]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/net/ethernet/intel/igb/igb_main.c
i40e: Remove casts of pointer to same type
[mirror_ubuntu-zesty-kernel.git] / drivers / net / ethernet / intel / igb / igb_main.c
CommitLineData
9d5c8243
AK
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
74cfb2e1 4 Copyright(c) 2007-2014 Intel Corporation.
9d5c8243
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
74cfb2e1 16 this program; if not, see <http://www.gnu.org/licenses/>.
9d5c8243
AK
17
18 The full GNU General Public License is included in this distribution in
19 the file called "COPYING".
20
21 Contact Information:
22 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25*******************************************************************************/
26
876d2d6f
JK
27#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
28
9d5c8243
AK
29#include <linux/module.h>
30#include <linux/types.h>
31#include <linux/init.h>
b2cb09b1 32#include <linux/bitops.h>
9d5c8243
AK
33#include <linux/vmalloc.h>
34#include <linux/pagemap.h>
35#include <linux/netdevice.h>
9d5c8243 36#include <linux/ipv6.h>
5a0e3ad6 37#include <linux/slab.h>
9d5c8243
AK
38#include <net/checksum.h>
39#include <net/ip6_checksum.h>
c6cb090b 40#include <linux/net_tstamp.h>
9d5c8243
AK
41#include <linux/mii.h>
42#include <linux/ethtool.h>
01789349 43#include <linux/if.h>
9d5c8243
AK
44#include <linux/if_vlan.h>
45#include <linux/pci.h>
c54106bb 46#include <linux/pci-aspm.h>
9d5c8243
AK
47#include <linux/delay.h>
48#include <linux/interrupt.h>
7d13a7d0
AD
49#include <linux/ip.h>
50#include <linux/tcp.h>
51#include <linux/sctp.h>
9d5c8243 52#include <linux/if_ether.h>
40a914fa 53#include <linux/aer.h>
70c71606 54#include <linux/prefetch.h>
749ab2cd 55#include <linux/pm_runtime.h>
421e02f0 56#ifdef CONFIG_IGB_DCA
fe4506b6
JC
57#include <linux/dca.h>
58#endif
441fc6fd 59#include <linux/i2c.h>
9d5c8243
AK
60#include "igb.h"
61
67b1b903
CW
62#define MAJ 5
63#define MIN 0
66f40b8a 64#define BUILD 5
0d1fe82d 65#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
929dd047 66__stringify(BUILD) "-k"
9d5c8243
AK
67char igb_driver_name[] = "igb";
68char igb_driver_version[] = DRV_VERSION;
69static const char igb_driver_string[] =
70 "Intel(R) Gigabit Ethernet Network Driver";
4b9ea462 71static const char igb_copyright[] =
74cfb2e1 72 "Copyright (c) 2007-2014 Intel Corporation.";
9d5c8243 73
9d5c8243
AK
74static const struct e1000_info *igb_info_tbl[] = {
75 [board_82575] = &e1000_82575_info,
76};
77
a3aa1884 78static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
ceb5f13b
CW
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
f96a8a0b
CW
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
53b87ce3
CW
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
d2ba2ed8
AD
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
55cac248
AD
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
6493d24f 95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
55cac248
AD
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
308fb39a
JG
99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
1b5dda33
GJ
101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
2d064c06 103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
9eb2341d 104 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
747d49ba 105 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
2d064c06
AD
106 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
107 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
4703bf73 108 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
b894fa26 109 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
c8ea5ea9 110 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
9d5c8243
AK
111 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
112 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
113 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
114 /* required last entry */
115 {0, }
116};
117
118MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
119
120void igb_reset(struct igb_adapter *);
121static int igb_setup_all_tx_resources(struct igb_adapter *);
122static int igb_setup_all_rx_resources(struct igb_adapter *);
123static void igb_free_all_tx_resources(struct igb_adapter *);
124static void igb_free_all_rx_resources(struct igb_adapter *);
06cf2666 125static void igb_setup_mrqc(struct igb_adapter *);
9d5c8243 126static int igb_probe(struct pci_dev *, const struct pci_device_id *);
9f9a12f8 127static void igb_remove(struct pci_dev *pdev);
9d5c8243
AK
128static int igb_sw_init(struct igb_adapter *);
129static int igb_open(struct net_device *);
130static int igb_close(struct net_device *);
53c7d064 131static void igb_configure(struct igb_adapter *);
9d5c8243
AK
132static void igb_configure_tx(struct igb_adapter *);
133static void igb_configure_rx(struct igb_adapter *);
9d5c8243
AK
134static void igb_clean_all_tx_rings(struct igb_adapter *);
135static void igb_clean_all_rx_rings(struct igb_adapter *);
3b644cf6
MW
136static void igb_clean_tx_ring(struct igb_ring *);
137static void igb_clean_rx_ring(struct igb_ring *);
ff41f8dc 138static void igb_set_rx_mode(struct net_device *);
9d5c8243
AK
139static void igb_update_phy_info(unsigned long);
140static void igb_watchdog(unsigned long);
141static void igb_watchdog_task(struct work_struct *);
cd392f5c 142static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
12dcd86b
ED
143static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
144 struct rtnl_link_stats64 *stats);
9d5c8243
AK
145static int igb_change_mtu(struct net_device *, int);
146static int igb_set_mac(struct net_device *, void *);
68d480c4 147static void igb_set_uta(struct igb_adapter *adapter);
9d5c8243
AK
148static irqreturn_t igb_intr(int irq, void *);
149static irqreturn_t igb_intr_msi(int irq, void *);
150static irqreturn_t igb_msix_other(int irq, void *);
047e0030 151static irqreturn_t igb_msix_ring(int irq, void *);
421e02f0 152#ifdef CONFIG_IGB_DCA
047e0030 153static void igb_update_dca(struct igb_q_vector *);
fe4506b6 154static void igb_setup_dca(struct igb_adapter *);
421e02f0 155#endif /* CONFIG_IGB_DCA */
661086df 156static int igb_poll(struct napi_struct *, int);
13fde97a 157static bool igb_clean_tx_irq(struct igb_q_vector *);
cd392f5c 158static bool igb_clean_rx_irq(struct igb_q_vector *, int);
9d5c8243
AK
159static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
160static void igb_tx_timeout(struct net_device *);
161static void igb_reset_task(struct work_struct *);
c8f44aff 162static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
80d5c368
PM
163static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
164static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
9d5c8243 165static void igb_restore_vlan(struct igb_adapter *);
26ad9178 166static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
4ae196df
AD
167static void igb_ping_all_vfs(struct igb_adapter *);
168static void igb_msg_task(struct igb_adapter *);
4ae196df 169static void igb_vmm_control(struct igb_adapter *);
f2ca0dbe 170static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
4ae196df 171static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
8151d294
WM
172static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
173static int igb_ndo_set_vf_vlan(struct net_device *netdev,
174 int vf, u16 vlan, u8 qos);
175static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
70ea4783
LL
176static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
177 bool setting);
8151d294
WM
178static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
179 struct ifla_vf_info *ivi);
17dc566c 180static void igb_check_vf_rate_limit(struct igb_adapter *);
46a01698
RL
181
182#ifdef CONFIG_PCI_IOV
0224d663 183static int igb_vf_configure(struct igb_adapter *adapter, int vf);
781798a1 184static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
46a01698 185#endif
9d5c8243 186
9d5c8243 187#ifdef CONFIG_PM
d9dd966d 188#ifdef CONFIG_PM_SLEEP
749ab2cd 189static int igb_suspend(struct device *);
d9dd966d 190#endif
749ab2cd
YZ
191static int igb_resume(struct device *);
192#ifdef CONFIG_PM_RUNTIME
193static int igb_runtime_suspend(struct device *dev);
194static int igb_runtime_resume(struct device *dev);
195static int igb_runtime_idle(struct device *dev);
196#endif
197static const struct dev_pm_ops igb_pm_ops = {
198 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
199 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
200 igb_runtime_idle)
201};
9d5c8243
AK
202#endif
203static void igb_shutdown(struct pci_dev *);
fa44f2f1 204static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
421e02f0 205#ifdef CONFIG_IGB_DCA
fe4506b6
JC
206static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
207static struct notifier_block dca_notifier = {
208 .notifier_call = igb_notify_dca,
209 .next = NULL,
210 .priority = 0
211};
212#endif
9d5c8243
AK
213#ifdef CONFIG_NET_POLL_CONTROLLER
214/* for netdump / net console */
215static void igb_netpoll(struct net_device *);
216#endif
37680117 217#ifdef CONFIG_PCI_IOV
2a3abf6d
AD
218static unsigned int max_vfs = 0;
219module_param(max_vfs, uint, 0);
220MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
221 "per physical function");
222#endif /* CONFIG_PCI_IOV */
223
9d5c8243
AK
224static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
225 pci_channel_state_t);
226static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
227static void igb_io_resume(struct pci_dev *);
228
3646f0e5 229static const struct pci_error_handlers igb_err_handler = {
9d5c8243
AK
230 .error_detected = igb_io_error_detected,
231 .slot_reset = igb_io_slot_reset,
232 .resume = igb_io_resume,
233};
234
b6e0c419 235static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
9d5c8243
AK
236
237static struct pci_driver igb_driver = {
238 .name = igb_driver_name,
239 .id_table = igb_pci_tbl,
240 .probe = igb_probe,
9f9a12f8 241 .remove = igb_remove,
9d5c8243 242#ifdef CONFIG_PM
749ab2cd 243 .driver.pm = &igb_pm_ops,
9d5c8243
AK
244#endif
245 .shutdown = igb_shutdown,
fa44f2f1 246 .sriov_configure = igb_pci_sriov_configure,
9d5c8243
AK
247 .err_handler = &igb_err_handler
248};
249
250MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
251MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
252MODULE_LICENSE("GPL");
253MODULE_VERSION(DRV_VERSION);
254
b3f4d599 255#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
256static int debug = -1;
257module_param(debug, int, 0);
258MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
259
c97ec42a
TI
260struct igb_reg_info {
261 u32 ofs;
262 char *name;
263};
264
265static const struct igb_reg_info igb_reg_info_tbl[] = {
266
267 /* General Registers */
268 {E1000_CTRL, "CTRL"},
269 {E1000_STATUS, "STATUS"},
270 {E1000_CTRL_EXT, "CTRL_EXT"},
271
272 /* Interrupt Registers */
273 {E1000_ICR, "ICR"},
274
275 /* RX Registers */
276 {E1000_RCTL, "RCTL"},
277 {E1000_RDLEN(0), "RDLEN"},
278 {E1000_RDH(0), "RDH"},
279 {E1000_RDT(0), "RDT"},
280 {E1000_RXDCTL(0), "RXDCTL"},
281 {E1000_RDBAL(0), "RDBAL"},
282 {E1000_RDBAH(0), "RDBAH"},
283
284 /* TX Registers */
285 {E1000_TCTL, "TCTL"},
286 {E1000_TDBAL(0), "TDBAL"},
287 {E1000_TDBAH(0), "TDBAH"},
288 {E1000_TDLEN(0), "TDLEN"},
289 {E1000_TDH(0), "TDH"},
290 {E1000_TDT(0), "TDT"},
291 {E1000_TXDCTL(0), "TXDCTL"},
292 {E1000_TDFH, "TDFH"},
293 {E1000_TDFT, "TDFT"},
294 {E1000_TDFHS, "TDFHS"},
295 {E1000_TDFPC, "TDFPC"},
296
297 /* List Terminator */
298 {}
299};
300
b980ac18 301/* igb_regdump - register printout routine */
c97ec42a
TI
302static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
303{
304 int n = 0;
305 char rname[16];
306 u32 regs[8];
307
308 switch (reginfo->ofs) {
309 case E1000_RDLEN(0):
310 for (n = 0; n < 4; n++)
311 regs[n] = rd32(E1000_RDLEN(n));
312 break;
313 case E1000_RDH(0):
314 for (n = 0; n < 4; n++)
315 regs[n] = rd32(E1000_RDH(n));
316 break;
317 case E1000_RDT(0):
318 for (n = 0; n < 4; n++)
319 regs[n] = rd32(E1000_RDT(n));
320 break;
321 case E1000_RXDCTL(0):
322 for (n = 0; n < 4; n++)
323 regs[n] = rd32(E1000_RXDCTL(n));
324 break;
325 case E1000_RDBAL(0):
326 for (n = 0; n < 4; n++)
327 regs[n] = rd32(E1000_RDBAL(n));
328 break;
329 case E1000_RDBAH(0):
330 for (n = 0; n < 4; n++)
331 regs[n] = rd32(E1000_RDBAH(n));
332 break;
333 case E1000_TDBAL(0):
334 for (n = 0; n < 4; n++)
335 regs[n] = rd32(E1000_RDBAL(n));
336 break;
337 case E1000_TDBAH(0):
338 for (n = 0; n < 4; n++)
339 regs[n] = rd32(E1000_TDBAH(n));
340 break;
341 case E1000_TDLEN(0):
342 for (n = 0; n < 4; n++)
343 regs[n] = rd32(E1000_TDLEN(n));
344 break;
345 case E1000_TDH(0):
346 for (n = 0; n < 4; n++)
347 regs[n] = rd32(E1000_TDH(n));
348 break;
349 case E1000_TDT(0):
350 for (n = 0; n < 4; n++)
351 regs[n] = rd32(E1000_TDT(n));
352 break;
353 case E1000_TXDCTL(0):
354 for (n = 0; n < 4; n++)
355 regs[n] = rd32(E1000_TXDCTL(n));
356 break;
357 default:
876d2d6f 358 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
c97ec42a
TI
359 return;
360 }
361
362 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
876d2d6f
JK
363 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
364 regs[2], regs[3]);
c97ec42a
TI
365}
366
b980ac18 367/* igb_dump - Print registers, Tx-rings and Rx-rings */
c97ec42a
TI
368static void igb_dump(struct igb_adapter *adapter)
369{
370 struct net_device *netdev = adapter->netdev;
371 struct e1000_hw *hw = &adapter->hw;
372 struct igb_reg_info *reginfo;
c97ec42a
TI
373 struct igb_ring *tx_ring;
374 union e1000_adv_tx_desc *tx_desc;
375 struct my_u0 { u64 a; u64 b; } *u0;
c97ec42a
TI
376 struct igb_ring *rx_ring;
377 union e1000_adv_rx_desc *rx_desc;
378 u32 staterr;
6ad4edfc 379 u16 i, n;
c97ec42a
TI
380
381 if (!netif_msg_hw(adapter))
382 return;
383
384 /* Print netdevice Info */
385 if (netdev) {
386 dev_info(&adapter->pdev->dev, "Net device Info\n");
876d2d6f
JK
387 pr_info("Device Name state trans_start "
388 "last_rx\n");
389 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
390 netdev->state, netdev->trans_start, netdev->last_rx);
c97ec42a
TI
391 }
392
393 /* Print Registers */
394 dev_info(&adapter->pdev->dev, "Register Dump\n");
876d2d6f 395 pr_info(" Register Name Value\n");
c97ec42a
TI
396 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
397 reginfo->name; reginfo++) {
398 igb_regdump(hw, reginfo);
399 }
400
401 /* Print TX Ring Summary */
402 if (!netdev || !netif_running(netdev))
403 goto exit;
404
405 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
876d2d6f 406 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
c97ec42a 407 for (n = 0; n < adapter->num_tx_queues; n++) {
06034649 408 struct igb_tx_buffer *buffer_info;
c97ec42a 409 tx_ring = adapter->tx_ring[n];
06034649 410 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
876d2d6f
JK
411 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
412 n, tx_ring->next_to_use, tx_ring->next_to_clean,
c9f14bf3
AD
413 (u64)dma_unmap_addr(buffer_info, dma),
414 dma_unmap_len(buffer_info, len),
876d2d6f
JK
415 buffer_info->next_to_watch,
416 (u64)buffer_info->time_stamp);
c97ec42a
TI
417 }
418
419 /* Print TX Rings */
420 if (!netif_msg_tx_done(adapter))
421 goto rx_ring_summary;
422
423 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
424
425 /* Transmit Descriptor Formats
426 *
427 * Advanced Transmit Descriptor
428 * +--------------------------------------------------------------+
429 * 0 | Buffer Address [63:0] |
430 * +--------------------------------------------------------------+
431 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
432 * +--------------------------------------------------------------+
433 * 63 46 45 40 39 38 36 35 32 31 24 15 0
434 */
435
436 for (n = 0; n < adapter->num_tx_queues; n++) {
437 tx_ring = adapter->tx_ring[n];
876d2d6f
JK
438 pr_info("------------------------------------\n");
439 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
440 pr_info("------------------------------------\n");
441 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] "
442 "[bi->dma ] leng ntw timestamp "
443 "bi->skb\n");
c97ec42a
TI
444
445 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
876d2d6f 446 const char *next_desc;
06034649 447 struct igb_tx_buffer *buffer_info;
60136906 448 tx_desc = IGB_TX_DESC(tx_ring, i);
06034649 449 buffer_info = &tx_ring->tx_buffer_info[i];
c97ec42a 450 u0 = (struct my_u0 *)tx_desc;
876d2d6f
JK
451 if (i == tx_ring->next_to_use &&
452 i == tx_ring->next_to_clean)
453 next_desc = " NTC/U";
454 else if (i == tx_ring->next_to_use)
455 next_desc = " NTU";
456 else if (i == tx_ring->next_to_clean)
457 next_desc = " NTC";
458 else
459 next_desc = "";
460
461 pr_info("T [0x%03X] %016llX %016llX %016llX"
462 " %04X %p %016llX %p%s\n", i,
c97ec42a
TI
463 le64_to_cpu(u0->a),
464 le64_to_cpu(u0->b),
c9f14bf3
AD
465 (u64)dma_unmap_addr(buffer_info, dma),
466 dma_unmap_len(buffer_info, len),
c97ec42a
TI
467 buffer_info->next_to_watch,
468 (u64)buffer_info->time_stamp,
876d2d6f 469 buffer_info->skb, next_desc);
c97ec42a 470
b669588a 471 if (netif_msg_pktdata(adapter) && buffer_info->skb)
c97ec42a
TI
472 print_hex_dump(KERN_INFO, "",
473 DUMP_PREFIX_ADDRESS,
b669588a 474 16, 1, buffer_info->skb->data,
c9f14bf3
AD
475 dma_unmap_len(buffer_info, len),
476 true);
c97ec42a
TI
477 }
478 }
479
480 /* Print RX Rings Summary */
481rx_ring_summary:
482 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
876d2d6f 483 pr_info("Queue [NTU] [NTC]\n");
c97ec42a
TI
484 for (n = 0; n < adapter->num_rx_queues; n++) {
485 rx_ring = adapter->rx_ring[n];
876d2d6f
JK
486 pr_info(" %5d %5X %5X\n",
487 n, rx_ring->next_to_use, rx_ring->next_to_clean);
c97ec42a
TI
488 }
489
490 /* Print RX Rings */
491 if (!netif_msg_rx_status(adapter))
492 goto exit;
493
494 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
495
496 /* Advanced Receive Descriptor (Read) Format
497 * 63 1 0
498 * +-----------------------------------------------------+
499 * 0 | Packet Buffer Address [63:1] |A0/NSE|
500 * +----------------------------------------------+------+
501 * 8 | Header Buffer Address [63:1] | DD |
502 * +-----------------------------------------------------+
503 *
504 *
505 * Advanced Receive Descriptor (Write-Back) Format
506 *
507 * 63 48 47 32 31 30 21 20 17 16 4 3 0
508 * +------------------------------------------------------+
509 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
510 * | Checksum Ident | | | | Type | Type |
511 * +------------------------------------------------------+
512 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
513 * +------------------------------------------------------+
514 * 63 48 47 32 31 20 19 0
515 */
516
517 for (n = 0; n < adapter->num_rx_queues; n++) {
518 rx_ring = adapter->rx_ring[n];
876d2d6f
JK
519 pr_info("------------------------------------\n");
520 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
521 pr_info("------------------------------------\n");
522 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] "
523 "[bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
524 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] -----"
525 "----------- [bi->skb] <-- Adv Rx Write-Back format\n");
c97ec42a
TI
526
527 for (i = 0; i < rx_ring->count; i++) {
876d2d6f 528 const char *next_desc;
06034649
AD
529 struct igb_rx_buffer *buffer_info;
530 buffer_info = &rx_ring->rx_buffer_info[i];
60136906 531 rx_desc = IGB_RX_DESC(rx_ring, i);
c97ec42a
TI
532 u0 = (struct my_u0 *)rx_desc;
533 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
876d2d6f
JK
534
535 if (i == rx_ring->next_to_use)
536 next_desc = " NTU";
537 else if (i == rx_ring->next_to_clean)
538 next_desc = " NTC";
539 else
540 next_desc = "";
541
c97ec42a
TI
542 if (staterr & E1000_RXD_STAT_DD) {
543 /* Descriptor Done */
1a1c225b
AD
544 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
545 "RWB", i,
c97ec42a
TI
546 le64_to_cpu(u0->a),
547 le64_to_cpu(u0->b),
1a1c225b 548 next_desc);
c97ec42a 549 } else {
1a1c225b
AD
550 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
551 "R ", i,
c97ec42a
TI
552 le64_to_cpu(u0->a),
553 le64_to_cpu(u0->b),
554 (u64)buffer_info->dma,
1a1c225b 555 next_desc);
c97ec42a 556
b669588a 557 if (netif_msg_pktdata(adapter) &&
1a1c225b 558 buffer_info->dma && buffer_info->page) {
44390ca6
AD
559 print_hex_dump(KERN_INFO, "",
560 DUMP_PREFIX_ADDRESS,
561 16, 1,
b669588a
ET
562 page_address(buffer_info->page) +
563 buffer_info->page_offset,
de78d1f9 564 IGB_RX_BUFSZ, true);
c97ec42a
TI
565 }
566 }
c97ec42a
TI
567 }
568 }
569
570exit:
571 return;
572}
573
b980ac18
JK
574/**
575 * igb_get_i2c_data - Reads the I2C SDA data bit
441fc6fd
CW
576 * @hw: pointer to hardware structure
577 * @i2cctl: Current value of I2CCTL register
578 *
579 * Returns the I2C data bit value
b980ac18 580 **/
441fc6fd
CW
581static int igb_get_i2c_data(void *data)
582{
583 struct igb_adapter *adapter = (struct igb_adapter *)data;
584 struct e1000_hw *hw = &adapter->hw;
585 s32 i2cctl = rd32(E1000_I2CPARAMS);
586
587 return ((i2cctl & E1000_I2C_DATA_IN) != 0);
588}
589
b980ac18
JK
590/**
591 * igb_set_i2c_data - Sets the I2C data bit
441fc6fd
CW
592 * @data: pointer to hardware structure
593 * @state: I2C data value (0 or 1) to set
594 *
595 * Sets the I2C data bit
b980ac18 596 **/
441fc6fd
CW
597static void igb_set_i2c_data(void *data, int state)
598{
599 struct igb_adapter *adapter = (struct igb_adapter *)data;
600 struct e1000_hw *hw = &adapter->hw;
601 s32 i2cctl = rd32(E1000_I2CPARAMS);
602
603 if (state)
604 i2cctl |= E1000_I2C_DATA_OUT;
605 else
606 i2cctl &= ~E1000_I2C_DATA_OUT;
607
608 i2cctl &= ~E1000_I2C_DATA_OE_N;
609 i2cctl |= E1000_I2C_CLK_OE_N;
610 wr32(E1000_I2CPARAMS, i2cctl);
611 wrfl();
612
613}
614
b980ac18
JK
615/**
616 * igb_set_i2c_clk - Sets the I2C SCL clock
441fc6fd
CW
617 * @data: pointer to hardware structure
618 * @state: state to set clock
619 *
620 * Sets the I2C clock line to state
b980ac18 621 **/
441fc6fd
CW
622static void igb_set_i2c_clk(void *data, int state)
623{
624 struct igb_adapter *adapter = (struct igb_adapter *)data;
625 struct e1000_hw *hw = &adapter->hw;
626 s32 i2cctl = rd32(E1000_I2CPARAMS);
627
628 if (state) {
629 i2cctl |= E1000_I2C_CLK_OUT;
630 i2cctl &= ~E1000_I2C_CLK_OE_N;
631 } else {
632 i2cctl &= ~E1000_I2C_CLK_OUT;
633 i2cctl &= ~E1000_I2C_CLK_OE_N;
634 }
635 wr32(E1000_I2CPARAMS, i2cctl);
636 wrfl();
637}
638
b980ac18
JK
639/**
640 * igb_get_i2c_clk - Gets the I2C SCL clock state
441fc6fd
CW
641 * @data: pointer to hardware structure
642 *
643 * Gets the I2C clock state
b980ac18 644 **/
441fc6fd
CW
645static int igb_get_i2c_clk(void *data)
646{
647 struct igb_adapter *adapter = (struct igb_adapter *)data;
648 struct e1000_hw *hw = &adapter->hw;
649 s32 i2cctl = rd32(E1000_I2CPARAMS);
650
651 return ((i2cctl & E1000_I2C_CLK_IN) != 0);
652}
653
654static const struct i2c_algo_bit_data igb_i2c_algo = {
655 .setsda = igb_set_i2c_data,
656 .setscl = igb_set_i2c_clk,
657 .getsda = igb_get_i2c_data,
658 .getscl = igb_get_i2c_clk,
659 .udelay = 5,
660 .timeout = 20,
661};
662
9d5c8243 663/**
b980ac18
JK
664 * igb_get_hw_dev - return device
665 * @hw: pointer to hardware structure
666 *
667 * used by hardware layer to print debugging information
9d5c8243 668 **/
c041076a 669struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
9d5c8243
AK
670{
671 struct igb_adapter *adapter = hw->back;
c041076a 672 return adapter->netdev;
9d5c8243 673}
38c845c7 674
9d5c8243 675/**
b980ac18 676 * igb_init_module - Driver Registration Routine
9d5c8243 677 *
b980ac18
JK
678 * igb_init_module is the first routine called when the driver is
679 * loaded. All it does is register with the PCI subsystem.
9d5c8243
AK
680 **/
681static int __init igb_init_module(void)
682{
683 int ret;
876d2d6f 684 pr_info("%s - version %s\n",
9d5c8243
AK
685 igb_driver_string, igb_driver_version);
686
876d2d6f 687 pr_info("%s\n", igb_copyright);
9d5c8243 688
421e02f0 689#ifdef CONFIG_IGB_DCA
fe4506b6
JC
690 dca_register_notify(&dca_notifier);
691#endif
bbd98fe4 692 ret = pci_register_driver(&igb_driver);
9d5c8243
AK
693 return ret;
694}
695
696module_init(igb_init_module);
697
698/**
b980ac18 699 * igb_exit_module - Driver Exit Cleanup Routine
9d5c8243 700 *
b980ac18
JK
701 * igb_exit_module is called just before the driver is removed
702 * from memory.
9d5c8243
AK
703 **/
704static void __exit igb_exit_module(void)
705{
421e02f0 706#ifdef CONFIG_IGB_DCA
fe4506b6
JC
707 dca_unregister_notify(&dca_notifier);
708#endif
9d5c8243
AK
709 pci_unregister_driver(&igb_driver);
710}
711
712module_exit(igb_exit_module);
713
26bc19ec
AD
714#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
715/**
b980ac18
JK
716 * igb_cache_ring_register - Descriptor ring to register mapping
717 * @adapter: board private structure to initialize
26bc19ec 718 *
b980ac18
JK
719 * Once we know the feature-set enabled for the device, we'll cache
720 * the register offset the descriptor ring is assigned to.
26bc19ec
AD
721 **/
722static void igb_cache_ring_register(struct igb_adapter *adapter)
723{
ee1b9f06 724 int i = 0, j = 0;
047e0030 725 u32 rbase_offset = adapter->vfs_allocated_count;
26bc19ec
AD
726
727 switch (adapter->hw.mac.type) {
728 case e1000_82576:
729 /* The queues are allocated for virtualization such that VF 0
730 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
731 * In order to avoid collision we start at the first free queue
732 * and continue consuming queues in the same sequence
733 */
ee1b9f06 734 if (adapter->vfs_allocated_count) {
a99955fc 735 for (; i < adapter->rss_queues; i++)
3025a446 736 adapter->rx_ring[i]->reg_idx = rbase_offset +
b980ac18 737 Q_IDX_82576(i);
ee1b9f06 738 }
26bc19ec 739 case e1000_82575:
55cac248 740 case e1000_82580:
d2ba2ed8 741 case e1000_i350:
ceb5f13b 742 case e1000_i354:
f96a8a0b
CW
743 case e1000_i210:
744 case e1000_i211:
26bc19ec 745 default:
ee1b9f06 746 for (; i < adapter->num_rx_queues; i++)
3025a446 747 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
ee1b9f06 748 for (; j < adapter->num_tx_queues; j++)
3025a446 749 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
26bc19ec
AD
750 break;
751 }
752}
753
22a8b291
FT
754u32 igb_rd32(struct e1000_hw *hw, u32 reg)
755{
756 struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
757 u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
758 u32 value = 0;
759
760 if (E1000_REMOVED(hw_addr))
761 return ~value;
762
763 value = readl(&hw_addr[reg]);
764
765 /* reads should not return all F's */
766 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
767 struct net_device *netdev = igb->netdev;
768 hw->hw_addr = NULL;
769 netif_device_detach(netdev);
770 netdev_err(netdev, "PCIe link lost, device now detached\n");
771 }
772
773 return value;
774}
775
4be000c8
AD
776/**
777 * igb_write_ivar - configure ivar for given MSI-X vector
778 * @hw: pointer to the HW structure
779 * @msix_vector: vector number we are allocating to a given ring
780 * @index: row index of IVAR register to write within IVAR table
781 * @offset: column offset of in IVAR, should be multiple of 8
782 *
783 * This function is intended to handle the writing of the IVAR register
784 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
785 * each containing an cause allocation for an Rx and Tx ring, and a
786 * variable number of rows depending on the number of queues supported.
787 **/
788static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
789 int index, int offset)
790{
791 u32 ivar = array_rd32(E1000_IVAR0, index);
792
793 /* clear any bits that are currently set */
794 ivar &= ~((u32)0xFF << offset);
795
796 /* write vector and valid bit */
797 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
798
799 array_wr32(E1000_IVAR0, index, ivar);
800}
801
9d5c8243 802#define IGB_N0_QUEUE -1
047e0030 803static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
9d5c8243 804{
047e0030 805 struct igb_adapter *adapter = q_vector->adapter;
9d5c8243 806 struct e1000_hw *hw = &adapter->hw;
047e0030
AD
807 int rx_queue = IGB_N0_QUEUE;
808 int tx_queue = IGB_N0_QUEUE;
4be000c8 809 u32 msixbm = 0;
047e0030 810
0ba82994
AD
811 if (q_vector->rx.ring)
812 rx_queue = q_vector->rx.ring->reg_idx;
813 if (q_vector->tx.ring)
814 tx_queue = q_vector->tx.ring->reg_idx;
2d064c06
AD
815
816 switch (hw->mac.type) {
817 case e1000_82575:
9d5c8243 818 /* The 82575 assigns vectors using a bitmask, which matches the
b980ac18
JK
819 * bitmask for the EICR/EIMS/EIMC registers. To assign one
820 * or more queues to a vector, we write the appropriate bits
821 * into the MSIXBM register for that vector.
822 */
047e0030 823 if (rx_queue > IGB_N0_QUEUE)
9d5c8243 824 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
047e0030 825 if (tx_queue > IGB_N0_QUEUE)
9d5c8243 826 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
cd14ef54 827 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
feeb2721 828 msixbm |= E1000_EIMS_OTHER;
9d5c8243 829 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
047e0030 830 q_vector->eims_value = msixbm;
2d064c06
AD
831 break;
832 case e1000_82576:
b980ac18 833 /* 82576 uses a table that essentially consists of 2 columns
4be000c8
AD
834 * with 8 rows. The ordering is column-major so we use the
835 * lower 3 bits as the row index, and the 4th bit as the
836 * column offset.
837 */
838 if (rx_queue > IGB_N0_QUEUE)
839 igb_write_ivar(hw, msix_vector,
840 rx_queue & 0x7,
841 (rx_queue & 0x8) << 1);
842 if (tx_queue > IGB_N0_QUEUE)
843 igb_write_ivar(hw, msix_vector,
844 tx_queue & 0x7,
845 ((tx_queue & 0x8) << 1) + 8);
047e0030 846 q_vector->eims_value = 1 << msix_vector;
2d064c06 847 break;
55cac248 848 case e1000_82580:
d2ba2ed8 849 case e1000_i350:
ceb5f13b 850 case e1000_i354:
f96a8a0b
CW
851 case e1000_i210:
852 case e1000_i211:
b980ac18 853 /* On 82580 and newer adapters the scheme is similar to 82576
4be000c8
AD
854 * however instead of ordering column-major we have things
855 * ordered row-major. So we traverse the table by using
856 * bit 0 as the column offset, and the remaining bits as the
857 * row index.
858 */
859 if (rx_queue > IGB_N0_QUEUE)
860 igb_write_ivar(hw, msix_vector,
861 rx_queue >> 1,
862 (rx_queue & 0x1) << 4);
863 if (tx_queue > IGB_N0_QUEUE)
864 igb_write_ivar(hw, msix_vector,
865 tx_queue >> 1,
866 ((tx_queue & 0x1) << 4) + 8);
55cac248
AD
867 q_vector->eims_value = 1 << msix_vector;
868 break;
2d064c06
AD
869 default:
870 BUG();
871 break;
872 }
26b39276
AD
873
874 /* add q_vector eims value to global eims_enable_mask */
875 adapter->eims_enable_mask |= q_vector->eims_value;
876
877 /* configure q_vector to set itr on first interrupt */
878 q_vector->set_itr = 1;
9d5c8243
AK
879}
880
881/**
b980ac18
JK
882 * igb_configure_msix - Configure MSI-X hardware
883 * @adapter: board private structure to initialize
9d5c8243 884 *
b980ac18
JK
885 * igb_configure_msix sets up the hardware to properly
886 * generate MSI-X interrupts.
9d5c8243
AK
887 **/
888static void igb_configure_msix(struct igb_adapter *adapter)
889{
890 u32 tmp;
891 int i, vector = 0;
892 struct e1000_hw *hw = &adapter->hw;
893
894 adapter->eims_enable_mask = 0;
9d5c8243
AK
895
896 /* set vector for other causes, i.e. link changes */
2d064c06
AD
897 switch (hw->mac.type) {
898 case e1000_82575:
9d5c8243
AK
899 tmp = rd32(E1000_CTRL_EXT);
900 /* enable MSI-X PBA support*/
901 tmp |= E1000_CTRL_EXT_PBA_CLR;
902
903 /* Auto-Mask interrupts upon ICR read. */
904 tmp |= E1000_CTRL_EXT_EIAME;
905 tmp |= E1000_CTRL_EXT_IRCA;
906
907 wr32(E1000_CTRL_EXT, tmp);
047e0030
AD
908
909 /* enable msix_other interrupt */
b980ac18 910 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
844290e5 911 adapter->eims_other = E1000_EIMS_OTHER;
9d5c8243 912
2d064c06
AD
913 break;
914
915 case e1000_82576:
55cac248 916 case e1000_82580:
d2ba2ed8 917 case e1000_i350:
ceb5f13b 918 case e1000_i354:
f96a8a0b
CW
919 case e1000_i210:
920 case e1000_i211:
047e0030 921 /* Turn on MSI-X capability first, or our settings
b980ac18
JK
922 * won't stick. And it will take days to debug.
923 */
047e0030 924 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
b980ac18
JK
925 E1000_GPIE_PBA | E1000_GPIE_EIAME |
926 E1000_GPIE_NSICR);
047e0030
AD
927
928 /* enable msix_other interrupt */
929 adapter->eims_other = 1 << vector;
2d064c06 930 tmp = (vector++ | E1000_IVAR_VALID) << 8;
2d064c06 931
047e0030 932 wr32(E1000_IVAR_MISC, tmp);
2d064c06
AD
933 break;
934 default:
935 /* do nothing, since nothing else supports MSI-X */
936 break;
937 } /* switch (hw->mac.type) */
047e0030
AD
938
939 adapter->eims_enable_mask |= adapter->eims_other;
940
26b39276
AD
941 for (i = 0; i < adapter->num_q_vectors; i++)
942 igb_assign_vector(adapter->q_vector[i], vector++);
047e0030 943
9d5c8243
AK
944 wrfl();
945}
946
947/**
b980ac18
JK
948 * igb_request_msix - Initialize MSI-X interrupts
949 * @adapter: board private structure to initialize
9d5c8243 950 *
b980ac18
JK
951 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
952 * kernel.
9d5c8243
AK
953 **/
954static int igb_request_msix(struct igb_adapter *adapter)
955{
956 struct net_device *netdev = adapter->netdev;
047e0030 957 struct e1000_hw *hw = &adapter->hw;
52285b76 958 int i, err = 0, vector = 0, free_vector = 0;
9d5c8243 959
047e0030 960 err = request_irq(adapter->msix_entries[vector].vector,
b980ac18 961 igb_msix_other, 0, netdev->name, adapter);
047e0030 962 if (err)
52285b76 963 goto err_out;
047e0030
AD
964
965 for (i = 0; i < adapter->num_q_vectors; i++) {
966 struct igb_q_vector *q_vector = adapter->q_vector[i];
967
52285b76
SA
968 vector++;
969
047e0030
AD
970 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
971
0ba82994 972 if (q_vector->rx.ring && q_vector->tx.ring)
047e0030 973 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
0ba82994
AD
974 q_vector->rx.ring->queue_index);
975 else if (q_vector->tx.ring)
047e0030 976 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
0ba82994
AD
977 q_vector->tx.ring->queue_index);
978 else if (q_vector->rx.ring)
047e0030 979 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
0ba82994 980 q_vector->rx.ring->queue_index);
9d5c8243 981 else
047e0030
AD
982 sprintf(q_vector->name, "%s-unused", netdev->name);
983
9d5c8243 984 err = request_irq(adapter->msix_entries[vector].vector,
b980ac18
JK
985 igb_msix_ring, 0, q_vector->name,
986 q_vector);
9d5c8243 987 if (err)
52285b76 988 goto err_free;
9d5c8243
AK
989 }
990
9d5c8243
AK
991 igb_configure_msix(adapter);
992 return 0;
52285b76
SA
993
994err_free:
995 /* free already assigned IRQs */
996 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
997
998 vector--;
999 for (i = 0; i < vector; i++) {
1000 free_irq(adapter->msix_entries[free_vector++].vector,
1001 adapter->q_vector[i]);
1002 }
1003err_out:
9d5c8243
AK
1004 return err;
1005}
1006
5536d210 1007/**
b980ac18
JK
1008 * igb_free_q_vector - Free memory allocated for specific interrupt vector
1009 * @adapter: board private structure to initialize
1010 * @v_idx: Index of vector to be freed
5536d210 1011 *
02ef6e1d 1012 * This function frees the memory allocated to the q_vector.
5536d210
AD
1013 **/
1014static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1015{
1016 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1017
02ef6e1d
CW
1018 adapter->q_vector[v_idx] = NULL;
1019
1020 /* igb_get_stats64() might access the rings on this vector,
1021 * we must wait a grace period before freeing it.
1022 */
1023 kfree_rcu(q_vector, rcu);
1024}
1025
1026/**
1027 * igb_reset_q_vector - Reset config for interrupt vector
1028 * @adapter: board private structure to initialize
1029 * @v_idx: Index of vector to be reset
1030 *
1031 * If NAPI is enabled it will delete any references to the
1032 * NAPI struct. This is preparation for igb_free_q_vector.
1033 **/
1034static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1035{
1036 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1037
cb06d102
CP
1038 /* Coming from igb_set_interrupt_capability, the vectors are not yet
1039 * allocated. So, q_vector is NULL so we should stop here.
1040 */
1041 if (!q_vector)
1042 return;
1043
5536d210
AD
1044 if (q_vector->tx.ring)
1045 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1046
1047 if (q_vector->rx.ring)
1048 adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1049
5536d210
AD
1050 netif_napi_del(&q_vector->napi);
1051
02ef6e1d
CW
1052}
1053
1054static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1055{
1056 int v_idx = adapter->num_q_vectors;
1057
cd14ef54 1058 if (adapter->flags & IGB_FLAG_HAS_MSIX)
02ef6e1d 1059 pci_disable_msix(adapter->pdev);
cd14ef54 1060 else if (adapter->flags & IGB_FLAG_HAS_MSI)
02ef6e1d 1061 pci_disable_msi(adapter->pdev);
02ef6e1d
CW
1062
1063 while (v_idx--)
1064 igb_reset_q_vector(adapter, v_idx);
5536d210
AD
1065}
1066
047e0030 1067/**
b980ac18
JK
1068 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1069 * @adapter: board private structure to initialize
047e0030 1070 *
b980ac18
JK
1071 * This function frees the memory allocated to the q_vectors. In addition if
1072 * NAPI is enabled it will delete any references to the NAPI struct prior
1073 * to freeing the q_vector.
047e0030
AD
1074 **/
1075static void igb_free_q_vectors(struct igb_adapter *adapter)
1076{
5536d210
AD
1077 int v_idx = adapter->num_q_vectors;
1078
1079 adapter->num_tx_queues = 0;
1080 adapter->num_rx_queues = 0;
047e0030 1081 adapter->num_q_vectors = 0;
5536d210 1082
02ef6e1d
CW
1083 while (v_idx--) {
1084 igb_reset_q_vector(adapter, v_idx);
5536d210 1085 igb_free_q_vector(adapter, v_idx);
02ef6e1d 1086 }
047e0030
AD
1087}
1088
1089/**
b980ac18
JK
1090 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1091 * @adapter: board private structure to initialize
047e0030 1092 *
b980ac18
JK
1093 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1094 * MSI-X interrupts allocated.
047e0030
AD
1095 */
1096static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1097{
047e0030
AD
1098 igb_free_q_vectors(adapter);
1099 igb_reset_interrupt_capability(adapter);
1100}
9d5c8243
AK
1101
1102/**
b980ac18
JK
1103 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1104 * @adapter: board private structure to initialize
1105 * @msix: boolean value of MSIX capability
9d5c8243 1106 *
b980ac18
JK
1107 * Attempt to configure interrupts using the best available
1108 * capabilities of the hardware and kernel.
9d5c8243 1109 **/
53c7d064 1110static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
9d5c8243
AK
1111{
1112 int err;
1113 int numvecs, i;
1114
53c7d064
SA
1115 if (!msix)
1116 goto msi_only;
cd14ef54 1117 adapter->flags |= IGB_FLAG_HAS_MSIX;
53c7d064 1118
83b7180d 1119 /* Number of supported queues. */
a99955fc 1120 adapter->num_rx_queues = adapter->rss_queues;
5fa8517f
GR
1121 if (adapter->vfs_allocated_count)
1122 adapter->num_tx_queues = 1;
1123 else
1124 adapter->num_tx_queues = adapter->rss_queues;
83b7180d 1125
b980ac18 1126 /* start with one vector for every Rx queue */
047e0030
AD
1127 numvecs = adapter->num_rx_queues;
1128
b980ac18 1129 /* if Tx handler is separate add 1 for every Tx queue */
a99955fc
AD
1130 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1131 numvecs += adapter->num_tx_queues;
047e0030
AD
1132
1133 /* store the number of vectors reserved for queues */
1134 adapter->num_q_vectors = numvecs;
1135
1136 /* add 1 vector for link status interrupts */
1137 numvecs++;
9d5c8243
AK
1138 for (i = 0; i < numvecs; i++)
1139 adapter->msix_entries[i].entry = i;
1140
479d02df
AG
1141 err = pci_enable_msix_range(adapter->pdev,
1142 adapter->msix_entries,
1143 numvecs,
1144 numvecs);
1145 if (err > 0)
0c2cc02e 1146 return;
9d5c8243
AK
1147
1148 igb_reset_interrupt_capability(adapter);
1149
1150 /* If we can't do MSI-X, try MSI */
1151msi_only:
b709323d 1152 adapter->flags &= ~IGB_FLAG_HAS_MSIX;
2a3abf6d
AD
1153#ifdef CONFIG_PCI_IOV
1154 /* disable SR-IOV for non MSI-X configurations */
1155 if (adapter->vf_data) {
1156 struct e1000_hw *hw = &adapter->hw;
1157 /* disable iov and allow time for transactions to clear */
1158 pci_disable_sriov(adapter->pdev);
1159 msleep(500);
1160
1161 kfree(adapter->vf_data);
1162 adapter->vf_data = NULL;
1163 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
945a5151 1164 wrfl();
2a3abf6d
AD
1165 msleep(100);
1166 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1167 }
1168#endif
4fc82adf 1169 adapter->vfs_allocated_count = 0;
a99955fc 1170 adapter->rss_queues = 1;
4fc82adf 1171 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
9d5c8243 1172 adapter->num_rx_queues = 1;
661086df 1173 adapter->num_tx_queues = 1;
047e0030 1174 adapter->num_q_vectors = 1;
9d5c8243 1175 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 1176 adapter->flags |= IGB_FLAG_HAS_MSI;
9d5c8243
AK
1177}
1178
5536d210
AD
1179static void igb_add_ring(struct igb_ring *ring,
1180 struct igb_ring_container *head)
1181{
1182 head->ring = ring;
1183 head->count++;
1184}
1185
047e0030 1186/**
b980ac18
JK
1187 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1188 * @adapter: board private structure to initialize
1189 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1190 * @v_idx: index of vector in adapter struct
1191 * @txr_count: total number of Tx rings to allocate
1192 * @txr_idx: index of first Tx ring to allocate
1193 * @rxr_count: total number of Rx rings to allocate
1194 * @rxr_idx: index of first Rx ring to allocate
047e0030 1195 *
b980ac18 1196 * We allocate one q_vector. If allocation fails we return -ENOMEM.
047e0030 1197 **/
5536d210
AD
1198static int igb_alloc_q_vector(struct igb_adapter *adapter,
1199 int v_count, int v_idx,
1200 int txr_count, int txr_idx,
1201 int rxr_count, int rxr_idx)
047e0030
AD
1202{
1203 struct igb_q_vector *q_vector;
5536d210
AD
1204 struct igb_ring *ring;
1205 int ring_count, size;
047e0030 1206
5536d210
AD
1207 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1208 if (txr_count > 1 || rxr_count > 1)
1209 return -ENOMEM;
1210
1211 ring_count = txr_count + rxr_count;
1212 size = sizeof(struct igb_q_vector) +
1213 (sizeof(struct igb_ring) * ring_count);
1214
1215 /* allocate q_vector and rings */
02ef6e1d
CW
1216 q_vector = adapter->q_vector[v_idx];
1217 if (!q_vector)
1218 q_vector = kzalloc(size, GFP_KERNEL);
5536d210
AD
1219 if (!q_vector)
1220 return -ENOMEM;
1221
1222 /* initialize NAPI */
1223 netif_napi_add(adapter->netdev, &q_vector->napi,
1224 igb_poll, 64);
1225
1226 /* tie q_vector and adapter together */
1227 adapter->q_vector[v_idx] = q_vector;
1228 q_vector->adapter = adapter;
1229
1230 /* initialize work limits */
1231 q_vector->tx.work_limit = adapter->tx_work_limit;
1232
1233 /* initialize ITR configuration */
1234 q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1235 q_vector->itr_val = IGB_START_ITR;
1236
1237 /* initialize pointer to rings */
1238 ring = q_vector->ring;
1239
4e227667
AD
1240 /* intialize ITR */
1241 if (rxr_count) {
1242 /* rx or rx/tx vector */
1243 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1244 q_vector->itr_val = adapter->rx_itr_setting;
1245 } else {
1246 /* tx only vector */
1247 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1248 q_vector->itr_val = adapter->tx_itr_setting;
1249 }
1250
5536d210
AD
1251 if (txr_count) {
1252 /* assign generic ring traits */
1253 ring->dev = &adapter->pdev->dev;
1254 ring->netdev = adapter->netdev;
1255
1256 /* configure backlink on ring */
1257 ring->q_vector = q_vector;
1258
1259 /* update q_vector Tx values */
1260 igb_add_ring(ring, &q_vector->tx);
1261
1262 /* For 82575, context index must be unique per ring. */
1263 if (adapter->hw.mac.type == e1000_82575)
1264 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1265
1266 /* apply Tx specific ring traits */
1267 ring->count = adapter->tx_ring_count;
1268 ring->queue_index = txr_idx;
1269
827da44c
JS
1270 u64_stats_init(&ring->tx_syncp);
1271 u64_stats_init(&ring->tx_syncp2);
1272
5536d210
AD
1273 /* assign ring to adapter */
1274 adapter->tx_ring[txr_idx] = ring;
1275
1276 /* push pointer to next ring */
1277 ring++;
047e0030 1278 }
81c2fc22 1279
5536d210
AD
1280 if (rxr_count) {
1281 /* assign generic ring traits */
1282 ring->dev = &adapter->pdev->dev;
1283 ring->netdev = adapter->netdev;
047e0030 1284
5536d210
AD
1285 /* configure backlink on ring */
1286 ring->q_vector = q_vector;
047e0030 1287
5536d210
AD
1288 /* update q_vector Rx values */
1289 igb_add_ring(ring, &q_vector->rx);
047e0030 1290
5536d210
AD
1291 /* set flag indicating ring supports SCTP checksum offload */
1292 if (adapter->hw.mac.type >= e1000_82576)
1293 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
047e0030 1294
ceb5f13b
CW
1295 /*
1296 * On i350, i354, i210, and i211, loopback VLAN packets
5536d210 1297 * have the tag byte-swapped.
b980ac18 1298 */
5536d210
AD
1299 if (adapter->hw.mac.type >= e1000_i350)
1300 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
047e0030 1301
5536d210
AD
1302 /* apply Rx specific ring traits */
1303 ring->count = adapter->rx_ring_count;
1304 ring->queue_index = rxr_idx;
1305
827da44c
JS
1306 u64_stats_init(&ring->rx_syncp);
1307
5536d210
AD
1308 /* assign ring to adapter */
1309 adapter->rx_ring[rxr_idx] = ring;
1310 }
1311
1312 return 0;
047e0030
AD
1313}
1314
5536d210 1315
047e0030 1316/**
b980ac18
JK
1317 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1318 * @adapter: board private structure to initialize
047e0030 1319 *
b980ac18
JK
1320 * We allocate one q_vector per queue interrupt. If allocation fails we
1321 * return -ENOMEM.
047e0030 1322 **/
5536d210 1323static int igb_alloc_q_vectors(struct igb_adapter *adapter)
047e0030 1324{
5536d210
AD
1325 int q_vectors = adapter->num_q_vectors;
1326 int rxr_remaining = adapter->num_rx_queues;
1327 int txr_remaining = adapter->num_tx_queues;
1328 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1329 int err;
047e0030 1330
5536d210
AD
1331 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1332 for (; rxr_remaining; v_idx++) {
1333 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1334 0, 0, 1, rxr_idx);
047e0030 1335
5536d210
AD
1336 if (err)
1337 goto err_out;
1338
1339 /* update counts and index */
1340 rxr_remaining--;
1341 rxr_idx++;
047e0030 1342 }
047e0030 1343 }
5536d210
AD
1344
1345 for (; v_idx < q_vectors; v_idx++) {
1346 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1347 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1348 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1349 tqpv, txr_idx, rqpv, rxr_idx);
1350
1351 if (err)
1352 goto err_out;
1353
1354 /* update counts and index */
1355 rxr_remaining -= rqpv;
1356 txr_remaining -= tqpv;
1357 rxr_idx++;
1358 txr_idx++;
1359 }
1360
047e0030 1361 return 0;
5536d210
AD
1362
1363err_out:
1364 adapter->num_tx_queues = 0;
1365 adapter->num_rx_queues = 0;
1366 adapter->num_q_vectors = 0;
1367
1368 while (v_idx--)
1369 igb_free_q_vector(adapter, v_idx);
1370
1371 return -ENOMEM;
047e0030
AD
1372}
1373
1374/**
b980ac18
JK
1375 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1376 * @adapter: board private structure to initialize
1377 * @msix: boolean value of MSIX capability
047e0030 1378 *
b980ac18 1379 * This function initializes the interrupts and allocates all of the queues.
047e0030 1380 **/
53c7d064 1381static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
047e0030
AD
1382{
1383 struct pci_dev *pdev = adapter->pdev;
1384 int err;
1385
53c7d064 1386 igb_set_interrupt_capability(adapter, msix);
047e0030
AD
1387
1388 err = igb_alloc_q_vectors(adapter);
1389 if (err) {
1390 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1391 goto err_alloc_q_vectors;
1392 }
1393
5536d210 1394 igb_cache_ring_register(adapter);
047e0030
AD
1395
1396 return 0;
5536d210 1397
047e0030
AD
1398err_alloc_q_vectors:
1399 igb_reset_interrupt_capability(adapter);
1400 return err;
1401}
1402
9d5c8243 1403/**
b980ac18
JK
1404 * igb_request_irq - initialize interrupts
1405 * @adapter: board private structure to initialize
9d5c8243 1406 *
b980ac18
JK
1407 * Attempts to configure interrupts using the best available
1408 * capabilities of the hardware and kernel.
9d5c8243
AK
1409 **/
1410static int igb_request_irq(struct igb_adapter *adapter)
1411{
1412 struct net_device *netdev = adapter->netdev;
047e0030 1413 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
1414 int err = 0;
1415
cd14ef54 1416 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
9d5c8243 1417 err = igb_request_msix(adapter);
844290e5 1418 if (!err)
9d5c8243 1419 goto request_done;
9d5c8243 1420 /* fall back to MSI */
5536d210
AD
1421 igb_free_all_tx_resources(adapter);
1422 igb_free_all_rx_resources(adapter);
53c7d064 1423
047e0030 1424 igb_clear_interrupt_scheme(adapter);
53c7d064
SA
1425 err = igb_init_interrupt_scheme(adapter, false);
1426 if (err)
047e0030 1427 goto request_done;
53c7d064 1428
047e0030
AD
1429 igb_setup_all_tx_resources(adapter);
1430 igb_setup_all_rx_resources(adapter);
53c7d064 1431 igb_configure(adapter);
9d5c8243 1432 }
844290e5 1433
c74d588e
AD
1434 igb_assign_vector(adapter->q_vector[0], 0);
1435
7dfc16fa 1436 if (adapter->flags & IGB_FLAG_HAS_MSI) {
c74d588e 1437 err = request_irq(pdev->irq, igb_intr_msi, 0,
047e0030 1438 netdev->name, adapter);
9d5c8243
AK
1439 if (!err)
1440 goto request_done;
047e0030 1441
9d5c8243
AK
1442 /* fall back to legacy interrupts */
1443 igb_reset_interrupt_capability(adapter);
7dfc16fa 1444 adapter->flags &= ~IGB_FLAG_HAS_MSI;
9d5c8243
AK
1445 }
1446
c74d588e 1447 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
047e0030 1448 netdev->name, adapter);
9d5c8243 1449
6cb5e577 1450 if (err)
c74d588e 1451 dev_err(&pdev->dev, "Error %d getting interrupt\n",
9d5c8243 1452 err);
9d5c8243
AK
1453
1454request_done:
1455 return err;
1456}
1457
1458static void igb_free_irq(struct igb_adapter *adapter)
1459{
cd14ef54 1460 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
9d5c8243
AK
1461 int vector = 0, i;
1462
047e0030 1463 free_irq(adapter->msix_entries[vector++].vector, adapter);
9d5c8243 1464
0d1ae7f4 1465 for (i = 0; i < adapter->num_q_vectors; i++)
047e0030 1466 free_irq(adapter->msix_entries[vector++].vector,
0d1ae7f4 1467 adapter->q_vector[i]);
047e0030
AD
1468 } else {
1469 free_irq(adapter->pdev->irq, adapter);
9d5c8243 1470 }
9d5c8243
AK
1471}
1472
1473/**
b980ac18
JK
1474 * igb_irq_disable - Mask off interrupt generation on the NIC
1475 * @adapter: board private structure
9d5c8243
AK
1476 **/
1477static void igb_irq_disable(struct igb_adapter *adapter)
1478{
1479 struct e1000_hw *hw = &adapter->hw;
1480
b980ac18 1481 /* we need to be careful when disabling interrupts. The VFs are also
25568a53
AD
1482 * mapped into these registers and so clearing the bits can cause
1483 * issues on the VF drivers so we only need to clear what we set
1484 */
cd14ef54 1485 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
2dfd1212
AD
1486 u32 regval = rd32(E1000_EIAM);
1487 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1488 wr32(E1000_EIMC, adapter->eims_enable_mask);
1489 regval = rd32(E1000_EIAC);
1490 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
9d5c8243 1491 }
844290e5
PW
1492
1493 wr32(E1000_IAM, 0);
9d5c8243
AK
1494 wr32(E1000_IMC, ~0);
1495 wrfl();
cd14ef54 1496 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
81a61859
ET
1497 int i;
1498 for (i = 0; i < adapter->num_q_vectors; i++)
1499 synchronize_irq(adapter->msix_entries[i].vector);
1500 } else {
1501 synchronize_irq(adapter->pdev->irq);
1502 }
9d5c8243
AK
1503}
1504
1505/**
b980ac18
JK
1506 * igb_irq_enable - Enable default interrupt generation settings
1507 * @adapter: board private structure
9d5c8243
AK
1508 **/
1509static void igb_irq_enable(struct igb_adapter *adapter)
1510{
1511 struct e1000_hw *hw = &adapter->hw;
1512
cd14ef54 1513 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
06218a8d 1514 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
2dfd1212
AD
1515 u32 regval = rd32(E1000_EIAC);
1516 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1517 regval = rd32(E1000_EIAM);
1518 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
844290e5 1519 wr32(E1000_EIMS, adapter->eims_enable_mask);
25568a53 1520 if (adapter->vfs_allocated_count) {
4ae196df 1521 wr32(E1000_MBVFIMR, 0xFF);
25568a53
AD
1522 ims |= E1000_IMS_VMMB;
1523 }
1524 wr32(E1000_IMS, ims);
844290e5 1525 } else {
55cac248
AD
1526 wr32(E1000_IMS, IMS_ENABLE_MASK |
1527 E1000_IMS_DRSTA);
1528 wr32(E1000_IAM, IMS_ENABLE_MASK |
1529 E1000_IMS_DRSTA);
844290e5 1530 }
9d5c8243
AK
1531}
1532
1533static void igb_update_mng_vlan(struct igb_adapter *adapter)
1534{
51466239 1535 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1536 u16 vid = adapter->hw.mng_cookie.vlan_id;
1537 u16 old_vid = adapter->mng_vlan_id;
51466239
AD
1538
1539 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1540 /* add VID to filter table */
1541 igb_vfta_set(hw, vid, true);
1542 adapter->mng_vlan_id = vid;
1543 } else {
1544 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1545 }
1546
1547 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1548 (vid != old_vid) &&
b2cb09b1 1549 !test_bit(old_vid, adapter->active_vlans)) {
51466239
AD
1550 /* remove VID from filter table */
1551 igb_vfta_set(hw, old_vid, false);
9d5c8243
AK
1552 }
1553}
1554
1555/**
b980ac18
JK
1556 * igb_release_hw_control - release control of the h/w to f/w
1557 * @adapter: address of board private structure
9d5c8243 1558 *
b980ac18
JK
1559 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1560 * For ASF and Pass Through versions of f/w this means that the
1561 * driver is no longer loaded.
9d5c8243
AK
1562 **/
1563static void igb_release_hw_control(struct igb_adapter *adapter)
1564{
1565 struct e1000_hw *hw = &adapter->hw;
1566 u32 ctrl_ext;
1567
1568 /* Let firmware take over control of h/w */
1569 ctrl_ext = rd32(E1000_CTRL_EXT);
1570 wr32(E1000_CTRL_EXT,
1571 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1572}
1573
9d5c8243 1574/**
b980ac18
JK
1575 * igb_get_hw_control - get control of the h/w from f/w
1576 * @adapter: address of board private structure
9d5c8243 1577 *
b980ac18
JK
1578 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1579 * For ASF and Pass Through versions of f/w this means that
1580 * the driver is loaded.
9d5c8243
AK
1581 **/
1582static void igb_get_hw_control(struct igb_adapter *adapter)
1583{
1584 struct e1000_hw *hw = &adapter->hw;
1585 u32 ctrl_ext;
1586
1587 /* Let firmware know the driver has taken over */
1588 ctrl_ext = rd32(E1000_CTRL_EXT);
1589 wr32(E1000_CTRL_EXT,
1590 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1591}
1592
9d5c8243 1593/**
b980ac18
JK
1594 * igb_configure - configure the hardware for RX and TX
1595 * @adapter: private board structure
9d5c8243
AK
1596 **/
1597static void igb_configure(struct igb_adapter *adapter)
1598{
1599 struct net_device *netdev = adapter->netdev;
1600 int i;
1601
1602 igb_get_hw_control(adapter);
ff41f8dc 1603 igb_set_rx_mode(netdev);
9d5c8243
AK
1604
1605 igb_restore_vlan(adapter);
9d5c8243 1606
85b430b4 1607 igb_setup_tctl(adapter);
06cf2666 1608 igb_setup_mrqc(adapter);
9d5c8243 1609 igb_setup_rctl(adapter);
85b430b4
AD
1610
1611 igb_configure_tx(adapter);
9d5c8243 1612 igb_configure_rx(adapter);
662d7205
AD
1613
1614 igb_rx_fifo_flush_82575(&adapter->hw);
1615
c493ea45 1616 /* call igb_desc_unused which always leaves
9d5c8243 1617 * at least 1 descriptor unused to make sure
b980ac18
JK
1618 * next_to_use != next_to_clean
1619 */
9d5c8243 1620 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 1621 struct igb_ring *ring = adapter->rx_ring[i];
cd392f5c 1622 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
9d5c8243 1623 }
9d5c8243
AK
1624}
1625
88a268c1 1626/**
b980ac18
JK
1627 * igb_power_up_link - Power up the phy/serdes link
1628 * @adapter: address of board private structure
88a268c1
NN
1629 **/
1630void igb_power_up_link(struct igb_adapter *adapter)
1631{
76886596
AA
1632 igb_reset_phy(&adapter->hw);
1633
88a268c1
NN
1634 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1635 igb_power_up_phy_copper(&adapter->hw);
1636 else
1637 igb_power_up_serdes_link_82575(&adapter->hw);
1638}
1639
1640/**
b980ac18
JK
1641 * igb_power_down_link - Power down the phy/serdes link
1642 * @adapter: address of board private structure
88a268c1
NN
1643 */
1644static void igb_power_down_link(struct igb_adapter *adapter)
1645{
1646 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1647 igb_power_down_phy_copper_82575(&adapter->hw);
1648 else
1649 igb_shutdown_serdes_link_82575(&adapter->hw);
1650}
9d5c8243 1651
56cec249
CW
1652/**
1653 * Detect and switch function for Media Auto Sense
1654 * @adapter: address of the board private structure
1655 **/
1656static void igb_check_swap_media(struct igb_adapter *adapter)
1657{
1658 struct e1000_hw *hw = &adapter->hw;
1659 u32 ctrl_ext, connsw;
1660 bool swap_now = false;
1661
1662 ctrl_ext = rd32(E1000_CTRL_EXT);
1663 connsw = rd32(E1000_CONNSW);
1664
1665 /* need to live swap if current media is copper and we have fiber/serdes
1666 * to go to.
1667 */
1668
1669 if ((hw->phy.media_type == e1000_media_type_copper) &&
1670 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1671 swap_now = true;
1672 } else if (!(connsw & E1000_CONNSW_SERDESD)) {
1673 /* copper signal takes time to appear */
1674 if (adapter->copper_tries < 4) {
1675 adapter->copper_tries++;
1676 connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1677 wr32(E1000_CONNSW, connsw);
1678 return;
1679 } else {
1680 adapter->copper_tries = 0;
1681 if ((connsw & E1000_CONNSW_PHYSD) &&
1682 (!(connsw & E1000_CONNSW_PHY_PDN))) {
1683 swap_now = true;
1684 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1685 wr32(E1000_CONNSW, connsw);
1686 }
1687 }
1688 }
1689
1690 if (!swap_now)
1691 return;
1692
1693 switch (hw->phy.media_type) {
1694 case e1000_media_type_copper:
1695 netdev_info(adapter->netdev,
1696 "MAS: changing media to fiber/serdes\n");
1697 ctrl_ext |=
1698 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1699 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1700 adapter->copper_tries = 0;
1701 break;
1702 case e1000_media_type_internal_serdes:
1703 case e1000_media_type_fiber:
1704 netdev_info(adapter->netdev,
1705 "MAS: changing media to copper\n");
1706 ctrl_ext &=
1707 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1708 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1709 break;
1710 default:
1711 /* shouldn't get here during regular operation */
1712 netdev_err(adapter->netdev,
1713 "AMS: Invalid media type found, returning\n");
1714 break;
1715 }
1716 wr32(E1000_CTRL_EXT, ctrl_ext);
1717}
1718
9d5c8243 1719/**
b980ac18
JK
1720 * igb_up - Open the interface and prepare it to handle traffic
1721 * @adapter: board private structure
9d5c8243 1722 **/
9d5c8243
AK
1723int igb_up(struct igb_adapter *adapter)
1724{
1725 struct e1000_hw *hw = &adapter->hw;
1726 int i;
1727
1728 /* hardware has been reset, we need to reload some things */
1729 igb_configure(adapter);
1730
1731 clear_bit(__IGB_DOWN, &adapter->state);
1732
0d1ae7f4
AD
1733 for (i = 0; i < adapter->num_q_vectors; i++)
1734 napi_enable(&(adapter->q_vector[i]->napi));
1735
cd14ef54 1736 if (adapter->flags & IGB_FLAG_HAS_MSIX)
9d5c8243 1737 igb_configure_msix(adapter);
feeb2721
AD
1738 else
1739 igb_assign_vector(adapter->q_vector[0], 0);
9d5c8243
AK
1740
1741 /* Clear any pending interrupts. */
1742 rd32(E1000_ICR);
1743 igb_irq_enable(adapter);
1744
d4960307
AD
1745 /* notify VFs that reset has been completed */
1746 if (adapter->vfs_allocated_count) {
1747 u32 reg_data = rd32(E1000_CTRL_EXT);
1748 reg_data |= E1000_CTRL_EXT_PFRSTD;
1749 wr32(E1000_CTRL_EXT, reg_data);
1750 }
1751
4cb9be7a
JB
1752 netif_tx_start_all_queues(adapter->netdev);
1753
25568a53
AD
1754 /* start the watchdog. */
1755 hw->mac.get_link_status = 1;
1756 schedule_work(&adapter->watchdog_task);
1757
f4c01e96
CW
1758 if ((adapter->flags & IGB_FLAG_EEE) &&
1759 (!hw->dev_spec._82575.eee_disable))
1760 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1761
9d5c8243
AK
1762 return 0;
1763}
1764
1765void igb_down(struct igb_adapter *adapter)
1766{
9d5c8243 1767 struct net_device *netdev = adapter->netdev;
330a6d6a 1768 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1769 u32 tctl, rctl;
1770 int i;
1771
1772 /* signal that we're down so the interrupt handler does not
b980ac18
JK
1773 * reschedule our watchdog timer
1774 */
9d5c8243
AK
1775 set_bit(__IGB_DOWN, &adapter->state);
1776
1777 /* disable receives in the hardware */
1778 rctl = rd32(E1000_RCTL);
1779 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1780 /* flush and sleep below */
1781
fd2ea0a7 1782 netif_tx_stop_all_queues(netdev);
9d5c8243
AK
1783
1784 /* disable transmits in the hardware */
1785 tctl = rd32(E1000_TCTL);
1786 tctl &= ~E1000_TCTL_EN;
1787 wr32(E1000_TCTL, tctl);
1788 /* flush both disables and wait for them to finish */
1789 wrfl();
1790 msleep(10);
1791
41f149a2
CW
1792 igb_irq_disable(adapter);
1793
aa9b8cc4
AA
1794 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1795
41f149a2
CW
1796 for (i = 0; i < adapter->num_q_vectors; i++) {
1797 napi_synchronize(&(adapter->q_vector[i]->napi));
0d1ae7f4 1798 napi_disable(&(adapter->q_vector[i]->napi));
41f149a2 1799 }
9d5c8243 1800
9d5c8243
AK
1801
1802 del_timer_sync(&adapter->watchdog_timer);
1803 del_timer_sync(&adapter->phy_info_timer);
1804
9d5c8243 1805 netif_carrier_off(netdev);
04fe6358
AD
1806
1807 /* record the stats before reset*/
12dcd86b
ED
1808 spin_lock(&adapter->stats64_lock);
1809 igb_update_stats(adapter, &adapter->stats64);
1810 spin_unlock(&adapter->stats64_lock);
04fe6358 1811
9d5c8243
AK
1812 adapter->link_speed = 0;
1813 adapter->link_duplex = 0;
1814
3023682e
JK
1815 if (!pci_channel_offline(adapter->pdev))
1816 igb_reset(adapter);
9d5c8243
AK
1817 igb_clean_all_tx_rings(adapter);
1818 igb_clean_all_rx_rings(adapter);
7e0e99ef
AD
1819#ifdef CONFIG_IGB_DCA
1820
1821 /* since we reset the hardware DCA settings were cleared */
1822 igb_setup_dca(adapter);
1823#endif
9d5c8243
AK
1824}
1825
1826void igb_reinit_locked(struct igb_adapter *adapter)
1827{
1828 WARN_ON(in_interrupt());
1829 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1830 msleep(1);
1831 igb_down(adapter);
1832 igb_up(adapter);
1833 clear_bit(__IGB_RESETTING, &adapter->state);
1834}
1835
56cec249
CW
1836/** igb_enable_mas - Media Autosense re-enable after swap
1837 *
1838 * @adapter: adapter struct
1839 **/
1840static s32 igb_enable_mas(struct igb_adapter *adapter)
1841{
1842 struct e1000_hw *hw = &adapter->hw;
1843 u32 connsw;
1844 s32 ret_val = 0;
1845
1846 connsw = rd32(E1000_CONNSW);
1847 if (!(hw->phy.media_type == e1000_media_type_copper))
1848 return ret_val;
1849
1850 /* configure for SerDes media detect */
1851 if (!(connsw & E1000_CONNSW_SERDESD)) {
1852 connsw |= E1000_CONNSW_ENRGSRC;
1853 connsw |= E1000_CONNSW_AUTOSENSE_EN;
1854 wr32(E1000_CONNSW, connsw);
1855 wrfl();
1856 } else if (connsw & E1000_CONNSW_SERDESD) {
1857 /* already SerDes, no need to enable anything */
1858 return ret_val;
1859 } else {
1860 netdev_info(adapter->netdev,
1861 "MAS: Unable to configure feature, disabling..\n");
1862 adapter->flags &= ~IGB_FLAG_MAS_ENABLE;
1863 }
1864 return ret_val;
1865}
1866
9d5c8243
AK
1867void igb_reset(struct igb_adapter *adapter)
1868{
090b1795 1869 struct pci_dev *pdev = adapter->pdev;
9d5c8243 1870 struct e1000_hw *hw = &adapter->hw;
2d064c06
AD
1871 struct e1000_mac_info *mac = &hw->mac;
1872 struct e1000_fc_info *fc = &hw->fc;
d48507fe 1873 u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
9d5c8243
AK
1874
1875 /* Repartition Pba for greater than 9k mtu
1876 * To take effect CTRL.RST is required.
1877 */
fa4dfae0 1878 switch (mac->type) {
d2ba2ed8 1879 case e1000_i350:
ceb5f13b 1880 case e1000_i354:
55cac248
AD
1881 case e1000_82580:
1882 pba = rd32(E1000_RXPBS);
1883 pba = igb_rxpbs_adjust_82580(pba);
1884 break;
fa4dfae0 1885 case e1000_82576:
d249be54
AD
1886 pba = rd32(E1000_RXPBS);
1887 pba &= E1000_RXPBS_SIZE_MASK_82576;
fa4dfae0
AD
1888 break;
1889 case e1000_82575:
f96a8a0b
CW
1890 case e1000_i210:
1891 case e1000_i211:
fa4dfae0
AD
1892 default:
1893 pba = E1000_PBA_34K;
1894 break;
2d064c06 1895 }
9d5c8243 1896
2d064c06
AD
1897 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1898 (mac->type < e1000_82576)) {
9d5c8243
AK
1899 /* adjust PBA for jumbo frames */
1900 wr32(E1000_PBA, pba);
1901
1902 /* To maintain wire speed transmits, the Tx FIFO should be
1903 * large enough to accommodate two full transmit packets,
1904 * rounded up to the next 1KB and expressed in KB. Likewise,
1905 * the Rx FIFO should be large enough to accommodate at least
1906 * one full receive packet and is similarly rounded up and
b980ac18
JK
1907 * expressed in KB.
1908 */
9d5c8243
AK
1909 pba = rd32(E1000_PBA);
1910 /* upper 16 bits has Tx packet buffer allocation size in KB */
1911 tx_space = pba >> 16;
1912 /* lower 16 bits has Rx packet buffer allocation size in KB */
1913 pba &= 0xffff;
b980ac18
JK
1914 /* the Tx fifo also stores 16 bytes of information about the Tx
1915 * but don't include ethernet FCS because hardware appends it
1916 */
9d5c8243 1917 min_tx_space = (adapter->max_frame_size +
85e8d004 1918 sizeof(union e1000_adv_tx_desc) -
9d5c8243
AK
1919 ETH_FCS_LEN) * 2;
1920 min_tx_space = ALIGN(min_tx_space, 1024);
1921 min_tx_space >>= 10;
1922 /* software strips receive CRC, so leave room for it */
1923 min_rx_space = adapter->max_frame_size;
1924 min_rx_space = ALIGN(min_rx_space, 1024);
1925 min_rx_space >>= 10;
1926
1927 /* If current Tx allocation is less than the min Tx FIFO size,
1928 * and the min Tx FIFO size is less than the current Rx FIFO
b980ac18
JK
1929 * allocation, take space away from current Rx allocation
1930 */
9d5c8243
AK
1931 if (tx_space < min_tx_space &&
1932 ((min_tx_space - tx_space) < pba)) {
1933 pba = pba - (min_tx_space - tx_space);
1934
b980ac18
JK
1935 /* if short on Rx space, Rx wins and must trump Tx
1936 * adjustment
1937 */
9d5c8243
AK
1938 if (pba < min_rx_space)
1939 pba = min_rx_space;
1940 }
2d064c06 1941 wr32(E1000_PBA, pba);
9d5c8243 1942 }
9d5c8243
AK
1943
1944 /* flow control settings */
1945 /* The high water mark must be low enough to fit one full frame
1946 * (or the size used for early receive) above it in the Rx FIFO.
1947 * Set it to the lower of:
1948 * - 90% of the Rx FIFO size, or
b980ac18
JK
1949 * - the full Rx FIFO size minus one full frame
1950 */
9d5c8243 1951 hwm = min(((pba << 10) * 9 / 10),
2d064c06 1952 ((pba << 10) - 2 * adapter->max_frame_size));
9d5c8243 1953
d48507fe 1954 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
d405ea3e 1955 fc->low_water = fc->high_water - 16;
9d5c8243
AK
1956 fc->pause_time = 0xFFFF;
1957 fc->send_xon = 1;
0cce119a 1958 fc->current_mode = fc->requested_mode;
9d5c8243 1959
4ae196df
AD
1960 /* disable receive for all VFs and wait one second */
1961 if (adapter->vfs_allocated_count) {
1962 int i;
1963 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
8fa7e0f7 1964 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
4ae196df
AD
1965
1966 /* ping all the active vfs to let them know we are going down */
f2ca0dbe 1967 igb_ping_all_vfs(adapter);
4ae196df
AD
1968
1969 /* disable transmits and receives */
1970 wr32(E1000_VFRE, 0);
1971 wr32(E1000_VFTE, 0);
1972 }
1973
9d5c8243 1974 /* Allow time for pending master requests to run */
330a6d6a 1975 hw->mac.ops.reset_hw(hw);
9d5c8243
AK
1976 wr32(E1000_WUC, 0);
1977
56cec249
CW
1978 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1979 /* need to resetup here after media swap */
1980 adapter->ei.get_invariants(hw);
1981 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1982 }
1983 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
1984 if (igb_enable_mas(adapter))
1985 dev_err(&pdev->dev,
1986 "Error enabling Media Auto Sense\n");
1987 }
330a6d6a 1988 if (hw->mac.ops.init_hw(hw))
090b1795 1989 dev_err(&pdev->dev, "Hardware Error\n");
831ec0b4 1990
b980ac18 1991 /* Flow control settings reset on hardware reset, so guarantee flow
a27416bb
MV
1992 * control is off when forcing speed.
1993 */
1994 if (!hw->mac.autoneg)
1995 igb_force_mac_fc(hw);
1996
b6e0c419 1997 igb_init_dmac(adapter, pba);
e428893b
CW
1998#ifdef CONFIG_IGB_HWMON
1999 /* Re-initialize the thermal sensor on i350 devices. */
2000 if (!test_bit(__IGB_DOWN, &adapter->state)) {
2001 if (mac->type == e1000_i350 && hw->bus.func == 0) {
2002 /* If present, re-initialize the external thermal sensor
2003 * interface.
2004 */
2005 if (adapter->ets)
2006 mac->ops.init_thermal_sensor_thresh(hw);
2007 }
2008 }
2009#endif
b936136d 2010 /* Re-establish EEE setting */
f4c01e96
CW
2011 if (hw->phy.media_type == e1000_media_type_copper) {
2012 switch (mac->type) {
2013 case e1000_i350:
2014 case e1000_i210:
2015 case e1000_i211:
2016 igb_set_eee_i350(hw);
2017 break;
2018 case e1000_i354:
2019 igb_set_eee_i354(hw);
2020 break;
2021 default:
2022 break;
2023 }
2024 }
88a268c1
NN
2025 if (!netif_running(adapter->netdev))
2026 igb_power_down_link(adapter);
2027
9d5c8243
AK
2028 igb_update_mng_vlan(adapter);
2029
2030 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2031 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2032
1f6e8178
MV
2033 /* Re-enable PTP, where applicable. */
2034 igb_ptp_reset(adapter);
1f6e8178 2035
330a6d6a 2036 igb_get_phy_info(hw);
9d5c8243
AK
2037}
2038
c8f44aff
MM
2039static netdev_features_t igb_fix_features(struct net_device *netdev,
2040 netdev_features_t features)
b2cb09b1 2041{
b980ac18
JK
2042 /* Since there is no support for separate Rx/Tx vlan accel
2043 * enable/disable make sure Tx flag is always in same state as Rx.
b2cb09b1 2044 */
f646968f
PM
2045 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2046 features |= NETIF_F_HW_VLAN_CTAG_TX;
b2cb09b1 2047 else
f646968f 2048 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
b2cb09b1
JP
2049
2050 return features;
2051}
2052
c8f44aff
MM
2053static int igb_set_features(struct net_device *netdev,
2054 netdev_features_t features)
ac52caa3 2055{
c8f44aff 2056 netdev_features_t changed = netdev->features ^ features;
89eaefb6 2057 struct igb_adapter *adapter = netdev_priv(netdev);
ac52caa3 2058
f646968f 2059 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
b2cb09b1
JP
2060 igb_vlan_mode(netdev, features);
2061
89eaefb6
BG
2062 if (!(changed & NETIF_F_RXALL))
2063 return 0;
2064
2065 netdev->features = features;
2066
2067 if (netif_running(netdev))
2068 igb_reinit_locked(adapter);
2069 else
2070 igb_reset(adapter);
2071
ac52caa3
MM
2072 return 0;
2073}
2074
2e5c6922 2075static const struct net_device_ops igb_netdev_ops = {
559e9c49 2076 .ndo_open = igb_open,
2e5c6922 2077 .ndo_stop = igb_close,
cd392f5c 2078 .ndo_start_xmit = igb_xmit_frame,
12dcd86b 2079 .ndo_get_stats64 = igb_get_stats64,
ff41f8dc 2080 .ndo_set_rx_mode = igb_set_rx_mode,
2e5c6922
SH
2081 .ndo_set_mac_address = igb_set_mac,
2082 .ndo_change_mtu = igb_change_mtu,
2083 .ndo_do_ioctl = igb_ioctl,
2084 .ndo_tx_timeout = igb_tx_timeout,
2085 .ndo_validate_addr = eth_validate_addr,
2e5c6922
SH
2086 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
2087 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
8151d294
WM
2088 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
2089 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
2090 .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw,
70ea4783 2091 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
8151d294 2092 .ndo_get_vf_config = igb_ndo_get_vf_config,
2e5c6922
SH
2093#ifdef CONFIG_NET_POLL_CONTROLLER
2094 .ndo_poll_controller = igb_netpoll,
2095#endif
b2cb09b1
JP
2096 .ndo_fix_features = igb_fix_features,
2097 .ndo_set_features = igb_set_features,
2e5c6922
SH
2098};
2099
d67974f0
CW
2100/**
2101 * igb_set_fw_version - Configure version string for ethtool
2102 * @adapter: adapter struct
d67974f0
CW
2103 **/
2104void igb_set_fw_version(struct igb_adapter *adapter)
2105{
2106 struct e1000_hw *hw = &adapter->hw;
0b1a6f2e
CW
2107 struct e1000_fw_version fw;
2108
2109 igb_get_fw_version(hw, &fw);
2110
2111 switch (hw->mac.type) {
7dc98a62 2112 case e1000_i210:
0b1a6f2e 2113 case e1000_i211:
7dc98a62
CW
2114 if (!(igb_get_flash_presence_i210(hw))) {
2115 snprintf(adapter->fw_version,
2116 sizeof(adapter->fw_version),
2117 "%2d.%2d-%d",
2118 fw.invm_major, fw.invm_minor,
2119 fw.invm_img_type);
2120 break;
2121 }
2122 /* fall through */
0b1a6f2e
CW
2123 default:
2124 /* if option is rom valid, display its version too */
2125 if (fw.or_valid) {
2126 snprintf(adapter->fw_version,
2127 sizeof(adapter->fw_version),
2128 "%d.%d, 0x%08x, %d.%d.%d",
2129 fw.eep_major, fw.eep_minor, fw.etrack_id,
2130 fw.or_major, fw.or_build, fw.or_patch);
2131 /* no option rom */
7dc98a62 2132 } else if (fw.etrack_id != 0X0000) {
0b1a6f2e 2133 snprintf(adapter->fw_version,
7dc98a62
CW
2134 sizeof(adapter->fw_version),
2135 "%d.%d, 0x%08x",
2136 fw.eep_major, fw.eep_minor, fw.etrack_id);
2137 } else {
2138 snprintf(adapter->fw_version,
2139 sizeof(adapter->fw_version),
2140 "%d.%d.%d",
2141 fw.eep_major, fw.eep_minor, fw.eep_build);
0b1a6f2e
CW
2142 }
2143 break;
d67974f0 2144 }
d67974f0
CW
2145 return;
2146}
2147
56cec249
CW
2148/**
2149 * igb_init_mas - init Media Autosense feature if enabled in the NVM
2150 *
2151 * @adapter: adapter struct
2152 **/
2153static void igb_init_mas(struct igb_adapter *adapter)
2154{
2155 struct e1000_hw *hw = &adapter->hw;
2156 u16 eeprom_data;
2157
2158 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2159 switch (hw->bus.func) {
2160 case E1000_FUNC_0:
2161 if (eeprom_data & IGB_MAS_ENABLE_0) {
2162 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2163 netdev_info(adapter->netdev,
2164 "MAS: Enabling Media Autosense for port %d\n",
2165 hw->bus.func);
2166 }
2167 break;
2168 case E1000_FUNC_1:
2169 if (eeprom_data & IGB_MAS_ENABLE_1) {
2170 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2171 netdev_info(adapter->netdev,
2172 "MAS: Enabling Media Autosense for port %d\n",
2173 hw->bus.func);
2174 }
2175 break;
2176 case E1000_FUNC_2:
2177 if (eeprom_data & IGB_MAS_ENABLE_2) {
2178 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2179 netdev_info(adapter->netdev,
2180 "MAS: Enabling Media Autosense for port %d\n",
2181 hw->bus.func);
2182 }
2183 break;
2184 case E1000_FUNC_3:
2185 if (eeprom_data & IGB_MAS_ENABLE_3) {
2186 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2187 netdev_info(adapter->netdev,
2188 "MAS: Enabling Media Autosense for port %d\n",
2189 hw->bus.func);
2190 }
2191 break;
2192 default:
2193 /* Shouldn't get here */
2194 netdev_err(adapter->netdev,
2195 "MAS: Invalid port configuration, returning\n");
2196 break;
2197 }
2198}
2199
b980ac18
JK
2200/**
2201 * igb_init_i2c - Init I2C interface
441fc6fd 2202 * @adapter: pointer to adapter structure
b980ac18 2203 **/
441fc6fd
CW
2204static s32 igb_init_i2c(struct igb_adapter *adapter)
2205{
2206 s32 status = E1000_SUCCESS;
2207
2208 /* I2C interface supported on i350 devices */
2209 if (adapter->hw.mac.type != e1000_i350)
2210 return E1000_SUCCESS;
2211
2212 /* Initialize the i2c bus which is controlled by the registers.
2213 * This bus will use the i2c_algo_bit structue that implements
2214 * the protocol through toggling of the 4 bits in the register.
2215 */
2216 adapter->i2c_adap.owner = THIS_MODULE;
2217 adapter->i2c_algo = igb_i2c_algo;
2218 adapter->i2c_algo.data = adapter;
2219 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2220 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2221 strlcpy(adapter->i2c_adap.name, "igb BB",
2222 sizeof(adapter->i2c_adap.name));
2223 status = i2c_bit_add_bus(&adapter->i2c_adap);
2224 return status;
2225}
2226
9d5c8243 2227/**
b980ac18
JK
2228 * igb_probe - Device Initialization Routine
2229 * @pdev: PCI device information struct
2230 * @ent: entry in igb_pci_tbl
9d5c8243 2231 *
b980ac18 2232 * Returns 0 on success, negative on failure
9d5c8243 2233 *
b980ac18
JK
2234 * igb_probe initializes an adapter identified by a pci_dev structure.
2235 * The OS initialization, configuring of the adapter private structure,
2236 * and a hardware reset occur.
9d5c8243 2237 **/
1dd06ae8 2238static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
9d5c8243
AK
2239{
2240 struct net_device *netdev;
2241 struct igb_adapter *adapter;
2242 struct e1000_hw *hw;
4337e993 2243 u16 eeprom_data = 0;
9835fd73 2244 s32 ret_val;
4337e993 2245 static int global_quad_port_a; /* global quad port a indication */
9d5c8243 2246 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2d6a5e95 2247 int err, pci_using_dac;
9835fd73 2248 u8 part_str[E1000_PBANUM_LENGTH];
9d5c8243 2249
bded64a7
AG
2250 /* Catch broken hardware that put the wrong VF device ID in
2251 * the PCIe SR-IOV capability.
2252 */
2253 if (pdev->is_virtfn) {
2254 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
f96a8a0b 2255 pci_name(pdev), pdev->vendor, pdev->device);
bded64a7
AG
2256 return -EINVAL;
2257 }
2258
aed5dec3 2259 err = pci_enable_device_mem(pdev);
9d5c8243
AK
2260 if (err)
2261 return err;
2262
2263 pci_using_dac = 0;
dc4ff9bb 2264 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
9d5c8243 2265 if (!err) {
dc4ff9bb 2266 pci_using_dac = 1;
9d5c8243 2267 } else {
dc4ff9bb 2268 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
9d5c8243 2269 if (err) {
dc4ff9bb
RK
2270 dev_err(&pdev->dev,
2271 "No usable DMA configuration, aborting\n");
2272 goto err_dma;
9d5c8243
AK
2273 }
2274 }
2275
aed5dec3 2276 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
b980ac18
JK
2277 IORESOURCE_MEM),
2278 igb_driver_name);
9d5c8243
AK
2279 if (err)
2280 goto err_pci_reg;
2281
19d5afd4 2282 pci_enable_pcie_error_reporting(pdev);
40a914fa 2283
9d5c8243 2284 pci_set_master(pdev);
c682fc23 2285 pci_save_state(pdev);
9d5c8243
AK
2286
2287 err = -ENOMEM;
1bfaf07b 2288 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1cc3bd87 2289 IGB_MAX_TX_QUEUES);
9d5c8243
AK
2290 if (!netdev)
2291 goto err_alloc_etherdev;
2292
2293 SET_NETDEV_DEV(netdev, &pdev->dev);
2294
2295 pci_set_drvdata(pdev, netdev);
2296 adapter = netdev_priv(netdev);
2297 adapter->netdev = netdev;
2298 adapter->pdev = pdev;
2299 hw = &adapter->hw;
2300 hw->back = adapter;
b3f4d599 2301 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
9d5c8243 2302
9d5c8243 2303 err = -EIO;
89dbefb2 2304 hw->hw_addr = pci_iomap(pdev, 0, 0);
28b0759c 2305 if (!hw->hw_addr)
9d5c8243
AK
2306 goto err_ioremap;
2307
2e5c6922 2308 netdev->netdev_ops = &igb_netdev_ops;
9d5c8243 2309 igb_set_ethtool_ops(netdev);
9d5c8243 2310 netdev->watchdog_timeo = 5 * HZ;
9d5c8243
AK
2311
2312 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2313
89dbefb2
AS
2314 netdev->mem_start = pci_resource_start(pdev, 0);
2315 netdev->mem_end = pci_resource_end(pdev, 0);
9d5c8243 2316
9d5c8243
AK
2317 /* PCI config space info */
2318 hw->vendor_id = pdev->vendor;
2319 hw->device_id = pdev->device;
2320 hw->revision_id = pdev->revision;
2321 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2322 hw->subsystem_device_id = pdev->subsystem_device;
2323
9d5c8243
AK
2324 /* Copy the default MAC, PHY and NVM function pointers */
2325 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2326 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2327 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2328 /* Initialize skew-specific constants */
2329 err = ei->get_invariants(hw);
2330 if (err)
450c87c8 2331 goto err_sw_init;
9d5c8243 2332
450c87c8 2333 /* setup the private structure */
9d5c8243
AK
2334 err = igb_sw_init(adapter);
2335 if (err)
2336 goto err_sw_init;
2337
2338 igb_get_bus_info_pcie(hw);
2339
2340 hw->phy.autoneg_wait_to_complete = false;
9d5c8243
AK
2341
2342 /* Copper options */
2343 if (hw->phy.media_type == e1000_media_type_copper) {
2344 hw->phy.mdix = AUTO_ALL_MODES;
2345 hw->phy.disable_polarity_correction = false;
2346 hw->phy.ms_type = e1000_ms_hw_default;
2347 }
2348
2349 if (igb_check_reset_block(hw))
2350 dev_info(&pdev->dev,
2351 "PHY reset is blocked due to SOL/IDER session.\n");
2352
b980ac18 2353 /* features is initialized to 0 in allocation, it might have bits
077887c3
AD
2354 * set by igb_sw_init so we should use an or instead of an
2355 * assignment.
2356 */
2357 netdev->features |= NETIF_F_SG |
2358 NETIF_F_IP_CSUM |
2359 NETIF_F_IPV6_CSUM |
2360 NETIF_F_TSO |
2361 NETIF_F_TSO6 |
2362 NETIF_F_RXHASH |
2363 NETIF_F_RXCSUM |
f646968f
PM
2364 NETIF_F_HW_VLAN_CTAG_RX |
2365 NETIF_F_HW_VLAN_CTAG_TX;
077887c3
AD
2366
2367 /* copy netdev features into list of user selectable features */
2368 netdev->hw_features |= netdev->features;
89eaefb6 2369 netdev->hw_features |= NETIF_F_RXALL;
077887c3
AD
2370
2371 /* set this bit last since it cannot be part of hw_features */
f646968f 2372 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
077887c3
AD
2373
2374 netdev->vlan_features |= NETIF_F_TSO |
2375 NETIF_F_TSO6 |
2376 NETIF_F_IP_CSUM |
2377 NETIF_F_IPV6_CSUM |
2378 NETIF_F_SG;
48f29ffc 2379
6b8f0922
BG
2380 netdev->priv_flags |= IFF_SUPP_NOFCS;
2381
7b872a55 2382 if (pci_using_dac) {
9d5c8243 2383 netdev->features |= NETIF_F_HIGHDMA;
7b872a55
YZ
2384 netdev->vlan_features |= NETIF_F_HIGHDMA;
2385 }
9d5c8243 2386
ac52caa3
MM
2387 if (hw->mac.type >= e1000_82576) {
2388 netdev->hw_features |= NETIF_F_SCTP_CSUM;
b9473560 2389 netdev->features |= NETIF_F_SCTP_CSUM;
ac52caa3 2390 }
b9473560 2391
01789349
JP
2392 netdev->priv_flags |= IFF_UNICAST_FLT;
2393
330a6d6a 2394 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
9d5c8243
AK
2395
2396 /* before reading the NVM, reset the controller to put the device in a
b980ac18
JK
2397 * known good starting state
2398 */
9d5c8243
AK
2399 hw->mac.ops.reset_hw(hw);
2400
ef3a0092
CW
2401 /* make sure the NVM is good , i211/i210 parts can have special NVM
2402 * that doesn't contain a checksum
f96a8a0b 2403 */
ef3a0092
CW
2404 switch (hw->mac.type) {
2405 case e1000_i210:
2406 case e1000_i211:
2407 if (igb_get_flash_presence_i210(hw)) {
2408 if (hw->nvm.ops.validate(hw) < 0) {
2409 dev_err(&pdev->dev,
2410 "The NVM Checksum Is Not Valid\n");
2411 err = -EIO;
2412 goto err_eeprom;
2413 }
2414 }
2415 break;
2416 default:
f96a8a0b
CW
2417 if (hw->nvm.ops.validate(hw) < 0) {
2418 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2419 err = -EIO;
2420 goto err_eeprom;
2421 }
ef3a0092 2422 break;
9d5c8243
AK
2423 }
2424
2425 /* copy the MAC address out of the NVM */
2426 if (hw->mac.ops.read_mac_addr(hw))
2427 dev_err(&pdev->dev, "NVM Read Error\n");
2428
2429 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
9d5c8243 2430
aaeb6cdf 2431 if (!is_valid_ether_addr(netdev->dev_addr)) {
9d5c8243
AK
2432 dev_err(&pdev->dev, "Invalid MAC Address\n");
2433 err = -EIO;
2434 goto err_eeprom;
2435 }
2436
d67974f0
CW
2437 /* get firmware version for ethtool -i */
2438 igb_set_fw_version(adapter);
2439
c061b18d 2440 setup_timer(&adapter->watchdog_timer, igb_watchdog,
b980ac18 2441 (unsigned long) adapter);
c061b18d 2442 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
b980ac18 2443 (unsigned long) adapter);
9d5c8243
AK
2444
2445 INIT_WORK(&adapter->reset_task, igb_reset_task);
2446 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2447
450c87c8 2448 /* Initialize link properties that are user-changeable */
9d5c8243
AK
2449 adapter->fc_autoneg = true;
2450 hw->mac.autoneg = true;
2451 hw->phy.autoneg_advertised = 0x2f;
2452
0cce119a
AD
2453 hw->fc.requested_mode = e1000_fc_default;
2454 hw->fc.current_mode = e1000_fc_default;
9d5c8243 2455
9d5c8243
AK
2456 igb_validate_mdi_setting(hw);
2457
63d4a8f9 2458 /* By default, support wake on port A */
a2cf8b6c 2459 if (hw->bus.func == 0)
63d4a8f9
MV
2460 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2461
2462 /* Check the NVM for wake support on non-port A ports */
2463 if (hw->mac.type >= e1000_82580)
55cac248 2464 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
b980ac18
JK
2465 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2466 &eeprom_data);
a2cf8b6c
AD
2467 else if (hw->bus.func == 1)
2468 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
9d5c8243 2469
63d4a8f9
MV
2470 if (eeprom_data & IGB_EEPROM_APME)
2471 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
9d5c8243
AK
2472
2473 /* now that we have the eeprom settings, apply the special cases where
2474 * the eeprom may be wrong or the board simply won't support wake on
b980ac18
JK
2475 * lan on a particular port
2476 */
9d5c8243
AK
2477 switch (pdev->device) {
2478 case E1000_DEV_ID_82575GB_QUAD_COPPER:
63d4a8f9 2479 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
9d5c8243
AK
2480 break;
2481 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2d064c06
AD
2482 case E1000_DEV_ID_82576_FIBER:
2483 case E1000_DEV_ID_82576_SERDES:
9d5c8243 2484 /* Wake events only supported on port A for dual fiber
b980ac18
JK
2485 * regardless of eeprom setting
2486 */
9d5c8243 2487 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
63d4a8f9 2488 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
9d5c8243 2489 break;
c8ea5ea9 2490 case E1000_DEV_ID_82576_QUAD_COPPER:
d5aa2252 2491 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
c8ea5ea9
AD
2492 /* if quad port adapter, disable WoL on all but port A */
2493 if (global_quad_port_a != 0)
63d4a8f9 2494 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
c8ea5ea9
AD
2495 else
2496 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2497 /* Reset for multiple quad port adapters */
2498 if (++global_quad_port_a == 4)
2499 global_quad_port_a = 0;
2500 break;
63d4a8f9
MV
2501 default:
2502 /* If the device can't wake, don't set software support */
2503 if (!device_can_wakeup(&adapter->pdev->dev))
2504 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
9d5c8243
AK
2505 }
2506
2507 /* initialize the wol settings based on the eeprom settings */
63d4a8f9
MV
2508 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2509 adapter->wol |= E1000_WUFC_MAG;
2510
2511 /* Some vendors want WoL disabled by default, but still supported */
2512 if ((hw->mac.type == e1000_i350) &&
2513 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2514 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2515 adapter->wol = 0;
2516 }
2517
2518 device_set_wakeup_enable(&adapter->pdev->dev,
2519 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
9d5c8243
AK
2520
2521 /* reset the hardware with the new settings */
2522 igb_reset(adapter);
2523
441fc6fd
CW
2524 /* Init the I2C interface */
2525 err = igb_init_i2c(adapter);
2526 if (err) {
2527 dev_err(&pdev->dev, "failed to init i2c interface\n");
2528 goto err_eeprom;
2529 }
2530
9d5c8243
AK
2531 /* let the f/w know that the h/w is now under the control of the
2532 * driver. */
2533 igb_get_hw_control(adapter);
2534
9d5c8243
AK
2535 strcpy(netdev->name, "eth%d");
2536 err = register_netdev(netdev);
2537 if (err)
2538 goto err_register;
2539
b168dfc5
JB
2540 /* carrier off reporting is important to ethtool even BEFORE open */
2541 netif_carrier_off(netdev);
2542
421e02f0 2543#ifdef CONFIG_IGB_DCA
bbd98fe4 2544 if (dca_add_requester(&pdev->dev) == 0) {
7dfc16fa 2545 adapter->flags |= IGB_FLAG_DCA_ENABLED;
fe4506b6 2546 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
2547 igb_setup_dca(adapter);
2548 }
fe4506b6 2549
38c845c7 2550#endif
e428893b
CW
2551#ifdef CONFIG_IGB_HWMON
2552 /* Initialize the thermal sensor on i350 devices. */
2553 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2554 u16 ets_word;
3c89f6d0 2555
b980ac18 2556 /* Read the NVM to determine if this i350 device supports an
e428893b
CW
2557 * external thermal sensor.
2558 */
2559 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2560 if (ets_word != 0x0000 && ets_word != 0xFFFF)
2561 adapter->ets = true;
2562 else
2563 adapter->ets = false;
2564 if (igb_sysfs_init(adapter))
2565 dev_err(&pdev->dev,
2566 "failed to allocate sysfs resources\n");
2567 } else {
2568 adapter->ets = false;
2569 }
2570#endif
56cec249
CW
2571 /* Check if Media Autosense is enabled */
2572 adapter->ei = *ei;
2573 if (hw->dev_spec._82575.mas_capable)
2574 igb_init_mas(adapter);
2575
673b8b70 2576 /* do hw tstamp init after resetting */
7ebae817 2577 igb_ptp_init(adapter);
673b8b70 2578
9d5c8243 2579 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
ceb5f13b
CW
2580 /* print bus type/speed/width info, not applicable to i354 */
2581 if (hw->mac.type != e1000_i354) {
2582 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2583 netdev->name,
2584 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2585 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2586 "unknown"),
2587 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2588 "Width x4" :
2589 (hw->bus.width == e1000_bus_width_pcie_x2) ?
2590 "Width x2" :
2591 (hw->bus.width == e1000_bus_width_pcie_x1) ?
2592 "Width x1" : "unknown"), netdev->dev_addr);
2593 }
9d5c8243 2594
53ea6c7e
TF
2595 if ((hw->mac.type >= e1000_i210 ||
2596 igb_get_flash_presence_i210(hw))) {
2597 ret_val = igb_read_part_string(hw, part_str,
2598 E1000_PBANUM_LENGTH);
2599 } else {
2600 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2601 }
2602
9835fd73
CW
2603 if (ret_val)
2604 strcpy(part_str, "Unknown");
2605 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
9d5c8243
AK
2606 dev_info(&pdev->dev,
2607 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
cd14ef54 2608 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
7dfc16fa 2609 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
9d5c8243 2610 adapter->num_rx_queues, adapter->num_tx_queues);
f4c01e96
CW
2611 if (hw->phy.media_type == e1000_media_type_copper) {
2612 switch (hw->mac.type) {
2613 case e1000_i350:
2614 case e1000_i210:
2615 case e1000_i211:
2616 /* Enable EEE for internal copper PHY devices */
2617 err = igb_set_eee_i350(hw);
2618 if ((!err) &&
2619 (!hw->dev_spec._82575.eee_disable)) {
2620 adapter->eee_advert =
2621 MDIO_EEE_100TX | MDIO_EEE_1000T;
2622 adapter->flags |= IGB_FLAG_EEE;
2623 }
2624 break;
2625 case e1000_i354:
ceb5f13b 2626 if ((rd32(E1000_CTRL_EXT) &
f4c01e96
CW
2627 E1000_CTRL_EXT_LINK_MODE_SGMII)) {
2628 err = igb_set_eee_i354(hw);
2629 if ((!err) &&
2630 (!hw->dev_spec._82575.eee_disable)) {
2631 adapter->eee_advert =
2632 MDIO_EEE_100TX | MDIO_EEE_1000T;
2633 adapter->flags |= IGB_FLAG_EEE;
2634 }
2635 }
2636 break;
2637 default:
2638 break;
ceb5f13b 2639 }
09b068d4 2640 }
749ab2cd 2641 pm_runtime_put_noidle(&pdev->dev);
9d5c8243
AK
2642 return 0;
2643
2644err_register:
2645 igb_release_hw_control(adapter);
441fc6fd 2646 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
9d5c8243
AK
2647err_eeprom:
2648 if (!igb_check_reset_block(hw))
f5f4cf08 2649 igb_reset_phy(hw);
9d5c8243
AK
2650
2651 if (hw->flash_address)
2652 iounmap(hw->flash_address);
9d5c8243 2653err_sw_init:
047e0030 2654 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
2655 iounmap(hw->hw_addr);
2656err_ioremap:
2657 free_netdev(netdev);
2658err_alloc_etherdev:
559e9c49 2659 pci_release_selected_regions(pdev,
b980ac18 2660 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243
AK
2661err_pci_reg:
2662err_dma:
2663 pci_disable_device(pdev);
2664 return err;
2665}
2666
fa44f2f1 2667#ifdef CONFIG_PCI_IOV
781798a1 2668static int igb_disable_sriov(struct pci_dev *pdev)
fa44f2f1
GR
2669{
2670 struct net_device *netdev = pci_get_drvdata(pdev);
2671 struct igb_adapter *adapter = netdev_priv(netdev);
2672 struct e1000_hw *hw = &adapter->hw;
2673
2674 /* reclaim resources allocated to VFs */
2675 if (adapter->vf_data) {
2676 /* disable iov and allow time for transactions to clear */
b09186d2 2677 if (pci_vfs_assigned(pdev)) {
fa44f2f1
GR
2678 dev_warn(&pdev->dev,
2679 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2680 return -EPERM;
2681 } else {
2682 pci_disable_sriov(pdev);
2683 msleep(500);
2684 }
2685
2686 kfree(adapter->vf_data);
2687 adapter->vf_data = NULL;
2688 adapter->vfs_allocated_count = 0;
2689 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2690 wrfl();
2691 msleep(100);
2692 dev_info(&pdev->dev, "IOV Disabled\n");
2693
2694 /* Re-enable DMA Coalescing flag since IOV is turned off */
2695 adapter->flags |= IGB_FLAG_DMAC;
2696 }
2697
2698 return 0;
2699}
2700
2701static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2702{
2703 struct net_device *netdev = pci_get_drvdata(pdev);
2704 struct igb_adapter *adapter = netdev_priv(netdev);
2705 int old_vfs = pci_num_vf(pdev);
2706 int err = 0;
2707 int i;
2708
cd14ef54 2709 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
50267196
MW
2710 err = -EPERM;
2711 goto out;
2712 }
fa44f2f1
GR
2713 if (!num_vfs)
2714 goto out;
fa44f2f1 2715
781798a1
SA
2716 if (old_vfs) {
2717 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2718 old_vfs, max_vfs);
2719 adapter->vfs_allocated_count = old_vfs;
2720 } else
2721 adapter->vfs_allocated_count = num_vfs;
fa44f2f1
GR
2722
2723 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2724 sizeof(struct vf_data_storage), GFP_KERNEL);
2725
2726 /* if allocation failed then we do not support SR-IOV */
2727 if (!adapter->vf_data) {
2728 adapter->vfs_allocated_count = 0;
2729 dev_err(&pdev->dev,
2730 "Unable to allocate memory for VF Data Storage\n");
2731 err = -ENOMEM;
2732 goto out;
2733 }
2734
781798a1
SA
2735 /* only call pci_enable_sriov() if no VFs are allocated already */
2736 if (!old_vfs) {
2737 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2738 if (err)
2739 goto err_out;
2740 }
fa44f2f1
GR
2741 dev_info(&pdev->dev, "%d VFs allocated\n",
2742 adapter->vfs_allocated_count);
2743 for (i = 0; i < adapter->vfs_allocated_count; i++)
2744 igb_vf_configure(adapter, i);
2745
2746 /* DMA Coalescing is not supported in IOV mode. */
2747 adapter->flags &= ~IGB_FLAG_DMAC;
2748 goto out;
2749
2750err_out:
2751 kfree(adapter->vf_data);
2752 adapter->vf_data = NULL;
2753 adapter->vfs_allocated_count = 0;
2754out:
2755 return err;
2756}
2757
2758#endif
b980ac18 2759/**
441fc6fd
CW
2760 * igb_remove_i2c - Cleanup I2C interface
2761 * @adapter: pointer to adapter structure
b980ac18 2762 **/
441fc6fd
CW
2763static void igb_remove_i2c(struct igb_adapter *adapter)
2764{
441fc6fd
CW
2765 /* free the adapter bus structure */
2766 i2c_del_adapter(&adapter->i2c_adap);
2767}
2768
9d5c8243 2769/**
b980ac18
JK
2770 * igb_remove - Device Removal Routine
2771 * @pdev: PCI device information struct
9d5c8243 2772 *
b980ac18
JK
2773 * igb_remove is called by the PCI subsystem to alert the driver
2774 * that it should release a PCI device. The could be caused by a
2775 * Hot-Plug event, or because the driver is going to be removed from
2776 * memory.
9d5c8243 2777 **/
9f9a12f8 2778static void igb_remove(struct pci_dev *pdev)
9d5c8243
AK
2779{
2780 struct net_device *netdev = pci_get_drvdata(pdev);
2781 struct igb_adapter *adapter = netdev_priv(netdev);
fe4506b6 2782 struct e1000_hw *hw = &adapter->hw;
9d5c8243 2783
749ab2cd 2784 pm_runtime_get_noresume(&pdev->dev);
e428893b
CW
2785#ifdef CONFIG_IGB_HWMON
2786 igb_sysfs_exit(adapter);
2787#endif
441fc6fd 2788 igb_remove_i2c(adapter);
a79f4f88 2789 igb_ptp_stop(adapter);
b980ac18 2790 /* The watchdog timer may be rescheduled, so explicitly
760141a5
TH
2791 * disable watchdog from being rescheduled.
2792 */
9d5c8243
AK
2793 set_bit(__IGB_DOWN, &adapter->state);
2794 del_timer_sync(&adapter->watchdog_timer);
2795 del_timer_sync(&adapter->phy_info_timer);
2796
760141a5
TH
2797 cancel_work_sync(&adapter->reset_task);
2798 cancel_work_sync(&adapter->watchdog_task);
9d5c8243 2799
421e02f0 2800#ifdef CONFIG_IGB_DCA
7dfc16fa 2801 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6
JC
2802 dev_info(&pdev->dev, "DCA disabled\n");
2803 dca_remove_requester(&pdev->dev);
7dfc16fa 2804 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 2805 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
2806 }
2807#endif
2808
9d5c8243 2809 /* Release control of h/w to f/w. If f/w is AMT enabled, this
b980ac18
JK
2810 * would have already happened in close and is redundant.
2811 */
9d5c8243
AK
2812 igb_release_hw_control(adapter);
2813
2814 unregister_netdev(netdev);
2815
047e0030 2816 igb_clear_interrupt_scheme(adapter);
9d5c8243 2817
37680117 2818#ifdef CONFIG_PCI_IOV
fa44f2f1 2819 igb_disable_sriov(pdev);
37680117 2820#endif
559e9c49 2821
28b0759c
AD
2822 iounmap(hw->hw_addr);
2823 if (hw->flash_address)
2824 iounmap(hw->flash_address);
559e9c49 2825 pci_release_selected_regions(pdev,
b980ac18 2826 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243 2827
1128c756 2828 kfree(adapter->shadow_vfta);
9d5c8243
AK
2829 free_netdev(netdev);
2830
19d5afd4 2831 pci_disable_pcie_error_reporting(pdev);
40a914fa 2832
9d5c8243
AK
2833 pci_disable_device(pdev);
2834}
2835
a6b623e0 2836/**
b980ac18
JK
2837 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2838 * @adapter: board private structure to initialize
a6b623e0 2839 *
b980ac18
JK
2840 * This function initializes the vf specific data storage and then attempts to
2841 * allocate the VFs. The reason for ordering it this way is because it is much
2842 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2843 * the memory for the VFs.
a6b623e0 2844 **/
9f9a12f8 2845static void igb_probe_vfs(struct igb_adapter *adapter)
a6b623e0
AD
2846{
2847#ifdef CONFIG_PCI_IOV
2848 struct pci_dev *pdev = adapter->pdev;
f96a8a0b 2849 struct e1000_hw *hw = &adapter->hw;
a6b623e0 2850
f96a8a0b
CW
2851 /* Virtualization features not supported on i210 family. */
2852 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2853 return;
2854
fa44f2f1 2855 pci_sriov_set_totalvfs(pdev, 7);
781798a1 2856 igb_pci_enable_sriov(pdev, max_vfs);
0224d663 2857
a6b623e0
AD
2858#endif /* CONFIG_PCI_IOV */
2859}
2860
fa44f2f1 2861static void igb_init_queue_configuration(struct igb_adapter *adapter)
9d5c8243
AK
2862{
2863 struct e1000_hw *hw = &adapter->hw;
374a542d 2864 u32 max_rss_queues;
9d5c8243 2865
374a542d 2866 /* Determine the maximum number of RSS queues supported. */
f96a8a0b 2867 switch (hw->mac.type) {
374a542d
MV
2868 case e1000_i211:
2869 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2870 break;
2871 case e1000_82575:
f96a8a0b 2872 case e1000_i210:
374a542d
MV
2873 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2874 break;
2875 case e1000_i350:
2876 /* I350 cannot do RSS and SR-IOV at the same time */
2877 if (!!adapter->vfs_allocated_count) {
2878 max_rss_queues = 1;
2879 break;
2880 }
2881 /* fall through */
2882 case e1000_82576:
2883 if (!!adapter->vfs_allocated_count) {
2884 max_rss_queues = 2;
2885 break;
2886 }
2887 /* fall through */
2888 case e1000_82580:
ceb5f13b 2889 case e1000_i354:
374a542d
MV
2890 default:
2891 max_rss_queues = IGB_MAX_RX_QUEUES;
f96a8a0b 2892 break;
374a542d
MV
2893 }
2894
2895 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2896
2897 /* Determine if we need to pair queues. */
2898 switch (hw->mac.type) {
2899 case e1000_82575:
f96a8a0b 2900 case e1000_i211:
374a542d 2901 /* Device supports enough interrupts without queue pairing. */
f96a8a0b 2902 break;
374a542d 2903 case e1000_82576:
b980ac18 2904 /* If VFs are going to be allocated with RSS queues then we
374a542d
MV
2905 * should pair the queues in order to conserve interrupts due
2906 * to limited supply.
2907 */
2908 if ((adapter->rss_queues > 1) &&
2909 (adapter->vfs_allocated_count > 6))
2910 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2911 /* fall through */
2912 case e1000_82580:
2913 case e1000_i350:
ceb5f13b 2914 case e1000_i354:
374a542d 2915 case e1000_i210:
f96a8a0b 2916 default:
b980ac18 2917 /* If rss_queues > half of max_rss_queues, pair the queues in
374a542d
MV
2918 * order to conserve interrupts due to limited supply.
2919 */
2920 if (adapter->rss_queues > (max_rss_queues / 2))
2921 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
f96a8a0b
CW
2922 break;
2923 }
fa44f2f1
GR
2924}
2925
2926/**
b980ac18
JK
2927 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2928 * @adapter: board private structure to initialize
fa44f2f1 2929 *
b980ac18
JK
2930 * igb_sw_init initializes the Adapter private data structure.
2931 * Fields are initialized based on PCI device information and
2932 * OS network device settings (MTU size).
fa44f2f1
GR
2933 **/
2934static int igb_sw_init(struct igb_adapter *adapter)
2935{
2936 struct e1000_hw *hw = &adapter->hw;
2937 struct net_device *netdev = adapter->netdev;
2938 struct pci_dev *pdev = adapter->pdev;
2939
2940 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2941
2942 /* set default ring sizes */
2943 adapter->tx_ring_count = IGB_DEFAULT_TXD;
2944 adapter->rx_ring_count = IGB_DEFAULT_RXD;
2945
2946 /* set default ITR values */
2947 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2948 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2949
2950 /* set default work limits */
2951 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2952
2953 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2954 VLAN_HLEN;
2955 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2956
2957 spin_lock_init(&adapter->stats64_lock);
2958#ifdef CONFIG_PCI_IOV
2959 switch (hw->mac.type) {
2960 case e1000_82576:
2961 case e1000_i350:
2962 if (max_vfs > 7) {
2963 dev_warn(&pdev->dev,
2964 "Maximum of 7 VFs per PF, using max\n");
d0f63acc 2965 max_vfs = adapter->vfs_allocated_count = 7;
fa44f2f1
GR
2966 } else
2967 adapter->vfs_allocated_count = max_vfs;
2968 if (adapter->vfs_allocated_count)
2969 dev_warn(&pdev->dev,
2970 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2971 break;
2972 default:
2973 break;
2974 }
2975#endif /* CONFIG_PCI_IOV */
2976
2977 igb_init_queue_configuration(adapter);
a99955fc 2978
1128c756 2979 /* Setup and initialize a copy of the hw vlan table array */
b2adaca9
JP
2980 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2981 GFP_ATOMIC);
1128c756 2982
a6b623e0 2983 /* This call may decrease the number of queues */
53c7d064 2984 if (igb_init_interrupt_scheme(adapter, true)) {
9d5c8243
AK
2985 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2986 return -ENOMEM;
2987 }
2988
a6b623e0
AD
2989 igb_probe_vfs(adapter);
2990
9d5c8243
AK
2991 /* Explicitly disable IRQ since the NIC can be in any state. */
2992 igb_irq_disable(adapter);
2993
f96a8a0b 2994 if (hw->mac.type >= e1000_i350)
831ec0b4
CW
2995 adapter->flags &= ~IGB_FLAG_DMAC;
2996
9d5c8243
AK
2997 set_bit(__IGB_DOWN, &adapter->state);
2998 return 0;
2999}
3000
3001/**
b980ac18
JK
3002 * igb_open - Called when a network interface is made active
3003 * @netdev: network interface device structure
9d5c8243 3004 *
b980ac18 3005 * Returns 0 on success, negative value on failure
9d5c8243 3006 *
b980ac18
JK
3007 * The open entry point is called when a network interface is made
3008 * active by the system (IFF_UP). At this point all resources needed
3009 * for transmit and receive operations are allocated, the interrupt
3010 * handler is registered with the OS, the watchdog timer is started,
3011 * and the stack is notified that the interface is ready.
9d5c8243 3012 **/
749ab2cd 3013static int __igb_open(struct net_device *netdev, bool resuming)
9d5c8243
AK
3014{
3015 struct igb_adapter *adapter = netdev_priv(netdev);
3016 struct e1000_hw *hw = &adapter->hw;
749ab2cd 3017 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
3018 int err;
3019 int i;
3020
3021 /* disallow open during test */
749ab2cd
YZ
3022 if (test_bit(__IGB_TESTING, &adapter->state)) {
3023 WARN_ON(resuming);
9d5c8243 3024 return -EBUSY;
749ab2cd
YZ
3025 }
3026
3027 if (!resuming)
3028 pm_runtime_get_sync(&pdev->dev);
9d5c8243 3029
b168dfc5
JB
3030 netif_carrier_off(netdev);
3031
9d5c8243
AK
3032 /* allocate transmit descriptors */
3033 err = igb_setup_all_tx_resources(adapter);
3034 if (err)
3035 goto err_setup_tx;
3036
3037 /* allocate receive descriptors */
3038 err = igb_setup_all_rx_resources(adapter);
3039 if (err)
3040 goto err_setup_rx;
3041
88a268c1 3042 igb_power_up_link(adapter);
9d5c8243 3043
9d5c8243
AK
3044 /* before we allocate an interrupt, we must be ready to handle it.
3045 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3046 * as soon as we call pci_request_irq, so we have to setup our
b980ac18
JK
3047 * clean_rx handler before we do so.
3048 */
9d5c8243
AK
3049 igb_configure(adapter);
3050
3051 err = igb_request_irq(adapter);
3052 if (err)
3053 goto err_req_irq;
3054
0c2cc02e
AD
3055 /* Notify the stack of the actual queue counts. */
3056 err = netif_set_real_num_tx_queues(adapter->netdev,
3057 adapter->num_tx_queues);
3058 if (err)
3059 goto err_set_queues;
3060
3061 err = netif_set_real_num_rx_queues(adapter->netdev,
3062 adapter->num_rx_queues);
3063 if (err)
3064 goto err_set_queues;
3065
9d5c8243
AK
3066 /* From here on the code is the same as igb_up() */
3067 clear_bit(__IGB_DOWN, &adapter->state);
3068
0d1ae7f4
AD
3069 for (i = 0; i < adapter->num_q_vectors; i++)
3070 napi_enable(&(adapter->q_vector[i]->napi));
9d5c8243
AK
3071
3072 /* Clear any pending interrupts. */
3073 rd32(E1000_ICR);
844290e5
PW
3074
3075 igb_irq_enable(adapter);
3076
d4960307
AD
3077 /* notify VFs that reset has been completed */
3078 if (adapter->vfs_allocated_count) {
3079 u32 reg_data = rd32(E1000_CTRL_EXT);
3080 reg_data |= E1000_CTRL_EXT_PFRSTD;
3081 wr32(E1000_CTRL_EXT, reg_data);
3082 }
3083
d55b53ff
JK
3084 netif_tx_start_all_queues(netdev);
3085
749ab2cd
YZ
3086 if (!resuming)
3087 pm_runtime_put(&pdev->dev);
3088
25568a53
AD
3089 /* start the watchdog. */
3090 hw->mac.get_link_status = 1;
3091 schedule_work(&adapter->watchdog_task);
9d5c8243
AK
3092
3093 return 0;
3094
0c2cc02e
AD
3095err_set_queues:
3096 igb_free_irq(adapter);
9d5c8243
AK
3097err_req_irq:
3098 igb_release_hw_control(adapter);
88a268c1 3099 igb_power_down_link(adapter);
9d5c8243
AK
3100 igb_free_all_rx_resources(adapter);
3101err_setup_rx:
3102 igb_free_all_tx_resources(adapter);
3103err_setup_tx:
3104 igb_reset(adapter);
749ab2cd
YZ
3105 if (!resuming)
3106 pm_runtime_put(&pdev->dev);
9d5c8243
AK
3107
3108 return err;
3109}
3110
749ab2cd
YZ
3111static int igb_open(struct net_device *netdev)
3112{
3113 return __igb_open(netdev, false);
3114}
3115
9d5c8243 3116/**
b980ac18
JK
3117 * igb_close - Disables a network interface
3118 * @netdev: network interface device structure
9d5c8243 3119 *
b980ac18 3120 * Returns 0, this is not allowed to fail
9d5c8243 3121 *
b980ac18
JK
3122 * The close entry point is called when an interface is de-activated
3123 * by the OS. The hardware is still under the driver's control, but
3124 * needs to be disabled. A global MAC reset is issued to stop the
3125 * hardware, and all transmit and receive resources are freed.
9d5c8243 3126 **/
749ab2cd 3127static int __igb_close(struct net_device *netdev, bool suspending)
9d5c8243
AK
3128{
3129 struct igb_adapter *adapter = netdev_priv(netdev);
749ab2cd 3130 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
3131
3132 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
9d5c8243 3133
749ab2cd
YZ
3134 if (!suspending)
3135 pm_runtime_get_sync(&pdev->dev);
3136
3137 igb_down(adapter);
9d5c8243
AK
3138 igb_free_irq(adapter);
3139
3140 igb_free_all_tx_resources(adapter);
3141 igb_free_all_rx_resources(adapter);
3142
749ab2cd
YZ
3143 if (!suspending)
3144 pm_runtime_put_sync(&pdev->dev);
9d5c8243
AK
3145 return 0;
3146}
3147
749ab2cd
YZ
3148static int igb_close(struct net_device *netdev)
3149{
3150 return __igb_close(netdev, false);
3151}
3152
9d5c8243 3153/**
b980ac18
JK
3154 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
3155 * @tx_ring: tx descriptor ring (for a specific queue) to setup
9d5c8243 3156 *
b980ac18 3157 * Return 0 on success, negative on failure
9d5c8243 3158 **/
80785298 3159int igb_setup_tx_resources(struct igb_ring *tx_ring)
9d5c8243 3160{
59d71989 3161 struct device *dev = tx_ring->dev;
9d5c8243
AK
3162 int size;
3163
06034649 3164 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
f33005a6
AD
3165
3166 tx_ring->tx_buffer_info = vzalloc(size);
06034649 3167 if (!tx_ring->tx_buffer_info)
9d5c8243 3168 goto err;
9d5c8243
AK
3169
3170 /* round up to nearest 4K */
85e8d004 3171 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
9d5c8243
AK
3172 tx_ring->size = ALIGN(tx_ring->size, 4096);
3173
5536d210
AD
3174 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3175 &tx_ring->dma, GFP_KERNEL);
9d5c8243
AK
3176 if (!tx_ring->desc)
3177 goto err;
3178
9d5c8243
AK
3179 tx_ring->next_to_use = 0;
3180 tx_ring->next_to_clean = 0;
81c2fc22 3181
9d5c8243
AK
3182 return 0;
3183
3184err:
06034649 3185 vfree(tx_ring->tx_buffer_info);
f33005a6
AD
3186 tx_ring->tx_buffer_info = NULL;
3187 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
9d5c8243
AK
3188 return -ENOMEM;
3189}
3190
3191/**
b980ac18
JK
3192 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
3193 * (Descriptors) for all queues
3194 * @adapter: board private structure
9d5c8243 3195 *
b980ac18 3196 * Return 0 on success, negative on failure
9d5c8243
AK
3197 **/
3198static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3199{
439705e1 3200 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
3201 int i, err = 0;
3202
3203 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 3204 err = igb_setup_tx_resources(adapter->tx_ring[i]);
9d5c8243 3205 if (err) {
439705e1 3206 dev_err(&pdev->dev,
9d5c8243
AK
3207 "Allocation for Tx Queue %u failed\n", i);
3208 for (i--; i >= 0; i--)
3025a446 3209 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
3210 break;
3211 }
3212 }
3213
3214 return err;
3215}
3216
3217/**
b980ac18
JK
3218 * igb_setup_tctl - configure the transmit control registers
3219 * @adapter: Board private structure
9d5c8243 3220 **/
d7ee5b3a 3221void igb_setup_tctl(struct igb_adapter *adapter)
9d5c8243 3222{
9d5c8243
AK
3223 struct e1000_hw *hw = &adapter->hw;
3224 u32 tctl;
9d5c8243 3225
85b430b4
AD
3226 /* disable queue 0 which is enabled by default on 82575 and 82576 */
3227 wr32(E1000_TXDCTL(0), 0);
9d5c8243
AK
3228
3229 /* Program the Transmit Control Register */
9d5c8243
AK
3230 tctl = rd32(E1000_TCTL);
3231 tctl &= ~E1000_TCTL_CT;
3232 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3233 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3234
3235 igb_config_collision_dist(hw);
3236
9d5c8243
AK
3237 /* Enable transmits */
3238 tctl |= E1000_TCTL_EN;
3239
3240 wr32(E1000_TCTL, tctl);
3241}
3242
85b430b4 3243/**
b980ac18
JK
3244 * igb_configure_tx_ring - Configure transmit ring after Reset
3245 * @adapter: board private structure
3246 * @ring: tx ring to configure
85b430b4 3247 *
b980ac18 3248 * Configure a transmit ring after a reset.
85b430b4 3249 **/
d7ee5b3a
AD
3250void igb_configure_tx_ring(struct igb_adapter *adapter,
3251 struct igb_ring *ring)
85b430b4
AD
3252{
3253 struct e1000_hw *hw = &adapter->hw;
a74420e0 3254 u32 txdctl = 0;
85b430b4
AD
3255 u64 tdba = ring->dma;
3256 int reg_idx = ring->reg_idx;
3257
3258 /* disable the queue */
a74420e0 3259 wr32(E1000_TXDCTL(reg_idx), 0);
85b430b4
AD
3260 wrfl();
3261 mdelay(10);
3262
3263 wr32(E1000_TDLEN(reg_idx),
b980ac18 3264 ring->count * sizeof(union e1000_adv_tx_desc));
85b430b4 3265 wr32(E1000_TDBAL(reg_idx),
b980ac18 3266 tdba & 0x00000000ffffffffULL);
85b430b4
AD
3267 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3268
fce99e34 3269 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
a74420e0 3270 wr32(E1000_TDH(reg_idx), 0);
fce99e34 3271 writel(0, ring->tail);
85b430b4
AD
3272
3273 txdctl |= IGB_TX_PTHRESH;
3274 txdctl |= IGB_TX_HTHRESH << 8;
3275 txdctl |= IGB_TX_WTHRESH << 16;
3276
3277 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3278 wr32(E1000_TXDCTL(reg_idx), txdctl);
3279}
3280
3281/**
b980ac18
JK
3282 * igb_configure_tx - Configure transmit Unit after Reset
3283 * @adapter: board private structure
85b430b4 3284 *
b980ac18 3285 * Configure the Tx unit of the MAC after a reset.
85b430b4
AD
3286 **/
3287static void igb_configure_tx(struct igb_adapter *adapter)
3288{
3289 int i;
3290
3291 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 3292 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
85b430b4
AD
3293}
3294
9d5c8243 3295/**
b980ac18
JK
3296 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
3297 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
9d5c8243 3298 *
b980ac18 3299 * Returns 0 on success, negative on failure
9d5c8243 3300 **/
80785298 3301int igb_setup_rx_resources(struct igb_ring *rx_ring)
9d5c8243 3302{
59d71989 3303 struct device *dev = rx_ring->dev;
f33005a6 3304 int size;
9d5c8243 3305
06034649 3306 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
f33005a6
AD
3307
3308 rx_ring->rx_buffer_info = vzalloc(size);
06034649 3309 if (!rx_ring->rx_buffer_info)
9d5c8243 3310 goto err;
9d5c8243 3311
9d5c8243 3312 /* Round up to nearest 4K */
f33005a6 3313 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
9d5c8243
AK
3314 rx_ring->size = ALIGN(rx_ring->size, 4096);
3315
5536d210
AD
3316 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3317 &rx_ring->dma, GFP_KERNEL);
9d5c8243
AK
3318 if (!rx_ring->desc)
3319 goto err;
3320
cbc8e55f 3321 rx_ring->next_to_alloc = 0;
9d5c8243
AK
3322 rx_ring->next_to_clean = 0;
3323 rx_ring->next_to_use = 0;
9d5c8243 3324
9d5c8243
AK
3325 return 0;
3326
3327err:
06034649
AD
3328 vfree(rx_ring->rx_buffer_info);
3329 rx_ring->rx_buffer_info = NULL;
f33005a6 3330 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
9d5c8243
AK
3331 return -ENOMEM;
3332}
3333
3334/**
b980ac18
JK
3335 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
3336 * (Descriptors) for all queues
3337 * @adapter: board private structure
9d5c8243 3338 *
b980ac18 3339 * Return 0 on success, negative on failure
9d5c8243
AK
3340 **/
3341static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3342{
439705e1 3343 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
3344 int i, err = 0;
3345
3346 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 3347 err = igb_setup_rx_resources(adapter->rx_ring[i]);
9d5c8243 3348 if (err) {
439705e1 3349 dev_err(&pdev->dev,
9d5c8243
AK
3350 "Allocation for Rx Queue %u failed\n", i);
3351 for (i--; i >= 0; i--)
3025a446 3352 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
3353 break;
3354 }
3355 }
3356
3357 return err;
3358}
3359
06cf2666 3360/**
b980ac18
JK
3361 * igb_setup_mrqc - configure the multiple receive queue control registers
3362 * @adapter: Board private structure
06cf2666
AD
3363 **/
3364static void igb_setup_mrqc(struct igb_adapter *adapter)
3365{
3366 struct e1000_hw *hw = &adapter->hw;
3367 u32 mrqc, rxcsum;
ed12cc9a 3368 u32 j, num_rx_queues;
a57fe23e
AD
3369 static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
3370 0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
3371 0xA32DCB77, 0x0CF23080, 0x3BB7426A,
3372 0xFA01ACBE };
06cf2666
AD
3373
3374 /* Fill out hash function seeds */
a57fe23e
AD
3375 for (j = 0; j < 10; j++)
3376 wr32(E1000_RSSRK(j), rsskey[j]);
06cf2666 3377
a99955fc 3378 num_rx_queues = adapter->rss_queues;
06cf2666 3379
797fd4be 3380 switch (hw->mac.type) {
797fd4be
AD
3381 case e1000_82576:
3382 /* 82576 supports 2 RSS queues for SR-IOV */
ed12cc9a 3383 if (adapter->vfs_allocated_count)
06cf2666 3384 num_rx_queues = 2;
797fd4be
AD
3385 break;
3386 default:
3387 break;
06cf2666
AD
3388 }
3389
ed12cc9a
LMV
3390 if (adapter->rss_indir_tbl_init != num_rx_queues) {
3391 for (j = 0; j < IGB_RETA_SIZE; j++)
3392 adapter->rss_indir_tbl[j] = (j * num_rx_queues) / IGB_RETA_SIZE;
3393 adapter->rss_indir_tbl_init = num_rx_queues;
06cf2666 3394 }
ed12cc9a 3395 igb_write_rss_indir_tbl(adapter);
06cf2666 3396
b980ac18 3397 /* Disable raw packet checksumming so that RSS hash is placed in
06cf2666
AD
3398 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
3399 * offloads as they are enabled by default
3400 */
3401 rxcsum = rd32(E1000_RXCSUM);
3402 rxcsum |= E1000_RXCSUM_PCSD;
3403
3404 if (adapter->hw.mac.type >= e1000_82576)
3405 /* Enable Receive Checksum Offload for SCTP */
3406 rxcsum |= E1000_RXCSUM_CRCOFL;
3407
3408 /* Don't need to set TUOFL or IPOFL, they default to 1 */
3409 wr32(E1000_RXCSUM, rxcsum);
f96a8a0b 3410
039454a8
AA
3411 /* Generate RSS hash based on packet types, TCP/UDP
3412 * port numbers and/or IPv4/v6 src and dst addresses
3413 */
f96a8a0b
CW
3414 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3415 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3416 E1000_MRQC_RSS_FIELD_IPV6 |
3417 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3418 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
06cf2666 3419
039454a8
AA
3420 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3421 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3422 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3423 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3424
06cf2666
AD
3425 /* If VMDq is enabled then we set the appropriate mode for that, else
3426 * we default to RSS so that an RSS hash is calculated per packet even
b980ac18
JK
3427 * if we are only using one queue
3428 */
06cf2666
AD
3429 if (adapter->vfs_allocated_count) {
3430 if (hw->mac.type > e1000_82575) {
3431 /* Set the default pool for the PF's first queue */
3432 u32 vtctl = rd32(E1000_VT_CTL);
3433 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3434 E1000_VT_CTL_DISABLE_DEF_POOL);
3435 vtctl |= adapter->vfs_allocated_count <<
3436 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3437 wr32(E1000_VT_CTL, vtctl);
3438 }
a99955fc 3439 if (adapter->rss_queues > 1)
f96a8a0b 3440 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
06cf2666 3441 else
f96a8a0b 3442 mrqc |= E1000_MRQC_ENABLE_VMDQ;
06cf2666 3443 } else {
f96a8a0b
CW
3444 if (hw->mac.type != e1000_i211)
3445 mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
06cf2666
AD
3446 }
3447 igb_vmm_control(adapter);
3448
06cf2666
AD
3449 wr32(E1000_MRQC, mrqc);
3450}
3451
9d5c8243 3452/**
b980ac18
JK
3453 * igb_setup_rctl - configure the receive control registers
3454 * @adapter: Board private structure
9d5c8243 3455 **/
d7ee5b3a 3456void igb_setup_rctl(struct igb_adapter *adapter)
9d5c8243
AK
3457{
3458 struct e1000_hw *hw = &adapter->hw;
3459 u32 rctl;
9d5c8243
AK
3460
3461 rctl = rd32(E1000_RCTL);
3462
3463 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
69d728ba 3464 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
9d5c8243 3465
69d728ba 3466 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
28b0759c 3467 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
9d5c8243 3468
b980ac18 3469 /* enable stripping of CRC. It's unlikely this will break BMC
87cb7e8c
AK
3470 * redirection as it did with e1000. Newer features require
3471 * that the HW strips the CRC.
73cd78f1 3472 */
87cb7e8c 3473 rctl |= E1000_RCTL_SECRC;
9d5c8243 3474
559e9c49 3475 /* disable store bad packets and clear size bits. */
ec54d7d6 3476 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
9d5c8243 3477
6ec43fe6
AD
3478 /* enable LPE to prevent packets larger than max_frame_size */
3479 rctl |= E1000_RCTL_LPE;
9d5c8243 3480
952f72a8
AD
3481 /* disable queue 0 to prevent tail write w/o re-config */
3482 wr32(E1000_RXDCTL(0), 0);
9d5c8243 3483
e1739522
AD
3484 /* Attention!!! For SR-IOV PF driver operations you must enable
3485 * queue drop for all VF and PF queues to prevent head of line blocking
3486 * if an un-trusted VF does not provide descriptors to hardware.
3487 */
3488 if (adapter->vfs_allocated_count) {
e1739522
AD
3489 /* set all queue drop enable bits */
3490 wr32(E1000_QDE, ALL_QUEUES);
e1739522
AD
3491 }
3492
89eaefb6
BG
3493 /* This is useful for sniffing bad packets. */
3494 if (adapter->netdev->features & NETIF_F_RXALL) {
3495 /* UPE and MPE will be handled by normal PROMISC logic
b980ac18
JK
3496 * in e1000e_set_rx_mode
3497 */
89eaefb6
BG
3498 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3499 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3500 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3501
3502 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3503 E1000_RCTL_DPF | /* Allow filtered pause */
3504 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3505 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3506 * and that breaks VLANs.
3507 */
3508 }
3509
9d5c8243
AK
3510 wr32(E1000_RCTL, rctl);
3511}
3512
7d5753f0
AD
3513static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3514 int vfn)
3515{
3516 struct e1000_hw *hw = &adapter->hw;
3517 u32 vmolr;
3518
3519 /* if it isn't the PF check to see if VFs are enabled and
b980ac18
JK
3520 * increase the size to support vlan tags
3521 */
7d5753f0
AD
3522 if (vfn < adapter->vfs_allocated_count &&
3523 adapter->vf_data[vfn].vlans_enabled)
3524 size += VLAN_TAG_SIZE;
3525
3526 vmolr = rd32(E1000_VMOLR(vfn));
3527 vmolr &= ~E1000_VMOLR_RLPML_MASK;
3528 vmolr |= size | E1000_VMOLR_LPE;
3529 wr32(E1000_VMOLR(vfn), vmolr);
3530
3531 return 0;
3532}
3533
e1739522 3534/**
b980ac18
JK
3535 * igb_rlpml_set - set maximum receive packet size
3536 * @adapter: board private structure
e1739522 3537 *
b980ac18 3538 * Configure maximum receivable packet size.
e1739522
AD
3539 **/
3540static void igb_rlpml_set(struct igb_adapter *adapter)
3541{
153285f9 3542 u32 max_frame_size = adapter->max_frame_size;
e1739522
AD
3543 struct e1000_hw *hw = &adapter->hw;
3544 u16 pf_id = adapter->vfs_allocated_count;
3545
e1739522
AD
3546 if (pf_id) {
3547 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
b980ac18 3548 /* If we're in VMDQ or SR-IOV mode, then set global RLPML
153285f9
AD
3549 * to our max jumbo frame size, in case we need to enable
3550 * jumbo frames on one of the rings later.
3551 * This will not pass over-length frames into the default
3552 * queue because it's gated by the VMOLR.RLPML.
3553 */
7d5753f0 3554 max_frame_size = MAX_JUMBO_FRAME_SIZE;
e1739522
AD
3555 }
3556
3557 wr32(E1000_RLPML, max_frame_size);
3558}
3559
8151d294
WM
3560static inline void igb_set_vmolr(struct igb_adapter *adapter,
3561 int vfn, bool aupe)
7d5753f0
AD
3562{
3563 struct e1000_hw *hw = &adapter->hw;
3564 u32 vmolr;
3565
b980ac18 3566 /* This register exists only on 82576 and newer so if we are older then
7d5753f0
AD
3567 * we should exit and do nothing
3568 */
3569 if (hw->mac.type < e1000_82576)
3570 return;
3571
3572 vmolr = rd32(E1000_VMOLR(vfn));
b980ac18 3573 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
dc1edc67
SA
3574 if (hw->mac.type == e1000_i350) {
3575 u32 dvmolr;
3576
3577 dvmolr = rd32(E1000_DVMOLR(vfn));
3578 dvmolr |= E1000_DVMOLR_STRVLAN;
3579 wr32(E1000_DVMOLR(vfn), dvmolr);
3580 }
8151d294 3581 if (aupe)
b980ac18 3582 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
8151d294
WM
3583 else
3584 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
7d5753f0
AD
3585
3586 /* clear all bits that might not be set */
3587 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3588
a99955fc 3589 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
7d5753f0 3590 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
b980ac18 3591 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
7d5753f0
AD
3592 * multicast packets
3593 */
3594 if (vfn <= adapter->vfs_allocated_count)
b980ac18 3595 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
7d5753f0
AD
3596
3597 wr32(E1000_VMOLR(vfn), vmolr);
3598}
3599
85b430b4 3600/**
b980ac18
JK
3601 * igb_configure_rx_ring - Configure a receive ring after Reset
3602 * @adapter: board private structure
3603 * @ring: receive ring to be configured
85b430b4 3604 *
b980ac18 3605 * Configure the Rx unit of the MAC after a reset.
85b430b4 3606 **/
d7ee5b3a 3607void igb_configure_rx_ring(struct igb_adapter *adapter,
b980ac18 3608 struct igb_ring *ring)
85b430b4
AD
3609{
3610 struct e1000_hw *hw = &adapter->hw;
3611 u64 rdba = ring->dma;
3612 int reg_idx = ring->reg_idx;
a74420e0 3613 u32 srrctl = 0, rxdctl = 0;
85b430b4
AD
3614
3615 /* disable the queue */
a74420e0 3616 wr32(E1000_RXDCTL(reg_idx), 0);
85b430b4
AD
3617
3618 /* Set DMA base address registers */
3619 wr32(E1000_RDBAL(reg_idx),
3620 rdba & 0x00000000ffffffffULL);
3621 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3622 wr32(E1000_RDLEN(reg_idx),
b980ac18 3623 ring->count * sizeof(union e1000_adv_rx_desc));
85b430b4
AD
3624
3625 /* initialize head and tail */
fce99e34 3626 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
a74420e0 3627 wr32(E1000_RDH(reg_idx), 0);
fce99e34 3628 writel(0, ring->tail);
85b430b4 3629
952f72a8 3630 /* set descriptor configuration */
44390ca6 3631 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
de78d1f9 3632 srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1a1c225b 3633 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
06218a8d 3634 if (hw->mac.type >= e1000_82580)
757b77e2 3635 srrctl |= E1000_SRRCTL_TIMESTAMP;
e6bdb6fe
NN
3636 /* Only set Drop Enable if we are supporting multiple queues */
3637 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3638 srrctl |= E1000_SRRCTL_DROP_EN;
952f72a8
AD
3639
3640 wr32(E1000_SRRCTL(reg_idx), srrctl);
3641
7d5753f0 3642 /* set filtering for VMDQ pools */
8151d294 3643 igb_set_vmolr(adapter, reg_idx & 0x7, true);
7d5753f0 3644
85b430b4
AD
3645 rxdctl |= IGB_RX_PTHRESH;
3646 rxdctl |= IGB_RX_HTHRESH << 8;
3647 rxdctl |= IGB_RX_WTHRESH << 16;
a74420e0
AD
3648
3649 /* enable receive descriptor fetching */
3650 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
85b430b4
AD
3651 wr32(E1000_RXDCTL(reg_idx), rxdctl);
3652}
3653
9d5c8243 3654/**
b980ac18
JK
3655 * igb_configure_rx - Configure receive Unit after Reset
3656 * @adapter: board private structure
9d5c8243 3657 *
b980ac18 3658 * Configure the Rx unit of the MAC after a reset.
9d5c8243
AK
3659 **/
3660static void igb_configure_rx(struct igb_adapter *adapter)
3661{
9107584e 3662 int i;
9d5c8243 3663
68d480c4
AD
3664 /* set UTA to appropriate mode */
3665 igb_set_uta(adapter);
3666
26ad9178
AD
3667 /* set the correct pool for the PF default MAC address in entry 0 */
3668 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
b980ac18 3669 adapter->vfs_allocated_count);
26ad9178 3670
06cf2666 3671 /* Setup the HW Rx Head and Tail Descriptor Pointers and
b980ac18
JK
3672 * the Base and Length of the Rx Descriptor Ring
3673 */
f9d40f6a
AD
3674 for (i = 0; i < adapter->num_rx_queues; i++)
3675 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
9d5c8243
AK
3676}
3677
3678/**
b980ac18
JK
3679 * igb_free_tx_resources - Free Tx Resources per Queue
3680 * @tx_ring: Tx descriptor ring for a specific queue
9d5c8243 3681 *
b980ac18 3682 * Free all transmit software resources
9d5c8243 3683 **/
68fd9910 3684void igb_free_tx_resources(struct igb_ring *tx_ring)
9d5c8243 3685{
3b644cf6 3686 igb_clean_tx_ring(tx_ring);
9d5c8243 3687
06034649
AD
3688 vfree(tx_ring->tx_buffer_info);
3689 tx_ring->tx_buffer_info = NULL;
9d5c8243 3690
439705e1
AD
3691 /* if not set, then don't free */
3692 if (!tx_ring->desc)
3693 return;
3694
59d71989
AD
3695 dma_free_coherent(tx_ring->dev, tx_ring->size,
3696 tx_ring->desc, tx_ring->dma);
9d5c8243
AK
3697
3698 tx_ring->desc = NULL;
3699}
3700
3701/**
b980ac18
JK
3702 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3703 * @adapter: board private structure
9d5c8243 3704 *
b980ac18 3705 * Free all transmit software resources
9d5c8243
AK
3706 **/
3707static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3708{
3709 int i;
3710
3711 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 3712 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
3713}
3714
ebe42d16
AD
3715void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3716 struct igb_tx_buffer *tx_buffer)
3717{
3718 if (tx_buffer->skb) {
3719 dev_kfree_skb_any(tx_buffer->skb);
c9f14bf3 3720 if (dma_unmap_len(tx_buffer, len))
ebe42d16 3721 dma_unmap_single(ring->dev,
c9f14bf3
AD
3722 dma_unmap_addr(tx_buffer, dma),
3723 dma_unmap_len(tx_buffer, len),
ebe42d16 3724 DMA_TO_DEVICE);
c9f14bf3 3725 } else if (dma_unmap_len(tx_buffer, len)) {
ebe42d16 3726 dma_unmap_page(ring->dev,
c9f14bf3
AD
3727 dma_unmap_addr(tx_buffer, dma),
3728 dma_unmap_len(tx_buffer, len),
ebe42d16
AD
3729 DMA_TO_DEVICE);
3730 }
3731 tx_buffer->next_to_watch = NULL;
3732 tx_buffer->skb = NULL;
c9f14bf3 3733 dma_unmap_len_set(tx_buffer, len, 0);
ebe42d16 3734 /* buffer_info must be completely set up in the transmit path */
9d5c8243
AK
3735}
3736
3737/**
b980ac18
JK
3738 * igb_clean_tx_ring - Free Tx Buffers
3739 * @tx_ring: ring to be cleaned
9d5c8243 3740 **/
3b644cf6 3741static void igb_clean_tx_ring(struct igb_ring *tx_ring)
9d5c8243 3742{
06034649 3743 struct igb_tx_buffer *buffer_info;
9d5c8243 3744 unsigned long size;
6ad4edfc 3745 u16 i;
9d5c8243 3746
06034649 3747 if (!tx_ring->tx_buffer_info)
9d5c8243
AK
3748 return;
3749 /* Free all the Tx ring sk_buffs */
3750
3751 for (i = 0; i < tx_ring->count; i++) {
06034649 3752 buffer_info = &tx_ring->tx_buffer_info[i];
80785298 3753 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
9d5c8243
AK
3754 }
3755
dad8a3b3
JF
3756 netdev_tx_reset_queue(txring_txq(tx_ring));
3757
06034649
AD
3758 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3759 memset(tx_ring->tx_buffer_info, 0, size);
9d5c8243
AK
3760
3761 /* Zero out the descriptor ring */
9d5c8243
AK
3762 memset(tx_ring->desc, 0, tx_ring->size);
3763
3764 tx_ring->next_to_use = 0;
3765 tx_ring->next_to_clean = 0;
9d5c8243
AK
3766}
3767
3768/**
b980ac18
JK
3769 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3770 * @adapter: board private structure
9d5c8243
AK
3771 **/
3772static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3773{
3774 int i;
3775
3776 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 3777 igb_clean_tx_ring(adapter->tx_ring[i]);
9d5c8243
AK
3778}
3779
3780/**
b980ac18
JK
3781 * igb_free_rx_resources - Free Rx Resources
3782 * @rx_ring: ring to clean the resources from
9d5c8243 3783 *
b980ac18 3784 * Free all receive software resources
9d5c8243 3785 **/
68fd9910 3786void igb_free_rx_resources(struct igb_ring *rx_ring)
9d5c8243 3787{
3b644cf6 3788 igb_clean_rx_ring(rx_ring);
9d5c8243 3789
06034649
AD
3790 vfree(rx_ring->rx_buffer_info);
3791 rx_ring->rx_buffer_info = NULL;
9d5c8243 3792
439705e1
AD
3793 /* if not set, then don't free */
3794 if (!rx_ring->desc)
3795 return;
3796
59d71989
AD
3797 dma_free_coherent(rx_ring->dev, rx_ring->size,
3798 rx_ring->desc, rx_ring->dma);
9d5c8243
AK
3799
3800 rx_ring->desc = NULL;
3801}
3802
3803/**
b980ac18
JK
3804 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3805 * @adapter: board private structure
9d5c8243 3806 *
b980ac18 3807 * Free all receive software resources
9d5c8243
AK
3808 **/
3809static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3810{
3811 int i;
3812
3813 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3814 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
3815}
3816
3817/**
b980ac18
JK
3818 * igb_clean_rx_ring - Free Rx Buffers per Queue
3819 * @rx_ring: ring to free buffers from
9d5c8243 3820 **/
3b644cf6 3821static void igb_clean_rx_ring(struct igb_ring *rx_ring)
9d5c8243 3822{
9d5c8243 3823 unsigned long size;
c023cd88 3824 u16 i;
9d5c8243 3825
1a1c225b
AD
3826 if (rx_ring->skb)
3827 dev_kfree_skb(rx_ring->skb);
3828 rx_ring->skb = NULL;
3829
06034649 3830 if (!rx_ring->rx_buffer_info)
9d5c8243 3831 return;
439705e1 3832
9d5c8243
AK
3833 /* Free all the Rx ring sk_buffs */
3834 for (i = 0; i < rx_ring->count; i++) {
06034649 3835 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
9d5c8243 3836
cbc8e55f
AD
3837 if (!buffer_info->page)
3838 continue;
3839
3840 dma_unmap_page(rx_ring->dev,
3841 buffer_info->dma,
3842 PAGE_SIZE,
3843 DMA_FROM_DEVICE);
3844 __free_page(buffer_info->page);
3845
1a1c225b 3846 buffer_info->page = NULL;
9d5c8243
AK
3847 }
3848
06034649
AD
3849 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3850 memset(rx_ring->rx_buffer_info, 0, size);
9d5c8243
AK
3851
3852 /* Zero out the descriptor ring */
3853 memset(rx_ring->desc, 0, rx_ring->size);
3854
cbc8e55f 3855 rx_ring->next_to_alloc = 0;
9d5c8243
AK
3856 rx_ring->next_to_clean = 0;
3857 rx_ring->next_to_use = 0;
9d5c8243
AK
3858}
3859
3860/**
b980ac18
JK
3861 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3862 * @adapter: board private structure
9d5c8243
AK
3863 **/
3864static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3865{
3866 int i;
3867
3868 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3869 igb_clean_rx_ring(adapter->rx_ring[i]);
9d5c8243
AK
3870}
3871
3872/**
b980ac18
JK
3873 * igb_set_mac - Change the Ethernet Address of the NIC
3874 * @netdev: network interface device structure
3875 * @p: pointer to an address structure
9d5c8243 3876 *
b980ac18 3877 * Returns 0 on success, negative on failure
9d5c8243
AK
3878 **/
3879static int igb_set_mac(struct net_device *netdev, void *p)
3880{
3881 struct igb_adapter *adapter = netdev_priv(netdev);
28b0759c 3882 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
3883 struct sockaddr *addr = p;
3884
3885 if (!is_valid_ether_addr(addr->sa_data))
3886 return -EADDRNOTAVAIL;
3887
3888 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
28b0759c 3889 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
9d5c8243 3890
26ad9178
AD
3891 /* set the correct pool for the new PF MAC address in entry 0 */
3892 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
b980ac18 3893 adapter->vfs_allocated_count);
e1739522 3894
9d5c8243
AK
3895 return 0;
3896}
3897
3898/**
b980ac18
JK
3899 * igb_write_mc_addr_list - write multicast addresses to MTA
3900 * @netdev: network interface device structure
9d5c8243 3901 *
b980ac18
JK
3902 * Writes multicast address list to the MTA hash table.
3903 * Returns: -ENOMEM on failure
3904 * 0 on no addresses written
3905 * X on writing X addresses to MTA
9d5c8243 3906 **/
68d480c4 3907static int igb_write_mc_addr_list(struct net_device *netdev)
9d5c8243
AK
3908{
3909 struct igb_adapter *adapter = netdev_priv(netdev);
3910 struct e1000_hw *hw = &adapter->hw;
22bedad3 3911 struct netdev_hw_addr *ha;
68d480c4 3912 u8 *mta_list;
9d5c8243
AK
3913 int i;
3914
4cd24eaf 3915 if (netdev_mc_empty(netdev)) {
68d480c4
AD
3916 /* nothing to program, so clear mc list */
3917 igb_update_mc_addr_list(hw, NULL, 0);
3918 igb_restore_vf_multicasts(adapter);
3919 return 0;
3920 }
9d5c8243 3921
4cd24eaf 3922 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
68d480c4
AD
3923 if (!mta_list)
3924 return -ENOMEM;
ff41f8dc 3925
68d480c4 3926 /* The shared function expects a packed array of only addresses. */
48e2f183 3927 i = 0;
22bedad3
JP
3928 netdev_for_each_mc_addr(ha, netdev)
3929 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
68d480c4 3930
68d480c4
AD
3931 igb_update_mc_addr_list(hw, mta_list, i);
3932 kfree(mta_list);
3933
4cd24eaf 3934 return netdev_mc_count(netdev);
68d480c4
AD
3935}
3936
3937/**
b980ac18
JK
3938 * igb_write_uc_addr_list - write unicast addresses to RAR table
3939 * @netdev: network interface device structure
68d480c4 3940 *
b980ac18
JK
3941 * Writes unicast address list to the RAR table.
3942 * Returns: -ENOMEM on failure/insufficient address space
3943 * 0 on no addresses written
3944 * X on writing X addresses to the RAR table
68d480c4
AD
3945 **/
3946static int igb_write_uc_addr_list(struct net_device *netdev)
3947{
3948 struct igb_adapter *adapter = netdev_priv(netdev);
3949 struct e1000_hw *hw = &adapter->hw;
3950 unsigned int vfn = adapter->vfs_allocated_count;
3951 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3952 int count = 0;
3953
3954 /* return ENOMEM indicating insufficient memory for addresses */
32e7bfc4 3955 if (netdev_uc_count(netdev) > rar_entries)
68d480c4 3956 return -ENOMEM;
9d5c8243 3957
32e7bfc4 3958 if (!netdev_uc_empty(netdev) && rar_entries) {
ff41f8dc 3959 struct netdev_hw_addr *ha;
32e7bfc4
JP
3960
3961 netdev_for_each_uc_addr(ha, netdev) {
ff41f8dc
AD
3962 if (!rar_entries)
3963 break;
26ad9178 3964 igb_rar_set_qsel(adapter, ha->addr,
b980ac18
JK
3965 rar_entries--,
3966 vfn);
68d480c4 3967 count++;
ff41f8dc
AD
3968 }
3969 }
3970 /* write the addresses in reverse order to avoid write combining */
3971 for (; rar_entries > 0 ; rar_entries--) {
3972 wr32(E1000_RAH(rar_entries), 0);
3973 wr32(E1000_RAL(rar_entries), 0);
3974 }
3975 wrfl();
3976
68d480c4
AD
3977 return count;
3978}
3979
3980/**
b980ac18
JK
3981 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3982 * @netdev: network interface device structure
68d480c4 3983 *
b980ac18
JK
3984 * The set_rx_mode entry point is called whenever the unicast or multicast
3985 * address lists or the network interface flags are updated. This routine is
3986 * responsible for configuring the hardware for proper unicast, multicast,
3987 * promiscuous mode, and all-multi behavior.
68d480c4
AD
3988 **/
3989static void igb_set_rx_mode(struct net_device *netdev)
3990{
3991 struct igb_adapter *adapter = netdev_priv(netdev);
3992 struct e1000_hw *hw = &adapter->hw;
3993 unsigned int vfn = adapter->vfs_allocated_count;
3994 u32 rctl, vmolr = 0;
3995 int count;
3996
3997 /* Check for Promiscuous and All Multicast modes */
3998 rctl = rd32(E1000_RCTL);
3999
4000 /* clear the effected bits */
4001 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
4002
4003 if (netdev->flags & IFF_PROMISC) {
6f3dc319 4004 /* retain VLAN HW filtering if in VT mode */
7e44892c 4005 if (adapter->vfs_allocated_count)
6f3dc319 4006 rctl |= E1000_RCTL_VFE;
68d480c4
AD
4007 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
4008 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
4009 } else {
4010 if (netdev->flags & IFF_ALLMULTI) {
4011 rctl |= E1000_RCTL_MPE;
4012 vmolr |= E1000_VMOLR_MPME;
4013 } else {
b980ac18 4014 /* Write addresses to the MTA, if the attempt fails
25985edc 4015 * then we should just turn on promiscuous mode so
68d480c4
AD
4016 * that we can at least receive multicast traffic
4017 */
4018 count = igb_write_mc_addr_list(netdev);
4019 if (count < 0) {
4020 rctl |= E1000_RCTL_MPE;
4021 vmolr |= E1000_VMOLR_MPME;
4022 } else if (count) {
4023 vmolr |= E1000_VMOLR_ROMPE;
4024 }
4025 }
b980ac18 4026 /* Write addresses to available RAR registers, if there is not
68d480c4 4027 * sufficient space to store all the addresses then enable
25985edc 4028 * unicast promiscuous mode
68d480c4
AD
4029 */
4030 count = igb_write_uc_addr_list(netdev);
4031 if (count < 0) {
4032 rctl |= E1000_RCTL_UPE;
4033 vmolr |= E1000_VMOLR_ROPE;
4034 }
4035 rctl |= E1000_RCTL_VFE;
28fc06f5 4036 }
68d480c4 4037 wr32(E1000_RCTL, rctl);
28fc06f5 4038
b980ac18 4039 /* In order to support SR-IOV and eventually VMDq it is necessary to set
68d480c4
AD
4040 * the VMOLR to enable the appropriate modes. Without this workaround
4041 * we will have issues with VLAN tag stripping not being done for frames
4042 * that are only arriving because we are the default pool
4043 */
f96a8a0b 4044 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
28fc06f5 4045 return;
9d5c8243 4046
68d480c4 4047 vmolr |= rd32(E1000_VMOLR(vfn)) &
b980ac18 4048 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
68d480c4 4049 wr32(E1000_VMOLR(vfn), vmolr);
28fc06f5 4050 igb_restore_vf_multicasts(adapter);
9d5c8243
AK
4051}
4052
13800469
GR
4053static void igb_check_wvbr(struct igb_adapter *adapter)
4054{
4055 struct e1000_hw *hw = &adapter->hw;
4056 u32 wvbr = 0;
4057
4058 switch (hw->mac.type) {
4059 case e1000_82576:
4060 case e1000_i350:
4061 if (!(wvbr = rd32(E1000_WVBR)))
4062 return;
4063 break;
4064 default:
4065 break;
4066 }
4067
4068 adapter->wvbr |= wvbr;
4069}
4070
4071#define IGB_STAGGERED_QUEUE_OFFSET 8
4072
4073static void igb_spoof_check(struct igb_adapter *adapter)
4074{
4075 int j;
4076
4077 if (!adapter->wvbr)
4078 return;
4079
4080 for(j = 0; j < adapter->vfs_allocated_count; j++) {
4081 if (adapter->wvbr & (1 << j) ||
4082 adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
4083 dev_warn(&adapter->pdev->dev,
4084 "Spoof event(s) detected on VF %d\n", j);
4085 adapter->wvbr &=
4086 ~((1 << j) |
4087 (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
4088 }
4089 }
4090}
4091
9d5c8243 4092/* Need to wait a few seconds after link up to get diagnostic information from
b980ac18
JK
4093 * the phy
4094 */
9d5c8243
AK
4095static void igb_update_phy_info(unsigned long data)
4096{
4097 struct igb_adapter *adapter = (struct igb_adapter *) data;
f5f4cf08 4098 igb_get_phy_info(&adapter->hw);
9d5c8243
AK
4099}
4100
4d6b725e 4101/**
b980ac18
JK
4102 * igb_has_link - check shared code for link and determine up/down
4103 * @adapter: pointer to driver private info
4d6b725e 4104 **/
3145535a 4105bool igb_has_link(struct igb_adapter *adapter)
4d6b725e
AD
4106{
4107 struct e1000_hw *hw = &adapter->hw;
4108 bool link_active = false;
4d6b725e
AD
4109
4110 /* get_link_status is set on LSC (link status) interrupt or
4111 * rx sequence error interrupt. get_link_status will stay
4112 * false until the e1000_check_for_link establishes link
4113 * for copper adapters ONLY
4114 */
4115 switch (hw->phy.media_type) {
4116 case e1000_media_type_copper:
e5c3370f
AA
4117 if (!hw->mac.get_link_status)
4118 return true;
4d6b725e 4119 case e1000_media_type_internal_serdes:
e5c3370f
AA
4120 hw->mac.ops.check_for_link(hw);
4121 link_active = !hw->mac.get_link_status;
4d6b725e
AD
4122 break;
4123 default:
4124 case e1000_media_type_unknown:
4125 break;
4126 }
4127
aa9b8cc4
AA
4128 if (((hw->mac.type == e1000_i210) ||
4129 (hw->mac.type == e1000_i211)) &&
4130 (hw->phy.id == I210_I_PHY_ID)) {
4131 if (!netif_carrier_ok(adapter->netdev)) {
4132 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4133 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4134 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4135 adapter->link_check_timeout = jiffies;
4136 }
4137 }
4138
4d6b725e
AD
4139 return link_active;
4140}
4141
563988dc
SA
4142static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4143{
4144 bool ret = false;
4145 u32 ctrl_ext, thstat;
4146
f96a8a0b 4147 /* check for thermal sensor event on i350 copper only */
563988dc
SA
4148 if (hw->mac.type == e1000_i350) {
4149 thstat = rd32(E1000_THSTAT);
4150 ctrl_ext = rd32(E1000_CTRL_EXT);
4151
4152 if ((hw->phy.media_type == e1000_media_type_copper) &&
5c17a203 4153 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
563988dc 4154 ret = !!(thstat & event);
563988dc
SA
4155 }
4156
4157 return ret;
4158}
4159
9d5c8243 4160/**
b980ac18
JK
4161 * igb_watchdog - Timer Call-back
4162 * @data: pointer to adapter cast into an unsigned long
9d5c8243
AK
4163 **/
4164static void igb_watchdog(unsigned long data)
4165{
4166 struct igb_adapter *adapter = (struct igb_adapter *)data;
4167 /* Do the rest outside of interrupt context */
4168 schedule_work(&adapter->watchdog_task);
4169}
4170
4171static void igb_watchdog_task(struct work_struct *work)
4172{
4173 struct igb_adapter *adapter = container_of(work,
b980ac18
JK
4174 struct igb_adapter,
4175 watchdog_task);
9d5c8243 4176 struct e1000_hw *hw = &adapter->hw;
c0ba4778 4177 struct e1000_phy_info *phy = &hw->phy;
9d5c8243 4178 struct net_device *netdev = adapter->netdev;
563988dc 4179 u32 link;
7a6ea550 4180 int i;
56cec249 4181 u32 connsw;
9d5c8243 4182
4d6b725e 4183 link = igb_has_link(adapter);
aa9b8cc4
AA
4184
4185 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4186 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4187 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4188 else
4189 link = false;
4190 }
4191
56cec249
CW
4192 /* Force link down if we have fiber to swap to */
4193 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4194 if (hw->phy.media_type == e1000_media_type_copper) {
4195 connsw = rd32(E1000_CONNSW);
4196 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4197 link = 0;
4198 }
4199 }
9d5c8243 4200 if (link) {
2bdfc4e2
CW
4201 /* Perform a reset if the media type changed. */
4202 if (hw->dev_spec._82575.media_changed) {
4203 hw->dev_spec._82575.media_changed = false;
4204 adapter->flags |= IGB_FLAG_MEDIA_RESET;
4205 igb_reset(adapter);
4206 }
749ab2cd
YZ
4207 /* Cancel scheduled suspend requests. */
4208 pm_runtime_resume(netdev->dev.parent);
4209
9d5c8243
AK
4210 if (!netif_carrier_ok(netdev)) {
4211 u32 ctrl;
330a6d6a 4212 hw->mac.ops.get_speed_and_duplex(hw,
b980ac18
JK
4213 &adapter->link_speed,
4214 &adapter->link_duplex);
9d5c8243
AK
4215
4216 ctrl = rd32(E1000_CTRL);
527d47c1 4217 /* Links status message must follow this format */
876d2d6f
JK
4218 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
4219 "Duplex, Flow Control: %s\n",
559e9c49
AD
4220 netdev->name,
4221 adapter->link_speed,
4222 adapter->link_duplex == FULL_DUPLEX ?
876d2d6f
JK
4223 "Full" : "Half",
4224 (ctrl & E1000_CTRL_TFCE) &&
4225 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4226 (ctrl & E1000_CTRL_RFCE) ? "RX" :
4227 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
9d5c8243 4228
f4c01e96
CW
4229 /* disable EEE if enabled */
4230 if ((adapter->flags & IGB_FLAG_EEE) &&
4231 (adapter->link_duplex == HALF_DUPLEX)) {
4232 dev_info(&adapter->pdev->dev,
4233 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4234 adapter->hw.dev_spec._82575.eee_disable = true;
4235 adapter->flags &= ~IGB_FLAG_EEE;
4236 }
4237
c0ba4778
KS
4238 /* check if SmartSpeed worked */
4239 igb_check_downshift(hw);
4240 if (phy->speed_downgraded)
4241 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4242
563988dc 4243 /* check for thermal sensor event */
876d2d6f
JK
4244 if (igb_thermal_sensor_event(hw,
4245 E1000_THSTAT_LINK_THROTTLE)) {
4246 netdev_info(netdev, "The network adapter link "
4247 "speed was downshifted because it "
4248 "overheated\n");
7ef5ed1c 4249 }
563988dc 4250
d07f3e37 4251 /* adjust timeout factor according to speed/duplex */
9d5c8243
AK
4252 adapter->tx_timeout_factor = 1;
4253 switch (adapter->link_speed) {
4254 case SPEED_10:
9d5c8243
AK
4255 adapter->tx_timeout_factor = 14;
4256 break;
4257 case SPEED_100:
9d5c8243
AK
4258 /* maybe add some timeout factor ? */
4259 break;
4260 }
4261
4262 netif_carrier_on(netdev);
9d5c8243 4263
4ae196df 4264 igb_ping_all_vfs(adapter);
17dc566c 4265 igb_check_vf_rate_limit(adapter);
4ae196df 4266
4b1a9877 4267 /* link state has changed, schedule phy info update */
9d5c8243
AK
4268 if (!test_bit(__IGB_DOWN, &adapter->state))
4269 mod_timer(&adapter->phy_info_timer,
4270 round_jiffies(jiffies + 2 * HZ));
4271 }
4272 } else {
4273 if (netif_carrier_ok(netdev)) {
4274 adapter->link_speed = 0;
4275 adapter->link_duplex = 0;
563988dc
SA
4276
4277 /* check for thermal sensor event */
876d2d6f
JK
4278 if (igb_thermal_sensor_event(hw,
4279 E1000_THSTAT_PWR_DOWN)) {
4280 netdev_err(netdev, "The network adapter was "
4281 "stopped because it overheated\n");
7ef5ed1c 4282 }
563988dc 4283
527d47c1
AD
4284 /* Links status message must follow this format */
4285 printk(KERN_INFO "igb: %s NIC Link is Down\n",
4286 netdev->name);
9d5c8243 4287 netif_carrier_off(netdev);
4b1a9877 4288
4ae196df
AD
4289 igb_ping_all_vfs(adapter);
4290
4b1a9877 4291 /* link state has changed, schedule phy info update */
9d5c8243
AK
4292 if (!test_bit(__IGB_DOWN, &adapter->state))
4293 mod_timer(&adapter->phy_info_timer,
4294 round_jiffies(jiffies + 2 * HZ));
749ab2cd 4295
56cec249
CW
4296 /* link is down, time to check for alternate media */
4297 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4298 igb_check_swap_media(adapter);
4299 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4300 schedule_work(&adapter->reset_task);
4301 /* return immediately */
4302 return;
4303 }
4304 }
749ab2cd
YZ
4305 pm_schedule_suspend(netdev->dev.parent,
4306 MSEC_PER_SEC * 5);
56cec249
CW
4307
4308 /* also check for alternate media here */
4309 } else if (!netif_carrier_ok(netdev) &&
4310 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4311 igb_check_swap_media(adapter);
4312 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4313 schedule_work(&adapter->reset_task);
4314 /* return immediately */
4315 return;
4316 }
9d5c8243
AK
4317 }
4318 }
4319
12dcd86b
ED
4320 spin_lock(&adapter->stats64_lock);
4321 igb_update_stats(adapter, &adapter->stats64);
4322 spin_unlock(&adapter->stats64_lock);
9d5c8243 4323
dbabb065 4324 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 4325 struct igb_ring *tx_ring = adapter->tx_ring[i];
dbabb065 4326 if (!netif_carrier_ok(netdev)) {
9d5c8243
AK
4327 /* We've lost link, so the controller stops DMA,
4328 * but we've got queued Tx work that's never going
4329 * to get done, so reset controller to flush Tx.
b980ac18
JK
4330 * (Do the reset outside of interrupt context).
4331 */
dbabb065
AD
4332 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4333 adapter->tx_timeout_count++;
4334 schedule_work(&adapter->reset_task);
4335 /* return immediately since reset is imminent */
4336 return;
4337 }
9d5c8243 4338 }
9d5c8243 4339
dbabb065 4340 /* Force detection of hung controller every watchdog period */
6d095fa8 4341 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
dbabb065 4342 }
f7ba205e 4343
b980ac18 4344 /* Cause software interrupt to ensure Rx ring is cleaned */
cd14ef54 4345 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
047e0030 4346 u32 eics = 0;
0d1ae7f4
AD
4347 for (i = 0; i < adapter->num_q_vectors; i++)
4348 eics |= adapter->q_vector[i]->eims_value;
7a6ea550
AD
4349 wr32(E1000_EICS, eics);
4350 } else {
4351 wr32(E1000_ICS, E1000_ICS_RXDMT0);
4352 }
9d5c8243 4353
13800469 4354 igb_spoof_check(adapter);
fc580751 4355 igb_ptp_rx_hang(adapter);
13800469 4356
9d5c8243 4357 /* Reset the timer */
aa9b8cc4
AA
4358 if (!test_bit(__IGB_DOWN, &adapter->state)) {
4359 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4360 mod_timer(&adapter->watchdog_timer,
4361 round_jiffies(jiffies + HZ));
4362 else
4363 mod_timer(&adapter->watchdog_timer,
4364 round_jiffies(jiffies + 2 * HZ));
4365 }
9d5c8243
AK
4366}
4367
4368enum latency_range {
4369 lowest_latency = 0,
4370 low_latency = 1,
4371 bulk_latency = 2,
4372 latency_invalid = 255
4373};
4374
6eb5a7f1 4375/**
b980ac18
JK
4376 * igb_update_ring_itr - update the dynamic ITR value based on packet size
4377 * @q_vector: pointer to q_vector
6eb5a7f1 4378 *
b980ac18
JK
4379 * Stores a new ITR value based on strictly on packet size. This
4380 * algorithm is less sophisticated than that used in igb_update_itr,
4381 * due to the difficulty of synchronizing statistics across multiple
4382 * receive rings. The divisors and thresholds used by this function
4383 * were determined based on theoretical maximum wire speed and testing
4384 * data, in order to minimize response time while increasing bulk
4385 * throughput.
406d4965 4386 * This functionality is controlled by ethtool's coalescing settings.
b980ac18
JK
4387 * NOTE: This function is called only when operating in a multiqueue
4388 * receive environment.
6eb5a7f1 4389 **/
047e0030 4390static void igb_update_ring_itr(struct igb_q_vector *q_vector)
9d5c8243 4391{
047e0030 4392 int new_val = q_vector->itr_val;
6eb5a7f1 4393 int avg_wire_size = 0;
047e0030 4394 struct igb_adapter *adapter = q_vector->adapter;
12dcd86b 4395 unsigned int packets;
9d5c8243 4396
6eb5a7f1
AD
4397 /* For non-gigabit speeds, just fix the interrupt rate at 4000
4398 * ints/sec - ITR timer value of 120 ticks.
4399 */
4400 if (adapter->link_speed != SPEED_1000) {
0ba82994 4401 new_val = IGB_4K_ITR;
6eb5a7f1 4402 goto set_itr_val;
9d5c8243 4403 }
047e0030 4404
0ba82994
AD
4405 packets = q_vector->rx.total_packets;
4406 if (packets)
4407 avg_wire_size = q_vector->rx.total_bytes / packets;
047e0030 4408
0ba82994
AD
4409 packets = q_vector->tx.total_packets;
4410 if (packets)
4411 avg_wire_size = max_t(u32, avg_wire_size,
4412 q_vector->tx.total_bytes / packets);
047e0030
AD
4413
4414 /* if avg_wire_size isn't set no work was done */
4415 if (!avg_wire_size)
4416 goto clear_counts;
9d5c8243 4417
6eb5a7f1
AD
4418 /* Add 24 bytes to size to account for CRC, preamble, and gap */
4419 avg_wire_size += 24;
4420
4421 /* Don't starve jumbo frames */
4422 avg_wire_size = min(avg_wire_size, 3000);
9d5c8243 4423
6eb5a7f1
AD
4424 /* Give a little boost to mid-size frames */
4425 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4426 new_val = avg_wire_size / 3;
4427 else
4428 new_val = avg_wire_size / 2;
9d5c8243 4429
0ba82994
AD
4430 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4431 if (new_val < IGB_20K_ITR &&
4432 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4433 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4434 new_val = IGB_20K_ITR;
abe1c363 4435
6eb5a7f1 4436set_itr_val:
047e0030
AD
4437 if (new_val != q_vector->itr_val) {
4438 q_vector->itr_val = new_val;
4439 q_vector->set_itr = 1;
9d5c8243 4440 }
6eb5a7f1 4441clear_counts:
0ba82994
AD
4442 q_vector->rx.total_bytes = 0;
4443 q_vector->rx.total_packets = 0;
4444 q_vector->tx.total_bytes = 0;
4445 q_vector->tx.total_packets = 0;
9d5c8243
AK
4446}
4447
4448/**
b980ac18
JK
4449 * igb_update_itr - update the dynamic ITR value based on statistics
4450 * @q_vector: pointer to q_vector
4451 * @ring_container: ring info to update the itr for
4452 *
4453 * Stores a new ITR value based on packets and byte
4454 * counts during the last interrupt. The advantage of per interrupt
4455 * computation is faster updates and more accurate ITR for the current
4456 * traffic pattern. Constants in this function were computed
4457 * based on theoretical maximum wire speed and thresholds were set based
4458 * on testing data as well as attempting to minimize response time
4459 * while increasing bulk throughput.
406d4965 4460 * This functionality is controlled by ethtool's coalescing settings.
b980ac18
JK
4461 * NOTE: These calculations are only valid when operating in a single-
4462 * queue environment.
9d5c8243 4463 **/
0ba82994
AD
4464static void igb_update_itr(struct igb_q_vector *q_vector,
4465 struct igb_ring_container *ring_container)
9d5c8243 4466{
0ba82994
AD
4467 unsigned int packets = ring_container->total_packets;
4468 unsigned int bytes = ring_container->total_bytes;
4469 u8 itrval = ring_container->itr;
9d5c8243 4470
0ba82994 4471 /* no packets, exit with status unchanged */
9d5c8243 4472 if (packets == 0)
0ba82994 4473 return;
9d5c8243 4474
0ba82994 4475 switch (itrval) {
9d5c8243
AK
4476 case lowest_latency:
4477 /* handle TSO and jumbo frames */
4478 if (bytes/packets > 8000)
0ba82994 4479 itrval = bulk_latency;
9d5c8243 4480 else if ((packets < 5) && (bytes > 512))
0ba82994 4481 itrval = low_latency;
9d5c8243
AK
4482 break;
4483 case low_latency: /* 50 usec aka 20000 ints/s */
4484 if (bytes > 10000) {
4485 /* this if handles the TSO accounting */
4486 if (bytes/packets > 8000) {
0ba82994 4487 itrval = bulk_latency;
9d5c8243 4488 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
0ba82994 4489 itrval = bulk_latency;
9d5c8243 4490 } else if ((packets > 35)) {
0ba82994 4491 itrval = lowest_latency;
9d5c8243
AK
4492 }
4493 } else if (bytes/packets > 2000) {
0ba82994 4494 itrval = bulk_latency;
9d5c8243 4495 } else if (packets <= 2 && bytes < 512) {
0ba82994 4496 itrval = lowest_latency;
9d5c8243
AK
4497 }
4498 break;
4499 case bulk_latency: /* 250 usec aka 4000 ints/s */
4500 if (bytes > 25000) {
4501 if (packets > 35)
0ba82994 4502 itrval = low_latency;
1e5c3d21 4503 } else if (bytes < 1500) {
0ba82994 4504 itrval = low_latency;
9d5c8243
AK
4505 }
4506 break;
4507 }
4508
0ba82994
AD
4509 /* clear work counters since we have the values we need */
4510 ring_container->total_bytes = 0;
4511 ring_container->total_packets = 0;
4512
4513 /* write updated itr to ring container */
4514 ring_container->itr = itrval;
9d5c8243
AK
4515}
4516
0ba82994 4517static void igb_set_itr(struct igb_q_vector *q_vector)
9d5c8243 4518{
0ba82994 4519 struct igb_adapter *adapter = q_vector->adapter;
047e0030 4520 u32 new_itr = q_vector->itr_val;
0ba82994 4521 u8 current_itr = 0;
9d5c8243
AK
4522
4523 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4524 if (adapter->link_speed != SPEED_1000) {
4525 current_itr = 0;
0ba82994 4526 new_itr = IGB_4K_ITR;
9d5c8243
AK
4527 goto set_itr_now;
4528 }
4529
0ba82994
AD
4530 igb_update_itr(q_vector, &q_vector->tx);
4531 igb_update_itr(q_vector, &q_vector->rx);
9d5c8243 4532
0ba82994 4533 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
9d5c8243 4534
6eb5a7f1 4535 /* conservative mode (itr 3) eliminates the lowest_latency setting */
0ba82994
AD
4536 if (current_itr == lowest_latency &&
4537 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4538 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
6eb5a7f1
AD
4539 current_itr = low_latency;
4540
9d5c8243
AK
4541 switch (current_itr) {
4542 /* counts and packets in update_itr are dependent on these numbers */
4543 case lowest_latency:
0ba82994 4544 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
9d5c8243
AK
4545 break;
4546 case low_latency:
0ba82994 4547 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
9d5c8243
AK
4548 break;
4549 case bulk_latency:
0ba82994 4550 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
9d5c8243
AK
4551 break;
4552 default:
4553 break;
4554 }
4555
4556set_itr_now:
047e0030 4557 if (new_itr != q_vector->itr_val) {
9d5c8243
AK
4558 /* this attempts to bias the interrupt rate towards Bulk
4559 * by adding intermediate steps when interrupt rate is
b980ac18
JK
4560 * increasing
4561 */
047e0030 4562 new_itr = new_itr > q_vector->itr_val ?
b980ac18
JK
4563 max((new_itr * q_vector->itr_val) /
4564 (new_itr + (q_vector->itr_val >> 2)),
4565 new_itr) : new_itr;
9d5c8243
AK
4566 /* Don't write the value here; it resets the adapter's
4567 * internal timer, and causes us to delay far longer than
4568 * we should between interrupts. Instead, we write the ITR
4569 * value at the beginning of the next interrupt so the timing
4570 * ends up being correct.
4571 */
047e0030
AD
4572 q_vector->itr_val = new_itr;
4573 q_vector->set_itr = 1;
9d5c8243 4574 }
9d5c8243
AK
4575}
4576
c50b52a0
SH
4577static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4578 u32 type_tucmd, u32 mss_l4len_idx)
7d13a7d0
AD
4579{
4580 struct e1000_adv_tx_context_desc *context_desc;
4581 u16 i = tx_ring->next_to_use;
4582
4583 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4584
4585 i++;
4586 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4587
4588 /* set bits to identify this as an advanced context descriptor */
4589 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4590
4591 /* For 82575, context index must be unique per ring. */
866cff06 4592 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
7d13a7d0
AD
4593 mss_l4len_idx |= tx_ring->reg_idx << 4;
4594
4595 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
4596 context_desc->seqnum_seed = 0;
4597 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
4598 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
4599}
4600
7af40ad9
AD
4601static int igb_tso(struct igb_ring *tx_ring,
4602 struct igb_tx_buffer *first,
4603 u8 *hdr_len)
9d5c8243 4604{
7af40ad9 4605 struct sk_buff *skb = first->skb;
7d13a7d0
AD
4606 u32 vlan_macip_lens, type_tucmd;
4607 u32 mss_l4len_idx, l4len;
4608
ed6aa105
AD
4609 if (skb->ip_summed != CHECKSUM_PARTIAL)
4610 return 0;
4611
7d13a7d0
AD
4612 if (!skb_is_gso(skb))
4613 return 0;
9d5c8243
AK
4614
4615 if (skb_header_cloned(skb)) {
7af40ad9 4616 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
9d5c8243
AK
4617 if (err)
4618 return err;
4619 }
4620
7d13a7d0
AD
4621 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4622 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
9d5c8243 4623
7c4d16ff 4624 if (first->protocol == htons(ETH_P_IP)) {
9d5c8243
AK
4625 struct iphdr *iph = ip_hdr(skb);
4626 iph->tot_len = 0;
4627 iph->check = 0;
4628 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4629 iph->daddr, 0,
4630 IPPROTO_TCP,
4631 0);
7d13a7d0 4632 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
7af40ad9
AD
4633 first->tx_flags |= IGB_TX_FLAGS_TSO |
4634 IGB_TX_FLAGS_CSUM |
4635 IGB_TX_FLAGS_IPV4;
8e1e8a47 4636 } else if (skb_is_gso_v6(skb)) {
9d5c8243
AK
4637 ipv6_hdr(skb)->payload_len = 0;
4638 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4639 &ipv6_hdr(skb)->daddr,
4640 0, IPPROTO_TCP, 0);
7af40ad9
AD
4641 first->tx_flags |= IGB_TX_FLAGS_TSO |
4642 IGB_TX_FLAGS_CSUM;
9d5c8243
AK
4643 }
4644
7af40ad9 4645 /* compute header lengths */
7d13a7d0
AD
4646 l4len = tcp_hdrlen(skb);
4647 *hdr_len = skb_transport_offset(skb) + l4len;
9d5c8243 4648
7af40ad9
AD
4649 /* update gso size and bytecount with header size */
4650 first->gso_segs = skb_shinfo(skb)->gso_segs;
4651 first->bytecount += (first->gso_segs - 1) * *hdr_len;
4652
9d5c8243 4653 /* MSS L4LEN IDX */
7d13a7d0
AD
4654 mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4655 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
9d5c8243 4656
7d13a7d0
AD
4657 /* VLAN MACLEN IPLEN */
4658 vlan_macip_lens = skb_network_header_len(skb);
4659 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
7af40ad9 4660 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
9d5c8243 4661
7d13a7d0 4662 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
9d5c8243 4663
7d13a7d0 4664 return 1;
9d5c8243
AK
4665}
4666
7af40ad9 4667static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
9d5c8243 4668{
7af40ad9 4669 struct sk_buff *skb = first->skb;
7d13a7d0
AD
4670 u32 vlan_macip_lens = 0;
4671 u32 mss_l4len_idx = 0;
4672 u32 type_tucmd = 0;
9d5c8243 4673
7d13a7d0 4674 if (skb->ip_summed != CHECKSUM_PARTIAL) {
7af40ad9
AD
4675 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4676 return;
7d13a7d0
AD
4677 } else {
4678 u8 l4_hdr = 0;
7af40ad9 4679 switch (first->protocol) {
7c4d16ff 4680 case htons(ETH_P_IP):
7d13a7d0
AD
4681 vlan_macip_lens |= skb_network_header_len(skb);
4682 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4683 l4_hdr = ip_hdr(skb)->protocol;
4684 break;
7c4d16ff 4685 case htons(ETH_P_IPV6):
7d13a7d0
AD
4686 vlan_macip_lens |= skb_network_header_len(skb);
4687 l4_hdr = ipv6_hdr(skb)->nexthdr;
4688 break;
4689 default:
4690 if (unlikely(net_ratelimit())) {
4691 dev_warn(tx_ring->dev,
b980ac18
JK
4692 "partial checksum but proto=%x!\n",
4693 first->protocol);
fa4a7ef3 4694 }
7d13a7d0
AD
4695 break;
4696 }
fa4a7ef3 4697
7d13a7d0
AD
4698 switch (l4_hdr) {
4699 case IPPROTO_TCP:
4700 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4701 mss_l4len_idx = tcp_hdrlen(skb) <<
4702 E1000_ADVTXD_L4LEN_SHIFT;
4703 break;
4704 case IPPROTO_SCTP:
4705 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4706 mss_l4len_idx = sizeof(struct sctphdr) <<
4707 E1000_ADVTXD_L4LEN_SHIFT;
4708 break;
4709 case IPPROTO_UDP:
4710 mss_l4len_idx = sizeof(struct udphdr) <<
4711 E1000_ADVTXD_L4LEN_SHIFT;
4712 break;
4713 default:
4714 if (unlikely(net_ratelimit())) {
4715 dev_warn(tx_ring->dev,
b980ac18
JK
4716 "partial checksum but l4 proto=%x!\n",
4717 l4_hdr);
44b0cda3 4718 }
7d13a7d0 4719 break;
9d5c8243 4720 }
7af40ad9
AD
4721
4722 /* update TX checksum flag */
4723 first->tx_flags |= IGB_TX_FLAGS_CSUM;
7d13a7d0 4724 }
9d5c8243 4725
7d13a7d0 4726 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
7af40ad9 4727 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
9d5c8243 4728
7d13a7d0 4729 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
9d5c8243
AK
4730}
4731
1d9daf45
AD
4732#define IGB_SET_FLAG(_input, _flag, _result) \
4733 ((_flag <= _result) ? \
4734 ((u32)(_input & _flag) * (_result / _flag)) : \
4735 ((u32)(_input & _flag) / (_flag / _result)))
4736
4737static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
e032afc8
AD
4738{
4739 /* set type for advanced descriptor with frame checksum insertion */
1d9daf45
AD
4740 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4741 E1000_ADVTXD_DCMD_DEXT |
4742 E1000_ADVTXD_DCMD_IFCS;
e032afc8
AD
4743
4744 /* set HW vlan bit if vlan is present */
1d9daf45
AD
4745 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4746 (E1000_ADVTXD_DCMD_VLE));
4747
4748 /* set segmentation bits for TSO */
4749 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4750 (E1000_ADVTXD_DCMD_TSE));
e032afc8
AD
4751
4752 /* set timestamp bit if present */
1d9daf45
AD
4753 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4754 (E1000_ADVTXD_MAC_TSTAMP));
e032afc8 4755
1d9daf45
AD
4756 /* insert frame checksum */
4757 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
e032afc8
AD
4758
4759 return cmd_type;
4760}
4761
7af40ad9
AD
4762static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4763 union e1000_adv_tx_desc *tx_desc,
4764 u32 tx_flags, unsigned int paylen)
e032afc8
AD
4765{
4766 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4767
1d9daf45
AD
4768 /* 82575 requires a unique index per ring */
4769 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
e032afc8
AD
4770 olinfo_status |= tx_ring->reg_idx << 4;
4771
4772 /* insert L4 checksum */
1d9daf45
AD
4773 olinfo_status |= IGB_SET_FLAG(tx_flags,
4774 IGB_TX_FLAGS_CSUM,
4775 (E1000_TXD_POPTS_TXSM << 8));
e032afc8 4776
1d9daf45
AD
4777 /* insert IPv4 checksum */
4778 olinfo_status |= IGB_SET_FLAG(tx_flags,
4779 IGB_TX_FLAGS_IPV4,
4780 (E1000_TXD_POPTS_IXSM << 8));
e032afc8 4781
7af40ad9 4782 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
e032afc8
AD
4783}
4784
7af40ad9
AD
4785static void igb_tx_map(struct igb_ring *tx_ring,
4786 struct igb_tx_buffer *first,
ebe42d16 4787 const u8 hdr_len)
9d5c8243 4788{
7af40ad9 4789 struct sk_buff *skb = first->skb;
c9f14bf3 4790 struct igb_tx_buffer *tx_buffer;
ebe42d16 4791 union e1000_adv_tx_desc *tx_desc;
80d0759e 4792 struct skb_frag_struct *frag;
ebe42d16 4793 dma_addr_t dma;
80d0759e 4794 unsigned int data_len, size;
7af40ad9 4795 u32 tx_flags = first->tx_flags;
1d9daf45 4796 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
ebe42d16 4797 u16 i = tx_ring->next_to_use;
ebe42d16
AD
4798
4799 tx_desc = IGB_TX_DESC(tx_ring, i);
4800
80d0759e
AD
4801 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4802
4803 size = skb_headlen(skb);
4804 data_len = skb->data_len;
ebe42d16
AD
4805
4806 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
9d5c8243 4807
80d0759e
AD
4808 tx_buffer = first;
4809
4810 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4811 if (dma_mapping_error(tx_ring->dev, dma))
4812 goto dma_error;
4813
4814 /* record length, and DMA address */
4815 dma_unmap_len_set(tx_buffer, len, size);
4816 dma_unmap_addr_set(tx_buffer, dma, dma);
4817
4818 tx_desc->read.buffer_addr = cpu_to_le64(dma);
ebe42d16 4819
ebe42d16
AD
4820 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4821 tx_desc->read.cmd_type_len =
1d9daf45 4822 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
ebe42d16
AD
4823
4824 i++;
4825 tx_desc++;
4826 if (i == tx_ring->count) {
4827 tx_desc = IGB_TX_DESC(tx_ring, 0);
4828 i = 0;
4829 }
80d0759e 4830 tx_desc->read.olinfo_status = 0;
ebe42d16
AD
4831
4832 dma += IGB_MAX_DATA_PER_TXD;
4833 size -= IGB_MAX_DATA_PER_TXD;
4834
ebe42d16
AD
4835 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4836 }
4837
4838 if (likely(!data_len))
4839 break;
2bbfebe2 4840
1d9daf45 4841 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
9d5c8243 4842
65689fef 4843 i++;
ebe42d16
AD
4844 tx_desc++;
4845 if (i == tx_ring->count) {
4846 tx_desc = IGB_TX_DESC(tx_ring, 0);
65689fef 4847 i = 0;
ebe42d16 4848 }
80d0759e 4849 tx_desc->read.olinfo_status = 0;
65689fef 4850
9e903e08 4851 size = skb_frag_size(frag);
ebe42d16
AD
4852 data_len -= size;
4853
4854 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
80d0759e 4855 size, DMA_TO_DEVICE);
6366ad33 4856
c9f14bf3 4857 tx_buffer = &tx_ring->tx_buffer_info[i];
9d5c8243
AK
4858 }
4859
ebe42d16 4860 /* write last descriptor with RS and EOP bits */
1d9daf45
AD
4861 cmd_type |= size | IGB_TXD_DCMD;
4862 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
8542db05 4863
80d0759e
AD
4864 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4865
8542db05
AD
4866 /* set the timestamp */
4867 first->time_stamp = jiffies;
4868
b980ac18 4869 /* Force memory writes to complete before letting h/w know there
ebe42d16
AD
4870 * are new descriptors to fetch. (Only applicable for weak-ordered
4871 * memory model archs, such as IA-64).
4872 *
4873 * We also need this memory barrier to make certain all of the
4874 * status bits have been updated before next_to_watch is written.
4875 */
4876 wmb();
4877
8542db05 4878 /* set next_to_watch value indicating a packet is present */
ebe42d16 4879 first->next_to_watch = tx_desc;
9d5c8243 4880
ebe42d16
AD
4881 i++;
4882 if (i == tx_ring->count)
4883 i = 0;
6366ad33 4884
ebe42d16 4885 tx_ring->next_to_use = i;
6366ad33 4886
ebe42d16 4887 writel(i, tx_ring->tail);
6366ad33 4888
ebe42d16 4889 /* we need this if more than one processor can write to our tail
b980ac18
JK
4890 * at a time, it synchronizes IO on IA64/Altix systems
4891 */
ebe42d16
AD
4892 mmiowb();
4893
4894 return;
4895
4896dma_error:
4897 dev_err(tx_ring->dev, "TX DMA map failed\n");
4898
4899 /* clear dma mappings for failed tx_buffer_info map */
4900 for (;;) {
c9f14bf3
AD
4901 tx_buffer = &tx_ring->tx_buffer_info[i];
4902 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4903 if (tx_buffer == first)
ebe42d16 4904 break;
a77ff709
NN
4905 if (i == 0)
4906 i = tx_ring->count;
6366ad33 4907 i--;
6366ad33
AD
4908 }
4909
9d5c8243 4910 tx_ring->next_to_use = i;
9d5c8243
AK
4911}
4912
6ad4edfc 4913static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
9d5c8243 4914{
e694e964
AD
4915 struct net_device *netdev = tx_ring->netdev;
4916
661086df 4917 netif_stop_subqueue(netdev, tx_ring->queue_index);
661086df 4918
9d5c8243
AK
4919 /* Herbert's original patch had:
4920 * smp_mb__after_netif_stop_queue();
b980ac18
JK
4921 * but since that doesn't exist yet, just open code it.
4922 */
9d5c8243
AK
4923 smp_mb();
4924
4925 /* We need to check again in a case another CPU has just
b980ac18
JK
4926 * made room available.
4927 */
c493ea45 4928 if (igb_desc_unused(tx_ring) < size)
9d5c8243
AK
4929 return -EBUSY;
4930
4931 /* A reprieve! */
661086df 4932 netif_wake_subqueue(netdev, tx_ring->queue_index);
12dcd86b
ED
4933
4934 u64_stats_update_begin(&tx_ring->tx_syncp2);
4935 tx_ring->tx_stats.restart_queue2++;
4936 u64_stats_update_end(&tx_ring->tx_syncp2);
4937
9d5c8243
AK
4938 return 0;
4939}
4940
6ad4edfc 4941static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
9d5c8243 4942{
c493ea45 4943 if (igb_desc_unused(tx_ring) >= size)
9d5c8243 4944 return 0;
e694e964 4945 return __igb_maybe_stop_tx(tx_ring, size);
9d5c8243
AK
4946}
4947
cd392f5c
AD
4948netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4949 struct igb_ring *tx_ring)
9d5c8243 4950{
8542db05 4951 struct igb_tx_buffer *first;
ebe42d16 4952 int tso;
91d4ee33 4953 u32 tx_flags = 0;
21ba6fe1 4954 u16 count = TXD_USE_COUNT(skb_headlen(skb));
31f6adbb 4955 __be16 protocol = vlan_get_protocol(skb);
91d4ee33 4956 u8 hdr_len = 0;
9d5c8243 4957
21ba6fe1
AD
4958 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
4959 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
9d5c8243 4960 * + 2 desc gap to keep tail from touching head,
9d5c8243 4961 * + 1 desc for context descriptor,
21ba6fe1
AD
4962 * otherwise try next time
4963 */
4964 if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
4965 unsigned short f;
4966 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
4967 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
4968 } else {
4969 count += skb_shinfo(skb)->nr_frags;
4970 }
4971
4972 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
9d5c8243 4973 /* this is a hard error */
9d5c8243
AK
4974 return NETDEV_TX_BUSY;
4975 }
33af6bcc 4976
7af40ad9
AD
4977 /* record the location of the first descriptor for this packet */
4978 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4979 first->skb = skb;
4980 first->bytecount = skb->len;
4981 first->gso_segs = 1;
4982
b646c22e
AD
4983 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4984 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
1f6e8178 4985
ed4420a3
JK
4986 if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
4987 &adapter->state)) {
b646c22e
AD
4988 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4989 tx_flags |= IGB_TX_FLAGS_TSTAMP;
4990
4991 adapter->ptp_tx_skb = skb_get(skb);
4992 adapter->ptp_tx_start = jiffies;
4993 if (adapter->hw.mac.type == e1000_82576)
4994 schedule_work(&adapter->ptp_tx_work);
4995 }
33af6bcc 4996 }
9d5c8243 4997
afc835d1
JK
4998 skb_tx_timestamp(skb);
4999
eab6d18d 5000 if (vlan_tx_tag_present(skb)) {
9d5c8243
AK
5001 tx_flags |= IGB_TX_FLAGS_VLAN;
5002 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5003 }
5004
7af40ad9
AD
5005 /* record initial flags and protocol */
5006 first->tx_flags = tx_flags;
5007 first->protocol = protocol;
cdfd01fc 5008
7af40ad9
AD
5009 tso = igb_tso(tx_ring, first, &hdr_len);
5010 if (tso < 0)
7d13a7d0 5011 goto out_drop;
7af40ad9
AD
5012 else if (!tso)
5013 igb_tx_csum(tx_ring, first);
9d5c8243 5014
7af40ad9 5015 igb_tx_map(tx_ring, first, hdr_len);
85ad76b2
AD
5016
5017 /* Make sure there is space in the ring for the next send. */
21ba6fe1 5018 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
85ad76b2 5019
9d5c8243 5020 return NETDEV_TX_OK;
7d13a7d0
AD
5021
5022out_drop:
7af40ad9
AD
5023 igb_unmap_and_free_tx_resource(tx_ring, first);
5024
7d13a7d0 5025 return NETDEV_TX_OK;
9d5c8243
AK
5026}
5027
1cc3bd87
AD
5028static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5029 struct sk_buff *skb)
5030{
5031 unsigned int r_idx = skb->queue_mapping;
5032
5033 if (r_idx >= adapter->num_tx_queues)
5034 r_idx = r_idx % adapter->num_tx_queues;
5035
5036 return adapter->tx_ring[r_idx];
5037}
5038
cd392f5c
AD
5039static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5040 struct net_device *netdev)
9d5c8243
AK
5041{
5042 struct igb_adapter *adapter = netdev_priv(netdev);
b1a436c3
AD
5043
5044 if (test_bit(__IGB_DOWN, &adapter->state)) {
5045 dev_kfree_skb_any(skb);
5046 return NETDEV_TX_OK;
5047 }
5048
5049 if (skb->len <= 0) {
5050 dev_kfree_skb_any(skb);
5051 return NETDEV_TX_OK;
5052 }
5053
b980ac18 5054 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1cc3bd87
AD
5055 * in order to meet this minimum size requirement.
5056 */
ea5ceeab
TD
5057 if (unlikely(skb->len < 17)) {
5058 if (skb_pad(skb, 17 - skb->len))
1cc3bd87
AD
5059 return NETDEV_TX_OK;
5060 skb->len = 17;
ea5ceeab 5061 skb_set_tail_pointer(skb, 17);
1cc3bd87 5062 }
9d5c8243 5063
1cc3bd87 5064 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
9d5c8243
AK
5065}
5066
5067/**
b980ac18
JK
5068 * igb_tx_timeout - Respond to a Tx Hang
5069 * @netdev: network interface device structure
9d5c8243
AK
5070 **/
5071static void igb_tx_timeout(struct net_device *netdev)
5072{
5073 struct igb_adapter *adapter = netdev_priv(netdev);
5074 struct e1000_hw *hw = &adapter->hw;
5075
5076 /* Do the reset outside of interrupt context */
5077 adapter->tx_timeout_count++;
f7ba205e 5078
06218a8d 5079 if (hw->mac.type >= e1000_82580)
55cac248
AD
5080 hw->dev_spec._82575.global_device_reset = true;
5081
9d5c8243 5082 schedule_work(&adapter->reset_task);
265de409
AD
5083 wr32(E1000_EICS,
5084 (adapter->eims_enable_mask & ~adapter->eims_other));
9d5c8243
AK
5085}
5086
5087static void igb_reset_task(struct work_struct *work)
5088{
5089 struct igb_adapter *adapter;
5090 adapter = container_of(work, struct igb_adapter, reset_task);
5091
c97ec42a
TI
5092 igb_dump(adapter);
5093 netdev_err(adapter->netdev, "Reset adapter\n");
9d5c8243
AK
5094 igb_reinit_locked(adapter);
5095}
5096
5097/**
b980ac18
JK
5098 * igb_get_stats64 - Get System Network Statistics
5099 * @netdev: network interface device structure
5100 * @stats: rtnl_link_stats64 pointer
9d5c8243 5101 **/
12dcd86b 5102static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
b980ac18 5103 struct rtnl_link_stats64 *stats)
9d5c8243 5104{
12dcd86b
ED
5105 struct igb_adapter *adapter = netdev_priv(netdev);
5106
5107 spin_lock(&adapter->stats64_lock);
5108 igb_update_stats(adapter, &adapter->stats64);
5109 memcpy(stats, &adapter->stats64, sizeof(*stats));
5110 spin_unlock(&adapter->stats64_lock);
5111
5112 return stats;
9d5c8243
AK
5113}
5114
5115/**
b980ac18
JK
5116 * igb_change_mtu - Change the Maximum Transfer Unit
5117 * @netdev: network interface device structure
5118 * @new_mtu: new value for maximum frame size
9d5c8243 5119 *
b980ac18 5120 * Returns 0 on success, negative on failure
9d5c8243
AK
5121 **/
5122static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5123{
5124 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 5125 struct pci_dev *pdev = adapter->pdev;
153285f9 5126 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
9d5c8243 5127
c809d227 5128 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
090b1795 5129 dev_err(&pdev->dev, "Invalid MTU setting\n");
9d5c8243
AK
5130 return -EINVAL;
5131 }
5132
153285f9 5133#define MAX_STD_JUMBO_FRAME_SIZE 9238
9d5c8243 5134 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
090b1795 5135 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
9d5c8243
AK
5136 return -EINVAL;
5137 }
5138
2ccd994c
AD
5139 /* adjust max frame to be at least the size of a standard frame */
5140 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5141 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5142
9d5c8243
AK
5143 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5144 msleep(1);
73cd78f1 5145
9d5c8243
AK
5146 /* igb_down has a dependency on max_frame_size */
5147 adapter->max_frame_size = max_frame;
559e9c49 5148
4c844851
AD
5149 if (netif_running(netdev))
5150 igb_down(adapter);
9d5c8243 5151
090b1795 5152 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
9d5c8243
AK
5153 netdev->mtu, new_mtu);
5154 netdev->mtu = new_mtu;
5155
5156 if (netif_running(netdev))
5157 igb_up(adapter);
5158 else
5159 igb_reset(adapter);
5160
5161 clear_bit(__IGB_RESETTING, &adapter->state);
5162
5163 return 0;
5164}
5165
5166/**
b980ac18
JK
5167 * igb_update_stats - Update the board statistics counters
5168 * @adapter: board private structure
9d5c8243 5169 **/
12dcd86b
ED
5170void igb_update_stats(struct igb_adapter *adapter,
5171 struct rtnl_link_stats64 *net_stats)
9d5c8243
AK
5172{
5173 struct e1000_hw *hw = &adapter->hw;
5174 struct pci_dev *pdev = adapter->pdev;
fa3d9a6d 5175 u32 reg, mpc;
9d5c8243 5176 u16 phy_tmp;
3f9c0164
AD
5177 int i;
5178 u64 bytes, packets;
12dcd86b
ED
5179 unsigned int start;
5180 u64 _bytes, _packets;
9d5c8243
AK
5181
5182#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
5183
b980ac18 5184 /* Prevent stats update while adapter is being reset, or if the pci
9d5c8243
AK
5185 * connection is down.
5186 */
5187 if (adapter->link_speed == 0)
5188 return;
5189 if (pci_channel_offline(pdev))
5190 return;
5191
3f9c0164
AD
5192 bytes = 0;
5193 packets = 0;
7f90128e
AA
5194
5195 rcu_read_lock();
3f9c0164 5196 for (i = 0; i < adapter->num_rx_queues; i++) {
ae1c07a6 5197 u32 rqdpc = rd32(E1000_RQDPC(i));
3025a446 5198 struct igb_ring *ring = adapter->rx_ring[i];
12dcd86b 5199
ae1c07a6
AD
5200 if (rqdpc) {
5201 ring->rx_stats.drops += rqdpc;
5202 net_stats->rx_fifo_errors += rqdpc;
5203 }
12dcd86b
ED
5204
5205 do {
57a7744e 5206 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
12dcd86b
ED
5207 _bytes = ring->rx_stats.bytes;
5208 _packets = ring->rx_stats.packets;
57a7744e 5209 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
12dcd86b
ED
5210 bytes += _bytes;
5211 packets += _packets;
3f9c0164
AD
5212 }
5213
128e45eb
AD
5214 net_stats->rx_bytes = bytes;
5215 net_stats->rx_packets = packets;
3f9c0164
AD
5216
5217 bytes = 0;
5218 packets = 0;
5219 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 5220 struct igb_ring *ring = adapter->tx_ring[i];
12dcd86b 5221 do {
57a7744e 5222 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
12dcd86b
ED
5223 _bytes = ring->tx_stats.bytes;
5224 _packets = ring->tx_stats.packets;
57a7744e 5225 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
12dcd86b
ED
5226 bytes += _bytes;
5227 packets += _packets;
3f9c0164 5228 }
128e45eb
AD
5229 net_stats->tx_bytes = bytes;
5230 net_stats->tx_packets = packets;
7f90128e 5231 rcu_read_unlock();
3f9c0164
AD
5232
5233 /* read stats registers */
9d5c8243
AK
5234 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5235 adapter->stats.gprc += rd32(E1000_GPRC);
5236 adapter->stats.gorc += rd32(E1000_GORCL);
5237 rd32(E1000_GORCH); /* clear GORCL */
5238 adapter->stats.bprc += rd32(E1000_BPRC);
5239 adapter->stats.mprc += rd32(E1000_MPRC);
5240 adapter->stats.roc += rd32(E1000_ROC);
5241
5242 adapter->stats.prc64 += rd32(E1000_PRC64);
5243 adapter->stats.prc127 += rd32(E1000_PRC127);
5244 adapter->stats.prc255 += rd32(E1000_PRC255);
5245 adapter->stats.prc511 += rd32(E1000_PRC511);
5246 adapter->stats.prc1023 += rd32(E1000_PRC1023);
5247 adapter->stats.prc1522 += rd32(E1000_PRC1522);
5248 adapter->stats.symerrs += rd32(E1000_SYMERRS);
5249 adapter->stats.sec += rd32(E1000_SEC);
5250
fa3d9a6d
MW
5251 mpc = rd32(E1000_MPC);
5252 adapter->stats.mpc += mpc;
5253 net_stats->rx_fifo_errors += mpc;
9d5c8243
AK
5254 adapter->stats.scc += rd32(E1000_SCC);
5255 adapter->stats.ecol += rd32(E1000_ECOL);
5256 adapter->stats.mcc += rd32(E1000_MCC);
5257 adapter->stats.latecol += rd32(E1000_LATECOL);
5258 adapter->stats.dc += rd32(E1000_DC);
5259 adapter->stats.rlec += rd32(E1000_RLEC);
5260 adapter->stats.xonrxc += rd32(E1000_XONRXC);
5261 adapter->stats.xontxc += rd32(E1000_XONTXC);
5262 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5263 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5264 adapter->stats.fcruc += rd32(E1000_FCRUC);
5265 adapter->stats.gptc += rd32(E1000_GPTC);
5266 adapter->stats.gotc += rd32(E1000_GOTCL);
5267 rd32(E1000_GOTCH); /* clear GOTCL */
fa3d9a6d 5268 adapter->stats.rnbc += rd32(E1000_RNBC);
9d5c8243
AK
5269 adapter->stats.ruc += rd32(E1000_RUC);
5270 adapter->stats.rfc += rd32(E1000_RFC);
5271 adapter->stats.rjc += rd32(E1000_RJC);
5272 adapter->stats.tor += rd32(E1000_TORH);
5273 adapter->stats.tot += rd32(E1000_TOTH);
5274 adapter->stats.tpr += rd32(E1000_TPR);
5275
5276 adapter->stats.ptc64 += rd32(E1000_PTC64);
5277 adapter->stats.ptc127 += rd32(E1000_PTC127);
5278 adapter->stats.ptc255 += rd32(E1000_PTC255);
5279 adapter->stats.ptc511 += rd32(E1000_PTC511);
5280 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5281 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5282
5283 adapter->stats.mptc += rd32(E1000_MPTC);
5284 adapter->stats.bptc += rd32(E1000_BPTC);
5285
2d0b0f69
NN
5286 adapter->stats.tpt += rd32(E1000_TPT);
5287 adapter->stats.colc += rd32(E1000_COLC);
9d5c8243
AK
5288
5289 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
43915c7c
NN
5290 /* read internal phy specific stats */
5291 reg = rd32(E1000_CTRL_EXT);
5292 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5293 adapter->stats.rxerrc += rd32(E1000_RXERRC);
3dbdf969
CW
5294
5295 /* this stat has invalid values on i210/i211 */
5296 if ((hw->mac.type != e1000_i210) &&
5297 (hw->mac.type != e1000_i211))
5298 adapter->stats.tncrs += rd32(E1000_TNCRS);
43915c7c
NN
5299 }
5300
9d5c8243
AK
5301 adapter->stats.tsctc += rd32(E1000_TSCTC);
5302 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5303
5304 adapter->stats.iac += rd32(E1000_IAC);
5305 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5306 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5307 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5308 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5309 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5310 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5311 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5312 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5313
5314 /* Fill out the OS statistics structure */
128e45eb
AD
5315 net_stats->multicast = adapter->stats.mprc;
5316 net_stats->collisions = adapter->stats.colc;
9d5c8243
AK
5317
5318 /* Rx Errors */
5319
5320 /* RLEC on some newer hardware can be incorrect so build
b980ac18
JK
5321 * our own version based on RUC and ROC
5322 */
128e45eb 5323 net_stats->rx_errors = adapter->stats.rxerrc +
9d5c8243
AK
5324 adapter->stats.crcerrs + adapter->stats.algnerrc +
5325 adapter->stats.ruc + adapter->stats.roc +
5326 adapter->stats.cexterr;
128e45eb
AD
5327 net_stats->rx_length_errors = adapter->stats.ruc +
5328 adapter->stats.roc;
5329 net_stats->rx_crc_errors = adapter->stats.crcerrs;
5330 net_stats->rx_frame_errors = adapter->stats.algnerrc;
5331 net_stats->rx_missed_errors = adapter->stats.mpc;
9d5c8243
AK
5332
5333 /* Tx Errors */
128e45eb
AD
5334 net_stats->tx_errors = adapter->stats.ecol +
5335 adapter->stats.latecol;
5336 net_stats->tx_aborted_errors = adapter->stats.ecol;
5337 net_stats->tx_window_errors = adapter->stats.latecol;
5338 net_stats->tx_carrier_errors = adapter->stats.tncrs;
9d5c8243
AK
5339
5340 /* Tx Dropped needs to be maintained elsewhere */
5341
5342 /* Phy Stats */
5343 if (hw->phy.media_type == e1000_media_type_copper) {
5344 if ((adapter->link_speed == SPEED_1000) &&
73cd78f1 5345 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
9d5c8243
AK
5346 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
5347 adapter->phy_stats.idle_errors += phy_tmp;
5348 }
5349 }
5350
5351 /* Management Stats */
5352 adapter->stats.mgptc += rd32(E1000_MGTPTC);
5353 adapter->stats.mgprc += rd32(E1000_MGTPRC);
5354 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
0a915b95
CW
5355
5356 /* OS2BMC Stats */
5357 reg = rd32(E1000_MANC);
5358 if (reg & E1000_MANC_EN_BMC2OS) {
5359 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5360 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5361 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5362 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5363 }
9d5c8243
AK
5364}
5365
9d5c8243
AK
5366static irqreturn_t igb_msix_other(int irq, void *data)
5367{
047e0030 5368 struct igb_adapter *adapter = data;
9d5c8243 5369 struct e1000_hw *hw = &adapter->hw;
844290e5 5370 u32 icr = rd32(E1000_ICR);
844290e5 5371 /* reading ICR causes bit 31 of EICR to be cleared */
dda0e083 5372
7f081d40
AD
5373 if (icr & E1000_ICR_DRSTA)
5374 schedule_work(&adapter->reset_task);
5375
047e0030 5376 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
5377 /* HW is reporting DMA is out of sync */
5378 adapter->stats.doosync++;
13800469
GR
5379 /* The DMA Out of Sync is also indication of a spoof event
5380 * in IOV mode. Check the Wrong VM Behavior register to
b980ac18
JK
5381 * see if it is really a spoof event.
5382 */
13800469 5383 igb_check_wvbr(adapter);
dda0e083 5384 }
eebbbdba 5385
4ae196df
AD
5386 /* Check for a mailbox event */
5387 if (icr & E1000_ICR_VMMB)
5388 igb_msg_task(adapter);
5389
5390 if (icr & E1000_ICR_LSC) {
5391 hw->mac.get_link_status = 1;
5392 /* guard against interrupt when we're going down */
5393 if (!test_bit(__IGB_DOWN, &adapter->state))
5394 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5395 }
5396
1f6e8178
MV
5397 if (icr & E1000_ICR_TS) {
5398 u32 tsicr = rd32(E1000_TSICR);
5399
5400 if (tsicr & E1000_TSICR_TXTS) {
5401 /* acknowledge the interrupt */
5402 wr32(E1000_TSICR, E1000_TSICR_TXTS);
5403 /* retrieve hardware timestamp */
5404 schedule_work(&adapter->ptp_tx_work);
5405 }
5406 }
1f6e8178 5407
844290e5 5408 wr32(E1000_EIMS, adapter->eims_other);
9d5c8243
AK
5409
5410 return IRQ_HANDLED;
5411}
5412
047e0030 5413static void igb_write_itr(struct igb_q_vector *q_vector)
9d5c8243 5414{
26b39276 5415 struct igb_adapter *adapter = q_vector->adapter;
047e0030 5416 u32 itr_val = q_vector->itr_val & 0x7FFC;
9d5c8243 5417
047e0030
AD
5418 if (!q_vector->set_itr)
5419 return;
73cd78f1 5420
047e0030
AD
5421 if (!itr_val)
5422 itr_val = 0x4;
661086df 5423
26b39276
AD
5424 if (adapter->hw.mac.type == e1000_82575)
5425 itr_val |= itr_val << 16;
661086df 5426 else
0ba82994 5427 itr_val |= E1000_EITR_CNT_IGNR;
661086df 5428
047e0030
AD
5429 writel(itr_val, q_vector->itr_register);
5430 q_vector->set_itr = 0;
6eb5a7f1
AD
5431}
5432
047e0030 5433static irqreturn_t igb_msix_ring(int irq, void *data)
9d5c8243 5434{
047e0030 5435 struct igb_q_vector *q_vector = data;
9d5c8243 5436
047e0030
AD
5437 /* Write the ITR value calculated from the previous interrupt. */
5438 igb_write_itr(q_vector);
9d5c8243 5439
047e0030 5440 napi_schedule(&q_vector->napi);
844290e5 5441
047e0030 5442 return IRQ_HANDLED;
fe4506b6
JC
5443}
5444
421e02f0 5445#ifdef CONFIG_IGB_DCA
6a05004a
AD
5446static void igb_update_tx_dca(struct igb_adapter *adapter,
5447 struct igb_ring *tx_ring,
5448 int cpu)
5449{
5450 struct e1000_hw *hw = &adapter->hw;
5451 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5452
5453 if (hw->mac.type != e1000_82575)
5454 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5455
b980ac18 5456 /* We can enable relaxed ordering for reads, but not writes when
6a05004a
AD
5457 * DCA is enabled. This is due to a known issue in some chipsets
5458 * which will cause the DCA tag to be cleared.
5459 */
5460 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5461 E1000_DCA_TXCTRL_DATA_RRO_EN |
5462 E1000_DCA_TXCTRL_DESC_DCA_EN;
5463
5464 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5465}
5466
5467static void igb_update_rx_dca(struct igb_adapter *adapter,
5468 struct igb_ring *rx_ring,
5469 int cpu)
5470{
5471 struct e1000_hw *hw = &adapter->hw;
5472 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5473
5474 if (hw->mac.type != e1000_82575)
5475 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5476
b980ac18 5477 /* We can enable relaxed ordering for reads, but not writes when
6a05004a
AD
5478 * DCA is enabled. This is due to a known issue in some chipsets
5479 * which will cause the DCA tag to be cleared.
5480 */
5481 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5482 E1000_DCA_RXCTRL_DESC_DCA_EN;
5483
5484 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5485}
5486
047e0030 5487static void igb_update_dca(struct igb_q_vector *q_vector)
fe4506b6 5488{
047e0030 5489 struct igb_adapter *adapter = q_vector->adapter;
fe4506b6 5490 int cpu = get_cpu();
fe4506b6 5491
047e0030
AD
5492 if (q_vector->cpu == cpu)
5493 goto out_no_update;
5494
6a05004a
AD
5495 if (q_vector->tx.ring)
5496 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5497
5498 if (q_vector->rx.ring)
5499 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5500
047e0030
AD
5501 q_vector->cpu = cpu;
5502out_no_update:
fe4506b6
JC
5503 put_cpu();
5504}
5505
5506static void igb_setup_dca(struct igb_adapter *adapter)
5507{
7e0e99ef 5508 struct e1000_hw *hw = &adapter->hw;
fe4506b6
JC
5509 int i;
5510
7dfc16fa 5511 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
fe4506b6
JC
5512 return;
5513
7e0e99ef
AD
5514 /* Always use CB2 mode, difference is masked in the CB driver. */
5515 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5516
047e0030 5517 for (i = 0; i < adapter->num_q_vectors; i++) {
26b39276
AD
5518 adapter->q_vector[i]->cpu = -1;
5519 igb_update_dca(adapter->q_vector[i]);
fe4506b6
JC
5520 }
5521}
5522
5523static int __igb_notify_dca(struct device *dev, void *data)
5524{
5525 struct net_device *netdev = dev_get_drvdata(dev);
5526 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 5527 struct pci_dev *pdev = adapter->pdev;
fe4506b6
JC
5528 struct e1000_hw *hw = &adapter->hw;
5529 unsigned long event = *(unsigned long *)data;
5530
5531 switch (event) {
5532 case DCA_PROVIDER_ADD:
5533 /* if already enabled, don't do it again */
7dfc16fa 5534 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6 5535 break;
fe4506b6 5536 if (dca_add_requester(dev) == 0) {
bbd98fe4 5537 adapter->flags |= IGB_FLAG_DCA_ENABLED;
090b1795 5538 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
5539 igb_setup_dca(adapter);
5540 break;
5541 }
5542 /* Fall Through since DCA is disabled. */
5543 case DCA_PROVIDER_REMOVE:
7dfc16fa 5544 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6 5545 /* without this a class_device is left
b980ac18
JK
5546 * hanging around in the sysfs model
5547 */
fe4506b6 5548 dca_remove_requester(dev);
090b1795 5549 dev_info(&pdev->dev, "DCA disabled\n");
7dfc16fa 5550 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 5551 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
5552 }
5553 break;
5554 }
bbd98fe4 5555
fe4506b6 5556 return 0;
9d5c8243
AK
5557}
5558
fe4506b6 5559static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
b980ac18 5560 void *p)
fe4506b6
JC
5561{
5562 int ret_val;
5563
5564 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
b980ac18 5565 __igb_notify_dca);
fe4506b6
JC
5566
5567 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5568}
421e02f0 5569#endif /* CONFIG_IGB_DCA */
9d5c8243 5570
0224d663
GR
5571#ifdef CONFIG_PCI_IOV
5572static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5573{
5574 unsigned char mac_addr[ETH_ALEN];
0224d663 5575
5ac6f91d 5576 eth_zero_addr(mac_addr);
0224d663
GR
5577 igb_set_vf_mac(adapter, vf, mac_addr);
5578
70ea4783
LL
5579 /* By default spoof check is enabled for all VFs */
5580 adapter->vf_data[vf].spoofchk_enabled = true;
5581
f557147c 5582 return 0;
0224d663
GR
5583}
5584
0224d663 5585#endif
4ae196df
AD
5586static void igb_ping_all_vfs(struct igb_adapter *adapter)
5587{
5588 struct e1000_hw *hw = &adapter->hw;
5589 u32 ping;
5590 int i;
5591
5592 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5593 ping = E1000_PF_CONTROL_MSG;
f2ca0dbe 5594 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4ae196df
AD
5595 ping |= E1000_VT_MSGTYPE_CTS;
5596 igb_write_mbx(hw, &ping, 1, i);
5597 }
5598}
5599
7d5753f0
AD
5600static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5601{
5602 struct e1000_hw *hw = &adapter->hw;
5603 u32 vmolr = rd32(E1000_VMOLR(vf));
5604 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5605
d85b9004 5606 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
b980ac18 5607 IGB_VF_FLAG_MULTI_PROMISC);
7d5753f0
AD
5608 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5609
5610 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5611 vmolr |= E1000_VMOLR_MPME;
d85b9004 5612 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7d5753f0
AD
5613 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5614 } else {
b980ac18 5615 /* if we have hashes and we are clearing a multicast promisc
7d5753f0
AD
5616 * flag we need to write the hashes to the MTA as this step
5617 * was previously skipped
5618 */
5619 if (vf_data->num_vf_mc_hashes > 30) {
5620 vmolr |= E1000_VMOLR_MPME;
5621 } else if (vf_data->num_vf_mc_hashes) {
5622 int j;
5623 vmolr |= E1000_VMOLR_ROMPE;
5624 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5625 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5626 }
5627 }
5628
5629 wr32(E1000_VMOLR(vf), vmolr);
5630
5631 /* there are flags left unprocessed, likely not supported */
5632 if (*msgbuf & E1000_VT_MSGINFO_MASK)
5633 return -EINVAL;
5634
5635 return 0;
7d5753f0
AD
5636}
5637
4ae196df
AD
5638static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5639 u32 *msgbuf, u32 vf)
5640{
5641 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5642 u16 *hash_list = (u16 *)&msgbuf[1];
5643 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5644 int i;
5645
7d5753f0 5646 /* salt away the number of multicast addresses assigned
4ae196df
AD
5647 * to this VF for later use to restore when the PF multi cast
5648 * list changes
5649 */
5650 vf_data->num_vf_mc_hashes = n;
5651
7d5753f0
AD
5652 /* only up to 30 hash values supported */
5653 if (n > 30)
5654 n = 30;
5655
5656 /* store the hashes for later use */
4ae196df 5657 for (i = 0; i < n; i++)
a419aef8 5658 vf_data->vf_mc_hashes[i] = hash_list[i];
4ae196df
AD
5659
5660 /* Flush and reset the mta with the new values */
ff41f8dc 5661 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
5662
5663 return 0;
5664}
5665
5666static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5667{
5668 struct e1000_hw *hw = &adapter->hw;
5669 struct vf_data_storage *vf_data;
5670 int i, j;
5671
5672 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7d5753f0
AD
5673 u32 vmolr = rd32(E1000_VMOLR(i));
5674 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5675
4ae196df 5676 vf_data = &adapter->vf_data[i];
7d5753f0
AD
5677
5678 if ((vf_data->num_vf_mc_hashes > 30) ||
5679 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5680 vmolr |= E1000_VMOLR_MPME;
5681 } else if (vf_data->num_vf_mc_hashes) {
5682 vmolr |= E1000_VMOLR_ROMPE;
5683 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5684 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5685 }
5686 wr32(E1000_VMOLR(i), vmolr);
4ae196df
AD
5687 }
5688}
5689
5690static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5691{
5692 struct e1000_hw *hw = &adapter->hw;
5693 u32 pool_mask, reg, vid;
5694 int i;
5695
5696 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5697
5698 /* Find the vlan filter for this id */
5699 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5700 reg = rd32(E1000_VLVF(i));
5701
5702 /* remove the vf from the pool */
5703 reg &= ~pool_mask;
5704
5705 /* if pool is empty then remove entry from vfta */
5706 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5707 (reg & E1000_VLVF_VLANID_ENABLE)) {
5708 reg = 0;
5709 vid = reg & E1000_VLVF_VLANID_MASK;
5710 igb_vfta_set(hw, vid, false);
5711 }
5712
5713 wr32(E1000_VLVF(i), reg);
5714 }
ae641bdc
AD
5715
5716 adapter->vf_data[vf].vlans_enabled = 0;
4ae196df
AD
5717}
5718
5719static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5720{
5721 struct e1000_hw *hw = &adapter->hw;
5722 u32 reg, i;
5723
51466239
AD
5724 /* The vlvf table only exists on 82576 hardware and newer */
5725 if (hw->mac.type < e1000_82576)
5726 return -1;
5727
5728 /* we only need to do this if VMDq is enabled */
4ae196df
AD
5729 if (!adapter->vfs_allocated_count)
5730 return -1;
5731
5732 /* Find the vlan filter for this id */
5733 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5734 reg = rd32(E1000_VLVF(i));
5735 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5736 vid == (reg & E1000_VLVF_VLANID_MASK))
5737 break;
5738 }
5739
5740 if (add) {
5741 if (i == E1000_VLVF_ARRAY_SIZE) {
5742 /* Did not find a matching VLAN ID entry that was
5743 * enabled. Search for a free filter entry, i.e.
5744 * one without the enable bit set
5745 */
5746 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5747 reg = rd32(E1000_VLVF(i));
5748 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5749 break;
5750 }
5751 }
5752 if (i < E1000_VLVF_ARRAY_SIZE) {
5753 /* Found an enabled/available entry */
5754 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5755
5756 /* if !enabled we need to set this up in vfta */
5757 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
51466239
AD
5758 /* add VID to filter table */
5759 igb_vfta_set(hw, vid, true);
4ae196df
AD
5760 reg |= E1000_VLVF_VLANID_ENABLE;
5761 }
cad6d05f
AD
5762 reg &= ~E1000_VLVF_VLANID_MASK;
5763 reg |= vid;
4ae196df 5764 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
5765
5766 /* do not modify RLPML for PF devices */
5767 if (vf >= adapter->vfs_allocated_count)
5768 return 0;
5769
5770 if (!adapter->vf_data[vf].vlans_enabled) {
5771 u32 size;
5772 reg = rd32(E1000_VMOLR(vf));
5773 size = reg & E1000_VMOLR_RLPML_MASK;
5774 size += 4;
5775 reg &= ~E1000_VMOLR_RLPML_MASK;
5776 reg |= size;
5777 wr32(E1000_VMOLR(vf), reg);
5778 }
ae641bdc 5779
51466239 5780 adapter->vf_data[vf].vlans_enabled++;
4ae196df
AD
5781 }
5782 } else {
5783 if (i < E1000_VLVF_ARRAY_SIZE) {
5784 /* remove vf from the pool */
5785 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5786 /* if pool is empty then remove entry from vfta */
5787 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5788 reg = 0;
5789 igb_vfta_set(hw, vid, false);
5790 }
5791 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
5792
5793 /* do not modify RLPML for PF devices */
5794 if (vf >= adapter->vfs_allocated_count)
5795 return 0;
5796
5797 adapter->vf_data[vf].vlans_enabled--;
5798 if (!adapter->vf_data[vf].vlans_enabled) {
5799 u32 size;
5800 reg = rd32(E1000_VMOLR(vf));
5801 size = reg & E1000_VMOLR_RLPML_MASK;
5802 size -= 4;
5803 reg &= ~E1000_VMOLR_RLPML_MASK;
5804 reg |= size;
5805 wr32(E1000_VMOLR(vf), reg);
5806 }
4ae196df
AD
5807 }
5808 }
8151d294
WM
5809 return 0;
5810}
5811
5812static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5813{
5814 struct e1000_hw *hw = &adapter->hw;
5815
5816 if (vid)
5817 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5818 else
5819 wr32(E1000_VMVIR(vf), 0);
5820}
5821
5822static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5823 int vf, u16 vlan, u8 qos)
5824{
5825 int err = 0;
5826 struct igb_adapter *adapter = netdev_priv(netdev);
5827
5828 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5829 return -EINVAL;
5830 if (vlan || qos) {
5831 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5832 if (err)
5833 goto out;
5834 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5835 igb_set_vmolr(adapter, vf, !vlan);
5836 adapter->vf_data[vf].pf_vlan = vlan;
5837 adapter->vf_data[vf].pf_qos = qos;
5838 dev_info(&adapter->pdev->dev,
5839 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5840 if (test_bit(__IGB_DOWN, &adapter->state)) {
5841 dev_warn(&adapter->pdev->dev,
b980ac18 5842 "The VF VLAN has been set, but the PF device is not up.\n");
8151d294 5843 dev_warn(&adapter->pdev->dev,
b980ac18 5844 "Bring the PF device up before attempting to use the VF device.\n");
8151d294
WM
5845 }
5846 } else {
5847 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
b980ac18 5848 false, vf);
8151d294
WM
5849 igb_set_vmvir(adapter, vlan, vf);
5850 igb_set_vmolr(adapter, vf, true);
5851 adapter->vf_data[vf].pf_vlan = 0;
5852 adapter->vf_data[vf].pf_qos = 0;
b980ac18 5853 }
8151d294 5854out:
b980ac18 5855 return err;
4ae196df
AD
5856}
5857
6f3dc319
GR
5858static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
5859{
5860 struct e1000_hw *hw = &adapter->hw;
5861 int i;
5862 u32 reg;
5863
5864 /* Find the vlan filter for this id */
5865 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5866 reg = rd32(E1000_VLVF(i));
5867 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5868 vid == (reg & E1000_VLVF_VLANID_MASK))
5869 break;
5870 }
5871
5872 if (i >= E1000_VLVF_ARRAY_SIZE)
5873 i = -1;
5874
5875 return i;
5876}
5877
4ae196df
AD
5878static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5879{
6f3dc319 5880 struct e1000_hw *hw = &adapter->hw;
4ae196df
AD
5881 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5882 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
6f3dc319 5883 int err = 0;
4ae196df 5884
6f3dc319
GR
5885 /* If in promiscuous mode we need to make sure the PF also has
5886 * the VLAN filter set.
5887 */
5888 if (add && (adapter->netdev->flags & IFF_PROMISC))
5889 err = igb_vlvf_set(adapter, vid, add,
5890 adapter->vfs_allocated_count);
5891 if (err)
5892 goto out;
5893
5894 err = igb_vlvf_set(adapter, vid, add, vf);
5895
5896 if (err)
5897 goto out;
5898
5899 /* Go through all the checks to see if the VLAN filter should
5900 * be wiped completely.
5901 */
5902 if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
5903 u32 vlvf, bits;
5904
5905 int regndx = igb_find_vlvf_entry(adapter, vid);
5906 if (regndx < 0)
5907 goto out;
5908 /* See if any other pools are set for this VLAN filter
5909 * entry other than the PF.
5910 */
5911 vlvf = bits = rd32(E1000_VLVF(regndx));
5912 bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
5913 adapter->vfs_allocated_count);
5914 /* If the filter was removed then ensure PF pool bit
5915 * is cleared if the PF only added itself to the pool
5916 * because the PF is in promiscuous mode.
5917 */
5918 if ((vlvf & VLAN_VID_MASK) == vid &&
5919 !test_bit(vid, adapter->active_vlans) &&
5920 !bits)
5921 igb_vlvf_set(adapter, vid, add,
5922 adapter->vfs_allocated_count);
5923 }
5924
5925out:
5926 return err;
4ae196df
AD
5927}
5928
f2ca0dbe 5929static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
4ae196df 5930{
8fa7e0f7
GR
5931 /* clear flags - except flag that indicates PF has set the MAC */
5932 adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
f2ca0dbe 5933 adapter->vf_data[vf].last_nack = jiffies;
4ae196df
AD
5934
5935 /* reset offloads to defaults */
8151d294 5936 igb_set_vmolr(adapter, vf, true);
4ae196df
AD
5937
5938 /* reset vlans for device */
5939 igb_clear_vf_vfta(adapter, vf);
8151d294
WM
5940 if (adapter->vf_data[vf].pf_vlan)
5941 igb_ndo_set_vf_vlan(adapter->netdev, vf,
5942 adapter->vf_data[vf].pf_vlan,
5943 adapter->vf_data[vf].pf_qos);
5944 else
5945 igb_clear_vf_vfta(adapter, vf);
4ae196df
AD
5946
5947 /* reset multicast table array for vf */
5948 adapter->vf_data[vf].num_vf_mc_hashes = 0;
5949
5950 /* Flush and reset the mta with the new values */
ff41f8dc 5951 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
5952}
5953
f2ca0dbe
AD
5954static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5955{
5956 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5957
5ac6f91d 5958 /* clear mac address as we were hotplug removed/added */
8151d294 5959 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5ac6f91d 5960 eth_zero_addr(vf_mac);
f2ca0dbe
AD
5961
5962 /* process remaining reset events */
5963 igb_vf_reset(adapter, vf);
5964}
5965
5966static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4ae196df
AD
5967{
5968 struct e1000_hw *hw = &adapter->hw;
5969 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
ff41f8dc 5970 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df
AD
5971 u32 reg, msgbuf[3];
5972 u8 *addr = (u8 *)(&msgbuf[1]);
5973
5974 /* process all the same items cleared in a function level reset */
f2ca0dbe 5975 igb_vf_reset(adapter, vf);
4ae196df
AD
5976
5977 /* set vf mac address */
26ad9178 5978 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4ae196df
AD
5979
5980 /* enable transmit and receive for vf */
5981 reg = rd32(E1000_VFTE);
5982 wr32(E1000_VFTE, reg | (1 << vf));
5983 reg = rd32(E1000_VFRE);
5984 wr32(E1000_VFRE, reg | (1 << vf));
5985
8fa7e0f7 5986 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
4ae196df
AD
5987
5988 /* reply to reset with ack and vf mac address */
5989 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
d458cdf7 5990 memcpy(addr, vf_mac, ETH_ALEN);
4ae196df
AD
5991 igb_write_mbx(hw, msgbuf, 3, vf);
5992}
5993
5994static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5995{
b980ac18 5996 /* The VF MAC Address is stored in a packed array of bytes
de42edde
GR
5997 * starting at the second 32 bit word of the msg array
5998 */
f2ca0dbe
AD
5999 unsigned char *addr = (char *)&msg[1];
6000 int err = -1;
4ae196df 6001
f2ca0dbe
AD
6002 if (is_valid_ether_addr(addr))
6003 err = igb_set_vf_mac(adapter, vf, addr);
4ae196df 6004
f2ca0dbe 6005 return err;
4ae196df
AD
6006}
6007
6008static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
6009{
6010 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 6011 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
6012 u32 msg = E1000_VT_MSGTYPE_NACK;
6013
6014 /* if device isn't clear to send it shouldn't be reading either */
f2ca0dbe
AD
6015 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6016 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4ae196df 6017 igb_write_mbx(hw, &msg, 1, vf);
f2ca0dbe 6018 vf_data->last_nack = jiffies;
4ae196df
AD
6019 }
6020}
6021
f2ca0dbe 6022static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4ae196df 6023{
f2ca0dbe
AD
6024 struct pci_dev *pdev = adapter->pdev;
6025 u32 msgbuf[E1000_VFMAILBOX_SIZE];
4ae196df 6026 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 6027 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
6028 s32 retval;
6029
f2ca0dbe 6030 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
4ae196df 6031
fef45f4c
AD
6032 if (retval) {
6033 /* if receive failed revoke VF CTS stats and restart init */
f2ca0dbe 6034 dev_err(&pdev->dev, "Error receiving message from VF\n");
fef45f4c
AD
6035 vf_data->flags &= ~IGB_VF_FLAG_CTS;
6036 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6037 return;
6038 goto out;
6039 }
4ae196df
AD
6040
6041 /* this is a message we already processed, do nothing */
6042 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
f2ca0dbe 6043 return;
4ae196df 6044
b980ac18 6045 /* until the vf completes a reset it should not be
4ae196df
AD
6046 * allowed to start any configuration.
6047 */
4ae196df
AD
6048 if (msgbuf[0] == E1000_VF_RESET) {
6049 igb_vf_reset_msg(adapter, vf);
f2ca0dbe 6050 return;
4ae196df
AD
6051 }
6052
f2ca0dbe 6053 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
fef45f4c
AD
6054 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6055 return;
6056 retval = -1;
6057 goto out;
4ae196df
AD
6058 }
6059
6060 switch ((msgbuf[0] & 0xFFFF)) {
6061 case E1000_VF_SET_MAC_ADDR:
a6b5ea35
GR
6062 retval = -EINVAL;
6063 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6064 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6065 else
6066 dev_warn(&pdev->dev,
b980ac18
JK
6067 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6068 vf);
4ae196df 6069 break;
7d5753f0
AD
6070 case E1000_VF_SET_PROMISC:
6071 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6072 break;
4ae196df
AD
6073 case E1000_VF_SET_MULTICAST:
6074 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6075 break;
6076 case E1000_VF_SET_LPE:
6077 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6078 break;
6079 case E1000_VF_SET_VLAN:
a6b5ea35
GR
6080 retval = -1;
6081 if (vf_data->pf_vlan)
6082 dev_warn(&pdev->dev,
b980ac18
JK
6083 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6084 vf);
8151d294
WM
6085 else
6086 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4ae196df
AD
6087 break;
6088 default:
090b1795 6089 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4ae196df
AD
6090 retval = -1;
6091 break;
6092 }
6093
fef45f4c
AD
6094 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6095out:
4ae196df
AD
6096 /* notify the VF of the results of what it sent us */
6097 if (retval)
6098 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6099 else
6100 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6101
4ae196df 6102 igb_write_mbx(hw, msgbuf, 1, vf);
f2ca0dbe 6103}
4ae196df 6104
f2ca0dbe
AD
6105static void igb_msg_task(struct igb_adapter *adapter)
6106{
6107 struct e1000_hw *hw = &adapter->hw;
6108 u32 vf;
6109
6110 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6111 /* process any reset requests */
6112 if (!igb_check_for_rst(hw, vf))
6113 igb_vf_reset_event(adapter, vf);
6114
6115 /* process any messages pending */
6116 if (!igb_check_for_msg(hw, vf))
6117 igb_rcv_msg_from_vf(adapter, vf);
6118
6119 /* process any acks */
6120 if (!igb_check_for_ack(hw, vf))
6121 igb_rcv_ack_from_vf(adapter, vf);
6122 }
4ae196df
AD
6123}
6124
68d480c4
AD
6125/**
6126 * igb_set_uta - Set unicast filter table address
6127 * @adapter: board private structure
6128 *
6129 * The unicast table address is a register array of 32-bit registers.
6130 * The table is meant to be used in a way similar to how the MTA is used
6131 * however due to certain limitations in the hardware it is necessary to
25985edc
LDM
6132 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6133 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
68d480c4
AD
6134 **/
6135static void igb_set_uta(struct igb_adapter *adapter)
6136{
6137 struct e1000_hw *hw = &adapter->hw;
6138 int i;
6139
6140 /* The UTA table only exists on 82576 hardware and newer */
6141 if (hw->mac.type < e1000_82576)
6142 return;
6143
6144 /* we only need to do this if VMDq is enabled */
6145 if (!adapter->vfs_allocated_count)
6146 return;
6147
6148 for (i = 0; i < hw->mac.uta_reg_count; i++)
6149 array_wr32(E1000_UTA, i, ~0);
6150}
6151
9d5c8243 6152/**
b980ac18
JK
6153 * igb_intr_msi - Interrupt Handler
6154 * @irq: interrupt number
6155 * @data: pointer to a network interface device structure
9d5c8243
AK
6156 **/
6157static irqreturn_t igb_intr_msi(int irq, void *data)
6158{
047e0030
AD
6159 struct igb_adapter *adapter = data;
6160 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
6161 struct e1000_hw *hw = &adapter->hw;
6162 /* read ICR disables interrupts using IAM */
6163 u32 icr = rd32(E1000_ICR);
6164
047e0030 6165 igb_write_itr(q_vector);
9d5c8243 6166
7f081d40
AD
6167 if (icr & E1000_ICR_DRSTA)
6168 schedule_work(&adapter->reset_task);
6169
047e0030 6170 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
6171 /* HW is reporting DMA is out of sync */
6172 adapter->stats.doosync++;
6173 }
6174
9d5c8243
AK
6175 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6176 hw->mac.get_link_status = 1;
6177 if (!test_bit(__IGB_DOWN, &adapter->state))
6178 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6179 }
6180
1f6e8178
MV
6181 if (icr & E1000_ICR_TS) {
6182 u32 tsicr = rd32(E1000_TSICR);
6183
6184 if (tsicr & E1000_TSICR_TXTS) {
6185 /* acknowledge the interrupt */
6186 wr32(E1000_TSICR, E1000_TSICR_TXTS);
6187 /* retrieve hardware timestamp */
6188 schedule_work(&adapter->ptp_tx_work);
6189 }
6190 }
1f6e8178 6191
047e0030 6192 napi_schedule(&q_vector->napi);
9d5c8243
AK
6193
6194 return IRQ_HANDLED;
6195}
6196
6197/**
b980ac18
JK
6198 * igb_intr - Legacy Interrupt Handler
6199 * @irq: interrupt number
6200 * @data: pointer to a network interface device structure
9d5c8243
AK
6201 **/
6202static irqreturn_t igb_intr(int irq, void *data)
6203{
047e0030
AD
6204 struct igb_adapter *adapter = data;
6205 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
6206 struct e1000_hw *hw = &adapter->hw;
6207 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
b980ac18
JK
6208 * need for the IMC write
6209 */
9d5c8243 6210 u32 icr = rd32(E1000_ICR);
9d5c8243
AK
6211
6212 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
b980ac18
JK
6213 * not set, then the adapter didn't send an interrupt
6214 */
9d5c8243
AK
6215 if (!(icr & E1000_ICR_INT_ASSERTED))
6216 return IRQ_NONE;
6217
0ba82994
AD
6218 igb_write_itr(q_vector);
6219
7f081d40
AD
6220 if (icr & E1000_ICR_DRSTA)
6221 schedule_work(&adapter->reset_task);
6222
047e0030 6223 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
6224 /* HW is reporting DMA is out of sync */
6225 adapter->stats.doosync++;
6226 }
6227
9d5c8243
AK
6228 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6229 hw->mac.get_link_status = 1;
6230 /* guard against interrupt when we're going down */
6231 if (!test_bit(__IGB_DOWN, &adapter->state))
6232 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6233 }
6234
1f6e8178
MV
6235 if (icr & E1000_ICR_TS) {
6236 u32 tsicr = rd32(E1000_TSICR);
6237
6238 if (tsicr & E1000_TSICR_TXTS) {
6239 /* acknowledge the interrupt */
6240 wr32(E1000_TSICR, E1000_TSICR_TXTS);
6241 /* retrieve hardware timestamp */
6242 schedule_work(&adapter->ptp_tx_work);
6243 }
6244 }
1f6e8178 6245
047e0030 6246 napi_schedule(&q_vector->napi);
9d5c8243
AK
6247
6248 return IRQ_HANDLED;
6249}
6250
c50b52a0 6251static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
9d5c8243 6252{
047e0030 6253 struct igb_adapter *adapter = q_vector->adapter;
46544258 6254 struct e1000_hw *hw = &adapter->hw;
9d5c8243 6255
0ba82994
AD
6256 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6257 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6258 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6259 igb_set_itr(q_vector);
46544258 6260 else
047e0030 6261 igb_update_ring_itr(q_vector);
9d5c8243
AK
6262 }
6263
46544258 6264 if (!test_bit(__IGB_DOWN, &adapter->state)) {
cd14ef54 6265 if (adapter->flags & IGB_FLAG_HAS_MSIX)
047e0030 6266 wr32(E1000_EIMS, q_vector->eims_value);
46544258
AD
6267 else
6268 igb_irq_enable(adapter);
6269 }
9d5c8243
AK
6270}
6271
46544258 6272/**
b980ac18
JK
6273 * igb_poll - NAPI Rx polling callback
6274 * @napi: napi polling structure
6275 * @budget: count of how many packets we should handle
46544258
AD
6276 **/
6277static int igb_poll(struct napi_struct *napi, int budget)
9d5c8243 6278{
047e0030 6279 struct igb_q_vector *q_vector = container_of(napi,
b980ac18
JK
6280 struct igb_q_vector,
6281 napi);
16eb8815 6282 bool clean_complete = true;
9d5c8243 6283
421e02f0 6284#ifdef CONFIG_IGB_DCA
047e0030
AD
6285 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6286 igb_update_dca(q_vector);
fe4506b6 6287#endif
0ba82994 6288 if (q_vector->tx.ring)
13fde97a 6289 clean_complete = igb_clean_tx_irq(q_vector);
9d5c8243 6290
0ba82994 6291 if (q_vector->rx.ring)
cd392f5c 6292 clean_complete &= igb_clean_rx_irq(q_vector, budget);
047e0030 6293
16eb8815
AD
6294 /* If all work not completed, return budget and keep polling */
6295 if (!clean_complete)
6296 return budget;
46544258 6297
9d5c8243 6298 /* If not enough Rx work done, exit the polling mode */
16eb8815
AD
6299 napi_complete(napi);
6300 igb_ring_irq_enable(q_vector);
9d5c8243 6301
16eb8815 6302 return 0;
9d5c8243 6303}
6d8126f9 6304
9d5c8243 6305/**
b980ac18
JK
6306 * igb_clean_tx_irq - Reclaim resources after transmit completes
6307 * @q_vector: pointer to q_vector containing needed info
49ce9c2c 6308 *
b980ac18 6309 * returns true if ring is completely cleaned
9d5c8243 6310 **/
047e0030 6311static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
9d5c8243 6312{
047e0030 6313 struct igb_adapter *adapter = q_vector->adapter;
0ba82994 6314 struct igb_ring *tx_ring = q_vector->tx.ring;
06034649 6315 struct igb_tx_buffer *tx_buffer;
f4128785 6316 union e1000_adv_tx_desc *tx_desc;
9d5c8243 6317 unsigned int total_bytes = 0, total_packets = 0;
0ba82994 6318 unsigned int budget = q_vector->tx.work_limit;
8542db05 6319 unsigned int i = tx_ring->next_to_clean;
9d5c8243 6320
13fde97a
AD
6321 if (test_bit(__IGB_DOWN, &adapter->state))
6322 return true;
0e014cb1 6323
06034649 6324 tx_buffer = &tx_ring->tx_buffer_info[i];
13fde97a 6325 tx_desc = IGB_TX_DESC(tx_ring, i);
8542db05 6326 i -= tx_ring->count;
9d5c8243 6327
f4128785
AD
6328 do {
6329 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
8542db05
AD
6330
6331 /* if next_to_watch is not set then there is no work pending */
6332 if (!eop_desc)
6333 break;
13fde97a 6334
f4128785 6335 /* prevent any other reads prior to eop_desc */
70d289bc 6336 read_barrier_depends();
f4128785 6337
13fde97a
AD
6338 /* if DD is not set pending work has not been completed */
6339 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6340 break;
6341
8542db05
AD
6342 /* clear next_to_watch to prevent false hangs */
6343 tx_buffer->next_to_watch = NULL;
9d5c8243 6344
ebe42d16
AD
6345 /* update the statistics for this packet */
6346 total_bytes += tx_buffer->bytecount;
6347 total_packets += tx_buffer->gso_segs;
13fde97a 6348
ebe42d16
AD
6349 /* free the skb */
6350 dev_kfree_skb_any(tx_buffer->skb);
13fde97a 6351
ebe42d16
AD
6352 /* unmap skb header data */
6353 dma_unmap_single(tx_ring->dev,
c9f14bf3
AD
6354 dma_unmap_addr(tx_buffer, dma),
6355 dma_unmap_len(tx_buffer, len),
ebe42d16
AD
6356 DMA_TO_DEVICE);
6357
c9f14bf3
AD
6358 /* clear tx_buffer data */
6359 tx_buffer->skb = NULL;
6360 dma_unmap_len_set(tx_buffer, len, 0);
6361
ebe42d16
AD
6362 /* clear last DMA location and unmap remaining buffers */
6363 while (tx_desc != eop_desc) {
13fde97a
AD
6364 tx_buffer++;
6365 tx_desc++;
9d5c8243 6366 i++;
8542db05
AD
6367 if (unlikely(!i)) {
6368 i -= tx_ring->count;
06034649 6369 tx_buffer = tx_ring->tx_buffer_info;
13fde97a
AD
6370 tx_desc = IGB_TX_DESC(tx_ring, 0);
6371 }
ebe42d16
AD
6372
6373 /* unmap any remaining paged data */
c9f14bf3 6374 if (dma_unmap_len(tx_buffer, len)) {
ebe42d16 6375 dma_unmap_page(tx_ring->dev,
c9f14bf3
AD
6376 dma_unmap_addr(tx_buffer, dma),
6377 dma_unmap_len(tx_buffer, len),
ebe42d16 6378 DMA_TO_DEVICE);
c9f14bf3 6379 dma_unmap_len_set(tx_buffer, len, 0);
ebe42d16
AD
6380 }
6381 }
6382
ebe42d16
AD
6383 /* move us one more past the eop_desc for start of next pkt */
6384 tx_buffer++;
6385 tx_desc++;
6386 i++;
6387 if (unlikely(!i)) {
6388 i -= tx_ring->count;
6389 tx_buffer = tx_ring->tx_buffer_info;
6390 tx_desc = IGB_TX_DESC(tx_ring, 0);
6391 }
f4128785
AD
6392
6393 /* issue prefetch for next Tx descriptor */
6394 prefetch(tx_desc);
6395
6396 /* update budget accounting */
6397 budget--;
6398 } while (likely(budget));
0e014cb1 6399
bdbc0631
ED
6400 netdev_tx_completed_queue(txring_txq(tx_ring),
6401 total_packets, total_bytes);
8542db05 6402 i += tx_ring->count;
9d5c8243 6403 tx_ring->next_to_clean = i;
13fde97a
AD
6404 u64_stats_update_begin(&tx_ring->tx_syncp);
6405 tx_ring->tx_stats.bytes += total_bytes;
6406 tx_ring->tx_stats.packets += total_packets;
6407 u64_stats_update_end(&tx_ring->tx_syncp);
0ba82994
AD
6408 q_vector->tx.total_bytes += total_bytes;
6409 q_vector->tx.total_packets += total_packets;
9d5c8243 6410
6d095fa8 6411 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
13fde97a 6412 struct e1000_hw *hw = &adapter->hw;
12dcd86b 6413
9d5c8243 6414 /* Detect a transmit hang in hardware, this serializes the
b980ac18
JK
6415 * check with the clearing of time_stamp and movement of i
6416 */
6d095fa8 6417 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
f4128785 6418 if (tx_buffer->next_to_watch &&
8542db05 6419 time_after(jiffies, tx_buffer->time_stamp +
8e95a202
JP
6420 (adapter->tx_timeout_factor * HZ)) &&
6421 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
9d5c8243 6422
9d5c8243 6423 /* detected Tx unit hang */
59d71989 6424 dev_err(tx_ring->dev,
9d5c8243 6425 "Detected Tx Unit Hang\n"
2d064c06 6426 " Tx Queue <%d>\n"
9d5c8243
AK
6427 " TDH <%x>\n"
6428 " TDT <%x>\n"
6429 " next_to_use <%x>\n"
6430 " next_to_clean <%x>\n"
9d5c8243
AK
6431 "buffer_info[next_to_clean]\n"
6432 " time_stamp <%lx>\n"
8542db05 6433 " next_to_watch <%p>\n"
9d5c8243
AK
6434 " jiffies <%lx>\n"
6435 " desc.status <%x>\n",
2d064c06 6436 tx_ring->queue_index,
238ac817 6437 rd32(E1000_TDH(tx_ring->reg_idx)),
fce99e34 6438 readl(tx_ring->tail),
9d5c8243
AK
6439 tx_ring->next_to_use,
6440 tx_ring->next_to_clean,
8542db05 6441 tx_buffer->time_stamp,
f4128785 6442 tx_buffer->next_to_watch,
9d5c8243 6443 jiffies,
f4128785 6444 tx_buffer->next_to_watch->wb.status);
13fde97a
AD
6445 netif_stop_subqueue(tx_ring->netdev,
6446 tx_ring->queue_index);
6447
6448 /* we are about to reset, no point in enabling stuff */
6449 return true;
9d5c8243
AK
6450 }
6451 }
13fde97a 6452
21ba6fe1 6453#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
13fde97a 6454 if (unlikely(total_packets &&
b980ac18
JK
6455 netif_carrier_ok(tx_ring->netdev) &&
6456 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
13fde97a
AD
6457 /* Make sure that anybody stopping the queue after this
6458 * sees the new next_to_clean.
6459 */
6460 smp_mb();
6461 if (__netif_subqueue_stopped(tx_ring->netdev,
6462 tx_ring->queue_index) &&
6463 !(test_bit(__IGB_DOWN, &adapter->state))) {
6464 netif_wake_subqueue(tx_ring->netdev,
6465 tx_ring->queue_index);
6466
6467 u64_stats_update_begin(&tx_ring->tx_syncp);
6468 tx_ring->tx_stats.restart_queue++;
6469 u64_stats_update_end(&tx_ring->tx_syncp);
6470 }
6471 }
6472
6473 return !!budget;
9d5c8243
AK
6474}
6475
cbc8e55f 6476/**
b980ac18
JK
6477 * igb_reuse_rx_page - page flip buffer and store it back on the ring
6478 * @rx_ring: rx descriptor ring to store buffers on
6479 * @old_buff: donor buffer to have page reused
cbc8e55f 6480 *
b980ac18 6481 * Synchronizes page for reuse by the adapter
cbc8e55f
AD
6482 **/
6483static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6484 struct igb_rx_buffer *old_buff)
6485{
6486 struct igb_rx_buffer *new_buff;
6487 u16 nta = rx_ring->next_to_alloc;
6488
6489 new_buff = &rx_ring->rx_buffer_info[nta];
6490
6491 /* update, and store next to alloc */
6492 nta++;
6493 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6494
6495 /* transfer page from old buffer to new buffer */
6496 memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
6497
6498 /* sync the buffer for use by the device */
6499 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6500 old_buff->page_offset,
de78d1f9 6501 IGB_RX_BUFSZ,
cbc8e55f
AD
6502 DMA_FROM_DEVICE);
6503}
6504
74e238ea
AD
6505static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6506 struct page *page,
6507 unsigned int truesize)
6508{
6509 /* avoid re-using remote pages */
6510 if (unlikely(page_to_nid(page) != numa_node_id()))
6511 return false;
6512
6513#if (PAGE_SIZE < 8192)
6514 /* if we are only owner of page we can reuse it */
6515 if (unlikely(page_count(page) != 1))
6516 return false;
6517
6518 /* flip page offset to other buffer */
6519 rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6520
6521 /* since we are the only owner of the page and we need to
6522 * increment it, just set the value to 2 in order to avoid
6523 * an unnecessary locked operation
6524 */
6525 atomic_set(&page->_count, 2);
6526#else
6527 /* move offset up to the next cache line */
6528 rx_buffer->page_offset += truesize;
6529
6530 if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6531 return false;
6532
6533 /* bump ref count on page before it is given to the stack */
6534 get_page(page);
6535#endif
6536
6537 return true;
6538}
6539
cbc8e55f 6540/**
b980ac18
JK
6541 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6542 * @rx_ring: rx descriptor ring to transact packets on
6543 * @rx_buffer: buffer containing page to add
6544 * @rx_desc: descriptor containing length of buffer written by hardware
6545 * @skb: sk_buff to place the data into
cbc8e55f 6546 *
b980ac18
JK
6547 * This function will add the data contained in rx_buffer->page to the skb.
6548 * This is done either through a direct copy if the data in the buffer is
6549 * less than the skb header size, otherwise it will just attach the page as
6550 * a frag to the skb.
cbc8e55f 6551 *
b980ac18
JK
6552 * The function will then update the page offset if necessary and return
6553 * true if the buffer can be reused by the adapter.
cbc8e55f
AD
6554 **/
6555static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6556 struct igb_rx_buffer *rx_buffer,
6557 union e1000_adv_rx_desc *rx_desc,
6558 struct sk_buff *skb)
6559{
6560 struct page *page = rx_buffer->page;
6561 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
74e238ea
AD
6562#if (PAGE_SIZE < 8192)
6563 unsigned int truesize = IGB_RX_BUFSZ;
6564#else
6565 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6566#endif
cbc8e55f
AD
6567
6568 if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6569 unsigned char *va = page_address(page) + rx_buffer->page_offset;
6570
cbc8e55f
AD
6571 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6572 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6573 va += IGB_TS_HDR_LEN;
6574 size -= IGB_TS_HDR_LEN;
6575 }
6576
cbc8e55f
AD
6577 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6578
6579 /* we can reuse buffer as-is, just make sure it is local */
6580 if (likely(page_to_nid(page) == numa_node_id()))
6581 return true;
6582
6583 /* this page cannot be reused so discard it */
6584 put_page(page);
6585 return false;
6586 }
6587
6588 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
74e238ea 6589 rx_buffer->page_offset, size, truesize);
cbc8e55f 6590
74e238ea
AD
6591 return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6592}
cbc8e55f 6593
2e334eee
AD
6594static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6595 union e1000_adv_rx_desc *rx_desc,
6596 struct sk_buff *skb)
6597{
6598 struct igb_rx_buffer *rx_buffer;
6599 struct page *page;
6600
6601 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6602
2e334eee
AD
6603 page = rx_buffer->page;
6604 prefetchw(page);
6605
6606 if (likely(!skb)) {
6607 void *page_addr = page_address(page) +
6608 rx_buffer->page_offset;
6609
6610 /* prefetch first cache line of first page */
6611 prefetch(page_addr);
6612#if L1_CACHE_BYTES < 128
6613 prefetch(page_addr + L1_CACHE_BYTES);
6614#endif
6615
6616 /* allocate a skb to store the frags */
6617 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6618 IGB_RX_HDR_LEN);
6619 if (unlikely(!skb)) {
6620 rx_ring->rx_stats.alloc_failed++;
6621 return NULL;
6622 }
6623
b980ac18 6624 /* we will be copying header into skb->data in
2e334eee
AD
6625 * pskb_may_pull so it is in our interest to prefetch
6626 * it now to avoid a possible cache miss
6627 */
6628 prefetchw(skb->data);
6629 }
6630
6631 /* we are reusing so sync this buffer for CPU use */
6632 dma_sync_single_range_for_cpu(rx_ring->dev,
6633 rx_buffer->dma,
6634 rx_buffer->page_offset,
de78d1f9 6635 IGB_RX_BUFSZ,
2e334eee
AD
6636 DMA_FROM_DEVICE);
6637
6638 /* pull page into skb */
6639 if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6640 /* hand second half of page back to the ring */
6641 igb_reuse_rx_page(rx_ring, rx_buffer);
6642 } else {
6643 /* we are not reusing the buffer so unmap it */
6644 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6645 PAGE_SIZE, DMA_FROM_DEVICE);
6646 }
6647
6648 /* clear contents of rx_buffer */
6649 rx_buffer->page = NULL;
6650
6651 return skb;
6652}
6653
cd392f5c 6654static inline void igb_rx_checksum(struct igb_ring *ring,
3ceb90fd
AD
6655 union e1000_adv_rx_desc *rx_desc,
6656 struct sk_buff *skb)
9d5c8243 6657{
bc8acf2c 6658 skb_checksum_none_assert(skb);
9d5c8243 6659
294e7d78 6660 /* Ignore Checksum bit is set */
3ceb90fd 6661 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
294e7d78
AD
6662 return;
6663
6664 /* Rx checksum disabled via ethtool */
6665 if (!(ring->netdev->features & NETIF_F_RXCSUM))
9d5c8243 6666 return;
85ad76b2 6667
9d5c8243 6668 /* TCP/UDP checksum error bit is set */
3ceb90fd
AD
6669 if (igb_test_staterr(rx_desc,
6670 E1000_RXDEXT_STATERR_TCPE |
6671 E1000_RXDEXT_STATERR_IPE)) {
b980ac18 6672 /* work around errata with sctp packets where the TCPE aka
b9473560
JB
6673 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6674 * packets, (aka let the stack check the crc32c)
6675 */
866cff06
AD
6676 if (!((skb->len == 60) &&
6677 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
12dcd86b 6678 u64_stats_update_begin(&ring->rx_syncp);
04a5fcaa 6679 ring->rx_stats.csum_err++;
12dcd86b
ED
6680 u64_stats_update_end(&ring->rx_syncp);
6681 }
9d5c8243 6682 /* let the stack verify checksum errors */
9d5c8243
AK
6683 return;
6684 }
6685 /* It must be a TCP or UDP packet with a valid checksum */
3ceb90fd
AD
6686 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6687 E1000_RXD_STAT_UDPCS))
9d5c8243
AK
6688 skb->ip_summed = CHECKSUM_UNNECESSARY;
6689
3ceb90fd
AD
6690 dev_dbg(ring->dev, "cksum success: bits %08X\n",
6691 le32_to_cpu(rx_desc->wb.upper.status_error));
9d5c8243
AK
6692}
6693
077887c3
AD
6694static inline void igb_rx_hash(struct igb_ring *ring,
6695 union e1000_adv_rx_desc *rx_desc,
6696 struct sk_buff *skb)
6697{
6698 if (ring->netdev->features & NETIF_F_RXHASH)
42bdf083
TH
6699 skb_set_hash(skb,
6700 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
6701 PKT_HASH_TYPE_L3);
077887c3
AD
6702}
6703
2e334eee 6704/**
b980ac18
JK
6705 * igb_is_non_eop - process handling of non-EOP buffers
6706 * @rx_ring: Rx ring being processed
6707 * @rx_desc: Rx descriptor for current buffer
6708 * @skb: current socket buffer containing buffer in progress
2e334eee 6709 *
b980ac18
JK
6710 * This function updates next to clean. If the buffer is an EOP buffer
6711 * this function exits returning false, otherwise it will place the
6712 * sk_buff in the next buffer to be chained and return true indicating
6713 * that this is in fact a non-EOP buffer.
2e334eee
AD
6714 **/
6715static bool igb_is_non_eop(struct igb_ring *rx_ring,
6716 union e1000_adv_rx_desc *rx_desc)
6717{
6718 u32 ntc = rx_ring->next_to_clean + 1;
6719
6720 /* fetch, update, and store next to clean */
6721 ntc = (ntc < rx_ring->count) ? ntc : 0;
6722 rx_ring->next_to_clean = ntc;
6723
6724 prefetch(IGB_RX_DESC(rx_ring, ntc));
6725
6726 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6727 return false;
6728
6729 return true;
6730}
6731
1a1c225b 6732/**
b980ac18
JK
6733 * igb_get_headlen - determine size of header for LRO/GRO
6734 * @data: pointer to the start of the headers
6735 * @max_len: total length of section to find headers in
1a1c225b 6736 *
b980ac18
JK
6737 * This function is meant to determine the length of headers that will
6738 * be recognized by hardware for LRO, and GRO offloads. The main
6739 * motivation of doing this is to only perform one pull for IPv4 TCP
6740 * packets so that we can do basic things like calculating the gso_size
6741 * based on the average data per packet.
1a1c225b
AD
6742 **/
6743static unsigned int igb_get_headlen(unsigned char *data,
6744 unsigned int max_len)
6745{
6746 union {
6747 unsigned char *network;
6748 /* l2 headers */
6749 struct ethhdr *eth;
6750 struct vlan_hdr *vlan;
6751 /* l3 headers */
6752 struct iphdr *ipv4;
6753 struct ipv6hdr *ipv6;
6754 } hdr;
6755 __be16 protocol;
6756 u8 nexthdr = 0; /* default to not TCP */
6757 u8 hlen;
6758
6759 /* this should never happen, but better safe than sorry */
6760 if (max_len < ETH_HLEN)
6761 return max_len;
6762
6763 /* initialize network frame pointer */
6764 hdr.network = data;
6765
6766 /* set first protocol and move network header forward */
6767 protocol = hdr.eth->h_proto;
6768 hdr.network += ETH_HLEN;
6769
6770 /* handle any vlan tag if present */
7c4d16ff 6771 if (protocol == htons(ETH_P_8021Q)) {
1a1c225b
AD
6772 if ((hdr.network - data) > (max_len - VLAN_HLEN))
6773 return max_len;
6774
6775 protocol = hdr.vlan->h_vlan_encapsulated_proto;
6776 hdr.network += VLAN_HLEN;
6777 }
6778
6779 /* handle L3 protocols */
7c4d16ff 6780 if (protocol == htons(ETH_P_IP)) {
1a1c225b
AD
6781 if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6782 return max_len;
6783
6784 /* access ihl as a u8 to avoid unaligned access on ia64 */
6785 hlen = (hdr.network[0] & 0x0F) << 2;
6786
6787 /* verify hlen meets minimum size requirements */
6788 if (hlen < sizeof(struct iphdr))
6789 return hdr.network - data;
6790
f2fb4ab2 6791 /* record next protocol if header is present */
b9555f66 6792 if (!(hdr.ipv4->frag_off & htons(IP_OFFSET)))
f2fb4ab2 6793 nexthdr = hdr.ipv4->protocol;
7c4d16ff 6794 } else if (protocol == htons(ETH_P_IPV6)) {
1a1c225b
AD
6795 if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6796 return max_len;
6797
6798 /* record next protocol */
6799 nexthdr = hdr.ipv6->nexthdr;
f2fb4ab2 6800 hlen = sizeof(struct ipv6hdr);
1a1c225b
AD
6801 } else {
6802 return hdr.network - data;
6803 }
6804
f2fb4ab2
AD
6805 /* relocate pointer to start of L4 header */
6806 hdr.network += hlen;
6807
1a1c225b
AD
6808 /* finally sort out TCP */
6809 if (nexthdr == IPPROTO_TCP) {
6810 if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6811 return max_len;
6812
6813 /* access doff as a u8 to avoid unaligned access on ia64 */
6814 hlen = (hdr.network[12] & 0xF0) >> 2;
6815
6816 /* verify hlen meets minimum size requirements */
6817 if (hlen < sizeof(struct tcphdr))
6818 return hdr.network - data;
6819
6820 hdr.network += hlen;
6821 } else if (nexthdr == IPPROTO_UDP) {
6822 if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6823 return max_len;
6824
6825 hdr.network += sizeof(struct udphdr);
6826 }
6827
b980ac18 6828 /* If everything has gone correctly hdr.network should be the
1a1c225b
AD
6829 * data section of the packet and will be the end of the header.
6830 * If not then it probably represents the end of the last recognized
6831 * header.
6832 */
6833 if ((hdr.network - data) < max_len)
6834 return hdr.network - data;
6835 else
6836 return max_len;
6837}
6838
6839/**
b980ac18
JK
6840 * igb_pull_tail - igb specific version of skb_pull_tail
6841 * @rx_ring: rx descriptor ring packet is being transacted on
6842 * @rx_desc: pointer to the EOP Rx descriptor
6843 * @skb: pointer to current skb being adjusted
1a1c225b 6844 *
b980ac18
JK
6845 * This function is an igb specific version of __pskb_pull_tail. The
6846 * main difference between this version and the original function is that
6847 * this function can make several assumptions about the state of things
6848 * that allow for significant optimizations versus the standard function.
6849 * As a result we can do things like drop a frag and maintain an accurate
6850 * truesize for the skb.
1a1c225b
AD
6851 */
6852static void igb_pull_tail(struct igb_ring *rx_ring,
6853 union e1000_adv_rx_desc *rx_desc,
6854 struct sk_buff *skb)
2d94d8ab 6855{
1a1c225b
AD
6856 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6857 unsigned char *va;
6858 unsigned int pull_len;
6859
b980ac18 6860 /* it is valid to use page_address instead of kmap since we are
1a1c225b
AD
6861 * working with pages allocated out of the lomem pool per
6862 * alloc_page(GFP_ATOMIC)
2d94d8ab 6863 */
1a1c225b
AD
6864 va = skb_frag_address(frag);
6865
1a1c225b
AD
6866 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6867 /* retrieve timestamp from buffer */
6868 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6869
6870 /* update pointers to remove timestamp header */
6871 skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6872 frag->page_offset += IGB_TS_HDR_LEN;
6873 skb->data_len -= IGB_TS_HDR_LEN;
6874 skb->len -= IGB_TS_HDR_LEN;
6875
6876 /* move va to start of packet data */
6877 va += IGB_TS_HDR_LEN;
6878 }
6879
b980ac18 6880 /* we need the header to contain the greater of either ETH_HLEN or
1a1c225b
AD
6881 * 60 bytes if the skb->len is less than 60 for skb_pad.
6882 */
6883 pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6884
6885 /* align pull length to size of long to optimize memcpy performance */
6886 skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6887
6888 /* update all of the pointers */
6889 skb_frag_size_sub(frag, pull_len);
6890 frag->page_offset += pull_len;
6891 skb->data_len -= pull_len;
6892 skb->tail += pull_len;
6893}
6894
6895/**
b980ac18
JK
6896 * igb_cleanup_headers - Correct corrupted or empty headers
6897 * @rx_ring: rx descriptor ring packet is being transacted on
6898 * @rx_desc: pointer to the EOP Rx descriptor
6899 * @skb: pointer to current skb being fixed
1a1c225b 6900 *
b980ac18
JK
6901 * Address the case where we are pulling data in on pages only
6902 * and as such no data is present in the skb header.
1a1c225b 6903 *
b980ac18
JK
6904 * In addition if skb is not at least 60 bytes we need to pad it so that
6905 * it is large enough to qualify as a valid Ethernet frame.
1a1c225b 6906 *
b980ac18 6907 * Returns true if an error was encountered and skb was freed.
1a1c225b
AD
6908 **/
6909static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6910 union e1000_adv_rx_desc *rx_desc,
6911 struct sk_buff *skb)
6912{
1a1c225b
AD
6913 if (unlikely((igb_test_staterr(rx_desc,
6914 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6915 struct net_device *netdev = rx_ring->netdev;
6916 if (!(netdev->features & NETIF_F_RXALL)) {
6917 dev_kfree_skb_any(skb);
6918 return true;
6919 }
6920 }
6921
6922 /* place header in linear portion of buffer */
6923 if (skb_is_nonlinear(skb))
6924 igb_pull_tail(rx_ring, rx_desc, skb);
6925
6926 /* if skb_pad returns an error the skb was freed */
6927 if (unlikely(skb->len < 60)) {
6928 int pad_len = 60 - skb->len;
6929
6930 if (skb_pad(skb, pad_len))
6931 return true;
6932 __skb_put(skb, pad_len);
6933 }
6934
6935 return false;
2d94d8ab
AD
6936}
6937
db2ee5bd 6938/**
b980ac18
JK
6939 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
6940 * @rx_ring: rx descriptor ring packet is being transacted on
6941 * @rx_desc: pointer to the EOP Rx descriptor
6942 * @skb: pointer to current skb being populated
db2ee5bd 6943 *
b980ac18
JK
6944 * This function checks the ring, descriptor, and packet information in
6945 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
6946 * other fields within the skb.
db2ee5bd
AD
6947 **/
6948static void igb_process_skb_fields(struct igb_ring *rx_ring,
6949 union e1000_adv_rx_desc *rx_desc,
6950 struct sk_buff *skb)
6951{
6952 struct net_device *dev = rx_ring->netdev;
6953
6954 igb_rx_hash(rx_ring, rx_desc, skb);
6955
6956 igb_rx_checksum(rx_ring, rx_desc, skb);
6957
20a48412 6958 igb_ptp_rx_hwtstamp(rx_ring, rx_desc, skb);
db2ee5bd 6959
f646968f 6960 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
db2ee5bd
AD
6961 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6962 u16 vid;
6963 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6964 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6965 vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6966 else
6967 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6968
86a9bad3 6969 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
db2ee5bd
AD
6970 }
6971
6972 skb_record_rx_queue(skb, rx_ring->queue_index);
6973
6974 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6975}
6976
2e334eee 6977static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
9d5c8243 6978{
0ba82994 6979 struct igb_ring *rx_ring = q_vector->rx.ring;
1a1c225b 6980 struct sk_buff *skb = rx_ring->skb;
9d5c8243 6981 unsigned int total_bytes = 0, total_packets = 0;
16eb8815 6982 u16 cleaned_count = igb_desc_unused(rx_ring);
9d5c8243 6983
57ba34c9 6984 while (likely(total_packets < budget)) {
2e334eee 6985 union e1000_adv_rx_desc *rx_desc;
bf36c1a0 6986
2e334eee
AD
6987 /* return some buffers to hardware, one at a time is too slow */
6988 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6989 igb_alloc_rx_buffers(rx_ring, cleaned_count);
6990 cleaned_count = 0;
6991 }
bf36c1a0 6992
2e334eee 6993 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
16eb8815 6994
2e334eee
AD
6995 if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
6996 break;
9d5c8243 6997
74e238ea
AD
6998 /* This memory barrier is needed to keep us from reading
6999 * any other fields out of the rx_desc until we know the
7000 * RXD_STAT_DD bit is set
7001 */
7002 rmb();
7003
2e334eee 7004 /* retrieve a buffer from the ring */
f9d40f6a 7005 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
9d5c8243 7006
2e334eee
AD
7007 /* exit if we failed to retrieve a buffer */
7008 if (!skb)
7009 break;
1a1c225b 7010
2e334eee 7011 cleaned_count++;
1a1c225b 7012
2e334eee
AD
7013 /* fetch next buffer in frame if non-eop */
7014 if (igb_is_non_eop(rx_ring, rx_desc))
7015 continue;
1a1c225b
AD
7016
7017 /* verify the packet layout is correct */
7018 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
7019 skb = NULL;
7020 continue;
9d5c8243 7021 }
9d5c8243 7022
db2ee5bd 7023 /* probably a little skewed due to removing CRC */
3ceb90fd 7024 total_bytes += skb->len;
3ceb90fd 7025
db2ee5bd
AD
7026 /* populate checksum, timestamp, VLAN, and protocol */
7027 igb_process_skb_fields(rx_ring, rx_desc, skb);
3ceb90fd 7028
b2cb09b1 7029 napi_gro_receive(&q_vector->napi, skb);
9d5c8243 7030
1a1c225b
AD
7031 /* reset skb pointer */
7032 skb = NULL;
7033
2e334eee
AD
7034 /* update budget accounting */
7035 total_packets++;
57ba34c9 7036 }
bf36c1a0 7037
1a1c225b
AD
7038 /* place incomplete frames back on ring for completion */
7039 rx_ring->skb = skb;
7040
12dcd86b 7041 u64_stats_update_begin(&rx_ring->rx_syncp);
9d5c8243
AK
7042 rx_ring->rx_stats.packets += total_packets;
7043 rx_ring->rx_stats.bytes += total_bytes;
12dcd86b 7044 u64_stats_update_end(&rx_ring->rx_syncp);
0ba82994
AD
7045 q_vector->rx.total_packets += total_packets;
7046 q_vector->rx.total_bytes += total_bytes;
c023cd88
AD
7047
7048 if (cleaned_count)
cd392f5c 7049 igb_alloc_rx_buffers(rx_ring, cleaned_count);
c023cd88 7050
2e334eee 7051 return (total_packets < budget);
9d5c8243
AK
7052}
7053
c023cd88 7054static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
06034649 7055 struct igb_rx_buffer *bi)
c023cd88
AD
7056{
7057 struct page *page = bi->page;
cbc8e55f 7058 dma_addr_t dma;
c023cd88 7059
cbc8e55f
AD
7060 /* since we are recycling buffers we should seldom need to alloc */
7061 if (likely(page))
c023cd88
AD
7062 return true;
7063
cbc8e55f
AD
7064 /* alloc new page for storage */
7065 page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
7066 if (unlikely(!page)) {
7067 rx_ring->rx_stats.alloc_failed++;
7068 return false;
c023cd88
AD
7069 }
7070
cbc8e55f
AD
7071 /* map page for use */
7072 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
c023cd88 7073
b980ac18 7074 /* if mapping failed free memory back to system since
cbc8e55f
AD
7075 * there isn't much point in holding memory we can't use
7076 */
1a1c225b 7077 if (dma_mapping_error(rx_ring->dev, dma)) {
cbc8e55f
AD
7078 __free_page(page);
7079
c023cd88
AD
7080 rx_ring->rx_stats.alloc_failed++;
7081 return false;
7082 }
7083
1a1c225b 7084 bi->dma = dma;
cbc8e55f
AD
7085 bi->page = page;
7086 bi->page_offset = 0;
1a1c225b 7087
c023cd88
AD
7088 return true;
7089}
7090
9d5c8243 7091/**
b980ac18
JK
7092 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
7093 * @adapter: address of board private structure
9d5c8243 7094 **/
cd392f5c 7095void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
9d5c8243 7096{
9d5c8243 7097 union e1000_adv_rx_desc *rx_desc;
06034649 7098 struct igb_rx_buffer *bi;
c023cd88 7099 u16 i = rx_ring->next_to_use;
9d5c8243 7100
cbc8e55f
AD
7101 /* nothing to do */
7102 if (!cleaned_count)
7103 return;
7104
60136906 7105 rx_desc = IGB_RX_DESC(rx_ring, i);
06034649 7106 bi = &rx_ring->rx_buffer_info[i];
c023cd88 7107 i -= rx_ring->count;
9d5c8243 7108
cbc8e55f 7109 do {
1a1c225b 7110 if (!igb_alloc_mapped_page(rx_ring, bi))
c023cd88 7111 break;
9d5c8243 7112
b980ac18 7113 /* Refresh the desc even if buffer_addrs didn't change
cbc8e55f
AD
7114 * because each write-back erases this info.
7115 */
f9d40f6a 7116 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
9d5c8243 7117
c023cd88
AD
7118 rx_desc++;
7119 bi++;
9d5c8243 7120 i++;
c023cd88 7121 if (unlikely(!i)) {
60136906 7122 rx_desc = IGB_RX_DESC(rx_ring, 0);
06034649 7123 bi = rx_ring->rx_buffer_info;
c023cd88
AD
7124 i -= rx_ring->count;
7125 }
7126
7127 /* clear the hdr_addr for the next_to_use descriptor */
7128 rx_desc->read.hdr_addr = 0;
cbc8e55f
AD
7129
7130 cleaned_count--;
7131 } while (cleaned_count);
9d5c8243 7132
c023cd88
AD
7133 i += rx_ring->count;
7134
9d5c8243 7135 if (rx_ring->next_to_use != i) {
cbc8e55f 7136 /* record the next descriptor to use */
9d5c8243 7137 rx_ring->next_to_use = i;
9d5c8243 7138
cbc8e55f
AD
7139 /* update next to alloc since we have filled the ring */
7140 rx_ring->next_to_alloc = i;
7141
b980ac18 7142 /* Force memory writes to complete before letting h/w
9d5c8243
AK
7143 * know there are new descriptors to fetch. (Only
7144 * applicable for weak-ordered memory model archs,
cbc8e55f
AD
7145 * such as IA-64).
7146 */
9d5c8243 7147 wmb();
fce99e34 7148 writel(i, rx_ring->tail);
9d5c8243
AK
7149 }
7150}
7151
7152/**
7153 * igb_mii_ioctl -
7154 * @netdev:
7155 * @ifreq:
7156 * @cmd:
7157 **/
7158static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7159{
7160 struct igb_adapter *adapter = netdev_priv(netdev);
7161 struct mii_ioctl_data *data = if_mii(ifr);
7162
7163 if (adapter->hw.phy.media_type != e1000_media_type_copper)
7164 return -EOPNOTSUPP;
7165
7166 switch (cmd) {
7167 case SIOCGMIIPHY:
7168 data->phy_id = adapter->hw.phy.addr;
7169 break;
7170 case SIOCGMIIREG:
f5f4cf08
AD
7171 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7172 &data->val_out))
9d5c8243
AK
7173 return -EIO;
7174 break;
7175 case SIOCSMIIREG:
7176 default:
7177 return -EOPNOTSUPP;
7178 }
7179 return 0;
7180}
7181
7182/**
7183 * igb_ioctl -
7184 * @netdev:
7185 * @ifreq:
7186 * @cmd:
7187 **/
7188static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7189{
7190 switch (cmd) {
7191 case SIOCGMIIPHY:
7192 case SIOCGMIIREG:
7193 case SIOCSMIIREG:
7194 return igb_mii_ioctl(netdev, ifr, cmd);
6ab5f7b2
JK
7195 case SIOCGHWTSTAMP:
7196 return igb_ptp_get_ts_config(netdev, ifr);
c6cb090b 7197 case SIOCSHWTSTAMP:
6ab5f7b2 7198 return igb_ptp_set_ts_config(netdev, ifr);
9d5c8243
AK
7199 default:
7200 return -EOPNOTSUPP;
7201 }
7202}
7203
009bc06e
AD
7204s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7205{
7206 struct igb_adapter *adapter = hw->back;
009bc06e 7207
23d028cc 7208 if (pcie_capability_read_word(adapter->pdev, reg, value))
009bc06e
AD
7209 return -E1000_ERR_CONFIG;
7210
009bc06e
AD
7211 return 0;
7212}
7213
7214s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7215{
7216 struct igb_adapter *adapter = hw->back;
009bc06e 7217
23d028cc 7218 if (pcie_capability_write_word(adapter->pdev, reg, *value))
009bc06e
AD
7219 return -E1000_ERR_CONFIG;
7220
009bc06e
AD
7221 return 0;
7222}
7223
c8f44aff 7224static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
9d5c8243
AK
7225{
7226 struct igb_adapter *adapter = netdev_priv(netdev);
7227 struct e1000_hw *hw = &adapter->hw;
7228 u32 ctrl, rctl;
f646968f 7229 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
9d5c8243 7230
5faf030c 7231 if (enable) {
9d5c8243
AK
7232 /* enable VLAN tag insert/strip */
7233 ctrl = rd32(E1000_CTRL);
7234 ctrl |= E1000_CTRL_VME;
7235 wr32(E1000_CTRL, ctrl);
7236
51466239 7237 /* Disable CFI check */
9d5c8243 7238 rctl = rd32(E1000_RCTL);
9d5c8243
AK
7239 rctl &= ~E1000_RCTL_CFIEN;
7240 wr32(E1000_RCTL, rctl);
9d5c8243
AK
7241 } else {
7242 /* disable VLAN tag insert/strip */
7243 ctrl = rd32(E1000_CTRL);
7244 ctrl &= ~E1000_CTRL_VME;
7245 wr32(E1000_CTRL, ctrl);
9d5c8243
AK
7246 }
7247
e1739522 7248 igb_rlpml_set(adapter);
9d5c8243
AK
7249}
7250
80d5c368
PM
7251static int igb_vlan_rx_add_vid(struct net_device *netdev,
7252 __be16 proto, u16 vid)
9d5c8243
AK
7253{
7254 struct igb_adapter *adapter = netdev_priv(netdev);
7255 struct e1000_hw *hw = &adapter->hw;
4ae196df 7256 int pf_id = adapter->vfs_allocated_count;
9d5c8243 7257
51466239
AD
7258 /* attempt to add filter to vlvf array */
7259 igb_vlvf_set(adapter, vid, true, pf_id);
4ae196df 7260
51466239
AD
7261 /* add the filter since PF can receive vlans w/o entry in vlvf */
7262 igb_vfta_set(hw, vid, true);
b2cb09b1
JP
7263
7264 set_bit(vid, adapter->active_vlans);
8e586137
JP
7265
7266 return 0;
9d5c8243
AK
7267}
7268
80d5c368
PM
7269static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7270 __be16 proto, u16 vid)
9d5c8243
AK
7271{
7272 struct igb_adapter *adapter = netdev_priv(netdev);
7273 struct e1000_hw *hw = &adapter->hw;
4ae196df 7274 int pf_id = adapter->vfs_allocated_count;
51466239 7275 s32 err;
9d5c8243 7276
51466239
AD
7277 /* remove vlan from VLVF table array */
7278 err = igb_vlvf_set(adapter, vid, false, pf_id);
9d5c8243 7279
51466239
AD
7280 /* if vid was not present in VLVF just remove it from table */
7281 if (err)
4ae196df 7282 igb_vfta_set(hw, vid, false);
b2cb09b1
JP
7283
7284 clear_bit(vid, adapter->active_vlans);
8e586137
JP
7285
7286 return 0;
9d5c8243
AK
7287}
7288
7289static void igb_restore_vlan(struct igb_adapter *adapter)
7290{
b2cb09b1 7291 u16 vid;
9d5c8243 7292
5faf030c
AD
7293 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7294
b2cb09b1 7295 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
80d5c368 7296 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
9d5c8243
AK
7297}
7298
14ad2513 7299int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9d5c8243 7300{
090b1795 7301 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
7302 struct e1000_mac_info *mac = &adapter->hw.mac;
7303
7304 mac->autoneg = 0;
7305
14ad2513 7306 /* Make sure dplx is at most 1 bit and lsb of speed is not set
b980ac18
JK
7307 * for the switch() below to work
7308 */
14ad2513
DD
7309 if ((spd & 1) || (dplx & ~1))
7310 goto err_inval;
7311
f502ef7d
AA
7312 /* Fiber NIC's only allow 1000 gbps Full duplex
7313 * and 100Mbps Full duplex for 100baseFx sfp
7314 */
7315 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7316 switch (spd + dplx) {
7317 case SPEED_10 + DUPLEX_HALF:
7318 case SPEED_10 + DUPLEX_FULL:
7319 case SPEED_100 + DUPLEX_HALF:
7320 goto err_inval;
7321 default:
7322 break;
7323 }
7324 }
cd2638a8 7325
14ad2513 7326 switch (spd + dplx) {
9d5c8243
AK
7327 case SPEED_10 + DUPLEX_HALF:
7328 mac->forced_speed_duplex = ADVERTISE_10_HALF;
7329 break;
7330 case SPEED_10 + DUPLEX_FULL:
7331 mac->forced_speed_duplex = ADVERTISE_10_FULL;
7332 break;
7333 case SPEED_100 + DUPLEX_HALF:
7334 mac->forced_speed_duplex = ADVERTISE_100_HALF;
7335 break;
7336 case SPEED_100 + DUPLEX_FULL:
7337 mac->forced_speed_duplex = ADVERTISE_100_FULL;
7338 break;
7339 case SPEED_1000 + DUPLEX_FULL:
7340 mac->autoneg = 1;
7341 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7342 break;
7343 case SPEED_1000 + DUPLEX_HALF: /* not supported */
7344 default:
14ad2513 7345 goto err_inval;
9d5c8243 7346 }
8376dad0
JB
7347
7348 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7349 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7350
9d5c8243 7351 return 0;
14ad2513
DD
7352
7353err_inval:
7354 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7355 return -EINVAL;
9d5c8243
AK
7356}
7357
749ab2cd
YZ
7358static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7359 bool runtime)
9d5c8243
AK
7360{
7361 struct net_device *netdev = pci_get_drvdata(pdev);
7362 struct igb_adapter *adapter = netdev_priv(netdev);
7363 struct e1000_hw *hw = &adapter->hw;
2d064c06 7364 u32 ctrl, rctl, status;
749ab2cd 7365 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
9d5c8243
AK
7366#ifdef CONFIG_PM
7367 int retval = 0;
7368#endif
7369
7370 netif_device_detach(netdev);
7371
a88f10ec 7372 if (netif_running(netdev))
749ab2cd 7373 __igb_close(netdev, true);
a88f10ec 7374
047e0030 7375 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
7376
7377#ifdef CONFIG_PM
7378 retval = pci_save_state(pdev);
7379 if (retval)
7380 return retval;
7381#endif
7382
7383 status = rd32(E1000_STATUS);
7384 if (status & E1000_STATUS_LU)
7385 wufc &= ~E1000_WUFC_LNKC;
7386
7387 if (wufc) {
7388 igb_setup_rctl(adapter);
ff41f8dc 7389 igb_set_rx_mode(netdev);
9d5c8243
AK
7390
7391 /* turn on all-multi mode if wake on multicast is enabled */
7392 if (wufc & E1000_WUFC_MC) {
7393 rctl = rd32(E1000_RCTL);
7394 rctl |= E1000_RCTL_MPE;
7395 wr32(E1000_RCTL, rctl);
7396 }
7397
7398 ctrl = rd32(E1000_CTRL);
7399 /* advertise wake from D3Cold */
7400 #define E1000_CTRL_ADVD3WUC 0x00100000
7401 /* phy power management enable */
7402 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7403 ctrl |= E1000_CTRL_ADVD3WUC;
7404 wr32(E1000_CTRL, ctrl);
7405
9d5c8243 7406 /* Allow time for pending master requests to run */
330a6d6a 7407 igb_disable_pcie_master(hw);
9d5c8243
AK
7408
7409 wr32(E1000_WUC, E1000_WUC_PME_EN);
7410 wr32(E1000_WUFC, wufc);
9d5c8243
AK
7411 } else {
7412 wr32(E1000_WUC, 0);
7413 wr32(E1000_WUFC, 0);
9d5c8243
AK
7414 }
7415
3fe7c4c9
RW
7416 *enable_wake = wufc || adapter->en_mng_pt;
7417 if (!*enable_wake)
88a268c1
NN
7418 igb_power_down_link(adapter);
7419 else
7420 igb_power_up_link(adapter);
9d5c8243
AK
7421
7422 /* Release control of h/w to f/w. If f/w is AMT enabled, this
b980ac18
JK
7423 * would have already happened in close and is redundant.
7424 */
9d5c8243
AK
7425 igb_release_hw_control(adapter);
7426
7427 pci_disable_device(pdev);
7428
9d5c8243
AK
7429 return 0;
7430}
7431
7432#ifdef CONFIG_PM
d9dd966d 7433#ifdef CONFIG_PM_SLEEP
749ab2cd 7434static int igb_suspend(struct device *dev)
3fe7c4c9
RW
7435{
7436 int retval;
7437 bool wake;
749ab2cd 7438 struct pci_dev *pdev = to_pci_dev(dev);
3fe7c4c9 7439
749ab2cd 7440 retval = __igb_shutdown(pdev, &wake, 0);
3fe7c4c9
RW
7441 if (retval)
7442 return retval;
7443
7444 if (wake) {
7445 pci_prepare_to_sleep(pdev);
7446 } else {
7447 pci_wake_from_d3(pdev, false);
7448 pci_set_power_state(pdev, PCI_D3hot);
7449 }
7450
7451 return 0;
7452}
d9dd966d 7453#endif /* CONFIG_PM_SLEEP */
3fe7c4c9 7454
749ab2cd 7455static int igb_resume(struct device *dev)
9d5c8243 7456{
749ab2cd 7457 struct pci_dev *pdev = to_pci_dev(dev);
9d5c8243
AK
7458 struct net_device *netdev = pci_get_drvdata(pdev);
7459 struct igb_adapter *adapter = netdev_priv(netdev);
7460 struct e1000_hw *hw = &adapter->hw;
7461 u32 err;
7462
7463 pci_set_power_state(pdev, PCI_D0);
7464 pci_restore_state(pdev);
b94f2d77 7465 pci_save_state(pdev);
42bfd33a 7466
aed5dec3 7467 err = pci_enable_device_mem(pdev);
9d5c8243
AK
7468 if (err) {
7469 dev_err(&pdev->dev,
7470 "igb: Cannot enable PCI device from suspend\n");
7471 return err;
7472 }
7473 pci_set_master(pdev);
7474
7475 pci_enable_wake(pdev, PCI_D3hot, 0);
7476 pci_enable_wake(pdev, PCI_D3cold, 0);
7477
53c7d064 7478 if (igb_init_interrupt_scheme(adapter, true)) {
a88f10ec
AD
7479 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7480 return -ENOMEM;
9d5c8243
AK
7481 }
7482
9d5c8243 7483 igb_reset(adapter);
a8564f03
AD
7484
7485 /* let the f/w know that the h/w is now under the control of the
b980ac18
JK
7486 * driver.
7487 */
a8564f03
AD
7488 igb_get_hw_control(adapter);
7489
9d5c8243
AK
7490 wr32(E1000_WUS, ~0);
7491
749ab2cd 7492 if (netdev->flags & IFF_UP) {
0c2cc02e 7493 rtnl_lock();
749ab2cd 7494 err = __igb_open(netdev, true);
0c2cc02e 7495 rtnl_unlock();
a88f10ec
AD
7496 if (err)
7497 return err;
7498 }
9d5c8243
AK
7499
7500 netif_device_attach(netdev);
749ab2cd
YZ
7501 return 0;
7502}
7503
7504#ifdef CONFIG_PM_RUNTIME
7505static int igb_runtime_idle(struct device *dev)
7506{
7507 struct pci_dev *pdev = to_pci_dev(dev);
7508 struct net_device *netdev = pci_get_drvdata(pdev);
7509 struct igb_adapter *adapter = netdev_priv(netdev);
7510
7511 if (!igb_has_link(adapter))
7512 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7513
7514 return -EBUSY;
7515}
7516
7517static int igb_runtime_suspend(struct device *dev)
7518{
7519 struct pci_dev *pdev = to_pci_dev(dev);
7520 int retval;
7521 bool wake;
7522
7523 retval = __igb_shutdown(pdev, &wake, 1);
7524 if (retval)
7525 return retval;
7526
7527 if (wake) {
7528 pci_prepare_to_sleep(pdev);
7529 } else {
7530 pci_wake_from_d3(pdev, false);
7531 pci_set_power_state(pdev, PCI_D3hot);
7532 }
9d5c8243 7533
9d5c8243
AK
7534 return 0;
7535}
749ab2cd
YZ
7536
7537static int igb_runtime_resume(struct device *dev)
7538{
7539 return igb_resume(dev);
7540}
7541#endif /* CONFIG_PM_RUNTIME */
9d5c8243
AK
7542#endif
7543
7544static void igb_shutdown(struct pci_dev *pdev)
7545{
3fe7c4c9
RW
7546 bool wake;
7547
749ab2cd 7548 __igb_shutdown(pdev, &wake, 0);
3fe7c4c9
RW
7549
7550 if (system_state == SYSTEM_POWER_OFF) {
7551 pci_wake_from_d3(pdev, wake);
7552 pci_set_power_state(pdev, PCI_D3hot);
7553 }
9d5c8243
AK
7554}
7555
fa44f2f1
GR
7556#ifdef CONFIG_PCI_IOV
7557static int igb_sriov_reinit(struct pci_dev *dev)
7558{
7559 struct net_device *netdev = pci_get_drvdata(dev);
7560 struct igb_adapter *adapter = netdev_priv(netdev);
7561 struct pci_dev *pdev = adapter->pdev;
7562
7563 rtnl_lock();
7564
7565 if (netif_running(netdev))
7566 igb_close(netdev);
7567
7568 igb_clear_interrupt_scheme(adapter);
7569
7570 igb_init_queue_configuration(adapter);
7571
7572 if (igb_init_interrupt_scheme(adapter, true)) {
7573 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7574 return -ENOMEM;
7575 }
7576
7577 if (netif_running(netdev))
7578 igb_open(netdev);
7579
7580 rtnl_unlock();
7581
7582 return 0;
7583}
7584
7585static int igb_pci_disable_sriov(struct pci_dev *dev)
7586{
7587 int err = igb_disable_sriov(dev);
7588
7589 if (!err)
7590 err = igb_sriov_reinit(dev);
7591
7592 return err;
7593}
7594
7595static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7596{
7597 int err = igb_enable_sriov(dev, num_vfs);
7598
7599 if (err)
7600 goto out;
7601
7602 err = igb_sriov_reinit(dev);
7603 if (!err)
7604 return num_vfs;
7605
7606out:
7607 return err;
7608}
7609
7610#endif
7611static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7612{
7613#ifdef CONFIG_PCI_IOV
7614 if (num_vfs == 0)
7615 return igb_pci_disable_sriov(dev);
7616 else
7617 return igb_pci_enable_sriov(dev, num_vfs);
7618#endif
7619 return 0;
7620}
7621
9d5c8243 7622#ifdef CONFIG_NET_POLL_CONTROLLER
b980ac18 7623/* Polling 'interrupt' - used by things like netconsole to send skbs
9d5c8243
AK
7624 * without having to re-enable interrupts. It's not called while
7625 * the interrupt routine is executing.
7626 */
7627static void igb_netpoll(struct net_device *netdev)
7628{
7629 struct igb_adapter *adapter = netdev_priv(netdev);
eebbbdba 7630 struct e1000_hw *hw = &adapter->hw;
0d1ae7f4 7631 struct igb_q_vector *q_vector;
9d5c8243 7632 int i;
9d5c8243 7633
047e0030 7634 for (i = 0; i < adapter->num_q_vectors; i++) {
0d1ae7f4 7635 q_vector = adapter->q_vector[i];
cd14ef54 7636 if (adapter->flags & IGB_FLAG_HAS_MSIX)
0d1ae7f4
AD
7637 wr32(E1000_EIMC, q_vector->eims_value);
7638 else
7639 igb_irq_disable(adapter);
047e0030 7640 napi_schedule(&q_vector->napi);
eebbbdba 7641 }
9d5c8243
AK
7642}
7643#endif /* CONFIG_NET_POLL_CONTROLLER */
7644
7645/**
b980ac18
JK
7646 * igb_io_error_detected - called when PCI error is detected
7647 * @pdev: Pointer to PCI device
7648 * @state: The current pci connection state
9d5c8243 7649 *
b980ac18
JK
7650 * This function is called after a PCI bus error affecting
7651 * this device has been detected.
7652 **/
9d5c8243
AK
7653static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7654 pci_channel_state_t state)
7655{
7656 struct net_device *netdev = pci_get_drvdata(pdev);
7657 struct igb_adapter *adapter = netdev_priv(netdev);
7658
7659 netif_device_detach(netdev);
7660
59ed6eec
AD
7661 if (state == pci_channel_io_perm_failure)
7662 return PCI_ERS_RESULT_DISCONNECT;
7663
9d5c8243
AK
7664 if (netif_running(netdev))
7665 igb_down(adapter);
7666 pci_disable_device(pdev);
7667
7668 /* Request a slot slot reset. */
7669 return PCI_ERS_RESULT_NEED_RESET;
7670}
7671
7672/**
b980ac18
JK
7673 * igb_io_slot_reset - called after the pci bus has been reset.
7674 * @pdev: Pointer to PCI device
9d5c8243 7675 *
b980ac18
JK
7676 * Restart the card from scratch, as if from a cold-boot. Implementation
7677 * resembles the first-half of the igb_resume routine.
7678 **/
9d5c8243
AK
7679static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7680{
7681 struct net_device *netdev = pci_get_drvdata(pdev);
7682 struct igb_adapter *adapter = netdev_priv(netdev);
7683 struct e1000_hw *hw = &adapter->hw;
40a914fa 7684 pci_ers_result_t result;
42bfd33a 7685 int err;
9d5c8243 7686
aed5dec3 7687 if (pci_enable_device_mem(pdev)) {
9d5c8243
AK
7688 dev_err(&pdev->dev,
7689 "Cannot re-enable PCI device after reset.\n");
40a914fa
AD
7690 result = PCI_ERS_RESULT_DISCONNECT;
7691 } else {
7692 pci_set_master(pdev);
7693 pci_restore_state(pdev);
b94f2d77 7694 pci_save_state(pdev);
9d5c8243 7695
40a914fa
AD
7696 pci_enable_wake(pdev, PCI_D3hot, 0);
7697 pci_enable_wake(pdev, PCI_D3cold, 0);
9d5c8243 7698
40a914fa
AD
7699 igb_reset(adapter);
7700 wr32(E1000_WUS, ~0);
7701 result = PCI_ERS_RESULT_RECOVERED;
7702 }
9d5c8243 7703
ea943d41
JK
7704 err = pci_cleanup_aer_uncorrect_error_status(pdev);
7705 if (err) {
b980ac18
JK
7706 dev_err(&pdev->dev,
7707 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7708 err);
ea943d41
JK
7709 /* non-fatal, continue */
7710 }
40a914fa
AD
7711
7712 return result;
9d5c8243
AK
7713}
7714
7715/**
b980ac18
JK
7716 * igb_io_resume - called when traffic can start flowing again.
7717 * @pdev: Pointer to PCI device
9d5c8243 7718 *
b980ac18
JK
7719 * This callback is called when the error recovery driver tells us that
7720 * its OK to resume normal operation. Implementation resembles the
7721 * second-half of the igb_resume routine.
9d5c8243
AK
7722 */
7723static void igb_io_resume(struct pci_dev *pdev)
7724{
7725 struct net_device *netdev = pci_get_drvdata(pdev);
7726 struct igb_adapter *adapter = netdev_priv(netdev);
7727
9d5c8243
AK
7728 if (netif_running(netdev)) {
7729 if (igb_up(adapter)) {
7730 dev_err(&pdev->dev, "igb_up failed after reset\n");
7731 return;
7732 }
7733 }
7734
7735 netif_device_attach(netdev);
7736
7737 /* let the f/w know that the h/w is now under the control of the
b980ac18
JK
7738 * driver.
7739 */
9d5c8243 7740 igb_get_hw_control(adapter);
9d5c8243
AK
7741}
7742
26ad9178 7743static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
b980ac18 7744 u8 qsel)
26ad9178
AD
7745{
7746 u32 rar_low, rar_high;
7747 struct e1000_hw *hw = &adapter->hw;
7748
7749 /* HW expects these in little endian so we reverse the byte order
7750 * from network order (big endian) to little endian
7751 */
7752 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
b980ac18 7753 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
26ad9178
AD
7754 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7755
7756 /* Indicate to hardware the Address is Valid. */
7757 rar_high |= E1000_RAH_AV;
7758
7759 if (hw->mac.type == e1000_82575)
7760 rar_high |= E1000_RAH_POOL_1 * qsel;
7761 else
7762 rar_high |= E1000_RAH_POOL_1 << qsel;
7763
7764 wr32(E1000_RAL(index), rar_low);
7765 wrfl();
7766 wr32(E1000_RAH(index), rar_high);
7767 wrfl();
7768}
7769
4ae196df 7770static int igb_set_vf_mac(struct igb_adapter *adapter,
b980ac18 7771 int vf, unsigned char *mac_addr)
4ae196df
AD
7772{
7773 struct e1000_hw *hw = &adapter->hw;
ff41f8dc 7774 /* VF MAC addresses start at end of receive addresses and moves
b980ac18
JK
7775 * towards the first, as a result a collision should not be possible
7776 */
ff41f8dc 7777 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df 7778
37680117 7779 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
4ae196df 7780
26ad9178 7781 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
4ae196df
AD
7782
7783 return 0;
7784}
7785
8151d294
WM
7786static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7787{
7788 struct igb_adapter *adapter = netdev_priv(netdev);
7789 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7790 return -EINVAL;
7791 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7792 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
b980ac18
JK
7793 dev_info(&adapter->pdev->dev,
7794 "Reload the VF driver to make this change effective.");
8151d294 7795 if (test_bit(__IGB_DOWN, &adapter->state)) {
b980ac18
JK
7796 dev_warn(&adapter->pdev->dev,
7797 "The VF MAC address has been set, but the PF device is not up.\n");
7798 dev_warn(&adapter->pdev->dev,
7799 "Bring the PF device up before attempting to use the VF device.\n");
8151d294
WM
7800 }
7801 return igb_set_vf_mac(adapter, vf, mac);
7802}
7803
17dc566c
LL
7804static int igb_link_mbps(int internal_link_speed)
7805{
7806 switch (internal_link_speed) {
7807 case SPEED_100:
7808 return 100;
7809 case SPEED_1000:
7810 return 1000;
7811 default:
7812 return 0;
7813 }
7814}
7815
7816static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7817 int link_speed)
7818{
7819 int rf_dec, rf_int;
7820 u32 bcnrc_val;
7821
7822 if (tx_rate != 0) {
7823 /* Calculate the rate factor values to set */
7824 rf_int = link_speed / tx_rate;
7825 rf_dec = (link_speed - (rf_int * tx_rate));
b980ac18
JK
7826 rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7827 tx_rate;
17dc566c
LL
7828
7829 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
b980ac18
JK
7830 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7831 E1000_RTTBCNRC_RF_INT_MASK);
17dc566c
LL
7832 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7833 } else {
7834 bcnrc_val = 0;
7835 }
7836
7837 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
b980ac18 7838 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
f00b0da7
LL
7839 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7840 */
7841 wr32(E1000_RTTBCNRM, 0x14);
17dc566c
LL
7842 wr32(E1000_RTTBCNRC, bcnrc_val);
7843}
7844
7845static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7846{
7847 int actual_link_speed, i;
7848 bool reset_rate = false;
7849
7850 /* VF TX rate limit was not set or not supported */
7851 if ((adapter->vf_rate_link_speed == 0) ||
7852 (adapter->hw.mac.type != e1000_82576))
7853 return;
7854
7855 actual_link_speed = igb_link_mbps(adapter->link_speed);
7856 if (actual_link_speed != adapter->vf_rate_link_speed) {
7857 reset_rate = true;
7858 adapter->vf_rate_link_speed = 0;
7859 dev_info(&adapter->pdev->dev,
b980ac18 7860 "Link speed has been changed. VF Transmit rate is disabled\n");
17dc566c
LL
7861 }
7862
7863 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7864 if (reset_rate)
7865 adapter->vf_data[i].tx_rate = 0;
7866
7867 igb_set_vf_rate_limit(&adapter->hw, i,
b980ac18
JK
7868 adapter->vf_data[i].tx_rate,
7869 actual_link_speed);
17dc566c
LL
7870 }
7871}
7872
8151d294
WM
7873static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7874{
17dc566c
LL
7875 struct igb_adapter *adapter = netdev_priv(netdev);
7876 struct e1000_hw *hw = &adapter->hw;
7877 int actual_link_speed;
7878
7879 if (hw->mac.type != e1000_82576)
7880 return -EOPNOTSUPP;
7881
7882 actual_link_speed = igb_link_mbps(adapter->link_speed);
7883 if ((vf >= adapter->vfs_allocated_count) ||
7884 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7885 (tx_rate < 0) || (tx_rate > actual_link_speed))
7886 return -EINVAL;
7887
7888 adapter->vf_rate_link_speed = actual_link_speed;
7889 adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7890 igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7891
7892 return 0;
8151d294
WM
7893}
7894
70ea4783
LL
7895static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7896 bool setting)
7897{
7898 struct igb_adapter *adapter = netdev_priv(netdev);
7899 struct e1000_hw *hw = &adapter->hw;
7900 u32 reg_val, reg_offset;
7901
7902 if (!adapter->vfs_allocated_count)
7903 return -EOPNOTSUPP;
7904
7905 if (vf >= adapter->vfs_allocated_count)
7906 return -EINVAL;
7907
7908 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7909 reg_val = rd32(reg_offset);
7910 if (setting)
7911 reg_val |= ((1 << vf) |
7912 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7913 else
7914 reg_val &= ~((1 << vf) |
7915 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7916 wr32(reg_offset, reg_val);
7917
7918 adapter->vf_data[vf].spoofchk_enabled = setting;
7919 return E1000_SUCCESS;
7920}
7921
8151d294
WM
7922static int igb_ndo_get_vf_config(struct net_device *netdev,
7923 int vf, struct ifla_vf_info *ivi)
7924{
7925 struct igb_adapter *adapter = netdev_priv(netdev);
7926 if (vf >= adapter->vfs_allocated_count)
7927 return -EINVAL;
7928 ivi->vf = vf;
7929 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
17dc566c 7930 ivi->tx_rate = adapter->vf_data[vf].tx_rate;
8151d294
WM
7931 ivi->vlan = adapter->vf_data[vf].pf_vlan;
7932 ivi->qos = adapter->vf_data[vf].pf_qos;
70ea4783 7933 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
8151d294
WM
7934 return 0;
7935}
7936
4ae196df
AD
7937static void igb_vmm_control(struct igb_adapter *adapter)
7938{
7939 struct e1000_hw *hw = &adapter->hw;
10d8e907 7940 u32 reg;
4ae196df 7941
52a1dd4d
AD
7942 switch (hw->mac.type) {
7943 case e1000_82575:
f96a8a0b
CW
7944 case e1000_i210:
7945 case e1000_i211:
ceb5f13b 7946 case e1000_i354:
52a1dd4d
AD
7947 default:
7948 /* replication is not supported for 82575 */
4ae196df 7949 return;
52a1dd4d
AD
7950 case e1000_82576:
7951 /* notify HW that the MAC is adding vlan tags */
7952 reg = rd32(E1000_DTXCTL);
7953 reg |= E1000_DTXCTL_VLAN_ADDED;
7954 wr32(E1000_DTXCTL, reg);
7955 case e1000_82580:
7956 /* enable replication vlan tag stripping */
7957 reg = rd32(E1000_RPLOLR);
7958 reg |= E1000_RPLOLR_STRVLAN;
7959 wr32(E1000_RPLOLR, reg);
d2ba2ed8
AD
7960 case e1000_i350:
7961 /* none of the above registers are supported by i350 */
52a1dd4d
AD
7962 break;
7963 }
10d8e907 7964
d4960307
AD
7965 if (adapter->vfs_allocated_count) {
7966 igb_vmdq_set_loopback_pf(hw, true);
7967 igb_vmdq_set_replication_pf(hw, true);
13800469 7968 igb_vmdq_set_anti_spoofing_pf(hw, true,
b980ac18 7969 adapter->vfs_allocated_count);
d4960307
AD
7970 } else {
7971 igb_vmdq_set_loopback_pf(hw, false);
7972 igb_vmdq_set_replication_pf(hw, false);
7973 }
4ae196df
AD
7974}
7975
b6e0c419
CW
7976static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7977{
7978 struct e1000_hw *hw = &adapter->hw;
7979 u32 dmac_thr;
7980 u16 hwm;
7981
7982 if (hw->mac.type > e1000_82580) {
7983 if (adapter->flags & IGB_FLAG_DMAC) {
7984 u32 reg;
7985
7986 /* force threshold to 0. */
7987 wr32(E1000_DMCTXTH, 0);
7988
b980ac18 7989 /* DMA Coalescing high water mark needs to be greater
e8c626e9
MV
7990 * than the Rx threshold. Set hwm to PBA - max frame
7991 * size in 16B units, capping it at PBA - 6KB.
b6e0c419 7992 */
e8c626e9
MV
7993 hwm = 64 * pba - adapter->max_frame_size / 16;
7994 if (hwm < 64 * (pba - 6))
7995 hwm = 64 * (pba - 6);
7996 reg = rd32(E1000_FCRTC);
7997 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7998 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7999 & E1000_FCRTC_RTH_COAL_MASK);
8000 wr32(E1000_FCRTC, reg);
8001
b980ac18 8002 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
e8c626e9
MV
8003 * frame size, capping it at PBA - 10KB.
8004 */
8005 dmac_thr = pba - adapter->max_frame_size / 512;
8006 if (dmac_thr < pba - 10)
8007 dmac_thr = pba - 10;
b6e0c419
CW
8008 reg = rd32(E1000_DMACR);
8009 reg &= ~E1000_DMACR_DMACTHR_MASK;
b6e0c419
CW
8010 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
8011 & E1000_DMACR_DMACTHR_MASK);
8012
8013 /* transition to L0x or L1 if available..*/
8014 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
8015
8016 /* watchdog timer= +-1000 usec in 32usec intervals */
8017 reg |= (1000 >> 5);
0c02dd98
MV
8018
8019 /* Disable BMC-to-OS Watchdog Enable */
ceb5f13b
CW
8020 if (hw->mac.type != e1000_i354)
8021 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
8022
b6e0c419
CW
8023 wr32(E1000_DMACR, reg);
8024
b980ac18 8025 /* no lower threshold to disable
b6e0c419
CW
8026 * coalescing(smart fifb)-UTRESH=0
8027 */
8028 wr32(E1000_DMCRTRH, 0);
b6e0c419
CW
8029
8030 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
8031
8032 wr32(E1000_DMCTLX, reg);
8033
b980ac18 8034 /* free space in tx packet buffer to wake from
b6e0c419
CW
8035 * DMA coal
8036 */
8037 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
8038 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
8039
b980ac18 8040 /* make low power state decision controlled
b6e0c419
CW
8041 * by DMA coal
8042 */
8043 reg = rd32(E1000_PCIEMISC);
8044 reg &= ~E1000_PCIEMISC_LX_DECISION;
8045 wr32(E1000_PCIEMISC, reg);
8046 } /* endif adapter->dmac is not disabled */
8047 } else if (hw->mac.type == e1000_82580) {
8048 u32 reg = rd32(E1000_PCIEMISC);
8049 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
8050 wr32(E1000_DMACR, 0);
8051 }
8052}
8053
b980ac18
JK
8054/**
8055 * igb_read_i2c_byte - Reads 8 bit word over I2C
441fc6fd
CW
8056 * @hw: pointer to hardware structure
8057 * @byte_offset: byte offset to read
8058 * @dev_addr: device address
8059 * @data: value read
8060 *
8061 * Performs byte read operation over I2C interface at
8062 * a specified device address.
b980ac18 8063 **/
441fc6fd 8064s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
b980ac18 8065 u8 dev_addr, u8 *data)
441fc6fd
CW
8066{
8067 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
603e86fa 8068 struct i2c_client *this_client = adapter->i2c_client;
441fc6fd
CW
8069 s32 status;
8070 u16 swfw_mask = 0;
8071
8072 if (!this_client)
8073 return E1000_ERR_I2C;
8074
8075 swfw_mask = E1000_SWFW_PHY0_SM;
8076
8077 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
8078 != E1000_SUCCESS)
8079 return E1000_ERR_SWFW_SYNC;
8080
8081 status = i2c_smbus_read_byte_data(this_client, byte_offset);
8082 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8083
8084 if (status < 0)
8085 return E1000_ERR_I2C;
8086 else {
8087 *data = status;
8088 return E1000_SUCCESS;
8089 }
8090}
8091
b980ac18
JK
8092/**
8093 * igb_write_i2c_byte - Writes 8 bit word over I2C
441fc6fd
CW
8094 * @hw: pointer to hardware structure
8095 * @byte_offset: byte offset to write
8096 * @dev_addr: device address
8097 * @data: value to write
8098 *
8099 * Performs byte write operation over I2C interface at
8100 * a specified device address.
b980ac18 8101 **/
441fc6fd 8102s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
b980ac18 8103 u8 dev_addr, u8 data)
441fc6fd
CW
8104{
8105 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
603e86fa 8106 struct i2c_client *this_client = adapter->i2c_client;
441fc6fd
CW
8107 s32 status;
8108 u16 swfw_mask = E1000_SWFW_PHY0_SM;
8109
8110 if (!this_client)
8111 return E1000_ERR_I2C;
8112
8113 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
8114 return E1000_ERR_SWFW_SYNC;
8115 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8116 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8117
8118 if (status)
8119 return E1000_ERR_I2C;
8120 else
8121 return E1000_SUCCESS;
8122
8123}
907b7835
LMV
8124
8125int igb_reinit_queues(struct igb_adapter *adapter)
8126{
8127 struct net_device *netdev = adapter->netdev;
8128 struct pci_dev *pdev = adapter->pdev;
8129 int err = 0;
8130
8131 if (netif_running(netdev))
8132 igb_close(netdev);
8133
02ef6e1d 8134 igb_reset_interrupt_capability(adapter);
907b7835
LMV
8135
8136 if (igb_init_interrupt_scheme(adapter, true)) {
8137 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8138 return -ENOMEM;
8139 }
8140
8141 if (netif_running(netdev))
8142 err = igb_open(netdev);
8143
8144 return err;
8145}
9d5c8243 8146/* igb_main.c */