]> git.proxmox.com Git - qemu.git/blame - exec-all.h
Configure check for alsa, by Bernhard Fischer.
[qemu.git] / exec-all.h
CommitLineData
d4e8164f
FB
1/*
2 * internal execution defines for qemu
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20
b346ff46
FB
21/* allow to see translation results - the slowdown should be negligible, so we leave it */
22#define DEBUG_DISAS
23
33417e70
FB
24#ifndef glue
25#define xglue(x, y) x ## y
26#define glue(x, y) xglue(x, y)
27#define stringify(s) tostring(s)
28#define tostring(s) #s
29#endif
30
c98baaac 31#if __GNUC__ < 3
33417e70
FB
32#define __builtin_expect(x, n) (x)
33#endif
34
e2222c39
FB
35#ifdef __i386__
36#define REGPARM(n) __attribute((regparm(n)))
37#else
38#define REGPARM(n)
39#endif
40
b346ff46
FB
41/* is_jmp field values */
42#define DISAS_NEXT 0 /* next instruction can be analyzed */
43#define DISAS_JUMP 1 /* only pc was modified dynamically */
44#define DISAS_UPDATE 2 /* cpu state was modified dynamically */
45#define DISAS_TB_JUMP 3 /* only pc was modified statically */
46
47struct TranslationBlock;
48
49/* XXX: make safe guess about sizes */
50#define MAX_OP_PER_INSTR 32
51#define OPC_BUF_SIZE 512
52#define OPC_MAX_SIZE (OPC_BUF_SIZE - MAX_OP_PER_INSTR)
53
54#define OPPARAM_BUF_SIZE (OPC_BUF_SIZE * 3)
55
56extern uint16_t gen_opc_buf[OPC_BUF_SIZE];
57extern uint32_t gen_opparam_buf[OPPARAM_BUF_SIZE];
c27004ec
FB
58extern long gen_labels[OPC_BUF_SIZE];
59extern int nb_gen_labels;
60extern target_ulong gen_opc_pc[OPC_BUF_SIZE];
61extern target_ulong gen_opc_npc[OPC_BUF_SIZE];
66e85a21 62extern uint8_t gen_opc_cc_op[OPC_BUF_SIZE];
b346ff46 63extern uint8_t gen_opc_instr_start[OPC_BUF_SIZE];
c3278b7b 64extern target_ulong gen_opc_jump_pc[2];
30d6cb84 65extern uint32_t gen_opc_hflags[OPC_BUF_SIZE];
b346ff46 66
9886cc16
FB
67typedef void (GenOpFunc)(void);
68typedef void (GenOpFunc1)(long);
69typedef void (GenOpFunc2)(long, long);
70typedef void (GenOpFunc3)(long, long, long);
71
b346ff46
FB
72#if defined(TARGET_I386)
73
33417e70 74void optimize_flags_init(void);
d4e8164f 75
b346ff46
FB
76#endif
77
78extern FILE *logfile;
79extern int loglevel;
80
4c3a88a2
FB
81int gen_intermediate_code(CPUState *env, struct TranslationBlock *tb);
82int gen_intermediate_code_pc(CPUState *env, struct TranslationBlock *tb);
b346ff46 83void dump_ops(const uint16_t *opc_buf, const uint32_t *opparam_buf);
4c3a88a2 84int cpu_gen_code(CPUState *env, struct TranslationBlock *tb,
b346ff46 85 int max_code_size, int *gen_code_size_ptr);
66e85a21 86int cpu_restore_state(struct TranslationBlock *tb,
58fe2f10
FB
87 CPUState *env, unsigned long searched_pc,
88 void *puc);
89int cpu_gen_code_copy(CPUState *env, struct TranslationBlock *tb,
90 int max_code_size, int *gen_code_size_ptr);
91int cpu_restore_state_copy(struct TranslationBlock *tb,
92 CPUState *env, unsigned long searched_pc,
93 void *puc);
2e12669a 94void cpu_resume_from_signal(CPUState *env1, void *puc);
6a00d601 95void cpu_exec_init(CPUState *env);
53a5960a 96int page_unprotect(target_ulong address, unsigned long pc, void *puc);
2e12669a
FB
97void tb_invalidate_phys_page_range(target_ulong start, target_ulong end,
98 int is_cpu_write_access);
4390df51 99void tb_invalidate_page_range(target_ulong start, target_ulong end);
2e12669a 100void tlb_flush_page(CPUState *env, target_ulong addr);
ee8b7021 101void tlb_flush(CPUState *env, int flush_global);
84b7b8e7
FB
102int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
103 target_phys_addr_t paddr, int prot,
104 int is_user, int is_softmmu);
105static inline int tlb_set_page(CPUState *env, target_ulong vaddr,
106 target_phys_addr_t paddr, int prot,
107 int is_user, int is_softmmu)
108{
109 if (prot & PAGE_READ)
110 prot |= PAGE_EXEC;
111 return tlb_set_page_exec(env, vaddr, paddr, prot, is_user, is_softmmu);
112}
d4e8164f
FB
113
114#define CODE_GEN_MAX_SIZE 65536
115#define CODE_GEN_ALIGN 16 /* must be >= of the size of a icache line */
116
4390df51
FB
117#define CODE_GEN_PHYS_HASH_BITS 15
118#define CODE_GEN_PHYS_HASH_SIZE (1 << CODE_GEN_PHYS_HASH_BITS)
119
d4e8164f 120/* maximum total translate dcode allocated */
4390df51
FB
121
122/* NOTE: the translated code area cannot be too big because on some
c4c7e3e6 123 archs the range of "fast" function calls is limited. Here is a
4390df51
FB
124 summary of the ranges:
125
126 i386 : signed 32 bits
127 arm : signed 26 bits
128 ppc : signed 24 bits
129 sparc : signed 32 bits
130 alpha : signed 23 bits
131*/
132
133#if defined(__alpha__)
134#define CODE_GEN_BUFFER_SIZE (2 * 1024 * 1024)
b8076a74
FB
135#elif defined(__ia64)
136#define CODE_GEN_BUFFER_SIZE (4 * 1024 * 1024) /* range of addl */
4390df51 137#elif defined(__powerpc__)
c4c7e3e6 138#define CODE_GEN_BUFFER_SIZE (6 * 1024 * 1024)
4390df51 139#else
c98baaac 140#define CODE_GEN_BUFFER_SIZE (16 * 1024 * 1024)
4390df51
FB
141#endif
142
d4e8164f
FB
143//#define CODE_GEN_BUFFER_SIZE (128 * 1024)
144
4390df51
FB
145/* estimated block size for TB allocation */
146/* XXX: use a per code average code fragment size and modulate it
147 according to the host CPU */
148#if defined(CONFIG_SOFTMMU)
149#define CODE_GEN_AVG_BLOCK_SIZE 128
150#else
151#define CODE_GEN_AVG_BLOCK_SIZE 64
152#endif
153
154#define CODE_GEN_MAX_BLOCKS (CODE_GEN_BUFFER_SIZE / CODE_GEN_AVG_BLOCK_SIZE)
155
156#if defined(__powerpc__)
157#define USE_DIRECT_JUMP
158#endif
67b915a5 159#if defined(__i386__) && !defined(_WIN32)
d4e8164f
FB
160#define USE_DIRECT_JUMP
161#endif
162
163typedef struct TranslationBlock {
2e12669a
FB
164 target_ulong pc; /* simulated PC corresponding to this block (EIP + CS base) */
165 target_ulong cs_base; /* CS base for this block */
d4e8164f
FB
166 unsigned int flags; /* flags defining in which context the code was generated */
167 uint16_t size; /* size of target code for this block (1 <=
168 size <= TARGET_PAGE_SIZE) */
58fe2f10 169 uint16_t cflags; /* compile flags */
bf088061
FB
170#define CF_CODE_COPY 0x0001 /* block was generated in code copy mode */
171#define CF_TB_FP_USED 0x0002 /* fp ops are used in the TB */
172#define CF_FP_USED 0x0004 /* fp ops are used in the TB or in a chained TB */
2e12669a 173#define CF_SINGLE_INSN 0x0008 /* compile only a single instruction */
58fe2f10 174
d4e8164f 175 uint8_t *tc_ptr; /* pointer to the translated code */
4390df51
FB
176 /* next matching tb for physical address. */
177 struct TranslationBlock *phys_hash_next;
178 /* first and second physical page containing code. The lower bit
179 of the pointer tells the index in page_next[] */
180 struct TranslationBlock *page_next[2];
181 target_ulong page_addr[2];
182
d4e8164f
FB
183 /* the following data are used to directly call another TB from
184 the code of this one. */
185 uint16_t tb_next_offset[2]; /* offset of original jump target */
186#ifdef USE_DIRECT_JUMP
4cbb86e1 187 uint16_t tb_jmp_offset[4]; /* offset of jump instruction */
d4e8164f 188#else
95f7652d 189 uint32_t tb_next[2]; /* address of jump generated code */
d4e8164f
FB
190#endif
191 /* list of TBs jumping to this one. This is a circular list using
192 the two least significant bits of the pointers to tell what is
193 the next pointer: 0 = jmp_next[0], 1 = jmp_next[1], 2 =
194 jmp_first */
195 struct TranslationBlock *jmp_next[2];
196 struct TranslationBlock *jmp_first;
197} TranslationBlock;
198
b362e5e0
PB
199static inline unsigned int tb_jmp_cache_hash_page(target_ulong pc)
200{
201 target_ulong tmp;
202 tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS));
203 return (tmp >> TB_JMP_PAGE_BITS) & TB_JMP_PAGE_MASK;
204}
205
8a40a180 206static inline unsigned int tb_jmp_cache_hash_func(target_ulong pc)
d4e8164f 207{
b362e5e0
PB
208 target_ulong tmp;
209 tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS));
210 return (((tmp >> TB_JMP_PAGE_BITS) & TB_JMP_PAGE_MASK) |
211 (tmp & TB_JMP_ADDR_MASK));
d4e8164f
FB
212}
213
4390df51
FB
214static inline unsigned int tb_phys_hash_func(unsigned long pc)
215{
216 return pc & (CODE_GEN_PHYS_HASH_SIZE - 1);
217}
218
c27004ec 219TranslationBlock *tb_alloc(target_ulong pc);
0124311e 220void tb_flush(CPUState *env);
4390df51
FB
221void tb_link_phys(TranslationBlock *tb,
222 target_ulong phys_pc, target_ulong phys_page2);
d4e8164f 223
4390df51 224extern TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
d4e8164f
FB
225
226extern uint8_t code_gen_buffer[CODE_GEN_BUFFER_SIZE];
227extern uint8_t *code_gen_ptr;
228
4390df51
FB
229#if defined(USE_DIRECT_JUMP)
230
231#if defined(__powerpc__)
4cbb86e1 232static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
d4e8164f
FB
233{
234 uint32_t val, *ptr;
d4e8164f
FB
235
236 /* patch the branch destination */
4cbb86e1 237 ptr = (uint32_t *)jmp_addr;
d4e8164f 238 val = *ptr;
4cbb86e1 239 val = (val & ~0x03fffffc) | ((addr - jmp_addr) & 0x03fffffc);
d4e8164f
FB
240 *ptr = val;
241 /* flush icache */
242 asm volatile ("dcbst 0,%0" : : "r"(ptr) : "memory");
243 asm volatile ("sync" : : : "memory");
244 asm volatile ("icbi 0,%0" : : "r"(ptr) : "memory");
245 asm volatile ("sync" : : : "memory");
246 asm volatile ("isync" : : : "memory");
247}
4390df51
FB
248#elif defined(__i386__)
249static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
250{
251 /* patch the branch destination */
252 *(uint32_t *)jmp_addr = addr - (jmp_addr + 4);
253 /* no need to flush icache explicitely */
254}
255#endif
d4e8164f 256
4cbb86e1
FB
257static inline void tb_set_jmp_target(TranslationBlock *tb,
258 int n, unsigned long addr)
259{
260 unsigned long offset;
261
262 offset = tb->tb_jmp_offset[n];
263 tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
264 offset = tb->tb_jmp_offset[n + 2];
265 if (offset != 0xffff)
266 tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
267}
268
d4e8164f
FB
269#else
270
271/* set the jump target */
272static inline void tb_set_jmp_target(TranslationBlock *tb,
273 int n, unsigned long addr)
274{
95f7652d 275 tb->tb_next[n] = addr;
d4e8164f
FB
276}
277
278#endif
279
280static inline void tb_add_jump(TranslationBlock *tb, int n,
281 TranslationBlock *tb_next)
282{
cf25629d
FB
283 /* NOTE: this test is only needed for thread safety */
284 if (!tb->jmp_next[n]) {
285 /* patch the native jump address */
286 tb_set_jmp_target(tb, n, (unsigned long)tb_next->tc_ptr);
287
288 /* add in TB jmp circular list */
289 tb->jmp_next[n] = tb_next->jmp_first;
290 tb_next->jmp_first = (TranslationBlock *)((long)(tb) | (n));
291 }
d4e8164f
FB
292}
293
a513fe19
FB
294TranslationBlock *tb_find_pc(unsigned long pc_ptr);
295
d4e8164f
FB
296#ifndef offsetof
297#define offsetof(type, field) ((size_t) &((type *)0)->field)
298#endif
299
d549f7d9
FB
300#if defined(_WIN32)
301#define ASM_DATA_SECTION ".section \".data\"\n"
302#define ASM_PREVIOUS_SECTION ".section .text\n"
303#elif defined(__APPLE__)
304#define ASM_DATA_SECTION ".data\n"
305#define ASM_PREVIOUS_SECTION ".text\n"
d549f7d9
FB
306#else
307#define ASM_DATA_SECTION ".section \".data\"\n"
308#define ASM_PREVIOUS_SECTION ".previous\n"
d549f7d9
FB
309#endif
310
75913b72
FB
311#define ASM_OP_LABEL_NAME(n, opname) \
312 ASM_NAME(__op_label) #n "." ASM_NAME(opname)
313
b346ff46
FB
314#if defined(__powerpc__)
315
4390df51 316/* we patch the jump instruction directly */
ae063a68 317#define GOTO_TB(opname, tbparam, n)\
b346ff46 318do {\
d549f7d9 319 asm volatile (ASM_DATA_SECTION\
75913b72 320 ASM_OP_LABEL_NAME(n, opname) ":\n"\
9257a9e4 321 ".long 1f\n"\
d549f7d9
FB
322 ASM_PREVIOUS_SECTION \
323 "b " ASM_NAME(__op_jmp) #n "\n"\
9257a9e4 324 "1:\n");\
4390df51
FB
325} while (0)
326
327#elif defined(__i386__) && defined(USE_DIRECT_JUMP)
328
329/* we patch the jump instruction directly */
ae063a68 330#define GOTO_TB(opname, tbparam, n)\
c27004ec
FB
331do {\
332 asm volatile (".section .data\n"\
75913b72 333 ASM_OP_LABEL_NAME(n, opname) ":\n"\
c27004ec
FB
334 ".long 1f\n"\
335 ASM_PREVIOUS_SECTION \
336 "jmp " ASM_NAME(__op_jmp) #n "\n"\
337 "1:\n");\
338} while (0)
339
b346ff46
FB
340#else
341
342/* jump to next block operations (more portable code, does not need
343 cache flushing, but slower because of indirect jump) */
ae063a68 344#define GOTO_TB(opname, tbparam, n)\
b346ff46 345do {\
2f62b397 346 static void __attribute__((unused)) *dummy ## n = &&dummy_label ## n;\
75913b72
FB
347 static void __attribute__((unused)) *__op_label ## n \
348 __asm__(ASM_OP_LABEL_NAME(n, opname)) = &&label ## n;\
b346ff46 349 goto *(void *)(((TranslationBlock *)tbparam)->tb_next[n]);\
ae063a68
FB
350label ## n: ;\
351dummy_label ## n: ;\
b346ff46
FB
352} while (0)
353
ae063a68
FB
354#endif
355
33417e70
FB
356extern CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
357extern CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 358extern void *io_mem_opaque[IO_MEM_NB_ENTRIES];
33417e70 359
d4e8164f
FB
360#ifdef __powerpc__
361static inline int testandset (int *p)
362{
363 int ret;
364 __asm__ __volatile__ (
02e1ec9b
FB
365 "0: lwarx %0,0,%1\n"
366 " xor. %0,%3,%0\n"
367 " bne 1f\n"
368 " stwcx. %2,0,%1\n"
369 " bne- 0b\n"
d4e8164f
FB
370 "1: "
371 : "=&r" (ret)
372 : "r" (p), "r" (1), "r" (0)
373 : "cr0", "memory");
374 return ret;
375}
376#endif
377
378#ifdef __i386__
379static inline int testandset (int *p)
380{
4955a2cd 381 long int readval = 0;
d4e8164f 382
4955a2cd
FB
383 __asm__ __volatile__ ("lock; cmpxchgl %2, %0"
384 : "+m" (*p), "+a" (readval)
385 : "r" (1)
386 : "cc");
387 return readval;
d4e8164f
FB
388}
389#endif
390
bc51c5c9
FB
391#ifdef __x86_64__
392static inline int testandset (int *p)
393{
4955a2cd 394 long int readval = 0;
bc51c5c9 395
4955a2cd
FB
396 __asm__ __volatile__ ("lock; cmpxchgl %2, %0"
397 : "+m" (*p), "+a" (readval)
398 : "r" (1)
399 : "cc");
400 return readval;
bc51c5c9
FB
401}
402#endif
403
d4e8164f
FB
404#ifdef __s390__
405static inline int testandset (int *p)
406{
407 int ret;
408
409 __asm__ __volatile__ ("0: cs %0,%1,0(%2)\n"
410 " jl 0b"
411 : "=&d" (ret)
412 : "r" (1), "a" (p), "0" (*p)
413 : "cc", "memory" );
414 return ret;
415}
416#endif
417
418#ifdef __alpha__
2f87c607 419static inline int testandset (int *p)
d4e8164f
FB
420{
421 int ret;
422 unsigned long one;
423
424 __asm__ __volatile__ ("0: mov 1,%2\n"
425 " ldl_l %0,%1\n"
426 " stl_c %2,%1\n"
427 " beq %2,1f\n"
428 ".subsection 2\n"
429 "1: br 0b\n"
430 ".previous"
431 : "=r" (ret), "=m" (*p), "=r" (one)
432 : "m" (*p));
433 return ret;
434}
435#endif
436
437#ifdef __sparc__
438static inline int testandset (int *p)
439{
440 int ret;
441
442 __asm__ __volatile__("ldstub [%1], %0"
443 : "=r" (ret)
444 : "r" (p)
445 : "memory");
446
447 return (ret ? 1 : 0);
448}
449#endif
450
a95c6790
FB
451#ifdef __arm__
452static inline int testandset (int *spinlock)
453{
454 register unsigned int ret;
455 __asm__ __volatile__("swp %0, %1, [%2]"
456 : "=r"(ret)
457 : "0"(1), "r"(spinlock));
458
459 return ret;
460}
461#endif
462
38e584a0
FB
463#ifdef __mc68000
464static inline int testandset (int *p)
465{
466 char ret;
467 __asm__ __volatile__("tas %1; sne %0"
468 : "=r" (ret)
469 : "m" (p)
470 : "cc","memory");
4955a2cd 471 return ret;
38e584a0
FB
472}
473#endif
474
b8076a74
FB
475#ifdef __ia64
476#include <ia64intrin.h>
477
478static inline int testandset (int *p)
479{
480 return __sync_lock_test_and_set (p, 1);
481}
482#endif
483
d4e8164f
FB
484typedef int spinlock_t;
485
486#define SPIN_LOCK_UNLOCKED 0
487
aebcb60e 488#if defined(CONFIG_USER_ONLY)
d4e8164f
FB
489static inline void spin_lock(spinlock_t *lock)
490{
491 while (testandset(lock));
492}
493
494static inline void spin_unlock(spinlock_t *lock)
495{
496 *lock = 0;
497}
498
499static inline int spin_trylock(spinlock_t *lock)
500{
501 return !testandset(lock);
502}
3c1cf9fa
FB
503#else
504static inline void spin_lock(spinlock_t *lock)
505{
506}
507
508static inline void spin_unlock(spinlock_t *lock)
509{
510}
511
512static inline int spin_trylock(spinlock_t *lock)
513{
514 return 1;
515}
516#endif
d4e8164f
FB
517
518extern spinlock_t tb_lock;
519
36bdbe54 520extern int tb_invalidated_flag;
6e59c1db 521
e95c8d51 522#if !defined(CONFIG_USER_ONLY)
6e59c1db 523
c27004ec 524void tlb_fill(target_ulong addr, int is_write, int is_user,
6e59c1db
FB
525 void *retaddr);
526
527#define ACCESS_TYPE 3
528#define MEMSUFFIX _code
529#define env cpu_single_env
530
531#define DATA_SIZE 1
532#include "softmmu_header.h"
533
534#define DATA_SIZE 2
535#include "softmmu_header.h"
536
537#define DATA_SIZE 4
538#include "softmmu_header.h"
539
c27004ec
FB
540#define DATA_SIZE 8
541#include "softmmu_header.h"
542
6e59c1db
FB
543#undef ACCESS_TYPE
544#undef MEMSUFFIX
545#undef env
546
547#endif
4390df51
FB
548
549#if defined(CONFIG_USER_ONLY)
550static inline target_ulong get_phys_addr_code(CPUState *env, target_ulong addr)
551{
552 return addr;
553}
554#else
555/* NOTE: this function can trigger an exception */
1ccde1cb
FB
556/* NOTE2: the returned address is not exactly the physical address: it
557 is the offset relative to phys_ram_base */
4390df51
FB
558static inline target_ulong get_phys_addr_code(CPUState *env, target_ulong addr)
559{
c27004ec 560 int is_user, index, pd;
4390df51
FB
561
562 index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
3f5dcc34 563#if defined(TARGET_I386)
4390df51 564 is_user = ((env->hflags & HF_CPL_MASK) == 3);
3f5dcc34
FB
565#elif defined (TARGET_PPC)
566 is_user = msr_pr;
6af0bf9c
FB
567#elif defined (TARGET_MIPS)
568 is_user = ((env->hflags & MIPS_HFLAG_MODE) == MIPS_HFLAG_UM);
e95c8d51
FB
569#elif defined (TARGET_SPARC)
570 is_user = (env->psrs == 0);
b5ff1b31
FB
571#elif defined (TARGET_ARM)
572 is_user = ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR);
fdf9b3e8
FB
573#elif defined (TARGET_SH4)
574 is_user = ((env->sr & SR_MD) == 0);
3f5dcc34 575#else
b5ff1b31 576#error unimplemented CPU
3f5dcc34 577#endif
84b7b8e7 578 if (__builtin_expect(env->tlb_table[is_user][index].addr_code !=
4390df51 579 (addr & TARGET_PAGE_MASK), 0)) {
c27004ec
FB
580 ldub_code(addr);
581 }
84b7b8e7 582 pd = env->tlb_table[is_user][index].addr_code & ~TARGET_PAGE_MASK;
2a4188a3 583 if (pd > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
c27004ec 584 cpu_abort(env, "Trying to execute code outside RAM or ROM at 0x%08lx\n", addr);
4390df51 585 }
84b7b8e7 586 return addr + env->tlb_table[is_user][index].addend - (unsigned long)phys_ram_base;
4390df51
FB
587}
588#endif
9df217a3
FB
589
590
591#ifdef USE_KQEMU
f32fc648
FB
592#define KQEMU_MODIFY_PAGE_MASK (0xff & ~(VGA_DIRTY_FLAG | CODE_DIRTY_FLAG))
593
9df217a3
FB
594int kqemu_init(CPUState *env);
595int kqemu_cpu_exec(CPUState *env);
596void kqemu_flush_page(CPUState *env, target_ulong addr);
597void kqemu_flush(CPUState *env, int global);
4b7df22f 598void kqemu_set_notdirty(CPUState *env, ram_addr_t ram_addr);
f32fc648 599void kqemu_modify_page(CPUState *env, ram_addr_t ram_addr);
a332e112 600void kqemu_cpu_interrupt(CPUState *env);
f32fc648 601void kqemu_record_dump(void);
9df217a3
FB
602
603static inline int kqemu_is_ok(CPUState *env)
604{
605 return(env->kqemu_enabled &&
9df217a3 606 (env->cr[0] & CR0_PE_MASK) &&
f32fc648 607 !(env->hflags & HF_INHIBIT_IRQ_MASK) &&
9df217a3 608 (env->eflags & IF_MASK) &&
f32fc648
FB
609 !(env->eflags & VM_MASK) &&
610 (env->kqemu_enabled == 2 ||
611 ((env->hflags & HF_CPL_MASK) == 3 &&
612 (env->eflags & IOPL_MASK) != IOPL_MASK)));
9df217a3
FB
613}
614
615#endif