]> git.proxmox.com Git - qemu.git/blame - exec.c
target-arm: fix thumb CPS
[qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
d5a8f07c
FB
20#ifdef _WIN32
21#include <windows.h>
22#else
a98d49b1 23#include <sys/types.h>
d5a8f07c
FB
24#include <sys/mman.h>
25#endif
54936004
FB
26#include <stdlib.h>
27#include <stdio.h>
28#include <stdarg.h>
29#include <string.h>
30#include <errno.h>
31#include <unistd.h>
32#include <inttypes.h>
33
6180a181
FB
34#include "cpu.h"
35#include "exec-all.h"
ca10f867 36#include "qemu-common.h"
b67d9a52 37#include "tcg.h"
b3c7724c 38#include "hw/hw.h"
74576198 39#include "osdep.h"
7ba1e619 40#include "kvm.h"
53a5960a
PB
41#if defined(CONFIG_USER_ONLY)
42#include <qemu.h>
fd052bf6 43#include <signal.h>
53a5960a 44#endif
54936004 45
fd6ce8f6 46//#define DEBUG_TB_INVALIDATE
66e85a21 47//#define DEBUG_FLUSH
9fa3e853 48//#define DEBUG_TLB
67d3b957 49//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
50
51/* make various TB consistency checks */
5fafdf24
TS
52//#define DEBUG_TB_CHECK
53//#define DEBUG_TLB_CHECK
fd6ce8f6 54
1196be37 55//#define DEBUG_IOPORT
db7b5426 56//#define DEBUG_SUBPAGE
1196be37 57
99773bd4
PB
58#if !defined(CONFIG_USER_ONLY)
59/* TB consistency checks only implemented for usermode emulation. */
60#undef DEBUG_TB_CHECK
61#endif
62
9fa3e853
FB
63#define SMC_BITMAP_USE_THRESHOLD 10
64
108c49b8
FB
65#if defined(TARGET_SPARC64)
66#define TARGET_PHYS_ADDR_SPACE_BITS 41
5dcb6b91
BS
67#elif defined(TARGET_SPARC)
68#define TARGET_PHYS_ADDR_SPACE_BITS 36
bedb69ea
JM
69#elif defined(TARGET_ALPHA)
70#define TARGET_PHYS_ADDR_SPACE_BITS 42
71#define TARGET_VIRT_ADDR_SPACE_BITS 42
108c49b8
FB
72#elif defined(TARGET_PPC64)
73#define TARGET_PHYS_ADDR_SPACE_BITS 42
4a1418e0 74#elif defined(TARGET_X86_64)
00f82b8a 75#define TARGET_PHYS_ADDR_SPACE_BITS 42
4a1418e0 76#elif defined(TARGET_I386)
00f82b8a 77#define TARGET_PHYS_ADDR_SPACE_BITS 36
108c49b8 78#else
108c49b8
FB
79#define TARGET_PHYS_ADDR_SPACE_BITS 32
80#endif
81
bdaf78e0 82static TranslationBlock *tbs;
26a5f13b 83int code_gen_max_blocks;
9fa3e853 84TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 85static int nb_tbs;
eb51d102 86/* any access to the tbs or the page table must use this lock */
c227f099 87spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 88
141ac468
BS
89#if defined(__arm__) || defined(__sparc_v9__)
90/* The prologue must be reachable with a direct jump. ARM and Sparc64
91 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
92 section close to code segment. */
93#define code_gen_section \
94 __attribute__((__section__(".gen_code"))) \
95 __attribute__((aligned (32)))
f8e2af11
SW
96#elif defined(_WIN32)
97/* Maximum alignment for Win32 is 16. */
98#define code_gen_section \
99 __attribute__((aligned (16)))
d03d860b
BS
100#else
101#define code_gen_section \
102 __attribute__((aligned (32)))
103#endif
104
105uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
106static uint8_t *code_gen_buffer;
107static unsigned long code_gen_buffer_size;
26a5f13b 108/* threshold to flush the translated code buffer */
bdaf78e0 109static unsigned long code_gen_buffer_max_size;
fd6ce8f6
FB
110uint8_t *code_gen_ptr;
111
e2eef170 112#if !defined(CONFIG_USER_ONLY)
9fa3e853 113int phys_ram_fd;
1ccde1cb 114uint8_t *phys_ram_dirty;
74576198 115static int in_migration;
94a6b54f
PB
116
117typedef struct RAMBlock {
118 uint8_t *host;
c227f099
AL
119 ram_addr_t offset;
120 ram_addr_t length;
94a6b54f
PB
121 struct RAMBlock *next;
122} RAMBlock;
123
124static RAMBlock *ram_blocks;
125/* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
ccbb4d44 126 then we can no longer assume contiguous ram offsets, and external uses
94a6b54f 127 of this variable will break. */
c227f099 128ram_addr_t last_ram_offset;
e2eef170 129#endif
9fa3e853 130
6a00d601
FB
131CPUState *first_cpu;
132/* current CPU in the current thread. It is only valid inside
133 cpu_exec() */
5fafdf24 134CPUState *cpu_single_env;
2e70f6ef 135/* 0 = Do not count executed instructions.
bf20dc07 136 1 = Precise instruction counting.
2e70f6ef
PB
137 2 = Adaptive rate instruction counting. */
138int use_icount = 0;
139/* Current instruction counter. While executing translated code this may
140 include some instructions that have not yet been executed. */
141int64_t qemu_icount;
6a00d601 142
54936004 143typedef struct PageDesc {
92e873b9 144 /* list of TBs intersecting this ram page */
fd6ce8f6 145 TranslationBlock *first_tb;
9fa3e853
FB
146 /* in order to optimize self modifying code, we count the number
147 of lookups we do to a given page to use a bitmap */
148 unsigned int code_write_count;
149 uint8_t *code_bitmap;
150#if defined(CONFIG_USER_ONLY)
151 unsigned long flags;
152#endif
54936004
FB
153} PageDesc;
154
92e873b9 155typedef struct PhysPageDesc {
0f459d16 156 /* offset in host memory of the page + io_index in the low bits */
c227f099
AL
157 ram_addr_t phys_offset;
158 ram_addr_t region_offset;
92e873b9
FB
159} PhysPageDesc;
160
54936004 161#define L2_BITS 10
bedb69ea
JM
162#if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
163/* XXX: this is a temporary hack for alpha target.
164 * In the future, this is to be replaced by a multi-level table
165 * to actually be able to handle the complete 64 bits address space.
166 */
167#define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
168#else
03875444 169#define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
bedb69ea 170#endif
54936004
FB
171
172#define L1_SIZE (1 << L1_BITS)
173#define L2_SIZE (1 << L2_BITS)
174
83fb7adf
FB
175unsigned long qemu_real_host_page_size;
176unsigned long qemu_host_page_bits;
177unsigned long qemu_host_page_size;
178unsigned long qemu_host_page_mask;
54936004 179
92e873b9 180/* XXX: for system emulation, it could just be an array */
54936004 181static PageDesc *l1_map[L1_SIZE];
bdaf78e0 182static PhysPageDesc **l1_phys_map;
54936004 183
e2eef170
PB
184#if !defined(CONFIG_USER_ONLY)
185static void io_mem_init(void);
186
33417e70 187/* io memory support */
33417e70
FB
188CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
189CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 190void *io_mem_opaque[IO_MEM_NB_ENTRIES];
511d2b14 191static char io_mem_used[IO_MEM_NB_ENTRIES];
6658ffb8
PB
192static int io_mem_watch;
193#endif
33417e70 194
34865134 195/* log support */
1e8b27ca
JR
196#ifdef WIN32
197static const char *logfilename = "qemu.log";
198#else
d9b630fd 199static const char *logfilename = "/tmp/qemu.log";
1e8b27ca 200#endif
34865134
FB
201FILE *logfile;
202int loglevel;
e735b91c 203static int log_append = 0;
34865134 204
e3db7226
FB
205/* statistics */
206static int tlb_flush_count;
207static int tb_flush_count;
208static int tb_phys_invalidate_count;
209
db7b5426 210#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
c227f099
AL
211typedef struct subpage_t {
212 target_phys_addr_t base;
d60efc6b
BS
213 CPUReadMemoryFunc * const *mem_read[TARGET_PAGE_SIZE][4];
214 CPUWriteMemoryFunc * const *mem_write[TARGET_PAGE_SIZE][4];
3ee89922 215 void *opaque[TARGET_PAGE_SIZE][2][4];
c227f099
AL
216 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
217} subpage_t;
db7b5426 218
7cb69cae
FB
219#ifdef _WIN32
220static void map_exec(void *addr, long size)
221{
222 DWORD old_protect;
223 VirtualProtect(addr, size,
224 PAGE_EXECUTE_READWRITE, &old_protect);
225
226}
227#else
228static void map_exec(void *addr, long size)
229{
4369415f 230 unsigned long start, end, page_size;
7cb69cae 231
4369415f 232 page_size = getpagesize();
7cb69cae 233 start = (unsigned long)addr;
4369415f 234 start &= ~(page_size - 1);
7cb69cae
FB
235
236 end = (unsigned long)addr + size;
4369415f
FB
237 end += page_size - 1;
238 end &= ~(page_size - 1);
7cb69cae
FB
239
240 mprotect((void *)start, end - start,
241 PROT_READ | PROT_WRITE | PROT_EXEC);
242}
243#endif
244
b346ff46 245static void page_init(void)
54936004 246{
83fb7adf 247 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 248 TARGET_PAGE_SIZE */
c2b48b69
AL
249#ifdef _WIN32
250 {
251 SYSTEM_INFO system_info;
252
253 GetSystemInfo(&system_info);
254 qemu_real_host_page_size = system_info.dwPageSize;
255 }
256#else
257 qemu_real_host_page_size = getpagesize();
258#endif
83fb7adf
FB
259 if (qemu_host_page_size == 0)
260 qemu_host_page_size = qemu_real_host_page_size;
261 if (qemu_host_page_size < TARGET_PAGE_SIZE)
262 qemu_host_page_size = TARGET_PAGE_SIZE;
263 qemu_host_page_bits = 0;
264 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
265 qemu_host_page_bits++;
266 qemu_host_page_mask = ~(qemu_host_page_size - 1);
108c49b8
FB
267 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
268 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
50a9569b
AZ
269
270#if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
271 {
272 long long startaddr, endaddr;
273 FILE *f;
274 int n;
275
c8a706fe 276 mmap_lock();
0776590d 277 last_brk = (unsigned long)sbrk(0);
50a9569b
AZ
278 f = fopen("/proc/self/maps", "r");
279 if (f) {
280 do {
281 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
282 if (n == 2) {
e0b8d65a
BS
283 startaddr = MIN(startaddr,
284 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
285 endaddr = MIN(endaddr,
286 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
b5fc909e 287 page_set_flags(startaddr & TARGET_PAGE_MASK,
50a9569b
AZ
288 TARGET_PAGE_ALIGN(endaddr),
289 PAGE_RESERVED);
290 }
291 } while (!feof(f));
292 fclose(f);
293 }
c8a706fe 294 mmap_unlock();
50a9569b
AZ
295 }
296#endif
54936004
FB
297}
298
434929bf 299static inline PageDesc **page_l1_map(target_ulong index)
54936004 300{
17e2377a
PB
301#if TARGET_LONG_BITS > 32
302 /* Host memory outside guest VM. For 32-bit targets we have already
303 excluded high addresses. */
d8173e0f 304 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
17e2377a
PB
305 return NULL;
306#endif
434929bf
AL
307 return &l1_map[index >> L2_BITS];
308}
309
310static inline PageDesc *page_find_alloc(target_ulong index)
311{
312 PageDesc **lp, *p;
313 lp = page_l1_map(index);
314 if (!lp)
315 return NULL;
316
54936004
FB
317 p = *lp;
318 if (!p) {
319 /* allocate if not found */
17e2377a 320#if defined(CONFIG_USER_ONLY)
17e2377a
PB
321 size_t len = sizeof(PageDesc) * L2_SIZE;
322 /* Don't use qemu_malloc because it may recurse. */
660f11be 323 p = mmap(NULL, len, PROT_READ | PROT_WRITE,
17e2377a 324 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
54936004 325 *lp = p;
fb1c2cd7
AJ
326 if (h2g_valid(p)) {
327 unsigned long addr = h2g(p);
17e2377a
PB
328 page_set_flags(addr & TARGET_PAGE_MASK,
329 TARGET_PAGE_ALIGN(addr + len),
330 PAGE_RESERVED);
331 }
332#else
333 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
334 *lp = p;
335#endif
54936004
FB
336 }
337 return p + (index & (L2_SIZE - 1));
338}
339
00f82b8a 340static inline PageDesc *page_find(target_ulong index)
54936004 341{
434929bf
AL
342 PageDesc **lp, *p;
343 lp = page_l1_map(index);
344 if (!lp)
345 return NULL;
54936004 346
434929bf 347 p = *lp;
660f11be
BS
348 if (!p) {
349 return NULL;
350 }
fd6ce8f6
FB
351 return p + (index & (L2_SIZE - 1));
352}
353
c227f099 354static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 355{
108c49b8 356 void **lp, **p;
e3f4e2a4 357 PhysPageDesc *pd;
92e873b9 358
108c49b8
FB
359 p = (void **)l1_phys_map;
360#if TARGET_PHYS_ADDR_SPACE_BITS > 32
361
362#if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
363#error unsupported TARGET_PHYS_ADDR_SPACE_BITS
364#endif
365 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
92e873b9
FB
366 p = *lp;
367 if (!p) {
368 /* allocate if not found */
108c49b8
FB
369 if (!alloc)
370 return NULL;
371 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
372 memset(p, 0, sizeof(void *) * L1_SIZE);
373 *lp = p;
374 }
375#endif
376 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
e3f4e2a4
PB
377 pd = *lp;
378 if (!pd) {
379 int i;
108c49b8
FB
380 /* allocate if not found */
381 if (!alloc)
382 return NULL;
e3f4e2a4
PB
383 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
384 *lp = pd;
67c4d23c 385 for (i = 0; i < L2_SIZE; i++) {
e3f4e2a4 386 pd[i].phys_offset = IO_MEM_UNASSIGNED;
67c4d23c
PB
387 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
388 }
92e873b9 389 }
e3f4e2a4 390 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
92e873b9
FB
391}
392
c227f099 393static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 394{
108c49b8 395 return phys_page_find_alloc(index, 0);
92e873b9
FB
396}
397
9fa3e853 398#if !defined(CONFIG_USER_ONLY)
c227f099
AL
399static void tlb_protect_code(ram_addr_t ram_addr);
400static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 401 target_ulong vaddr);
c8a706fe
PB
402#define mmap_lock() do { } while(0)
403#define mmap_unlock() do { } while(0)
9fa3e853 404#endif
fd6ce8f6 405
4369415f
FB
406#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
407
408#if defined(CONFIG_USER_ONLY)
ccbb4d44 409/* Currently it is not recommended to allocate big chunks of data in
4369415f
FB
410 user mode. It will change when a dedicated libc will be used */
411#define USE_STATIC_CODE_GEN_BUFFER
412#endif
413
414#ifdef USE_STATIC_CODE_GEN_BUFFER
415static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
416#endif
417
8fcd3692 418static void code_gen_alloc(unsigned long tb_size)
26a5f13b 419{
4369415f
FB
420#ifdef USE_STATIC_CODE_GEN_BUFFER
421 code_gen_buffer = static_code_gen_buffer;
422 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
423 map_exec(code_gen_buffer, code_gen_buffer_size);
424#else
26a5f13b
FB
425 code_gen_buffer_size = tb_size;
426 if (code_gen_buffer_size == 0) {
4369415f
FB
427#if defined(CONFIG_USER_ONLY)
428 /* in user mode, phys_ram_size is not meaningful */
429 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
430#else
ccbb4d44 431 /* XXX: needs adjustments */
94a6b54f 432 code_gen_buffer_size = (unsigned long)(ram_size / 4);
4369415f 433#endif
26a5f13b
FB
434 }
435 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
436 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
437 /* The code gen buffer location may have constraints depending on
438 the host cpu and OS */
439#if defined(__linux__)
440 {
441 int flags;
141ac468
BS
442 void *start = NULL;
443
26a5f13b
FB
444 flags = MAP_PRIVATE | MAP_ANONYMOUS;
445#if defined(__x86_64__)
446 flags |= MAP_32BIT;
447 /* Cannot map more than that */
448 if (code_gen_buffer_size > (800 * 1024 * 1024))
449 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
450#elif defined(__sparc_v9__)
451 // Map the buffer below 2G, so we can use direct calls and branches
452 flags |= MAP_FIXED;
453 start = (void *) 0x60000000UL;
454 if (code_gen_buffer_size > (512 * 1024 * 1024))
455 code_gen_buffer_size = (512 * 1024 * 1024);
1cb0661e 456#elif defined(__arm__)
63d41246 457 /* Map the buffer below 32M, so we can use direct calls and branches */
1cb0661e
AZ
458 flags |= MAP_FIXED;
459 start = (void *) 0x01000000UL;
460 if (code_gen_buffer_size > 16 * 1024 * 1024)
461 code_gen_buffer_size = 16 * 1024 * 1024;
26a5f13b 462#endif
141ac468
BS
463 code_gen_buffer = mmap(start, code_gen_buffer_size,
464 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
465 flags, -1, 0);
466 if (code_gen_buffer == MAP_FAILED) {
467 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
468 exit(1);
469 }
470 }
a167ba50 471#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
06e67a82
AL
472 {
473 int flags;
474 void *addr = NULL;
475 flags = MAP_PRIVATE | MAP_ANONYMOUS;
476#if defined(__x86_64__)
477 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
478 * 0x40000000 is free */
479 flags |= MAP_FIXED;
480 addr = (void *)0x40000000;
481 /* Cannot map more than that */
482 if (code_gen_buffer_size > (800 * 1024 * 1024))
483 code_gen_buffer_size = (800 * 1024 * 1024);
484#endif
485 code_gen_buffer = mmap(addr, code_gen_buffer_size,
486 PROT_WRITE | PROT_READ | PROT_EXEC,
487 flags, -1, 0);
488 if (code_gen_buffer == MAP_FAILED) {
489 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
490 exit(1);
491 }
492 }
26a5f13b
FB
493#else
494 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
26a5f13b
FB
495 map_exec(code_gen_buffer, code_gen_buffer_size);
496#endif
4369415f 497#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b
FB
498 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
499 code_gen_buffer_max_size = code_gen_buffer_size -
500 code_gen_max_block_size();
501 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
502 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
503}
504
505/* Must be called before using the QEMU cpus. 'tb_size' is the size
506 (in bytes) allocated to the translation buffer. Zero means default
507 size. */
508void cpu_exec_init_all(unsigned long tb_size)
509{
26a5f13b
FB
510 cpu_gen_init();
511 code_gen_alloc(tb_size);
512 code_gen_ptr = code_gen_buffer;
4369415f 513 page_init();
e2eef170 514#if !defined(CONFIG_USER_ONLY)
26a5f13b 515 io_mem_init();
e2eef170 516#endif
26a5f13b
FB
517}
518
9656f324
PB
519#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
520
d4bfa4d7 521static void cpu_common_pre_save(void *opaque)
9656f324 522{
d4bfa4d7 523 CPUState *env = opaque;
9656f324 524
4c0960c0 525 cpu_synchronize_state(env);
9656f324
PB
526}
527
e7f4eff7 528static int cpu_common_pre_load(void *opaque)
9656f324
PB
529{
530 CPUState *env = opaque;
531
4c0960c0 532 cpu_synchronize_state(env);
e7f4eff7
JQ
533 return 0;
534}
535
e59fb374 536static int cpu_common_post_load(void *opaque, int version_id)
e7f4eff7
JQ
537{
538 CPUState *env = opaque;
9656f324 539
3098dba0
AJ
540 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
541 version_id is increased. */
542 env->interrupt_request &= ~0x01;
9656f324
PB
543 tlb_flush(env, 1);
544
545 return 0;
546}
e7f4eff7
JQ
547
548static const VMStateDescription vmstate_cpu_common = {
549 .name = "cpu_common",
550 .version_id = 1,
551 .minimum_version_id = 1,
552 .minimum_version_id_old = 1,
553 .pre_save = cpu_common_pre_save,
554 .pre_load = cpu_common_pre_load,
555 .post_load = cpu_common_post_load,
556 .fields = (VMStateField []) {
557 VMSTATE_UINT32(halted, CPUState),
558 VMSTATE_UINT32(interrupt_request, CPUState),
559 VMSTATE_END_OF_LIST()
560 }
561};
9656f324
PB
562#endif
563
950f1472
GC
564CPUState *qemu_get_cpu(int cpu)
565{
566 CPUState *env = first_cpu;
567
568 while (env) {
569 if (env->cpu_index == cpu)
570 break;
571 env = env->next_cpu;
572 }
573
574 return env;
575}
576
6a00d601 577void cpu_exec_init(CPUState *env)
fd6ce8f6 578{
6a00d601
FB
579 CPUState **penv;
580 int cpu_index;
581
c2764719
PB
582#if defined(CONFIG_USER_ONLY)
583 cpu_list_lock();
584#endif
6a00d601
FB
585 env->next_cpu = NULL;
586 penv = &first_cpu;
587 cpu_index = 0;
588 while (*penv != NULL) {
1e9fa730 589 penv = &(*penv)->next_cpu;
6a00d601
FB
590 cpu_index++;
591 }
592 env->cpu_index = cpu_index;
268a362c 593 env->numa_node = 0;
72cf2d4f
BS
594 QTAILQ_INIT(&env->breakpoints);
595 QTAILQ_INIT(&env->watchpoints);
6a00d601 596 *penv = env;
c2764719
PB
597#if defined(CONFIG_USER_ONLY)
598 cpu_list_unlock();
599#endif
b3c7724c 600#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
e7f4eff7 601 vmstate_register(cpu_index, &vmstate_cpu_common, env);
b3c7724c
PB
602 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
603 cpu_save, cpu_load, env);
604#endif
fd6ce8f6
FB
605}
606
9fa3e853
FB
607static inline void invalidate_page_bitmap(PageDesc *p)
608{
609 if (p->code_bitmap) {
59817ccb 610 qemu_free(p->code_bitmap);
9fa3e853
FB
611 p->code_bitmap = NULL;
612 }
613 p->code_write_count = 0;
614}
615
fd6ce8f6
FB
616/* set to NULL all the 'first_tb' fields in all PageDescs */
617static void page_flush_tb(void)
618{
619 int i, j;
620 PageDesc *p;
621
622 for(i = 0; i < L1_SIZE; i++) {
623 p = l1_map[i];
624 if (p) {
9fa3e853
FB
625 for(j = 0; j < L2_SIZE; j++) {
626 p->first_tb = NULL;
627 invalidate_page_bitmap(p);
628 p++;
629 }
fd6ce8f6
FB
630 }
631 }
632}
633
634/* flush all the translation blocks */
d4e8164f 635/* XXX: tb_flush is currently not thread safe */
6a00d601 636void tb_flush(CPUState *env1)
fd6ce8f6 637{
6a00d601 638 CPUState *env;
0124311e 639#if defined(DEBUG_FLUSH)
ab3d1727
BS
640 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
641 (unsigned long)(code_gen_ptr - code_gen_buffer),
642 nb_tbs, nb_tbs > 0 ?
643 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 644#endif
26a5f13b 645 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
646 cpu_abort(env1, "Internal error: code buffer overflow\n");
647
fd6ce8f6 648 nb_tbs = 0;
3b46e624 649
6a00d601
FB
650 for(env = first_cpu; env != NULL; env = env->next_cpu) {
651 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
652 }
9fa3e853 653
8a8a608f 654 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 655 page_flush_tb();
9fa3e853 656
fd6ce8f6 657 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
658 /* XXX: flush processor icache at this point if cache flush is
659 expensive */
e3db7226 660 tb_flush_count++;
fd6ce8f6
FB
661}
662
663#ifdef DEBUG_TB_CHECK
664
bc98a7ef 665static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
666{
667 TranslationBlock *tb;
668 int i;
669 address &= TARGET_PAGE_MASK;
99773bd4
PB
670 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
671 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
672 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
673 address >= tb->pc + tb->size)) {
0bf9e31a
BS
674 printf("ERROR invalidate: address=" TARGET_FMT_lx
675 " PC=%08lx size=%04x\n",
99773bd4 676 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
677 }
678 }
679 }
680}
681
682/* verify that all the pages have correct rights for code */
683static void tb_page_check(void)
684{
685 TranslationBlock *tb;
686 int i, flags1, flags2;
3b46e624 687
99773bd4
PB
688 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
689 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
690 flags1 = page_get_flags(tb->pc);
691 flags2 = page_get_flags(tb->pc + tb->size - 1);
692 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
693 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 694 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
695 }
696 }
697 }
698}
699
700#endif
701
702/* invalidate one TB */
703static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
704 int next_offset)
705{
706 TranslationBlock *tb1;
707 for(;;) {
708 tb1 = *ptb;
709 if (tb1 == tb) {
710 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
711 break;
712 }
713 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
714 }
715}
716
9fa3e853
FB
717static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
718{
719 TranslationBlock *tb1;
720 unsigned int n1;
721
722 for(;;) {
723 tb1 = *ptb;
724 n1 = (long)tb1 & 3;
725 tb1 = (TranslationBlock *)((long)tb1 & ~3);
726 if (tb1 == tb) {
727 *ptb = tb1->page_next[n1];
728 break;
729 }
730 ptb = &tb1->page_next[n1];
731 }
732}
733
d4e8164f
FB
734static inline void tb_jmp_remove(TranslationBlock *tb, int n)
735{
736 TranslationBlock *tb1, **ptb;
737 unsigned int n1;
738
739 ptb = &tb->jmp_next[n];
740 tb1 = *ptb;
741 if (tb1) {
742 /* find tb(n) in circular list */
743 for(;;) {
744 tb1 = *ptb;
745 n1 = (long)tb1 & 3;
746 tb1 = (TranslationBlock *)((long)tb1 & ~3);
747 if (n1 == n && tb1 == tb)
748 break;
749 if (n1 == 2) {
750 ptb = &tb1->jmp_first;
751 } else {
752 ptb = &tb1->jmp_next[n1];
753 }
754 }
755 /* now we can suppress tb(n) from the list */
756 *ptb = tb->jmp_next[n];
757
758 tb->jmp_next[n] = NULL;
759 }
760}
761
762/* reset the jump entry 'n' of a TB so that it is not chained to
763 another TB */
764static inline void tb_reset_jump(TranslationBlock *tb, int n)
765{
766 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
767}
768
2e70f6ef 769void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
fd6ce8f6 770{
6a00d601 771 CPUState *env;
8a40a180 772 PageDesc *p;
d4e8164f 773 unsigned int h, n1;
c227f099 774 target_phys_addr_t phys_pc;
8a40a180 775 TranslationBlock *tb1, *tb2;
3b46e624 776
8a40a180
FB
777 /* remove the TB from the hash list */
778 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
779 h = tb_phys_hash_func(phys_pc);
5fafdf24 780 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
781 offsetof(TranslationBlock, phys_hash_next));
782
783 /* remove the TB from the page list */
784 if (tb->page_addr[0] != page_addr) {
785 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
786 tb_page_remove(&p->first_tb, tb);
787 invalidate_page_bitmap(p);
788 }
789 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
790 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
791 tb_page_remove(&p->first_tb, tb);
792 invalidate_page_bitmap(p);
793 }
794
36bdbe54 795 tb_invalidated_flag = 1;
59817ccb 796
fd6ce8f6 797 /* remove the TB from the hash list */
8a40a180 798 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
799 for(env = first_cpu; env != NULL; env = env->next_cpu) {
800 if (env->tb_jmp_cache[h] == tb)
801 env->tb_jmp_cache[h] = NULL;
802 }
d4e8164f
FB
803
804 /* suppress this TB from the two jump lists */
805 tb_jmp_remove(tb, 0);
806 tb_jmp_remove(tb, 1);
807
808 /* suppress any remaining jumps to this TB */
809 tb1 = tb->jmp_first;
810 for(;;) {
811 n1 = (long)tb1 & 3;
812 if (n1 == 2)
813 break;
814 tb1 = (TranslationBlock *)((long)tb1 & ~3);
815 tb2 = tb1->jmp_next[n1];
816 tb_reset_jump(tb1, n1);
817 tb1->jmp_next[n1] = NULL;
818 tb1 = tb2;
819 }
820 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 821
e3db7226 822 tb_phys_invalidate_count++;
9fa3e853
FB
823}
824
825static inline void set_bits(uint8_t *tab, int start, int len)
826{
827 int end, mask, end1;
828
829 end = start + len;
830 tab += start >> 3;
831 mask = 0xff << (start & 7);
832 if ((start & ~7) == (end & ~7)) {
833 if (start < end) {
834 mask &= ~(0xff << (end & 7));
835 *tab |= mask;
836 }
837 } else {
838 *tab++ |= mask;
839 start = (start + 8) & ~7;
840 end1 = end & ~7;
841 while (start < end1) {
842 *tab++ = 0xff;
843 start += 8;
844 }
845 if (start < end) {
846 mask = ~(0xff << (end & 7));
847 *tab |= mask;
848 }
849 }
850}
851
852static void build_page_bitmap(PageDesc *p)
853{
854 int n, tb_start, tb_end;
855 TranslationBlock *tb;
3b46e624 856
b2a7081a 857 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
858
859 tb = p->first_tb;
860 while (tb != NULL) {
861 n = (long)tb & 3;
862 tb = (TranslationBlock *)((long)tb & ~3);
863 /* NOTE: this is subtle as a TB may span two physical pages */
864 if (n == 0) {
865 /* NOTE: tb_end may be after the end of the page, but
866 it is not a problem */
867 tb_start = tb->pc & ~TARGET_PAGE_MASK;
868 tb_end = tb_start + tb->size;
869 if (tb_end > TARGET_PAGE_SIZE)
870 tb_end = TARGET_PAGE_SIZE;
871 } else {
872 tb_start = 0;
873 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
874 }
875 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
876 tb = tb->page_next[n];
877 }
878}
879
2e70f6ef
PB
880TranslationBlock *tb_gen_code(CPUState *env,
881 target_ulong pc, target_ulong cs_base,
882 int flags, int cflags)
d720b93d
FB
883{
884 TranslationBlock *tb;
885 uint8_t *tc_ptr;
886 target_ulong phys_pc, phys_page2, virt_page2;
887 int code_gen_size;
888
c27004ec
FB
889 phys_pc = get_phys_addr_code(env, pc);
890 tb = tb_alloc(pc);
d720b93d
FB
891 if (!tb) {
892 /* flush must be done */
893 tb_flush(env);
894 /* cannot fail at this point */
c27004ec 895 tb = tb_alloc(pc);
2e70f6ef
PB
896 /* Don't forget to invalidate previous TB info. */
897 tb_invalidated_flag = 1;
d720b93d
FB
898 }
899 tc_ptr = code_gen_ptr;
900 tb->tc_ptr = tc_ptr;
901 tb->cs_base = cs_base;
902 tb->flags = flags;
903 tb->cflags = cflags;
d07bde88 904 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 905 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 906
d720b93d 907 /* check next page if needed */
c27004ec 908 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 909 phys_page2 = -1;
c27004ec 910 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
d720b93d
FB
911 phys_page2 = get_phys_addr_code(env, virt_page2);
912 }
913 tb_link_phys(tb, phys_pc, phys_page2);
2e70f6ef 914 return tb;
d720b93d 915}
3b46e624 916
9fa3e853
FB
917/* invalidate all TBs which intersect with the target physical page
918 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
919 the same physical page. 'is_cpu_write_access' should be true if called
920 from a real cpu write access: the virtual CPU will exit the current
921 TB if code is modified inside this TB. */
c227f099 922void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
d720b93d
FB
923 int is_cpu_write_access)
924{
6b917547 925 TranslationBlock *tb, *tb_next, *saved_tb;
d720b93d 926 CPUState *env = cpu_single_env;
9fa3e853 927 target_ulong tb_start, tb_end;
6b917547
AL
928 PageDesc *p;
929 int n;
930#ifdef TARGET_HAS_PRECISE_SMC
931 int current_tb_not_found = is_cpu_write_access;
932 TranslationBlock *current_tb = NULL;
933 int current_tb_modified = 0;
934 target_ulong current_pc = 0;
935 target_ulong current_cs_base = 0;
936 int current_flags = 0;
937#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
938
939 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 940 if (!p)
9fa3e853 941 return;
5fafdf24 942 if (!p->code_bitmap &&
d720b93d
FB
943 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
944 is_cpu_write_access) {
9fa3e853
FB
945 /* build code bitmap */
946 build_page_bitmap(p);
947 }
948
949 /* we remove all the TBs in the range [start, end[ */
950 /* XXX: see if in some cases it could be faster to invalidate all the code */
951 tb = p->first_tb;
952 while (tb != NULL) {
953 n = (long)tb & 3;
954 tb = (TranslationBlock *)((long)tb & ~3);
955 tb_next = tb->page_next[n];
956 /* NOTE: this is subtle as a TB may span two physical pages */
957 if (n == 0) {
958 /* NOTE: tb_end may be after the end of the page, but
959 it is not a problem */
960 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
961 tb_end = tb_start + tb->size;
962 } else {
963 tb_start = tb->page_addr[1];
964 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
965 }
966 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
967#ifdef TARGET_HAS_PRECISE_SMC
968 if (current_tb_not_found) {
969 current_tb_not_found = 0;
970 current_tb = NULL;
2e70f6ef 971 if (env->mem_io_pc) {
d720b93d 972 /* now we have a real cpu fault */
2e70f6ef 973 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
974 }
975 }
976 if (current_tb == tb &&
2e70f6ef 977 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
978 /* If we are modifying the current TB, we must stop
979 its execution. We could be more precise by checking
980 that the modification is after the current PC, but it
981 would require a specialized function to partially
982 restore the CPU state */
3b46e624 983
d720b93d 984 current_tb_modified = 1;
5fafdf24 985 cpu_restore_state(current_tb, env,
2e70f6ef 986 env->mem_io_pc, NULL);
6b917547
AL
987 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
988 &current_flags);
d720b93d
FB
989 }
990#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
991 /* we need to do that to handle the case where a signal
992 occurs while doing tb_phys_invalidate() */
993 saved_tb = NULL;
994 if (env) {
995 saved_tb = env->current_tb;
996 env->current_tb = NULL;
997 }
9fa3e853 998 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
999 if (env) {
1000 env->current_tb = saved_tb;
1001 if (env->interrupt_request && env->current_tb)
1002 cpu_interrupt(env, env->interrupt_request);
1003 }
9fa3e853
FB
1004 }
1005 tb = tb_next;
1006 }
1007#if !defined(CONFIG_USER_ONLY)
1008 /* if no code remaining, no need to continue to use slow writes */
1009 if (!p->first_tb) {
1010 invalidate_page_bitmap(p);
d720b93d 1011 if (is_cpu_write_access) {
2e70f6ef 1012 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
1013 }
1014 }
1015#endif
1016#ifdef TARGET_HAS_PRECISE_SMC
1017 if (current_tb_modified) {
1018 /* we generate a block containing just the instruction
1019 modifying the memory. It will ensure that it cannot modify
1020 itself */
ea1c1802 1021 env->current_tb = NULL;
2e70f6ef 1022 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 1023 cpu_resume_from_signal(env, NULL);
9fa3e853 1024 }
fd6ce8f6 1025#endif
9fa3e853 1026}
fd6ce8f6 1027
9fa3e853 1028/* len must be <= 8 and start must be a multiple of len */
c227f099 1029static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
9fa3e853
FB
1030{
1031 PageDesc *p;
1032 int offset, b;
59817ccb 1033#if 0
a4193c8a 1034 if (1) {
93fcfe39
AL
1035 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1036 cpu_single_env->mem_io_vaddr, len,
1037 cpu_single_env->eip,
1038 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
59817ccb
FB
1039 }
1040#endif
9fa3e853 1041 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1042 if (!p)
9fa3e853
FB
1043 return;
1044 if (p->code_bitmap) {
1045 offset = start & ~TARGET_PAGE_MASK;
1046 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1047 if (b & ((1 << len) - 1))
1048 goto do_invalidate;
1049 } else {
1050 do_invalidate:
d720b93d 1051 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1052 }
1053}
1054
9fa3e853 1055#if !defined(CONFIG_SOFTMMU)
c227f099 1056static void tb_invalidate_phys_page(target_phys_addr_t addr,
d720b93d 1057 unsigned long pc, void *puc)
9fa3e853 1058{
6b917547 1059 TranslationBlock *tb;
9fa3e853 1060 PageDesc *p;
6b917547 1061 int n;
d720b93d 1062#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1063 TranslationBlock *current_tb = NULL;
d720b93d 1064 CPUState *env = cpu_single_env;
6b917547
AL
1065 int current_tb_modified = 0;
1066 target_ulong current_pc = 0;
1067 target_ulong current_cs_base = 0;
1068 int current_flags = 0;
d720b93d 1069#endif
9fa3e853
FB
1070
1071 addr &= TARGET_PAGE_MASK;
1072 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1073 if (!p)
9fa3e853
FB
1074 return;
1075 tb = p->first_tb;
d720b93d
FB
1076#ifdef TARGET_HAS_PRECISE_SMC
1077 if (tb && pc != 0) {
1078 current_tb = tb_find_pc(pc);
1079 }
1080#endif
9fa3e853
FB
1081 while (tb != NULL) {
1082 n = (long)tb & 3;
1083 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1084#ifdef TARGET_HAS_PRECISE_SMC
1085 if (current_tb == tb &&
2e70f6ef 1086 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1087 /* If we are modifying the current TB, we must stop
1088 its execution. We could be more precise by checking
1089 that the modification is after the current PC, but it
1090 would require a specialized function to partially
1091 restore the CPU state */
3b46e624 1092
d720b93d
FB
1093 current_tb_modified = 1;
1094 cpu_restore_state(current_tb, env, pc, puc);
6b917547
AL
1095 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1096 &current_flags);
d720b93d
FB
1097 }
1098#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1099 tb_phys_invalidate(tb, addr);
1100 tb = tb->page_next[n];
1101 }
fd6ce8f6 1102 p->first_tb = NULL;
d720b93d
FB
1103#ifdef TARGET_HAS_PRECISE_SMC
1104 if (current_tb_modified) {
1105 /* we generate a block containing just the instruction
1106 modifying the memory. It will ensure that it cannot modify
1107 itself */
ea1c1802 1108 env->current_tb = NULL;
2e70f6ef 1109 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1110 cpu_resume_from_signal(env, puc);
1111 }
1112#endif
fd6ce8f6 1113}
9fa3e853 1114#endif
fd6ce8f6
FB
1115
1116/* add the tb in the target page and protect it if necessary */
5fafdf24 1117static inline void tb_alloc_page(TranslationBlock *tb,
53a5960a 1118 unsigned int n, target_ulong page_addr)
fd6ce8f6
FB
1119{
1120 PageDesc *p;
9fa3e853
FB
1121 TranslationBlock *last_first_tb;
1122
1123 tb->page_addr[n] = page_addr;
3a7d929e 1124 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
9fa3e853
FB
1125 tb->page_next[n] = p->first_tb;
1126 last_first_tb = p->first_tb;
1127 p->first_tb = (TranslationBlock *)((long)tb | n);
1128 invalidate_page_bitmap(p);
fd6ce8f6 1129
107db443 1130#if defined(TARGET_HAS_SMC) || 1
d720b93d 1131
9fa3e853 1132#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1133 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1134 target_ulong addr;
1135 PageDesc *p2;
9fa3e853
FB
1136 int prot;
1137
fd6ce8f6
FB
1138 /* force the host page as non writable (writes will have a
1139 page fault + mprotect overhead) */
53a5960a 1140 page_addr &= qemu_host_page_mask;
fd6ce8f6 1141 prot = 0;
53a5960a
PB
1142 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1143 addr += TARGET_PAGE_SIZE) {
1144
1145 p2 = page_find (addr >> TARGET_PAGE_BITS);
1146 if (!p2)
1147 continue;
1148 prot |= p2->flags;
1149 p2->flags &= ~PAGE_WRITE;
1150 page_get_flags(addr);
1151 }
5fafdf24 1152 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1153 (prot & PAGE_BITS) & ~PAGE_WRITE);
1154#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1155 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1156 page_addr);
fd6ce8f6 1157#endif
fd6ce8f6 1158 }
9fa3e853
FB
1159#else
1160 /* if some code is already present, then the pages are already
1161 protected. So we handle the case where only the first TB is
1162 allocated in a physical page */
1163 if (!last_first_tb) {
6a00d601 1164 tlb_protect_code(page_addr);
9fa3e853
FB
1165 }
1166#endif
d720b93d
FB
1167
1168#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1169}
1170
1171/* Allocate a new translation block. Flush the translation buffer if
1172 too many translation blocks or too much generated code. */
c27004ec 1173TranslationBlock *tb_alloc(target_ulong pc)
fd6ce8f6
FB
1174{
1175 TranslationBlock *tb;
fd6ce8f6 1176
26a5f13b
FB
1177 if (nb_tbs >= code_gen_max_blocks ||
1178 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
d4e8164f 1179 return NULL;
fd6ce8f6
FB
1180 tb = &tbs[nb_tbs++];
1181 tb->pc = pc;
b448f2f3 1182 tb->cflags = 0;
d4e8164f
FB
1183 return tb;
1184}
1185
2e70f6ef
PB
1186void tb_free(TranslationBlock *tb)
1187{
bf20dc07 1188 /* In practice this is mostly used for single use temporary TB
2e70f6ef
PB
1189 Ignore the hard cases and just back up if this TB happens to
1190 be the last one generated. */
1191 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1192 code_gen_ptr = tb->tc_ptr;
1193 nb_tbs--;
1194 }
1195}
1196
9fa3e853
FB
1197/* add a new TB and link it to the physical page tables. phys_page2 is
1198 (-1) to indicate that only one page contains the TB. */
5fafdf24 1199void tb_link_phys(TranslationBlock *tb,
9fa3e853 1200 target_ulong phys_pc, target_ulong phys_page2)
d4e8164f 1201{
9fa3e853
FB
1202 unsigned int h;
1203 TranslationBlock **ptb;
1204
c8a706fe
PB
1205 /* Grab the mmap lock to stop another thread invalidating this TB
1206 before we are done. */
1207 mmap_lock();
9fa3e853
FB
1208 /* add in the physical hash table */
1209 h = tb_phys_hash_func(phys_pc);
1210 ptb = &tb_phys_hash[h];
1211 tb->phys_hash_next = *ptb;
1212 *ptb = tb;
fd6ce8f6
FB
1213
1214 /* add in the page list */
9fa3e853
FB
1215 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1216 if (phys_page2 != -1)
1217 tb_alloc_page(tb, 1, phys_page2);
1218 else
1219 tb->page_addr[1] = -1;
9fa3e853 1220
d4e8164f
FB
1221 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1222 tb->jmp_next[0] = NULL;
1223 tb->jmp_next[1] = NULL;
1224
1225 /* init original jump addresses */
1226 if (tb->tb_next_offset[0] != 0xffff)
1227 tb_reset_jump(tb, 0);
1228 if (tb->tb_next_offset[1] != 0xffff)
1229 tb_reset_jump(tb, 1);
8a40a180
FB
1230
1231#ifdef DEBUG_TB_CHECK
1232 tb_page_check();
1233#endif
c8a706fe 1234 mmap_unlock();
fd6ce8f6
FB
1235}
1236
9fa3e853
FB
1237/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1238 tb[1].tc_ptr. Return NULL if not found */
1239TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1240{
9fa3e853
FB
1241 int m_min, m_max, m;
1242 unsigned long v;
1243 TranslationBlock *tb;
a513fe19
FB
1244
1245 if (nb_tbs <= 0)
1246 return NULL;
1247 if (tc_ptr < (unsigned long)code_gen_buffer ||
1248 tc_ptr >= (unsigned long)code_gen_ptr)
1249 return NULL;
1250 /* binary search (cf Knuth) */
1251 m_min = 0;
1252 m_max = nb_tbs - 1;
1253 while (m_min <= m_max) {
1254 m = (m_min + m_max) >> 1;
1255 tb = &tbs[m];
1256 v = (unsigned long)tb->tc_ptr;
1257 if (v == tc_ptr)
1258 return tb;
1259 else if (tc_ptr < v) {
1260 m_max = m - 1;
1261 } else {
1262 m_min = m + 1;
1263 }
5fafdf24 1264 }
a513fe19
FB
1265 return &tbs[m_max];
1266}
7501267e 1267
ea041c0e
FB
1268static void tb_reset_jump_recursive(TranslationBlock *tb);
1269
1270static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1271{
1272 TranslationBlock *tb1, *tb_next, **ptb;
1273 unsigned int n1;
1274
1275 tb1 = tb->jmp_next[n];
1276 if (tb1 != NULL) {
1277 /* find head of list */
1278 for(;;) {
1279 n1 = (long)tb1 & 3;
1280 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1281 if (n1 == 2)
1282 break;
1283 tb1 = tb1->jmp_next[n1];
1284 }
1285 /* we are now sure now that tb jumps to tb1 */
1286 tb_next = tb1;
1287
1288 /* remove tb from the jmp_first list */
1289 ptb = &tb_next->jmp_first;
1290 for(;;) {
1291 tb1 = *ptb;
1292 n1 = (long)tb1 & 3;
1293 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1294 if (n1 == n && tb1 == tb)
1295 break;
1296 ptb = &tb1->jmp_next[n1];
1297 }
1298 *ptb = tb->jmp_next[n];
1299 tb->jmp_next[n] = NULL;
3b46e624 1300
ea041c0e
FB
1301 /* suppress the jump to next tb in generated code */
1302 tb_reset_jump(tb, n);
1303
0124311e 1304 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1305 tb_reset_jump_recursive(tb_next);
1306 }
1307}
1308
1309static void tb_reset_jump_recursive(TranslationBlock *tb)
1310{
1311 tb_reset_jump_recursive2(tb, 0);
1312 tb_reset_jump_recursive2(tb, 1);
1313}
1314
1fddef4b 1315#if defined(TARGET_HAS_ICE)
d720b93d
FB
1316static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1317{
c227f099 1318 target_phys_addr_t addr;
9b3c35e0 1319 target_ulong pd;
c227f099 1320 ram_addr_t ram_addr;
c2f07f81 1321 PhysPageDesc *p;
d720b93d 1322
c2f07f81
PB
1323 addr = cpu_get_phys_page_debug(env, pc);
1324 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1325 if (!p) {
1326 pd = IO_MEM_UNASSIGNED;
1327 } else {
1328 pd = p->phys_offset;
1329 }
1330 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1331 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1332}
c27004ec 1333#endif
d720b93d 1334
6658ffb8 1335/* Add a watchpoint. */
a1d1bb31
AL
1336int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1337 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1338{
b4051334 1339 target_ulong len_mask = ~(len - 1);
c0ce998e 1340 CPUWatchpoint *wp;
6658ffb8 1341
b4051334
AL
1342 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1343 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1344 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1345 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1346 return -EINVAL;
1347 }
a1d1bb31 1348 wp = qemu_malloc(sizeof(*wp));
a1d1bb31
AL
1349
1350 wp->vaddr = addr;
b4051334 1351 wp->len_mask = len_mask;
a1d1bb31
AL
1352 wp->flags = flags;
1353
2dc9f411 1354 /* keep all GDB-injected watchpoints in front */
c0ce998e 1355 if (flags & BP_GDB)
72cf2d4f 1356 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
c0ce998e 1357 else
72cf2d4f 1358 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 1359
6658ffb8 1360 tlb_flush_page(env, addr);
a1d1bb31
AL
1361
1362 if (watchpoint)
1363 *watchpoint = wp;
1364 return 0;
6658ffb8
PB
1365}
1366
a1d1bb31
AL
1367/* Remove a specific watchpoint. */
1368int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1369 int flags)
6658ffb8 1370{
b4051334 1371 target_ulong len_mask = ~(len - 1);
a1d1bb31 1372 CPUWatchpoint *wp;
6658ffb8 1373
72cf2d4f 1374 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 1375 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1376 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1377 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1378 return 0;
1379 }
1380 }
a1d1bb31 1381 return -ENOENT;
6658ffb8
PB
1382}
1383
a1d1bb31
AL
1384/* Remove a specific watchpoint by reference. */
1385void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1386{
72cf2d4f 1387 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 1388
a1d1bb31
AL
1389 tlb_flush_page(env, watchpoint->vaddr);
1390
1391 qemu_free(watchpoint);
1392}
1393
1394/* Remove all matching watchpoints. */
1395void cpu_watchpoint_remove_all(CPUState *env, int mask)
1396{
c0ce998e 1397 CPUWatchpoint *wp, *next;
a1d1bb31 1398
72cf2d4f 1399 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
1400 if (wp->flags & mask)
1401 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 1402 }
7d03f82f
EI
1403}
1404
a1d1bb31
AL
1405/* Add a breakpoint. */
1406int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1407 CPUBreakpoint **breakpoint)
4c3a88a2 1408{
1fddef4b 1409#if defined(TARGET_HAS_ICE)
c0ce998e 1410 CPUBreakpoint *bp;
3b46e624 1411
a1d1bb31 1412 bp = qemu_malloc(sizeof(*bp));
4c3a88a2 1413
a1d1bb31
AL
1414 bp->pc = pc;
1415 bp->flags = flags;
1416
2dc9f411 1417 /* keep all GDB-injected breakpoints in front */
c0ce998e 1418 if (flags & BP_GDB)
72cf2d4f 1419 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
c0ce998e 1420 else
72cf2d4f 1421 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 1422
d720b93d 1423 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1424
1425 if (breakpoint)
1426 *breakpoint = bp;
4c3a88a2
FB
1427 return 0;
1428#else
a1d1bb31 1429 return -ENOSYS;
4c3a88a2
FB
1430#endif
1431}
1432
a1d1bb31
AL
1433/* Remove a specific breakpoint. */
1434int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1435{
7d03f82f 1436#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1437 CPUBreakpoint *bp;
1438
72cf2d4f 1439 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
1440 if (bp->pc == pc && bp->flags == flags) {
1441 cpu_breakpoint_remove_by_ref(env, bp);
1442 return 0;
1443 }
7d03f82f 1444 }
a1d1bb31
AL
1445 return -ENOENT;
1446#else
1447 return -ENOSYS;
7d03f82f
EI
1448#endif
1449}
1450
a1d1bb31
AL
1451/* Remove a specific breakpoint by reference. */
1452void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1453{
1fddef4b 1454#if defined(TARGET_HAS_ICE)
72cf2d4f 1455 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 1456
a1d1bb31
AL
1457 breakpoint_invalidate(env, breakpoint->pc);
1458
1459 qemu_free(breakpoint);
1460#endif
1461}
1462
1463/* Remove all matching breakpoints. */
1464void cpu_breakpoint_remove_all(CPUState *env, int mask)
1465{
1466#if defined(TARGET_HAS_ICE)
c0ce998e 1467 CPUBreakpoint *bp, *next;
a1d1bb31 1468
72cf2d4f 1469 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
1470 if (bp->flags & mask)
1471 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 1472 }
4c3a88a2
FB
1473#endif
1474}
1475
c33a346e
FB
1476/* enable or disable single step mode. EXCP_DEBUG is returned by the
1477 CPU loop after each instruction */
1478void cpu_single_step(CPUState *env, int enabled)
1479{
1fddef4b 1480#if defined(TARGET_HAS_ICE)
c33a346e
FB
1481 if (env->singlestep_enabled != enabled) {
1482 env->singlestep_enabled = enabled;
e22a25c9
AL
1483 if (kvm_enabled())
1484 kvm_update_guest_debug(env, 0);
1485 else {
ccbb4d44 1486 /* must flush all the translated code to avoid inconsistencies */
e22a25c9
AL
1487 /* XXX: only flush what is necessary */
1488 tb_flush(env);
1489 }
c33a346e
FB
1490 }
1491#endif
1492}
1493
34865134
FB
1494/* enable or disable low levels log */
1495void cpu_set_log(int log_flags)
1496{
1497 loglevel = log_flags;
1498 if (loglevel && !logfile) {
11fcfab4 1499 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1500 if (!logfile) {
1501 perror(logfilename);
1502 _exit(1);
1503 }
9fa3e853
FB
1504#if !defined(CONFIG_SOFTMMU)
1505 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1506 {
b55266b5 1507 static char logfile_buf[4096];
9fa3e853
FB
1508 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1509 }
bf65f53f
FN
1510#elif !defined(_WIN32)
1511 /* Win32 doesn't support line-buffering and requires size >= 2 */
34865134 1512 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1513#endif
e735b91c
PB
1514 log_append = 1;
1515 }
1516 if (!loglevel && logfile) {
1517 fclose(logfile);
1518 logfile = NULL;
34865134
FB
1519 }
1520}
1521
1522void cpu_set_log_filename(const char *filename)
1523{
1524 logfilename = strdup(filename);
e735b91c
PB
1525 if (logfile) {
1526 fclose(logfile);
1527 logfile = NULL;
1528 }
1529 cpu_set_log(loglevel);
34865134 1530}
c33a346e 1531
3098dba0 1532static void cpu_unlink_tb(CPUState *env)
ea041c0e 1533{
3098dba0
AJ
1534 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1535 problem and hope the cpu will stop of its own accord. For userspace
1536 emulation this often isn't actually as bad as it sounds. Often
1537 signals are used primarily to interrupt blocking syscalls. */
ea041c0e 1538 TranslationBlock *tb;
c227f099 1539 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
59817ccb 1540
cab1b4bd 1541 spin_lock(&interrupt_lock);
3098dba0
AJ
1542 tb = env->current_tb;
1543 /* if the cpu is currently executing code, we must unlink it and
1544 all the potentially executing TB */
f76cfe56 1545 if (tb) {
3098dba0
AJ
1546 env->current_tb = NULL;
1547 tb_reset_jump_recursive(tb);
be214e6c 1548 }
cab1b4bd 1549 spin_unlock(&interrupt_lock);
3098dba0
AJ
1550}
1551
1552/* mask must never be zero, except for A20 change call */
1553void cpu_interrupt(CPUState *env, int mask)
1554{
1555 int old_mask;
be214e6c 1556
2e70f6ef 1557 old_mask = env->interrupt_request;
68a79315 1558 env->interrupt_request |= mask;
3098dba0 1559
8edac960
AL
1560#ifndef CONFIG_USER_ONLY
1561 /*
1562 * If called from iothread context, wake the target cpu in
1563 * case its halted.
1564 */
1565 if (!qemu_cpu_self(env)) {
1566 qemu_cpu_kick(env);
1567 return;
1568 }
1569#endif
1570
2e70f6ef 1571 if (use_icount) {
266910c4 1572 env->icount_decr.u16.high = 0xffff;
2e70f6ef 1573#ifndef CONFIG_USER_ONLY
2e70f6ef 1574 if (!can_do_io(env)
be214e6c 1575 && (mask & ~old_mask) != 0) {
2e70f6ef
PB
1576 cpu_abort(env, "Raised interrupt while not in I/O function");
1577 }
1578#endif
1579 } else {
3098dba0 1580 cpu_unlink_tb(env);
ea041c0e
FB
1581 }
1582}
1583
b54ad049
FB
1584void cpu_reset_interrupt(CPUState *env, int mask)
1585{
1586 env->interrupt_request &= ~mask;
1587}
1588
3098dba0
AJ
1589void cpu_exit(CPUState *env)
1590{
1591 env->exit_request = 1;
1592 cpu_unlink_tb(env);
1593}
1594
c7cd6a37 1595const CPULogItem cpu_log_items[] = {
5fafdf24 1596 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1597 "show generated host assembly code for each compiled TB" },
1598 { CPU_LOG_TB_IN_ASM, "in_asm",
1599 "show target assembly code for each compiled TB" },
5fafdf24 1600 { CPU_LOG_TB_OP, "op",
57fec1fe 1601 "show micro ops for each compiled TB" },
f193c797 1602 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1603 "show micro ops "
1604#ifdef TARGET_I386
1605 "before eflags optimization and "
f193c797 1606#endif
e01a1157 1607 "after liveness analysis" },
f193c797
FB
1608 { CPU_LOG_INT, "int",
1609 "show interrupts/exceptions in short format" },
1610 { CPU_LOG_EXEC, "exec",
1611 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1612 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1613 "show CPU state before block translation" },
f193c797
FB
1614#ifdef TARGET_I386
1615 { CPU_LOG_PCALL, "pcall",
1616 "show protected mode far calls/returns/exceptions" },
eca1bdf4
AL
1617 { CPU_LOG_RESET, "cpu_reset",
1618 "show CPU state before CPU resets" },
f193c797 1619#endif
8e3a9fd2 1620#ifdef DEBUG_IOPORT
fd872598
FB
1621 { CPU_LOG_IOPORT, "ioport",
1622 "show all i/o ports accesses" },
8e3a9fd2 1623#endif
f193c797
FB
1624 { 0, NULL, NULL },
1625};
1626
f6f3fbca
MT
1627#ifndef CONFIG_USER_ONLY
1628static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1629 = QLIST_HEAD_INITIALIZER(memory_client_list);
1630
1631static void cpu_notify_set_memory(target_phys_addr_t start_addr,
1632 ram_addr_t size,
1633 ram_addr_t phys_offset)
1634{
1635 CPUPhysMemoryClient *client;
1636 QLIST_FOREACH(client, &memory_client_list, list) {
1637 client->set_memory(client, start_addr, size, phys_offset);
1638 }
1639}
1640
1641static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
1642 target_phys_addr_t end)
1643{
1644 CPUPhysMemoryClient *client;
1645 QLIST_FOREACH(client, &memory_client_list, list) {
1646 int r = client->sync_dirty_bitmap(client, start, end);
1647 if (r < 0)
1648 return r;
1649 }
1650 return 0;
1651}
1652
1653static int cpu_notify_migration_log(int enable)
1654{
1655 CPUPhysMemoryClient *client;
1656 QLIST_FOREACH(client, &memory_client_list, list) {
1657 int r = client->migration_log(client, enable);
1658 if (r < 0)
1659 return r;
1660 }
1661 return 0;
1662}
1663
1664static void phys_page_for_each_in_l1_map(PhysPageDesc **phys_map,
1665 CPUPhysMemoryClient *client)
1666{
1667 PhysPageDesc *pd;
1668 int l1, l2;
1669
1670 for (l1 = 0; l1 < L1_SIZE; ++l1) {
1671 pd = phys_map[l1];
1672 if (!pd) {
1673 continue;
1674 }
1675 for (l2 = 0; l2 < L2_SIZE; ++l2) {
1676 if (pd[l2].phys_offset == IO_MEM_UNASSIGNED) {
1677 continue;
1678 }
1679 client->set_memory(client, pd[l2].region_offset,
1680 TARGET_PAGE_SIZE, pd[l2].phys_offset);
1681 }
1682 }
1683}
1684
1685static void phys_page_for_each(CPUPhysMemoryClient *client)
1686{
1687#if TARGET_PHYS_ADDR_SPACE_BITS > 32
1688
1689#if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
1690#error unsupported TARGET_PHYS_ADDR_SPACE_BITS
1691#endif
1692 void **phys_map = (void **)l1_phys_map;
1693 int l1;
1694 if (!l1_phys_map) {
1695 return;
1696 }
1697 for (l1 = 0; l1 < L1_SIZE; ++l1) {
1698 if (phys_map[l1]) {
1699 phys_page_for_each_in_l1_map(phys_map[l1], client);
1700 }
1701 }
1702#else
1703 if (!l1_phys_map) {
1704 return;
1705 }
1706 phys_page_for_each_in_l1_map(l1_phys_map, client);
1707#endif
1708}
1709
1710void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1711{
1712 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1713 phys_page_for_each(client);
1714}
1715
1716void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1717{
1718 QLIST_REMOVE(client, list);
1719}
1720#endif
1721
f193c797
FB
1722static int cmp1(const char *s1, int n, const char *s2)
1723{
1724 if (strlen(s2) != n)
1725 return 0;
1726 return memcmp(s1, s2, n) == 0;
1727}
3b46e624 1728
f193c797
FB
1729/* takes a comma separated list of log masks. Return 0 if error. */
1730int cpu_str_to_log_mask(const char *str)
1731{
c7cd6a37 1732 const CPULogItem *item;
f193c797
FB
1733 int mask;
1734 const char *p, *p1;
1735
1736 p = str;
1737 mask = 0;
1738 for(;;) {
1739 p1 = strchr(p, ',');
1740 if (!p1)
1741 p1 = p + strlen(p);
8e3a9fd2
FB
1742 if(cmp1(p,p1-p,"all")) {
1743 for(item = cpu_log_items; item->mask != 0; item++) {
1744 mask |= item->mask;
1745 }
1746 } else {
f193c797
FB
1747 for(item = cpu_log_items; item->mask != 0; item++) {
1748 if (cmp1(p, p1 - p, item->name))
1749 goto found;
1750 }
1751 return 0;
8e3a9fd2 1752 }
f193c797
FB
1753 found:
1754 mask |= item->mask;
1755 if (*p1 != ',')
1756 break;
1757 p = p1 + 1;
1758 }
1759 return mask;
1760}
ea041c0e 1761
7501267e
FB
1762void cpu_abort(CPUState *env, const char *fmt, ...)
1763{
1764 va_list ap;
493ae1f0 1765 va_list ap2;
7501267e
FB
1766
1767 va_start(ap, fmt);
493ae1f0 1768 va_copy(ap2, ap);
7501267e
FB
1769 fprintf(stderr, "qemu: fatal: ");
1770 vfprintf(stderr, fmt, ap);
1771 fprintf(stderr, "\n");
1772#ifdef TARGET_I386
7fe48483
FB
1773 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1774#else
1775 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1776#endif
93fcfe39
AL
1777 if (qemu_log_enabled()) {
1778 qemu_log("qemu: fatal: ");
1779 qemu_log_vprintf(fmt, ap2);
1780 qemu_log("\n");
f9373291 1781#ifdef TARGET_I386
93fcfe39 1782 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
f9373291 1783#else
93fcfe39 1784 log_cpu_state(env, 0);
f9373291 1785#endif
31b1a7b4 1786 qemu_log_flush();
93fcfe39 1787 qemu_log_close();
924edcae 1788 }
493ae1f0 1789 va_end(ap2);
f9373291 1790 va_end(ap);
fd052bf6
RV
1791#if defined(CONFIG_USER_ONLY)
1792 {
1793 struct sigaction act;
1794 sigfillset(&act.sa_mask);
1795 act.sa_handler = SIG_DFL;
1796 sigaction(SIGABRT, &act, NULL);
1797 }
1798#endif
7501267e
FB
1799 abort();
1800}
1801
c5be9f08
TS
1802CPUState *cpu_copy(CPUState *env)
1803{
01ba9816 1804 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1805 CPUState *next_cpu = new_env->next_cpu;
1806 int cpu_index = new_env->cpu_index;
5a38f081
AL
1807#if defined(TARGET_HAS_ICE)
1808 CPUBreakpoint *bp;
1809 CPUWatchpoint *wp;
1810#endif
1811
c5be9f08 1812 memcpy(new_env, env, sizeof(CPUState));
5a38f081
AL
1813
1814 /* Preserve chaining and index. */
c5be9f08
TS
1815 new_env->next_cpu = next_cpu;
1816 new_env->cpu_index = cpu_index;
5a38f081
AL
1817
1818 /* Clone all break/watchpoints.
1819 Note: Once we support ptrace with hw-debug register access, make sure
1820 BP_CPU break/watchpoints are handled correctly on clone. */
72cf2d4f
BS
1821 QTAILQ_INIT(&env->breakpoints);
1822 QTAILQ_INIT(&env->watchpoints);
5a38f081 1823#if defined(TARGET_HAS_ICE)
72cf2d4f 1824 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
5a38f081
AL
1825 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1826 }
72cf2d4f 1827 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
5a38f081
AL
1828 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1829 wp->flags, NULL);
1830 }
1831#endif
1832
c5be9f08
TS
1833 return new_env;
1834}
1835
0124311e
FB
1836#if !defined(CONFIG_USER_ONLY)
1837
5c751e99
EI
1838static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1839{
1840 unsigned int i;
1841
1842 /* Discard jump cache entries for any tb which might potentially
1843 overlap the flushed page. */
1844 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1845 memset (&env->tb_jmp_cache[i], 0,
1846 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1847
1848 i = tb_jmp_cache_hash_page(addr);
1849 memset (&env->tb_jmp_cache[i], 0,
1850 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1851}
1852
08738984
IK
1853static CPUTLBEntry s_cputlb_empty_entry = {
1854 .addr_read = -1,
1855 .addr_write = -1,
1856 .addr_code = -1,
1857 .addend = -1,
1858};
1859
ee8b7021
FB
1860/* NOTE: if flush_global is true, also flush global entries (not
1861 implemented yet) */
1862void tlb_flush(CPUState *env, int flush_global)
33417e70 1863{
33417e70 1864 int i;
0124311e 1865
9fa3e853
FB
1866#if defined(DEBUG_TLB)
1867 printf("tlb_flush:\n");
1868#endif
0124311e
FB
1869 /* must reset current TB so that interrupts cannot modify the
1870 links while we are modifying them */
1871 env->current_tb = NULL;
1872
33417e70 1873 for(i = 0; i < CPU_TLB_SIZE; i++) {
cfde4bd9
IY
1874 int mmu_idx;
1875 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
08738984 1876 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
cfde4bd9 1877 }
33417e70 1878 }
9fa3e853 1879
8a40a180 1880 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 1881
e3db7226 1882 tlb_flush_count++;
33417e70
FB
1883}
1884
274da6b2 1885static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1886{
5fafdf24 1887 if (addr == (tlb_entry->addr_read &
84b7b8e7 1888 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1889 addr == (tlb_entry->addr_write &
84b7b8e7 1890 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1891 addr == (tlb_entry->addr_code &
84b7b8e7 1892 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
08738984 1893 *tlb_entry = s_cputlb_empty_entry;
84b7b8e7 1894 }
61382a50
FB
1895}
1896
2e12669a 1897void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 1898{
8a40a180 1899 int i;
cfde4bd9 1900 int mmu_idx;
0124311e 1901
9fa3e853 1902#if defined(DEBUG_TLB)
108c49b8 1903 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 1904#endif
0124311e
FB
1905 /* must reset current TB so that interrupts cannot modify the
1906 links while we are modifying them */
1907 env->current_tb = NULL;
61382a50
FB
1908
1909 addr &= TARGET_PAGE_MASK;
1910 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
1911 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1912 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
0124311e 1913
5c751e99 1914 tlb_flush_jmp_cache(env, addr);
9fa3e853
FB
1915}
1916
9fa3e853
FB
1917/* update the TLBs so that writes to code in the virtual page 'addr'
1918 can be detected */
c227f099 1919static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 1920{
5fafdf24 1921 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
1922 ram_addr + TARGET_PAGE_SIZE,
1923 CODE_DIRTY_FLAG);
9fa3e853
FB
1924}
1925
9fa3e853 1926/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 1927 tested for self modifying code */
c227f099 1928static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 1929 target_ulong vaddr)
9fa3e853 1930{
3a7d929e 1931 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1ccde1cb
FB
1932}
1933
5fafdf24 1934static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
1935 unsigned long start, unsigned long length)
1936{
1937 unsigned long addr;
84b7b8e7
FB
1938 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1939 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 1940 if ((addr - start) < length) {
0f459d16 1941 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
1942 }
1943 }
1944}
1945
5579c7f3 1946/* Note: start and end must be within the same ram block. */
c227f099 1947void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 1948 int dirty_flags)
1ccde1cb
FB
1949{
1950 CPUState *env;
4f2ac237 1951 unsigned long length, start1;
0a962c02
FB
1952 int i, mask, len;
1953 uint8_t *p;
1ccde1cb
FB
1954
1955 start &= TARGET_PAGE_MASK;
1956 end = TARGET_PAGE_ALIGN(end);
1957
1958 length = end - start;
1959 if (length == 0)
1960 return;
0a962c02 1961 len = length >> TARGET_PAGE_BITS;
f23db169
FB
1962 mask = ~dirty_flags;
1963 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1964 for(i = 0; i < len; i++)
1965 p[i] &= mask;
1966
1ccde1cb
FB
1967 /* we modify the TLB cache so that the dirty bit will be set again
1968 when accessing the range */
5579c7f3
PB
1969 start1 = (unsigned long)qemu_get_ram_ptr(start);
1970 /* Chek that we don't span multiple blocks - this breaks the
1971 address comparisons below. */
1972 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
1973 != (end - 1) - start) {
1974 abort();
1975 }
1976
6a00d601 1977 for(env = first_cpu; env != NULL; env = env->next_cpu) {
cfde4bd9
IY
1978 int mmu_idx;
1979 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1980 for(i = 0; i < CPU_TLB_SIZE; i++)
1981 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
1982 start1, length);
1983 }
6a00d601 1984 }
1ccde1cb
FB
1985}
1986
74576198
AL
1987int cpu_physical_memory_set_dirty_tracking(int enable)
1988{
f6f3fbca 1989 int ret = 0;
74576198 1990 in_migration = enable;
f6f3fbca
MT
1991 ret = cpu_notify_migration_log(!!enable);
1992 return ret;
74576198
AL
1993}
1994
1995int cpu_physical_memory_get_dirty_tracking(void)
1996{
1997 return in_migration;
1998}
1999
c227f099
AL
2000int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2001 target_phys_addr_t end_addr)
2bec46dc 2002{
7b8f3b78 2003 int ret;
151f7749 2004
f6f3fbca 2005 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
151f7749 2006 return ret;
2bec46dc
AL
2007}
2008
3a7d929e
FB
2009static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2010{
c227f099 2011 ram_addr_t ram_addr;
5579c7f3 2012 void *p;
3a7d929e 2013
84b7b8e7 2014 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5579c7f3
PB
2015 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2016 + tlb_entry->addend);
2017 ram_addr = qemu_ram_addr_from_host(p);
3a7d929e 2018 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 2019 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
2020 }
2021 }
2022}
2023
2024/* update the TLB according to the current state of the dirty bits */
2025void cpu_tlb_update_dirty(CPUState *env)
2026{
2027 int i;
cfde4bd9
IY
2028 int mmu_idx;
2029 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2030 for(i = 0; i < CPU_TLB_SIZE; i++)
2031 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2032 }
3a7d929e
FB
2033}
2034
0f459d16 2035static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 2036{
0f459d16
PB
2037 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2038 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
2039}
2040
0f459d16
PB
2041/* update the TLB corresponding to virtual page vaddr
2042 so that it is no longer dirty */
2043static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 2044{
1ccde1cb 2045 int i;
cfde4bd9 2046 int mmu_idx;
1ccde1cb 2047
0f459d16 2048 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 2049 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
2050 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2051 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
9fa3e853
FB
2052}
2053
59817ccb
FB
2054/* add a new TLB entry. At most one entry for a given virtual address
2055 is permitted. Return 0 if OK or 2 if the page could not be mapped
2056 (can only happen in non SOFTMMU mode for I/O pages or pages
2057 conflicting with the host address space). */
5fafdf24 2058int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
c227f099 2059 target_phys_addr_t paddr, int prot,
6ebbf390 2060 int mmu_idx, int is_softmmu)
9fa3e853 2061{
92e873b9 2062 PhysPageDesc *p;
4f2ac237 2063 unsigned long pd;
9fa3e853 2064 unsigned int index;
4f2ac237 2065 target_ulong address;
0f459d16 2066 target_ulong code_address;
c227f099 2067 target_phys_addr_t addend;
9fa3e853 2068 int ret;
84b7b8e7 2069 CPUTLBEntry *te;
a1d1bb31 2070 CPUWatchpoint *wp;
c227f099 2071 target_phys_addr_t iotlb;
9fa3e853 2072
92e873b9 2073 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
2074 if (!p) {
2075 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
2076 } else {
2077 pd = p->phys_offset;
9fa3e853
FB
2078 }
2079#if defined(DEBUG_TLB)
6ebbf390
JM
2080 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
2081 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
9fa3e853
FB
2082#endif
2083
2084 ret = 0;
0f459d16
PB
2085 address = vaddr;
2086 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2087 /* IO memory case (romd handled later) */
2088 address |= TLB_MMIO;
2089 }
5579c7f3 2090 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
0f459d16
PB
2091 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2092 /* Normal RAM. */
2093 iotlb = pd & TARGET_PAGE_MASK;
2094 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2095 iotlb |= IO_MEM_NOTDIRTY;
2096 else
2097 iotlb |= IO_MEM_ROM;
2098 } else {
ccbb4d44 2099 /* IO handlers are currently passed a physical address.
0f459d16
PB
2100 It would be nice to pass an offset from the base address
2101 of that region. This would avoid having to special case RAM,
2102 and avoid full address decoding in every device.
2103 We can't use the high bits of pd for this because
2104 IO_MEM_ROMD uses these as a ram address. */
8da3ff18
PB
2105 iotlb = (pd & ~TARGET_PAGE_MASK);
2106 if (p) {
8da3ff18
PB
2107 iotlb += p->region_offset;
2108 } else {
2109 iotlb += paddr;
2110 }
0f459d16
PB
2111 }
2112
2113 code_address = address;
2114 /* Make accesses to pages with watchpoints go via the
2115 watchpoint trap routines. */
72cf2d4f 2116 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
a1d1bb31 2117 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
0f459d16
PB
2118 iotlb = io_mem_watch + paddr;
2119 /* TODO: The memory case can be optimized by not trapping
2120 reads of pages with a write breakpoint. */
2121 address |= TLB_MMIO;
6658ffb8 2122 }
0f459d16 2123 }
d79acba4 2124
0f459d16
PB
2125 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2126 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2127 te = &env->tlb_table[mmu_idx][index];
2128 te->addend = addend - vaddr;
2129 if (prot & PAGE_READ) {
2130 te->addr_read = address;
2131 } else {
2132 te->addr_read = -1;
2133 }
5c751e99 2134
0f459d16
PB
2135 if (prot & PAGE_EXEC) {
2136 te->addr_code = code_address;
2137 } else {
2138 te->addr_code = -1;
2139 }
2140 if (prot & PAGE_WRITE) {
2141 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2142 (pd & IO_MEM_ROMD)) {
2143 /* Write access calls the I/O callback. */
2144 te->addr_write = address | TLB_MMIO;
2145 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2146 !cpu_physical_memory_is_dirty(pd)) {
2147 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 2148 } else {
0f459d16 2149 te->addr_write = address;
9fa3e853 2150 }
0f459d16
PB
2151 } else {
2152 te->addr_write = -1;
9fa3e853 2153 }
9fa3e853
FB
2154 return ret;
2155}
2156
0124311e
FB
2157#else
2158
ee8b7021 2159void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
2160{
2161}
2162
2e12669a 2163void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
2164{
2165}
2166
5fafdf24 2167int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
c227f099 2168 target_phys_addr_t paddr, int prot,
6ebbf390 2169 int mmu_idx, int is_softmmu)
9fa3e853
FB
2170{
2171 return 0;
2172}
0124311e 2173
edf8e2af
MW
2174/*
2175 * Walks guest process memory "regions" one by one
2176 * and calls callback function 'fn' for each region.
2177 */
2178int walk_memory_regions(void *priv,
2179 int (*fn)(void *, unsigned long, unsigned long, unsigned long))
33417e70 2180{
9fa3e853 2181 unsigned long start, end;
edf8e2af 2182 PageDesc *p = NULL;
9fa3e853 2183 int i, j, prot, prot1;
edf8e2af 2184 int rc = 0;
33417e70 2185
edf8e2af 2186 start = end = -1;
9fa3e853 2187 prot = 0;
edf8e2af
MW
2188
2189 for (i = 0; i <= L1_SIZE; i++) {
2190 p = (i < L1_SIZE) ? l1_map[i] : NULL;
2191 for (j = 0; j < L2_SIZE; j++) {
2192 prot1 = (p == NULL) ? 0 : p[j].flags;
2193 /*
2194 * "region" is one continuous chunk of memory
2195 * that has same protection flags set.
2196 */
9fa3e853
FB
2197 if (prot1 != prot) {
2198 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2199 if (start != -1) {
edf8e2af
MW
2200 rc = (*fn)(priv, start, end, prot);
2201 /* callback can stop iteration by returning != 0 */
2202 if (rc != 0)
2203 return (rc);
9fa3e853
FB
2204 }
2205 if (prot1 != 0)
2206 start = end;
2207 else
2208 start = -1;
2209 prot = prot1;
2210 }
edf8e2af 2211 if (p == NULL)
9fa3e853
FB
2212 break;
2213 }
33417e70 2214 }
edf8e2af
MW
2215 return (rc);
2216}
2217
2218static int dump_region(void *priv, unsigned long start,
2219 unsigned long end, unsigned long prot)
2220{
2221 FILE *f = (FILE *)priv;
2222
2223 (void) fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
2224 start, end, end - start,
2225 ((prot & PAGE_READ) ? 'r' : '-'),
2226 ((prot & PAGE_WRITE) ? 'w' : '-'),
2227 ((prot & PAGE_EXEC) ? 'x' : '-'));
2228
2229 return (0);
2230}
2231
2232/* dump memory mappings */
2233void page_dump(FILE *f)
2234{
2235 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2236 "start", "end", "size", "prot");
2237 walk_memory_regions(f, dump_region);
33417e70
FB
2238}
2239
53a5960a 2240int page_get_flags(target_ulong address)
33417e70 2241{
9fa3e853
FB
2242 PageDesc *p;
2243
2244 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2245 if (!p)
9fa3e853
FB
2246 return 0;
2247 return p->flags;
2248}
2249
2250/* modify the flags of a page and invalidate the code if
ccbb4d44 2251 necessary. The flag PAGE_WRITE_ORG is positioned automatically
9fa3e853 2252 depending on PAGE_WRITE */
53a5960a 2253void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853
FB
2254{
2255 PageDesc *p;
53a5960a 2256 target_ulong addr;
9fa3e853 2257
c8a706fe 2258 /* mmap_lock should already be held. */
9fa3e853
FB
2259 start = start & TARGET_PAGE_MASK;
2260 end = TARGET_PAGE_ALIGN(end);
2261 if (flags & PAGE_WRITE)
2262 flags |= PAGE_WRITE_ORG;
9fa3e853
FB
2263 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2264 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
17e2377a
PB
2265 /* We may be called for host regions that are outside guest
2266 address space. */
2267 if (!p)
2268 return;
9fa3e853
FB
2269 /* if the write protection is set, then we invalidate the code
2270 inside */
5fafdf24 2271 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2272 (flags & PAGE_WRITE) &&
2273 p->first_tb) {
d720b93d 2274 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2275 }
2276 p->flags = flags;
2277 }
33417e70
FB
2278}
2279
3d97b40b
TS
2280int page_check_range(target_ulong start, target_ulong len, int flags)
2281{
2282 PageDesc *p;
2283 target_ulong end;
2284 target_ulong addr;
2285
55f280c9
AZ
2286 if (start + len < start)
2287 /* we've wrapped around */
2288 return -1;
2289
3d97b40b
TS
2290 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2291 start = start & TARGET_PAGE_MASK;
2292
3d97b40b
TS
2293 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2294 p = page_find(addr >> TARGET_PAGE_BITS);
2295 if( !p )
2296 return -1;
2297 if( !(p->flags & PAGE_VALID) )
2298 return -1;
2299
dae3270c 2300 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2301 return -1;
dae3270c
FB
2302 if (flags & PAGE_WRITE) {
2303 if (!(p->flags & PAGE_WRITE_ORG))
2304 return -1;
2305 /* unprotect the page if it was put read-only because it
2306 contains translated code */
2307 if (!(p->flags & PAGE_WRITE)) {
2308 if (!page_unprotect(addr, 0, NULL))
2309 return -1;
2310 }
2311 return 0;
2312 }
3d97b40b
TS
2313 }
2314 return 0;
2315}
2316
9fa3e853 2317/* called from signal handler: invalidate the code and unprotect the
ccbb4d44 2318 page. Return TRUE if the fault was successfully handled. */
53a5960a 2319int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853
FB
2320{
2321 unsigned int page_index, prot, pindex;
2322 PageDesc *p, *p1;
53a5960a 2323 target_ulong host_start, host_end, addr;
9fa3e853 2324
c8a706fe
PB
2325 /* Technically this isn't safe inside a signal handler. However we
2326 know this only ever happens in a synchronous SEGV handler, so in
2327 practice it seems to be ok. */
2328 mmap_lock();
2329
83fb7adf 2330 host_start = address & qemu_host_page_mask;
9fa3e853
FB
2331 page_index = host_start >> TARGET_PAGE_BITS;
2332 p1 = page_find(page_index);
c8a706fe
PB
2333 if (!p1) {
2334 mmap_unlock();
9fa3e853 2335 return 0;
c8a706fe 2336 }
83fb7adf 2337 host_end = host_start + qemu_host_page_size;
9fa3e853
FB
2338 p = p1;
2339 prot = 0;
2340 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2341 prot |= p->flags;
2342 p++;
2343 }
2344 /* if the page was really writable, then we change its
2345 protection back to writable */
2346 if (prot & PAGE_WRITE_ORG) {
2347 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2348 if (!(p1[pindex].flags & PAGE_WRITE)) {
5fafdf24 2349 mprotect((void *)g2h(host_start), qemu_host_page_size,
9fa3e853
FB
2350 (prot & PAGE_BITS) | PAGE_WRITE);
2351 p1[pindex].flags |= PAGE_WRITE;
2352 /* and since the content will be modified, we must invalidate
2353 the corresponding translated code. */
d720b93d 2354 tb_invalidate_phys_page(address, pc, puc);
9fa3e853
FB
2355#ifdef DEBUG_TB_CHECK
2356 tb_invalidate_check(address);
2357#endif
c8a706fe 2358 mmap_unlock();
9fa3e853
FB
2359 return 1;
2360 }
2361 }
c8a706fe 2362 mmap_unlock();
9fa3e853
FB
2363 return 0;
2364}
2365
6a00d601
FB
2366static inline void tlb_set_dirty(CPUState *env,
2367 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2368{
2369}
9fa3e853
FB
2370#endif /* defined(CONFIG_USER_ONLY) */
2371
e2eef170 2372#if !defined(CONFIG_USER_ONLY)
8da3ff18 2373
c227f099
AL
2374static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2375 ram_addr_t memory, ram_addr_t region_offset);
2376static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2377 ram_addr_t orig_memory, ram_addr_t region_offset);
db7b5426
BS
2378#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2379 need_subpage) \
2380 do { \
2381 if (addr > start_addr) \
2382 start_addr2 = 0; \
2383 else { \
2384 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2385 if (start_addr2 > 0) \
2386 need_subpage = 1; \
2387 } \
2388 \
49e9fba2 2389 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2390 end_addr2 = TARGET_PAGE_SIZE - 1; \
2391 else { \
2392 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2393 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2394 need_subpage = 1; \
2395 } \
2396 } while (0)
2397
8f2498f9
MT
2398/* register physical memory.
2399 For RAM, 'size' must be a multiple of the target page size.
2400 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
8da3ff18
PB
2401 io memory page. The address used when calling the IO function is
2402 the offset from the start of the region, plus region_offset. Both
ccbb4d44 2403 start_addr and region_offset are rounded down to a page boundary
8da3ff18
PB
2404 before calculating this offset. This should not be a problem unless
2405 the low bits of start_addr and region_offset differ. */
c227f099
AL
2406void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2407 ram_addr_t size,
2408 ram_addr_t phys_offset,
2409 ram_addr_t region_offset)
33417e70 2410{
c227f099 2411 target_phys_addr_t addr, end_addr;
92e873b9 2412 PhysPageDesc *p;
9d42037b 2413 CPUState *env;
c227f099 2414 ram_addr_t orig_size = size;
db7b5426 2415 void *subpage;
33417e70 2416
f6f3fbca
MT
2417 cpu_notify_set_memory(start_addr, size, phys_offset);
2418
67c4d23c
PB
2419 if (phys_offset == IO_MEM_UNASSIGNED) {
2420 region_offset = start_addr;
2421 }
8da3ff18 2422 region_offset &= TARGET_PAGE_MASK;
5fd386f6 2423 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
c227f099 2424 end_addr = start_addr + (target_phys_addr_t)size;
49e9fba2 2425 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
db7b5426
BS
2426 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2427 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
c227f099
AL
2428 ram_addr_t orig_memory = p->phys_offset;
2429 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2430 int need_subpage = 0;
2431
2432 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2433 need_subpage);
4254fab8 2434 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426
BS
2435 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2436 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18
PB
2437 &p->phys_offset, orig_memory,
2438 p->region_offset);
db7b5426
BS
2439 } else {
2440 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2441 >> IO_MEM_SHIFT];
2442 }
8da3ff18
PB
2443 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2444 region_offset);
2445 p->region_offset = 0;
db7b5426
BS
2446 } else {
2447 p->phys_offset = phys_offset;
2448 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2449 (phys_offset & IO_MEM_ROMD))
2450 phys_offset += TARGET_PAGE_SIZE;
2451 }
2452 } else {
2453 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2454 p->phys_offset = phys_offset;
8da3ff18 2455 p->region_offset = region_offset;
db7b5426 2456 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
8da3ff18 2457 (phys_offset & IO_MEM_ROMD)) {
db7b5426 2458 phys_offset += TARGET_PAGE_SIZE;
0e8f0967 2459 } else {
c227f099 2460 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2461 int need_subpage = 0;
2462
2463 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2464 end_addr2, need_subpage);
2465
4254fab8 2466 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426 2467 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18 2468 &p->phys_offset, IO_MEM_UNASSIGNED,
67c4d23c 2469 addr & TARGET_PAGE_MASK);
db7b5426 2470 subpage_register(subpage, start_addr2, end_addr2,
8da3ff18
PB
2471 phys_offset, region_offset);
2472 p->region_offset = 0;
db7b5426
BS
2473 }
2474 }
2475 }
8da3ff18 2476 region_offset += TARGET_PAGE_SIZE;
33417e70 2477 }
3b46e624 2478
9d42037b
FB
2479 /* since each CPU stores ram addresses in its TLB cache, we must
2480 reset the modified entries */
2481 /* XXX: slow ! */
2482 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2483 tlb_flush(env, 1);
2484 }
33417e70
FB
2485}
2486
ba863458 2487/* XXX: temporary until new memory mapping API */
c227f099 2488ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
ba863458
FB
2489{
2490 PhysPageDesc *p;
2491
2492 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2493 if (!p)
2494 return IO_MEM_UNASSIGNED;
2495 return p->phys_offset;
2496}
2497
c227f099 2498void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2499{
2500 if (kvm_enabled())
2501 kvm_coalesce_mmio_region(addr, size);
2502}
2503
c227f099 2504void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2505{
2506 if (kvm_enabled())
2507 kvm_uncoalesce_mmio_region(addr, size);
2508}
2509
62a2744c
SY
2510void qemu_flush_coalesced_mmio_buffer(void)
2511{
2512 if (kvm_enabled())
2513 kvm_flush_coalesced_mmio_buffer();
2514}
2515
c227f099 2516ram_addr_t qemu_ram_alloc(ram_addr_t size)
94a6b54f
PB
2517{
2518 RAMBlock *new_block;
2519
94a6b54f
PB
2520 size = TARGET_PAGE_ALIGN(size);
2521 new_block = qemu_malloc(sizeof(*new_block));
2522
6b02494d
AG
2523#if defined(TARGET_S390X) && defined(CONFIG_KVM)
2524 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2525 new_block->host = mmap((void*)0x1000000, size, PROT_EXEC|PROT_READ|PROT_WRITE,
2526 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
2527#else
94a6b54f 2528 new_block->host = qemu_vmalloc(size);
6b02494d 2529#endif
ccb167e9
IE
2530#ifdef MADV_MERGEABLE
2531 madvise(new_block->host, size, MADV_MERGEABLE);
2532#endif
94a6b54f
PB
2533 new_block->offset = last_ram_offset;
2534 new_block->length = size;
2535
2536 new_block->next = ram_blocks;
2537 ram_blocks = new_block;
2538
2539 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2540 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2541 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2542 0xff, size >> TARGET_PAGE_BITS);
2543
2544 last_ram_offset += size;
2545
6f0437e8
JK
2546 if (kvm_enabled())
2547 kvm_setup_guest_memory(new_block->host, size);
2548
94a6b54f
PB
2549 return new_block->offset;
2550}
e9a1ab19 2551
c227f099 2552void qemu_ram_free(ram_addr_t addr)
e9a1ab19 2553{
94a6b54f 2554 /* TODO: implement this. */
e9a1ab19
FB
2555}
2556
dc828ca1 2557/* Return a host pointer to ram allocated with qemu_ram_alloc.
5579c7f3
PB
2558 With the exception of the softmmu code in this file, this should
2559 only be used for local memory (e.g. video ram) that the device owns,
2560 and knows it isn't going to access beyond the end of the block.
2561
2562 It should not be used for general purpose DMA.
2563 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2564 */
c227f099 2565void *qemu_get_ram_ptr(ram_addr_t addr)
dc828ca1 2566{
94a6b54f
PB
2567 RAMBlock *prev;
2568 RAMBlock **prevp;
2569 RAMBlock *block;
2570
94a6b54f
PB
2571 prev = NULL;
2572 prevp = &ram_blocks;
2573 block = ram_blocks;
2574 while (block && (block->offset > addr
2575 || block->offset + block->length <= addr)) {
2576 if (prev)
2577 prevp = &prev->next;
2578 prev = block;
2579 block = block->next;
2580 }
2581 if (!block) {
2582 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2583 abort();
2584 }
2585 /* Move this entry to to start of the list. */
2586 if (prev) {
2587 prev->next = block->next;
2588 block->next = *prevp;
2589 *prevp = block;
2590 }
2591 return block->host + (addr - block->offset);
dc828ca1
PB
2592}
2593
5579c7f3
PB
2594/* Some of the softmmu routines need to translate from a host pointer
2595 (typically a TLB entry) back to a ram offset. */
c227f099 2596ram_addr_t qemu_ram_addr_from_host(void *ptr)
5579c7f3 2597{
94a6b54f 2598 RAMBlock *prev;
94a6b54f
PB
2599 RAMBlock *block;
2600 uint8_t *host = ptr;
2601
94a6b54f 2602 prev = NULL;
94a6b54f
PB
2603 block = ram_blocks;
2604 while (block && (block->host > host
2605 || block->host + block->length <= host)) {
94a6b54f
PB
2606 prev = block;
2607 block = block->next;
2608 }
2609 if (!block) {
2610 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2611 abort();
2612 }
2613 return block->offset + (host - block->host);
5579c7f3
PB
2614}
2615
c227f099 2616static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 2617{
67d3b957 2618#ifdef DEBUG_UNASSIGNED
ab3d1727 2619 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316 2620#endif
faed1c2a 2621#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2622 do_unassigned_access(addr, 0, 0, 0, 1);
2623#endif
2624 return 0;
2625}
2626
c227f099 2627static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
e18231a3
BS
2628{
2629#ifdef DEBUG_UNASSIGNED
2630 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2631#endif
faed1c2a 2632#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2633 do_unassigned_access(addr, 0, 0, 0, 2);
2634#endif
2635 return 0;
2636}
2637
c227f099 2638static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
e18231a3
BS
2639{
2640#ifdef DEBUG_UNASSIGNED
2641 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2642#endif
faed1c2a 2643#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 2644 do_unassigned_access(addr, 0, 0, 0, 4);
67d3b957 2645#endif
33417e70
FB
2646 return 0;
2647}
2648
c227f099 2649static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 2650{
67d3b957 2651#ifdef DEBUG_UNASSIGNED
ab3d1727 2652 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 2653#endif
faed1c2a 2654#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2655 do_unassigned_access(addr, 1, 0, 0, 1);
2656#endif
2657}
2658
c227f099 2659static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
2660{
2661#ifdef DEBUG_UNASSIGNED
2662 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2663#endif
faed1c2a 2664#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2665 do_unassigned_access(addr, 1, 0, 0, 2);
2666#endif
2667}
2668
c227f099 2669static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
2670{
2671#ifdef DEBUG_UNASSIGNED
2672 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2673#endif
faed1c2a 2674#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 2675 do_unassigned_access(addr, 1, 0, 0, 4);
b4f0a316 2676#endif
33417e70
FB
2677}
2678
d60efc6b 2679static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
33417e70 2680 unassigned_mem_readb,
e18231a3
BS
2681 unassigned_mem_readw,
2682 unassigned_mem_readl,
33417e70
FB
2683};
2684
d60efc6b 2685static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
33417e70 2686 unassigned_mem_writeb,
e18231a3
BS
2687 unassigned_mem_writew,
2688 unassigned_mem_writel,
33417e70
FB
2689};
2690
c227f099 2691static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2692 uint32_t val)
9fa3e853 2693{
3a7d929e 2694 int dirty_flags;
3a7d929e
FB
2695 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2696 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2697#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2698 tb_invalidate_phys_page_fast(ram_addr, 1);
2699 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2700#endif
3a7d929e 2701 }
5579c7f3 2702 stb_p(qemu_get_ram_ptr(ram_addr), val);
f23db169
FB
2703 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2704 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2705 /* we remove the notdirty callback only if the code has been
2706 flushed */
2707 if (dirty_flags == 0xff)
2e70f6ef 2708 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2709}
2710
c227f099 2711static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2712 uint32_t val)
9fa3e853 2713{
3a7d929e 2714 int dirty_flags;
3a7d929e
FB
2715 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2716 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2717#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2718 tb_invalidate_phys_page_fast(ram_addr, 2);
2719 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2720#endif
3a7d929e 2721 }
5579c7f3 2722 stw_p(qemu_get_ram_ptr(ram_addr), val);
f23db169
FB
2723 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2724 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2725 /* we remove the notdirty callback only if the code has been
2726 flushed */
2727 if (dirty_flags == 0xff)
2e70f6ef 2728 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2729}
2730
c227f099 2731static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2732 uint32_t val)
9fa3e853 2733{
3a7d929e 2734 int dirty_flags;
3a7d929e
FB
2735 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2736 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2737#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2738 tb_invalidate_phys_page_fast(ram_addr, 4);
2739 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2740#endif
3a7d929e 2741 }
5579c7f3 2742 stl_p(qemu_get_ram_ptr(ram_addr), val);
f23db169
FB
2743 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2744 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2745 /* we remove the notdirty callback only if the code has been
2746 flushed */
2747 if (dirty_flags == 0xff)
2e70f6ef 2748 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2749}
2750
d60efc6b 2751static CPUReadMemoryFunc * const error_mem_read[3] = {
9fa3e853
FB
2752 NULL, /* never used */
2753 NULL, /* never used */
2754 NULL, /* never used */
2755};
2756
d60efc6b 2757static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
1ccde1cb
FB
2758 notdirty_mem_writeb,
2759 notdirty_mem_writew,
2760 notdirty_mem_writel,
2761};
2762
0f459d16 2763/* Generate a debug exception if a watchpoint has been hit. */
b4051334 2764static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16
PB
2765{
2766 CPUState *env = cpu_single_env;
06d55cc1
AL
2767 target_ulong pc, cs_base;
2768 TranslationBlock *tb;
0f459d16 2769 target_ulong vaddr;
a1d1bb31 2770 CPUWatchpoint *wp;
06d55cc1 2771 int cpu_flags;
0f459d16 2772
06d55cc1
AL
2773 if (env->watchpoint_hit) {
2774 /* We re-entered the check after replacing the TB. Now raise
2775 * the debug interrupt so that is will trigger after the
2776 * current instruction. */
2777 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2778 return;
2779 }
2e70f6ef 2780 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
72cf2d4f 2781 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
2782 if ((vaddr == (wp->vaddr & len_mask) ||
2783 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
2784 wp->flags |= BP_WATCHPOINT_HIT;
2785 if (!env->watchpoint_hit) {
2786 env->watchpoint_hit = wp;
2787 tb = tb_find_pc(env->mem_io_pc);
2788 if (!tb) {
2789 cpu_abort(env, "check_watchpoint: could not find TB for "
2790 "pc=%p", (void *)env->mem_io_pc);
2791 }
2792 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
2793 tb_phys_invalidate(tb, -1);
2794 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2795 env->exception_index = EXCP_DEBUG;
2796 } else {
2797 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2798 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2799 }
2800 cpu_resume_from_signal(env, NULL);
06d55cc1 2801 }
6e140f28
AL
2802 } else {
2803 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2804 }
2805 }
2806}
2807
6658ffb8
PB
2808/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2809 so these check for a hit then pass through to the normal out-of-line
2810 phys routines. */
c227f099 2811static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
6658ffb8 2812{
b4051334 2813 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
6658ffb8
PB
2814 return ldub_phys(addr);
2815}
2816
c227f099 2817static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
6658ffb8 2818{
b4051334 2819 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
6658ffb8
PB
2820 return lduw_phys(addr);
2821}
2822
c227f099 2823static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
6658ffb8 2824{
b4051334 2825 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
6658ffb8
PB
2826 return ldl_phys(addr);
2827}
2828
c227f099 2829static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
2830 uint32_t val)
2831{
b4051334 2832 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
6658ffb8
PB
2833 stb_phys(addr, val);
2834}
2835
c227f099 2836static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
2837 uint32_t val)
2838{
b4051334 2839 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
6658ffb8
PB
2840 stw_phys(addr, val);
2841}
2842
c227f099 2843static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
2844 uint32_t val)
2845{
b4051334 2846 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
6658ffb8
PB
2847 stl_phys(addr, val);
2848}
2849
d60efc6b 2850static CPUReadMemoryFunc * const watch_mem_read[3] = {
6658ffb8
PB
2851 watch_mem_readb,
2852 watch_mem_readw,
2853 watch_mem_readl,
2854};
2855
d60efc6b 2856static CPUWriteMemoryFunc * const watch_mem_write[3] = {
6658ffb8
PB
2857 watch_mem_writeb,
2858 watch_mem_writew,
2859 watch_mem_writel,
2860};
6658ffb8 2861
c227f099 2862static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
db7b5426
BS
2863 unsigned int len)
2864{
db7b5426
BS
2865 uint32_t ret;
2866 unsigned int idx;
2867
8da3ff18 2868 idx = SUBPAGE_IDX(addr);
db7b5426
BS
2869#if defined(DEBUG_SUBPAGE)
2870 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2871 mmio, len, addr, idx);
2872#endif
8da3ff18
PB
2873 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
2874 addr + mmio->region_offset[idx][0][len]);
db7b5426
BS
2875
2876 return ret;
2877}
2878
c227f099 2879static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
db7b5426
BS
2880 uint32_t value, unsigned int len)
2881{
db7b5426
BS
2882 unsigned int idx;
2883
8da3ff18 2884 idx = SUBPAGE_IDX(addr);
db7b5426
BS
2885#if defined(DEBUG_SUBPAGE)
2886 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2887 mmio, len, addr, idx, value);
2888#endif
8da3ff18
PB
2889 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
2890 addr + mmio->region_offset[idx][1][len],
2891 value);
db7b5426
BS
2892}
2893
c227f099 2894static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
db7b5426
BS
2895{
2896#if defined(DEBUG_SUBPAGE)
2897 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2898#endif
2899
2900 return subpage_readlen(opaque, addr, 0);
2901}
2902
c227f099 2903static void subpage_writeb (void *opaque, target_phys_addr_t addr,
db7b5426
BS
2904 uint32_t value)
2905{
2906#if defined(DEBUG_SUBPAGE)
2907 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2908#endif
2909 subpage_writelen(opaque, addr, value, 0);
2910}
2911
c227f099 2912static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
db7b5426
BS
2913{
2914#if defined(DEBUG_SUBPAGE)
2915 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2916#endif
2917
2918 return subpage_readlen(opaque, addr, 1);
2919}
2920
c227f099 2921static void subpage_writew (void *opaque, target_phys_addr_t addr,
db7b5426
BS
2922 uint32_t value)
2923{
2924#if defined(DEBUG_SUBPAGE)
2925 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2926#endif
2927 subpage_writelen(opaque, addr, value, 1);
2928}
2929
c227f099 2930static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
db7b5426
BS
2931{
2932#if defined(DEBUG_SUBPAGE)
2933 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2934#endif
2935
2936 return subpage_readlen(opaque, addr, 2);
2937}
2938
2939static void subpage_writel (void *opaque,
c227f099 2940 target_phys_addr_t addr, uint32_t value)
db7b5426
BS
2941{
2942#if defined(DEBUG_SUBPAGE)
2943 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2944#endif
2945 subpage_writelen(opaque, addr, value, 2);
2946}
2947
d60efc6b 2948static CPUReadMemoryFunc * const subpage_read[] = {
db7b5426
BS
2949 &subpage_readb,
2950 &subpage_readw,
2951 &subpage_readl,
2952};
2953
d60efc6b 2954static CPUWriteMemoryFunc * const subpage_write[] = {
db7b5426
BS
2955 &subpage_writeb,
2956 &subpage_writew,
2957 &subpage_writel,
2958};
2959
c227f099
AL
2960static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2961 ram_addr_t memory, ram_addr_t region_offset)
db7b5426
BS
2962{
2963 int idx, eidx;
4254fab8 2964 unsigned int i;
db7b5426
BS
2965
2966 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2967 return -1;
2968 idx = SUBPAGE_IDX(start);
2969 eidx = SUBPAGE_IDX(end);
2970#if defined(DEBUG_SUBPAGE)
0bf9e31a 2971 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
db7b5426
BS
2972 mmio, start, end, idx, eidx, memory);
2973#endif
2974 memory >>= IO_MEM_SHIFT;
2975 for (; idx <= eidx; idx++) {
4254fab8 2976 for (i = 0; i < 4; i++) {
3ee89922
BS
2977 if (io_mem_read[memory][i]) {
2978 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2979 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
8da3ff18 2980 mmio->region_offset[idx][0][i] = region_offset;
3ee89922
BS
2981 }
2982 if (io_mem_write[memory][i]) {
2983 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2984 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
8da3ff18 2985 mmio->region_offset[idx][1][i] = region_offset;
3ee89922 2986 }
4254fab8 2987 }
db7b5426
BS
2988 }
2989
2990 return 0;
2991}
2992
c227f099
AL
2993static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2994 ram_addr_t orig_memory, ram_addr_t region_offset)
db7b5426 2995{
c227f099 2996 subpage_t *mmio;
db7b5426
BS
2997 int subpage_memory;
2998
c227f099 2999 mmio = qemu_mallocz(sizeof(subpage_t));
1eec614b
AL
3000
3001 mmio->base = base;
1eed09cb 3002 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
db7b5426 3003#if defined(DEBUG_SUBPAGE)
1eec614b
AL
3004 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3005 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 3006#endif
1eec614b
AL
3007 *phys = subpage_memory | IO_MEM_SUBPAGE;
3008 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
8da3ff18 3009 region_offset);
db7b5426
BS
3010
3011 return mmio;
3012}
3013
88715657
AL
3014static int get_free_io_mem_idx(void)
3015{
3016 int i;
3017
3018 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3019 if (!io_mem_used[i]) {
3020 io_mem_used[i] = 1;
3021 return i;
3022 }
c6703b47 3023 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
88715657
AL
3024 return -1;
3025}
3026
33417e70
FB
3027/* mem_read and mem_write are arrays of functions containing the
3028 function to access byte (index 0), word (index 1) and dword (index
0b4e6e3e 3029 2). Functions can be omitted with a NULL function pointer.
3ee89922 3030 If io_index is non zero, the corresponding io zone is
4254fab8
BS
3031 modified. If it is zero, a new io zone is allocated. The return
3032 value can be used with cpu_register_physical_memory(). (-1) is
3033 returned if error. */
1eed09cb 3034static int cpu_register_io_memory_fixed(int io_index,
d60efc6b
BS
3035 CPUReadMemoryFunc * const *mem_read,
3036 CPUWriteMemoryFunc * const *mem_write,
1eed09cb 3037 void *opaque)
33417e70 3038{
4254fab8 3039 int i, subwidth = 0;
33417e70
FB
3040
3041 if (io_index <= 0) {
88715657
AL
3042 io_index = get_free_io_mem_idx();
3043 if (io_index == -1)
3044 return io_index;
33417e70 3045 } else {
1eed09cb 3046 io_index >>= IO_MEM_SHIFT;
33417e70
FB
3047 if (io_index >= IO_MEM_NB_ENTRIES)
3048 return -1;
3049 }
b5ff1b31 3050
33417e70 3051 for(i = 0;i < 3; i++) {
4254fab8
BS
3052 if (!mem_read[i] || !mem_write[i])
3053 subwidth = IO_MEM_SUBWIDTH;
33417e70
FB
3054 io_mem_read[io_index][i] = mem_read[i];
3055 io_mem_write[io_index][i] = mem_write[i];
3056 }
a4193c8a 3057 io_mem_opaque[io_index] = opaque;
4254fab8 3058 return (io_index << IO_MEM_SHIFT) | subwidth;
33417e70 3059}
61382a50 3060
d60efc6b
BS
3061int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3062 CPUWriteMemoryFunc * const *mem_write,
1eed09cb
AK
3063 void *opaque)
3064{
3065 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
3066}
3067
88715657
AL
3068void cpu_unregister_io_memory(int io_table_address)
3069{
3070 int i;
3071 int io_index = io_table_address >> IO_MEM_SHIFT;
3072
3073 for (i=0;i < 3; i++) {
3074 io_mem_read[io_index][i] = unassigned_mem_read[i];
3075 io_mem_write[io_index][i] = unassigned_mem_write[i];
3076 }
3077 io_mem_opaque[io_index] = NULL;
3078 io_mem_used[io_index] = 0;
3079}
3080
e9179ce1
AK
3081static void io_mem_init(void)
3082{
3083 int i;
3084
3085 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
3086 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
3087 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
3088 for (i=0; i<5; i++)
3089 io_mem_used[i] = 1;
3090
3091 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3092 watch_mem_write, NULL);
e9179ce1
AK
3093}
3094
e2eef170
PB
3095#endif /* !defined(CONFIG_USER_ONLY) */
3096
13eb76e0
FB
3097/* physical memory access (slow version, mainly for debug) */
3098#if defined(CONFIG_USER_ONLY)
c227f099 3099void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3100 int len, int is_write)
3101{
3102 int l, flags;
3103 target_ulong page;
53a5960a 3104 void * p;
13eb76e0
FB
3105
3106 while (len > 0) {
3107 page = addr & TARGET_PAGE_MASK;
3108 l = (page + TARGET_PAGE_SIZE) - addr;
3109 if (l > len)
3110 l = len;
3111 flags = page_get_flags(page);
3112 if (!(flags & PAGE_VALID))
3113 return;
3114 if (is_write) {
3115 if (!(flags & PAGE_WRITE))
3116 return;
579a97f7 3117 /* XXX: this code should not depend on lock_user */
72fb7daa 3118 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
579a97f7
FB
3119 /* FIXME - should this return an error rather than just fail? */
3120 return;
72fb7daa
AJ
3121 memcpy(p, buf, l);
3122 unlock_user(p, addr, l);
13eb76e0
FB
3123 } else {
3124 if (!(flags & PAGE_READ))
3125 return;
579a97f7 3126 /* XXX: this code should not depend on lock_user */
72fb7daa 3127 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
579a97f7
FB
3128 /* FIXME - should this return an error rather than just fail? */
3129 return;
72fb7daa 3130 memcpy(buf, p, l);
5b257578 3131 unlock_user(p, addr, 0);
13eb76e0
FB
3132 }
3133 len -= l;
3134 buf += l;
3135 addr += l;
3136 }
3137}
8df1cd07 3138
13eb76e0 3139#else
c227f099 3140void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3141 int len, int is_write)
3142{
3143 int l, io_index;
3144 uint8_t *ptr;
3145 uint32_t val;
c227f099 3146 target_phys_addr_t page;
2e12669a 3147 unsigned long pd;
92e873b9 3148 PhysPageDesc *p;
3b46e624 3149
13eb76e0
FB
3150 while (len > 0) {
3151 page = addr & TARGET_PAGE_MASK;
3152 l = (page + TARGET_PAGE_SIZE) - addr;
3153 if (l > len)
3154 l = len;
92e873b9 3155 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
3156 if (!p) {
3157 pd = IO_MEM_UNASSIGNED;
3158 } else {
3159 pd = p->phys_offset;
3160 }
3b46e624 3161
13eb76e0 3162 if (is_write) {
3a7d929e 3163 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
c227f099 3164 target_phys_addr_t addr1 = addr;
13eb76e0 3165 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3166 if (p)
6c2934db 3167 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
6a00d601
FB
3168 /* XXX: could force cpu_single_env to NULL to avoid
3169 potential bugs */
6c2934db 3170 if (l >= 4 && ((addr1 & 3) == 0)) {
1c213d19 3171 /* 32 bit write access */
c27004ec 3172 val = ldl_p(buf);
6c2934db 3173 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
13eb76e0 3174 l = 4;
6c2934db 3175 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1c213d19 3176 /* 16 bit write access */
c27004ec 3177 val = lduw_p(buf);
6c2934db 3178 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3179 l = 2;
3180 } else {
1c213d19 3181 /* 8 bit write access */
c27004ec 3182 val = ldub_p(buf);
6c2934db 3183 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3184 l = 1;
3185 }
3186 } else {
b448f2f3
FB
3187 unsigned long addr1;
3188 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 3189 /* RAM case */
5579c7f3 3190 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 3191 memcpy(ptr, buf, l);
3a7d929e
FB
3192 if (!cpu_physical_memory_is_dirty(addr1)) {
3193 /* invalidate code */
3194 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3195 /* set dirty bit */
5fafdf24 3196 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
f23db169 3197 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3198 }
13eb76e0
FB
3199 }
3200 } else {
5fafdf24 3201 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3202 !(pd & IO_MEM_ROMD)) {
c227f099 3203 target_phys_addr_t addr1 = addr;
13eb76e0
FB
3204 /* I/O case */
3205 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3206 if (p)
6c2934db
AJ
3207 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3208 if (l >= 4 && ((addr1 & 3) == 0)) {
13eb76e0 3209 /* 32 bit read access */
6c2934db 3210 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
c27004ec 3211 stl_p(buf, val);
13eb76e0 3212 l = 4;
6c2934db 3213 } else if (l >= 2 && ((addr1 & 1) == 0)) {
13eb76e0 3214 /* 16 bit read access */
6c2934db 3215 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
c27004ec 3216 stw_p(buf, val);
13eb76e0
FB
3217 l = 2;
3218 } else {
1c213d19 3219 /* 8 bit read access */
6c2934db 3220 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
c27004ec 3221 stb_p(buf, val);
13eb76e0
FB
3222 l = 1;
3223 }
3224 } else {
3225 /* RAM case */
5579c7f3 3226 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
13eb76e0
FB
3227 (addr & ~TARGET_PAGE_MASK);
3228 memcpy(buf, ptr, l);
3229 }
3230 }
3231 len -= l;
3232 buf += l;
3233 addr += l;
3234 }
3235}
8df1cd07 3236
d0ecd2aa 3237/* used for ROM loading : can write in RAM and ROM */
c227f099 3238void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
3239 const uint8_t *buf, int len)
3240{
3241 int l;
3242 uint8_t *ptr;
c227f099 3243 target_phys_addr_t page;
d0ecd2aa
FB
3244 unsigned long pd;
3245 PhysPageDesc *p;
3b46e624 3246
d0ecd2aa
FB
3247 while (len > 0) {
3248 page = addr & TARGET_PAGE_MASK;
3249 l = (page + TARGET_PAGE_SIZE) - addr;
3250 if (l > len)
3251 l = len;
3252 p = phys_page_find(page >> TARGET_PAGE_BITS);
3253 if (!p) {
3254 pd = IO_MEM_UNASSIGNED;
3255 } else {
3256 pd = p->phys_offset;
3257 }
3b46e624 3258
d0ecd2aa 3259 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
3260 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3261 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
3262 /* do nothing */
3263 } else {
3264 unsigned long addr1;
3265 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3266 /* ROM/RAM case */
5579c7f3 3267 ptr = qemu_get_ram_ptr(addr1);
d0ecd2aa
FB
3268 memcpy(ptr, buf, l);
3269 }
3270 len -= l;
3271 buf += l;
3272 addr += l;
3273 }
3274}
3275
6d16c2f8
AL
3276typedef struct {
3277 void *buffer;
c227f099
AL
3278 target_phys_addr_t addr;
3279 target_phys_addr_t len;
6d16c2f8
AL
3280} BounceBuffer;
3281
3282static BounceBuffer bounce;
3283
ba223c29
AL
3284typedef struct MapClient {
3285 void *opaque;
3286 void (*callback)(void *opaque);
72cf2d4f 3287 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3288} MapClient;
3289
72cf2d4f
BS
3290static QLIST_HEAD(map_client_list, MapClient) map_client_list
3291 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29
AL
3292
3293void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3294{
3295 MapClient *client = qemu_malloc(sizeof(*client));
3296
3297 client->opaque = opaque;
3298 client->callback = callback;
72cf2d4f 3299 QLIST_INSERT_HEAD(&map_client_list, client, link);
ba223c29
AL
3300 return client;
3301}
3302
3303void cpu_unregister_map_client(void *_client)
3304{
3305 MapClient *client = (MapClient *)_client;
3306
72cf2d4f 3307 QLIST_REMOVE(client, link);
34d5e948 3308 qemu_free(client);
ba223c29
AL
3309}
3310
3311static void cpu_notify_map_clients(void)
3312{
3313 MapClient *client;
3314
72cf2d4f
BS
3315 while (!QLIST_EMPTY(&map_client_list)) {
3316 client = QLIST_FIRST(&map_client_list);
ba223c29 3317 client->callback(client->opaque);
34d5e948 3318 cpu_unregister_map_client(client);
ba223c29
AL
3319 }
3320}
3321
6d16c2f8
AL
3322/* Map a physical memory region into a host virtual address.
3323 * May map a subset of the requested range, given by and returned in *plen.
3324 * May return NULL if resources needed to perform the mapping are exhausted.
3325 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3326 * Use cpu_register_map_client() to know when retrying the map operation is
3327 * likely to succeed.
6d16c2f8 3328 */
c227f099
AL
3329void *cpu_physical_memory_map(target_phys_addr_t addr,
3330 target_phys_addr_t *plen,
6d16c2f8
AL
3331 int is_write)
3332{
c227f099
AL
3333 target_phys_addr_t len = *plen;
3334 target_phys_addr_t done = 0;
6d16c2f8
AL
3335 int l;
3336 uint8_t *ret = NULL;
3337 uint8_t *ptr;
c227f099 3338 target_phys_addr_t page;
6d16c2f8
AL
3339 unsigned long pd;
3340 PhysPageDesc *p;
3341 unsigned long addr1;
3342
3343 while (len > 0) {
3344 page = addr & TARGET_PAGE_MASK;
3345 l = (page + TARGET_PAGE_SIZE) - addr;
3346 if (l > len)
3347 l = len;
3348 p = phys_page_find(page >> TARGET_PAGE_BITS);
3349 if (!p) {
3350 pd = IO_MEM_UNASSIGNED;
3351 } else {
3352 pd = p->phys_offset;
3353 }
3354
3355 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3356 if (done || bounce.buffer) {
3357 break;
3358 }
3359 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3360 bounce.addr = addr;
3361 bounce.len = l;
3362 if (!is_write) {
3363 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3364 }
3365 ptr = bounce.buffer;
3366 } else {
3367 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3368 ptr = qemu_get_ram_ptr(addr1);
6d16c2f8
AL
3369 }
3370 if (!done) {
3371 ret = ptr;
3372 } else if (ret + done != ptr) {
3373 break;
3374 }
3375
3376 len -= l;
3377 addr += l;
3378 done += l;
3379 }
3380 *plen = done;
3381 return ret;
3382}
3383
3384/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3385 * Will also mark the memory as dirty if is_write == 1. access_len gives
3386 * the amount of memory that was actually read or written by the caller.
3387 */
c227f099
AL
3388void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3389 int is_write, target_phys_addr_t access_len)
6d16c2f8
AL
3390{
3391 if (buffer != bounce.buffer) {
3392 if (is_write) {
c227f099 3393 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
6d16c2f8
AL
3394 while (access_len) {
3395 unsigned l;
3396 l = TARGET_PAGE_SIZE;
3397 if (l > access_len)
3398 l = access_len;
3399 if (!cpu_physical_memory_is_dirty(addr1)) {
3400 /* invalidate code */
3401 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3402 /* set dirty bit */
3403 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3404 (0xff & ~CODE_DIRTY_FLAG);
3405 }
3406 addr1 += l;
3407 access_len -= l;
3408 }
3409 }
3410 return;
3411 }
3412 if (is_write) {
3413 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3414 }
f8a83245 3415 qemu_vfree(bounce.buffer);
6d16c2f8 3416 bounce.buffer = NULL;
ba223c29 3417 cpu_notify_map_clients();
6d16c2f8 3418}
d0ecd2aa 3419
8df1cd07 3420/* warning: addr must be aligned */
c227f099 3421uint32_t ldl_phys(target_phys_addr_t addr)
8df1cd07
FB
3422{
3423 int io_index;
3424 uint8_t *ptr;
3425 uint32_t val;
3426 unsigned long pd;
3427 PhysPageDesc *p;
3428
3429 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3430 if (!p) {
3431 pd = IO_MEM_UNASSIGNED;
3432 } else {
3433 pd = p->phys_offset;
3434 }
3b46e624 3435
5fafdf24 3436 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3437 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
3438 /* I/O case */
3439 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3440 if (p)
3441 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3442 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3443 } else {
3444 /* RAM case */
5579c7f3 3445 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
8df1cd07
FB
3446 (addr & ~TARGET_PAGE_MASK);
3447 val = ldl_p(ptr);
3448 }
3449 return val;
3450}
3451
84b7b8e7 3452/* warning: addr must be aligned */
c227f099 3453uint64_t ldq_phys(target_phys_addr_t addr)
84b7b8e7
FB
3454{
3455 int io_index;
3456 uint8_t *ptr;
3457 uint64_t val;
3458 unsigned long pd;
3459 PhysPageDesc *p;
3460
3461 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3462 if (!p) {
3463 pd = IO_MEM_UNASSIGNED;
3464 } else {
3465 pd = p->phys_offset;
3466 }
3b46e624 3467
2a4188a3
FB
3468 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3469 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
3470 /* I/O case */
3471 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3472 if (p)
3473 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
84b7b8e7
FB
3474#ifdef TARGET_WORDS_BIGENDIAN
3475 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3476 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3477#else
3478 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3479 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3480#endif
3481 } else {
3482 /* RAM case */
5579c7f3 3483 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
84b7b8e7
FB
3484 (addr & ~TARGET_PAGE_MASK);
3485 val = ldq_p(ptr);
3486 }
3487 return val;
3488}
3489
aab33094 3490/* XXX: optimize */
c227f099 3491uint32_t ldub_phys(target_phys_addr_t addr)
aab33094
FB
3492{
3493 uint8_t val;
3494 cpu_physical_memory_read(addr, &val, 1);
3495 return val;
3496}
3497
3498/* XXX: optimize */
c227f099 3499uint32_t lduw_phys(target_phys_addr_t addr)
aab33094
FB
3500{
3501 uint16_t val;
3502 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3503 return tswap16(val);
3504}
3505
8df1cd07
FB
3506/* warning: addr must be aligned. The ram page is not masked as dirty
3507 and the code inside is not invalidated. It is useful if the dirty
3508 bits are used to track modified PTEs */
c227f099 3509void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
3510{
3511 int io_index;
3512 uint8_t *ptr;
3513 unsigned long pd;
3514 PhysPageDesc *p;
3515
3516 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3517 if (!p) {
3518 pd = IO_MEM_UNASSIGNED;
3519 } else {
3520 pd = p->phys_offset;
3521 }
3b46e624 3522
3a7d929e 3523 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3524 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3525 if (p)
3526 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3527 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3528 } else {
74576198 3529 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3530 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3531 stl_p(ptr, val);
74576198
AL
3532
3533 if (unlikely(in_migration)) {
3534 if (!cpu_physical_memory_is_dirty(addr1)) {
3535 /* invalidate code */
3536 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3537 /* set dirty bit */
3538 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3539 (0xff & ~CODE_DIRTY_FLAG);
3540 }
3541 }
8df1cd07
FB
3542 }
3543}
3544
c227f099 3545void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
bc98a7ef
JM
3546{
3547 int io_index;
3548 uint8_t *ptr;
3549 unsigned long pd;
3550 PhysPageDesc *p;
3551
3552 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3553 if (!p) {
3554 pd = IO_MEM_UNASSIGNED;
3555 } else {
3556 pd = p->phys_offset;
3557 }
3b46e624 3558
bc98a7ef
JM
3559 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3560 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3561 if (p)
3562 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
bc98a7ef
JM
3563#ifdef TARGET_WORDS_BIGENDIAN
3564 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3565 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3566#else
3567 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3568 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3569#endif
3570 } else {
5579c7f3 3571 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
3572 (addr & ~TARGET_PAGE_MASK);
3573 stq_p(ptr, val);
3574 }
3575}
3576
8df1cd07 3577/* warning: addr must be aligned */
c227f099 3578void stl_phys(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
3579{
3580 int io_index;
3581 uint8_t *ptr;
3582 unsigned long pd;
3583 PhysPageDesc *p;
3584
3585 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3586 if (!p) {
3587 pd = IO_MEM_UNASSIGNED;
3588 } else {
3589 pd = p->phys_offset;
3590 }
3b46e624 3591
3a7d929e 3592 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3593 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3594 if (p)
3595 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3596 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3597 } else {
3598 unsigned long addr1;
3599 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3600 /* RAM case */
5579c7f3 3601 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3602 stl_p(ptr, val);
3a7d929e
FB
3603 if (!cpu_physical_memory_is_dirty(addr1)) {
3604 /* invalidate code */
3605 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3606 /* set dirty bit */
f23db169
FB
3607 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3608 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3609 }
8df1cd07
FB
3610 }
3611}
3612
aab33094 3613/* XXX: optimize */
c227f099 3614void stb_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
3615{
3616 uint8_t v = val;
3617 cpu_physical_memory_write(addr, &v, 1);
3618}
3619
3620/* XXX: optimize */
c227f099 3621void stw_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
3622{
3623 uint16_t v = tswap16(val);
3624 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3625}
3626
3627/* XXX: optimize */
c227f099 3628void stq_phys(target_phys_addr_t addr, uint64_t val)
aab33094
FB
3629{
3630 val = tswap64(val);
3631 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3632}
3633
13eb76e0
FB
3634#endif
3635
5e2972fd 3636/* virtual memory access for debug (includes writing to ROM) */
5fafdf24 3637int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 3638 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3639{
3640 int l;
c227f099 3641 target_phys_addr_t phys_addr;
9b3c35e0 3642 target_ulong page;
13eb76e0
FB
3643
3644 while (len > 0) {
3645 page = addr & TARGET_PAGE_MASK;
3646 phys_addr = cpu_get_phys_page_debug(env, page);
3647 /* if no physical page mapped, return an error */
3648 if (phys_addr == -1)
3649 return -1;
3650 l = (page + TARGET_PAGE_SIZE) - addr;
3651 if (l > len)
3652 l = len;
5e2972fd
AL
3653 phys_addr += (addr & ~TARGET_PAGE_MASK);
3654#if !defined(CONFIG_USER_ONLY)
3655 if (is_write)
3656 cpu_physical_memory_write_rom(phys_addr, buf, l);
3657 else
3658#endif
3659 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
3660 len -= l;
3661 buf += l;
3662 addr += l;
3663 }
3664 return 0;
3665}
3666
2e70f6ef
PB
3667/* in deterministic execution mode, instructions doing device I/Os
3668 must be at the end of the TB */
3669void cpu_io_recompile(CPUState *env, void *retaddr)
3670{
3671 TranslationBlock *tb;
3672 uint32_t n, cflags;
3673 target_ulong pc, cs_base;
3674 uint64_t flags;
3675
3676 tb = tb_find_pc((unsigned long)retaddr);
3677 if (!tb) {
3678 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3679 retaddr);
3680 }
3681 n = env->icount_decr.u16.low + tb->icount;
3682 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3683 /* Calculate how many instructions had been executed before the fault
bf20dc07 3684 occurred. */
2e70f6ef
PB
3685 n = n - env->icount_decr.u16.low;
3686 /* Generate a new TB ending on the I/O insn. */
3687 n++;
3688 /* On MIPS and SH, delay slot instructions can only be restarted if
3689 they were already the first instruction in the TB. If this is not
bf20dc07 3690 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
3691 branch. */
3692#if defined(TARGET_MIPS)
3693 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3694 env->active_tc.PC -= 4;
3695 env->icount_decr.u16.low++;
3696 env->hflags &= ~MIPS_HFLAG_BMASK;
3697 }
3698#elif defined(TARGET_SH4)
3699 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3700 && n > 1) {
3701 env->pc -= 2;
3702 env->icount_decr.u16.low++;
3703 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3704 }
3705#endif
3706 /* This should never happen. */
3707 if (n > CF_COUNT_MASK)
3708 cpu_abort(env, "TB too big during recompile");
3709
3710 cflags = n | CF_LAST_IO;
3711 pc = tb->pc;
3712 cs_base = tb->cs_base;
3713 flags = tb->flags;
3714 tb_phys_invalidate(tb, -1);
3715 /* FIXME: In theory this could raise an exception. In practice
3716 we have already translated the block once so it's probably ok. */
3717 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 3718 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
3719 the first in the TB) then we end up generating a whole new TB and
3720 repeating the fault, which is horribly inefficient.
3721 Better would be to execute just this insn uncached, or generate a
3722 second new TB. */
3723 cpu_resume_from_signal(env, NULL);
3724}
3725
e3db7226
FB
3726void dump_exec_info(FILE *f,
3727 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3728{
3729 int i, target_code_size, max_target_code_size;
3730 int direct_jmp_count, direct_jmp2_count, cross_page;
3731 TranslationBlock *tb;
3b46e624 3732
e3db7226
FB
3733 target_code_size = 0;
3734 max_target_code_size = 0;
3735 cross_page = 0;
3736 direct_jmp_count = 0;
3737 direct_jmp2_count = 0;
3738 for(i = 0; i < nb_tbs; i++) {
3739 tb = &tbs[i];
3740 target_code_size += tb->size;
3741 if (tb->size > max_target_code_size)
3742 max_target_code_size = tb->size;
3743 if (tb->page_addr[1] != -1)
3744 cross_page++;
3745 if (tb->tb_next_offset[0] != 0xffff) {
3746 direct_jmp_count++;
3747 if (tb->tb_next_offset[1] != 0xffff) {
3748 direct_jmp2_count++;
3749 }
3750 }
3751 }
3752 /* XXX: avoid using doubles ? */
57fec1fe 3753 cpu_fprintf(f, "Translation buffer state:\n");
26a5f13b
FB
3754 cpu_fprintf(f, "gen code size %ld/%ld\n",
3755 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3756 cpu_fprintf(f, "TB count %d/%d\n",
3757 nb_tbs, code_gen_max_blocks);
5fafdf24 3758 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
3759 nb_tbs ? target_code_size / nb_tbs : 0,
3760 max_target_code_size);
5fafdf24 3761 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
3762 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3763 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
3764 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3765 cross_page,
e3db7226
FB
3766 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3767 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 3768 direct_jmp_count,
e3db7226
FB
3769 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3770 direct_jmp2_count,
3771 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 3772 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
3773 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3774 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3775 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 3776 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
3777}
3778
5fafdf24 3779#if !defined(CONFIG_USER_ONLY)
61382a50
FB
3780
3781#define MMUSUFFIX _cmmu
3782#define GETPC() NULL
3783#define env cpu_single_env
b769d8fe 3784#define SOFTMMU_CODE_ACCESS
61382a50
FB
3785
3786#define SHIFT 0
3787#include "softmmu_template.h"
3788
3789#define SHIFT 1
3790#include "softmmu_template.h"
3791
3792#define SHIFT 2
3793#include "softmmu_template.h"
3794
3795#define SHIFT 3
3796#include "softmmu_template.h"
3797
3798#undef env
3799
3800#endif