]> git.proxmox.com Git - qemu.git/blame - exec.c
When using stdio monitor and VNC display, one can set or clear a VNC password; this...
[qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
d5a8f07c
FB
20#ifdef _WIN32
21#include <windows.h>
22#else
a98d49b1 23#include <sys/types.h>
d5a8f07c
FB
24#include <sys/mman.h>
25#endif
54936004
FB
26#include <stdlib.h>
27#include <stdio.h>
28#include <stdarg.h>
29#include <string.h>
30#include <errno.h>
31#include <unistd.h>
32#include <inttypes.h>
33
6180a181
FB
34#include "cpu.h"
35#include "exec-all.h"
ca10f867 36#include "qemu-common.h"
b67d9a52 37#include "tcg.h"
b3c7724c 38#include "hw/hw.h"
74576198 39#include "osdep.h"
7ba1e619 40#include "kvm.h"
53a5960a
PB
41#if defined(CONFIG_USER_ONLY)
42#include <qemu.h>
43#endif
54936004 44
fd6ce8f6 45//#define DEBUG_TB_INVALIDATE
66e85a21 46//#define DEBUG_FLUSH
9fa3e853 47//#define DEBUG_TLB
67d3b957 48//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
49
50/* make various TB consistency checks */
5fafdf24
TS
51//#define DEBUG_TB_CHECK
52//#define DEBUG_TLB_CHECK
fd6ce8f6 53
1196be37 54//#define DEBUG_IOPORT
db7b5426 55//#define DEBUG_SUBPAGE
1196be37 56
99773bd4
PB
57#if !defined(CONFIG_USER_ONLY)
58/* TB consistency checks only implemented for usermode emulation. */
59#undef DEBUG_TB_CHECK
60#endif
61
9fa3e853
FB
62#define SMC_BITMAP_USE_THRESHOLD 10
63
108c49b8
FB
64#if defined(TARGET_SPARC64)
65#define TARGET_PHYS_ADDR_SPACE_BITS 41
5dcb6b91
BS
66#elif defined(TARGET_SPARC)
67#define TARGET_PHYS_ADDR_SPACE_BITS 36
bedb69ea
JM
68#elif defined(TARGET_ALPHA)
69#define TARGET_PHYS_ADDR_SPACE_BITS 42
70#define TARGET_VIRT_ADDR_SPACE_BITS 42
108c49b8
FB
71#elif defined(TARGET_PPC64)
72#define TARGET_PHYS_ADDR_SPACE_BITS 42
640f42e4 73#elif defined(TARGET_X86_64) && !defined(CONFIG_KQEMU)
00f82b8a 74#define TARGET_PHYS_ADDR_SPACE_BITS 42
640f42e4 75#elif defined(TARGET_I386) && !defined(CONFIG_KQEMU)
00f82b8a 76#define TARGET_PHYS_ADDR_SPACE_BITS 36
108c49b8
FB
77#else
78/* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
79#define TARGET_PHYS_ADDR_SPACE_BITS 32
80#endif
81
bdaf78e0 82static TranslationBlock *tbs;
26a5f13b 83int code_gen_max_blocks;
9fa3e853 84TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 85static int nb_tbs;
eb51d102
FB
86/* any access to the tbs or the page table must use this lock */
87spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 88
141ac468
BS
89#if defined(__arm__) || defined(__sparc_v9__)
90/* The prologue must be reachable with a direct jump. ARM and Sparc64
91 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
92 section close to code segment. */
93#define code_gen_section \
94 __attribute__((__section__(".gen_code"))) \
95 __attribute__((aligned (32)))
f8e2af11
SW
96#elif defined(_WIN32)
97/* Maximum alignment for Win32 is 16. */
98#define code_gen_section \
99 __attribute__((aligned (16)))
d03d860b
BS
100#else
101#define code_gen_section \
102 __attribute__((aligned (32)))
103#endif
104
105uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
106static uint8_t *code_gen_buffer;
107static unsigned long code_gen_buffer_size;
26a5f13b 108/* threshold to flush the translated code buffer */
bdaf78e0 109static unsigned long code_gen_buffer_max_size;
fd6ce8f6
FB
110uint8_t *code_gen_ptr;
111
e2eef170 112#if !defined(CONFIG_USER_ONLY)
9fa3e853 113int phys_ram_fd;
1ccde1cb 114uint8_t *phys_ram_dirty;
74576198 115static int in_migration;
94a6b54f
PB
116
117typedef struct RAMBlock {
118 uint8_t *host;
119 ram_addr_t offset;
120 ram_addr_t length;
121 struct RAMBlock *next;
122} RAMBlock;
123
124static RAMBlock *ram_blocks;
125/* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
ccbb4d44 126 then we can no longer assume contiguous ram offsets, and external uses
94a6b54f
PB
127 of this variable will break. */
128ram_addr_t last_ram_offset;
e2eef170 129#endif
9fa3e853 130
6a00d601
FB
131CPUState *first_cpu;
132/* current CPU in the current thread. It is only valid inside
133 cpu_exec() */
5fafdf24 134CPUState *cpu_single_env;
2e70f6ef 135/* 0 = Do not count executed instructions.
bf20dc07 136 1 = Precise instruction counting.
2e70f6ef
PB
137 2 = Adaptive rate instruction counting. */
138int use_icount = 0;
139/* Current instruction counter. While executing translated code this may
140 include some instructions that have not yet been executed. */
141int64_t qemu_icount;
6a00d601 142
54936004 143typedef struct PageDesc {
92e873b9 144 /* list of TBs intersecting this ram page */
fd6ce8f6 145 TranslationBlock *first_tb;
9fa3e853
FB
146 /* in order to optimize self modifying code, we count the number
147 of lookups we do to a given page to use a bitmap */
148 unsigned int code_write_count;
149 uint8_t *code_bitmap;
150#if defined(CONFIG_USER_ONLY)
151 unsigned long flags;
152#endif
54936004
FB
153} PageDesc;
154
92e873b9 155typedef struct PhysPageDesc {
0f459d16 156 /* offset in host memory of the page + io_index in the low bits */
00f82b8a 157 ram_addr_t phys_offset;
8da3ff18 158 ram_addr_t region_offset;
92e873b9
FB
159} PhysPageDesc;
160
54936004 161#define L2_BITS 10
bedb69ea
JM
162#if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
163/* XXX: this is a temporary hack for alpha target.
164 * In the future, this is to be replaced by a multi-level table
165 * to actually be able to handle the complete 64 bits address space.
166 */
167#define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
168#else
03875444 169#define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
bedb69ea 170#endif
54936004
FB
171
172#define L1_SIZE (1 << L1_BITS)
173#define L2_SIZE (1 << L2_BITS)
174
83fb7adf
FB
175unsigned long qemu_real_host_page_size;
176unsigned long qemu_host_page_bits;
177unsigned long qemu_host_page_size;
178unsigned long qemu_host_page_mask;
54936004 179
92e873b9 180/* XXX: for system emulation, it could just be an array */
54936004 181static PageDesc *l1_map[L1_SIZE];
bdaf78e0 182static PhysPageDesc **l1_phys_map;
54936004 183
e2eef170
PB
184#if !defined(CONFIG_USER_ONLY)
185static void io_mem_init(void);
186
33417e70 187/* io memory support */
33417e70
FB
188CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
189CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 190void *io_mem_opaque[IO_MEM_NB_ENTRIES];
511d2b14 191static char io_mem_used[IO_MEM_NB_ENTRIES];
6658ffb8
PB
192static int io_mem_watch;
193#endif
33417e70 194
34865134 195/* log support */
d9b630fd 196static const char *logfilename = "/tmp/qemu.log";
34865134
FB
197FILE *logfile;
198int loglevel;
e735b91c 199static int log_append = 0;
34865134 200
e3db7226
FB
201/* statistics */
202static int tlb_flush_count;
203static int tb_flush_count;
204static int tb_phys_invalidate_count;
205
db7b5426
BS
206#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
207typedef struct subpage_t {
208 target_phys_addr_t base;
3ee89922
BS
209 CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4];
210 CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4];
211 void *opaque[TARGET_PAGE_SIZE][2][4];
8da3ff18 212 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
db7b5426
BS
213} subpage_t;
214
7cb69cae
FB
215#ifdef _WIN32
216static void map_exec(void *addr, long size)
217{
218 DWORD old_protect;
219 VirtualProtect(addr, size,
220 PAGE_EXECUTE_READWRITE, &old_protect);
221
222}
223#else
224static void map_exec(void *addr, long size)
225{
4369415f 226 unsigned long start, end, page_size;
7cb69cae 227
4369415f 228 page_size = getpagesize();
7cb69cae 229 start = (unsigned long)addr;
4369415f 230 start &= ~(page_size - 1);
7cb69cae
FB
231
232 end = (unsigned long)addr + size;
4369415f
FB
233 end += page_size - 1;
234 end &= ~(page_size - 1);
7cb69cae
FB
235
236 mprotect((void *)start, end - start,
237 PROT_READ | PROT_WRITE | PROT_EXEC);
238}
239#endif
240
b346ff46 241static void page_init(void)
54936004 242{
83fb7adf 243 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 244 TARGET_PAGE_SIZE */
c2b48b69
AL
245#ifdef _WIN32
246 {
247 SYSTEM_INFO system_info;
248
249 GetSystemInfo(&system_info);
250 qemu_real_host_page_size = system_info.dwPageSize;
251 }
252#else
253 qemu_real_host_page_size = getpagesize();
254#endif
83fb7adf
FB
255 if (qemu_host_page_size == 0)
256 qemu_host_page_size = qemu_real_host_page_size;
257 if (qemu_host_page_size < TARGET_PAGE_SIZE)
258 qemu_host_page_size = TARGET_PAGE_SIZE;
259 qemu_host_page_bits = 0;
260 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
261 qemu_host_page_bits++;
262 qemu_host_page_mask = ~(qemu_host_page_size - 1);
108c49b8
FB
263 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
264 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
50a9569b
AZ
265
266#if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
267 {
268 long long startaddr, endaddr;
269 FILE *f;
270 int n;
271
c8a706fe 272 mmap_lock();
0776590d 273 last_brk = (unsigned long)sbrk(0);
50a9569b
AZ
274 f = fopen("/proc/self/maps", "r");
275 if (f) {
276 do {
277 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
278 if (n == 2) {
e0b8d65a
BS
279 startaddr = MIN(startaddr,
280 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
281 endaddr = MIN(endaddr,
282 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
b5fc909e 283 page_set_flags(startaddr & TARGET_PAGE_MASK,
50a9569b
AZ
284 TARGET_PAGE_ALIGN(endaddr),
285 PAGE_RESERVED);
286 }
287 } while (!feof(f));
288 fclose(f);
289 }
c8a706fe 290 mmap_unlock();
50a9569b
AZ
291 }
292#endif
54936004
FB
293}
294
434929bf 295static inline PageDesc **page_l1_map(target_ulong index)
54936004 296{
17e2377a
PB
297#if TARGET_LONG_BITS > 32
298 /* Host memory outside guest VM. For 32-bit targets we have already
299 excluded high addresses. */
d8173e0f 300 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
17e2377a
PB
301 return NULL;
302#endif
434929bf
AL
303 return &l1_map[index >> L2_BITS];
304}
305
306static inline PageDesc *page_find_alloc(target_ulong index)
307{
308 PageDesc **lp, *p;
309 lp = page_l1_map(index);
310 if (!lp)
311 return NULL;
312
54936004
FB
313 p = *lp;
314 if (!p) {
315 /* allocate if not found */
17e2377a 316#if defined(CONFIG_USER_ONLY)
17e2377a
PB
317 size_t len = sizeof(PageDesc) * L2_SIZE;
318 /* Don't use qemu_malloc because it may recurse. */
a15909ac 319 p = mmap(NULL, len, PROT_READ | PROT_WRITE,
17e2377a 320 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
54936004 321 *lp = p;
fb1c2cd7
AJ
322 if (h2g_valid(p)) {
323 unsigned long addr = h2g(p);
17e2377a
PB
324 page_set_flags(addr & TARGET_PAGE_MASK,
325 TARGET_PAGE_ALIGN(addr + len),
326 PAGE_RESERVED);
327 }
328#else
329 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
330 *lp = p;
331#endif
54936004
FB
332 }
333 return p + (index & (L2_SIZE - 1));
334}
335
00f82b8a 336static inline PageDesc *page_find(target_ulong index)
54936004 337{
434929bf
AL
338 PageDesc **lp, *p;
339 lp = page_l1_map(index);
340 if (!lp)
341 return NULL;
54936004 342
434929bf 343 p = *lp;
a15909ac
BS
344 if (!p) {
345 return NULL;
346 }
fd6ce8f6
FB
347 return p + (index & (L2_SIZE - 1));
348}
349
108c49b8 350static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 351{
108c49b8 352 void **lp, **p;
e3f4e2a4 353 PhysPageDesc *pd;
92e873b9 354
108c49b8
FB
355 p = (void **)l1_phys_map;
356#if TARGET_PHYS_ADDR_SPACE_BITS > 32
357
358#if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
359#error unsupported TARGET_PHYS_ADDR_SPACE_BITS
360#endif
361 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
92e873b9
FB
362 p = *lp;
363 if (!p) {
364 /* allocate if not found */
108c49b8
FB
365 if (!alloc)
366 return NULL;
367 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
368 memset(p, 0, sizeof(void *) * L1_SIZE);
369 *lp = p;
370 }
371#endif
372 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
e3f4e2a4
PB
373 pd = *lp;
374 if (!pd) {
375 int i;
108c49b8
FB
376 /* allocate if not found */
377 if (!alloc)
378 return NULL;
e3f4e2a4
PB
379 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
380 *lp = pd;
67c4d23c 381 for (i = 0; i < L2_SIZE; i++) {
e3f4e2a4 382 pd[i].phys_offset = IO_MEM_UNASSIGNED;
67c4d23c
PB
383 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
384 }
92e873b9 385 }
e3f4e2a4 386 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
92e873b9
FB
387}
388
108c49b8 389static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 390{
108c49b8 391 return phys_page_find_alloc(index, 0);
92e873b9
FB
392}
393
9fa3e853 394#if !defined(CONFIG_USER_ONLY)
6a00d601 395static void tlb_protect_code(ram_addr_t ram_addr);
5fafdf24 396static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 397 target_ulong vaddr);
c8a706fe
PB
398#define mmap_lock() do { } while(0)
399#define mmap_unlock() do { } while(0)
9fa3e853 400#endif
fd6ce8f6 401
4369415f
FB
402#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
403
404#if defined(CONFIG_USER_ONLY)
ccbb4d44 405/* Currently it is not recommended to allocate big chunks of data in
4369415f
FB
406 user mode. It will change when a dedicated libc will be used */
407#define USE_STATIC_CODE_GEN_BUFFER
408#endif
409
410#ifdef USE_STATIC_CODE_GEN_BUFFER
411static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
412#endif
413
8fcd3692 414static void code_gen_alloc(unsigned long tb_size)
26a5f13b 415{
4369415f
FB
416#ifdef USE_STATIC_CODE_GEN_BUFFER
417 code_gen_buffer = static_code_gen_buffer;
418 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
419 map_exec(code_gen_buffer, code_gen_buffer_size);
420#else
26a5f13b
FB
421 code_gen_buffer_size = tb_size;
422 if (code_gen_buffer_size == 0) {
4369415f
FB
423#if defined(CONFIG_USER_ONLY)
424 /* in user mode, phys_ram_size is not meaningful */
425 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
426#else
ccbb4d44 427 /* XXX: needs adjustments */
94a6b54f 428 code_gen_buffer_size = (unsigned long)(ram_size / 4);
4369415f 429#endif
26a5f13b
FB
430 }
431 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
432 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
433 /* The code gen buffer location may have constraints depending on
434 the host cpu and OS */
435#if defined(__linux__)
436 {
437 int flags;
141ac468
BS
438 void *start = NULL;
439
26a5f13b
FB
440 flags = MAP_PRIVATE | MAP_ANONYMOUS;
441#if defined(__x86_64__)
442 flags |= MAP_32BIT;
443 /* Cannot map more than that */
444 if (code_gen_buffer_size > (800 * 1024 * 1024))
445 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
446#elif defined(__sparc_v9__)
447 // Map the buffer below 2G, so we can use direct calls and branches
448 flags |= MAP_FIXED;
449 start = (void *) 0x60000000UL;
450 if (code_gen_buffer_size > (512 * 1024 * 1024))
451 code_gen_buffer_size = (512 * 1024 * 1024);
1cb0661e 452#elif defined(__arm__)
63d41246 453 /* Map the buffer below 32M, so we can use direct calls and branches */
1cb0661e
AZ
454 flags |= MAP_FIXED;
455 start = (void *) 0x01000000UL;
456 if (code_gen_buffer_size > 16 * 1024 * 1024)
457 code_gen_buffer_size = 16 * 1024 * 1024;
26a5f13b 458#endif
141ac468
BS
459 code_gen_buffer = mmap(start, code_gen_buffer_size,
460 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
461 flags, -1, 0);
462 if (code_gen_buffer == MAP_FAILED) {
463 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
464 exit(1);
465 }
466 }
c5e97233 467#elif defined(__FreeBSD__) || defined(__DragonFly__)
06e67a82
AL
468 {
469 int flags;
470 void *addr = NULL;
471 flags = MAP_PRIVATE | MAP_ANONYMOUS;
472#if defined(__x86_64__)
473 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
474 * 0x40000000 is free */
475 flags |= MAP_FIXED;
476 addr = (void *)0x40000000;
477 /* Cannot map more than that */
478 if (code_gen_buffer_size > (800 * 1024 * 1024))
479 code_gen_buffer_size = (800 * 1024 * 1024);
480#endif
481 code_gen_buffer = mmap(addr, code_gen_buffer_size,
482 PROT_WRITE | PROT_READ | PROT_EXEC,
483 flags, -1, 0);
484 if (code_gen_buffer == MAP_FAILED) {
485 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
486 exit(1);
487 }
488 }
26a5f13b
FB
489#else
490 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
26a5f13b
FB
491 map_exec(code_gen_buffer, code_gen_buffer_size);
492#endif
4369415f 493#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b
FB
494 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
495 code_gen_buffer_max_size = code_gen_buffer_size -
496 code_gen_max_block_size();
497 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
498 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
499}
500
501/* Must be called before using the QEMU cpus. 'tb_size' is the size
502 (in bytes) allocated to the translation buffer. Zero means default
503 size. */
504void cpu_exec_init_all(unsigned long tb_size)
505{
26a5f13b
FB
506 cpu_gen_init();
507 code_gen_alloc(tb_size);
508 code_gen_ptr = code_gen_buffer;
4369415f 509 page_init();
e2eef170 510#if !defined(CONFIG_USER_ONLY)
26a5f13b 511 io_mem_init();
e2eef170 512#endif
26a5f13b
FB
513}
514
9656f324
PB
515#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
516
517#define CPU_COMMON_SAVE_VERSION 1
518
519static void cpu_common_save(QEMUFile *f, void *opaque)
520{
521 CPUState *env = opaque;
522
b0a46a33
JK
523 cpu_synchronize_state(env, 0);
524
9656f324
PB
525 qemu_put_be32s(f, &env->halted);
526 qemu_put_be32s(f, &env->interrupt_request);
527}
528
529static int cpu_common_load(QEMUFile *f, void *opaque, int version_id)
530{
531 CPUState *env = opaque;
532
533 if (version_id != CPU_COMMON_SAVE_VERSION)
534 return -EINVAL;
535
536 qemu_get_be32s(f, &env->halted);
75f482ae 537 qemu_get_be32s(f, &env->interrupt_request);
3098dba0
AJ
538 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
539 version_id is increased. */
540 env->interrupt_request &= ~0x01;
9656f324 541 tlb_flush(env, 1);
b0a46a33 542 cpu_synchronize_state(env, 1);
9656f324
PB
543
544 return 0;
545}
546#endif
547
950f1472
GC
548CPUState *qemu_get_cpu(int cpu)
549{
550 CPUState *env = first_cpu;
551
552 while (env) {
553 if (env->cpu_index == cpu)
554 break;
555 env = env->next_cpu;
556 }
557
558 return env;
559}
560
6a00d601 561void cpu_exec_init(CPUState *env)
fd6ce8f6 562{
6a00d601
FB
563 CPUState **penv;
564 int cpu_index;
565
c2764719
PB
566#if defined(CONFIG_USER_ONLY)
567 cpu_list_lock();
568#endif
6a00d601
FB
569 env->next_cpu = NULL;
570 penv = &first_cpu;
571 cpu_index = 0;
572 while (*penv != NULL) {
1e9fa730 573 penv = &(*penv)->next_cpu;
6a00d601
FB
574 cpu_index++;
575 }
576 env->cpu_index = cpu_index;
268a362c 577 env->numa_node = 0;
c0ce998e
AL
578 TAILQ_INIT(&env->breakpoints);
579 TAILQ_INIT(&env->watchpoints);
6a00d601 580 *penv = env;
c2764719
PB
581#if defined(CONFIG_USER_ONLY)
582 cpu_list_unlock();
583#endif
b3c7724c 584#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
9656f324
PB
585 register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION,
586 cpu_common_save, cpu_common_load, env);
b3c7724c
PB
587 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
588 cpu_save, cpu_load, env);
589#endif
fd6ce8f6
FB
590}
591
9fa3e853
FB
592static inline void invalidate_page_bitmap(PageDesc *p)
593{
594 if (p->code_bitmap) {
59817ccb 595 qemu_free(p->code_bitmap);
9fa3e853
FB
596 p->code_bitmap = NULL;
597 }
598 p->code_write_count = 0;
599}
600
fd6ce8f6
FB
601/* set to NULL all the 'first_tb' fields in all PageDescs */
602static void page_flush_tb(void)
603{
604 int i, j;
605 PageDesc *p;
606
607 for(i = 0; i < L1_SIZE; i++) {
608 p = l1_map[i];
609 if (p) {
9fa3e853
FB
610 for(j = 0; j < L2_SIZE; j++) {
611 p->first_tb = NULL;
612 invalidate_page_bitmap(p);
613 p++;
614 }
fd6ce8f6
FB
615 }
616 }
617}
618
619/* flush all the translation blocks */
d4e8164f 620/* XXX: tb_flush is currently not thread safe */
6a00d601 621void tb_flush(CPUState *env1)
fd6ce8f6 622{
6a00d601 623 CPUState *env;
0124311e 624#if defined(DEBUG_FLUSH)
ab3d1727
BS
625 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
626 (unsigned long)(code_gen_ptr - code_gen_buffer),
627 nb_tbs, nb_tbs > 0 ?
628 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 629#endif
26a5f13b 630 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
631 cpu_abort(env1, "Internal error: code buffer overflow\n");
632
fd6ce8f6 633 nb_tbs = 0;
3b46e624 634
6a00d601
FB
635 for(env = first_cpu; env != NULL; env = env->next_cpu) {
636 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
637 }
9fa3e853 638
8a8a608f 639 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 640 page_flush_tb();
9fa3e853 641
fd6ce8f6 642 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
643 /* XXX: flush processor icache at this point if cache flush is
644 expensive */
e3db7226 645 tb_flush_count++;
fd6ce8f6
FB
646}
647
648#ifdef DEBUG_TB_CHECK
649
bc98a7ef 650static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
651{
652 TranslationBlock *tb;
653 int i;
654 address &= TARGET_PAGE_MASK;
99773bd4
PB
655 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
656 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
657 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
658 address >= tb->pc + tb->size)) {
dd500a92
BS
659 printf("ERROR invalidate: address=" TARGET_FMT_lx
660 " PC=%08lx size=%04x\n",
99773bd4 661 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
662 }
663 }
664 }
665}
666
667/* verify that all the pages have correct rights for code */
668static void tb_page_check(void)
669{
670 TranslationBlock *tb;
671 int i, flags1, flags2;
3b46e624 672
99773bd4
PB
673 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
674 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
675 flags1 = page_get_flags(tb->pc);
676 flags2 = page_get_flags(tb->pc + tb->size - 1);
677 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
678 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 679 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
680 }
681 }
682 }
683}
684
685#endif
686
687/* invalidate one TB */
688static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
689 int next_offset)
690{
691 TranslationBlock *tb1;
692 for(;;) {
693 tb1 = *ptb;
694 if (tb1 == tb) {
695 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
696 break;
697 }
698 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
699 }
700}
701
9fa3e853
FB
702static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
703{
704 TranslationBlock *tb1;
705 unsigned int n1;
706
707 for(;;) {
708 tb1 = *ptb;
709 n1 = (long)tb1 & 3;
710 tb1 = (TranslationBlock *)((long)tb1 & ~3);
711 if (tb1 == tb) {
712 *ptb = tb1->page_next[n1];
713 break;
714 }
715 ptb = &tb1->page_next[n1];
716 }
717}
718
d4e8164f
FB
719static inline void tb_jmp_remove(TranslationBlock *tb, int n)
720{
721 TranslationBlock *tb1, **ptb;
722 unsigned int n1;
723
724 ptb = &tb->jmp_next[n];
725 tb1 = *ptb;
726 if (tb1) {
727 /* find tb(n) in circular list */
728 for(;;) {
729 tb1 = *ptb;
730 n1 = (long)tb1 & 3;
731 tb1 = (TranslationBlock *)((long)tb1 & ~3);
732 if (n1 == n && tb1 == tb)
733 break;
734 if (n1 == 2) {
735 ptb = &tb1->jmp_first;
736 } else {
737 ptb = &tb1->jmp_next[n1];
738 }
739 }
740 /* now we can suppress tb(n) from the list */
741 *ptb = tb->jmp_next[n];
742
743 tb->jmp_next[n] = NULL;
744 }
745}
746
747/* reset the jump entry 'n' of a TB so that it is not chained to
748 another TB */
749static inline void tb_reset_jump(TranslationBlock *tb, int n)
750{
751 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
752}
753
2e70f6ef 754void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
fd6ce8f6 755{
6a00d601 756 CPUState *env;
8a40a180 757 PageDesc *p;
d4e8164f 758 unsigned int h, n1;
00f82b8a 759 target_phys_addr_t phys_pc;
8a40a180 760 TranslationBlock *tb1, *tb2;
3b46e624 761
8a40a180
FB
762 /* remove the TB from the hash list */
763 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
764 h = tb_phys_hash_func(phys_pc);
5fafdf24 765 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
766 offsetof(TranslationBlock, phys_hash_next));
767
768 /* remove the TB from the page list */
769 if (tb->page_addr[0] != page_addr) {
770 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
771 tb_page_remove(&p->first_tb, tb);
772 invalidate_page_bitmap(p);
773 }
774 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
775 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
776 tb_page_remove(&p->first_tb, tb);
777 invalidate_page_bitmap(p);
778 }
779
36bdbe54 780 tb_invalidated_flag = 1;
59817ccb 781
fd6ce8f6 782 /* remove the TB from the hash list */
8a40a180 783 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
784 for(env = first_cpu; env != NULL; env = env->next_cpu) {
785 if (env->tb_jmp_cache[h] == tb)
786 env->tb_jmp_cache[h] = NULL;
787 }
d4e8164f
FB
788
789 /* suppress this TB from the two jump lists */
790 tb_jmp_remove(tb, 0);
791 tb_jmp_remove(tb, 1);
792
793 /* suppress any remaining jumps to this TB */
794 tb1 = tb->jmp_first;
795 for(;;) {
796 n1 = (long)tb1 & 3;
797 if (n1 == 2)
798 break;
799 tb1 = (TranslationBlock *)((long)tb1 & ~3);
800 tb2 = tb1->jmp_next[n1];
801 tb_reset_jump(tb1, n1);
802 tb1->jmp_next[n1] = NULL;
803 tb1 = tb2;
804 }
805 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 806
e3db7226 807 tb_phys_invalidate_count++;
9fa3e853
FB
808}
809
810static inline void set_bits(uint8_t *tab, int start, int len)
811{
812 int end, mask, end1;
813
814 end = start + len;
815 tab += start >> 3;
816 mask = 0xff << (start & 7);
817 if ((start & ~7) == (end & ~7)) {
818 if (start < end) {
819 mask &= ~(0xff << (end & 7));
820 *tab |= mask;
821 }
822 } else {
823 *tab++ |= mask;
824 start = (start + 8) & ~7;
825 end1 = end & ~7;
826 while (start < end1) {
827 *tab++ = 0xff;
828 start += 8;
829 }
830 if (start < end) {
831 mask = ~(0xff << (end & 7));
832 *tab |= mask;
833 }
834 }
835}
836
837static void build_page_bitmap(PageDesc *p)
838{
839 int n, tb_start, tb_end;
840 TranslationBlock *tb;
3b46e624 841
b2a7081a 842 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
843
844 tb = p->first_tb;
845 while (tb != NULL) {
846 n = (long)tb & 3;
847 tb = (TranslationBlock *)((long)tb & ~3);
848 /* NOTE: this is subtle as a TB may span two physical pages */
849 if (n == 0) {
850 /* NOTE: tb_end may be after the end of the page, but
851 it is not a problem */
852 tb_start = tb->pc & ~TARGET_PAGE_MASK;
853 tb_end = tb_start + tb->size;
854 if (tb_end > TARGET_PAGE_SIZE)
855 tb_end = TARGET_PAGE_SIZE;
856 } else {
857 tb_start = 0;
858 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
859 }
860 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
861 tb = tb->page_next[n];
862 }
863}
864
2e70f6ef
PB
865TranslationBlock *tb_gen_code(CPUState *env,
866 target_ulong pc, target_ulong cs_base,
867 int flags, int cflags)
d720b93d
FB
868{
869 TranslationBlock *tb;
870 uint8_t *tc_ptr;
871 target_ulong phys_pc, phys_page2, virt_page2;
872 int code_gen_size;
873
c27004ec
FB
874 phys_pc = get_phys_addr_code(env, pc);
875 tb = tb_alloc(pc);
d720b93d
FB
876 if (!tb) {
877 /* flush must be done */
878 tb_flush(env);
879 /* cannot fail at this point */
c27004ec 880 tb = tb_alloc(pc);
2e70f6ef
PB
881 /* Don't forget to invalidate previous TB info. */
882 tb_invalidated_flag = 1;
d720b93d
FB
883 }
884 tc_ptr = code_gen_ptr;
885 tb->tc_ptr = tc_ptr;
886 tb->cs_base = cs_base;
887 tb->flags = flags;
888 tb->cflags = cflags;
d07bde88 889 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 890 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 891
d720b93d 892 /* check next page if needed */
c27004ec 893 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 894 phys_page2 = -1;
c27004ec 895 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
d720b93d
FB
896 phys_page2 = get_phys_addr_code(env, virt_page2);
897 }
898 tb_link_phys(tb, phys_pc, phys_page2);
2e70f6ef 899 return tb;
d720b93d 900}
3b46e624 901
9fa3e853
FB
902/* invalidate all TBs which intersect with the target physical page
903 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
904 the same physical page. 'is_cpu_write_access' should be true if called
905 from a real cpu write access: the virtual CPU will exit the current
906 TB if code is modified inside this TB. */
00f82b8a 907void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
d720b93d
FB
908 int is_cpu_write_access)
909{
6b917547 910 TranslationBlock *tb, *tb_next, *saved_tb;
d720b93d 911 CPUState *env = cpu_single_env;
9fa3e853 912 target_ulong tb_start, tb_end;
6b917547
AL
913 PageDesc *p;
914 int n;
915#ifdef TARGET_HAS_PRECISE_SMC
916 int current_tb_not_found = is_cpu_write_access;
917 TranslationBlock *current_tb = NULL;
918 int current_tb_modified = 0;
919 target_ulong current_pc = 0;
920 target_ulong current_cs_base = 0;
921 int current_flags = 0;
922#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
923
924 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 925 if (!p)
9fa3e853 926 return;
5fafdf24 927 if (!p->code_bitmap &&
d720b93d
FB
928 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
929 is_cpu_write_access) {
9fa3e853
FB
930 /* build code bitmap */
931 build_page_bitmap(p);
932 }
933
934 /* we remove all the TBs in the range [start, end[ */
935 /* XXX: see if in some cases it could be faster to invalidate all the code */
936 tb = p->first_tb;
937 while (tb != NULL) {
938 n = (long)tb & 3;
939 tb = (TranslationBlock *)((long)tb & ~3);
940 tb_next = tb->page_next[n];
941 /* NOTE: this is subtle as a TB may span two physical pages */
942 if (n == 0) {
943 /* NOTE: tb_end may be after the end of the page, but
944 it is not a problem */
945 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
946 tb_end = tb_start + tb->size;
947 } else {
948 tb_start = tb->page_addr[1];
949 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
950 }
951 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
952#ifdef TARGET_HAS_PRECISE_SMC
953 if (current_tb_not_found) {
954 current_tb_not_found = 0;
955 current_tb = NULL;
2e70f6ef 956 if (env->mem_io_pc) {
d720b93d 957 /* now we have a real cpu fault */
2e70f6ef 958 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
959 }
960 }
961 if (current_tb == tb &&
2e70f6ef 962 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
963 /* If we are modifying the current TB, we must stop
964 its execution. We could be more precise by checking
965 that the modification is after the current PC, but it
966 would require a specialized function to partially
967 restore the CPU state */
3b46e624 968
d720b93d 969 current_tb_modified = 1;
5fafdf24 970 cpu_restore_state(current_tb, env,
2e70f6ef 971 env->mem_io_pc, NULL);
6b917547
AL
972 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
973 &current_flags);
d720b93d
FB
974 }
975#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
976 /* we need to do that to handle the case where a signal
977 occurs while doing tb_phys_invalidate() */
978 saved_tb = NULL;
979 if (env) {
980 saved_tb = env->current_tb;
981 env->current_tb = NULL;
982 }
9fa3e853 983 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
984 if (env) {
985 env->current_tb = saved_tb;
986 if (env->interrupt_request && env->current_tb)
987 cpu_interrupt(env, env->interrupt_request);
988 }
9fa3e853
FB
989 }
990 tb = tb_next;
991 }
992#if !defined(CONFIG_USER_ONLY)
993 /* if no code remaining, no need to continue to use slow writes */
994 if (!p->first_tb) {
995 invalidate_page_bitmap(p);
d720b93d 996 if (is_cpu_write_access) {
2e70f6ef 997 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
998 }
999 }
1000#endif
1001#ifdef TARGET_HAS_PRECISE_SMC
1002 if (current_tb_modified) {
1003 /* we generate a block containing just the instruction
1004 modifying the memory. It will ensure that it cannot modify
1005 itself */
ea1c1802 1006 env->current_tb = NULL;
2e70f6ef 1007 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 1008 cpu_resume_from_signal(env, NULL);
9fa3e853 1009 }
fd6ce8f6 1010#endif
9fa3e853 1011}
fd6ce8f6 1012
9fa3e853 1013/* len must be <= 8 and start must be a multiple of len */
00f82b8a 1014static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
9fa3e853
FB
1015{
1016 PageDesc *p;
1017 int offset, b;
59817ccb 1018#if 0
a4193c8a 1019 if (1) {
93fcfe39
AL
1020 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1021 cpu_single_env->mem_io_vaddr, len,
1022 cpu_single_env->eip,
1023 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
59817ccb
FB
1024 }
1025#endif
9fa3e853 1026 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1027 if (!p)
9fa3e853
FB
1028 return;
1029 if (p->code_bitmap) {
1030 offset = start & ~TARGET_PAGE_MASK;
1031 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1032 if (b & ((1 << len) - 1))
1033 goto do_invalidate;
1034 } else {
1035 do_invalidate:
d720b93d 1036 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1037 }
1038}
1039
9fa3e853 1040#if !defined(CONFIG_SOFTMMU)
00f82b8a 1041static void tb_invalidate_phys_page(target_phys_addr_t addr,
d720b93d 1042 unsigned long pc, void *puc)
9fa3e853 1043{
6b917547 1044 TranslationBlock *tb;
9fa3e853 1045 PageDesc *p;
6b917547 1046 int n;
d720b93d 1047#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1048 TranslationBlock *current_tb = NULL;
d720b93d 1049 CPUState *env = cpu_single_env;
6b917547
AL
1050 int current_tb_modified = 0;
1051 target_ulong current_pc = 0;
1052 target_ulong current_cs_base = 0;
1053 int current_flags = 0;
d720b93d 1054#endif
9fa3e853
FB
1055
1056 addr &= TARGET_PAGE_MASK;
1057 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1058 if (!p)
9fa3e853
FB
1059 return;
1060 tb = p->first_tb;
d720b93d
FB
1061#ifdef TARGET_HAS_PRECISE_SMC
1062 if (tb && pc != 0) {
1063 current_tb = tb_find_pc(pc);
1064 }
1065#endif
9fa3e853
FB
1066 while (tb != NULL) {
1067 n = (long)tb & 3;
1068 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1069#ifdef TARGET_HAS_PRECISE_SMC
1070 if (current_tb == tb &&
2e70f6ef 1071 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1072 /* If we are modifying the current TB, we must stop
1073 its execution. We could be more precise by checking
1074 that the modification is after the current PC, but it
1075 would require a specialized function to partially
1076 restore the CPU state */
3b46e624 1077
d720b93d
FB
1078 current_tb_modified = 1;
1079 cpu_restore_state(current_tb, env, pc, puc);
6b917547
AL
1080 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1081 &current_flags);
d720b93d
FB
1082 }
1083#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1084 tb_phys_invalidate(tb, addr);
1085 tb = tb->page_next[n];
1086 }
fd6ce8f6 1087 p->first_tb = NULL;
d720b93d
FB
1088#ifdef TARGET_HAS_PRECISE_SMC
1089 if (current_tb_modified) {
1090 /* we generate a block containing just the instruction
1091 modifying the memory. It will ensure that it cannot modify
1092 itself */
ea1c1802 1093 env->current_tb = NULL;
2e70f6ef 1094 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1095 cpu_resume_from_signal(env, puc);
1096 }
1097#endif
fd6ce8f6 1098}
9fa3e853 1099#endif
fd6ce8f6
FB
1100
1101/* add the tb in the target page and protect it if necessary */
5fafdf24 1102static inline void tb_alloc_page(TranslationBlock *tb,
53a5960a 1103 unsigned int n, target_ulong page_addr)
fd6ce8f6
FB
1104{
1105 PageDesc *p;
9fa3e853
FB
1106 TranslationBlock *last_first_tb;
1107
1108 tb->page_addr[n] = page_addr;
3a7d929e 1109 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
9fa3e853
FB
1110 tb->page_next[n] = p->first_tb;
1111 last_first_tb = p->first_tb;
1112 p->first_tb = (TranslationBlock *)((long)tb | n);
1113 invalidate_page_bitmap(p);
fd6ce8f6 1114
107db443 1115#if defined(TARGET_HAS_SMC) || 1
d720b93d 1116
9fa3e853 1117#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1118 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1119 target_ulong addr;
1120 PageDesc *p2;
9fa3e853
FB
1121 int prot;
1122
fd6ce8f6
FB
1123 /* force the host page as non writable (writes will have a
1124 page fault + mprotect overhead) */
53a5960a 1125 page_addr &= qemu_host_page_mask;
fd6ce8f6 1126 prot = 0;
53a5960a
PB
1127 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1128 addr += TARGET_PAGE_SIZE) {
1129
1130 p2 = page_find (addr >> TARGET_PAGE_BITS);
1131 if (!p2)
1132 continue;
1133 prot |= p2->flags;
1134 p2->flags &= ~PAGE_WRITE;
1135 page_get_flags(addr);
1136 }
5fafdf24 1137 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1138 (prot & PAGE_BITS) & ~PAGE_WRITE);
1139#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1140 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1141 page_addr);
fd6ce8f6 1142#endif
fd6ce8f6 1143 }
9fa3e853
FB
1144#else
1145 /* if some code is already present, then the pages are already
1146 protected. So we handle the case where only the first TB is
1147 allocated in a physical page */
1148 if (!last_first_tb) {
6a00d601 1149 tlb_protect_code(page_addr);
9fa3e853
FB
1150 }
1151#endif
d720b93d
FB
1152
1153#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1154}
1155
1156/* Allocate a new translation block. Flush the translation buffer if
1157 too many translation blocks or too much generated code. */
c27004ec 1158TranslationBlock *tb_alloc(target_ulong pc)
fd6ce8f6
FB
1159{
1160 TranslationBlock *tb;
fd6ce8f6 1161
26a5f13b
FB
1162 if (nb_tbs >= code_gen_max_blocks ||
1163 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
d4e8164f 1164 return NULL;
fd6ce8f6
FB
1165 tb = &tbs[nb_tbs++];
1166 tb->pc = pc;
b448f2f3 1167 tb->cflags = 0;
d4e8164f
FB
1168 return tb;
1169}
1170
2e70f6ef
PB
1171void tb_free(TranslationBlock *tb)
1172{
bf20dc07 1173 /* In practice this is mostly used for single use temporary TB
2e70f6ef
PB
1174 Ignore the hard cases and just back up if this TB happens to
1175 be the last one generated. */
1176 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1177 code_gen_ptr = tb->tc_ptr;
1178 nb_tbs--;
1179 }
1180}
1181
9fa3e853
FB
1182/* add a new TB and link it to the physical page tables. phys_page2 is
1183 (-1) to indicate that only one page contains the TB. */
5fafdf24 1184void tb_link_phys(TranslationBlock *tb,
9fa3e853 1185 target_ulong phys_pc, target_ulong phys_page2)
d4e8164f 1186{
9fa3e853
FB
1187 unsigned int h;
1188 TranslationBlock **ptb;
1189
c8a706fe
PB
1190 /* Grab the mmap lock to stop another thread invalidating this TB
1191 before we are done. */
1192 mmap_lock();
9fa3e853
FB
1193 /* add in the physical hash table */
1194 h = tb_phys_hash_func(phys_pc);
1195 ptb = &tb_phys_hash[h];
1196 tb->phys_hash_next = *ptb;
1197 *ptb = tb;
fd6ce8f6
FB
1198
1199 /* add in the page list */
9fa3e853
FB
1200 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1201 if (phys_page2 != -1)
1202 tb_alloc_page(tb, 1, phys_page2);
1203 else
1204 tb->page_addr[1] = -1;
9fa3e853 1205
d4e8164f
FB
1206 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1207 tb->jmp_next[0] = NULL;
1208 tb->jmp_next[1] = NULL;
1209
1210 /* init original jump addresses */
1211 if (tb->tb_next_offset[0] != 0xffff)
1212 tb_reset_jump(tb, 0);
1213 if (tb->tb_next_offset[1] != 0xffff)
1214 tb_reset_jump(tb, 1);
8a40a180
FB
1215
1216#ifdef DEBUG_TB_CHECK
1217 tb_page_check();
1218#endif
c8a706fe 1219 mmap_unlock();
fd6ce8f6
FB
1220}
1221
9fa3e853
FB
1222/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1223 tb[1].tc_ptr. Return NULL if not found */
1224TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1225{
9fa3e853
FB
1226 int m_min, m_max, m;
1227 unsigned long v;
1228 TranslationBlock *tb;
a513fe19
FB
1229
1230 if (nb_tbs <= 0)
1231 return NULL;
1232 if (tc_ptr < (unsigned long)code_gen_buffer ||
1233 tc_ptr >= (unsigned long)code_gen_ptr)
1234 return NULL;
1235 /* binary search (cf Knuth) */
1236 m_min = 0;
1237 m_max = nb_tbs - 1;
1238 while (m_min <= m_max) {
1239 m = (m_min + m_max) >> 1;
1240 tb = &tbs[m];
1241 v = (unsigned long)tb->tc_ptr;
1242 if (v == tc_ptr)
1243 return tb;
1244 else if (tc_ptr < v) {
1245 m_max = m - 1;
1246 } else {
1247 m_min = m + 1;
1248 }
5fafdf24 1249 }
a513fe19
FB
1250 return &tbs[m_max];
1251}
7501267e 1252
ea041c0e
FB
1253static void tb_reset_jump_recursive(TranslationBlock *tb);
1254
1255static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1256{
1257 TranslationBlock *tb1, *tb_next, **ptb;
1258 unsigned int n1;
1259
1260 tb1 = tb->jmp_next[n];
1261 if (tb1 != NULL) {
1262 /* find head of list */
1263 for(;;) {
1264 n1 = (long)tb1 & 3;
1265 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1266 if (n1 == 2)
1267 break;
1268 tb1 = tb1->jmp_next[n1];
1269 }
1270 /* we are now sure now that tb jumps to tb1 */
1271 tb_next = tb1;
1272
1273 /* remove tb from the jmp_first list */
1274 ptb = &tb_next->jmp_first;
1275 for(;;) {
1276 tb1 = *ptb;
1277 n1 = (long)tb1 & 3;
1278 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1279 if (n1 == n && tb1 == tb)
1280 break;
1281 ptb = &tb1->jmp_next[n1];
1282 }
1283 *ptb = tb->jmp_next[n];
1284 tb->jmp_next[n] = NULL;
3b46e624 1285
ea041c0e
FB
1286 /* suppress the jump to next tb in generated code */
1287 tb_reset_jump(tb, n);
1288
0124311e 1289 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1290 tb_reset_jump_recursive(tb_next);
1291 }
1292}
1293
1294static void tb_reset_jump_recursive(TranslationBlock *tb)
1295{
1296 tb_reset_jump_recursive2(tb, 0);
1297 tb_reset_jump_recursive2(tb, 1);
1298}
1299
1fddef4b 1300#if defined(TARGET_HAS_ICE)
d720b93d
FB
1301static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1302{
9b3c35e0
JM
1303 target_phys_addr_t addr;
1304 target_ulong pd;
c2f07f81
PB
1305 ram_addr_t ram_addr;
1306 PhysPageDesc *p;
d720b93d 1307
c2f07f81
PB
1308 addr = cpu_get_phys_page_debug(env, pc);
1309 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1310 if (!p) {
1311 pd = IO_MEM_UNASSIGNED;
1312 } else {
1313 pd = p->phys_offset;
1314 }
1315 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1316 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1317}
c27004ec 1318#endif
d720b93d 1319
6658ffb8 1320/* Add a watchpoint. */
a1d1bb31
AL
1321int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1322 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1323{
b4051334 1324 target_ulong len_mask = ~(len - 1);
c0ce998e 1325 CPUWatchpoint *wp;
6658ffb8 1326
b4051334
AL
1327 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1328 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1329 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1330 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1331 return -EINVAL;
1332 }
a1d1bb31 1333 wp = qemu_malloc(sizeof(*wp));
a1d1bb31
AL
1334
1335 wp->vaddr = addr;
b4051334 1336 wp->len_mask = len_mask;
a1d1bb31
AL
1337 wp->flags = flags;
1338
2dc9f411 1339 /* keep all GDB-injected watchpoints in front */
c0ce998e
AL
1340 if (flags & BP_GDB)
1341 TAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1342 else
1343 TAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 1344
6658ffb8 1345 tlb_flush_page(env, addr);
a1d1bb31
AL
1346
1347 if (watchpoint)
1348 *watchpoint = wp;
1349 return 0;
6658ffb8
PB
1350}
1351
a1d1bb31
AL
1352/* Remove a specific watchpoint. */
1353int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1354 int flags)
6658ffb8 1355{
b4051334 1356 target_ulong len_mask = ~(len - 1);
a1d1bb31 1357 CPUWatchpoint *wp;
6658ffb8 1358
c0ce998e 1359 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 1360 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1361 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1362 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1363 return 0;
1364 }
1365 }
a1d1bb31 1366 return -ENOENT;
6658ffb8
PB
1367}
1368
a1d1bb31
AL
1369/* Remove a specific watchpoint by reference. */
1370void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1371{
c0ce998e 1372 TAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 1373
a1d1bb31
AL
1374 tlb_flush_page(env, watchpoint->vaddr);
1375
1376 qemu_free(watchpoint);
1377}
1378
1379/* Remove all matching watchpoints. */
1380void cpu_watchpoint_remove_all(CPUState *env, int mask)
1381{
c0ce998e 1382 CPUWatchpoint *wp, *next;
a1d1bb31 1383
c0ce998e 1384 TAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
1385 if (wp->flags & mask)
1386 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 1387 }
7d03f82f
EI
1388}
1389
a1d1bb31
AL
1390/* Add a breakpoint. */
1391int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1392 CPUBreakpoint **breakpoint)
4c3a88a2 1393{
1fddef4b 1394#if defined(TARGET_HAS_ICE)
c0ce998e 1395 CPUBreakpoint *bp;
3b46e624 1396
a1d1bb31 1397 bp = qemu_malloc(sizeof(*bp));
4c3a88a2 1398
a1d1bb31
AL
1399 bp->pc = pc;
1400 bp->flags = flags;
1401
2dc9f411 1402 /* keep all GDB-injected breakpoints in front */
c0ce998e
AL
1403 if (flags & BP_GDB)
1404 TAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1405 else
1406 TAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 1407
d720b93d 1408 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1409
1410 if (breakpoint)
1411 *breakpoint = bp;
4c3a88a2
FB
1412 return 0;
1413#else
a1d1bb31 1414 return -ENOSYS;
4c3a88a2
FB
1415#endif
1416}
1417
a1d1bb31
AL
1418/* Remove a specific breakpoint. */
1419int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1420{
7d03f82f 1421#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1422 CPUBreakpoint *bp;
1423
c0ce998e 1424 TAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
1425 if (bp->pc == pc && bp->flags == flags) {
1426 cpu_breakpoint_remove_by_ref(env, bp);
1427 return 0;
1428 }
7d03f82f 1429 }
a1d1bb31
AL
1430 return -ENOENT;
1431#else
1432 return -ENOSYS;
7d03f82f
EI
1433#endif
1434}
1435
a1d1bb31
AL
1436/* Remove a specific breakpoint by reference. */
1437void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1438{
1fddef4b 1439#if defined(TARGET_HAS_ICE)
c0ce998e 1440 TAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 1441
a1d1bb31
AL
1442 breakpoint_invalidate(env, breakpoint->pc);
1443
1444 qemu_free(breakpoint);
1445#endif
1446}
1447
1448/* Remove all matching breakpoints. */
1449void cpu_breakpoint_remove_all(CPUState *env, int mask)
1450{
1451#if defined(TARGET_HAS_ICE)
c0ce998e 1452 CPUBreakpoint *bp, *next;
a1d1bb31 1453
c0ce998e 1454 TAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
1455 if (bp->flags & mask)
1456 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 1457 }
4c3a88a2
FB
1458#endif
1459}
1460
c33a346e
FB
1461/* enable or disable single step mode. EXCP_DEBUG is returned by the
1462 CPU loop after each instruction */
1463void cpu_single_step(CPUState *env, int enabled)
1464{
1fddef4b 1465#if defined(TARGET_HAS_ICE)
c33a346e
FB
1466 if (env->singlestep_enabled != enabled) {
1467 env->singlestep_enabled = enabled;
e22a25c9
AL
1468 if (kvm_enabled())
1469 kvm_update_guest_debug(env, 0);
1470 else {
ccbb4d44 1471 /* must flush all the translated code to avoid inconsistencies */
e22a25c9
AL
1472 /* XXX: only flush what is necessary */
1473 tb_flush(env);
1474 }
c33a346e
FB
1475 }
1476#endif
1477}
1478
34865134
FB
1479/* enable or disable low levels log */
1480void cpu_set_log(int log_flags)
1481{
1482 loglevel = log_flags;
1483 if (loglevel && !logfile) {
11fcfab4 1484 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1485 if (!logfile) {
1486 perror(logfilename);
1487 _exit(1);
1488 }
9fa3e853
FB
1489#if !defined(CONFIG_SOFTMMU)
1490 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1491 {
b55266b5 1492 static char logfile_buf[4096];
9fa3e853
FB
1493 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1494 }
1495#else
34865134 1496 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1497#endif
e735b91c
PB
1498 log_append = 1;
1499 }
1500 if (!loglevel && logfile) {
1501 fclose(logfile);
1502 logfile = NULL;
34865134
FB
1503 }
1504}
1505
1506void cpu_set_log_filename(const char *filename)
1507{
1508 logfilename = strdup(filename);
e735b91c
PB
1509 if (logfile) {
1510 fclose(logfile);
1511 logfile = NULL;
1512 }
1513 cpu_set_log(loglevel);
34865134 1514}
c33a346e 1515
3098dba0 1516static void cpu_unlink_tb(CPUState *env)
ea041c0e 1517{
3098dba0
AJ
1518#if defined(USE_NPTL)
1519 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1520 problem and hope the cpu will stop of its own accord. For userspace
1521 emulation this often isn't actually as bad as it sounds. Often
1522 signals are used primarily to interrupt blocking syscalls. */
1523#else
ea041c0e 1524 TranslationBlock *tb;
15a51156 1525 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
59817ccb 1526
3098dba0
AJ
1527 tb = env->current_tb;
1528 /* if the cpu is currently executing code, we must unlink it and
1529 all the potentially executing TB */
1530 if (tb && !testandset(&interrupt_lock)) {
1531 env->current_tb = NULL;
1532 tb_reset_jump_recursive(tb);
1533 resetlock(&interrupt_lock);
be214e6c 1534 }
3098dba0
AJ
1535#endif
1536}
1537
1538/* mask must never be zero, except for A20 change call */
1539void cpu_interrupt(CPUState *env, int mask)
1540{
1541 int old_mask;
be214e6c 1542
2e70f6ef 1543 old_mask = env->interrupt_request;
68a79315 1544 env->interrupt_request |= mask;
3098dba0 1545
8edac960
AL
1546#ifndef CONFIG_USER_ONLY
1547 /*
1548 * If called from iothread context, wake the target cpu in
1549 * case its halted.
1550 */
1551 if (!qemu_cpu_self(env)) {
1552 qemu_cpu_kick(env);
1553 return;
1554 }
1555#endif
1556
2e70f6ef 1557 if (use_icount) {
266910c4 1558 env->icount_decr.u16.high = 0xffff;
2e70f6ef 1559#ifndef CONFIG_USER_ONLY
2e70f6ef 1560 if (!can_do_io(env)
be214e6c 1561 && (mask & ~old_mask) != 0) {
2e70f6ef
PB
1562 cpu_abort(env, "Raised interrupt while not in I/O function");
1563 }
1564#endif
1565 } else {
3098dba0 1566 cpu_unlink_tb(env);
ea041c0e
FB
1567 }
1568}
1569
b54ad049
FB
1570void cpu_reset_interrupt(CPUState *env, int mask)
1571{
1572 env->interrupt_request &= ~mask;
1573}
1574
3098dba0
AJ
1575void cpu_exit(CPUState *env)
1576{
1577 env->exit_request = 1;
1578 cpu_unlink_tb(env);
1579}
1580
c7cd6a37 1581const CPULogItem cpu_log_items[] = {
5fafdf24 1582 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1583 "show generated host assembly code for each compiled TB" },
1584 { CPU_LOG_TB_IN_ASM, "in_asm",
1585 "show target assembly code for each compiled TB" },
5fafdf24 1586 { CPU_LOG_TB_OP, "op",
57fec1fe 1587 "show micro ops for each compiled TB" },
f193c797 1588 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1589 "show micro ops "
1590#ifdef TARGET_I386
1591 "before eflags optimization and "
f193c797 1592#endif
e01a1157 1593 "after liveness analysis" },
f193c797
FB
1594 { CPU_LOG_INT, "int",
1595 "show interrupts/exceptions in short format" },
1596 { CPU_LOG_EXEC, "exec",
1597 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1598 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1599 "show CPU state before block translation" },
f193c797
FB
1600#ifdef TARGET_I386
1601 { CPU_LOG_PCALL, "pcall",
1602 "show protected mode far calls/returns/exceptions" },
eca1bdf4
AL
1603 { CPU_LOG_RESET, "cpu_reset",
1604 "show CPU state before CPU resets" },
f193c797 1605#endif
8e3a9fd2 1606#ifdef DEBUG_IOPORT
fd872598
FB
1607 { CPU_LOG_IOPORT, "ioport",
1608 "show all i/o ports accesses" },
8e3a9fd2 1609#endif
f193c797
FB
1610 { 0, NULL, NULL },
1611};
1612
1613static int cmp1(const char *s1, int n, const char *s2)
1614{
1615 if (strlen(s2) != n)
1616 return 0;
1617 return memcmp(s1, s2, n) == 0;
1618}
3b46e624 1619
f193c797
FB
1620/* takes a comma separated list of log masks. Return 0 if error. */
1621int cpu_str_to_log_mask(const char *str)
1622{
c7cd6a37 1623 const CPULogItem *item;
f193c797
FB
1624 int mask;
1625 const char *p, *p1;
1626
1627 p = str;
1628 mask = 0;
1629 for(;;) {
1630 p1 = strchr(p, ',');
1631 if (!p1)
1632 p1 = p + strlen(p);
8e3a9fd2
FB
1633 if(cmp1(p,p1-p,"all")) {
1634 for(item = cpu_log_items; item->mask != 0; item++) {
1635 mask |= item->mask;
1636 }
1637 } else {
f193c797
FB
1638 for(item = cpu_log_items; item->mask != 0; item++) {
1639 if (cmp1(p, p1 - p, item->name))
1640 goto found;
1641 }
1642 return 0;
8e3a9fd2 1643 }
f193c797
FB
1644 found:
1645 mask |= item->mask;
1646 if (*p1 != ',')
1647 break;
1648 p = p1 + 1;
1649 }
1650 return mask;
1651}
ea041c0e 1652
7501267e
FB
1653void cpu_abort(CPUState *env, const char *fmt, ...)
1654{
1655 va_list ap;
493ae1f0 1656 va_list ap2;
7501267e
FB
1657
1658 va_start(ap, fmt);
493ae1f0 1659 va_copy(ap2, ap);
7501267e
FB
1660 fprintf(stderr, "qemu: fatal: ");
1661 vfprintf(stderr, fmt, ap);
1662 fprintf(stderr, "\n");
1663#ifdef TARGET_I386
7fe48483
FB
1664 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1665#else
1666 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1667#endif
93fcfe39
AL
1668 if (qemu_log_enabled()) {
1669 qemu_log("qemu: fatal: ");
1670 qemu_log_vprintf(fmt, ap2);
1671 qemu_log("\n");
f9373291 1672#ifdef TARGET_I386
93fcfe39 1673 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
f9373291 1674#else
93fcfe39 1675 log_cpu_state(env, 0);
f9373291 1676#endif
31b1a7b4 1677 qemu_log_flush();
93fcfe39 1678 qemu_log_close();
924edcae 1679 }
493ae1f0 1680 va_end(ap2);
f9373291 1681 va_end(ap);
7501267e
FB
1682 abort();
1683}
1684
c5be9f08
TS
1685CPUState *cpu_copy(CPUState *env)
1686{
01ba9816 1687 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1688 CPUState *next_cpu = new_env->next_cpu;
1689 int cpu_index = new_env->cpu_index;
5a38f081
AL
1690#if defined(TARGET_HAS_ICE)
1691 CPUBreakpoint *bp;
1692 CPUWatchpoint *wp;
1693#endif
1694
c5be9f08 1695 memcpy(new_env, env, sizeof(CPUState));
5a38f081
AL
1696
1697 /* Preserve chaining and index. */
c5be9f08
TS
1698 new_env->next_cpu = next_cpu;
1699 new_env->cpu_index = cpu_index;
5a38f081
AL
1700
1701 /* Clone all break/watchpoints.
1702 Note: Once we support ptrace with hw-debug register access, make sure
1703 BP_CPU break/watchpoints are handled correctly on clone. */
1704 TAILQ_INIT(&env->breakpoints);
1705 TAILQ_INIT(&env->watchpoints);
1706#if defined(TARGET_HAS_ICE)
1707 TAILQ_FOREACH(bp, &env->breakpoints, entry) {
1708 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1709 }
1710 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
1711 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1712 wp->flags, NULL);
1713 }
1714#endif
1715
c5be9f08
TS
1716 return new_env;
1717}
1718
0124311e
FB
1719#if !defined(CONFIG_USER_ONLY)
1720
5c751e99
EI
1721static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1722{
1723 unsigned int i;
1724
1725 /* Discard jump cache entries for any tb which might potentially
1726 overlap the flushed page. */
1727 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1728 memset (&env->tb_jmp_cache[i], 0,
1729 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1730
1731 i = tb_jmp_cache_hash_page(addr);
1732 memset (&env->tb_jmp_cache[i], 0,
1733 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1734}
1735
08738984
IK
1736static CPUTLBEntry s_cputlb_empty_entry = {
1737 .addr_read = -1,
1738 .addr_write = -1,
1739 .addr_code = -1,
1740 .addend = -1,
1741};
1742
ee8b7021
FB
1743/* NOTE: if flush_global is true, also flush global entries (not
1744 implemented yet) */
1745void tlb_flush(CPUState *env, int flush_global)
33417e70 1746{
33417e70 1747 int i;
0124311e 1748
9fa3e853
FB
1749#if defined(DEBUG_TLB)
1750 printf("tlb_flush:\n");
1751#endif
0124311e
FB
1752 /* must reset current TB so that interrupts cannot modify the
1753 links while we are modifying them */
1754 env->current_tb = NULL;
1755
33417e70 1756 for(i = 0; i < CPU_TLB_SIZE; i++) {
cfde4bd9
IY
1757 int mmu_idx;
1758 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
08738984 1759 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
cfde4bd9 1760 }
33417e70 1761 }
9fa3e853 1762
8a40a180 1763 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 1764
640f42e4 1765#ifdef CONFIG_KQEMU
0a962c02
FB
1766 if (env->kqemu_enabled) {
1767 kqemu_flush(env, flush_global);
1768 }
9fa3e853 1769#endif
e3db7226 1770 tlb_flush_count++;
33417e70
FB
1771}
1772
274da6b2 1773static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1774{
5fafdf24 1775 if (addr == (tlb_entry->addr_read &
84b7b8e7 1776 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1777 addr == (tlb_entry->addr_write &
84b7b8e7 1778 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1779 addr == (tlb_entry->addr_code &
84b7b8e7 1780 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
08738984 1781 *tlb_entry = s_cputlb_empty_entry;
84b7b8e7 1782 }
61382a50
FB
1783}
1784
2e12669a 1785void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 1786{
8a40a180 1787 int i;
cfde4bd9 1788 int mmu_idx;
0124311e 1789
9fa3e853 1790#if defined(DEBUG_TLB)
108c49b8 1791 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 1792#endif
0124311e
FB
1793 /* must reset current TB so that interrupts cannot modify the
1794 links while we are modifying them */
1795 env->current_tb = NULL;
61382a50
FB
1796
1797 addr &= TARGET_PAGE_MASK;
1798 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
1799 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1800 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
0124311e 1801
5c751e99 1802 tlb_flush_jmp_cache(env, addr);
9fa3e853 1803
640f42e4 1804#ifdef CONFIG_KQEMU
0a962c02
FB
1805 if (env->kqemu_enabled) {
1806 kqemu_flush_page(env, addr);
1807 }
1808#endif
9fa3e853
FB
1809}
1810
9fa3e853
FB
1811/* update the TLBs so that writes to code in the virtual page 'addr'
1812 can be detected */
6a00d601 1813static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 1814{
5fafdf24 1815 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
1816 ram_addr + TARGET_PAGE_SIZE,
1817 CODE_DIRTY_FLAG);
9fa3e853
FB
1818}
1819
9fa3e853 1820/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 1821 tested for self modifying code */
5fafdf24 1822static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 1823 target_ulong vaddr)
9fa3e853 1824{
3a7d929e 1825 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1ccde1cb
FB
1826}
1827
5fafdf24 1828static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
1829 unsigned long start, unsigned long length)
1830{
1831 unsigned long addr;
84b7b8e7
FB
1832 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1833 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 1834 if ((addr - start) < length) {
0f459d16 1835 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
1836 }
1837 }
1838}
1839
5579c7f3 1840/* Note: start and end must be within the same ram block. */
3a7d929e 1841void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 1842 int dirty_flags)
1ccde1cb
FB
1843{
1844 CPUState *env;
4f2ac237 1845 unsigned long length, start1;
0a962c02
FB
1846 int i, mask, len;
1847 uint8_t *p;
1ccde1cb
FB
1848
1849 start &= TARGET_PAGE_MASK;
1850 end = TARGET_PAGE_ALIGN(end);
1851
1852 length = end - start;
1853 if (length == 0)
1854 return;
0a962c02 1855 len = length >> TARGET_PAGE_BITS;
640f42e4 1856#ifdef CONFIG_KQEMU
6a00d601
FB
1857 /* XXX: should not depend on cpu context */
1858 env = first_cpu;
3a7d929e 1859 if (env->kqemu_enabled) {
f23db169
FB
1860 ram_addr_t addr;
1861 addr = start;
1862 for(i = 0; i < len; i++) {
1863 kqemu_set_notdirty(env, addr);
1864 addr += TARGET_PAGE_SIZE;
1865 }
3a7d929e
FB
1866 }
1867#endif
f23db169
FB
1868 mask = ~dirty_flags;
1869 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1870 for(i = 0; i < len; i++)
1871 p[i] &= mask;
1872
1ccde1cb
FB
1873 /* we modify the TLB cache so that the dirty bit will be set again
1874 when accessing the range */
5579c7f3
PB
1875 start1 = (unsigned long)qemu_get_ram_ptr(start);
1876 /* Chek that we don't span multiple blocks - this breaks the
1877 address comparisons below. */
1878 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
1879 != (end - 1) - start) {
1880 abort();
1881 }
1882
6a00d601 1883 for(env = first_cpu; env != NULL; env = env->next_cpu) {
cfde4bd9
IY
1884 int mmu_idx;
1885 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1886 for(i = 0; i < CPU_TLB_SIZE; i++)
1887 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
1888 start1, length);
1889 }
6a00d601 1890 }
1ccde1cb
FB
1891}
1892
74576198
AL
1893int cpu_physical_memory_set_dirty_tracking(int enable)
1894{
1895 in_migration = enable;
b0a46a33
JK
1896 if (kvm_enabled()) {
1897 return kvm_set_migration_log(enable);
1898 }
74576198
AL
1899 return 0;
1900}
1901
1902int cpu_physical_memory_get_dirty_tracking(void)
1903{
1904 return in_migration;
1905}
1906
151f7749
JK
1907int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
1908 target_phys_addr_t end_addr)
2bec46dc 1909{
151f7749
JK
1910 int ret = 0;
1911
2bec46dc 1912 if (kvm_enabled())
151f7749
JK
1913 ret = kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
1914 return ret;
2bec46dc
AL
1915}
1916
3a7d929e
FB
1917static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1918{
1919 ram_addr_t ram_addr;
5579c7f3 1920 void *p;
3a7d929e 1921
84b7b8e7 1922 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5579c7f3
PB
1923 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
1924 + tlb_entry->addend);
1925 ram_addr = qemu_ram_addr_from_host(p);
3a7d929e 1926 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 1927 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
1928 }
1929 }
1930}
1931
1932/* update the TLB according to the current state of the dirty bits */
1933void cpu_tlb_update_dirty(CPUState *env)
1934{
1935 int i;
cfde4bd9
IY
1936 int mmu_idx;
1937 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1938 for(i = 0; i < CPU_TLB_SIZE; i++)
1939 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
1940 }
3a7d929e
FB
1941}
1942
0f459d16 1943static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 1944{
0f459d16
PB
1945 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
1946 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
1947}
1948
0f459d16
PB
1949/* update the TLB corresponding to virtual page vaddr
1950 so that it is no longer dirty */
1951static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 1952{
1ccde1cb 1953 int i;
cfde4bd9 1954 int mmu_idx;
1ccde1cb 1955
0f459d16 1956 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 1957 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
1958 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1959 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
9fa3e853
FB
1960}
1961
59817ccb
FB
1962/* add a new TLB entry. At most one entry for a given virtual address
1963 is permitted. Return 0 if OK or 2 if the page could not be mapped
1964 (can only happen in non SOFTMMU mode for I/O pages or pages
1965 conflicting with the host address space). */
5fafdf24
TS
1966int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1967 target_phys_addr_t paddr, int prot,
6ebbf390 1968 int mmu_idx, int is_softmmu)
9fa3e853 1969{
92e873b9 1970 PhysPageDesc *p;
4f2ac237 1971 unsigned long pd;
9fa3e853 1972 unsigned int index;
4f2ac237 1973 target_ulong address;
0f459d16 1974 target_ulong code_address;
108c49b8 1975 target_phys_addr_t addend;
9fa3e853 1976 int ret;
84b7b8e7 1977 CPUTLBEntry *te;
a1d1bb31 1978 CPUWatchpoint *wp;
0f459d16 1979 target_phys_addr_t iotlb;
9fa3e853 1980
92e873b9 1981 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
1982 if (!p) {
1983 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
1984 } else {
1985 pd = p->phys_offset;
9fa3e853
FB
1986 }
1987#if defined(DEBUG_TLB)
6ebbf390
JM
1988 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1989 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
9fa3e853
FB
1990#endif
1991
1992 ret = 0;
0f459d16
PB
1993 address = vaddr;
1994 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
1995 /* IO memory case (romd handled later) */
1996 address |= TLB_MMIO;
1997 }
5579c7f3 1998 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
0f459d16
PB
1999 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2000 /* Normal RAM. */
2001 iotlb = pd & TARGET_PAGE_MASK;
2002 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2003 iotlb |= IO_MEM_NOTDIRTY;
2004 else
2005 iotlb |= IO_MEM_ROM;
2006 } else {
ccbb4d44 2007 /* IO handlers are currently passed a physical address.
0f459d16
PB
2008 It would be nice to pass an offset from the base address
2009 of that region. This would avoid having to special case RAM,
2010 and avoid full address decoding in every device.
2011 We can't use the high bits of pd for this because
2012 IO_MEM_ROMD uses these as a ram address. */
8da3ff18
PB
2013 iotlb = (pd & ~TARGET_PAGE_MASK);
2014 if (p) {
8da3ff18
PB
2015 iotlb += p->region_offset;
2016 } else {
2017 iotlb += paddr;
2018 }
0f459d16
PB
2019 }
2020
2021 code_address = address;
2022 /* Make accesses to pages with watchpoints go via the
2023 watchpoint trap routines. */
c0ce998e 2024 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
a1d1bb31 2025 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
0f459d16
PB
2026 iotlb = io_mem_watch + paddr;
2027 /* TODO: The memory case can be optimized by not trapping
2028 reads of pages with a write breakpoint. */
2029 address |= TLB_MMIO;
6658ffb8 2030 }
0f459d16 2031 }
d79acba4 2032
0f459d16
PB
2033 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2034 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2035 te = &env->tlb_table[mmu_idx][index];
2036 te->addend = addend - vaddr;
2037 if (prot & PAGE_READ) {
2038 te->addr_read = address;
2039 } else {
2040 te->addr_read = -1;
2041 }
5c751e99 2042
0f459d16
PB
2043 if (prot & PAGE_EXEC) {
2044 te->addr_code = code_address;
2045 } else {
2046 te->addr_code = -1;
2047 }
2048 if (prot & PAGE_WRITE) {
2049 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2050 (pd & IO_MEM_ROMD)) {
2051 /* Write access calls the I/O callback. */
2052 te->addr_write = address | TLB_MMIO;
2053 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2054 !cpu_physical_memory_is_dirty(pd)) {
2055 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 2056 } else {
0f459d16 2057 te->addr_write = address;
9fa3e853 2058 }
0f459d16
PB
2059 } else {
2060 te->addr_write = -1;
9fa3e853 2061 }
9fa3e853
FB
2062 return ret;
2063}
2064
0124311e
FB
2065#else
2066
ee8b7021 2067void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
2068{
2069}
2070
2e12669a 2071void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
2072{
2073}
2074
5fafdf24
TS
2075int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2076 target_phys_addr_t paddr, int prot,
6ebbf390 2077 int mmu_idx, int is_softmmu)
9fa3e853
FB
2078{
2079 return 0;
2080}
0124311e 2081
edf8e2af
MW
2082/*
2083 * Walks guest process memory "regions" one by one
2084 * and calls callback function 'fn' for each region.
2085 */
2086int walk_memory_regions(void *priv,
2087 int (*fn)(void *, unsigned long, unsigned long, unsigned long))
33417e70 2088{
9fa3e853 2089 unsigned long start, end;
edf8e2af 2090 PageDesc *p = NULL;
9fa3e853 2091 int i, j, prot, prot1;
edf8e2af 2092 int rc = 0;
33417e70 2093
edf8e2af 2094 start = end = -1;
9fa3e853 2095 prot = 0;
edf8e2af
MW
2096
2097 for (i = 0; i <= L1_SIZE; i++) {
2098 p = (i < L1_SIZE) ? l1_map[i] : NULL;
2099 for (j = 0; j < L2_SIZE; j++) {
2100 prot1 = (p == NULL) ? 0 : p[j].flags;
2101 /*
2102 * "region" is one continuous chunk of memory
2103 * that has same protection flags set.
2104 */
9fa3e853
FB
2105 if (prot1 != prot) {
2106 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2107 if (start != -1) {
edf8e2af
MW
2108 rc = (*fn)(priv, start, end, prot);
2109 /* callback can stop iteration by returning != 0 */
2110 if (rc != 0)
2111 return (rc);
9fa3e853
FB
2112 }
2113 if (prot1 != 0)
2114 start = end;
2115 else
2116 start = -1;
2117 prot = prot1;
2118 }
edf8e2af 2119 if (p == NULL)
9fa3e853
FB
2120 break;
2121 }
33417e70 2122 }
edf8e2af
MW
2123 return (rc);
2124}
2125
2126static int dump_region(void *priv, unsigned long start,
2127 unsigned long end, unsigned long prot)
2128{
2129 FILE *f = (FILE *)priv;
2130
2131 (void) fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
2132 start, end, end - start,
2133 ((prot & PAGE_READ) ? 'r' : '-'),
2134 ((prot & PAGE_WRITE) ? 'w' : '-'),
2135 ((prot & PAGE_EXEC) ? 'x' : '-'));
2136
2137 return (0);
2138}
2139
2140/* dump memory mappings */
2141void page_dump(FILE *f)
2142{
2143 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2144 "start", "end", "size", "prot");
2145 walk_memory_regions(f, dump_region);
33417e70
FB
2146}
2147
53a5960a 2148int page_get_flags(target_ulong address)
33417e70 2149{
9fa3e853
FB
2150 PageDesc *p;
2151
2152 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2153 if (!p)
9fa3e853
FB
2154 return 0;
2155 return p->flags;
2156}
2157
2158/* modify the flags of a page and invalidate the code if
ccbb4d44 2159 necessary. The flag PAGE_WRITE_ORG is positioned automatically
9fa3e853 2160 depending on PAGE_WRITE */
53a5960a 2161void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853
FB
2162{
2163 PageDesc *p;
53a5960a 2164 target_ulong addr;
9fa3e853 2165
c8a706fe 2166 /* mmap_lock should already be held. */
9fa3e853
FB
2167 start = start & TARGET_PAGE_MASK;
2168 end = TARGET_PAGE_ALIGN(end);
2169 if (flags & PAGE_WRITE)
2170 flags |= PAGE_WRITE_ORG;
9fa3e853
FB
2171 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2172 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
17e2377a
PB
2173 /* We may be called for host regions that are outside guest
2174 address space. */
2175 if (!p)
2176 return;
9fa3e853
FB
2177 /* if the write protection is set, then we invalidate the code
2178 inside */
5fafdf24 2179 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2180 (flags & PAGE_WRITE) &&
2181 p->first_tb) {
d720b93d 2182 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2183 }
2184 p->flags = flags;
2185 }
33417e70
FB
2186}
2187
3d97b40b
TS
2188int page_check_range(target_ulong start, target_ulong len, int flags)
2189{
2190 PageDesc *p;
2191 target_ulong end;
2192 target_ulong addr;
2193
55f280c9
AZ
2194 if (start + len < start)
2195 /* we've wrapped around */
2196 return -1;
2197
3d97b40b
TS
2198 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2199 start = start & TARGET_PAGE_MASK;
2200
3d97b40b
TS
2201 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2202 p = page_find(addr >> TARGET_PAGE_BITS);
2203 if( !p )
2204 return -1;
2205 if( !(p->flags & PAGE_VALID) )
2206 return -1;
2207
dae3270c 2208 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2209 return -1;
dae3270c
FB
2210 if (flags & PAGE_WRITE) {
2211 if (!(p->flags & PAGE_WRITE_ORG))
2212 return -1;
2213 /* unprotect the page if it was put read-only because it
2214 contains translated code */
2215 if (!(p->flags & PAGE_WRITE)) {
2216 if (!page_unprotect(addr, 0, NULL))
2217 return -1;
2218 }
2219 return 0;
2220 }
3d97b40b
TS
2221 }
2222 return 0;
2223}
2224
9fa3e853 2225/* called from signal handler: invalidate the code and unprotect the
ccbb4d44 2226 page. Return TRUE if the fault was successfully handled. */
53a5960a 2227int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853
FB
2228{
2229 unsigned int page_index, prot, pindex;
2230 PageDesc *p, *p1;
53a5960a 2231 target_ulong host_start, host_end, addr;
9fa3e853 2232
c8a706fe
PB
2233 /* Technically this isn't safe inside a signal handler. However we
2234 know this only ever happens in a synchronous SEGV handler, so in
2235 practice it seems to be ok. */
2236 mmap_lock();
2237
83fb7adf 2238 host_start = address & qemu_host_page_mask;
9fa3e853
FB
2239 page_index = host_start >> TARGET_PAGE_BITS;
2240 p1 = page_find(page_index);
c8a706fe
PB
2241 if (!p1) {
2242 mmap_unlock();
9fa3e853 2243 return 0;
c8a706fe 2244 }
83fb7adf 2245 host_end = host_start + qemu_host_page_size;
9fa3e853
FB
2246 p = p1;
2247 prot = 0;
2248 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2249 prot |= p->flags;
2250 p++;
2251 }
2252 /* if the page was really writable, then we change its
2253 protection back to writable */
2254 if (prot & PAGE_WRITE_ORG) {
2255 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2256 if (!(p1[pindex].flags & PAGE_WRITE)) {
5fafdf24 2257 mprotect((void *)g2h(host_start), qemu_host_page_size,
9fa3e853
FB
2258 (prot & PAGE_BITS) | PAGE_WRITE);
2259 p1[pindex].flags |= PAGE_WRITE;
2260 /* and since the content will be modified, we must invalidate
2261 the corresponding translated code. */
d720b93d 2262 tb_invalidate_phys_page(address, pc, puc);
9fa3e853
FB
2263#ifdef DEBUG_TB_CHECK
2264 tb_invalidate_check(address);
2265#endif
c8a706fe 2266 mmap_unlock();
9fa3e853
FB
2267 return 1;
2268 }
2269 }
c8a706fe 2270 mmap_unlock();
9fa3e853
FB
2271 return 0;
2272}
2273
6a00d601
FB
2274static inline void tlb_set_dirty(CPUState *env,
2275 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2276{
2277}
9fa3e853
FB
2278#endif /* defined(CONFIG_USER_ONLY) */
2279
e2eef170 2280#if !defined(CONFIG_USER_ONLY)
8da3ff18 2281
db7b5426 2282static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
8da3ff18 2283 ram_addr_t memory, ram_addr_t region_offset);
00f82b8a 2284static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
8da3ff18 2285 ram_addr_t orig_memory, ram_addr_t region_offset);
db7b5426
BS
2286#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2287 need_subpage) \
2288 do { \
2289 if (addr > start_addr) \
2290 start_addr2 = 0; \
2291 else { \
2292 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2293 if (start_addr2 > 0) \
2294 need_subpage = 1; \
2295 } \
2296 \
49e9fba2 2297 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2298 end_addr2 = TARGET_PAGE_SIZE - 1; \
2299 else { \
2300 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2301 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2302 need_subpage = 1; \
2303 } \
2304 } while (0)
2305
33417e70
FB
2306/* register physical memory. 'size' must be a multiple of the target
2307 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
8da3ff18
PB
2308 io memory page. The address used when calling the IO function is
2309 the offset from the start of the region, plus region_offset. Both
ccbb4d44 2310 start_addr and region_offset are rounded down to a page boundary
8da3ff18
PB
2311 before calculating this offset. This should not be a problem unless
2312 the low bits of start_addr and region_offset differ. */
2313void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2314 ram_addr_t size,
2315 ram_addr_t phys_offset,
2316 ram_addr_t region_offset)
33417e70 2317{
108c49b8 2318 target_phys_addr_t addr, end_addr;
92e873b9 2319 PhysPageDesc *p;
9d42037b 2320 CPUState *env;
00f82b8a 2321 ram_addr_t orig_size = size;
db7b5426 2322 void *subpage;
33417e70 2323
640f42e4 2324#ifdef CONFIG_KQEMU
da260249
FB
2325 /* XXX: should not depend on cpu context */
2326 env = first_cpu;
2327 if (env->kqemu_enabled) {
2328 kqemu_set_phys_mem(start_addr, size, phys_offset);
2329 }
2330#endif
7ba1e619
AL
2331 if (kvm_enabled())
2332 kvm_set_phys_mem(start_addr, size, phys_offset);
2333
67c4d23c
PB
2334 if (phys_offset == IO_MEM_UNASSIGNED) {
2335 region_offset = start_addr;
2336 }
8da3ff18 2337 region_offset &= TARGET_PAGE_MASK;
5fd386f6 2338 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
49e9fba2
BS
2339 end_addr = start_addr + (target_phys_addr_t)size;
2340 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
db7b5426
BS
2341 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2342 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
00f82b8a 2343 ram_addr_t orig_memory = p->phys_offset;
db7b5426
BS
2344 target_phys_addr_t start_addr2, end_addr2;
2345 int need_subpage = 0;
2346
2347 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2348 need_subpage);
4254fab8 2349 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426
BS
2350 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2351 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18
PB
2352 &p->phys_offset, orig_memory,
2353 p->region_offset);
db7b5426
BS
2354 } else {
2355 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2356 >> IO_MEM_SHIFT];
2357 }
8da3ff18
PB
2358 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2359 region_offset);
2360 p->region_offset = 0;
db7b5426
BS
2361 } else {
2362 p->phys_offset = phys_offset;
2363 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2364 (phys_offset & IO_MEM_ROMD))
2365 phys_offset += TARGET_PAGE_SIZE;
2366 }
2367 } else {
2368 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2369 p->phys_offset = phys_offset;
8da3ff18 2370 p->region_offset = region_offset;
db7b5426 2371 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
8da3ff18 2372 (phys_offset & IO_MEM_ROMD)) {
db7b5426 2373 phys_offset += TARGET_PAGE_SIZE;
0e8f0967 2374 } else {
db7b5426
BS
2375 target_phys_addr_t start_addr2, end_addr2;
2376 int need_subpage = 0;
2377
2378 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2379 end_addr2, need_subpage);
2380
4254fab8 2381 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426 2382 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18 2383 &p->phys_offset, IO_MEM_UNASSIGNED,
67c4d23c 2384 addr & TARGET_PAGE_MASK);
db7b5426 2385 subpage_register(subpage, start_addr2, end_addr2,
8da3ff18
PB
2386 phys_offset, region_offset);
2387 p->region_offset = 0;
db7b5426
BS
2388 }
2389 }
2390 }
8da3ff18 2391 region_offset += TARGET_PAGE_SIZE;
33417e70 2392 }
3b46e624 2393
9d42037b
FB
2394 /* since each CPU stores ram addresses in its TLB cache, we must
2395 reset the modified entries */
2396 /* XXX: slow ! */
2397 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2398 tlb_flush(env, 1);
2399 }
33417e70
FB
2400}
2401
ba863458 2402/* XXX: temporary until new memory mapping API */
00f82b8a 2403ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
ba863458
FB
2404{
2405 PhysPageDesc *p;
2406
2407 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2408 if (!p)
2409 return IO_MEM_UNASSIGNED;
2410 return p->phys_offset;
2411}
2412
f65ed4c1
AL
2413void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2414{
2415 if (kvm_enabled())
2416 kvm_coalesce_mmio_region(addr, size);
2417}
2418
2419void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2420{
2421 if (kvm_enabled())
2422 kvm_uncoalesce_mmio_region(addr, size);
2423}
2424
640f42e4 2425#ifdef CONFIG_KQEMU
e9a1ab19 2426/* XXX: better than nothing */
94a6b54f 2427static ram_addr_t kqemu_ram_alloc(ram_addr_t size)
e9a1ab19
FB
2428{
2429 ram_addr_t addr;
94a6b54f 2430 if ((last_ram_offset + size) > kqemu_phys_ram_size) {
012a7045 2431 fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 ")\n",
94a6b54f 2432 (uint64_t)size, (uint64_t)kqemu_phys_ram_size);
e9a1ab19
FB
2433 abort();
2434 }
94a6b54f
PB
2435 addr = last_ram_offset;
2436 last_ram_offset = TARGET_PAGE_ALIGN(last_ram_offset + size);
e9a1ab19
FB
2437 return addr;
2438}
94a6b54f
PB
2439#endif
2440
2441ram_addr_t qemu_ram_alloc(ram_addr_t size)
2442{
2443 RAMBlock *new_block;
2444
640f42e4 2445#ifdef CONFIG_KQEMU
94a6b54f
PB
2446 if (kqemu_phys_ram_base) {
2447 return kqemu_ram_alloc(size);
2448 }
2449#endif
2450
2451 size = TARGET_PAGE_ALIGN(size);
2452 new_block = qemu_malloc(sizeof(*new_block));
2453
2454 new_block->host = qemu_vmalloc(size);
2455 new_block->offset = last_ram_offset;
2456 new_block->length = size;
2457
2458 new_block->next = ram_blocks;
2459 ram_blocks = new_block;
2460
2461 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2462 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2463 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2464 0xff, size >> TARGET_PAGE_BITS);
2465
2466 last_ram_offset += size;
2467
6f0437e8
JK
2468 if (kvm_enabled())
2469 kvm_setup_guest_memory(new_block->host, size);
2470
94a6b54f
PB
2471 return new_block->offset;
2472}
e9a1ab19
FB
2473
2474void qemu_ram_free(ram_addr_t addr)
2475{
94a6b54f 2476 /* TODO: implement this. */
e9a1ab19
FB
2477}
2478
dc828ca1 2479/* Return a host pointer to ram allocated with qemu_ram_alloc.
5579c7f3
PB
2480 With the exception of the softmmu code in this file, this should
2481 only be used for local memory (e.g. video ram) that the device owns,
2482 and knows it isn't going to access beyond the end of the block.
2483
2484 It should not be used for general purpose DMA.
2485 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2486 */
dc828ca1
PB
2487void *qemu_get_ram_ptr(ram_addr_t addr)
2488{
94a6b54f
PB
2489 RAMBlock *prev;
2490 RAMBlock **prevp;
2491 RAMBlock *block;
2492
640f42e4 2493#ifdef CONFIG_KQEMU
94a6b54f
PB
2494 if (kqemu_phys_ram_base) {
2495 return kqemu_phys_ram_base + addr;
2496 }
2497#endif
2498
2499 prev = NULL;
2500 prevp = &ram_blocks;
2501 block = ram_blocks;
2502 while (block && (block->offset > addr
2503 || block->offset + block->length <= addr)) {
2504 if (prev)
2505 prevp = &prev->next;
2506 prev = block;
2507 block = block->next;
2508 }
2509 if (!block) {
2510 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2511 abort();
2512 }
2513 /* Move this entry to to start of the list. */
2514 if (prev) {
2515 prev->next = block->next;
2516 block->next = *prevp;
2517 *prevp = block;
2518 }
2519 return block->host + (addr - block->offset);
dc828ca1
PB
2520}
2521
5579c7f3
PB
2522/* Some of the softmmu routines need to translate from a host pointer
2523 (typically a TLB entry) back to a ram offset. */
2524ram_addr_t qemu_ram_addr_from_host(void *ptr)
2525{
94a6b54f
PB
2526 RAMBlock *prev;
2527 RAMBlock **prevp;
2528 RAMBlock *block;
2529 uint8_t *host = ptr;
2530
640f42e4 2531#ifdef CONFIG_KQEMU
94a6b54f
PB
2532 if (kqemu_phys_ram_base) {
2533 return host - kqemu_phys_ram_base;
2534 }
2535#endif
2536
2537 prev = NULL;
2538 prevp = &ram_blocks;
2539 block = ram_blocks;
2540 while (block && (block->host > host
2541 || block->host + block->length <= host)) {
2542 if (prev)
2543 prevp = &prev->next;
2544 prev = block;
2545 block = block->next;
2546 }
2547 if (!block) {
2548 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2549 abort();
2550 }
2551 return block->offset + (host - block->host);
5579c7f3
PB
2552}
2553
a4193c8a 2554static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 2555{
67d3b957 2556#ifdef DEBUG_UNASSIGNED
ab3d1727 2557 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316 2558#endif
0a6f8a6d 2559#if defined(TARGET_SPARC)
e18231a3
BS
2560 do_unassigned_access(addr, 0, 0, 0, 1);
2561#endif
2562 return 0;
2563}
2564
2565static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2566{
2567#ifdef DEBUG_UNASSIGNED
2568 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2569#endif
0a6f8a6d 2570#if defined(TARGET_SPARC)
e18231a3
BS
2571 do_unassigned_access(addr, 0, 0, 0, 2);
2572#endif
2573 return 0;
2574}
2575
2576static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2577{
2578#ifdef DEBUG_UNASSIGNED
2579 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2580#endif
0a6f8a6d 2581#if defined(TARGET_SPARC)
e18231a3 2582 do_unassigned_access(addr, 0, 0, 0, 4);
67d3b957 2583#endif
33417e70
FB
2584 return 0;
2585}
2586
a4193c8a 2587static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 2588{
67d3b957 2589#ifdef DEBUG_UNASSIGNED
ab3d1727 2590 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 2591#endif
0a6f8a6d 2592#if defined(TARGET_SPARC)
e18231a3
BS
2593 do_unassigned_access(addr, 1, 0, 0, 1);
2594#endif
2595}
2596
2597static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2598{
2599#ifdef DEBUG_UNASSIGNED
2600 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2601#endif
0a6f8a6d 2602#if defined(TARGET_SPARC)
e18231a3
BS
2603 do_unassigned_access(addr, 1, 0, 0, 2);
2604#endif
2605}
2606
2607static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2608{
2609#ifdef DEBUG_UNASSIGNED
2610 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2611#endif
0a6f8a6d 2612#if defined(TARGET_SPARC)
e18231a3 2613 do_unassigned_access(addr, 1, 0, 0, 4);
b4f0a316 2614#endif
33417e70
FB
2615}
2616
2617static CPUReadMemoryFunc *unassigned_mem_read[3] = {
2618 unassigned_mem_readb,
e18231a3
BS
2619 unassigned_mem_readw,
2620 unassigned_mem_readl,
33417e70
FB
2621};
2622
2623static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
2624 unassigned_mem_writeb,
e18231a3
BS
2625 unassigned_mem_writew,
2626 unassigned_mem_writel,
33417e70
FB
2627};
2628
0f459d16
PB
2629static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2630 uint32_t val)
9fa3e853 2631{
3a7d929e 2632 int dirty_flags;
3a7d929e
FB
2633 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2634 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2635#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2636 tb_invalidate_phys_page_fast(ram_addr, 1);
2637 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2638#endif
3a7d929e 2639 }
5579c7f3 2640 stb_p(qemu_get_ram_ptr(ram_addr), val);
640f42e4 2641#ifdef CONFIG_KQEMU
f32fc648
FB
2642 if (cpu_single_env->kqemu_enabled &&
2643 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2644 kqemu_modify_page(cpu_single_env, ram_addr);
2645#endif
f23db169
FB
2646 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2647 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2648 /* we remove the notdirty callback only if the code has been
2649 flushed */
2650 if (dirty_flags == 0xff)
2e70f6ef 2651 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2652}
2653
0f459d16
PB
2654static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2655 uint32_t val)
9fa3e853 2656{
3a7d929e 2657 int dirty_flags;
3a7d929e
FB
2658 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2659 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2660#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2661 tb_invalidate_phys_page_fast(ram_addr, 2);
2662 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2663#endif
3a7d929e 2664 }
5579c7f3 2665 stw_p(qemu_get_ram_ptr(ram_addr), val);
640f42e4 2666#ifdef CONFIG_KQEMU
f32fc648
FB
2667 if (cpu_single_env->kqemu_enabled &&
2668 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2669 kqemu_modify_page(cpu_single_env, ram_addr);
2670#endif
f23db169
FB
2671 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2672 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2673 /* we remove the notdirty callback only if the code has been
2674 flushed */
2675 if (dirty_flags == 0xff)
2e70f6ef 2676 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2677}
2678
0f459d16
PB
2679static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2680 uint32_t val)
9fa3e853 2681{
3a7d929e 2682 int dirty_flags;
3a7d929e
FB
2683 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2684 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2685#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2686 tb_invalidate_phys_page_fast(ram_addr, 4);
2687 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2688#endif
3a7d929e 2689 }
5579c7f3 2690 stl_p(qemu_get_ram_ptr(ram_addr), val);
640f42e4 2691#ifdef CONFIG_KQEMU
f32fc648
FB
2692 if (cpu_single_env->kqemu_enabled &&
2693 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2694 kqemu_modify_page(cpu_single_env, ram_addr);
2695#endif
f23db169
FB
2696 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2697 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2698 /* we remove the notdirty callback only if the code has been
2699 flushed */
2700 if (dirty_flags == 0xff)
2e70f6ef 2701 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2702}
2703
3a7d929e 2704static CPUReadMemoryFunc *error_mem_read[3] = {
9fa3e853
FB
2705 NULL, /* never used */
2706 NULL, /* never used */
2707 NULL, /* never used */
2708};
2709
1ccde1cb
FB
2710static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
2711 notdirty_mem_writeb,
2712 notdirty_mem_writew,
2713 notdirty_mem_writel,
2714};
2715
0f459d16 2716/* Generate a debug exception if a watchpoint has been hit. */
b4051334 2717static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16
PB
2718{
2719 CPUState *env = cpu_single_env;
06d55cc1
AL
2720 target_ulong pc, cs_base;
2721 TranslationBlock *tb;
0f459d16 2722 target_ulong vaddr;
a1d1bb31 2723 CPUWatchpoint *wp;
06d55cc1 2724 int cpu_flags;
0f459d16 2725
06d55cc1
AL
2726 if (env->watchpoint_hit) {
2727 /* We re-entered the check after replacing the TB. Now raise
2728 * the debug interrupt so that is will trigger after the
2729 * current instruction. */
2730 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2731 return;
2732 }
2e70f6ef 2733 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
c0ce998e 2734 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
2735 if ((vaddr == (wp->vaddr & len_mask) ||
2736 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
2737 wp->flags |= BP_WATCHPOINT_HIT;
2738 if (!env->watchpoint_hit) {
2739 env->watchpoint_hit = wp;
2740 tb = tb_find_pc(env->mem_io_pc);
2741 if (!tb) {
2742 cpu_abort(env, "check_watchpoint: could not find TB for "
2743 "pc=%p", (void *)env->mem_io_pc);
2744 }
2745 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
2746 tb_phys_invalidate(tb, -1);
2747 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2748 env->exception_index = EXCP_DEBUG;
2749 } else {
2750 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2751 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2752 }
2753 cpu_resume_from_signal(env, NULL);
06d55cc1 2754 }
6e140f28
AL
2755 } else {
2756 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2757 }
2758 }
2759}
2760
6658ffb8
PB
2761/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2762 so these check for a hit then pass through to the normal out-of-line
2763 phys routines. */
2764static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2765{
b4051334 2766 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
6658ffb8
PB
2767 return ldub_phys(addr);
2768}
2769
2770static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2771{
b4051334 2772 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
6658ffb8
PB
2773 return lduw_phys(addr);
2774}
2775
2776static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2777{
b4051334 2778 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
6658ffb8
PB
2779 return ldl_phys(addr);
2780}
2781
6658ffb8
PB
2782static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2783 uint32_t val)
2784{
b4051334 2785 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
6658ffb8
PB
2786 stb_phys(addr, val);
2787}
2788
2789static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2790 uint32_t val)
2791{
b4051334 2792 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
6658ffb8
PB
2793 stw_phys(addr, val);
2794}
2795
2796static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2797 uint32_t val)
2798{
b4051334 2799 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
6658ffb8
PB
2800 stl_phys(addr, val);
2801}
2802
2803static CPUReadMemoryFunc *watch_mem_read[3] = {
2804 watch_mem_readb,
2805 watch_mem_readw,
2806 watch_mem_readl,
2807};
2808
2809static CPUWriteMemoryFunc *watch_mem_write[3] = {
2810 watch_mem_writeb,
2811 watch_mem_writew,
2812 watch_mem_writel,
2813};
6658ffb8 2814
db7b5426
BS
2815static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2816 unsigned int len)
2817{
db7b5426
BS
2818 uint32_t ret;
2819 unsigned int idx;
2820
8da3ff18 2821 idx = SUBPAGE_IDX(addr);
db7b5426
BS
2822#if defined(DEBUG_SUBPAGE)
2823 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2824 mmio, len, addr, idx);
2825#endif
8da3ff18
PB
2826 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
2827 addr + mmio->region_offset[idx][0][len]);
db7b5426
BS
2828
2829 return ret;
2830}
2831
2832static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2833 uint32_t value, unsigned int len)
2834{
db7b5426
BS
2835 unsigned int idx;
2836
8da3ff18 2837 idx = SUBPAGE_IDX(addr);
db7b5426
BS
2838#if defined(DEBUG_SUBPAGE)
2839 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2840 mmio, len, addr, idx, value);
2841#endif
8da3ff18
PB
2842 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
2843 addr + mmio->region_offset[idx][1][len],
2844 value);
db7b5426
BS
2845}
2846
2847static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2848{
2849#if defined(DEBUG_SUBPAGE)
2850 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2851#endif
2852
2853 return subpage_readlen(opaque, addr, 0);
2854}
2855
2856static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2857 uint32_t value)
2858{
2859#if defined(DEBUG_SUBPAGE)
2860 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2861#endif
2862 subpage_writelen(opaque, addr, value, 0);
2863}
2864
2865static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2866{
2867#if defined(DEBUG_SUBPAGE)
2868 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2869#endif
2870
2871 return subpage_readlen(opaque, addr, 1);
2872}
2873
2874static void subpage_writew (void *opaque, target_phys_addr_t addr,
2875 uint32_t value)
2876{
2877#if defined(DEBUG_SUBPAGE)
2878 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2879#endif
2880 subpage_writelen(opaque, addr, value, 1);
2881}
2882
2883static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2884{
2885#if defined(DEBUG_SUBPAGE)
2886 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2887#endif
2888
2889 return subpage_readlen(opaque, addr, 2);
2890}
2891
2892static void subpage_writel (void *opaque,
2893 target_phys_addr_t addr, uint32_t value)
2894{
2895#if defined(DEBUG_SUBPAGE)
2896 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2897#endif
2898 subpage_writelen(opaque, addr, value, 2);
2899}
2900
2901static CPUReadMemoryFunc *subpage_read[] = {
2902 &subpage_readb,
2903 &subpage_readw,
2904 &subpage_readl,
2905};
2906
2907static CPUWriteMemoryFunc *subpage_write[] = {
2908 &subpage_writeb,
2909 &subpage_writew,
2910 &subpage_writel,
2911};
2912
2913static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
8da3ff18 2914 ram_addr_t memory, ram_addr_t region_offset)
db7b5426
BS
2915{
2916 int idx, eidx;
4254fab8 2917 unsigned int i;
db7b5426
BS
2918
2919 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2920 return -1;
2921 idx = SUBPAGE_IDX(start);
2922 eidx = SUBPAGE_IDX(end);
2923#if defined(DEBUG_SUBPAGE)
dd500a92 2924 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
db7b5426
BS
2925 mmio, start, end, idx, eidx, memory);
2926#endif
2927 memory >>= IO_MEM_SHIFT;
2928 for (; idx <= eidx; idx++) {
4254fab8 2929 for (i = 0; i < 4; i++) {
3ee89922
BS
2930 if (io_mem_read[memory][i]) {
2931 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2932 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
8da3ff18 2933 mmio->region_offset[idx][0][i] = region_offset;
3ee89922
BS
2934 }
2935 if (io_mem_write[memory][i]) {
2936 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2937 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
8da3ff18 2938 mmio->region_offset[idx][1][i] = region_offset;
3ee89922 2939 }
4254fab8 2940 }
db7b5426
BS
2941 }
2942
2943 return 0;
2944}
2945
00f82b8a 2946static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
8da3ff18 2947 ram_addr_t orig_memory, ram_addr_t region_offset)
db7b5426
BS
2948{
2949 subpage_t *mmio;
2950 int subpage_memory;
2951
2952 mmio = qemu_mallocz(sizeof(subpage_t));
1eec614b
AL
2953
2954 mmio->base = base;
1eed09cb 2955 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
db7b5426 2956#if defined(DEBUG_SUBPAGE)
1eec614b
AL
2957 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2958 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 2959#endif
1eec614b
AL
2960 *phys = subpage_memory | IO_MEM_SUBPAGE;
2961 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
8da3ff18 2962 region_offset);
db7b5426
BS
2963
2964 return mmio;
2965}
2966
88715657
AL
2967static int get_free_io_mem_idx(void)
2968{
2969 int i;
2970
2971 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
2972 if (!io_mem_used[i]) {
2973 io_mem_used[i] = 1;
2974 return i;
2975 }
2976
2977 return -1;
2978}
2979
33417e70
FB
2980/* mem_read and mem_write are arrays of functions containing the
2981 function to access byte (index 0), word (index 1) and dword (index
0b4e6e3e 2982 2). Functions can be omitted with a NULL function pointer.
3ee89922 2983 If io_index is non zero, the corresponding io zone is
4254fab8
BS
2984 modified. If it is zero, a new io zone is allocated. The return
2985 value can be used with cpu_register_physical_memory(). (-1) is
2986 returned if error. */
1eed09cb
AK
2987static int cpu_register_io_memory_fixed(int io_index,
2988 CPUReadMemoryFunc **mem_read,
2989 CPUWriteMemoryFunc **mem_write,
2990 void *opaque)
33417e70 2991{
4254fab8 2992 int i, subwidth = 0;
33417e70
FB
2993
2994 if (io_index <= 0) {
88715657
AL
2995 io_index = get_free_io_mem_idx();
2996 if (io_index == -1)
2997 return io_index;
33417e70 2998 } else {
1eed09cb 2999 io_index >>= IO_MEM_SHIFT;
33417e70
FB
3000 if (io_index >= IO_MEM_NB_ENTRIES)
3001 return -1;
3002 }
b5ff1b31 3003
33417e70 3004 for(i = 0;i < 3; i++) {
4254fab8
BS
3005 if (!mem_read[i] || !mem_write[i])
3006 subwidth = IO_MEM_SUBWIDTH;
33417e70
FB
3007 io_mem_read[io_index][i] = mem_read[i];
3008 io_mem_write[io_index][i] = mem_write[i];
3009 }
a4193c8a 3010 io_mem_opaque[io_index] = opaque;
4254fab8 3011 return (io_index << IO_MEM_SHIFT) | subwidth;
33417e70 3012}
61382a50 3013
1eed09cb
AK
3014int cpu_register_io_memory(CPUReadMemoryFunc **mem_read,
3015 CPUWriteMemoryFunc **mem_write,
3016 void *opaque)
3017{
3018 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
3019}
3020
88715657
AL
3021void cpu_unregister_io_memory(int io_table_address)
3022{
3023 int i;
3024 int io_index = io_table_address >> IO_MEM_SHIFT;
3025
3026 for (i=0;i < 3; i++) {
3027 io_mem_read[io_index][i] = unassigned_mem_read[i];
3028 io_mem_write[io_index][i] = unassigned_mem_write[i];
3029 }
3030 io_mem_opaque[io_index] = NULL;
3031 io_mem_used[io_index] = 0;
3032}
3033
e9179ce1
AK
3034static void io_mem_init(void)
3035{
3036 int i;
3037
3038 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
3039 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
3040 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
3041 for (i=0; i<5; i++)
3042 io_mem_used[i] = 1;
3043
3044 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3045 watch_mem_write, NULL);
3046#ifdef CONFIG_KQEMU
3047 if (kqemu_phys_ram_base) {
3048 /* alloc dirty bits array */
3049 phys_ram_dirty = qemu_vmalloc(kqemu_phys_ram_size >> TARGET_PAGE_BITS);
3050 memset(phys_ram_dirty, 0xff, kqemu_phys_ram_size >> TARGET_PAGE_BITS);
3051 }
3052#endif
3053}
3054
e2eef170
PB
3055#endif /* !defined(CONFIG_USER_ONLY) */
3056
13eb76e0
FB
3057/* physical memory access (slow version, mainly for debug) */
3058#if defined(CONFIG_USER_ONLY)
5fafdf24 3059void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3060 int len, int is_write)
3061{
3062 int l, flags;
3063 target_ulong page;
53a5960a 3064 void * p;
13eb76e0
FB
3065
3066 while (len > 0) {
3067 page = addr & TARGET_PAGE_MASK;
3068 l = (page + TARGET_PAGE_SIZE) - addr;
3069 if (l > len)
3070 l = len;
3071 flags = page_get_flags(page);
3072 if (!(flags & PAGE_VALID))
3073 return;
3074 if (is_write) {
3075 if (!(flags & PAGE_WRITE))
3076 return;
579a97f7 3077 /* XXX: this code should not depend on lock_user */
72fb7daa 3078 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
579a97f7
FB
3079 /* FIXME - should this return an error rather than just fail? */
3080 return;
72fb7daa
AJ
3081 memcpy(p, buf, l);
3082 unlock_user(p, addr, l);
13eb76e0
FB
3083 } else {
3084 if (!(flags & PAGE_READ))
3085 return;
579a97f7 3086 /* XXX: this code should not depend on lock_user */
72fb7daa 3087 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
579a97f7
FB
3088 /* FIXME - should this return an error rather than just fail? */
3089 return;
72fb7daa 3090 memcpy(buf, p, l);
5b257578 3091 unlock_user(p, addr, 0);
13eb76e0
FB
3092 }
3093 len -= l;
3094 buf += l;
3095 addr += l;
3096 }
3097}
8df1cd07 3098
13eb76e0 3099#else
5fafdf24 3100void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3101 int len, int is_write)
3102{
3103 int l, io_index;
3104 uint8_t *ptr;
3105 uint32_t val;
2e12669a
FB
3106 target_phys_addr_t page;
3107 unsigned long pd;
92e873b9 3108 PhysPageDesc *p;
3b46e624 3109
13eb76e0
FB
3110 while (len > 0) {
3111 page = addr & TARGET_PAGE_MASK;
3112 l = (page + TARGET_PAGE_SIZE) - addr;
3113 if (l > len)
3114 l = len;
92e873b9 3115 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
3116 if (!p) {
3117 pd = IO_MEM_UNASSIGNED;
3118 } else {
3119 pd = p->phys_offset;
3120 }
3b46e624 3121
13eb76e0 3122 if (is_write) {
3a7d929e 3123 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
6c2934db 3124 target_phys_addr_t addr1 = addr;
13eb76e0 3125 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3126 if (p)
6c2934db 3127 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
6a00d601
FB
3128 /* XXX: could force cpu_single_env to NULL to avoid
3129 potential bugs */
6c2934db 3130 if (l >= 4 && ((addr1 & 3) == 0)) {
1c213d19 3131 /* 32 bit write access */
c27004ec 3132 val = ldl_p(buf);
6c2934db 3133 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
13eb76e0 3134 l = 4;
6c2934db 3135 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1c213d19 3136 /* 16 bit write access */
c27004ec 3137 val = lduw_p(buf);
6c2934db 3138 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3139 l = 2;
3140 } else {
1c213d19 3141 /* 8 bit write access */
c27004ec 3142 val = ldub_p(buf);
6c2934db 3143 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3144 l = 1;
3145 }
3146 } else {
b448f2f3
FB
3147 unsigned long addr1;
3148 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 3149 /* RAM case */
5579c7f3 3150 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 3151 memcpy(ptr, buf, l);
3a7d929e
FB
3152 if (!cpu_physical_memory_is_dirty(addr1)) {
3153 /* invalidate code */
3154 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3155 /* set dirty bit */
5fafdf24 3156 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
f23db169 3157 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3158 }
13eb76e0
FB
3159 }
3160 } else {
5fafdf24 3161 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3162 !(pd & IO_MEM_ROMD)) {
6c2934db 3163 target_phys_addr_t addr1 = addr;
13eb76e0
FB
3164 /* I/O case */
3165 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3166 if (p)
6c2934db
AJ
3167 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3168 if (l >= 4 && ((addr1 & 3) == 0)) {
13eb76e0 3169 /* 32 bit read access */
6c2934db 3170 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
c27004ec 3171 stl_p(buf, val);
13eb76e0 3172 l = 4;
6c2934db 3173 } else if (l >= 2 && ((addr1 & 1) == 0)) {
13eb76e0 3174 /* 16 bit read access */
6c2934db 3175 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
c27004ec 3176 stw_p(buf, val);
13eb76e0
FB
3177 l = 2;
3178 } else {
1c213d19 3179 /* 8 bit read access */
6c2934db 3180 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
c27004ec 3181 stb_p(buf, val);
13eb76e0
FB
3182 l = 1;
3183 }
3184 } else {
3185 /* RAM case */
5579c7f3 3186 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
13eb76e0
FB
3187 (addr & ~TARGET_PAGE_MASK);
3188 memcpy(buf, ptr, l);
3189 }
3190 }
3191 len -= l;
3192 buf += l;
3193 addr += l;
3194 }
3195}
8df1cd07 3196
d0ecd2aa 3197/* used for ROM loading : can write in RAM and ROM */
5fafdf24 3198void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
3199 const uint8_t *buf, int len)
3200{
3201 int l;
3202 uint8_t *ptr;
3203 target_phys_addr_t page;
3204 unsigned long pd;
3205 PhysPageDesc *p;
3b46e624 3206
d0ecd2aa
FB
3207 while (len > 0) {
3208 page = addr & TARGET_PAGE_MASK;
3209 l = (page + TARGET_PAGE_SIZE) - addr;
3210 if (l > len)
3211 l = len;
3212 p = phys_page_find(page >> TARGET_PAGE_BITS);
3213 if (!p) {
3214 pd = IO_MEM_UNASSIGNED;
3215 } else {
3216 pd = p->phys_offset;
3217 }
3b46e624 3218
d0ecd2aa 3219 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
3220 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3221 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
3222 /* do nothing */
3223 } else {
3224 unsigned long addr1;
3225 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3226 /* ROM/RAM case */
5579c7f3 3227 ptr = qemu_get_ram_ptr(addr1);
d0ecd2aa
FB
3228 memcpy(ptr, buf, l);
3229 }
3230 len -= l;
3231 buf += l;
3232 addr += l;
3233 }
3234}
3235
6d16c2f8
AL
3236typedef struct {
3237 void *buffer;
3238 target_phys_addr_t addr;
3239 target_phys_addr_t len;
3240} BounceBuffer;
3241
3242static BounceBuffer bounce;
3243
ba223c29
AL
3244typedef struct MapClient {
3245 void *opaque;
3246 void (*callback)(void *opaque);
3247 LIST_ENTRY(MapClient) link;
3248} MapClient;
3249
3250static LIST_HEAD(map_client_list, MapClient) map_client_list
3251 = LIST_HEAD_INITIALIZER(map_client_list);
3252
3253void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3254{
3255 MapClient *client = qemu_malloc(sizeof(*client));
3256
3257 client->opaque = opaque;
3258 client->callback = callback;
3259 LIST_INSERT_HEAD(&map_client_list, client, link);
3260 return client;
3261}
3262
3263void cpu_unregister_map_client(void *_client)
3264{
3265 MapClient *client = (MapClient *)_client;
3266
3267 LIST_REMOVE(client, link);
34d5e948 3268 qemu_free(client);
ba223c29
AL
3269}
3270
3271static void cpu_notify_map_clients(void)
3272{
3273 MapClient *client;
3274
3275 while (!LIST_EMPTY(&map_client_list)) {
3276 client = LIST_FIRST(&map_client_list);
3277 client->callback(client->opaque);
34d5e948 3278 cpu_unregister_map_client(client);
ba223c29
AL
3279 }
3280}
3281
6d16c2f8
AL
3282/* Map a physical memory region into a host virtual address.
3283 * May map a subset of the requested range, given by and returned in *plen.
3284 * May return NULL if resources needed to perform the mapping are exhausted.
3285 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3286 * Use cpu_register_map_client() to know when retrying the map operation is
3287 * likely to succeed.
6d16c2f8
AL
3288 */
3289void *cpu_physical_memory_map(target_phys_addr_t addr,
3290 target_phys_addr_t *plen,
3291 int is_write)
3292{
3293 target_phys_addr_t len = *plen;
3294 target_phys_addr_t done = 0;
3295 int l;
3296 uint8_t *ret = NULL;
3297 uint8_t *ptr;
3298 target_phys_addr_t page;
3299 unsigned long pd;
3300 PhysPageDesc *p;
3301 unsigned long addr1;
3302
3303 while (len > 0) {
3304 page = addr & TARGET_PAGE_MASK;
3305 l = (page + TARGET_PAGE_SIZE) - addr;
3306 if (l > len)
3307 l = len;
3308 p = phys_page_find(page >> TARGET_PAGE_BITS);
3309 if (!p) {
3310 pd = IO_MEM_UNASSIGNED;
3311 } else {
3312 pd = p->phys_offset;
3313 }
3314
3315 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3316 if (done || bounce.buffer) {
3317 break;
3318 }
3319 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3320 bounce.addr = addr;
3321 bounce.len = l;
3322 if (!is_write) {
3323 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3324 }
3325 ptr = bounce.buffer;
3326 } else {
3327 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3328 ptr = qemu_get_ram_ptr(addr1);
6d16c2f8
AL
3329 }
3330 if (!done) {
3331 ret = ptr;
3332 } else if (ret + done != ptr) {
3333 break;
3334 }
3335
3336 len -= l;
3337 addr += l;
3338 done += l;
3339 }
3340 *plen = done;
3341 return ret;
3342}
3343
3344/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3345 * Will also mark the memory as dirty if is_write == 1. access_len gives
3346 * the amount of memory that was actually read or written by the caller.
3347 */
3348void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3349 int is_write, target_phys_addr_t access_len)
3350{
3351 if (buffer != bounce.buffer) {
3352 if (is_write) {
5579c7f3 3353 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
6d16c2f8
AL
3354 while (access_len) {
3355 unsigned l;
3356 l = TARGET_PAGE_SIZE;
3357 if (l > access_len)
3358 l = access_len;
3359 if (!cpu_physical_memory_is_dirty(addr1)) {
3360 /* invalidate code */
3361 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3362 /* set dirty bit */
3363 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3364 (0xff & ~CODE_DIRTY_FLAG);
3365 }
3366 addr1 += l;
3367 access_len -= l;
3368 }
3369 }
3370 return;
3371 }
3372 if (is_write) {
3373 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3374 }
3375 qemu_free(bounce.buffer);
3376 bounce.buffer = NULL;
ba223c29 3377 cpu_notify_map_clients();
6d16c2f8 3378}
d0ecd2aa 3379
8df1cd07
FB
3380/* warning: addr must be aligned */
3381uint32_t ldl_phys(target_phys_addr_t addr)
3382{
3383 int io_index;
3384 uint8_t *ptr;
3385 uint32_t val;
3386 unsigned long pd;
3387 PhysPageDesc *p;
3388
3389 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3390 if (!p) {
3391 pd = IO_MEM_UNASSIGNED;
3392 } else {
3393 pd = p->phys_offset;
3394 }
3b46e624 3395
5fafdf24 3396 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3397 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
3398 /* I/O case */
3399 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3400 if (p)
3401 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3402 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3403 } else {
3404 /* RAM case */
5579c7f3 3405 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
8df1cd07
FB
3406 (addr & ~TARGET_PAGE_MASK);
3407 val = ldl_p(ptr);
3408 }
3409 return val;
3410}
3411
84b7b8e7
FB
3412/* warning: addr must be aligned */
3413uint64_t ldq_phys(target_phys_addr_t addr)
3414{
3415 int io_index;
3416 uint8_t *ptr;
3417 uint64_t val;
3418 unsigned long pd;
3419 PhysPageDesc *p;
3420
3421 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3422 if (!p) {
3423 pd = IO_MEM_UNASSIGNED;
3424 } else {
3425 pd = p->phys_offset;
3426 }
3b46e624 3427
2a4188a3
FB
3428 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3429 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
3430 /* I/O case */
3431 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3432 if (p)
3433 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
84b7b8e7
FB
3434#ifdef TARGET_WORDS_BIGENDIAN
3435 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3436 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3437#else
3438 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3439 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3440#endif
3441 } else {
3442 /* RAM case */
5579c7f3 3443 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
84b7b8e7
FB
3444 (addr & ~TARGET_PAGE_MASK);
3445 val = ldq_p(ptr);
3446 }
3447 return val;
3448}
3449
aab33094
FB
3450/* XXX: optimize */
3451uint32_t ldub_phys(target_phys_addr_t addr)
3452{
3453 uint8_t val;
3454 cpu_physical_memory_read(addr, &val, 1);
3455 return val;
3456}
3457
3458/* XXX: optimize */
3459uint32_t lduw_phys(target_phys_addr_t addr)
3460{
3461 uint16_t val;
3462 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3463 return tswap16(val);
3464}
3465
8df1cd07
FB
3466/* warning: addr must be aligned. The ram page is not masked as dirty
3467 and the code inside is not invalidated. It is useful if the dirty
3468 bits are used to track modified PTEs */
3469void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3470{
3471 int io_index;
3472 uint8_t *ptr;
3473 unsigned long pd;
3474 PhysPageDesc *p;
3475
3476 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3477 if (!p) {
3478 pd = IO_MEM_UNASSIGNED;
3479 } else {
3480 pd = p->phys_offset;
3481 }
3b46e624 3482
3a7d929e 3483 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3484 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3485 if (p)
3486 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3487 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3488 } else {
74576198 3489 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3490 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3491 stl_p(ptr, val);
74576198
AL
3492
3493 if (unlikely(in_migration)) {
3494 if (!cpu_physical_memory_is_dirty(addr1)) {
3495 /* invalidate code */
3496 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3497 /* set dirty bit */
3498 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3499 (0xff & ~CODE_DIRTY_FLAG);
3500 }
3501 }
8df1cd07
FB
3502 }
3503}
3504
bc98a7ef
JM
3505void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3506{
3507 int io_index;
3508 uint8_t *ptr;
3509 unsigned long pd;
3510 PhysPageDesc *p;
3511
3512 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3513 if (!p) {
3514 pd = IO_MEM_UNASSIGNED;
3515 } else {
3516 pd = p->phys_offset;
3517 }
3b46e624 3518
bc98a7ef
JM
3519 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3520 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3521 if (p)
3522 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
bc98a7ef
JM
3523#ifdef TARGET_WORDS_BIGENDIAN
3524 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3525 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3526#else
3527 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3528 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3529#endif
3530 } else {
5579c7f3 3531 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
3532 (addr & ~TARGET_PAGE_MASK);
3533 stq_p(ptr, val);
3534 }
3535}
3536
8df1cd07 3537/* warning: addr must be aligned */
8df1cd07
FB
3538void stl_phys(target_phys_addr_t addr, uint32_t val)
3539{
3540 int io_index;
3541 uint8_t *ptr;
3542 unsigned long pd;
3543 PhysPageDesc *p;
3544
3545 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3546 if (!p) {
3547 pd = IO_MEM_UNASSIGNED;
3548 } else {
3549 pd = p->phys_offset;
3550 }
3b46e624 3551
3a7d929e 3552 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3553 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3554 if (p)
3555 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3556 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3557 } else {
3558 unsigned long addr1;
3559 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3560 /* RAM case */
5579c7f3 3561 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3562 stl_p(ptr, val);
3a7d929e
FB
3563 if (!cpu_physical_memory_is_dirty(addr1)) {
3564 /* invalidate code */
3565 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3566 /* set dirty bit */
f23db169
FB
3567 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3568 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3569 }
8df1cd07
FB
3570 }
3571}
3572
aab33094
FB
3573/* XXX: optimize */
3574void stb_phys(target_phys_addr_t addr, uint32_t val)
3575{
3576 uint8_t v = val;
3577 cpu_physical_memory_write(addr, &v, 1);
3578}
3579
3580/* XXX: optimize */
3581void stw_phys(target_phys_addr_t addr, uint32_t val)
3582{
3583 uint16_t v = tswap16(val);
3584 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3585}
3586
3587/* XXX: optimize */
3588void stq_phys(target_phys_addr_t addr, uint64_t val)
3589{
3590 val = tswap64(val);
3591 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3592}
3593
13eb76e0
FB
3594#endif
3595
5e2972fd 3596/* virtual memory access for debug (includes writing to ROM) */
5fafdf24 3597int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 3598 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3599{
3600 int l;
9b3c35e0
JM
3601 target_phys_addr_t phys_addr;
3602 target_ulong page;
13eb76e0
FB
3603
3604 while (len > 0) {
3605 page = addr & TARGET_PAGE_MASK;
3606 phys_addr = cpu_get_phys_page_debug(env, page);
3607 /* if no physical page mapped, return an error */
3608 if (phys_addr == -1)
3609 return -1;
3610 l = (page + TARGET_PAGE_SIZE) - addr;
3611 if (l > len)
3612 l = len;
5e2972fd
AL
3613 phys_addr += (addr & ~TARGET_PAGE_MASK);
3614#if !defined(CONFIG_USER_ONLY)
3615 if (is_write)
3616 cpu_physical_memory_write_rom(phys_addr, buf, l);
3617 else
3618#endif
3619 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
3620 len -= l;
3621 buf += l;
3622 addr += l;
3623 }
3624 return 0;
3625}
3626
2e70f6ef
PB
3627/* in deterministic execution mode, instructions doing device I/Os
3628 must be at the end of the TB */
3629void cpu_io_recompile(CPUState *env, void *retaddr)
3630{
3631 TranslationBlock *tb;
3632 uint32_t n, cflags;
3633 target_ulong pc, cs_base;
3634 uint64_t flags;
3635
3636 tb = tb_find_pc((unsigned long)retaddr);
3637 if (!tb) {
3638 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3639 retaddr);
3640 }
3641 n = env->icount_decr.u16.low + tb->icount;
3642 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3643 /* Calculate how many instructions had been executed before the fault
bf20dc07 3644 occurred. */
2e70f6ef
PB
3645 n = n - env->icount_decr.u16.low;
3646 /* Generate a new TB ending on the I/O insn. */
3647 n++;
3648 /* On MIPS and SH, delay slot instructions can only be restarted if
3649 they were already the first instruction in the TB. If this is not
bf20dc07 3650 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
3651 branch. */
3652#if defined(TARGET_MIPS)
3653 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3654 env->active_tc.PC -= 4;
3655 env->icount_decr.u16.low++;
3656 env->hflags &= ~MIPS_HFLAG_BMASK;
3657 }
3658#elif defined(TARGET_SH4)
3659 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3660 && n > 1) {
3661 env->pc -= 2;
3662 env->icount_decr.u16.low++;
3663 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3664 }
3665#endif
3666 /* This should never happen. */
3667 if (n > CF_COUNT_MASK)
3668 cpu_abort(env, "TB too big during recompile");
3669
3670 cflags = n | CF_LAST_IO;
3671 pc = tb->pc;
3672 cs_base = tb->cs_base;
3673 flags = tb->flags;
3674 tb_phys_invalidate(tb, -1);
3675 /* FIXME: In theory this could raise an exception. In practice
3676 we have already translated the block once so it's probably ok. */
3677 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 3678 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
3679 the first in the TB) then we end up generating a whole new TB and
3680 repeating the fault, which is horribly inefficient.
3681 Better would be to execute just this insn uncached, or generate a
3682 second new TB. */
3683 cpu_resume_from_signal(env, NULL);
3684}
3685
e3db7226
FB
3686void dump_exec_info(FILE *f,
3687 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3688{
3689 int i, target_code_size, max_target_code_size;
3690 int direct_jmp_count, direct_jmp2_count, cross_page;
3691 TranslationBlock *tb;
3b46e624 3692
e3db7226
FB
3693 target_code_size = 0;
3694 max_target_code_size = 0;
3695 cross_page = 0;
3696 direct_jmp_count = 0;
3697 direct_jmp2_count = 0;
3698 for(i = 0; i < nb_tbs; i++) {
3699 tb = &tbs[i];
3700 target_code_size += tb->size;
3701 if (tb->size > max_target_code_size)
3702 max_target_code_size = tb->size;
3703 if (tb->page_addr[1] != -1)
3704 cross_page++;
3705 if (tb->tb_next_offset[0] != 0xffff) {
3706 direct_jmp_count++;
3707 if (tb->tb_next_offset[1] != 0xffff) {
3708 direct_jmp2_count++;
3709 }
3710 }
3711 }
3712 /* XXX: avoid using doubles ? */
57fec1fe 3713 cpu_fprintf(f, "Translation buffer state:\n");
26a5f13b
FB
3714 cpu_fprintf(f, "gen code size %ld/%ld\n",
3715 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3716 cpu_fprintf(f, "TB count %d/%d\n",
3717 nb_tbs, code_gen_max_blocks);
5fafdf24 3718 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
3719 nb_tbs ? target_code_size / nb_tbs : 0,
3720 max_target_code_size);
5fafdf24 3721 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
3722 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3723 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
3724 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3725 cross_page,
e3db7226
FB
3726 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3727 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 3728 direct_jmp_count,
e3db7226
FB
3729 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3730 direct_jmp2_count,
3731 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 3732 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
3733 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3734 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3735 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 3736 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
3737}
3738
5fafdf24 3739#if !defined(CONFIG_USER_ONLY)
61382a50
FB
3740
3741#define MMUSUFFIX _cmmu
3742#define GETPC() NULL
3743#define env cpu_single_env
b769d8fe 3744#define SOFTMMU_CODE_ACCESS
61382a50
FB
3745
3746#define SHIFT 0
3747#include "softmmu_template.h"
3748
3749#define SHIFT 1
3750#include "softmmu_template.h"
3751
3752#define SHIFT 2
3753#include "softmmu_template.h"
3754
3755#define SHIFT 3
3756#include "softmmu_template.h"
3757
3758#undef env
3759
3760#endif