESC(tx_ring, 0);
4901 i = 0;
4902 }
80d0759e 4903 tx_desc->read.olinfo_status = 0;
ebe42d16
AD
4904
4905 dma += IGB_MAX_DATA_PER_TXD;
4906 size -= IGB_MAX_DATA_PER_TXD;
4907
ebe42d16
AD
4908 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4909 }
4910
4911 if (likely(!data_len))
4912 break;
2bbfebe2 4913
1d9daf45 4914 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
9d5c8243 4915
65689fef 4916 i++;
ebe42d16
AD
4917 tx_desc++;
4918 if (i == tx_ring->count) {
4919 tx_desc = IGB_TX_DESC(tx_ring, 0);
65689fef 4920 i = 0;
ebe42d16 4921 }
80d0759e 4922 tx_desc->read.olinfo_status = 0;
65689fef 4923
9e903e08 4924 size = skb_frag_size(frag);
ebe42d16
AD
4925 data_len -= size;
4926
4927 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
80d0759e 4928 size, DMA_TO_DEVICE);
6366ad33 4929
c9f14bf3 4930 tx_buffer = &tx_ring->tx_buffer_info[i];
9d5c8243
AK
4931 }
4932
ebe42d16 4933 /* write last descriptor with RS and EOP bits */
1d9daf45
AD
4934 cmd_type |= size | IGB_TXD_DCMD;
4935 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
8542db05 4936
80d0759e
AD
4937 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4938
8542db05
AD
4939 /* set the timestamp */
4940 first->time_stamp = jiffies;
4941
b980ac18 4942 /* Force memory writes to complete before letting h/w know there
ebe42d16
AD
4943 * are new descriptors to fetch. (Only applicable for weak-ordered
4944 * memory model archs, such as IA-64).
4945 *
4946 * We also need this memory barrier to make certain all of the
4947 * status bits have been updated before next_to_watch is written.
4948 */
4949 wmb();
4950
8542db05 4951 /* set next_to_watch value indicating a packet is present */
ebe42d16 4952 first->next_to_watch = tx_desc;
9d5c8243 4953
ebe42d16
AD
4954 i++;
4955 if (i == tx_ring->count)
4956 i = 0;
6366ad33 4957
ebe42d16 4958 tx_ring->next_to_use = i;
6366ad33 4959
6f19e12f
DM
4960 /* Make sure there is space in the ring for the next send. */
4961 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
4962
4963 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
0b725a2c
DM
4964 writel(i, tx_ring->tail);
4965
4966 /* we need this if more than one processor can write to our tail
4967 * at a time, it synchronizes IO on IA64/Altix systems
4968 */
4969 mmiowb();
4970 }
ebe42d16
AD
4971 return;
4972
4973dma_error:
4974 dev_err(tx_ring->dev, "TX DMA map failed\n");
4975
4976 /* clear dma mappings for failed tx_buffer_info map */
4977 for (;;) {
c9f14bf3
AD
4978 tx_buffer = &tx_ring->tx_buffer_info[i];
4979 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4980 if (tx_buffer == first)
ebe42d16 4981 break;
a77ff709
NN
4982 if (i == 0)
4983 i = tx_ring->count;
6366ad33 4984 i--;
6366ad33
AD
4985 }
4986
9d5c8243 4987 tx_ring->next_to_use = i;
9d5c8243
AK
4988}
4989
cd392f5c
AD
4990netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4991 struct igb_ring *tx_ring)
9d5c8243 4992{
8542db05 4993 struct igb_tx_buffer *first;
ebe42d16 4994 int tso;
91d4ee33 4995 u32 tx_flags = 0;
21ba6fe1 4996 u16 count = TXD_USE_COUNT(skb_headlen(skb));
31f6adbb 4997 __be16 protocol = vlan_get_protocol(skb);
91d4ee33 4998 u8 hdr_len = 0;
9d5c8243 4999
21ba6fe1
AD
5000 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
5001 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
9d5c8243 5002 * + 2 desc gap to keep tail from touching head,
9d5c8243 5003 * + 1 desc for context descriptor,
21ba6fe1
AD
5004 * otherwise try next time
5005 */
5006 if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
5007 unsigned short f;
9005df38 5008
21ba6fe1
AD
5009 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
5010 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
5011 } else {
5012 count += skb_shinfo(skb)->nr_frags;
5013 }
5014
5015 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
9d5c8243 5016 /* this is a hard error */
9d5c8243
AK
5017 return NETDEV_TX_BUSY;
5018 }
33af6bcc 5019
7af40ad9
AD
5020 /* record the location of the first descriptor for this packet */
5021 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
5022 first->skb = skb;
5023 first->bytecount = skb->len;
5024 first->gso_segs = 1;
5025
b646c22e
AD
5026 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
5027 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
1f6e8178 5028
ed4420a3
JK
5029 if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
5030 &adapter->state)) {
b646c22e
AD
5031 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5032 tx_flags |= IGB_TX_FLAGS_TSTAMP;
5033
5034 adapter->ptp_tx_skb = skb_get(skb);
5035 adapter->ptp_tx_start = jiffies;
5036 if (adapter->hw.mac.type == e1000_82576)
5037 schedule_work(&adapter->ptp_tx_work);
5038 }
33af6bcc 5039 }
9d5c8243 5040
afc835d1
JK
5041 skb_tx_timestamp(skb);
5042
eab6d18d 5043 if (vlan_tx_tag_present(skb)) {
9d5c8243
AK
5044 tx_flags |= IGB_TX_FLAGS_VLAN;
5045 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5046 }
5047
7af40ad9
AD
5048 /* record initial flags and protocol */
5049 first->tx_flags = tx_flags;
5050 first->protocol = protocol;
cdfd01fc 5051
7af40ad9
AD
5052 tso = igb_tso(tx_ring, first, &hdr_len);
5053 if (tso < 0)
7d13a7d0 5054 goto out_drop;
7af40ad9
AD
5055 else if (!tso)
5056 igb_tx_csum(tx_ring, first);
9d5c8243 5057
7af40ad9 5058 igb_tx_map(tx_ring, first, hdr_len);
85ad76b2 5059
9d5c8243 5060 return NETDEV_TX_OK;
7d13a7d0
AD
5061
5062out_drop:
7af40ad9
AD
5063 igb_unmap_and_free_tx_resource(tx_ring, first);
5064
7d13a7d0 5065 return NETDEV_TX_OK;
9d5c8243
AK
5066}
5067
0b725a2c
DM
5068static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5069 struct sk_buff *skb)
1cc3bd87 5070{
0b725a2c
DM
5071 unsigned int r_idx = skb->queue_mapping;
5072
1cc3bd87
AD
5073 if (r_idx >= adapter->num_tx_queues)
5074 r_idx = r_idx % adapter->num_tx_queues;
5075
5076 return adapter->tx_ring[r_idx];
5077}
5078
cd392f5c
AD
5079static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5080 struct net_device *netdev)
9d5c8243
AK
5081{
5082 struct igb_adapter *adapter = netdev_priv(netdev);
b1a436c3
AD
5083
5084 if (test_bit(__IGB_DOWN, &adapter->state)) {
5085 dev_kfree_skb_any(skb);
5086 return NETDEV_TX_OK;
5087 }
5088
5089 if (skb->len <= 0) {
5090 dev_kfree_skb_any(skb);
5091 return NETDEV_TX_OK;
5092 }
5093
b980ac18 5094 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1cc3bd87
AD
5095 * in order to meet this minimum size requirement.
5096 */
ea5ceeab
TD
5097 if (unlikely(skb->len < 17)) {
5098 if (skb_pad(skb, 17 - skb->len))
1cc3bd87
AD
5099 return NETDEV_TX_OK;
5100 skb->len = 17;
ea5ceeab 5101 skb_set_tail_pointer(skb, 17);
1cc3bd87 5102 }
9d5c8243 5103
1cc3bd87 5104 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
9d5c8243
AK
5105}
5106
5107/**
b980ac18
JK
5108 * igb_tx_timeout - Respond to a Tx Hang
5109 * @netdev: network interface device structure
9d5c8243
AK
5110 **/
5111static void igb_tx_timeout(struct net_device *netdev)
5112{
5113 struct igb_adapter *adapter = netdev_priv(netdev);
5114 struct e1000_hw *hw = &adapter->hw;
5115
5116 /* Do the reset outside of interrupt context */
5117 adapter->tx_timeout_count++;
f7ba205e 5118
06218a8d 5119 if (hw->mac.type >= e1000_82580)
55cac248
AD
5120 hw->dev_spec._82575.global_device_reset = true;
5121
9d5c8243 5122 schedule_work(&adapter->reset_task);
265de409
AD
5123 wr32(E1000_EICS,
5124 (adapter->eims_enable_mask & ~adapter->eims_other));
9d5c8243
AK
5125}
5126
5127static void igb_reset_task(struct work_struct *work)
5128{
5129 struct igb_adapter *adapter;
5130 adapter = container_of(work, struct igb_adapter, reset_task);
5131
c97ec42a
TI
5132 igb_dump(adapter);
5133 netdev_err(adapter->netdev, "Reset adapter\n");
9d5c8243
AK
5134 igb_reinit_locked(adapter);
5135}
5136
5137/**
b980ac18
JK
5138 * igb_get_stats64 - Get System Network Statistics
5139 * @netdev: network interface device structure
5140 * @stats: rtnl_link_stats64 pointer
9d5c8243 5141 **/
12dcd86b 5142static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
b980ac18 5143 struct rtnl_link_stats64 *stats)
9d5c8243 5144{
12dcd86b
ED
5145 struct igb_adapter *adapter = netdev_priv(netdev);
5146
5147 spin_lock(&adapter->stats64_lock);
5148 igb_update_stats(adapter, &adapter->stats64);
5149 memcpy(stats, &adapter->stats64, sizeof(*stats));
5150 spin_unlock(&adapter->stats64_lock);
5151
5152 return stats;
9d5c8243
AK
5153}
5154
5155/**
b980ac18
JK
5156 * igb_change_mtu - Change the Maximum Transfer Unit
5157 * @netdev: network interface device structure
5158 * @new_mtu: new value for maximum frame size
9d5c8243 5159 *
b980ac18 5160 * Returns 0 on success, negative on failure
9d5c8243
AK
5161 **/
5162static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5163{
5164 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 5165 struct pci_dev *pdev = adapter->pdev;
153285f9 5166 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
9d5c8243 5167
c809d227 5168 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
090b1795 5169 dev_err(&pdev->dev, "Invalid MTU setting\n");
9d5c8243
AK
5170 return -EINVAL;
5171 }
5172
153285f9 5173#define MAX_STD_JUMBO_FRAME_SIZE 9238
9d5c8243 5174 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
090b1795 5175 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
9d5c8243
AK
5176 return -EINVAL;
5177 }
5178
2ccd994c
AD
5179 /* adjust max frame to be at least the size of a standard frame */
5180 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5181 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5182
9d5c8243 5183 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
0d451e79 5184 usleep_range(1000, 2000);
73cd78f1 5185
9d5c8243
AK
5186 /* igb_down has a dependency on max_frame_size */
5187 adapter->max_frame_size = max_frame;
559e9c49 5188
4c844851
AD
5189 if (netif_running(netdev))
5190 igb_down(adapter);
9d5c8243 5191
090b1795 5192 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
9d5c8243
AK
5193 netdev->mtu, new_mtu);
5194 netdev->mtu = new_mtu;
5195
5196 if (netif_running(netdev))
5197 igb_up(adapter);
5198 else
5199 igb_reset(adapter);
5200
5201 clear_bit(__IGB_RESETTING, &adapter->state);
5202
5203 return 0;
5204}
5205
5206/**
b980ac18
JK
5207 * igb_update_stats - Update the board statistics counters
5208 * @adapter: board private structure
9d5c8243 5209 **/
12dcd86b
ED
5210void igb_update_stats(struct igb_adapter *adapter,
5211 struct rtnl_link_stats64 *net_stats)
9d5c8243
AK
5212{
5213 struct e1000_hw *hw = &adapter->hw;
5214 struct pci_dev *pdev = adapter->pdev;
fa3d9a6d 5215 u32 reg, mpc;
3f9c0164
AD
5216 int i;
5217 u64 bytes, packets;
12dcd86b
ED
5218 unsigned int start;
5219 u64 _bytes, _packets;
9d5c8243 5220
b980ac18 5221 /* Prevent stats update while adapter is being reset, or if the pci
9d5c8243
AK
5222 * connection is down.
5223 */
5224 if (adapter->link_speed == 0)
5225 return;
5226 if (pci_channel_offline(pdev))
5227 return;
5228
3f9c0164
AD
5229 bytes = 0;
5230 packets = 0;
7f90128e
AA
5231
5232 rcu_read_lock();
3f9c0164 5233 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 5234 struct igb_ring *ring = adapter->rx_ring[i];
e66c083a
TF
5235 u32 rqdpc = rd32(E1000_RQDPC(i));
5236 if (hw->mac.type >= e1000_i210)
5237 wr32(E1000_RQDPC(i), 0);
12dcd86b 5238
ae1c07a6
AD
5239 if (rqdpc) {
5240 ring->rx_stats.drops += rqdpc;
5241 net_stats->rx_fifo_errors += rqdpc;
5242 }
12dcd86b
ED
5243
5244 do {
57a7744e 5245 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
12dcd86b
ED
5246 _bytes = ring->rx_stats.bytes;
5247 _packets = ring->rx_stats.packets;
57a7744e 5248 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
12dcd86b
ED
5249 bytes += _bytes;
5250 packets += _packets;
3f9c0164
AD
5251 }
5252
128e45eb
AD
5253 net_stats->rx_bytes = bytes;
5254 net_stats->rx_packets = packets;
3f9c0164
AD
5255
5256 bytes = 0;
5257 packets = 0;
5258 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 5259 struct igb_ring *ring = adapter->tx_ring[i];
12dcd86b 5260 do {
57a7744e 5261 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
12dcd86b
ED
5262 _bytes = ring->tx_stats.bytes;
5263 _packets = ring->tx_stats.packets;
57a7744e 5264 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
12dcd86b
ED
5265 bytes += _bytes;
5266 packets += _packets;
3f9c0164 5267 }
128e45eb
AD
5268 net_stats->tx_bytes = bytes;
5269 net_stats->tx_packets = packets;
7f90128e 5270 rcu_read_unlock();
3f9c0164
AD
5271
5272 /* read stats registers */
9d5c8243
AK
5273 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5274 adapter->stats.gprc += rd32(E1000_GPRC);
5275 adapter->stats.gorc += rd32(E1000_GORCL);
5276 rd32(E1000_GORCH); /* clear GORCL */
5277 adapter->stats.bprc += rd32(E1000_BPRC);
5278 adapter->stats.mprc += rd32(E1000_MPRC);
5279 adapter->stats.roc += rd32(E1000_ROC);
5280
5281 adapter->stats.prc64 += rd32(E1000_PRC64);
5282 adapter->stats.prc127 += rd32(E1000_PRC127);
5283 adapter->stats.prc255 += rd32(E1000_PRC255);
5284 adapter->stats.prc511 += rd32(E1000_PRC511);
5285 adapter->stats.prc1023 += rd32(E1000_PRC1023);
5286 adapter->stats.prc1522 += rd32(E1000_PRC1522);
5287 adapter->stats.symerrs += rd32(E1000_SYMERRS);
5288 adapter->stats.sec += rd32(E1000_SEC);
5289
fa3d9a6d
MW
5290 mpc = rd32(E1000_MPC);
5291 adapter->stats.mpc += mpc;
5292 net_stats->rx_fifo_errors += mpc;
9d5c8243
AK
5293 adapter->stats.scc += rd32(E1000_SCC);
5294 adapter->stats.ecol += rd32(E1000_ECOL);
5295 adapter->stats.mcc += rd32(E1000_MCC);
5296 adapter->stats.latecol += rd32(E1000_LATECOL);
5297 adapter->stats.dc += rd32(E1000_DC);
5298 adapter->stats.rlec += rd32(E1000_RLEC);
5299 adapter->stats.xonrxc += rd32(E1000_XONRXC);
5300 adapter->stats.xontxc += rd32(E1000_XONTXC);
5301 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5302 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5303 adapter->stats.fcruc += rd32(E1000_FCRUC);
5304 adapter->stats.gptc += rd32(E1000_GPTC);
5305 adapter->stats.gotc += rd32(E1000_GOTCL);
5306 rd32(E1000_GOTCH); /* clear GOTCL */
fa3d9a6d 5307 adapter->stats.rnbc += rd32(E1000_RNBC);
9d5c8243
AK
5308 adapter->stats.ruc += rd32(E1000_RUC);
5309 adapter->stats.rfc += rd32(E1000_RFC);
5310 adapter->stats.rjc += rd32(E1000_RJC);
5311 adapter->stats.tor += rd32(E1000_TORH);
5312 adapter->stats.tot += rd32(E1000_TOTH);
5313 adapter->stats.tpr += rd32(E1000_TPR);
5314
5315 adapter->stats.ptc64 += rd32(E1000_PTC64);
5316 adapter->stats.ptc127 += rd32(E1000_PTC127);
5317 adapter->stats.ptc255 += rd32(E1000_PTC255);
5318 adapter->stats.ptc511 += rd32(E1000_PTC511);
5319 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5320 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5321
5322 adapter->stats.mptc += rd32(E1000_MPTC);
5323 adapter->stats.bptc += rd32(E1000_BPTC);
5324
2d0b0f69
NN
5325 adapter->stats.tpt += rd32(E1000_TPT);
5326 adapter->stats.colc += rd32(E1000_COLC);
9d5c8243
AK
5327
5328 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
43915c7c
NN
5329 /* read internal phy specific stats */
5330 reg = rd32(E1000_CTRL_EXT);
5331 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5332 adapter->stats.rxerrc += rd32(E1000_RXERRC);
3dbdf969
CW
5333
5334 /* this stat has invalid values on i210/i211 */
5335 if ((hw->mac.type != e1000_i210) &&
5336 (hw->mac.type != e1000_i211))
5337 adapter->stats.tncrs += rd32(E1000_TNCRS);
43915c7c
NN
5338 }
5339
9d5c8243
AK
5340 adapter->stats.tsctc += rd32(E1000_TSCTC);
5341 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5342
5343 adapter->stats.iac += rd32(E1000_IAC);
5344 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5345 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5346 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5347 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5348 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5349 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5350 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5351 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5352
5353 /* Fill out the OS statistics structure */
128e45eb
AD
5354 net_stats->multicast = adapter->stats.mprc;
5355 net_stats->collisions = adapter->stats.colc;
9d5c8243
AK
5356
5357 /* Rx Errors */
5358
5359 /* RLEC on some newer hardware can be incorrect so build
b980ac18
JK
5360 * our own version based on RUC and ROC
5361 */
128e45eb 5362 net_stats->rx_errors = adapter->stats.rxerrc +
9d5c8243
AK
5363 adapter->stats.crcerrs + adapter->stats.algnerrc +
5364 adapter->stats.ruc + adapter->stats.roc +
5365 adapter->stats.cexterr;
128e45eb
AD
5366 net_stats->rx_length_errors = adapter->stats.ruc +
5367 adapter->stats.roc;
5368 net_stats->rx_crc_errors = adapter->stats.crcerrs;
5369 net_stats->rx_frame_errors = adapter->stats.algnerrc;
5370 net_stats->rx_missed_errors = adapter->stats.mpc;
9d5c8243
AK
5371
5372 /* Tx Errors */
128e45eb
AD
5373 net_stats->tx_errors = adapter->stats.ecol +
5374 adapter->stats.latecol;
5375 net_stats->tx_aborted_errors = adapter->stats.ecol;
5376 net_stats->tx_window_errors = adapter->stats.latecol;
5377 net_stats->tx_carrier_errors = adapter->stats.tncrs;
9d5c8243
AK
5378
5379 /* Tx Dropped needs to be maintained elsewhere */
5380
9d5c8243
AK
5381 /* Management Stats */
5382 adapter->stats.mgptc += rd32(E1000_MGTPTC);
5383 adapter->stats.mgprc += rd32(E1000_MGTPRC);
5384 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
0a915b95
CW
5385
5386 /* OS2BMC Stats */
5387 reg = rd32(E1000_MANC);
5388 if (reg & E1000_MANC_EN_BMC2OS) {
5389 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5390 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5391 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5392 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5393 }
9d5c8243
AK
5394}
5395
9d5c8243
AK
5396static irqreturn_t igb_msix_other(int irq, void *data)
5397{
047e0030 5398 struct igb_adapter *adapter = data;
9d5c8243 5399 struct e1000_hw *hw = &adapter->hw;
844290e5 5400 u32 icr = rd32(E1000_ICR);
844290e5 5401 /* reading ICR causes bit 31 of EICR to be cleared */
dda0e083 5402
7f081d40
AD
5403 if (icr & E1000_ICR_DRSTA)
5404 schedule_work(&adapter->reset_task);
5405
047e0030 5406 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
5407 /* HW is reporting DMA is out of sync */
5408 adapter->stats.doosync++;
13800469
GR
5409 /* The DMA Out of Sync is also indication of a spoof event
5410 * in IOV mode. Check the Wrong VM Behavior register to
b980ac18
JK
5411 * see if it is really a spoof event.
5412 */
13800469 5413 igb_check_wvbr(adapter);
dda0e083 5414 }
eebbbdba 5415
4ae196df
AD
5416 /* Check for a mailbox event */
5417 if (icr & E1000_ICR_VMMB)
5418 igb_msg_task(adapter);
5419
5420 if (icr & E1000_ICR_LSC) {
5421 hw->mac.get_link_status = 1;
5422 /* guard against interrupt when we're going down */
5423 if (!test_bit(__IGB_DOWN, &adapter->state))
5424 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5425 }
5426
1f6e8178
MV
5427 if (icr & E1000_ICR_TS) {
5428 u32 tsicr = rd32(E1000_TSICR);
5429
5430 if (tsicr & E1000_TSICR_TXTS) {
5431 /* acknowledge the interrupt */
5432 wr32(E1000_TSICR, E1000_TSICR_TXTS);
5433 /* retrieve hardware timestamp */
5434 schedule_work(&adapter->ptp_tx_work);
5435 }
5436 }
1f6e8178 5437
844290e5 5438 wr32(E1000_EIMS, adapter->eims_other);
9d5c8243
AK
5439
5440 return IRQ_HANDLED;
5441}
5442
047e0030 5443static void igb_write_itr(struct igb_q_vector *q_vector)
9d5c8243 5444{
26b39276 5445 struct igb_adapter *adapter = q_vector->adapter;
047e0030 5446 u32 itr_val = q_vector->itr_val & 0x7FFC;
9d5c8243 5447
047e0030
AD
5448 if (!q_vector->set_itr)
5449 return;
73cd78f1 5450
047e0030
AD
5451 if (!itr_val)
5452 itr_val = 0x4;
661086df 5453
26b39276
AD
5454 if (adapter->hw.mac.type == e1000_82575)
5455 itr_val |= itr_val << 16;
661086df 5456 else
0ba82994 5457 itr_val |= E1000_EITR_CNT_IGNR;
661086df 5458
047e0030
AD
5459 writel(itr_val, q_vector->itr_register);
5460 q_vector->set_itr = 0;
6eb5a7f1
AD
5461}
5462
047e0030 5463static irqreturn_t igb_msix_ring(int irq, void *data)
9d5c8243 5464{
047e0030 5465 struct igb_q_vector *q_vector = data;
9d5c8243 5466
047e0030
AD
5467 /* Write the ITR value calculated from the previous interrupt. */
5468 igb_write_itr(q_vector);
9d5c8243 5469
047e0030 5470 napi_schedule(&q_vector->napi);
844290e5 5471
047e0030 5472 return IRQ_HANDLED;
fe4506b6
JC
5473}
5474
421e02f0 5475#ifdef CONFIG_IGB_DCA
6a05004a
AD
5476static void igb_update_tx_dca(struct igb_adapter *adapter,
5477 struct igb_ring *tx_ring,
5478 int cpu)
5479{
5480 struct e1000_hw *hw = &adapter->hw;
5481 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5482
5483 if (hw->mac.type != e1000_82575)
5484 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5485
b980ac18 5486 /* We can enable relaxed ordering for reads, but not writes when
6a05004a
AD
5487 * DCA is enabled. This is due to a known issue in some chipsets
5488 * which will cause the DCA tag to be cleared.
5489 */
5490 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5491 E1000_DCA_TXCTRL_DATA_RRO_EN |
5492 E1000_DCA_TXCTRL_DESC_DCA_EN;
5493
5494 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5495}
5496
5497static void igb_update_rx_dca(struct igb_adapter *adapter,
5498 struct igb_ring *rx_ring,
5499 int cpu)
5500{
5501 struct e1000_hw *hw = &adapter->hw;
5502 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5503
5504 if (hw->mac.type != e1000_82575)
5505 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5506
b980ac18 5507 /* We can enable relaxed ordering for reads, but not writes when
6a05004a
AD
5508 * DCA is enabled. This is due to a known issue in some chipsets
5509 * which will cause the DCA tag to be cleared.
5510 */
5511 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5512 E1000_DCA_RXCTRL_DESC_DCA_EN;
5513
5514 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5515}
5516
047e0030 5517static void igb_update_dca(struct igb_q_vector *q_vector)
fe4506b6 5518{
047e0030 5519 struct igb_adapter *adapter = q_vector->adapter;
fe4506b6 5520 int cpu = get_cpu();
fe4506b6 5521
047e0030
AD
5522 if (q_vector->cpu == cpu)
5523 goto out_no_update;
5524
6a05004a
AD
5525 if (q_vector->tx.ring)
5526 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5527
5528 if (q_vector->rx.ring)
5529 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5530
047e0030
AD
5531 q_vector->cpu = cpu;
5532out_no_update:
fe4506b6
JC
5533 put_cpu();
5534}
5535
5536static void igb_setup_dca(struct igb_adapter *adapter)
5537{
7e0e99ef 5538 struct e1000_hw *hw = &adapter->hw;
fe4506b6
JC
5539 int i;
5540
7dfc16fa 5541 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
fe4506b6
JC
5542 return;
5543
7e0e99ef
AD
5544 /* Always use CB2 mode, difference is masked in the CB driver. */
5545 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5546
047e0030 5547 for (i = 0; i < adapter->num_q_vectors; i++) {
26b39276
AD
5548 adapter->q_vector[i]->cpu = -1;
5549 igb_update_dca(adapter->q_vector[i]);
fe4506b6
JC
5550 }
5551}
5552
5553static int __igb_notify_dca(struct device *dev, void *data)
5554{
5555 struct net_device *netdev = dev_get_drvdata(dev);
5556 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 5557 struct pci_dev *pdev = adapter->pdev;
fe4506b6
JC
5558 struct e1000_hw *hw = &adapter->hw;
5559 unsigned long event = *(unsigned long *)data;
5560
5561 switch (event) {
5562 case DCA_PROVIDER_ADD:
5563 /* if already enabled, don't do it again */
7dfc16fa 5564 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6 5565 break;
fe4506b6 5566 if (dca_add_requester(dev) == 0) {
bbd98fe4 5567 adapter->flags |= IGB_FLAG_DCA_ENABLED;
090b1795 5568 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
5569 igb_setup_dca(adapter);
5570 break;
5571 }
5572 /* Fall Through since DCA is disabled. */
5573 case DCA_PROVIDER_REMOVE:
7dfc16fa 5574 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6 5575 /* without this a class_device is left
b980ac18
JK
5576 * hanging around in the sysfs model
5577 */
fe4506b6 5578 dca_remove_requester(dev);
090b1795 5579 dev_info(&pdev->dev, "DCA disabled\n");
7dfc16fa 5580 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 5581 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
5582 }
5583 break;
5584 }
bbd98fe4 5585
fe4506b6 5586 return 0;
9d5c8243
AK
5587}
5588
fe4506b6 5589static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
b980ac18 5590 void *p)
fe4506b6
JC
5591{
5592 int ret_val;
5593
5594 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
b980ac18 5595 __igb_notify_dca);
fe4506b6
JC
5596
5597 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5598}
421e02f0 5599#endif /* CONFIG_IGB_DCA */
9d5c8243 5600
0224d663
GR
5601#ifdef CONFIG_PCI_IOV
5602static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5603{
5604 unsigned char mac_addr[ETH_ALEN];
0224d663 5605
5ac6f91d 5606 eth_zero_addr(mac_addr);
0224d663
GR
5607 igb_set_vf_mac(adapter, vf, mac_addr);
5608
70ea4783
LL
5609 /* By default spoof check is enabled for all VFs */
5610 adapter->vf_data[vf].spoofchk_enabled = true;
5611
f557147c 5612 return 0;
0224d663
GR
5613}
5614
0224d663 5615#endif
4ae196df
AD
5616static void igb_ping_all_vfs(struct igb_adapter *adapter)
5617{
5618 struct e1000_hw *hw = &adapter->hw;
5619 u32 ping;
5620 int i;
5621
5622 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5623 ping = E1000_PF_CONTROL_MSG;
f2ca0dbe 5624 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4ae196df
AD
5625 ping |= E1000_VT_MSGTYPE_CTS;
5626 igb_write_mbx(hw, &ping, 1, i);
5627 }
5628}
5629
7d5753f0
AD
5630static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5631{
5632 struct e1000_hw *hw = &adapter->hw;
5633 u32 vmolr = rd32(E1000_VMOLR(vf));
5634 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5635
d85b9004 5636 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
b980ac18 5637 IGB_VF_FLAG_MULTI_PROMISC);
7d5753f0
AD
5638 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5639
5640 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5641 vmolr |= E1000_VMOLR_MPME;
d85b9004 5642 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7d5753f0
AD
5643 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5644 } else {
b980ac18 5645 /* if we have hashes and we are clearing a multicast promisc
7d5753f0
AD
5646 * flag we need to write the hashes to the MTA as this step
5647 * was previously skipped
5648 */
5649 if (vf_data->num_vf_mc_hashes > 30) {
5650 vmolr |= E1000_VMOLR_MPME;
5651 } else if (vf_data->num_vf_mc_hashes) {
5652 int j;
9005df38 5653
7d5753f0
AD
5654 vmolr |= E1000_VMOLR_ROMPE;
5655 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5656 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5657 }
5658 }
5659
5660 wr32(E1000_VMOLR(vf), vmolr);
5661
5662 /* there are flags left unprocessed, likely not supported */
5663 if (*msgbuf & E1000_VT_MSGINFO_MASK)
5664 return -EINVAL;
5665
5666 return 0;
7d5753f0
AD
5667}
5668
4ae196df
AD
5669static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5670 u32 *msgbuf, u32 vf)
5671{
5672 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5673 u16 *hash_list = (u16 *)&msgbuf[1];
5674 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5675 int i;
5676
7d5753f0 5677 /* salt away the number of multicast addresses assigned
4ae196df
AD
5678 * to this VF for later use to restore when the PF multi cast
5679 * list changes
5680 */
5681 vf_data->num_vf_mc_hashes = n;
5682
7d5753f0
AD
5683 /* only up to 30 hash values supported */
5684 if (n > 30)
5685 n = 30;
5686
5687 /* store the hashes for later use */
4ae196df 5688 for (i = 0; i < n; i++)
a419aef8 5689 vf_data->vf_mc_hashes[i] = hash_list[i];
4ae196df
AD
5690
5691 /* Flush and reset the mta with the new values */
ff41f8dc 5692 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
5693
5694 return 0;
5695}
5696
5697static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5698{
5699 struct e1000_hw *hw = &adapter->hw;
5700 struct vf_data_storage *vf_data;
5701 int i, j;
5702
5703 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7d5753f0 5704 u32 vmolr = rd32(E1000_VMOLR(i));
9005df38 5705
7d5753f0
AD
5706 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5707
4ae196df 5708 vf_data = &adapter->vf_data[i];
7d5753f0
AD
5709
5710 if ((vf_data->num_vf_mc_hashes > 30) ||
5711 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5712 vmolr |= E1000_VMOLR_MPME;
5713 } else if (vf_data->num_vf_mc_hashes) {
5714 vmolr |= E1000_VMOLR_ROMPE;
5715 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5716 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5717 }
5718 wr32(E1000_VMOLR(i), vmolr);
4ae196df
AD
5719 }
5720}
5721
5722static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5723{
5724 struct e1000_hw *hw = &adapter->hw;
5725 u32 pool_mask, reg, vid;
5726 int i;
5727
5728 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5729
5730 /* Find the vlan filter for this id */
5731 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5732 reg = rd32(E1000_VLVF(i));
5733
5734 /* remove the vf from the pool */
5735 reg &= ~pool_mask;
5736
5737 /* if pool is empty then remove entry from vfta */
5738 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5739 (reg & E1000_VLVF_VLANID_ENABLE)) {
5740 reg = 0;
5741 vid = reg & E1000_VLVF_VLANID_MASK;
5742 igb_vfta_set(hw, vid, false);
5743 }
5744
5745 wr32(E1000_VLVF(i), reg);
5746 }
ae641bdc
AD
5747
5748 adapter->vf_data[vf].vlans_enabled = 0;
4ae196df
AD
5749}
5750
5751static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5752{
5753 struct e1000_hw *hw = &adapter->hw;
5754 u32 reg, i;
5755
51466239
AD
5756 /* The vlvf table only exists on 82576 hardware and newer */
5757 if (hw->mac.type < e1000_82576)
5758 return -1;
5759
5760 /* we only need to do this if VMDq is enabled */
4ae196df
AD
5761 if (!adapter->vfs_allocated_count)
5762 return -1;
5763
5764 /* Find the vlan filter for this id */
5765 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5766 reg = rd32(E1000_VLVF(i));
5767 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5768 vid == (reg & E1000_VLVF_VLANID_MASK))
5769 break;
5770 }
5771
5772 if (add) {
5773 if (i == E1000_VLVF_ARRAY_SIZE) {
5774 /* Did not find a matching VLAN ID entry that was
5775 * enabled. Search for a free filter entry, i.e.
5776 * one without the enable bit set
5777 */
5778 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5779 reg = rd32(E1000_VLVF(i));
5780 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5781 break;
5782 }
5783 }
5784 if (i < E1000_VLVF_ARRAY_SIZE) {
5785 /* Found an enabled/available entry */
5786 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5787
5788 /* if !enabled we need to set this up in vfta */
5789 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
51466239
AD
5790 /* add VID to filter table */
5791 igb_vfta_set(hw, vid, true);
4ae196df
AD
5792 reg |= E1000_VLVF_VLANID_ENABLE;
5793 }
cad6d05f
AD
5794 reg &= ~E1000_VLVF_VLANID_MASK;
5795 reg |= vid;
4ae196df 5796 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
5797
5798 /* do not modify RLPML for PF devices */
5799 if (vf >= adapter->vfs_allocated_count)
5800 return 0;
5801
5802 if (!adapter->vf_data[vf].vlans_enabled) {
5803 u32 size;
9005df38 5804
ae641bdc
AD
5805 reg = rd32(E1000_VMOLR(vf));
5806 size = reg & E1000_VMOLR_RLPML_MASK;
5807 size += 4;
5808 reg &= ~E1000_VMOLR_RLPML_MASK;
5809 reg |= size;
5810 wr32(E1000_VMOLR(vf), reg);
5811 }
ae641bdc 5812
51466239 5813 adapter->vf_data[vf].vlans_enabled++;
4ae196df
AD
5814 }
5815 } else {
5816 if (i < E1000_VLVF_ARRAY_SIZE) {
5817 /* remove vf from the pool */
5818 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5819 /* if pool is empty then remove entry from vfta */
5820 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5821 reg = 0;
5822 igb_vfta_set(hw, vid, false);
5823 }
5824 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
5825
5826 /* do not modify RLPML for PF devices */
5827 if (vf >= adapter->vfs_allocated_count)
5828 return 0;
5829
5830 adapter->vf_data[vf].vlans_enabled--;
5831 if (!adapter->vf_data[vf].vlans_enabled) {
5832 u32 size;
9005df38 5833
ae641bdc
AD
5834 reg = rd32(E1000_VMOLR(vf));
5835 size = reg & E1000_VMOLR_RLPML_MASK;
5836 size -= 4;
5837 reg &= ~E1000_VMOLR_RLPML_MASK;
5838 reg |= size;
5839 wr32(E1000_VMOLR(vf), reg);
5840 }
4ae196df
AD
5841 }
5842 }
8151d294
WM
5843 return 0;
5844}
5845
5846static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5847{
5848 struct e1000_hw *hw = &adapter->hw;
5849
5850 if (vid)
5851 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5852 else
5853 wr32(E1000_VMVIR(vf), 0);
5854}
5855
5856static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5857 int vf, u16 vlan, u8 qos)
5858{
5859 int err = 0;
5860 struct igb_adapter *adapter = netdev_priv(netdev);
5861
5862 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5863 return -EINVAL;
5864 if (vlan || qos) {
5865 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5866 if (err)
5867 goto out;
5868 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5869 igb_set_vmolr(adapter, vf, !vlan);
5870 adapter->vf_data[vf].pf_vlan = vlan;
5871 adapter->vf_data[vf].pf_qos = qos;
5872 dev_info(&adapter->pdev->dev,
5873 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5874 if (test_bit(__IGB_DOWN, &adapter->state)) {
5875 dev_warn(&adapter->pdev->dev,
b980ac18 5876 "The VF VLAN has been set, but the PF device is not up.\n");
8151d294 5877 dev_warn(&adapter->pdev->dev,
b980ac18 5878 "Bring the PF device up before attempting to use the VF device.\n");
8151d294
WM
5879 }
5880 } else {
5881 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
b980ac18 5882 false, vf);
8151d294
WM
5883 igb_set_vmvir(adapter, vlan, vf);
5884 igb_set_vmolr(adapter, vf, true);
5885 adapter->vf_data[vf].pf_vlan = 0;
5886 adapter->vf_data[vf].pf_qos = 0;
b980ac18 5887 }
8151d294 5888out:
b980ac18 5889 return err;
4ae196df
AD
5890}
5891
6f3dc319
GR
5892static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
5893{
5894 struct e1000_hw *hw = &adapter->hw;
5895 int i;
5896 u32 reg;
5897
5898 /* Find the vlan filter for this id */
5899 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5900 reg = rd32(E1000_VLVF(i));
5901 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5902 vid == (reg & E1000_VLVF_VLANID_MASK))
5903 break;
5904 }
5905
5906 if (i >= E1000_VLVF_ARRAY_SIZE)
5907 i = -1;
5908
5909 return i;
5910}
5911
4ae196df
AD
5912static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5913{
6f3dc319 5914 struct e1000_hw *hw = &adapter->hw;
4ae196df
AD
5915 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5916 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
6f3dc319 5917 int err = 0;
4ae196df 5918
6f3dc319
GR
5919 /* If in promiscuous mode we need to make sure the PF also has
5920 * the VLAN filter set.
5921 */
5922 if (add && (adapter->netdev->flags & IFF_PROMISC))
5923 err = igb_vlvf_set(adapter, vid, add,
5924 adapter->vfs_allocated_count);
5925 if (err)
5926 goto out;
5927
5928 err = igb_vlvf_set(adapter, vid, add, vf);
5929
5930 if (err)
5931 goto out;
5932
5933 /* Go through all the checks to see if the VLAN filter should
5934 * be wiped completely.
5935 */
5936 if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
5937 u32 vlvf, bits;
6f3dc319 5938 int regndx = igb_find_vlvf_entry(adapter, vid);
9005df38 5939
6f3dc319
GR
5940 if (regndx < 0)
5941 goto out;
5942 /* See if any other pools are set for this VLAN filter
5943 * entry other than the PF.
5944 */
5945 vlvf = bits = rd32(E1000_VLVF(regndx));
5946 bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
5947 adapter->vfs_allocated_count);
5948 /* If the filter was removed then ensure PF pool bit
5949 * is cleared if the PF only added itself to the pool
5950 * because the PF is in promiscuous mode.
5951 */
5952 if ((vlvf & VLAN_VID_MASK) == vid &&
5953 !test_bit(vid, adapter->active_vlans) &&
5954 !bits)
5955 igb_vlvf_set(adapter, vid, add,
5956 adapter->vfs_allocated_count);
5957 }
5958
5959out:
5960 return err;
4ae196df
AD
5961}
5962
f2ca0dbe 5963static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
4ae196df 5964{
8fa7e0f7
GR
5965 /* clear flags - except flag that indicates PF has set the MAC */
5966 adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
f2ca0dbe 5967 adapter->vf_data[vf].last_nack = jiffies;
4ae196df
AD
5968
5969 /* reset offloads to defaults */
8151d294 5970 igb_set_vmolr(adapter, vf, true);
4ae196df
AD
5971
5972 /* reset vlans for device */
5973 igb_clear_vf_vfta(adapter, vf);
8151d294
WM
5974 if (adapter->vf_data[vf].pf_vlan)
5975 igb_ndo_set_vf_vlan(adapter->netdev, vf,
5976 adapter->vf_data[vf].pf_vlan,
5977 adapter->vf_data[vf].pf_qos);
5978 else
5979 igb_clear_vf_vfta(adapter, vf);
4ae196df
AD
5980
5981 /* reset multicast table array for vf */
5982 adapter->vf_data[vf].num_vf_mc_hashes = 0;
5983
5984 /* Flush and reset the mta with the new values */
ff41f8dc 5985 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
5986}
5987
f2ca0dbe
AD
5988static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5989{
5990 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5991
5ac6f91d 5992 /* clear mac address as we were hotplug removed/added */
8151d294 5993 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5ac6f91d 5994 eth_zero_addr(vf_mac);
f2ca0dbe
AD
5995
5996 /* process remaining reset events */
5997 igb_vf_reset(adapter, vf);
5998}
5999
6000static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4ae196df
AD
6001{
6002 struct e1000_hw *hw = &adapter->hw;
6003 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
ff41f8dc 6004 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df
AD
6005 u32 reg, msgbuf[3];
6006 u8 *addr = (u8 *)(&msgbuf[1]);
6007
6008 /* process all the same items cleared in a function level reset */
f2ca0dbe 6009 igb_vf_reset(adapter, vf);
4ae196df
AD
6010
6011 /* set vf mac address */
26ad9178 6012 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4ae196df
AD
6013
6014 /* enable transmit and receive for vf */
6015 reg = rd32(E1000_VFTE);
6016 wr32(E1000_VFTE, reg | (1 << vf));
6017 reg = rd32(E1000_VFRE);
6018 wr32(E1000_VFRE, reg | (1 << vf));
6019
8fa7e0f7 6020 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
4ae196df
AD
6021
6022 /* reply to reset with ack and vf mac address */
6023 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
d458cdf7 6024 memcpy(addr, vf_mac, ETH_ALEN);
4ae196df
AD
6025 igb_write_mbx(hw, msgbuf, 3, vf);
6026}
6027
6028static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
6029{
b980ac18 6030 /* The VF MAC Address is stored in a packed array of bytes
de42edde
GR
6031 * starting at the second 32 bit word of the msg array
6032 */
f2ca0dbe
AD
6033 unsigned char *addr = (char *)&msg[1];
6034 int err = -1;
4ae196df 6035
f2ca0dbe
AD
6036 if (is_valid_ether_addr(addr))
6037 err = igb_set_vf_mac(adapter, vf, addr);
4ae196df 6038
f2ca0dbe 6039 return err;
4ae196df
AD
6040}
6041
6042static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
6043{
6044 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 6045 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
6046 u32 msg = E1000_VT_MSGTYPE_NACK;
6047
6048 /* if device isn't clear to send it shouldn't be reading either */
f2ca0dbe
AD
6049 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6050 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4ae196df 6051 igb_write_mbx(hw, &msg, 1, vf);
f2ca0dbe 6052 vf_data->last_nack = jiffies;
4ae196df
AD
6053 }
6054}
6055
f2ca0dbe 6056static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4ae196df 6057{
f2ca0dbe
AD
6058 struct pci_dev *pdev = adapter->pdev;
6059 u32 msgbuf[E1000_VFMAILBOX_SIZE];
4ae196df 6060 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 6061 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
6062 s32 retval;
6063
f2ca0dbe 6064 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
4ae196df 6065
fef45f4c
AD
6066 if (retval) {
6067 /* if receive failed revoke VF CTS stats and restart init */
f2ca0dbe 6068 dev_err(&pdev->dev, "Error receiving message from VF\n");
fef45f4c
AD
6069 vf_data->flags &= ~IGB_VF_FLAG_CTS;
6070 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6071 return;
6072 goto out;
6073 }
4ae196df
AD
6074
6075 /* this is a message we already processed, do nothing */
6076 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
f2ca0dbe 6077 return;
4ae196df 6078
b980ac18 6079 /* until the vf completes a reset it should not be
4ae196df
AD
6080 * allowed to start any configuration.
6081 */
4ae196df
AD
6082 if (msgbuf[0] == E1000_VF_RESET) {
6083 igb_vf_reset_msg(adapter, vf);
f2ca0dbe 6084 return;
4ae196df
AD
6085 }
6086
f2ca0dbe 6087 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
fef45f4c
AD
6088 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6089 return;
6090 retval = -1;
6091 goto out;
4ae196df
AD
6092 }
6093
6094 switch ((msgbuf[0] & 0xFFFF)) {
6095 case E1000_VF_SET_MAC_ADDR:
a6b5ea35
GR
6096 retval = -EINVAL;
6097 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6098 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6099 else
6100 dev_warn(&pdev->dev,
b980ac18
JK
6101 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6102 vf);
4ae196df 6103 break;
7d5753f0
AD
6104 case E1000_VF_SET_PROMISC:
6105 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6106 break;
4ae196df
AD
6107 case E1000_VF_SET_MULTICAST:
6108 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6109 break;
6110 case E1000_VF_SET_LPE:
6111 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6112 break;
6113 case E1000_VF_SET_VLAN:
a6b5ea35
GR
6114 retval = -1;
6115 if (vf_data->pf_vlan)
6116 dev_warn(&pdev->dev,
b980ac18
JK
6117 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6118 vf);
8151d294
WM
6119 else
6120 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4ae196df
AD
6121 break;
6122 default:
090b1795 6123 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4ae196df
AD
6124 retval = -1;
6125 break;
6126 }
6127
fef45f4c
AD
6128 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6129out:
4ae196df
AD
6130 /* notify the VF of the results of what it sent us */
6131 if (retval)
6132 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6133 else
6134 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6135
4ae196df 6136 igb_write_mbx(hw, msgbuf, 1, vf);
f2ca0dbe 6137}
4ae196df 6138
f2ca0dbe
AD
6139static void igb_msg_task(struct igb_adapter *adapter)
6140{
6141 struct e1000_hw *hw = &adapter->hw;
6142 u32 vf;
6143
6144 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6145 /* process any reset requests */
6146 if (!igb_check_for_rst(hw, vf))
6147 igb_vf_reset_event(adapter, vf);
6148
6149 /* process any messages pending */
6150 if (!igb_check_for_msg(hw, vf))
6151 igb_rcv_msg_from_vf(adapter, vf);
6152
6153 /* process any acks */
6154 if (!igb_check_for_ack(hw, vf))
6155 igb_rcv_ack_from_vf(adapter, vf);
6156 }
4ae196df
AD
6157}
6158
68d480c4
AD
6159/**
6160 * igb_set_uta - Set unicast filter table address
6161 * @adapter: board private structure
6162 *
6163 * The unicast table address is a register array of 32-bit registers.
6164 * The table is meant to be used in a way similar to how the MTA is used
6165 * however due to certain limitations in the hardware it is necessary to
25985edc
LDM
6166 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6167 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
68d480c4
AD
6168 **/
6169static void igb_set_uta(struct igb_adapter *adapter)
6170{
6171 struct e1000_hw *hw = &adapter->hw;
6172 int i;
6173
6174 /* The UTA table only exists on 82576 hardware and newer */
6175 if (hw->mac.type < e1000_82576)
6176 return;
6177
6178 /* we only need to do this if VMDq is enabled */
6179 if (!adapter->vfs_allocated_count)
6180 return;
6181
6182 for (i = 0; i < hw->mac.uta_reg_count; i++)
6183 array_wr32(E1000_UTA, i, ~0);
6184}
6185
9d5c8243 6186/**
b980ac18
JK
6187 * igb_intr_msi - Interrupt Handler
6188 * @irq: interrupt number
6189 * @data: pointer to a network interface device structure
9d5c8243
AK
6190 **/
6191static irqreturn_t igb_intr_msi(int irq, void *data)
6192{
047e0030
AD
6193 struct igb_adapter *adapter = data;
6194 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
6195 struct e1000_hw *hw = &adapter->hw;
6196 /* read ICR disables interrupts using IAM */
6197 u32 icr = rd32(E1000_ICR);
6198
047e0030 6199 igb_write_itr(q_vector);
9d5c8243 6200
7f081d40
AD
6201 if (icr & E1000_ICR_DRSTA)
6202 schedule_work(&adapter->reset_task);
6203
047e0030 6204 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
6205 /* HW is reporting DMA is out of sync */
6206 adapter->stats.doosync++;
6207 }
6208
9d5c8243
AK
6209 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6210 hw->mac.get_link_status = 1;
6211 if (!test_bit(__IGB_DOWN, &adapter->state))
6212 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6213 }
6214
1f6e8178
MV
6215 if (icr & E1000_ICR_TS) {
6216 u32 tsicr = rd32(E1000_TSICR);
6217
6218 if (tsicr & E1000_TSICR_TXTS) {
6219 /* acknowledge the interrupt */
6220 wr32(E1000_TSICR, E1000_TSICR_TXTS);
6221 /* retrieve hardware timestamp */
6222 schedule_work(&adapter->ptp_tx_work);
6223 }
6224 }
1f6e8178 6225
047e0030 6226 napi_schedule(&q_vector->napi);
9d5c8243
AK
6227
6228 return IRQ_HANDLED;
6229}
6230
6231/**
b980ac18
JK
6232 * igb_intr - Legacy Interrupt Handler
6233 * @irq: interrupt number
6234 * @data: pointer to a network interface device structure
9d5c8243
AK
6235 **/
6236static irqreturn_t igb_intr(int irq, void *data)
6237{
047e0030
AD
6238 struct igb_adapter *adapter = data;
6239 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
6240 struct e1000_hw *hw = &adapter->hw;
6241 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
b980ac18
JK
6242 * need for the IMC write
6243 */
9d5c8243 6244 u32 icr = rd32(E1000_ICR);
9d5c8243
AK
6245
6246 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
b980ac18
JK
6247 * not set, then the adapter didn't send an interrupt
6248 */
9d5c8243
AK
6249 if (!(icr & E1000_ICR_INT_ASSERTED))
6250 return IRQ_NONE;
6251
0ba82994
AD
6252 igb_write_itr(q_vector);
6253
7f081d40
AD
6254 if (icr & E1000_ICR_DRSTA)
6255 schedule_work(&adapter->reset_task);
6256
047e0030 6257 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
6258 /* HW is reporting DMA is out of sync */
6259 adapter->stats.doosync++;
6260 }
6261
9d5c8243
AK
6262 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6263 hw->mac.get_link_status = 1;
6264 /* guard against interrupt when we're going down */
6265 if (!test_bit(__IGB_DOWN, &adapter->state))
6266 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6267 }
6268
1f6e8178
MV
6269 if (icr & E1000_ICR_TS) {
6270 u32 tsicr = rd32(E1000_TSICR);
6271
6272 if (tsicr & E1000_TSICR_TXTS) {
6273 /* acknowledge the interrupt */
6274 wr32(E1000_TSICR, E1000_TSICR_TXTS);
6275 /* retrieve hardware timestamp */
6276 schedule_work(&adapter->ptp_tx_work);
6277 }
6278 }
1f6e8178 6279
047e0030 6280 napi_schedule(&q_vector->napi);
9d5c8243
AK
6281
6282 return IRQ_HANDLED;
6283}
6284
c50b52a0 6285static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
9d5c8243 6286{
047e0030 6287 struct igb_adapter *adapter = q_vector->adapter;
46544258 6288 struct e1000_hw *hw = &adapter->hw;
9d5c8243 6289
0ba82994
AD
6290 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6291 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6292 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6293 igb_set_itr(q_vector);
46544258 6294 else
047e0030 6295 igb_update_ring_itr(q_vector);
9d5c8243
AK
6296 }
6297
46544258 6298 if (!test_bit(__IGB_DOWN, &adapter->state)) {
cd14ef54 6299 if (adapter->flags & IGB_FLAG_HAS_MSIX)
047e0030 6300 wr32(E1000_EIMS, q_vector->eims_value);
46544258
AD
6301 else
6302 igb_irq_enable(adapter);
6303 }
9d5c8243
AK
6304}
6305
46544258 6306/**
b980ac18
JK
6307 * igb_poll - NAPI Rx polling callback
6308 * @napi: napi polling structure
6309 * @budget: count of how many packets we should handle
46544258
AD
6310 **/
6311static int igb_poll(struct napi_struct *napi, int budget)
9d5c8243 6312{
047e0030 6313 struct igb_q_vector *q_vector = container_of(napi,
b980ac18
JK
6314 struct igb_q_vector,
6315 napi);
16eb8815 6316 bool clean_complete = true;
9d5c8243 6317
421e02f0 6318#ifdef CONFIG_IGB_DCA
047e0030
AD
6319 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6320 igb_update_dca(q_vector);
fe4506b6 6321#endif
0ba82994 6322 if (q_vector->tx.ring)
13fde97a 6323 clean_complete = igb_clean_tx_irq(q_vector);
9d5c8243 6324
0ba82994 6325 if (q_vector->rx.ring)
cd392f5c 6326 clean_complete &= igb_clean_rx_irq(q_vector, budget);
047e0030 6327
16eb8815
AD
6328 /* If all work not completed, return budget and keep polling */
6329 if (!clean_complete)
6330 return budget;
46544258 6331
9d5c8243 6332 /* If not enough Rx work done, exit the polling mode */
16eb8815
AD
6333 napi_complete(napi);
6334 igb_ring_irq_enable(q_vector);
9d5c8243 6335
16eb8815 6336 return 0;
9d5c8243 6337}
6d8126f9 6338
9d5c8243 6339/**
b980ac18
JK
6340 * igb_clean_tx_irq - Reclaim resources after transmit completes
6341 * @q_vector: pointer to q_vector containing needed info
49ce9c2c 6342 *
b980ac18 6343 * returns true if ring is completely cleaned
9d5c8243 6344 **/
047e0030 6345static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
9d5c8243 6346{
047e0030 6347 struct igb_adapter *adapter = q_vector->adapter;
0ba82994 6348 struct igb_ring *tx_ring = q_vector->tx.ring;
06034649 6349 struct igb_tx_buffer *tx_buffer;
f4128785 6350 union e1000_adv_tx_desc *tx_desc;
9d5c8243 6351 unsigned int total_bytes = 0, total_packets = 0;
0ba82994 6352 unsigned int budget = q_vector->tx.work_limit;
8542db05 6353 unsigned int i = tx_ring->next_to_clean;
9d5c8243 6354
13fde97a
AD
6355 if (test_bit(__IGB_DOWN, &adapter->state))
6356 return true;
0e014cb1 6357
06034649 6358 tx_buffer = &tx_ring->tx_buffer_info[i];
13fde97a 6359 tx_desc = IGB_TX_DESC(tx_ring, i);
8542db05 6360 i -= tx_ring->count;
9d5c8243 6361
f4128785
AD
6362 do {
6363 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
8542db05
AD
6364
6365 /* if next_to_watch is not set then there is no work pending */
6366 if (!eop_desc)
6367 break;
13fde97a 6368
f4128785 6369 /* prevent any other reads prior to eop_desc */
70d289bc 6370 read_barrier_depends();
f4128785 6371
13fde97a
AD
6372 /* if DD is not set pending work has not been completed */
6373 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6374 break;
6375
8542db05
AD
6376 /* clear next_to_watch to prevent false hangs */
6377 tx_buffer->next_to_watch = NULL;
9d5c8243 6378
ebe42d16
AD
6379 /* update the statistics for this packet */
6380 total_bytes += tx_buffer->bytecount;
6381 total_packets += tx_buffer->gso_segs;
13fde97a 6382
ebe42d16 6383 /* free the skb */
a81fb049 6384 dev_consume_skb_any(tx_buffer->skb);
13fde97a 6385
ebe42d16
AD
6386 /* unmap skb header data */
6387 dma_unmap_single(tx_ring->dev,
c9f14bf3
AD
6388 dma_unmap_addr(tx_buffer, dma),
6389 dma_unmap_len(tx_buffer, len),
ebe42d16
AD
6390 DMA_TO_DEVICE);
6391
c9f14bf3
AD
6392 /* clear tx_buffer data */
6393 tx_buffer->skb = NULL;
6394 dma_unmap_len_set(tx_buffer, len, 0);
6395
ebe42d16
AD
6396 /* clear last DMA location and unmap remaining buffers */
6397 while (tx_desc != eop_desc) {
13fde97a
AD
6398 tx_buffer++;
6399 tx_desc++;
9d5c8243 6400 i++;
8542db05
AD
6401 if (unlikely(!i)) {
6402 i -= tx_ring->count;
06034649 6403 tx_buffer = tx_ring->tx_buffer_info;
13fde97a
AD
6404 tx_desc = IGB_TX_DESC(tx_ring, 0);
6405 }
ebe42d16
AD
6406
6407 /* unmap any remaining paged data */
c9f14bf3 6408 if (dma_unmap_len(tx_buffer, len)) {
ebe42d16 6409 dma_unmap_page(tx_ring->dev,
c9f14bf3
AD
6410 dma_unmap_addr(tx_buffer, dma),
6411 dma_unmap_len(tx_buffer, len),
ebe42d16 6412 DMA_TO_DEVICE);
c9f14bf3 6413 dma_unmap_len_set(tx_buffer, len, 0);
ebe42d16
AD
6414 }
6415 }
6416
ebe42d16
AD
6417 /* move us one more past the eop_desc for start of next pkt */
6418 tx_buffer++;
6419 tx_desc++;
6420 i++;
6421 if (unlikely(!i)) {
6422 i -= tx_ring->count;
6423 tx_buffer = tx_ring->tx_buffer_info;
6424 tx_desc = IGB_TX_DESC(tx_ring, 0);
6425 }
f4128785
AD
6426
6427 /* issue prefetch for next Tx descriptor */
6428 prefetch(tx_desc);
6429
6430 /* update budget accounting */
6431 budget--;
6432 } while (likely(budget));
0e014cb1 6433
bdbc0631
ED
6434 netdev_tx_completed_queue(txring_txq(tx_ring),
6435 total_packets, total_bytes);
8542db05 6436 i += tx_ring->count;
9d5c8243 6437 tx_ring->next_to_clean = i;
13fde97a
AD
6438 u64_stats_update_begin(&tx_ring->tx_syncp);
6439 tx_ring->tx_stats.bytes += total_bytes;
6440 tx_ring->tx_stats.packets += total_packets;
6441 u64_stats_update_end(&tx_ring->tx_syncp);
0ba82994
AD
6442 q_vector->tx.total_bytes += total_bytes;
6443 q_vector->tx.total_packets += total_packets;
9d5c8243 6444
6d095fa8 6445 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
13fde97a 6446 struct e1000_hw *hw = &adapter->hw;
12dcd86b 6447
9d5c8243 6448 /* Detect a transmit hang in hardware, this serializes the
b980ac18
JK
6449 * check with the clearing of time_stamp and movement of i
6450 */
6d095fa8 6451 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
f4128785 6452 if (tx_buffer->next_to_watch &&
8542db05 6453 time_after(jiffies, tx_buffer->time_stamp +
8e95a202
JP
6454 (adapter->tx_timeout_factor * HZ)) &&
6455 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
9d5c8243 6456
9d5c8243 6457 /* detected Tx unit hang */
59d71989 6458 dev_err(tx_ring->dev,
9d5c8243 6459 "Detected Tx Unit Hang\n"
2d064c06 6460 " Tx Queue <%d>\n"
9d5c8243
AK
6461 " TDH <%x>\n"
6462 " TDT <%x>\n"
6463 " next_to_use <%x>\n"
6464 " next_to_clean <%x>\n"
9d5c8243
AK
6465 "buffer_info[next_to_clean]\n"
6466 " time_stamp <%lx>\n"
8542db05 6467 " next_to_watch <%p>\n"
9d5c8243
AK
6468 " jiffies <%lx>\n"
6469 " desc.status <%x>\n",
2d064c06 6470 tx_ring->queue_index,
238ac817 6471 rd32(E1000_TDH(tx_ring->reg_idx)),
fce99e34 6472 readl(tx_ring->tail),
9d5c8243
AK
6473 tx_ring->next_to_use,
6474 tx_ring->next_to_clean,
8542db05 6475 tx_buffer->time_stamp,
f4128785 6476 tx_buffer->next_to_watch,
9d5c8243 6477 jiffies,
f4128785 6478 tx_buffer->next_to_watch->wb.status);
13fde97a
AD
6479 netif_stop_subqueue(tx_ring->netdev,
6480 tx_ring->queue_index);
6481
6482 /* we are about to reset, no point in enabling stuff */
6483 return true;
9d5c8243
AK
6484 }
6485 }
13fde97a 6486
21ba6fe1 6487#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
13fde97a 6488 if (unlikely(total_packets &&
b980ac18
JK
6489 netif_carrier_ok(tx_ring->netdev) &&
6490 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
13fde97a
AD
6491 /* Make sure that anybody stopping the queue after this
6492 * sees the new next_to_clean.
6493 */
6494 smp_mb();
6495 if (__netif_subqueue_stopped(tx_ring->netdev,
6496 tx_ring->queue_index) &&
6497 !(test_bit(__IGB_DOWN, &adapter->state))) {
6498 netif_wake_subqueue(tx_ring->netdev,
6499 tx_ring->queue_index);
6500
6501 u64_stats_update_begin(&tx_ring->tx_syncp);
6502 tx_ring->tx_stats.restart_queue++;
6503 u64_stats_update_end(&tx_ring->tx_syncp);
6504 }
6505 }
6506
6507 return !!budget;
9d5c8243
AK
6508}
6509
cbc8e55f 6510/**
b980ac18
JK
6511 * igb_reuse_rx_page - page flip buffer and store it back on the ring
6512 * @rx_ring: rx descriptor ring to store buffers on
6513 * @old_buff: donor buffer to have page reused
cbc8e55f 6514 *
b980ac18 6515 * Synchronizes page for reuse by the adapter
cbc8e55f
AD
6516 **/
6517static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6518 struct igb_rx_buffer *old_buff)
6519{
6520 struct igb_rx_buffer *new_buff;
6521 u16 nta = rx_ring->next_to_alloc;
6522
6523 new_buff = &rx_ring->rx_buffer_info[nta];
6524
6525 /* update, and store next to alloc */
6526 nta++;
6527 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6528
6529 /* transfer page from old buffer to new buffer */
a1f63473 6530 *new_buff = *old_buff;
cbc8e55f
AD
6531
6532 /* sync the buffer for use by the device */
6533 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6534 old_buff->page_offset,
de78d1f9 6535 IGB_RX_BUFSZ,
cbc8e55f
AD
6536 DMA_FROM_DEVICE);
6537}
6538
74e238ea
AD
6539static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6540 struct page *page,
6541 unsigned int truesize)
6542{
6543 /* avoid re-using remote pages */
6544 if (unlikely(page_to_nid(page) != numa_node_id()))
6545 return false;
6546
bc16e47f
RG
6547 if (unlikely(page->pfmemalloc))
6548 return false;
6549
74e238ea
AD
6550#if (PAGE_SIZE < 8192)
6551 /* if we are only owner of page we can reuse it */
6552 if (unlikely(page_count(page) != 1))
6553 return false;
6554
6555 /* flip page offset to other buffer */
6556 rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6557
00cd5adb
ED
6558 /* Even if we own the page, we are not allowed to use atomic_set()
6559 * This would break get_page_unless_zero() users.
74e238ea 6560 */
00cd5adb 6561 atomic_inc(&page->_count);
74e238ea
AD
6562#else
6563 /* move offset up to the next cache line */
6564 rx_buffer->page_offset += truesize;
6565
6566 if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6567 return false;
6568
6569 /* bump ref count on page before it is given to the stack */
6570 get_page(page);
6571#endif
6572
6573 return true;
6574}
6575
cbc8e55f 6576/**
b980ac18
JK
6577 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6578 * @rx_ring: rx descriptor ring to transact packets on
6579 * @rx_buffer: buffer containing page to add
6580 * @rx_desc: descriptor containing length of buffer written by hardware
6581 * @skb: sk_buff to place the data into
cbc8e55f 6582 *
b980ac18
JK
6583 * This function will add the data contained in rx_buffer->page to the skb.
6584 * This is done either through a direct copy if the data in the buffer is
6585 * less than the skb header size, otherwise it will just attach the page as
6586 * a frag to the skb.
cbc8e55f 6587 *
b980ac18
JK
6588 * The function will then update the page offset if necessary and return
6589 * true if the buffer can be reused by the adapter.
cbc8e55f
AD
6590 **/
6591static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6592 struct igb_rx_buffer *rx_buffer,
6593 union e1000_adv_rx_desc *rx_desc,
6594 struct sk_buff *skb)
6595{
6596 struct page *page = rx_buffer->page;
6597 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
74e238ea
AD
6598#if (PAGE_SIZE < 8192)
6599 unsigned int truesize = IGB_RX_BUFSZ;
6600#else
6601 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6602#endif
cbc8e55f
AD
6603
6604 if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6605 unsigned char *va = page_address(page) + rx_buffer->page_offset;
6606
cbc8e55f
AD
6607 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6608 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6609 va += IGB_TS_HDR_LEN;
6610 size -= IGB_TS_HDR_LEN;
6611 }
6612
cbc8e55f
AD
6613 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6614
6615 /* we can reuse buffer as-is, just make sure it is local */
bc16e47f
RG
6616 if (likely((page_to_nid(page) == numa_node_id()) &&
6617 !page->pfmemalloc))
cbc8e55f
AD
6618 return true;
6619
6620 /* this page cannot be reused so discard it */
6621 put_page(page);
6622 return false;
6623 }
6624
6625 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
74e238ea 6626 rx_buffer->page_offset, size, truesize);
cbc8e55f 6627
74e238ea
AD
6628 return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6629}
cbc8e55f 6630
2e334eee
AD
6631static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6632 union e1000_adv_rx_desc *rx_desc,
6633 struct sk_buff *skb)
6634{
6635 struct igb_rx_buffer *rx_buffer;
6636 struct page *page;
6637
6638 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6639
2e334eee
AD
6640 page = rx_buffer->page;
6641 prefetchw(page);
6642
6643 if (likely(!skb)) {
6644 void *page_addr = page_address(page) +
6645 rx_buffer->page_offset;
6646
6647 /* prefetch first cache line of first page */
6648 prefetch(page_addr);
6649#if L1_CACHE_BYTES < 128
6650 prefetch(page_addr + L1_CACHE_BYTES);
6651#endif
6652
6653 /* allocate a skb to store the frags */
6654 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6655 IGB_RX_HDR_LEN);
6656 if (unlikely(!skb)) {
6657 rx_ring->rx_stats.alloc_failed++;
6658 return NULL;
6659 }
6660
b980ac18 6661 /* we will be copying header into skb->data in
2e334eee
AD
6662 * pskb_may_pull so it is in our interest to prefetch
6663 * it now to avoid a possible cache miss
6664 */
6665 prefetchw(skb->data);
6666 }
6667
6668 /* we are reusing so sync this buffer for CPU use */
6669 dma_sync_single_range_for_cpu(rx_ring->dev,
6670 rx_buffer->dma,
6671 rx_buffer->page_offset,
de78d1f9 6672 IGB_RX_BUFSZ,
2e334eee
AD
6673 DMA_FROM_DEVICE);
6674
6675 /* pull page into skb */
6676 if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6677 /* hand second half of page back to the ring */
6678 igb_reuse_rx_page(rx_ring, rx_buffer);
6679 } else {
6680 /* we are not reusing the buffer so unmap it */
6681 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6682 PAGE_SIZE, DMA_FROM_DEVICE);
6683 }
6684
6685 /* clear contents of rx_buffer */
6686 rx_buffer->page = NULL;
6687
6688 return skb;
6689}
6690
cd392f5c 6691static inline void igb_rx_checksum(struct igb_ring *ring,
3ceb90fd
AD
6692 union e1000_adv_rx_desc *rx_desc,
6693 struct sk_buff *skb)
9d5c8243 6694{
bc8acf2c 6695 skb_checksum_none_assert(skb);
9d5c8243 6696
294e7d78 6697 /* Ignore Checksum bit is set */
3ceb90fd 6698 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
294e7d78
AD
6699 return;
6700
6701 /* Rx checksum disabled via ethtool */
6702 if (!(ring->netdev->features & NETIF_F_RXCSUM))
9d5c8243 6703 return;
85ad76b2 6704
9d5c8243 6705 /* TCP/UDP checksum error bit is set */
3ceb90fd
AD
6706 if (igb_test_staterr(rx_desc,
6707 E1000_RXDEXT_STATERR_TCPE |
6708 E1000_RXDEXT_STATERR_IPE)) {
b980ac18 6709 /* work around errata with sctp packets where the TCPE aka
b9473560
JB
6710 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6711 * packets, (aka let the stack check the crc32c)
6712 */
866cff06
AD
6713 if (!((skb->len == 60) &&
6714 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
12dcd86b 6715 u64_stats_update_begin(&ring->rx_syncp);
04a5fcaa 6716 ring->rx_stats.csum_err++;
12dcd86b
ED
6717 u64_stats_update_end(&ring->rx_syncp);
6718 }
9d5c8243 6719 /* let the stack verify checksum errors */
9d5c8243
AK
6720 return;
6721 }
6722 /* It must be a TCP or UDP packet with a valid checksum */
3ceb90fd
AD
6723 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6724 E1000_RXD_STAT_UDPCS))
9d5c8243
AK
6725 skb->ip_summed = CHECKSUM_UNNECESSARY;
6726
3ceb90fd
AD
6727 dev_dbg(ring->dev, "cksum success: bits %08X\n",
6728 le32_to_cpu(rx_desc->wb.upper.status_error));
9d5c8243
AK
6729}
6730
077887c3
AD
6731static inline void igb_rx_hash(struct igb_ring *ring,
6732 union e1000_adv_rx_desc *rx_desc,
6733 struct sk_buff *skb)
6734{
6735 if (ring->netdev->features & NETIF_F_RXHASH)
42bdf083
TH
6736 skb_set_hash(skb,
6737 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
6738 PKT_HASH_TYPE_L3);
077887c3
AD
6739}
6740
2e334eee 6741/**
b980ac18
JK
6742 * igb_is_non_eop - process handling of non-EOP buffers
6743 * @rx_ring: Rx ring being processed
6744 * @rx_desc: Rx descriptor for current buffer
6745 * @skb: current socket buffer containing buffer in progress
2e334eee 6746 *
b980ac18
JK
6747 * This function updates next to clean. If the buffer is an EOP buffer
6748 * this function exits returning false, otherwise it will place the
6749 * sk_buff in the next buffer to be chained and return true indicating
6750 * that this is in fact a non-EOP buffer.
2e334eee
AD
6751 **/
6752static bool igb_is_non_eop(struct igb_ring *rx_ring,
6753 union e1000_adv_rx_desc *rx_desc)
6754{
6755 u32 ntc = rx_ring->next_to_clean + 1;
6756
6757 /* fetch, update, and store next to clean */
6758 ntc = (ntc < rx_ring->count) ? ntc : 0;
6759 rx_ring->next_to_clean = ntc;
6760
6761 prefetch(IGB_RX_DESC(rx_ring, ntc));
6762
6763 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6764 return false;
6765
6766 return true;
6767}
6768
1a1c225b 6769/**
b980ac18
JK
6770 * igb_pull_tail - igb specific version of skb_pull_tail
6771 * @rx_ring: rx descriptor ring packet is being transacted on
6772 * @rx_desc: pointer to the EOP Rx descriptor
6773 * @skb: pointer to current skb being adjusted
1a1c225b 6774 *
b980ac18
JK
6775 * This function is an igb specific version of __pskb_pull_tail. The
6776 * main difference between this version and the original function is that
6777 * this function can make several assumptions about the state of things
6778 * that allow for significant optimizations versus the standard function.
6779 * As a result we can do things like drop a frag and maintain an accurate
6780 * truesize for the skb.
1a1c225b
AD
6781 */
6782static void igb_pull_tail(struct igb_ring *rx_ring,
6783 union e1000_adv_rx_desc *rx_desc,
6784 struct sk_buff *skb)
2d94d8ab 6785{
1a1c225b
AD
6786 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6787 unsigned char *va;
6788 unsigned int pull_len;
6789
b980ac18 6790 /* it is valid to use page_address instead of kmap since we are
1a1c225b
AD
6791 * working with pages allocated out of the lomem pool per
6792 * alloc_page(GFP_ATOMIC)
2d94d8ab 6793 */
1a1c225b
AD
6794 va = skb_frag_address(frag);
6795
1a1c225b
AD
6796 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6797 /* retrieve timestamp from buffer */
6798 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6799
6800 /* update pointers to remove timestamp header */
6801 skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6802 frag->page_offset += IGB_TS_HDR_LEN;
6803 skb->data_len -= IGB_TS_HDR_LEN;
6804 skb->len -= IGB_TS_HDR_LEN;
6805
6806 /* move va to start of packet data */
6807 va += IGB_TS_HDR_LEN;
6808 }
6809
b980ac18 6810 /* we need the header to contain the greater of either ETH_HLEN or
1a1c225b
AD
6811 * 60 bytes if the skb->len is less than 60 for skb_pad.
6812 */
24cd23d3 6813 pull_len = eth_get_headlen(va, IGB_RX_HDR_LEN);
1a1c225b
AD
6814
6815 /* align pull length to size of long to optimize memcpy performance */
6816 skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6817
6818 /* update all of the pointers */
6819 skb_frag_size_sub(frag, pull_len);
6820 frag->page_offset += pull_len;
6821 skb->data_len -= pull_len;
6822 skb->tail += pull_len;
6823}
6824
6825/**
b980ac18
JK
6826 * igb_cleanup_headers - Correct corrupted or empty headers
6827 * @rx_ring: rx descriptor ring packet is being transacted on
6828 * @rx_desc: pointer to the EOP Rx descriptor
6829 * @skb: pointer to current skb being fixed
1a1c225b 6830 *
b980ac18
JK
6831 * Address the case where we are pulling data in on pages only
6832 * and as such no data is present in the skb header.
1a1c225b 6833 *
b980ac18
JK
6834 * In addition if skb is not at least 60 bytes we need to pad it so that
6835 * it is large enough to qualify as a valid Ethernet frame.
1a1c225b 6836 *
b980ac18 6837 * Returns true if an error was encountered and skb was freed.
1a1c225b
AD
6838 **/
6839static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6840 union e1000_adv_rx_desc *rx_desc,
6841 struct sk_buff *skb)
6842{
1a1c225b
AD
6843 if (unlikely((igb_test_staterr(rx_desc,
6844 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6845 struct net_device *netdev = rx_ring->netdev;
6846 if (!(netdev->features & NETIF_F_RXALL)) {
6847 dev_kfree_skb_any(skb);
6848 return true;
6849 }
6850 }
6851
6852 /* place header in linear portion of buffer */
6853 if (skb_is_nonlinear(skb))
6854 igb_pull_tail(rx_ring, rx_desc, skb);
6855
6856 /* if skb_pad returns an error the skb was freed */
6857 if (unlikely(skb->len < 60)) {
6858 int pad_len = 60 - skb->len;
6859
6860 if (skb_pad(skb, pad_len))
6861 return true;
6862 __skb_put(skb, pad_len);
6863 }
6864
6865 return false;
2d94d8ab
AD
6866}
6867
db2ee5bd 6868/**
b980ac18
JK
6869 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
6870 * @rx_ring: rx descriptor ring packet is being transacted on
6871 * @rx_desc: pointer to the EOP Rx descriptor
6872 * @skb: pointer to current skb being populated
db2ee5bd 6873 *
b980ac18
JK
6874 * This function checks the ring, descriptor, and packet information in
6875 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
6876 * other fields within the skb.
db2ee5bd
AD
6877 **/
6878static void igb_process_skb_fields(struct igb_ring *rx_ring,
6879 union e1000_adv_rx_desc *rx_desc,
6880 struct sk_buff *skb)
6881{
6882 struct net_device *dev = rx_ring->netdev;
6883
6884 igb_rx_hash(rx_ring, rx_desc, skb);
6885
6886 igb_rx_checksum(rx_ring, rx_desc, skb);
6887
5499a968
JK
6888 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
6889 !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
6890 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
db2ee5bd 6891
f646968f 6892 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
db2ee5bd
AD
6893 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6894 u16 vid;
9005df38 6895
db2ee5bd
AD
6896 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6897 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6898 vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6899 else
6900 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6901
86a9bad3 6902 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
db2ee5bd
AD
6903 }
6904
6905 skb_record_rx_queue(skb, rx_ring->queue_index);
6906
6907 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6908}
6909
2e334eee 6910static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
9d5c8243 6911{
0ba82994 6912 struct igb_ring *rx_ring = q_vector->rx.ring;
1a1c225b 6913 struct sk_buff *skb = rx_ring->skb;
9d5c8243 6914 unsigned int total_bytes = 0, total_packets = 0;
16eb8815 6915 u16 cleaned_count = igb_desc_unused(rx_ring);
9d5c8243 6916
57ba34c9 6917 while (likely(total_packets < budget)) {
2e334eee 6918 union e1000_adv_rx_desc *rx_desc;
bf36c1a0 6919
2e334eee
AD
6920 /* return some buffers to hardware, one at a time is too slow */
6921 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6922 igb_alloc_rx_buffers(rx_ring, cleaned_count);
6923 cleaned_count = 0;
6924 }
bf36c1a0 6925
2e334eee 6926 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
16eb8815 6927
2e334eee
AD
6928 if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
6929 break;
9d5c8243 6930
74e238ea
AD
6931 /* This memory barrier is needed to keep us from reading
6932 * any other fields out of the rx_desc until we know the
6933 * RXD_STAT_DD bit is set
6934 */
6935 rmb();
6936
2e334eee 6937 /* retrieve a buffer from the ring */
f9d40f6a 6938 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
9d5c8243 6939
2e334eee
AD
6940 /* exit if we failed to retrieve a buffer */
6941 if (!skb)
6942 break;
1a1c225b 6943
2e334eee 6944 cleaned_count++;
1a1c225b 6945
2e334eee
AD
6946 /* fetch next buffer in frame if non-eop */
6947 if (igb_is_non_eop(rx_ring, rx_desc))
6948 continue;
1a1c225b
AD
6949
6950 /* verify the packet layout is correct */
6951 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
6952 skb = NULL;
6953 continue;
9d5c8243 6954 }
9d5c8243 6955
db2ee5bd 6956 /* probably a little skewed due to removing CRC */
3ceb90fd 6957 total_bytes += skb->len;
3ceb90fd 6958
db2ee5bd
AD
6959 /* populate checksum, timestamp, VLAN, and protocol */
6960 igb_process_skb_fields(rx_ring, rx_desc, skb);
3ceb90fd 6961
b2cb09b1 6962 napi_gro_receive(&q_vector->napi, skb);
9d5c8243 6963
1a1c225b
AD
6964 /* reset skb pointer */
6965 skb = NULL;
6966
2e334eee
AD
6967 /* update budget accounting */
6968 total_packets++;
57ba34c9 6969 }
bf36c1a0 6970
1a1c225b
AD
6971 /* place incomplete frames back on ring for completion */
6972 rx_ring->skb = skb;
6973
12dcd86b 6974 u64_stats_update_begin(&rx_ring->rx_syncp);
9d5c8243
AK
6975 rx_ring->rx_stats.packets += total_packets;
6976 rx_ring->rx_stats.bytes += total_bytes;
12dcd86b 6977 u64_stats_update_end(&rx_ring->rx_syncp);
0ba82994
AD
6978 q_vector->rx.total_packets += total_packets;
6979 q_vector->rx.total_bytes += total_bytes;
c023cd88
AD
6980
6981 if (cleaned_count)
cd392f5c 6982 igb_alloc_rx_buffers(rx_ring, cleaned_count);
c023cd88 6983
da1f1dfe 6984 return total_packets < budget;
9d5c8243
AK
6985}
6986
c023cd88 6987static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
06034649 6988 struct igb_rx_buffer *bi)
c023cd88
AD
6989{
6990 struct page *page = bi->page;
cbc8e55f 6991 dma_addr_t dma;
c023cd88 6992
cbc8e55f
AD
6993 /* since we are recycling buffers we should seldom need to alloc */
6994 if (likely(page))
c023cd88
AD
6995 return true;
6996
cbc8e55f
AD
6997 /* alloc new page for storage */
6998 page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
6999 if (unlikely(!page)) {
7000 rx_ring->rx_stats.alloc_failed++;
7001 return false;
c023cd88
AD
7002 }
7003
cbc8e55f
AD
7004 /* map page for use */
7005 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
c023cd88 7006
b980ac18 7007 /* if mapping failed free memory back to system since
cbc8e55f
AD
7008 * there isn't much point in holding memory we can't use
7009 */
1a1c225b 7010 if (dma_mapping_error(rx_ring->dev, dma)) {
cbc8e55f
AD
7011 __free_page(page);
7012
c023cd88
AD
7013 rx_ring->rx_stats.alloc_failed++;
7014 return false;
7015 }
7016
1a1c225b 7017 bi->dma = dma;
cbc8e55f
AD
7018 bi->page = page;
7019 bi->page_offset = 0;
1a1c225b 7020
c023cd88
AD
7021 return true;
7022}
7023
9d5c8243 7024/**
b980ac18
JK
7025 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
7026 * @adapter: address of board private structure
9d5c8243 7027 **/
cd392f5c 7028void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
9d5c8243 7029{
9d5c8243 7030 union e1000_adv_rx_desc *rx_desc;
06034649 7031 struct igb_rx_buffer *bi;
c023cd88 7032 u16 i = rx_ring->next_to_use;
9d5c8243 7033
cbc8e55f
AD
7034 /* nothing to do */
7035 if (!cleaned_count)
7036 return;
7037
60136906 7038 rx_desc = IGB_RX_DESC(rx_ring, i);
06034649 7039 bi = &rx_ring->rx_buffer_info[i];
c023cd88 7040 i -= rx_ring->count;
9d5c8243 7041
cbc8e55f 7042 do {
1a1c225b 7043 if (!igb_alloc_mapped_page(rx_ring, bi))
c023cd88 7044 break;
9d5c8243 7045
b980ac18 7046 /* Refresh the desc even if buffer_addrs didn't change
cbc8e55f
AD
7047 * because each write-back erases this info.
7048 */
f9d40f6a 7049 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
9d5c8243 7050
c023cd88
AD
7051 rx_desc++;
7052 bi++;
9d5c8243 7053 i++;
c023cd88 7054 if (unlikely(!i)) {
60136906 7055 rx_desc = IGB_RX_DESC(rx_ring, 0);
06034649 7056 bi = rx_ring->rx_buffer_info;
c023cd88
AD
7057 i -= rx_ring->count;
7058 }
7059
7060 /* clear the hdr_addr for the next_to_use descriptor */
7061 rx_desc->read.hdr_addr = 0;
cbc8e55f
AD
7062
7063 cleaned_count--;
7064 } while (cleaned_count);
9d5c8243 7065
c023cd88
AD
7066 i += rx_ring->count;
7067
9d5c8243 7068 if (rx_ring->next_to_use != i) {
cbc8e55f 7069 /* record the next descriptor to use */
9d5c8243 7070 rx_ring->next_to_use = i;
9d5c8243 7071
cbc8e55f
AD
7072 /* update next to alloc since we have filled the ring */
7073 rx_ring->next_to_alloc = i;
7074
b980ac18 7075 /* Force memory writes to complete before letting h/w
9d5c8243
AK
7076 * know there are new descriptors to fetch. (Only
7077 * applicable for weak-ordered memory model archs,
cbc8e55f
AD
7078 * such as IA-64).
7079 */
9d5c8243 7080 wmb();
fce99e34 7081 writel(i, rx_ring->tail);
9d5c8243
AK
7082 }
7083}
7084
7085/**
7086 * igb_mii_ioctl -
7087 * @netdev:
7088 * @ifreq:
7089 * @cmd:
7090 **/
7091static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7092{
7093 struct igb_adapter *adapter = netdev_priv(netdev);
7094 struct mii_ioctl_data *data = if_mii(ifr);
7095
7096 if (adapter->hw.phy.media_type != e1000_media_type_copper)
7097 return -EOPNOTSUPP;
7098
7099 switch (cmd) {
7100 case SIOCGMIIPHY:
7101 data->phy_id = adapter->hw.phy.addr;
7102 break;
7103 case SIOCGMIIREG:
f5f4cf08 7104 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
9005df38 7105 &data->val_out))
9d5c8243
AK
7106 return -EIO;
7107 break;
7108 case SIOCSMIIREG:
7109 default:
7110 return -EOPNOTSUPP;
7111 }
7112 return 0;
7113}
7114
7115/**
7116 * igb_ioctl -
7117 * @netdev:
7118 * @ifreq:
7119 * @cmd:
7120 **/
7121static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7122{
7123 switch (cmd) {
7124 case SIOCGMIIPHY:
7125 case SIOCGMIIREG:
7126 case SIOCSMIIREG:
7127 return igb_mii_ioctl(netdev, ifr, cmd);
6ab5f7b2
JK
7128 case SIOCGHWTSTAMP:
7129 return igb_ptp_get_ts_config(netdev, ifr);
c6cb090b 7130 case SIOCSHWTSTAMP:
6ab5f7b2 7131 return igb_ptp_set_ts_config(netdev, ifr);
9d5c8243
AK
7132 default:
7133 return -EOPNOTSUPP;
7134 }
7135}
7136
94826487
TF
7137void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7138{
7139 struct igb_adapter *adapter = hw->back;
7140
7141 pci_read_config_word(adapter->pdev, reg, value);
7142}
7143
7144void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7145{
7146 struct igb_adapter *adapter = hw->back;
7147
7148 pci_write_config_word(adapter->pdev, reg, *value);
7149}
7150
009bc06e
AD
7151s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7152{
7153 struct igb_adapter *adapter = hw->back;
009bc06e 7154
23d028cc 7155 if (pcie_capability_read_word(adapter->pdev, reg, value))
009bc06e
AD
7156 return -E1000_ERR_CONFIG;
7157
009bc06e
AD
7158 return 0;
7159}
7160
7161s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7162{
7163 struct igb_adapter *adapter = hw->back;
009bc06e 7164
23d028cc 7165 if (pcie_capability_write_word(adapter->pdev, reg, *value))
009bc06e
AD
7166 return -E1000_ERR_CONFIG;
7167
009bc06e
AD
7168 return 0;
7169}
7170
c8f44aff 7171static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
9d5c8243
AK
7172{
7173 struct igb_adapter *adapter = netdev_priv(netdev);
7174 struct e1000_hw *hw = &adapter->hw;
7175 u32 ctrl, rctl;
f646968f 7176 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
9d5c8243 7177
5faf030c 7178 if (enable) {
9d5c8243
AK
7179 /* enable VLAN tag insert/strip */
7180 ctrl = rd32(E1000_CTRL);
7181 ctrl |= E1000_CTRL_VME;
7182 wr32(E1000_CTRL, ctrl);
7183
51466239 7184 /* Disable CFI check */
9d5c8243 7185 rctl = rd32(E1000_RCTL);
9d5c8243
AK
7186 rctl &= ~E1000_RCTL_CFIEN;
7187 wr32(E1000_RCTL, rctl);
9d5c8243
AK
7188 } else {
7189 /* disable VLAN tag insert/strip */
7190 ctrl = rd32(E1000_CTRL);
7191 ctrl &= ~E1000_CTRL_VME;
7192 wr32(E1000_CTRL, ctrl);
9d5c8243
AK
7193 }
7194
e1739522 7195 igb_rlpml_set(adapter);
9d5c8243
AK
7196}
7197
80d5c368
PM
7198static int igb_vlan_rx_add_vid(struct net_device *netdev,
7199 __be16 proto, u16 vid)
9d5c8243
AK
7200{
7201 struct igb_adapter *adapter = netdev_priv(netdev);
7202 struct e1000_hw *hw = &adapter->hw;
4ae196df 7203 int pf_id = adapter->vfs_allocated_count;
9d5c8243 7204
51466239
AD
7205 /* attempt to add filter to vlvf array */
7206 igb_vlvf_set(adapter, vid, true, pf_id);
4ae196df 7207
51466239
AD
7208 /* add the filter since PF can receive vlans w/o entry in vlvf */
7209 igb_vfta_set(hw, vid, true);
b2cb09b1
JP
7210
7211 set_bit(vid, adapter->active_vlans);
8e586137
JP
7212
7213 return 0;
9d5c8243
AK
7214}
7215
80d5c368
PM
7216static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7217 __be16 proto, u16 vid)
9d5c8243
AK
7218{
7219 struct igb_adapter *adapter = netdev_priv(netdev);
7220 struct e1000_hw *hw = &adapter->hw;
4ae196df 7221 int pf_id = adapter->vfs_allocated_count;
51466239 7222 s32 err;
9d5c8243 7223
51466239
AD
7224 /* remove vlan from VLVF table array */
7225 err = igb_vlvf_set(adapter, vid, false, pf_id);
9d5c8243 7226
51466239
AD
7227 /* if vid was not present in VLVF just remove it from table */
7228 if (err)
4ae196df 7229 igb_vfta_set(hw, vid, false);
b2cb09b1
JP
7230
7231 clear_bit(vid, adapter->active_vlans);
8e586137
JP
7232
7233 return 0;
9d5c8243
AK
7234}
7235
7236static void igb_restore_vlan(struct igb_adapter *adapter)
7237{
b2cb09b1 7238 u16 vid;
9d5c8243 7239
5faf030c
AD
7240 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7241
b2cb09b1 7242 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
80d5c368 7243 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
9d5c8243
AK
7244}
7245
14ad2513 7246int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9d5c8243 7247{
090b1795 7248 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
7249 struct e1000_mac_info *mac = &adapter->hw.mac;
7250
7251 mac->autoneg = 0;
7252
14ad2513 7253 /* Make sure dplx is at most 1 bit and lsb of speed is not set
b980ac18
JK
7254 * for the switch() below to work
7255 */
14ad2513
DD
7256 if ((spd & 1) || (dplx & ~1))
7257 goto err_inval;
7258
f502ef7d
AA
7259 /* Fiber NIC's only allow 1000 gbps Full duplex
7260 * and 100Mbps Full duplex for 100baseFx sfp
7261 */
7262 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7263 switch (spd + dplx) {
7264 case SPEED_10 + DUPLEX_HALF:
7265 case SPEED_10 + DUPLEX_FULL:
7266 case SPEED_100 + DUPLEX_HALF:
7267 goto err_inval;
7268 default:
7269 break;
7270 }
7271 }
cd2638a8 7272
14ad2513 7273 switch (spd + dplx) {
9d5c8243
AK
7274 case SPEED_10 + DUPLEX_HALF:
7275 mac->forced_speed_duplex = ADVERTISE_10_HALF;
7276 break;
7277 case SPEED_10 + DUPLEX_FULL:
7278 mac->forced_speed_duplex = ADVERTISE_10_FULL;
7279 break;
7280 case SPEED_100 + DUPLEX_HALF:
7281 mac->forced_speed_duplex = ADVERTISE_100_HALF;
7282 break;
7283 case SPEED_100 + DUPLEX_FULL:
7284 mac->forced_speed_duplex = ADVERTISE_100_FULL;
7285 break;
7286 case SPEED_1000 + DUPLEX_FULL:
7287 mac->autoneg = 1;
7288 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7289 break;
7290 case SPEED_1000 + DUPLEX_HALF: /* not supported */
7291 default:
14ad2513 7292 goto err_inval;
9d5c8243 7293 }
8376dad0
JB
7294
7295 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7296 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7297
9d5c8243 7298 return 0;
14ad2513
DD
7299
7300err_inval:
7301 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7302 return -EINVAL;
9d5c8243
AK
7303}
7304
749ab2cd
YZ
7305static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7306 bool runtime)
9d5c8243
AK
7307{
7308 struct net_device *netdev = pci_get_drvdata(pdev);
7309 struct igb_adapter *adapter = netdev_priv(netdev);
7310 struct e1000_hw *hw = &adapter->hw;
2d064c06 7311 u32 ctrl, rctl, status;
749ab2cd 7312 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
9d5c8243
AK
7313#ifdef CONFIG_PM
7314 int retval = 0;
7315#endif
7316
7317 netif_device_detach(netdev);
7318
a88f10ec 7319 if (netif_running(netdev))
749ab2cd 7320 __igb_close(netdev, true);
a88f10ec 7321
047e0030 7322 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
7323
7324#ifdef CONFIG_PM
7325 retval = pci_save_state(pdev);
7326 if (retval)
7327 return retval;
7328#endif
7329
7330 status = rd32(E1000_STATUS);
7331 if (status & E1000_STATUS_LU)
7332 wufc &= ~E1000_WUFC_LNKC;
7333
7334 if (wufc) {
7335 igb_setup_rctl(adapter);
ff41f8dc 7336 igb_set_rx_mode(netdev);
9d5c8243
AK
7337
7338 /* turn on all-multi mode if wake on multicast is enabled */
7339 if (wufc & E1000_WUFC_MC) {
7340 rctl = rd32(E1000_RCTL);
7341 rctl |= E1000_RCTL_MPE;
7342 wr32(E1000_RCTL, rctl);
7343 }
7344
7345 ctrl = rd32(E1000_CTRL);
7346 /* advertise wake from D3Cold */
7347 #define E1000_CTRL_ADVD3WUC 0x00100000
7348 /* phy power management enable */
7349 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7350 ctrl |= E1000_CTRL_ADVD3WUC;
7351 wr32(E1000_CTRL, ctrl);
7352
9d5c8243 7353 /* Allow time for pending master requests to run */
330a6d6a 7354 igb_disable_pcie_master(hw);
9d5c8243
AK
7355
7356 wr32(E1000_WUC, E1000_WUC_PME_EN);
7357 wr32(E1000_WUFC, wufc);
9d5c8243
AK
7358 } else {
7359 wr32(E1000_WUC, 0);
7360 wr32(E1000_WUFC, 0);
9d5c8243
AK
7361 }
7362
3fe7c4c9
RW
7363 *enable_wake = wufc || adapter->en_mng_pt;
7364 if (!*enable_wake)
88a268c1
NN
7365 igb_power_down_link(adapter);
7366 else
7367 igb_power_up_link(adapter);
9d5c8243
AK
7368
7369 /* Release control of h/w to f/w. If f/w is AMT enabled, this
b980ac18
JK
7370 * would have already happened in close and is redundant.
7371 */
9d5c8243
AK
7372 igb_release_hw_control(adapter);
7373
7374 pci_disable_device(pdev);
7375
9d5c8243
AK
7376 return 0;
7377}
7378
7379#ifdef CONFIG_PM
d9dd966d 7380#ifdef CONFIG_PM_SLEEP
749ab2cd 7381static int igb_suspend(struct device *dev)
3fe7c4c9
RW
7382{
7383 int retval;
7384 bool wake;
749ab2cd 7385 struct pci_dev *pdev = to_pci_dev(dev);
3fe7c4c9 7386
749ab2cd 7387 retval = __igb_shutdown(pdev, &wake, 0);
3fe7c4c9
RW
7388 if (retval)
7389 return retval;
7390
7391 if (wake) {
7392 pci_prepare_to_sleep(pdev);
7393 } else {
7394 pci_wake_from_d3(pdev, false);
7395 pci_set_power_state(pdev, PCI_D3hot);
7396 }
7397
7398 return 0;
7399}
d9dd966d 7400#endif /* CONFIG_PM_SLEEP */
3fe7c4c9 7401
749ab2cd 7402static int igb_resume(struct device *dev)
9d5c8243 7403{
749ab2cd 7404 struct pci_dev *pdev = to_pci_dev(dev);
9d5c8243
AK
7405 struct net_device *netdev = pci_get_drvdata(pdev);
7406 struct igb_adapter *adapter = netdev_priv(netdev);
7407 struct e1000_hw *hw = &adapter->hw;
7408 u32 err;
7409
7410 pci_set_power_state(pdev, PCI_D0);
7411 pci_restore_state(pdev);
b94f2d77 7412 pci_save_state(pdev);
42bfd33a 7413
17a402a0
CW
7414 if (!pci_device_is_present(pdev))
7415 return -ENODEV;
aed5dec3 7416 err = pci_enable_device_mem(pdev);
9d5c8243
AK
7417 if (err) {
7418 dev_err(&pdev->dev,
7419 "igb: Cannot enable PCI device from suspend\n");
7420 return err;
7421 }
7422 pci_set_master(pdev);
7423
7424 pci_enable_wake(pdev, PCI_D3hot, 0);
7425 pci_enable_wake(pdev, PCI_D3cold, 0);
7426
53c7d064 7427 if (igb_init_interrupt_scheme(adapter, true)) {
a88f10ec
AD
7428 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7429 return -ENOMEM;
9d5c8243
AK
7430 }
7431
9d5c8243 7432 igb_reset(adapter);
a8564f03
AD
7433
7434 /* let the f/w know that the h/w is now under the control of the
b980ac18
JK
7435 * driver.
7436 */
a8564f03
AD
7437 igb_get_hw_control(adapter);
7438
9d5c8243
AK
7439 wr32(E1000_WUS, ~0);
7440
749ab2cd 7441 if (netdev->flags & IFF_UP) {
0c2cc02e 7442 rtnl_lock();
749ab2cd 7443 err = __igb_open(netdev, true);
0c2cc02e 7444 rtnl_unlock();
a88f10ec
AD
7445 if (err)
7446 return err;
7447 }
9d5c8243
AK
7448
7449 netif_device_attach(netdev);
749ab2cd
YZ
7450 return 0;
7451}
7452
7453#ifdef CONFIG_PM_RUNTIME
7454static int igb_runtime_idle(struct device *dev)
7455{
7456 struct pci_dev *pdev = to_pci_dev(dev);
7457 struct net_device *netdev = pci_get_drvdata(pdev);
7458 struct igb_adapter *adapter = netdev_priv(netdev);
7459
7460 if (!igb_has_link(adapter))
7461 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7462
7463 return -EBUSY;
7464}
7465
7466static int igb_runtime_suspend(struct device *dev)
7467{
7468 struct pci_dev *pdev = to_pci_dev(dev);
7469 int retval;
7470 bool wake;
7471
7472 retval = __igb_shutdown(pdev, &wake, 1);
7473 if (retval)
7474 return retval;
7475
7476 if (wake) {
7477 pci_prepare_to_sleep(pdev);
7478 } else {
7479 pci_wake_from_d3(pdev, false);
7480 pci_set_power_state(pdev, PCI_D3hot);
7481 }
9d5c8243 7482
9d5c8243
AK
7483 return 0;
7484}
749ab2cd
YZ
7485
7486static int igb_runtime_resume(struct device *dev)
7487{
7488 return igb_resume(dev);
7489}
7490#endif /* CONFIG_PM_RUNTIME */
9d5c8243
AK
7491#endif
7492
7493static void igb_shutdown(struct pci_dev *pdev)
7494{
3fe7c4c9
RW
7495 bool wake;
7496
749ab2cd 7497 __igb_shutdown(pdev, &wake, 0);
3fe7c4c9
RW
7498
7499 if (system_state == SYSTEM_POWER_OFF) {
7500 pci_wake_from_d3(pdev, wake);
7501 pci_set_power_state(pdev, PCI_D3hot);
7502 }
9d5c8243
AK
7503}
7504
fa44f2f1
GR
7505#ifdef CONFIG_PCI_IOV
7506static int igb_sriov_reinit(struct pci_dev *dev)
7507{
7508 struct net_device *netdev = pci_get_drvdata(dev);
7509 struct igb_adapter *adapter = netdev_priv(netdev);
7510 struct pci_dev *pdev = adapter->pdev;
7511
7512 rtnl_lock();
7513
7514 if (netif_running(netdev))
7515 igb_close(netdev);
76252723
SA
7516 else
7517 igb_reset(adapter);
fa44f2f1
GR
7518
7519 igb_clear_interrupt_scheme(adapter);
7520
7521 igb_init_queue_configuration(adapter);
7522
7523 if (igb_init_interrupt_scheme(adapter, true)) {
7524 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7525 return -ENOMEM;
7526 }
7527
7528 if (netif_running(netdev))
7529 igb_open(netdev);
7530
7531 rtnl_unlock();
7532
7533 return 0;
7534}
7535
7536static int igb_pci_disable_sriov(struct pci_dev *dev)
7537{
7538 int err = igb_disable_sriov(dev);
7539
7540 if (!err)
7541 err = igb_sriov_reinit(dev);
7542
7543 return err;
7544}
7545
7546static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7547{
7548 int err = igb_enable_sriov(dev, num_vfs);
7549
7550 if (err)
7551 goto out;
7552
7553 err = igb_sriov_reinit(dev);
7554 if (!err)
7555 return num_vfs;
7556
7557out:
7558 return err;
7559}
7560
7561#endif
7562static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7563{
7564#ifdef CONFIG_PCI_IOV
7565 if (num_vfs == 0)
7566 return igb_pci_disable_sriov(dev);
7567 else
7568 return igb_pci_enable_sriov(dev, num_vfs);
7569#endif
7570 return 0;
7571}
7572
9d5c8243 7573#ifdef CONFIG_NET_POLL_CONTROLLER
b980ac18 7574/* Polling 'interrupt' - used by things like netconsole to send skbs
9d5c8243
AK
7575 * without having to re-enable interrupts. It's not called while
7576 * the interrupt routine is executing.
7577 */
7578static void igb_netpoll(struct net_device *netdev)
7579{
7580 struct igb_adapter *adapter = netdev_priv(netdev);
eebbbdba 7581 struct e1000_hw *hw = &adapter->hw;
0d1ae7f4 7582 struct igb_q_vector *q_vector;
9d5c8243 7583 int i;
9d5c8243 7584
047e0030 7585 for (i = 0; i < adapter->num_q_vectors; i++) {
0d1ae7f4 7586 q_vector = adapter->q_vector[i];
cd14ef54 7587 if (adapter->flags & IGB_FLAG_HAS_MSIX)
0d1ae7f4
AD
7588 wr32(E1000_EIMC, q_vector->eims_value);
7589 else
7590 igb_irq_disable(adapter);
047e0030 7591 napi_schedule(&q_vector->napi);
eebbbdba 7592 }
9d5c8243
AK
7593}
7594#endif /* CONFIG_NET_POLL_CONTROLLER */
7595
7596/**
b980ac18
JK
7597 * igb_io_error_detected - called when PCI error is detected
7598 * @pdev: Pointer to PCI device
7599 * @state: The current pci connection state
9d5c8243 7600 *
b980ac18
JK
7601 * This function is called after a PCI bus error affecting
7602 * this device has been detected.
7603 **/
9d5c8243
AK
7604static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7605 pci_channel_state_t state)
7606{
7607 struct net_device *netdev = pci_get_drvdata(pdev);
7608 struct igb_adapter *adapter = netdev_priv(netdev);
7609
7610 netif_device_detach(netdev);
7611
59ed6eec
AD
7612 if (state == pci_channel_io_perm_failure)
7613 return PCI_ERS_RESULT_DISCONNECT;
7614
9d5c8243
AK
7615 if (netif_running(netdev))
7616 igb_down(adapter);
7617 pci_disable_device(pdev);
7618
7619 /* Request a slot slot reset. */
7620 return PCI_ERS_RESULT_NEED_RESET;
7621}
7622
7623/**
b980ac18
JK
7624 * igb_io_slot_reset - called after the pci bus has been reset.
7625 * @pdev: Pointer to PCI device
9d5c8243 7626 *
b980ac18
JK
7627 * Restart the card from scratch, as if from a cold-boot. Implementation
7628 * resembles the first-half of the igb_resume routine.
7629 **/
9d5c8243
AK
7630static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7631{
7632 struct net_device *netdev = pci_get_drvdata(pdev);
7633 struct igb_adapter *adapter = netdev_priv(netdev);
7634 struct e1000_hw *hw = &adapter->hw;
40a914fa 7635 pci_ers_result_t result;
42bfd33a 7636 int err;
9d5c8243 7637
aed5dec3 7638 if (pci_enable_device_mem(pdev)) {
9d5c8243
AK
7639 dev_err(&pdev->dev,
7640 "Cannot re-enable PCI device after reset.\n");
40a914fa
AD
7641 result = PCI_ERS_RESULT_DISCONNECT;
7642 } else {
7643 pci_set_master(pdev);
7644 pci_restore_state(pdev);
b94f2d77 7645 pci_save_state(pdev);
9d5c8243 7646
40a914fa
AD
7647 pci_enable_wake(pdev, PCI_D3hot, 0);
7648 pci_enable_wake(pdev, PCI_D3cold, 0);
9d5c8243 7649
40a914fa
AD
7650 igb_reset(adapter);
7651 wr32(E1000_WUS, ~0);
7652 result = PCI_ERS_RESULT_RECOVERED;
7653 }
9d5c8243 7654
ea943d41
JK
7655 err = pci_cleanup_aer_uncorrect_error_status(pdev);
7656 if (err) {
b980ac18
JK
7657 dev_err(&pdev->dev,
7658 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7659 err);
ea943d41
JK
7660 /* non-fatal, continue */
7661 }
40a914fa
AD
7662
7663 return result;
9d5c8243
AK
7664}
7665
7666/**
b980ac18
JK
7667 * igb_io_resume - called when traffic can start flowing again.
7668 * @pdev: Pointer to PCI device
9d5c8243 7669 *
b980ac18
JK
7670 * This callback is called when the error recovery driver tells us that
7671 * its OK to resume normal operation. Implementation resembles the
7672 * second-half of the igb_resume routine.
9d5c8243
AK
7673 */
7674static void igb_io_resume(struct pci_dev *pdev)
7675{
7676 struct net_device *netdev = pci_get_drvdata(pdev);
7677 struct igb_adapter *adapter = netdev_priv(netdev);
7678
9d5c8243
AK
7679 if (netif_running(netdev)) {
7680 if (igb_up(adapter)) {
7681 dev_err(&pdev->dev, "igb_up failed after reset\n");
7682 return;
7683 }
7684 }
7685
7686 netif_device_attach(netdev);
7687
7688 /* let the f/w know that the h/w is now under the control of the
b980ac18
JK
7689 * driver.
7690 */
9d5c8243 7691 igb_get_hw_control(adapter);
9d5c8243
AK
7692}
7693
26ad9178 7694static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
b980ac18 7695 u8 qsel)
26ad9178
AD
7696{
7697 u32 rar_low, rar_high;
7698 struct e1000_hw *hw = &adapter->hw;
7699
7700 /* HW expects these in little endian so we reverse the byte order
7701 * from network order (big endian) to little endian
7702 */
7703 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
b980ac18 7704 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
26ad9178
AD
7705 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7706
7707 /* Indicate to hardware the Address is Valid. */
7708 rar_high |= E1000_RAH_AV;
7709
7710 if (hw->mac.type == e1000_82575)
7711 rar_high |= E1000_RAH_POOL_1 * qsel;
7712 else
7713 rar_high |= E1000_RAH_POOL_1 << qsel;
7714
7715 wr32(E1000_RAL(index), rar_low);
7716 wrfl();
7717 wr32(E1000_RAH(index), rar_high);
7718 wrfl();
7719}
7720
4ae196df 7721static int igb_set_vf_mac(struct igb_adapter *adapter,
b980ac18 7722 int vf, unsigned char *mac_addr)
4ae196df
AD
7723{
7724 struct e1000_hw *hw = &adapter->hw;
ff41f8dc 7725 /* VF MAC addresses start at end of receive addresses and moves
b980ac18
JK
7726 * towards the first, as a result a collision should not be possible
7727 */
ff41f8dc 7728 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df 7729
37680117 7730 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
4ae196df 7731
26ad9178 7732 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
4ae196df
AD
7733
7734 return 0;
7735}
7736
8151d294
WM
7737static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7738{
7739 struct igb_adapter *adapter = netdev_priv(netdev);
7740 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7741 return -EINVAL;
7742 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7743 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
b980ac18
JK
7744 dev_info(&adapter->pdev->dev,
7745 "Reload the VF driver to make this change effective.");
8151d294 7746 if (test_bit(__IGB_DOWN, &adapter->state)) {
b980ac18
JK
7747 dev_warn(&adapter->pdev->dev,
7748 "The VF MAC address has been set, but the PF device is not up.\n");
7749 dev_warn(&adapter->pdev->dev,
7750 "Bring the PF device up before attempting to use the VF device.\n");
8151d294
WM
7751 }
7752 return igb_set_vf_mac(adapter, vf, mac);
7753}
7754
17dc566c
LL
7755static int igb_link_mbps(int internal_link_speed)
7756{
7757 switch (internal_link_speed) {
7758 case SPEED_100:
7759 return 100;
7760 case SPEED_1000:
7761 return 1000;
7762 default:
7763 return 0;
7764 }
7765}
7766
7767static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7768 int link_speed)
7769{
7770 int rf_dec, rf_int;
7771 u32 bcnrc_val;
7772
7773 if (tx_rate != 0) {
7774 /* Calculate the rate factor values to set */
7775 rf_int = link_speed / tx_rate;
7776 rf_dec = (link_speed - (rf_int * tx_rate));
b980ac18
JK
7777 rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7778 tx_rate;
17dc566c
LL
7779
7780 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
b980ac18
JK
7781 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7782 E1000_RTTBCNRC_RF_INT_MASK);
17dc566c
LL
7783 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7784 } else {
7785 bcnrc_val = 0;
7786 }
7787
7788 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
b980ac18 7789 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
f00b0da7
LL
7790 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7791 */
7792 wr32(E1000_RTTBCNRM, 0x14);
17dc566c
LL
7793 wr32(E1000_RTTBCNRC, bcnrc_val);
7794}
7795
7796static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7797{
7798 int actual_link_speed, i;
7799 bool reset_rate = false;
7800
7801 /* VF TX rate limit was not set or not supported */
7802 if ((adapter->vf_rate_link_speed == 0) ||
7803 (adapter->hw.mac.type != e1000_82576))
7804 return;
7805
7806 actual_link_speed = igb_link_mbps(adapter->link_speed);
7807 if (actual_link_speed != adapter->vf_rate_link_speed) {
7808 reset_rate = true;
7809 adapter->vf_rate_link_speed = 0;
7810 dev_info(&adapter->pdev->dev,
b980ac18 7811 "Link speed has been changed. VF Transmit rate is disabled\n");
17dc566c
LL
7812 }
7813
7814 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7815 if (reset_rate)
7816 adapter->vf_data[i].tx_rate = 0;
7817
7818 igb_set_vf_rate_limit(&adapter->hw, i,
b980ac18
JK
7819 adapter->vf_data[i].tx_rate,
7820 actual_link_speed);
17dc566c
LL
7821 }
7822}
7823
ed616689
SC
7824static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
7825 int min_tx_rate, int max_tx_rate)
8151d294 7826{
17dc566c
LL
7827 struct igb_adapter *adapter = netdev_priv(netdev);
7828 struct e1000_hw *hw = &adapter->hw;
7829 int actual_link_speed;
7830
7831 if (hw->mac.type != e1000_82576)
7832 return -EOPNOTSUPP;
7833
ed616689
SC
7834 if (min_tx_rate)
7835 return -EINVAL;
7836
17dc566c
LL
7837 actual_link_speed = igb_link_mbps(adapter->link_speed);
7838 if ((vf >= adapter->vfs_allocated_count) ||
7839 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
ed616689
SC
7840 (max_tx_rate < 0) ||
7841 (max_tx_rate > actual_link_speed))
17dc566c
LL
7842 return -EINVAL;
7843
7844 adapter->vf_rate_link_speed = actual_link_speed;
ed616689
SC
7845 adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
7846 igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
17dc566c
LL
7847
7848 return 0;
8151d294
WM
7849}
7850
70ea4783
LL
7851static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7852 bool setting)
7853{
7854 struct igb_adapter *adapter = netdev_priv(netdev);
7855 struct e1000_hw *hw = &adapter->hw;
7856 u32 reg_val, reg_offset;
7857
7858 if (!adapter->vfs_allocated_count)
7859 return -EOPNOTSUPP;
7860
7861 if (vf >= adapter->vfs_allocated_count)
7862 return -EINVAL;
7863
7864 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7865 reg_val = rd32(reg_offset);
7866 if (setting)
7867 reg_val |= ((1 << vf) |
7868 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7869 else
7870 reg_val &= ~((1 << vf) |
7871 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7872 wr32(reg_offset, reg_val);
7873
7874 adapter->vf_data[vf].spoofchk_enabled = setting;
23d87824 7875 return 0;
70ea4783
LL
7876}
7877
8151d294
WM
7878static int igb_ndo_get_vf_config(struct net_device *netdev,
7879 int vf, struct ifla_vf_info *ivi)
7880{
7881 struct igb_adapter *adapter = netdev_priv(netdev);
7882 if (vf >= adapter->vfs_allocated_count)
7883 return -EINVAL;
7884 ivi->vf = vf;
7885 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
ed616689
SC
7886 ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
7887 ivi->min_tx_rate = 0;
8151d294
WM
7888 ivi->vlan = adapter->vf_data[vf].pf_vlan;
7889 ivi->qos = adapter->vf_data[vf].pf_qos;
70ea4783 7890 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
8151d294
WM
7891 return 0;
7892}
7893
4ae196df
AD
7894static void igb_vmm_control(struct igb_adapter *adapter)
7895{
7896 struct e1000_hw *hw = &adapter->hw;
10d8e907 7897 u32 reg;
4ae196df 7898
52a1dd4d
AD
7899 switch (hw->mac.type) {
7900 case e1000_82575:
f96a8a0b
CW
7901 case e1000_i210:
7902 case e1000_i211:
ceb5f13b 7903 case e1000_i354:
52a1dd4d
AD
7904 default:
7905 /* replication is not supported for 82575 */
4ae196df 7906 return;
52a1dd4d
AD
7907 case e1000_82576:
7908 /* notify HW that the MAC is adding vlan tags */
7909 reg = rd32(E1000_DTXCTL);
7910 reg |= E1000_DTXCTL_VLAN_ADDED;
7911 wr32(E1000_DTXCTL, reg);
b26141d4 7912 /* Fall through */
52a1dd4d
AD
7913 case e1000_82580:
7914 /* enable replication vlan tag stripping */
7915 reg = rd32(E1000_RPLOLR);
7916 reg |= E1000_RPLOLR_STRVLAN;
7917 wr32(E1000_RPLOLR, reg);
b26141d4 7918 /* Fall through */
d2ba2ed8
AD
7919 case e1000_i350:
7920 /* none of the above registers are supported by i350 */
52a1dd4d
AD
7921 break;
7922 }
10d8e907 7923
d4960307
AD
7924 if (adapter->vfs_allocated_count) {
7925 igb_vmdq_set_loopback_pf(hw, true);
7926 igb_vmdq_set_replication_pf(hw, true);
13800469 7927 igb_vmdq_set_anti_spoofing_pf(hw, true,
b980ac18 7928 adapter->vfs_allocated_count);
d4960307
AD
7929 } else {
7930 igb_vmdq_set_loopback_pf(hw, false);
7931 igb_vmdq_set_replication_pf(hw, false);
7932 }
4ae196df
AD
7933}
7934
b6e0c419
CW
7935static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7936{
7937 struct e1000_hw *hw = &adapter->hw;
7938 u32 dmac_thr;
7939 u16 hwm;
7940
7941 if (hw->mac.type > e1000_82580) {
7942 if (adapter->flags & IGB_FLAG_DMAC) {
7943 u32 reg;
7944
7945 /* force threshold to 0. */
7946 wr32(E1000_DMCTXTH, 0);
7947
b980ac18 7948 /* DMA Coalescing high water mark needs to be greater
e8c626e9
MV
7949 * than the Rx threshold. Set hwm to PBA - max frame
7950 * size in 16B units, capping it at PBA - 6KB.
b6e0c419 7951 */
e8c626e9
MV
7952 hwm = 64 * pba - adapter->max_frame_size / 16;
7953 if (hwm < 64 * (pba - 6))
7954 hwm = 64 * (pba - 6);
7955 reg = rd32(E1000_FCRTC);
7956 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7957 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7958 & E1000_FCRTC_RTH_COAL_MASK);
7959 wr32(E1000_FCRTC, reg);
7960
b980ac18 7961 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
e8c626e9
MV
7962 * frame size, capping it at PBA - 10KB.
7963 */
7964 dmac_thr = pba - adapter->max_frame_size / 512;
7965 if (dmac_thr < pba - 10)
7966 dmac_thr = pba - 10;
b6e0c419
CW
7967 reg = rd32(E1000_DMACR);
7968 reg &= ~E1000_DMACR_DMACTHR_MASK;
b6e0c419
CW
7969 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7970 & E1000_DMACR_DMACTHR_MASK);
7971
7972 /* transition to L0x or L1 if available..*/
7973 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7974
7975 /* watchdog timer= +-1000 usec in 32usec intervals */
7976 reg |= (1000 >> 5);
0c02dd98
MV
7977
7978 /* Disable BMC-to-OS Watchdog Enable */
ceb5f13b
CW
7979 if (hw->mac.type != e1000_i354)
7980 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7981
b6e0c419
CW
7982 wr32(E1000_DMACR, reg);
7983
b980ac18 7984 /* no lower threshold to disable
b6e0c419
CW
7985 * coalescing(smart fifb)-UTRESH=0
7986 */
7987 wr32(E1000_DMCRTRH, 0);
b6e0c419
CW
7988
7989 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
7990
7991 wr32(E1000_DMCTLX, reg);
7992
b980ac18 7993 /* free space in tx packet buffer to wake from
b6e0c419
CW
7994 * DMA coal
7995 */
7996 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
7997 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
7998
b980ac18 7999 /* make low power state decision controlled
b6e0c419
CW
8000 * by DMA coal
8001 */
8002 reg = rd32(E1000_PCIEMISC);
8003 reg &= ~E1000_PCIEMISC_LX_DECISION;
8004 wr32(E1000_PCIEMISC, reg);
8005 } /* endif adapter->dmac is not disabled */
8006 } else if (hw->mac.type == e1000_82580) {
8007 u32 reg = rd32(E1000_PCIEMISC);
9005df38 8008
b6e0c419
CW
8009 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
8010 wr32(E1000_DMACR, 0);
8011 }
8012}
8013
b980ac18
JK
8014/**
8015 * igb_read_i2c_byte - Reads 8 bit word over I2C
441fc6fd
CW
8016 * @hw: pointer to hardware structure
8017 * @byte_offset: byte offset to read
8018 * @dev_addr: device address
8019 * @data: value read
8020 *
8021 * Performs byte read operation over I2C interface at
8022 * a specified device address.
b980ac18 8023 **/
441fc6fd 8024s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
b980ac18 8025 u8 dev_addr, u8 *data)
441fc6fd
CW
8026{
8027 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
603e86fa 8028 struct i2c_client *this_client = adapter->i2c_client;
441fc6fd
CW
8029 s32 status;
8030 u16 swfw_mask = 0;
8031
8032 if (!this_client)
8033 return E1000_ERR_I2C;
8034
8035 swfw_mask = E1000_SWFW_PHY0_SM;
8036
23d87824 8037 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
441fc6fd
CW
8038 return E1000_ERR_SWFW_SYNC;
8039
8040 status = i2c_smbus_read_byte_data(this_client, byte_offset);
8041 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8042
8043 if (status < 0)
8044 return E1000_ERR_I2C;
8045 else {
8046 *data = status;
23d87824 8047 return 0;
441fc6fd
CW
8048 }
8049}
8050
b980ac18
JK
8051/**
8052 * igb_write_i2c_byte - Writes 8 bit word over I2C
441fc6fd
CW
8053 * @hw: pointer to hardware structure
8054 * @byte_offset: byte offset to write
8055 * @dev_addr: device address
8056 * @data: value to write
8057 *
8058 * Performs byte write operation over I2C interface at
8059 * a specified device address.
b980ac18 8060 **/
441fc6fd 8061s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
b980ac18 8062 u8 dev_addr, u8 data)
441fc6fd
CW
8063{
8064 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
603e86fa 8065 struct i2c_client *this_client = adapter->i2c_client;
441fc6fd
CW
8066 s32 status;
8067 u16 swfw_mask = E1000_SWFW_PHY0_SM;
8068
8069 if (!this_client)
8070 return E1000_ERR_I2C;
8071
23d87824 8072 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
441fc6fd
CW
8073 return E1000_ERR_SWFW_SYNC;
8074 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8075 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8076
8077 if (status)
8078 return E1000_ERR_I2C;
8079 else
23d87824 8080 return 0;
441fc6fd
CW
8081
8082}
907b7835
LMV
8083
8084int igb_reinit_queues(struct igb_adapter *adapter)
8085{
8086 struct net_device *netdev = adapter->netdev;
8087 struct pci_dev *pdev = adapter->pdev;
8088 int err = 0;
8089
8090 if (netif_running(netdev))
8091 igb_close(netdev);
8092
02ef6e1d 8093 igb_reset_interrupt_capability(adapter);
907b7835
LMV
8094
8095 if (igb_init_interrupt_scheme(adapter, true)) {
8096 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8097 return -ENOMEM;
8098 }
8099
8100 if (netif_running(netdev))
8101 err = igb_open(netdev);
8102
8103 return err;
8104}
9d5c8243 8105/* igb_main.c */