]>
Commit | Line | Data |
---|---|---|
783e9b48 WC |
1 | /* |
2 | * QEMU dump | |
3 | * | |
4 | * Copyright Fujitsu, Corp. 2011, 2012 | |
5 | * | |
6 | * Authors: | |
7 | * Wen Congyang <wency@cn.fujitsu.com> | |
8 | * | |
352666e2 SW |
9 | * This work is licensed under the terms of the GNU GPL, version 2 or later. |
10 | * See the COPYING file in the top-level directory. | |
783e9b48 WC |
11 | * |
12 | */ | |
13 | ||
14 | #include "qemu-common.h" | |
783e9b48 | 15 | #include "elf.h" |
783e9b48 WC |
16 | #include "cpu.h" |
17 | #include "cpu-all.h" | |
18 | #include "targphys.h" | |
19 | #include "monitor.h" | |
20 | #include "kvm.h" | |
21 | #include "dump.h" | |
22 | #include "sysemu.h" | |
783e9b48 WC |
23 | #include "memory_mapping.h" |
24 | #include "error.h" | |
25 | #include "qmp-commands.h" | |
26 | #include "gdbstub.h" | |
27 | ||
783e9b48 WC |
28 | static uint16_t cpu_convert_to_target16(uint16_t val, int endian) |
29 | { | |
30 | if (endian == ELFDATA2LSB) { | |
31 | val = cpu_to_le16(val); | |
32 | } else { | |
33 | val = cpu_to_be16(val); | |
34 | } | |
35 | ||
36 | return val; | |
37 | } | |
38 | ||
39 | static uint32_t cpu_convert_to_target32(uint32_t val, int endian) | |
40 | { | |
41 | if (endian == ELFDATA2LSB) { | |
42 | val = cpu_to_le32(val); | |
43 | } else { | |
44 | val = cpu_to_be32(val); | |
45 | } | |
46 | ||
47 | return val; | |
48 | } | |
49 | ||
50 | static uint64_t cpu_convert_to_target64(uint64_t val, int endian) | |
51 | { | |
52 | if (endian == ELFDATA2LSB) { | |
53 | val = cpu_to_le64(val); | |
54 | } else { | |
55 | val = cpu_to_be64(val); | |
56 | } | |
57 | ||
58 | return val; | |
59 | } | |
60 | ||
61 | typedef struct DumpState { | |
62 | ArchDumpInfo dump_info; | |
63 | MemoryMappingList list; | |
64 | uint16_t phdr_num; | |
65 | uint32_t sh_info; | |
66 | bool have_section; | |
67 | bool resume; | |
68 | size_t note_size; | |
69 | target_phys_addr_t memory_offset; | |
70 | int fd; | |
71 | ||
72 | RAMBlock *block; | |
73 | ram_addr_t start; | |
74 | bool has_filter; | |
75 | int64_t begin; | |
76 | int64_t length; | |
77 | Error **errp; | |
78 | } DumpState; | |
79 | ||
80 | static int dump_cleanup(DumpState *s) | |
81 | { | |
82 | int ret = 0; | |
83 | ||
84 | memory_mapping_list_free(&s->list); | |
85 | if (s->fd != -1) { | |
86 | close(s->fd); | |
87 | } | |
88 | if (s->resume) { | |
89 | vm_start(); | |
90 | } | |
91 | ||
92 | return ret; | |
93 | } | |
94 | ||
95 | static void dump_error(DumpState *s, const char *reason) | |
96 | { | |
97 | dump_cleanup(s); | |
98 | } | |
99 | ||
100 | static int fd_write_vmcore(void *buf, size_t size, void *opaque) | |
101 | { | |
102 | DumpState *s = opaque; | |
103 | int fd = s->fd; | |
104 | size_t writen_size; | |
105 | ||
106 | /* The fd may be passed from user, and it can be non-blocked */ | |
107 | while (size) { | |
108 | writen_size = qemu_write_full(fd, buf, size); | |
109 | if (writen_size != size && errno != EAGAIN) { | |
110 | return -1; | |
111 | } | |
112 | ||
113 | buf += writen_size; | |
114 | size -= writen_size; | |
115 | } | |
116 | ||
117 | return 0; | |
118 | } | |
119 | ||
120 | static int write_elf64_header(DumpState *s) | |
121 | { | |
122 | Elf64_Ehdr elf_header; | |
123 | int ret; | |
124 | int endian = s->dump_info.d_endian; | |
125 | ||
126 | memset(&elf_header, 0, sizeof(Elf64_Ehdr)); | |
127 | memcpy(&elf_header, ELFMAG, SELFMAG); | |
128 | elf_header.e_ident[EI_CLASS] = ELFCLASS64; | |
129 | elf_header.e_ident[EI_DATA] = s->dump_info.d_endian; | |
130 | elf_header.e_ident[EI_VERSION] = EV_CURRENT; | |
131 | elf_header.e_type = cpu_convert_to_target16(ET_CORE, endian); | |
132 | elf_header.e_machine = cpu_convert_to_target16(s->dump_info.d_machine, | |
133 | endian); | |
134 | elf_header.e_version = cpu_convert_to_target32(EV_CURRENT, endian); | |
135 | elf_header.e_ehsize = cpu_convert_to_target16(sizeof(elf_header), endian); | |
136 | elf_header.e_phoff = cpu_convert_to_target64(sizeof(Elf64_Ehdr), endian); | |
137 | elf_header.e_phentsize = cpu_convert_to_target16(sizeof(Elf64_Phdr), | |
138 | endian); | |
139 | elf_header.e_phnum = cpu_convert_to_target16(s->phdr_num, endian); | |
140 | if (s->have_section) { | |
141 | uint64_t shoff = sizeof(Elf64_Ehdr) + sizeof(Elf64_Phdr) * s->sh_info; | |
142 | ||
143 | elf_header.e_shoff = cpu_convert_to_target64(shoff, endian); | |
144 | elf_header.e_shentsize = cpu_convert_to_target16(sizeof(Elf64_Shdr), | |
145 | endian); | |
146 | elf_header.e_shnum = cpu_convert_to_target16(1, endian); | |
147 | } | |
148 | ||
149 | ret = fd_write_vmcore(&elf_header, sizeof(elf_header), s); | |
150 | if (ret < 0) { | |
151 | dump_error(s, "dump: failed to write elf header.\n"); | |
152 | return -1; | |
153 | } | |
154 | ||
155 | return 0; | |
156 | } | |
157 | ||
158 | static int write_elf32_header(DumpState *s) | |
159 | { | |
160 | Elf32_Ehdr elf_header; | |
161 | int ret; | |
162 | int endian = s->dump_info.d_endian; | |
163 | ||
164 | memset(&elf_header, 0, sizeof(Elf32_Ehdr)); | |
165 | memcpy(&elf_header, ELFMAG, SELFMAG); | |
166 | elf_header.e_ident[EI_CLASS] = ELFCLASS32; | |
167 | elf_header.e_ident[EI_DATA] = endian; | |
168 | elf_header.e_ident[EI_VERSION] = EV_CURRENT; | |
169 | elf_header.e_type = cpu_convert_to_target16(ET_CORE, endian); | |
170 | elf_header.e_machine = cpu_convert_to_target16(s->dump_info.d_machine, | |
171 | endian); | |
172 | elf_header.e_version = cpu_convert_to_target32(EV_CURRENT, endian); | |
173 | elf_header.e_ehsize = cpu_convert_to_target16(sizeof(elf_header), endian); | |
174 | elf_header.e_phoff = cpu_convert_to_target32(sizeof(Elf32_Ehdr), endian); | |
175 | elf_header.e_phentsize = cpu_convert_to_target16(sizeof(Elf32_Phdr), | |
176 | endian); | |
177 | elf_header.e_phnum = cpu_convert_to_target16(s->phdr_num, endian); | |
178 | if (s->have_section) { | |
179 | uint32_t shoff = sizeof(Elf32_Ehdr) + sizeof(Elf32_Phdr) * s->sh_info; | |
180 | ||
181 | elf_header.e_shoff = cpu_convert_to_target32(shoff, endian); | |
182 | elf_header.e_shentsize = cpu_convert_to_target16(sizeof(Elf32_Shdr), | |
183 | endian); | |
184 | elf_header.e_shnum = cpu_convert_to_target16(1, endian); | |
185 | } | |
186 | ||
187 | ret = fd_write_vmcore(&elf_header, sizeof(elf_header), s); | |
188 | if (ret < 0) { | |
189 | dump_error(s, "dump: failed to write elf header.\n"); | |
190 | return -1; | |
191 | } | |
192 | ||
193 | return 0; | |
194 | } | |
195 | ||
196 | static int write_elf64_load(DumpState *s, MemoryMapping *memory_mapping, | |
197 | int phdr_index, target_phys_addr_t offset) | |
198 | { | |
199 | Elf64_Phdr phdr; | |
200 | int ret; | |
201 | int endian = s->dump_info.d_endian; | |
202 | ||
203 | memset(&phdr, 0, sizeof(Elf64_Phdr)); | |
204 | phdr.p_type = cpu_convert_to_target32(PT_LOAD, endian); | |
205 | phdr.p_offset = cpu_convert_to_target64(offset, endian); | |
206 | phdr.p_paddr = cpu_convert_to_target64(memory_mapping->phys_addr, endian); | |
207 | if (offset == -1) { | |
208 | /* When the memory is not stored into vmcore, offset will be -1 */ | |
209 | phdr.p_filesz = 0; | |
210 | } else { | |
211 | phdr.p_filesz = cpu_convert_to_target64(memory_mapping->length, endian); | |
212 | } | |
213 | phdr.p_memsz = cpu_convert_to_target64(memory_mapping->length, endian); | |
214 | phdr.p_vaddr = cpu_convert_to_target64(memory_mapping->virt_addr, endian); | |
215 | ||
216 | ret = fd_write_vmcore(&phdr, sizeof(Elf64_Phdr), s); | |
217 | if (ret < 0) { | |
218 | dump_error(s, "dump: failed to write program header table.\n"); | |
219 | return -1; | |
220 | } | |
221 | ||
222 | return 0; | |
223 | } | |
224 | ||
225 | static int write_elf32_load(DumpState *s, MemoryMapping *memory_mapping, | |
226 | int phdr_index, target_phys_addr_t offset) | |
227 | { | |
228 | Elf32_Phdr phdr; | |
229 | int ret; | |
230 | int endian = s->dump_info.d_endian; | |
231 | ||
232 | memset(&phdr, 0, sizeof(Elf32_Phdr)); | |
233 | phdr.p_type = cpu_convert_to_target32(PT_LOAD, endian); | |
234 | phdr.p_offset = cpu_convert_to_target32(offset, endian); | |
235 | phdr.p_paddr = cpu_convert_to_target32(memory_mapping->phys_addr, endian); | |
236 | if (offset == -1) { | |
237 | /* When the memory is not stored into vmcore, offset will be -1 */ | |
238 | phdr.p_filesz = 0; | |
239 | } else { | |
240 | phdr.p_filesz = cpu_convert_to_target32(memory_mapping->length, endian); | |
241 | } | |
242 | phdr.p_memsz = cpu_convert_to_target32(memory_mapping->length, endian); | |
243 | phdr.p_vaddr = cpu_convert_to_target32(memory_mapping->virt_addr, endian); | |
244 | ||
245 | ret = fd_write_vmcore(&phdr, sizeof(Elf32_Phdr), s); | |
246 | if (ret < 0) { | |
247 | dump_error(s, "dump: failed to write program header table.\n"); | |
248 | return -1; | |
249 | } | |
250 | ||
251 | return 0; | |
252 | } | |
253 | ||
254 | static int write_elf64_note(DumpState *s) | |
255 | { | |
256 | Elf64_Phdr phdr; | |
257 | int endian = s->dump_info.d_endian; | |
258 | target_phys_addr_t begin = s->memory_offset - s->note_size; | |
259 | int ret; | |
260 | ||
261 | memset(&phdr, 0, sizeof(Elf64_Phdr)); | |
262 | phdr.p_type = cpu_convert_to_target32(PT_NOTE, endian); | |
263 | phdr.p_offset = cpu_convert_to_target64(begin, endian); | |
264 | phdr.p_paddr = 0; | |
265 | phdr.p_filesz = cpu_convert_to_target64(s->note_size, endian); | |
266 | phdr.p_memsz = cpu_convert_to_target64(s->note_size, endian); | |
267 | phdr.p_vaddr = 0; | |
268 | ||
269 | ret = fd_write_vmcore(&phdr, sizeof(Elf64_Phdr), s); | |
270 | if (ret < 0) { | |
271 | dump_error(s, "dump: failed to write program header table.\n"); | |
272 | return -1; | |
273 | } | |
274 | ||
275 | return 0; | |
276 | } | |
277 | ||
278 | static int write_elf64_notes(DumpState *s) | |
279 | { | |
280 | CPUArchState *env; | |
281 | int ret; | |
282 | int id; | |
283 | ||
284 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
285 | id = cpu_index(env); | |
286 | ret = cpu_write_elf64_note(fd_write_vmcore, env, id, s); | |
287 | if (ret < 0) { | |
288 | dump_error(s, "dump: failed to write elf notes.\n"); | |
289 | return -1; | |
290 | } | |
291 | } | |
292 | ||
293 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
294 | ret = cpu_write_elf64_qemunote(fd_write_vmcore, env, s); | |
295 | if (ret < 0) { | |
296 | dump_error(s, "dump: failed to write CPU status.\n"); | |
297 | return -1; | |
298 | } | |
299 | } | |
300 | ||
301 | return 0; | |
302 | } | |
303 | ||
304 | static int write_elf32_note(DumpState *s) | |
305 | { | |
306 | target_phys_addr_t begin = s->memory_offset - s->note_size; | |
307 | Elf32_Phdr phdr; | |
308 | int endian = s->dump_info.d_endian; | |
309 | int ret; | |
310 | ||
311 | memset(&phdr, 0, sizeof(Elf32_Phdr)); | |
312 | phdr.p_type = cpu_convert_to_target32(PT_NOTE, endian); | |
313 | phdr.p_offset = cpu_convert_to_target32(begin, endian); | |
314 | phdr.p_paddr = 0; | |
315 | phdr.p_filesz = cpu_convert_to_target32(s->note_size, endian); | |
316 | phdr.p_memsz = cpu_convert_to_target32(s->note_size, endian); | |
317 | phdr.p_vaddr = 0; | |
318 | ||
319 | ret = fd_write_vmcore(&phdr, sizeof(Elf32_Phdr), s); | |
320 | if (ret < 0) { | |
321 | dump_error(s, "dump: failed to write program header table.\n"); | |
322 | return -1; | |
323 | } | |
324 | ||
325 | return 0; | |
326 | } | |
327 | ||
328 | static int write_elf32_notes(DumpState *s) | |
329 | { | |
330 | CPUArchState *env; | |
331 | int ret; | |
332 | int id; | |
333 | ||
334 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
335 | id = cpu_index(env); | |
336 | ret = cpu_write_elf32_note(fd_write_vmcore, env, id, s); | |
337 | if (ret < 0) { | |
338 | dump_error(s, "dump: failed to write elf notes.\n"); | |
339 | return -1; | |
340 | } | |
341 | } | |
342 | ||
343 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
344 | ret = cpu_write_elf32_qemunote(fd_write_vmcore, env, s); | |
345 | if (ret < 0) { | |
346 | dump_error(s, "dump: failed to write CPU status.\n"); | |
347 | return -1; | |
348 | } | |
349 | } | |
350 | ||
351 | return 0; | |
352 | } | |
353 | ||
354 | static int write_elf_section(DumpState *s, int type) | |
355 | { | |
356 | Elf32_Shdr shdr32; | |
357 | Elf64_Shdr shdr64; | |
358 | int endian = s->dump_info.d_endian; | |
359 | int shdr_size; | |
360 | void *shdr; | |
361 | int ret; | |
362 | ||
363 | if (type == 0) { | |
364 | shdr_size = sizeof(Elf32_Shdr); | |
365 | memset(&shdr32, 0, shdr_size); | |
366 | shdr32.sh_info = cpu_convert_to_target32(s->sh_info, endian); | |
367 | shdr = &shdr32; | |
368 | } else { | |
369 | shdr_size = sizeof(Elf64_Shdr); | |
370 | memset(&shdr64, 0, shdr_size); | |
371 | shdr64.sh_info = cpu_convert_to_target32(s->sh_info, endian); | |
372 | shdr = &shdr64; | |
373 | } | |
374 | ||
375 | ret = fd_write_vmcore(&shdr, shdr_size, s); | |
376 | if (ret < 0) { | |
377 | dump_error(s, "dump: failed to write section header table.\n"); | |
378 | return -1; | |
379 | } | |
380 | ||
381 | return 0; | |
382 | } | |
383 | ||
384 | static int write_data(DumpState *s, void *buf, int length) | |
385 | { | |
386 | int ret; | |
387 | ||
388 | ret = fd_write_vmcore(buf, length, s); | |
389 | if (ret < 0) { | |
390 | dump_error(s, "dump: failed to save memory.\n"); | |
391 | return -1; | |
392 | } | |
393 | ||
394 | return 0; | |
395 | } | |
396 | ||
397 | /* write the memroy to vmcore. 1 page per I/O. */ | |
398 | static int write_memory(DumpState *s, RAMBlock *block, ram_addr_t start, | |
399 | int64_t size) | |
400 | { | |
401 | int64_t i; | |
402 | int ret; | |
403 | ||
404 | for (i = 0; i < size / TARGET_PAGE_SIZE; i++) { | |
405 | ret = write_data(s, block->host + start + i * TARGET_PAGE_SIZE, | |
406 | TARGET_PAGE_SIZE); | |
407 | if (ret < 0) { | |
408 | return ret; | |
409 | } | |
410 | } | |
411 | ||
412 | if ((size % TARGET_PAGE_SIZE) != 0) { | |
413 | ret = write_data(s, block->host + start + i * TARGET_PAGE_SIZE, | |
414 | size % TARGET_PAGE_SIZE); | |
415 | if (ret < 0) { | |
416 | return ret; | |
417 | } | |
418 | } | |
419 | ||
420 | return 0; | |
421 | } | |
422 | ||
423 | /* get the memory's offset in the vmcore */ | |
424 | static target_phys_addr_t get_offset(target_phys_addr_t phys_addr, | |
425 | DumpState *s) | |
426 | { | |
427 | RAMBlock *block; | |
428 | target_phys_addr_t offset = s->memory_offset; | |
429 | int64_t size_in_block, start; | |
430 | ||
431 | if (s->has_filter) { | |
432 | if (phys_addr < s->begin || phys_addr >= s->begin + s->length) { | |
433 | return -1; | |
434 | } | |
435 | } | |
436 | ||
437 | QLIST_FOREACH(block, &ram_list.blocks, next) { | |
438 | if (s->has_filter) { | |
439 | if (block->offset >= s->begin + s->length || | |
440 | block->offset + block->length <= s->begin) { | |
441 | /* This block is out of the range */ | |
442 | continue; | |
443 | } | |
444 | ||
445 | if (s->begin <= block->offset) { | |
446 | start = block->offset; | |
447 | } else { | |
448 | start = s->begin; | |
449 | } | |
450 | ||
451 | size_in_block = block->length - (start - block->offset); | |
452 | if (s->begin + s->length < block->offset + block->length) { | |
453 | size_in_block -= block->offset + block->length - | |
454 | (s->begin + s->length); | |
455 | } | |
456 | } else { | |
457 | start = block->offset; | |
458 | size_in_block = block->length; | |
459 | } | |
460 | ||
461 | if (phys_addr >= start && phys_addr < start + size_in_block) { | |
462 | return phys_addr - start + offset; | |
463 | } | |
464 | ||
465 | offset += size_in_block; | |
466 | } | |
467 | ||
468 | return -1; | |
469 | } | |
470 | ||
471 | static int write_elf_loads(DumpState *s) | |
472 | { | |
473 | target_phys_addr_t offset; | |
474 | MemoryMapping *memory_mapping; | |
475 | uint32_t phdr_index = 1; | |
476 | int ret; | |
477 | uint32_t max_index; | |
478 | ||
479 | if (s->have_section) { | |
480 | max_index = s->sh_info; | |
481 | } else { | |
482 | max_index = s->phdr_num; | |
483 | } | |
484 | ||
485 | QTAILQ_FOREACH(memory_mapping, &s->list.head, next) { | |
486 | offset = get_offset(memory_mapping->phys_addr, s); | |
487 | if (s->dump_info.d_class == ELFCLASS64) { | |
488 | ret = write_elf64_load(s, memory_mapping, phdr_index++, offset); | |
489 | } else { | |
490 | ret = write_elf32_load(s, memory_mapping, phdr_index++, offset); | |
491 | } | |
492 | ||
493 | if (ret < 0) { | |
494 | return -1; | |
495 | } | |
496 | ||
497 | if (phdr_index >= max_index) { | |
498 | break; | |
499 | } | |
500 | } | |
501 | ||
502 | return 0; | |
503 | } | |
504 | ||
505 | /* write elf header, PT_NOTE and elf note to vmcore. */ | |
506 | static int dump_begin(DumpState *s) | |
507 | { | |
508 | int ret; | |
509 | ||
510 | /* | |
511 | * the vmcore's format is: | |
512 | * -------------- | |
513 | * | elf header | | |
514 | * -------------- | |
515 | * | PT_NOTE | | |
516 | * -------------- | |
517 | * | PT_LOAD | | |
518 | * -------------- | |
519 | * | ...... | | |
520 | * -------------- | |
521 | * | PT_LOAD | | |
522 | * -------------- | |
523 | * | sec_hdr | | |
524 | * -------------- | |
525 | * | elf note | | |
526 | * -------------- | |
527 | * | memory | | |
528 | * -------------- | |
529 | * | |
530 | * we only know where the memory is saved after we write elf note into | |
531 | * vmcore. | |
532 | */ | |
533 | ||
534 | /* write elf header to vmcore */ | |
535 | if (s->dump_info.d_class == ELFCLASS64) { | |
536 | ret = write_elf64_header(s); | |
537 | } else { | |
538 | ret = write_elf32_header(s); | |
539 | } | |
540 | if (ret < 0) { | |
541 | return -1; | |
542 | } | |
543 | ||
544 | if (s->dump_info.d_class == ELFCLASS64) { | |
545 | /* write PT_NOTE to vmcore */ | |
546 | if (write_elf64_note(s) < 0) { | |
547 | return -1; | |
548 | } | |
549 | ||
550 | /* write all PT_LOAD to vmcore */ | |
551 | if (write_elf_loads(s) < 0) { | |
552 | return -1; | |
553 | } | |
554 | ||
555 | /* write section to vmcore */ | |
556 | if (s->have_section) { | |
557 | if (write_elf_section(s, 1) < 0) { | |
558 | return -1; | |
559 | } | |
560 | } | |
561 | ||
562 | /* write notes to vmcore */ | |
563 | if (write_elf64_notes(s) < 0) { | |
564 | return -1; | |
565 | } | |
566 | ||
567 | } else { | |
568 | /* write PT_NOTE to vmcore */ | |
569 | if (write_elf32_note(s) < 0) { | |
570 | return -1; | |
571 | } | |
572 | ||
573 | /* write all PT_LOAD to vmcore */ | |
574 | if (write_elf_loads(s) < 0) { | |
575 | return -1; | |
576 | } | |
577 | ||
578 | /* write section to vmcore */ | |
579 | if (s->have_section) { | |
580 | if (write_elf_section(s, 0) < 0) { | |
581 | return -1; | |
582 | } | |
583 | } | |
584 | ||
585 | /* write notes to vmcore */ | |
586 | if (write_elf32_notes(s) < 0) { | |
587 | return -1; | |
588 | } | |
589 | } | |
590 | ||
591 | return 0; | |
592 | } | |
593 | ||
594 | /* write PT_LOAD to vmcore */ | |
595 | static int dump_completed(DumpState *s) | |
596 | { | |
597 | dump_cleanup(s); | |
598 | return 0; | |
599 | } | |
600 | ||
601 | static int get_next_block(DumpState *s, RAMBlock *block) | |
602 | { | |
603 | while (1) { | |
604 | block = QLIST_NEXT(block, next); | |
605 | if (!block) { | |
606 | /* no more block */ | |
607 | return 1; | |
608 | } | |
609 | ||
610 | s->start = 0; | |
611 | s->block = block; | |
612 | if (s->has_filter) { | |
613 | if (block->offset >= s->begin + s->length || | |
614 | block->offset + block->length <= s->begin) { | |
615 | /* This block is out of the range */ | |
616 | continue; | |
617 | } | |
618 | ||
619 | if (s->begin > block->offset) { | |
620 | s->start = s->begin - block->offset; | |
621 | } | |
622 | } | |
623 | ||
624 | return 0; | |
625 | } | |
626 | } | |
627 | ||
628 | /* write all memory to vmcore */ | |
629 | static int dump_iterate(DumpState *s) | |
630 | { | |
631 | RAMBlock *block; | |
632 | int64_t size; | |
633 | int ret; | |
634 | ||
635 | while (1) { | |
636 | block = s->block; | |
637 | ||
638 | size = block->length; | |
639 | if (s->has_filter) { | |
640 | size -= s->start; | |
641 | if (s->begin + s->length < block->offset + block->length) { | |
642 | size -= block->offset + block->length - (s->begin + s->length); | |
643 | } | |
644 | } | |
645 | ret = write_memory(s, block, s->start, size); | |
646 | if (ret == -1) { | |
647 | return ret; | |
648 | } | |
649 | ||
650 | ret = get_next_block(s, block); | |
651 | if (ret == 1) { | |
652 | dump_completed(s); | |
653 | return 0; | |
654 | } | |
655 | } | |
656 | } | |
657 | ||
658 | static int create_vmcore(DumpState *s) | |
659 | { | |
660 | int ret; | |
661 | ||
662 | ret = dump_begin(s); | |
663 | if (ret < 0) { | |
664 | return -1; | |
665 | } | |
666 | ||
667 | ret = dump_iterate(s); | |
668 | if (ret < 0) { | |
669 | return -1; | |
670 | } | |
671 | ||
672 | return 0; | |
673 | } | |
674 | ||
675 | static ram_addr_t get_start_block(DumpState *s) | |
676 | { | |
677 | RAMBlock *block; | |
678 | ||
679 | if (!s->has_filter) { | |
680 | s->block = QLIST_FIRST(&ram_list.blocks); | |
681 | return 0; | |
682 | } | |
683 | ||
684 | QLIST_FOREACH(block, &ram_list.blocks, next) { | |
685 | if (block->offset >= s->begin + s->length || | |
686 | block->offset + block->length <= s->begin) { | |
687 | /* This block is out of the range */ | |
688 | continue; | |
689 | } | |
690 | ||
691 | s->block = block; | |
692 | if (s->begin > block->offset) { | |
693 | s->start = s->begin - block->offset; | |
694 | } else { | |
695 | s->start = 0; | |
696 | } | |
697 | return s->start; | |
698 | } | |
699 | ||
700 | return -1; | |
701 | } | |
702 | ||
703 | static int dump_init(DumpState *s, int fd, bool paging, bool has_filter, | |
704 | int64_t begin, int64_t length, Error **errp) | |
705 | { | |
706 | CPUArchState *env; | |
707 | int nr_cpus; | |
708 | int ret; | |
709 | ||
710 | if (runstate_is_running()) { | |
711 | vm_stop(RUN_STATE_SAVE_VM); | |
712 | s->resume = true; | |
713 | } else { | |
714 | s->resume = false; | |
715 | } | |
716 | ||
717 | s->errp = errp; | |
718 | s->fd = fd; | |
719 | s->has_filter = has_filter; | |
720 | s->begin = begin; | |
721 | s->length = length; | |
722 | s->start = get_start_block(s); | |
723 | if (s->start == -1) { | |
724 | error_set(errp, QERR_INVALID_PARAMETER, "begin"); | |
725 | goto cleanup; | |
726 | } | |
727 | ||
728 | /* | |
729 | * get dump info: endian, class and architecture. | |
730 | * If the target architecture is not supported, cpu_get_dump_info() will | |
731 | * return -1. | |
732 | * | |
733 | * if we use kvm, we should synchronize the register before we get dump | |
734 | * info. | |
735 | */ | |
736 | nr_cpus = 0; | |
737 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
738 | cpu_synchronize_state(env); | |
739 | nr_cpus++; | |
740 | } | |
741 | ||
742 | ret = cpu_get_dump_info(&s->dump_info); | |
743 | if (ret < 0) { | |
744 | error_set(errp, QERR_UNSUPPORTED); | |
745 | goto cleanup; | |
746 | } | |
747 | ||
4720bd05 PB |
748 | s->note_size = cpu_get_note_size(s->dump_info.d_class, |
749 | s->dump_info.d_machine, nr_cpus); | |
750 | if (ret < 0) { | |
751 | error_set(errp, QERR_UNSUPPORTED); | |
752 | goto cleanup; | |
753 | } | |
754 | ||
783e9b48 WC |
755 | /* get memory mapping */ |
756 | memory_mapping_list_init(&s->list); | |
757 | if (paging) { | |
758 | qemu_get_guest_memory_mapping(&s->list); | |
759 | } else { | |
760 | qemu_get_guest_simple_memory_mapping(&s->list); | |
761 | } | |
762 | ||
763 | if (s->has_filter) { | |
764 | memory_mapping_filter(&s->list, s->begin, s->length); | |
765 | } | |
766 | ||
767 | /* | |
768 | * calculate phdr_num | |
769 | * | |
770 | * the type of ehdr->e_phnum is uint16_t, so we should avoid overflow | |
771 | */ | |
772 | s->phdr_num = 1; /* PT_NOTE */ | |
773 | if (s->list.num < UINT16_MAX - 2) { | |
774 | s->phdr_num += s->list.num; | |
775 | s->have_section = false; | |
776 | } else { | |
777 | s->have_section = true; | |
778 | s->phdr_num = PN_XNUM; | |
779 | s->sh_info = 1; /* PT_NOTE */ | |
780 | ||
781 | /* the type of shdr->sh_info is uint32_t, so we should avoid overflow */ | |
782 | if (s->list.num <= UINT32_MAX - 1) { | |
783 | s->sh_info += s->list.num; | |
784 | } else { | |
785 | s->sh_info = UINT32_MAX; | |
786 | } | |
787 | } | |
788 | ||
783e9b48 WC |
789 | if (s->dump_info.d_class == ELFCLASS64) { |
790 | if (s->have_section) { | |
791 | s->memory_offset = sizeof(Elf64_Ehdr) + | |
792 | sizeof(Elf64_Phdr) * s->sh_info + | |
793 | sizeof(Elf64_Shdr) + s->note_size; | |
794 | } else { | |
795 | s->memory_offset = sizeof(Elf64_Ehdr) + | |
796 | sizeof(Elf64_Phdr) * s->phdr_num + s->note_size; | |
797 | } | |
798 | } else { | |
799 | if (s->have_section) { | |
800 | s->memory_offset = sizeof(Elf32_Ehdr) + | |
801 | sizeof(Elf32_Phdr) * s->sh_info + | |
802 | sizeof(Elf32_Shdr) + s->note_size; | |
803 | } else { | |
804 | s->memory_offset = sizeof(Elf32_Ehdr) + | |
805 | sizeof(Elf32_Phdr) * s->phdr_num + s->note_size; | |
806 | } | |
807 | } | |
808 | ||
809 | return 0; | |
810 | ||
811 | cleanup: | |
812 | if (s->resume) { | |
813 | vm_start(); | |
814 | } | |
815 | ||
816 | return -1; | |
817 | } | |
818 | ||
819 | void qmp_dump_guest_memory(bool paging, const char *file, bool has_begin, | |
820 | int64_t begin, bool has_length, int64_t length, | |
821 | Error **errp) | |
822 | { | |
823 | const char *p; | |
824 | int fd = -1; | |
825 | DumpState *s; | |
826 | int ret; | |
827 | ||
828 | if (has_begin && !has_length) { | |
829 | error_set(errp, QERR_MISSING_PARAMETER, "length"); | |
830 | return; | |
831 | } | |
832 | if (!has_begin && has_length) { | |
833 | error_set(errp, QERR_MISSING_PARAMETER, "begin"); | |
834 | return; | |
835 | } | |
836 | ||
837 | #if !defined(WIN32) | |
838 | if (strstart(file, "fd:", &p)) { | |
839 | fd = monitor_get_fd(cur_mon, p); | |
840 | if (fd == -1) { | |
841 | error_set(errp, QERR_FD_NOT_FOUND, p); | |
842 | return; | |
843 | } | |
844 | } | |
845 | #endif | |
846 | ||
847 | if (strstart(file, "file:", &p)) { | |
848 | fd = qemu_open(p, O_WRONLY | O_CREAT | O_TRUNC | O_BINARY, S_IRUSR); | |
849 | if (fd < 0) { | |
850 | error_set(errp, QERR_OPEN_FILE_FAILED, p); | |
851 | return; | |
852 | } | |
853 | } | |
854 | ||
855 | if (fd == -1) { | |
856 | error_set(errp, QERR_INVALID_PARAMETER, "protocol"); | |
857 | return; | |
858 | } | |
859 | ||
860 | s = g_malloc(sizeof(DumpState)); | |
861 | ||
862 | ret = dump_init(s, fd, paging, has_begin, begin, length, errp); | |
863 | if (ret < 0) { | |
864 | g_free(s); | |
865 | return; | |
866 | } | |
867 | ||
868 | if (create_vmcore(s) < 0 && !error_is_set(s->errp)) { | |
869 | error_set(errp, QERR_IO_ERROR); | |
870 | } | |
871 | ||
872 | g_free(s); | |
873 | } |