]> git.proxmox.com Git - qemu.git/blame - exec.c
live migration: Propagate output monitor to callback handler
[qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
d5a8f07c
FB
20#ifdef _WIN32
21#include <windows.h>
22#else
a98d49b1 23#include <sys/types.h>
d5a8f07c
FB
24#include <sys/mman.h>
25#endif
54936004
FB
26#include <stdlib.h>
27#include <stdio.h>
28#include <stdarg.h>
29#include <string.h>
30#include <errno.h>
31#include <unistd.h>
32#include <inttypes.h>
33
6180a181
FB
34#include "cpu.h"
35#include "exec-all.h"
ca10f867 36#include "qemu-common.h"
b67d9a52 37#include "tcg.h"
b3c7724c 38#include "hw/hw.h"
74576198 39#include "osdep.h"
7ba1e619 40#include "kvm.h"
53a5960a
PB
41#if defined(CONFIG_USER_ONLY)
42#include <qemu.h>
43#endif
54936004 44
fd6ce8f6 45//#define DEBUG_TB_INVALIDATE
66e85a21 46//#define DEBUG_FLUSH
9fa3e853 47//#define DEBUG_TLB
67d3b957 48//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
49
50/* make various TB consistency checks */
5fafdf24
TS
51//#define DEBUG_TB_CHECK
52//#define DEBUG_TLB_CHECK
fd6ce8f6 53
1196be37 54//#define DEBUG_IOPORT
db7b5426 55//#define DEBUG_SUBPAGE
1196be37 56
99773bd4
PB
57#if !defined(CONFIG_USER_ONLY)
58/* TB consistency checks only implemented for usermode emulation. */
59#undef DEBUG_TB_CHECK
60#endif
61
9fa3e853
FB
62#define SMC_BITMAP_USE_THRESHOLD 10
63
108c49b8
FB
64#if defined(TARGET_SPARC64)
65#define TARGET_PHYS_ADDR_SPACE_BITS 41
5dcb6b91
BS
66#elif defined(TARGET_SPARC)
67#define TARGET_PHYS_ADDR_SPACE_BITS 36
bedb69ea
JM
68#elif defined(TARGET_ALPHA)
69#define TARGET_PHYS_ADDR_SPACE_BITS 42
70#define TARGET_VIRT_ADDR_SPACE_BITS 42
108c49b8
FB
71#elif defined(TARGET_PPC64)
72#define TARGET_PHYS_ADDR_SPACE_BITS 42
4a1418e0 73#elif defined(TARGET_X86_64)
00f82b8a 74#define TARGET_PHYS_ADDR_SPACE_BITS 42
4a1418e0 75#elif defined(TARGET_I386)
00f82b8a 76#define TARGET_PHYS_ADDR_SPACE_BITS 36
108c49b8 77#else
108c49b8
FB
78#define TARGET_PHYS_ADDR_SPACE_BITS 32
79#endif
80
bdaf78e0 81static TranslationBlock *tbs;
26a5f13b 82int code_gen_max_blocks;
9fa3e853 83TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 84static int nb_tbs;
eb51d102 85/* any access to the tbs or the page table must use this lock */
c227f099 86spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 87
141ac468
BS
88#if defined(__arm__) || defined(__sparc_v9__)
89/* The prologue must be reachable with a direct jump. ARM and Sparc64
90 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
91 section close to code segment. */
92#define code_gen_section \
93 __attribute__((__section__(".gen_code"))) \
94 __attribute__((aligned (32)))
f8e2af11
SW
95#elif defined(_WIN32)
96/* Maximum alignment for Win32 is 16. */
97#define code_gen_section \
98 __attribute__((aligned (16)))
d03d860b
BS
99#else
100#define code_gen_section \
101 __attribute__((aligned (32)))
102#endif
103
104uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
105static uint8_t *code_gen_buffer;
106static unsigned long code_gen_buffer_size;
26a5f13b 107/* threshold to flush the translated code buffer */
bdaf78e0 108static unsigned long code_gen_buffer_max_size;
fd6ce8f6
FB
109uint8_t *code_gen_ptr;
110
e2eef170 111#if !defined(CONFIG_USER_ONLY)
9fa3e853 112int phys_ram_fd;
1ccde1cb 113uint8_t *phys_ram_dirty;
74576198 114static int in_migration;
94a6b54f
PB
115
116typedef struct RAMBlock {
117 uint8_t *host;
c227f099
AL
118 ram_addr_t offset;
119 ram_addr_t length;
94a6b54f
PB
120 struct RAMBlock *next;
121} RAMBlock;
122
123static RAMBlock *ram_blocks;
124/* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
ccbb4d44 125 then we can no longer assume contiguous ram offsets, and external uses
94a6b54f 126 of this variable will break. */
c227f099 127ram_addr_t last_ram_offset;
e2eef170 128#endif
9fa3e853 129
6a00d601
FB
130CPUState *first_cpu;
131/* current CPU in the current thread. It is only valid inside
132 cpu_exec() */
5fafdf24 133CPUState *cpu_single_env;
2e70f6ef 134/* 0 = Do not count executed instructions.
bf20dc07 135 1 = Precise instruction counting.
2e70f6ef
PB
136 2 = Adaptive rate instruction counting. */
137int use_icount = 0;
138/* Current instruction counter. While executing translated code this may
139 include some instructions that have not yet been executed. */
140int64_t qemu_icount;
6a00d601 141
54936004 142typedef struct PageDesc {
92e873b9 143 /* list of TBs intersecting this ram page */
fd6ce8f6 144 TranslationBlock *first_tb;
9fa3e853
FB
145 /* in order to optimize self modifying code, we count the number
146 of lookups we do to a given page to use a bitmap */
147 unsigned int code_write_count;
148 uint8_t *code_bitmap;
149#if defined(CONFIG_USER_ONLY)
150 unsigned long flags;
151#endif
54936004
FB
152} PageDesc;
153
92e873b9 154typedef struct PhysPageDesc {
0f459d16 155 /* offset in host memory of the page + io_index in the low bits */
c227f099
AL
156 ram_addr_t phys_offset;
157 ram_addr_t region_offset;
92e873b9
FB
158} PhysPageDesc;
159
54936004 160#define L2_BITS 10
bedb69ea
JM
161#if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
162/* XXX: this is a temporary hack for alpha target.
163 * In the future, this is to be replaced by a multi-level table
164 * to actually be able to handle the complete 64 bits address space.
165 */
166#define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
167#else
03875444 168#define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
bedb69ea 169#endif
54936004
FB
170
171#define L1_SIZE (1 << L1_BITS)
172#define L2_SIZE (1 << L2_BITS)
173
83fb7adf
FB
174unsigned long qemu_real_host_page_size;
175unsigned long qemu_host_page_bits;
176unsigned long qemu_host_page_size;
177unsigned long qemu_host_page_mask;
54936004 178
92e873b9 179/* XXX: for system emulation, it could just be an array */
54936004 180static PageDesc *l1_map[L1_SIZE];
bdaf78e0 181static PhysPageDesc **l1_phys_map;
54936004 182
e2eef170
PB
183#if !defined(CONFIG_USER_ONLY)
184static void io_mem_init(void);
185
33417e70 186/* io memory support */
33417e70
FB
187CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
188CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 189void *io_mem_opaque[IO_MEM_NB_ENTRIES];
511d2b14 190static char io_mem_used[IO_MEM_NB_ENTRIES];
6658ffb8
PB
191static int io_mem_watch;
192#endif
33417e70 193
34865134 194/* log support */
d9b630fd 195static const char *logfilename = "/tmp/qemu.log";
34865134
FB
196FILE *logfile;
197int loglevel;
e735b91c 198static int log_append = 0;
34865134 199
e3db7226
FB
200/* statistics */
201static int tlb_flush_count;
202static int tb_flush_count;
203static int tb_phys_invalidate_count;
204
db7b5426 205#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
c227f099
AL
206typedef struct subpage_t {
207 target_phys_addr_t base;
d60efc6b
BS
208 CPUReadMemoryFunc * const *mem_read[TARGET_PAGE_SIZE][4];
209 CPUWriteMemoryFunc * const *mem_write[TARGET_PAGE_SIZE][4];
3ee89922 210 void *opaque[TARGET_PAGE_SIZE][2][4];
c227f099
AL
211 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
212} subpage_t;
db7b5426 213
7cb69cae
FB
214#ifdef _WIN32
215static void map_exec(void *addr, long size)
216{
217 DWORD old_protect;
218 VirtualProtect(addr, size,
219 PAGE_EXECUTE_READWRITE, &old_protect);
220
221}
222#else
223static void map_exec(void *addr, long size)
224{
4369415f 225 unsigned long start, end, page_size;
7cb69cae 226
4369415f 227 page_size = getpagesize();
7cb69cae 228 start = (unsigned long)addr;
4369415f 229 start &= ~(page_size - 1);
7cb69cae
FB
230
231 end = (unsigned long)addr + size;
4369415f
FB
232 end += page_size - 1;
233 end &= ~(page_size - 1);
7cb69cae
FB
234
235 mprotect((void *)start, end - start,
236 PROT_READ | PROT_WRITE | PROT_EXEC);
237}
238#endif
239
b346ff46 240static void page_init(void)
54936004 241{
83fb7adf 242 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 243 TARGET_PAGE_SIZE */
c2b48b69
AL
244#ifdef _WIN32
245 {
246 SYSTEM_INFO system_info;
247
248 GetSystemInfo(&system_info);
249 qemu_real_host_page_size = system_info.dwPageSize;
250 }
251#else
252 qemu_real_host_page_size = getpagesize();
253#endif
83fb7adf
FB
254 if (qemu_host_page_size == 0)
255 qemu_host_page_size = qemu_real_host_page_size;
256 if (qemu_host_page_size < TARGET_PAGE_SIZE)
257 qemu_host_page_size = TARGET_PAGE_SIZE;
258 qemu_host_page_bits = 0;
259 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
260 qemu_host_page_bits++;
261 qemu_host_page_mask = ~(qemu_host_page_size - 1);
108c49b8
FB
262 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
263 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
50a9569b
AZ
264
265#if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
266 {
267 long long startaddr, endaddr;
268 FILE *f;
269 int n;
270
c8a706fe 271 mmap_lock();
0776590d 272 last_brk = (unsigned long)sbrk(0);
50a9569b
AZ
273 f = fopen("/proc/self/maps", "r");
274 if (f) {
275 do {
276 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
277 if (n == 2) {
e0b8d65a
BS
278 startaddr = MIN(startaddr,
279 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
280 endaddr = MIN(endaddr,
281 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
b5fc909e 282 page_set_flags(startaddr & TARGET_PAGE_MASK,
50a9569b
AZ
283 TARGET_PAGE_ALIGN(endaddr),
284 PAGE_RESERVED);
285 }
286 } while (!feof(f));
287 fclose(f);
288 }
c8a706fe 289 mmap_unlock();
50a9569b
AZ
290 }
291#endif
54936004
FB
292}
293
434929bf 294static inline PageDesc **page_l1_map(target_ulong index)
54936004 295{
17e2377a
PB
296#if TARGET_LONG_BITS > 32
297 /* Host memory outside guest VM. For 32-bit targets we have already
298 excluded high addresses. */
d8173e0f 299 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
17e2377a
PB
300 return NULL;
301#endif
434929bf
AL
302 return &l1_map[index >> L2_BITS];
303}
304
305static inline PageDesc *page_find_alloc(target_ulong index)
306{
307 PageDesc **lp, *p;
308 lp = page_l1_map(index);
309 if (!lp)
310 return NULL;
311
54936004
FB
312 p = *lp;
313 if (!p) {
314 /* allocate if not found */
17e2377a 315#if defined(CONFIG_USER_ONLY)
17e2377a
PB
316 size_t len = sizeof(PageDesc) * L2_SIZE;
317 /* Don't use qemu_malloc because it may recurse. */
660f11be 318 p = mmap(NULL, len, PROT_READ | PROT_WRITE,
17e2377a 319 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
54936004 320 *lp = p;
fb1c2cd7
AJ
321 if (h2g_valid(p)) {
322 unsigned long addr = h2g(p);
17e2377a
PB
323 page_set_flags(addr & TARGET_PAGE_MASK,
324 TARGET_PAGE_ALIGN(addr + len),
325 PAGE_RESERVED);
326 }
327#else
328 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
329 *lp = p;
330#endif
54936004
FB
331 }
332 return p + (index & (L2_SIZE - 1));
333}
334
00f82b8a 335static inline PageDesc *page_find(target_ulong index)
54936004 336{
434929bf
AL
337 PageDesc **lp, *p;
338 lp = page_l1_map(index);
339 if (!lp)
340 return NULL;
54936004 341
434929bf 342 p = *lp;
660f11be
BS
343 if (!p) {
344 return NULL;
345 }
fd6ce8f6
FB
346 return p + (index & (L2_SIZE - 1));
347}
348
c227f099 349static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 350{
108c49b8 351 void **lp, **p;
e3f4e2a4 352 PhysPageDesc *pd;
92e873b9 353
108c49b8
FB
354 p = (void **)l1_phys_map;
355#if TARGET_PHYS_ADDR_SPACE_BITS > 32
356
357#if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
358#error unsupported TARGET_PHYS_ADDR_SPACE_BITS
359#endif
360 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
92e873b9
FB
361 p = *lp;
362 if (!p) {
363 /* allocate if not found */
108c49b8
FB
364 if (!alloc)
365 return NULL;
366 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
367 memset(p, 0, sizeof(void *) * L1_SIZE);
368 *lp = p;
369 }
370#endif
371 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
e3f4e2a4
PB
372 pd = *lp;
373 if (!pd) {
374 int i;
108c49b8
FB
375 /* allocate if not found */
376 if (!alloc)
377 return NULL;
e3f4e2a4
PB
378 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
379 *lp = pd;
67c4d23c 380 for (i = 0; i < L2_SIZE; i++) {
e3f4e2a4 381 pd[i].phys_offset = IO_MEM_UNASSIGNED;
67c4d23c
PB
382 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
383 }
92e873b9 384 }
e3f4e2a4 385 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
92e873b9
FB
386}
387
c227f099 388static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 389{
108c49b8 390 return phys_page_find_alloc(index, 0);
92e873b9
FB
391}
392
9fa3e853 393#if !defined(CONFIG_USER_ONLY)
c227f099
AL
394static void tlb_protect_code(ram_addr_t ram_addr);
395static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 396 target_ulong vaddr);
c8a706fe
PB
397#define mmap_lock() do { } while(0)
398#define mmap_unlock() do { } while(0)
9fa3e853 399#endif
fd6ce8f6 400
4369415f
FB
401#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
402
403#if defined(CONFIG_USER_ONLY)
ccbb4d44 404/* Currently it is not recommended to allocate big chunks of data in
4369415f
FB
405 user mode. It will change when a dedicated libc will be used */
406#define USE_STATIC_CODE_GEN_BUFFER
407#endif
408
409#ifdef USE_STATIC_CODE_GEN_BUFFER
410static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
411#endif
412
8fcd3692 413static void code_gen_alloc(unsigned long tb_size)
26a5f13b 414{
4369415f
FB
415#ifdef USE_STATIC_CODE_GEN_BUFFER
416 code_gen_buffer = static_code_gen_buffer;
417 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
418 map_exec(code_gen_buffer, code_gen_buffer_size);
419#else
26a5f13b
FB
420 code_gen_buffer_size = tb_size;
421 if (code_gen_buffer_size == 0) {
4369415f
FB
422#if defined(CONFIG_USER_ONLY)
423 /* in user mode, phys_ram_size is not meaningful */
424 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
425#else
ccbb4d44 426 /* XXX: needs adjustments */
94a6b54f 427 code_gen_buffer_size = (unsigned long)(ram_size / 4);
4369415f 428#endif
26a5f13b
FB
429 }
430 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
431 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
432 /* The code gen buffer location may have constraints depending on
433 the host cpu and OS */
434#if defined(__linux__)
435 {
436 int flags;
141ac468
BS
437 void *start = NULL;
438
26a5f13b
FB
439 flags = MAP_PRIVATE | MAP_ANONYMOUS;
440#if defined(__x86_64__)
441 flags |= MAP_32BIT;
442 /* Cannot map more than that */
443 if (code_gen_buffer_size > (800 * 1024 * 1024))
444 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
445#elif defined(__sparc_v9__)
446 // Map the buffer below 2G, so we can use direct calls and branches
447 flags |= MAP_FIXED;
448 start = (void *) 0x60000000UL;
449 if (code_gen_buffer_size > (512 * 1024 * 1024))
450 code_gen_buffer_size = (512 * 1024 * 1024);
1cb0661e 451#elif defined(__arm__)
63d41246 452 /* Map the buffer below 32M, so we can use direct calls and branches */
1cb0661e
AZ
453 flags |= MAP_FIXED;
454 start = (void *) 0x01000000UL;
455 if (code_gen_buffer_size > 16 * 1024 * 1024)
456 code_gen_buffer_size = 16 * 1024 * 1024;
26a5f13b 457#endif
141ac468
BS
458 code_gen_buffer = mmap(start, code_gen_buffer_size,
459 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
460 flags, -1, 0);
461 if (code_gen_buffer == MAP_FAILED) {
462 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
463 exit(1);
464 }
465 }
a167ba50 466#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
06e67a82
AL
467 {
468 int flags;
469 void *addr = NULL;
470 flags = MAP_PRIVATE | MAP_ANONYMOUS;
471#if defined(__x86_64__)
472 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
473 * 0x40000000 is free */
474 flags |= MAP_FIXED;
475 addr = (void *)0x40000000;
476 /* Cannot map more than that */
477 if (code_gen_buffer_size > (800 * 1024 * 1024))
478 code_gen_buffer_size = (800 * 1024 * 1024);
479#endif
480 code_gen_buffer = mmap(addr, code_gen_buffer_size,
481 PROT_WRITE | PROT_READ | PROT_EXEC,
482 flags, -1, 0);
483 if (code_gen_buffer == MAP_FAILED) {
484 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
485 exit(1);
486 }
487 }
26a5f13b
FB
488#else
489 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
26a5f13b
FB
490 map_exec(code_gen_buffer, code_gen_buffer_size);
491#endif
4369415f 492#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b
FB
493 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
494 code_gen_buffer_max_size = code_gen_buffer_size -
495 code_gen_max_block_size();
496 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
497 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
498}
499
500/* Must be called before using the QEMU cpus. 'tb_size' is the size
501 (in bytes) allocated to the translation buffer. Zero means default
502 size. */
503void cpu_exec_init_all(unsigned long tb_size)
504{
26a5f13b
FB
505 cpu_gen_init();
506 code_gen_alloc(tb_size);
507 code_gen_ptr = code_gen_buffer;
4369415f 508 page_init();
e2eef170 509#if !defined(CONFIG_USER_ONLY)
26a5f13b 510 io_mem_init();
e2eef170 511#endif
26a5f13b
FB
512}
513
9656f324
PB
514#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
515
d4bfa4d7 516static void cpu_common_pre_save(void *opaque)
9656f324 517{
d4bfa4d7 518 CPUState *env = opaque;
9656f324 519
4c0960c0 520 cpu_synchronize_state(env);
9656f324
PB
521}
522
e7f4eff7 523static int cpu_common_pre_load(void *opaque)
9656f324
PB
524{
525 CPUState *env = opaque;
526
4c0960c0 527 cpu_synchronize_state(env);
e7f4eff7
JQ
528 return 0;
529}
530
e59fb374 531static int cpu_common_post_load(void *opaque, int version_id)
e7f4eff7
JQ
532{
533 CPUState *env = opaque;
9656f324 534
3098dba0
AJ
535 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
536 version_id is increased. */
537 env->interrupt_request &= ~0x01;
9656f324
PB
538 tlb_flush(env, 1);
539
540 return 0;
541}
e7f4eff7
JQ
542
543static const VMStateDescription vmstate_cpu_common = {
544 .name = "cpu_common",
545 .version_id = 1,
546 .minimum_version_id = 1,
547 .minimum_version_id_old = 1,
548 .pre_save = cpu_common_pre_save,
549 .pre_load = cpu_common_pre_load,
550 .post_load = cpu_common_post_load,
551 .fields = (VMStateField []) {
552 VMSTATE_UINT32(halted, CPUState),
553 VMSTATE_UINT32(interrupt_request, CPUState),
554 VMSTATE_END_OF_LIST()
555 }
556};
9656f324
PB
557#endif
558
950f1472
GC
559CPUState *qemu_get_cpu(int cpu)
560{
561 CPUState *env = first_cpu;
562
563 while (env) {
564 if (env->cpu_index == cpu)
565 break;
566 env = env->next_cpu;
567 }
568
569 return env;
570}
571
6a00d601 572void cpu_exec_init(CPUState *env)
fd6ce8f6 573{
6a00d601
FB
574 CPUState **penv;
575 int cpu_index;
576
c2764719
PB
577#if defined(CONFIG_USER_ONLY)
578 cpu_list_lock();
579#endif
6a00d601
FB
580 env->next_cpu = NULL;
581 penv = &first_cpu;
582 cpu_index = 0;
583 while (*penv != NULL) {
1e9fa730 584 penv = &(*penv)->next_cpu;
6a00d601
FB
585 cpu_index++;
586 }
587 env->cpu_index = cpu_index;
268a362c 588 env->numa_node = 0;
72cf2d4f
BS
589 QTAILQ_INIT(&env->breakpoints);
590 QTAILQ_INIT(&env->watchpoints);
6a00d601 591 *penv = env;
c2764719
PB
592#if defined(CONFIG_USER_ONLY)
593 cpu_list_unlock();
594#endif
b3c7724c 595#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
e7f4eff7 596 vmstate_register(cpu_index, &vmstate_cpu_common, env);
b3c7724c
PB
597 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
598 cpu_save, cpu_load, env);
599#endif
fd6ce8f6
FB
600}
601
9fa3e853
FB
602static inline void invalidate_page_bitmap(PageDesc *p)
603{
604 if (p->code_bitmap) {
59817ccb 605 qemu_free(p->code_bitmap);
9fa3e853
FB
606 p->code_bitmap = NULL;
607 }
608 p->code_write_count = 0;
609}
610
fd6ce8f6
FB
611/* set to NULL all the 'first_tb' fields in all PageDescs */
612static void page_flush_tb(void)
613{
614 int i, j;
615 PageDesc *p;
616
617 for(i = 0; i < L1_SIZE; i++) {
618 p = l1_map[i];
619 if (p) {
9fa3e853
FB
620 for(j = 0; j < L2_SIZE; j++) {
621 p->first_tb = NULL;
622 invalidate_page_bitmap(p);
623 p++;
624 }
fd6ce8f6
FB
625 }
626 }
627}
628
629/* flush all the translation blocks */
d4e8164f 630/* XXX: tb_flush is currently not thread safe */
6a00d601 631void tb_flush(CPUState *env1)
fd6ce8f6 632{
6a00d601 633 CPUState *env;
0124311e 634#if defined(DEBUG_FLUSH)
ab3d1727
BS
635 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
636 (unsigned long)(code_gen_ptr - code_gen_buffer),
637 nb_tbs, nb_tbs > 0 ?
638 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 639#endif
26a5f13b 640 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
641 cpu_abort(env1, "Internal error: code buffer overflow\n");
642
fd6ce8f6 643 nb_tbs = 0;
3b46e624 644
6a00d601
FB
645 for(env = first_cpu; env != NULL; env = env->next_cpu) {
646 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
647 }
9fa3e853 648
8a8a608f 649 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 650 page_flush_tb();
9fa3e853 651
fd6ce8f6 652 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
653 /* XXX: flush processor icache at this point if cache flush is
654 expensive */
e3db7226 655 tb_flush_count++;
fd6ce8f6
FB
656}
657
658#ifdef DEBUG_TB_CHECK
659
bc98a7ef 660static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
661{
662 TranslationBlock *tb;
663 int i;
664 address &= TARGET_PAGE_MASK;
99773bd4
PB
665 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
666 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
667 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
668 address >= tb->pc + tb->size)) {
0bf9e31a
BS
669 printf("ERROR invalidate: address=" TARGET_FMT_lx
670 " PC=%08lx size=%04x\n",
99773bd4 671 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
672 }
673 }
674 }
675}
676
677/* verify that all the pages have correct rights for code */
678static void tb_page_check(void)
679{
680 TranslationBlock *tb;
681 int i, flags1, flags2;
3b46e624 682
99773bd4
PB
683 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
684 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
685 flags1 = page_get_flags(tb->pc);
686 flags2 = page_get_flags(tb->pc + tb->size - 1);
687 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
688 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 689 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
690 }
691 }
692 }
693}
694
695#endif
696
697/* invalidate one TB */
698static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
699 int next_offset)
700{
701 TranslationBlock *tb1;
702 for(;;) {
703 tb1 = *ptb;
704 if (tb1 == tb) {
705 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
706 break;
707 }
708 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
709 }
710}
711
9fa3e853
FB
712static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
713{
714 TranslationBlock *tb1;
715 unsigned int n1;
716
717 for(;;) {
718 tb1 = *ptb;
719 n1 = (long)tb1 & 3;
720 tb1 = (TranslationBlock *)((long)tb1 & ~3);
721 if (tb1 == tb) {
722 *ptb = tb1->page_next[n1];
723 break;
724 }
725 ptb = &tb1->page_next[n1];
726 }
727}
728
d4e8164f
FB
729static inline void tb_jmp_remove(TranslationBlock *tb, int n)
730{
731 TranslationBlock *tb1, **ptb;
732 unsigned int n1;
733
734 ptb = &tb->jmp_next[n];
735 tb1 = *ptb;
736 if (tb1) {
737 /* find tb(n) in circular list */
738 for(;;) {
739 tb1 = *ptb;
740 n1 = (long)tb1 & 3;
741 tb1 = (TranslationBlock *)((long)tb1 & ~3);
742 if (n1 == n && tb1 == tb)
743 break;
744 if (n1 == 2) {
745 ptb = &tb1->jmp_first;
746 } else {
747 ptb = &tb1->jmp_next[n1];
748 }
749 }
750 /* now we can suppress tb(n) from the list */
751 *ptb = tb->jmp_next[n];
752
753 tb->jmp_next[n] = NULL;
754 }
755}
756
757/* reset the jump entry 'n' of a TB so that it is not chained to
758 another TB */
759static inline void tb_reset_jump(TranslationBlock *tb, int n)
760{
761 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
762}
763
2e70f6ef 764void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
fd6ce8f6 765{
6a00d601 766 CPUState *env;
8a40a180 767 PageDesc *p;
d4e8164f 768 unsigned int h, n1;
c227f099 769 target_phys_addr_t phys_pc;
8a40a180 770 TranslationBlock *tb1, *tb2;
3b46e624 771
8a40a180
FB
772 /* remove the TB from the hash list */
773 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
774 h = tb_phys_hash_func(phys_pc);
5fafdf24 775 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
776 offsetof(TranslationBlock, phys_hash_next));
777
778 /* remove the TB from the page list */
779 if (tb->page_addr[0] != page_addr) {
780 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
781 tb_page_remove(&p->first_tb, tb);
782 invalidate_page_bitmap(p);
783 }
784 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
785 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
786 tb_page_remove(&p->first_tb, tb);
787 invalidate_page_bitmap(p);
788 }
789
36bdbe54 790 tb_invalidated_flag = 1;
59817ccb 791
fd6ce8f6 792 /* remove the TB from the hash list */
8a40a180 793 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
794 for(env = first_cpu; env != NULL; env = env->next_cpu) {
795 if (env->tb_jmp_cache[h] == tb)
796 env->tb_jmp_cache[h] = NULL;
797 }
d4e8164f
FB
798
799 /* suppress this TB from the two jump lists */
800 tb_jmp_remove(tb, 0);
801 tb_jmp_remove(tb, 1);
802
803 /* suppress any remaining jumps to this TB */
804 tb1 = tb->jmp_first;
805 for(;;) {
806 n1 = (long)tb1 & 3;
807 if (n1 == 2)
808 break;
809 tb1 = (TranslationBlock *)((long)tb1 & ~3);
810 tb2 = tb1->jmp_next[n1];
811 tb_reset_jump(tb1, n1);
812 tb1->jmp_next[n1] = NULL;
813 tb1 = tb2;
814 }
815 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 816
e3db7226 817 tb_phys_invalidate_count++;
9fa3e853
FB
818}
819
820static inline void set_bits(uint8_t *tab, int start, int len)
821{
822 int end, mask, end1;
823
824 end = start + len;
825 tab += start >> 3;
826 mask = 0xff << (start & 7);
827 if ((start & ~7) == (end & ~7)) {
828 if (start < end) {
829 mask &= ~(0xff << (end & 7));
830 *tab |= mask;
831 }
832 } else {
833 *tab++ |= mask;
834 start = (start + 8) & ~7;
835 end1 = end & ~7;
836 while (start < end1) {
837 *tab++ = 0xff;
838 start += 8;
839 }
840 if (start < end) {
841 mask = ~(0xff << (end & 7));
842 *tab |= mask;
843 }
844 }
845}
846
847static void build_page_bitmap(PageDesc *p)
848{
849 int n, tb_start, tb_end;
850 TranslationBlock *tb;
3b46e624 851
b2a7081a 852 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
853
854 tb = p->first_tb;
855 while (tb != NULL) {
856 n = (long)tb & 3;
857 tb = (TranslationBlock *)((long)tb & ~3);
858 /* NOTE: this is subtle as a TB may span two physical pages */
859 if (n == 0) {
860 /* NOTE: tb_end may be after the end of the page, but
861 it is not a problem */
862 tb_start = tb->pc & ~TARGET_PAGE_MASK;
863 tb_end = tb_start + tb->size;
864 if (tb_end > TARGET_PAGE_SIZE)
865 tb_end = TARGET_PAGE_SIZE;
866 } else {
867 tb_start = 0;
868 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
869 }
870 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
871 tb = tb->page_next[n];
872 }
873}
874
2e70f6ef
PB
875TranslationBlock *tb_gen_code(CPUState *env,
876 target_ulong pc, target_ulong cs_base,
877 int flags, int cflags)
d720b93d
FB
878{
879 TranslationBlock *tb;
880 uint8_t *tc_ptr;
881 target_ulong phys_pc, phys_page2, virt_page2;
882 int code_gen_size;
883
c27004ec
FB
884 phys_pc = get_phys_addr_code(env, pc);
885 tb = tb_alloc(pc);
d720b93d
FB
886 if (!tb) {
887 /* flush must be done */
888 tb_flush(env);
889 /* cannot fail at this point */
c27004ec 890 tb = tb_alloc(pc);
2e70f6ef
PB
891 /* Don't forget to invalidate previous TB info. */
892 tb_invalidated_flag = 1;
d720b93d
FB
893 }
894 tc_ptr = code_gen_ptr;
895 tb->tc_ptr = tc_ptr;
896 tb->cs_base = cs_base;
897 tb->flags = flags;
898 tb->cflags = cflags;
d07bde88 899 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 900 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 901
d720b93d 902 /* check next page if needed */
c27004ec 903 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 904 phys_page2 = -1;
c27004ec 905 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
d720b93d
FB
906 phys_page2 = get_phys_addr_code(env, virt_page2);
907 }
908 tb_link_phys(tb, phys_pc, phys_page2);
2e70f6ef 909 return tb;
d720b93d 910}
3b46e624 911
9fa3e853
FB
912/* invalidate all TBs which intersect with the target physical page
913 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
914 the same physical page. 'is_cpu_write_access' should be true if called
915 from a real cpu write access: the virtual CPU will exit the current
916 TB if code is modified inside this TB. */
c227f099 917void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
d720b93d
FB
918 int is_cpu_write_access)
919{
6b917547 920 TranslationBlock *tb, *tb_next, *saved_tb;
d720b93d 921 CPUState *env = cpu_single_env;
9fa3e853 922 target_ulong tb_start, tb_end;
6b917547
AL
923 PageDesc *p;
924 int n;
925#ifdef TARGET_HAS_PRECISE_SMC
926 int current_tb_not_found = is_cpu_write_access;
927 TranslationBlock *current_tb = NULL;
928 int current_tb_modified = 0;
929 target_ulong current_pc = 0;
930 target_ulong current_cs_base = 0;
931 int current_flags = 0;
932#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
933
934 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 935 if (!p)
9fa3e853 936 return;
5fafdf24 937 if (!p->code_bitmap &&
d720b93d
FB
938 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
939 is_cpu_write_access) {
9fa3e853
FB
940 /* build code bitmap */
941 build_page_bitmap(p);
942 }
943
944 /* we remove all the TBs in the range [start, end[ */
945 /* XXX: see if in some cases it could be faster to invalidate all the code */
946 tb = p->first_tb;
947 while (tb != NULL) {
948 n = (long)tb & 3;
949 tb = (TranslationBlock *)((long)tb & ~3);
950 tb_next = tb->page_next[n];
951 /* NOTE: this is subtle as a TB may span two physical pages */
952 if (n == 0) {
953 /* NOTE: tb_end may be after the end of the page, but
954 it is not a problem */
955 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
956 tb_end = tb_start + tb->size;
957 } else {
958 tb_start = tb->page_addr[1];
959 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
960 }
961 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
962#ifdef TARGET_HAS_PRECISE_SMC
963 if (current_tb_not_found) {
964 current_tb_not_found = 0;
965 current_tb = NULL;
2e70f6ef 966 if (env->mem_io_pc) {
d720b93d 967 /* now we have a real cpu fault */
2e70f6ef 968 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
969 }
970 }
971 if (current_tb == tb &&
2e70f6ef 972 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
973 /* If we are modifying the current TB, we must stop
974 its execution. We could be more precise by checking
975 that the modification is after the current PC, but it
976 would require a specialized function to partially
977 restore the CPU state */
3b46e624 978
d720b93d 979 current_tb_modified = 1;
5fafdf24 980 cpu_restore_state(current_tb, env,
2e70f6ef 981 env->mem_io_pc, NULL);
6b917547
AL
982 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
983 &current_flags);
d720b93d
FB
984 }
985#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
986 /* we need to do that to handle the case where a signal
987 occurs while doing tb_phys_invalidate() */
988 saved_tb = NULL;
989 if (env) {
990 saved_tb = env->current_tb;
991 env->current_tb = NULL;
992 }
9fa3e853 993 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
994 if (env) {
995 env->current_tb = saved_tb;
996 if (env->interrupt_request && env->current_tb)
997 cpu_interrupt(env, env->interrupt_request);
998 }
9fa3e853
FB
999 }
1000 tb = tb_next;
1001 }
1002#if !defined(CONFIG_USER_ONLY)
1003 /* if no code remaining, no need to continue to use slow writes */
1004 if (!p->first_tb) {
1005 invalidate_page_bitmap(p);
d720b93d 1006 if (is_cpu_write_access) {
2e70f6ef 1007 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
1008 }
1009 }
1010#endif
1011#ifdef TARGET_HAS_PRECISE_SMC
1012 if (current_tb_modified) {
1013 /* we generate a block containing just the instruction
1014 modifying the memory. It will ensure that it cannot modify
1015 itself */
ea1c1802 1016 env->current_tb = NULL;
2e70f6ef 1017 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 1018 cpu_resume_from_signal(env, NULL);
9fa3e853 1019 }
fd6ce8f6 1020#endif
9fa3e853 1021}
fd6ce8f6 1022
9fa3e853 1023/* len must be <= 8 and start must be a multiple of len */
c227f099 1024static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
9fa3e853
FB
1025{
1026 PageDesc *p;
1027 int offset, b;
59817ccb 1028#if 0
a4193c8a 1029 if (1) {
93fcfe39
AL
1030 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1031 cpu_single_env->mem_io_vaddr, len,
1032 cpu_single_env->eip,
1033 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
59817ccb
FB
1034 }
1035#endif
9fa3e853 1036 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1037 if (!p)
9fa3e853
FB
1038 return;
1039 if (p->code_bitmap) {
1040 offset = start & ~TARGET_PAGE_MASK;
1041 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1042 if (b & ((1 << len) - 1))
1043 goto do_invalidate;
1044 } else {
1045 do_invalidate:
d720b93d 1046 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1047 }
1048}
1049
9fa3e853 1050#if !defined(CONFIG_SOFTMMU)
c227f099 1051static void tb_invalidate_phys_page(target_phys_addr_t addr,
d720b93d 1052 unsigned long pc, void *puc)
9fa3e853 1053{
6b917547 1054 TranslationBlock *tb;
9fa3e853 1055 PageDesc *p;
6b917547 1056 int n;
d720b93d 1057#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1058 TranslationBlock *current_tb = NULL;
d720b93d 1059 CPUState *env = cpu_single_env;
6b917547
AL
1060 int current_tb_modified = 0;
1061 target_ulong current_pc = 0;
1062 target_ulong current_cs_base = 0;
1063 int current_flags = 0;
d720b93d 1064#endif
9fa3e853
FB
1065
1066 addr &= TARGET_PAGE_MASK;
1067 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1068 if (!p)
9fa3e853
FB
1069 return;
1070 tb = p->first_tb;
d720b93d
FB
1071#ifdef TARGET_HAS_PRECISE_SMC
1072 if (tb && pc != 0) {
1073 current_tb = tb_find_pc(pc);
1074 }
1075#endif
9fa3e853
FB
1076 while (tb != NULL) {
1077 n = (long)tb & 3;
1078 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1079#ifdef TARGET_HAS_PRECISE_SMC
1080 if (current_tb == tb &&
2e70f6ef 1081 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1082 /* If we are modifying the current TB, we must stop
1083 its execution. We could be more precise by checking
1084 that the modification is after the current PC, but it
1085 would require a specialized function to partially
1086 restore the CPU state */
3b46e624 1087
d720b93d
FB
1088 current_tb_modified = 1;
1089 cpu_restore_state(current_tb, env, pc, puc);
6b917547
AL
1090 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1091 &current_flags);
d720b93d
FB
1092 }
1093#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1094 tb_phys_invalidate(tb, addr);
1095 tb = tb->page_next[n];
1096 }
fd6ce8f6 1097 p->first_tb = NULL;
d720b93d
FB
1098#ifdef TARGET_HAS_PRECISE_SMC
1099 if (current_tb_modified) {
1100 /* we generate a block containing just the instruction
1101 modifying the memory. It will ensure that it cannot modify
1102 itself */
ea1c1802 1103 env->current_tb = NULL;
2e70f6ef 1104 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1105 cpu_resume_from_signal(env, puc);
1106 }
1107#endif
fd6ce8f6 1108}
9fa3e853 1109#endif
fd6ce8f6
FB
1110
1111/* add the tb in the target page and protect it if necessary */
5fafdf24 1112static inline void tb_alloc_page(TranslationBlock *tb,
53a5960a 1113 unsigned int n, target_ulong page_addr)
fd6ce8f6
FB
1114{
1115 PageDesc *p;
9fa3e853
FB
1116 TranslationBlock *last_first_tb;
1117
1118 tb->page_addr[n] = page_addr;
3a7d929e 1119 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
9fa3e853
FB
1120 tb->page_next[n] = p->first_tb;
1121 last_first_tb = p->first_tb;
1122 p->first_tb = (TranslationBlock *)((long)tb | n);
1123 invalidate_page_bitmap(p);
fd6ce8f6 1124
107db443 1125#if defined(TARGET_HAS_SMC) || 1
d720b93d 1126
9fa3e853 1127#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1128 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1129 target_ulong addr;
1130 PageDesc *p2;
9fa3e853
FB
1131 int prot;
1132
fd6ce8f6
FB
1133 /* force the host page as non writable (writes will have a
1134 page fault + mprotect overhead) */
53a5960a 1135 page_addr &= qemu_host_page_mask;
fd6ce8f6 1136 prot = 0;
53a5960a
PB
1137 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1138 addr += TARGET_PAGE_SIZE) {
1139
1140 p2 = page_find (addr >> TARGET_PAGE_BITS);
1141 if (!p2)
1142 continue;
1143 prot |= p2->flags;
1144 p2->flags &= ~PAGE_WRITE;
1145 page_get_flags(addr);
1146 }
5fafdf24 1147 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1148 (prot & PAGE_BITS) & ~PAGE_WRITE);
1149#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1150 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1151 page_addr);
fd6ce8f6 1152#endif
fd6ce8f6 1153 }
9fa3e853
FB
1154#else
1155 /* if some code is already present, then the pages are already
1156 protected. So we handle the case where only the first TB is
1157 allocated in a physical page */
1158 if (!last_first_tb) {
6a00d601 1159 tlb_protect_code(page_addr);
9fa3e853
FB
1160 }
1161#endif
d720b93d
FB
1162
1163#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1164}
1165
1166/* Allocate a new translation block. Flush the translation buffer if
1167 too many translation blocks or too much generated code. */
c27004ec 1168TranslationBlock *tb_alloc(target_ulong pc)
fd6ce8f6
FB
1169{
1170 TranslationBlock *tb;
fd6ce8f6 1171
26a5f13b
FB
1172 if (nb_tbs >= code_gen_max_blocks ||
1173 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
d4e8164f 1174 return NULL;
fd6ce8f6
FB
1175 tb = &tbs[nb_tbs++];
1176 tb->pc = pc;
b448f2f3 1177 tb->cflags = 0;
d4e8164f
FB
1178 return tb;
1179}
1180
2e70f6ef
PB
1181void tb_free(TranslationBlock *tb)
1182{
bf20dc07 1183 /* In practice this is mostly used for single use temporary TB
2e70f6ef
PB
1184 Ignore the hard cases and just back up if this TB happens to
1185 be the last one generated. */
1186 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1187 code_gen_ptr = tb->tc_ptr;
1188 nb_tbs--;
1189 }
1190}
1191
9fa3e853
FB
1192/* add a new TB and link it to the physical page tables. phys_page2 is
1193 (-1) to indicate that only one page contains the TB. */
5fafdf24 1194void tb_link_phys(TranslationBlock *tb,
9fa3e853 1195 target_ulong phys_pc, target_ulong phys_page2)
d4e8164f 1196{
9fa3e853
FB
1197 unsigned int h;
1198 TranslationBlock **ptb;
1199
c8a706fe
PB
1200 /* Grab the mmap lock to stop another thread invalidating this TB
1201 before we are done. */
1202 mmap_lock();
9fa3e853
FB
1203 /* add in the physical hash table */
1204 h = tb_phys_hash_func(phys_pc);
1205 ptb = &tb_phys_hash[h];
1206 tb->phys_hash_next = *ptb;
1207 *ptb = tb;
fd6ce8f6
FB
1208
1209 /* add in the page list */
9fa3e853
FB
1210 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1211 if (phys_page2 != -1)
1212 tb_alloc_page(tb, 1, phys_page2);
1213 else
1214 tb->page_addr[1] = -1;
9fa3e853 1215
d4e8164f
FB
1216 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1217 tb->jmp_next[0] = NULL;
1218 tb->jmp_next[1] = NULL;
1219
1220 /* init original jump addresses */
1221 if (tb->tb_next_offset[0] != 0xffff)
1222 tb_reset_jump(tb, 0);
1223 if (tb->tb_next_offset[1] != 0xffff)
1224 tb_reset_jump(tb, 1);
8a40a180
FB
1225
1226#ifdef DEBUG_TB_CHECK
1227 tb_page_check();
1228#endif
c8a706fe 1229 mmap_unlock();
fd6ce8f6
FB
1230}
1231
9fa3e853
FB
1232/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1233 tb[1].tc_ptr. Return NULL if not found */
1234TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1235{
9fa3e853
FB
1236 int m_min, m_max, m;
1237 unsigned long v;
1238 TranslationBlock *tb;
a513fe19
FB
1239
1240 if (nb_tbs <= 0)
1241 return NULL;
1242 if (tc_ptr < (unsigned long)code_gen_buffer ||
1243 tc_ptr >= (unsigned long)code_gen_ptr)
1244 return NULL;
1245 /* binary search (cf Knuth) */
1246 m_min = 0;
1247 m_max = nb_tbs - 1;
1248 while (m_min <= m_max) {
1249 m = (m_min + m_max) >> 1;
1250 tb = &tbs[m];
1251 v = (unsigned long)tb->tc_ptr;
1252 if (v == tc_ptr)
1253 return tb;
1254 else if (tc_ptr < v) {
1255 m_max = m - 1;
1256 } else {
1257 m_min = m + 1;
1258 }
5fafdf24 1259 }
a513fe19
FB
1260 return &tbs[m_max];
1261}
7501267e 1262
ea041c0e
FB
1263static void tb_reset_jump_recursive(TranslationBlock *tb);
1264
1265static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1266{
1267 TranslationBlock *tb1, *tb_next, **ptb;
1268 unsigned int n1;
1269
1270 tb1 = tb->jmp_next[n];
1271 if (tb1 != NULL) {
1272 /* find head of list */
1273 for(;;) {
1274 n1 = (long)tb1 & 3;
1275 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1276 if (n1 == 2)
1277 break;
1278 tb1 = tb1->jmp_next[n1];
1279 }
1280 /* we are now sure now that tb jumps to tb1 */
1281 tb_next = tb1;
1282
1283 /* remove tb from the jmp_first list */
1284 ptb = &tb_next->jmp_first;
1285 for(;;) {
1286 tb1 = *ptb;
1287 n1 = (long)tb1 & 3;
1288 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1289 if (n1 == n && tb1 == tb)
1290 break;
1291 ptb = &tb1->jmp_next[n1];
1292 }
1293 *ptb = tb->jmp_next[n];
1294 tb->jmp_next[n] = NULL;
3b46e624 1295
ea041c0e
FB
1296 /* suppress the jump to next tb in generated code */
1297 tb_reset_jump(tb, n);
1298
0124311e 1299 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1300 tb_reset_jump_recursive(tb_next);
1301 }
1302}
1303
1304static void tb_reset_jump_recursive(TranslationBlock *tb)
1305{
1306 tb_reset_jump_recursive2(tb, 0);
1307 tb_reset_jump_recursive2(tb, 1);
1308}
1309
1fddef4b 1310#if defined(TARGET_HAS_ICE)
d720b93d
FB
1311static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1312{
c227f099 1313 target_phys_addr_t addr;
9b3c35e0 1314 target_ulong pd;
c227f099 1315 ram_addr_t ram_addr;
c2f07f81 1316 PhysPageDesc *p;
d720b93d 1317
c2f07f81
PB
1318 addr = cpu_get_phys_page_debug(env, pc);
1319 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1320 if (!p) {
1321 pd = IO_MEM_UNASSIGNED;
1322 } else {
1323 pd = p->phys_offset;
1324 }
1325 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1326 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1327}
c27004ec 1328#endif
d720b93d 1329
6658ffb8 1330/* Add a watchpoint. */
a1d1bb31
AL
1331int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1332 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1333{
b4051334 1334 target_ulong len_mask = ~(len - 1);
c0ce998e 1335 CPUWatchpoint *wp;
6658ffb8 1336
b4051334
AL
1337 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1338 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1339 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1340 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1341 return -EINVAL;
1342 }
a1d1bb31 1343 wp = qemu_malloc(sizeof(*wp));
a1d1bb31
AL
1344
1345 wp->vaddr = addr;
b4051334 1346 wp->len_mask = len_mask;
a1d1bb31
AL
1347 wp->flags = flags;
1348
2dc9f411 1349 /* keep all GDB-injected watchpoints in front */
c0ce998e 1350 if (flags & BP_GDB)
72cf2d4f 1351 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
c0ce998e 1352 else
72cf2d4f 1353 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 1354
6658ffb8 1355 tlb_flush_page(env, addr);
a1d1bb31
AL
1356
1357 if (watchpoint)
1358 *watchpoint = wp;
1359 return 0;
6658ffb8
PB
1360}
1361
a1d1bb31
AL
1362/* Remove a specific watchpoint. */
1363int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1364 int flags)
6658ffb8 1365{
b4051334 1366 target_ulong len_mask = ~(len - 1);
a1d1bb31 1367 CPUWatchpoint *wp;
6658ffb8 1368
72cf2d4f 1369 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 1370 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1371 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1372 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1373 return 0;
1374 }
1375 }
a1d1bb31 1376 return -ENOENT;
6658ffb8
PB
1377}
1378
a1d1bb31
AL
1379/* Remove a specific watchpoint by reference. */
1380void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1381{
72cf2d4f 1382 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 1383
a1d1bb31
AL
1384 tlb_flush_page(env, watchpoint->vaddr);
1385
1386 qemu_free(watchpoint);
1387}
1388
1389/* Remove all matching watchpoints. */
1390void cpu_watchpoint_remove_all(CPUState *env, int mask)
1391{
c0ce998e 1392 CPUWatchpoint *wp, *next;
a1d1bb31 1393
72cf2d4f 1394 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
1395 if (wp->flags & mask)
1396 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 1397 }
7d03f82f
EI
1398}
1399
a1d1bb31
AL
1400/* Add a breakpoint. */
1401int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1402 CPUBreakpoint **breakpoint)
4c3a88a2 1403{
1fddef4b 1404#if defined(TARGET_HAS_ICE)
c0ce998e 1405 CPUBreakpoint *bp;
3b46e624 1406
a1d1bb31 1407 bp = qemu_malloc(sizeof(*bp));
4c3a88a2 1408
a1d1bb31
AL
1409 bp->pc = pc;
1410 bp->flags = flags;
1411
2dc9f411 1412 /* keep all GDB-injected breakpoints in front */
c0ce998e 1413 if (flags & BP_GDB)
72cf2d4f 1414 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
c0ce998e 1415 else
72cf2d4f 1416 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 1417
d720b93d 1418 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1419
1420 if (breakpoint)
1421 *breakpoint = bp;
4c3a88a2
FB
1422 return 0;
1423#else
a1d1bb31 1424 return -ENOSYS;
4c3a88a2
FB
1425#endif
1426}
1427
a1d1bb31
AL
1428/* Remove a specific breakpoint. */
1429int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1430{
7d03f82f 1431#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1432 CPUBreakpoint *bp;
1433
72cf2d4f 1434 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
1435 if (bp->pc == pc && bp->flags == flags) {
1436 cpu_breakpoint_remove_by_ref(env, bp);
1437 return 0;
1438 }
7d03f82f 1439 }
a1d1bb31
AL
1440 return -ENOENT;
1441#else
1442 return -ENOSYS;
7d03f82f
EI
1443#endif
1444}
1445
a1d1bb31
AL
1446/* Remove a specific breakpoint by reference. */
1447void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1448{
1fddef4b 1449#if defined(TARGET_HAS_ICE)
72cf2d4f 1450 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 1451
a1d1bb31
AL
1452 breakpoint_invalidate(env, breakpoint->pc);
1453
1454 qemu_free(breakpoint);
1455#endif
1456}
1457
1458/* Remove all matching breakpoints. */
1459void cpu_breakpoint_remove_all(CPUState *env, int mask)
1460{
1461#if defined(TARGET_HAS_ICE)
c0ce998e 1462 CPUBreakpoint *bp, *next;
a1d1bb31 1463
72cf2d4f 1464 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
1465 if (bp->flags & mask)
1466 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 1467 }
4c3a88a2
FB
1468#endif
1469}
1470
c33a346e
FB
1471/* enable or disable single step mode. EXCP_DEBUG is returned by the
1472 CPU loop after each instruction */
1473void cpu_single_step(CPUState *env, int enabled)
1474{
1fddef4b 1475#if defined(TARGET_HAS_ICE)
c33a346e
FB
1476 if (env->singlestep_enabled != enabled) {
1477 env->singlestep_enabled = enabled;
e22a25c9
AL
1478 if (kvm_enabled())
1479 kvm_update_guest_debug(env, 0);
1480 else {
ccbb4d44 1481 /* must flush all the translated code to avoid inconsistencies */
e22a25c9
AL
1482 /* XXX: only flush what is necessary */
1483 tb_flush(env);
1484 }
c33a346e
FB
1485 }
1486#endif
1487}
1488
34865134
FB
1489/* enable or disable low levels log */
1490void cpu_set_log(int log_flags)
1491{
1492 loglevel = log_flags;
1493 if (loglevel && !logfile) {
11fcfab4 1494 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1495 if (!logfile) {
1496 perror(logfilename);
1497 _exit(1);
1498 }
9fa3e853
FB
1499#if !defined(CONFIG_SOFTMMU)
1500 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1501 {
b55266b5 1502 static char logfile_buf[4096];
9fa3e853
FB
1503 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1504 }
bf65f53f
FN
1505#elif !defined(_WIN32)
1506 /* Win32 doesn't support line-buffering and requires size >= 2 */
34865134 1507 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1508#endif
e735b91c
PB
1509 log_append = 1;
1510 }
1511 if (!loglevel && logfile) {
1512 fclose(logfile);
1513 logfile = NULL;
34865134
FB
1514 }
1515}
1516
1517void cpu_set_log_filename(const char *filename)
1518{
1519 logfilename = strdup(filename);
e735b91c
PB
1520 if (logfile) {
1521 fclose(logfile);
1522 logfile = NULL;
1523 }
1524 cpu_set_log(loglevel);
34865134 1525}
c33a346e 1526
3098dba0 1527static void cpu_unlink_tb(CPUState *env)
ea041c0e 1528{
2f7bb878 1529#if defined(CONFIG_USE_NPTL)
3098dba0
AJ
1530 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1531 problem and hope the cpu will stop of its own accord. For userspace
1532 emulation this often isn't actually as bad as it sounds. Often
1533 signals are used primarily to interrupt blocking syscalls. */
1534#else
ea041c0e 1535 TranslationBlock *tb;
c227f099 1536 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
59817ccb 1537
3098dba0
AJ
1538 tb = env->current_tb;
1539 /* if the cpu is currently executing code, we must unlink it and
1540 all the potentially executing TB */
1541 if (tb && !testandset(&interrupt_lock)) {
1542 env->current_tb = NULL;
1543 tb_reset_jump_recursive(tb);
1544 resetlock(&interrupt_lock);
be214e6c 1545 }
3098dba0
AJ
1546#endif
1547}
1548
1549/* mask must never be zero, except for A20 change call */
1550void cpu_interrupt(CPUState *env, int mask)
1551{
1552 int old_mask;
be214e6c 1553
2e70f6ef 1554 old_mask = env->interrupt_request;
68a79315 1555 env->interrupt_request |= mask;
3098dba0 1556
8edac960
AL
1557#ifndef CONFIG_USER_ONLY
1558 /*
1559 * If called from iothread context, wake the target cpu in
1560 * case its halted.
1561 */
1562 if (!qemu_cpu_self(env)) {
1563 qemu_cpu_kick(env);
1564 return;
1565 }
1566#endif
1567
2e70f6ef 1568 if (use_icount) {
266910c4 1569 env->icount_decr.u16.high = 0xffff;
2e70f6ef 1570#ifndef CONFIG_USER_ONLY
2e70f6ef 1571 if (!can_do_io(env)
be214e6c 1572 && (mask & ~old_mask) != 0) {
2e70f6ef
PB
1573 cpu_abort(env, "Raised interrupt while not in I/O function");
1574 }
1575#endif
1576 } else {
3098dba0 1577 cpu_unlink_tb(env);
ea041c0e
FB
1578 }
1579}
1580
b54ad049
FB
1581void cpu_reset_interrupt(CPUState *env, int mask)
1582{
1583 env->interrupt_request &= ~mask;
1584}
1585
3098dba0
AJ
1586void cpu_exit(CPUState *env)
1587{
1588 env->exit_request = 1;
1589 cpu_unlink_tb(env);
1590}
1591
c7cd6a37 1592const CPULogItem cpu_log_items[] = {
5fafdf24 1593 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1594 "show generated host assembly code for each compiled TB" },
1595 { CPU_LOG_TB_IN_ASM, "in_asm",
1596 "show target assembly code for each compiled TB" },
5fafdf24 1597 { CPU_LOG_TB_OP, "op",
57fec1fe 1598 "show micro ops for each compiled TB" },
f193c797 1599 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1600 "show micro ops "
1601#ifdef TARGET_I386
1602 "before eflags optimization and "
f193c797 1603#endif
e01a1157 1604 "after liveness analysis" },
f193c797
FB
1605 { CPU_LOG_INT, "int",
1606 "show interrupts/exceptions in short format" },
1607 { CPU_LOG_EXEC, "exec",
1608 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1609 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1610 "show CPU state before block translation" },
f193c797
FB
1611#ifdef TARGET_I386
1612 { CPU_LOG_PCALL, "pcall",
1613 "show protected mode far calls/returns/exceptions" },
eca1bdf4
AL
1614 { CPU_LOG_RESET, "cpu_reset",
1615 "show CPU state before CPU resets" },
f193c797 1616#endif
8e3a9fd2 1617#ifdef DEBUG_IOPORT
fd872598
FB
1618 { CPU_LOG_IOPORT, "ioport",
1619 "show all i/o ports accesses" },
8e3a9fd2 1620#endif
f193c797
FB
1621 { 0, NULL, NULL },
1622};
1623
1624static int cmp1(const char *s1, int n, const char *s2)
1625{
1626 if (strlen(s2) != n)
1627 return 0;
1628 return memcmp(s1, s2, n) == 0;
1629}
3b46e624 1630
f193c797
FB
1631/* takes a comma separated list of log masks. Return 0 if error. */
1632int cpu_str_to_log_mask(const char *str)
1633{
c7cd6a37 1634 const CPULogItem *item;
f193c797
FB
1635 int mask;
1636 const char *p, *p1;
1637
1638 p = str;
1639 mask = 0;
1640 for(;;) {
1641 p1 = strchr(p, ',');
1642 if (!p1)
1643 p1 = p + strlen(p);
8e3a9fd2
FB
1644 if(cmp1(p,p1-p,"all")) {
1645 for(item = cpu_log_items; item->mask != 0; item++) {
1646 mask |= item->mask;
1647 }
1648 } else {
f193c797
FB
1649 for(item = cpu_log_items; item->mask != 0; item++) {
1650 if (cmp1(p, p1 - p, item->name))
1651 goto found;
1652 }
1653 return 0;
8e3a9fd2 1654 }
f193c797
FB
1655 found:
1656 mask |= item->mask;
1657 if (*p1 != ',')
1658 break;
1659 p = p1 + 1;
1660 }
1661 return mask;
1662}
ea041c0e 1663
7501267e
FB
1664void cpu_abort(CPUState *env, const char *fmt, ...)
1665{
1666 va_list ap;
493ae1f0 1667 va_list ap2;
7501267e
FB
1668
1669 va_start(ap, fmt);
493ae1f0 1670 va_copy(ap2, ap);
7501267e
FB
1671 fprintf(stderr, "qemu: fatal: ");
1672 vfprintf(stderr, fmt, ap);
1673 fprintf(stderr, "\n");
1674#ifdef TARGET_I386
7fe48483
FB
1675 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1676#else
1677 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1678#endif
93fcfe39
AL
1679 if (qemu_log_enabled()) {
1680 qemu_log("qemu: fatal: ");
1681 qemu_log_vprintf(fmt, ap2);
1682 qemu_log("\n");
f9373291 1683#ifdef TARGET_I386
93fcfe39 1684 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
f9373291 1685#else
93fcfe39 1686 log_cpu_state(env, 0);
f9373291 1687#endif
31b1a7b4 1688 qemu_log_flush();
93fcfe39 1689 qemu_log_close();
924edcae 1690 }
493ae1f0 1691 va_end(ap2);
f9373291 1692 va_end(ap);
7501267e
FB
1693 abort();
1694}
1695
c5be9f08
TS
1696CPUState *cpu_copy(CPUState *env)
1697{
01ba9816 1698 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1699 CPUState *next_cpu = new_env->next_cpu;
1700 int cpu_index = new_env->cpu_index;
5a38f081
AL
1701#if defined(TARGET_HAS_ICE)
1702 CPUBreakpoint *bp;
1703 CPUWatchpoint *wp;
1704#endif
1705
c5be9f08 1706 memcpy(new_env, env, sizeof(CPUState));
5a38f081
AL
1707
1708 /* Preserve chaining and index. */
c5be9f08
TS
1709 new_env->next_cpu = next_cpu;
1710 new_env->cpu_index = cpu_index;
5a38f081
AL
1711
1712 /* Clone all break/watchpoints.
1713 Note: Once we support ptrace with hw-debug register access, make sure
1714 BP_CPU break/watchpoints are handled correctly on clone. */
72cf2d4f
BS
1715 QTAILQ_INIT(&env->breakpoints);
1716 QTAILQ_INIT(&env->watchpoints);
5a38f081 1717#if defined(TARGET_HAS_ICE)
72cf2d4f 1718 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
5a38f081
AL
1719 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1720 }
72cf2d4f 1721 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
5a38f081
AL
1722 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1723 wp->flags, NULL);
1724 }
1725#endif
1726
c5be9f08
TS
1727 return new_env;
1728}
1729
0124311e
FB
1730#if !defined(CONFIG_USER_ONLY)
1731
5c751e99
EI
1732static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1733{
1734 unsigned int i;
1735
1736 /* Discard jump cache entries for any tb which might potentially
1737 overlap the flushed page. */
1738 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1739 memset (&env->tb_jmp_cache[i], 0,
1740 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1741
1742 i = tb_jmp_cache_hash_page(addr);
1743 memset (&env->tb_jmp_cache[i], 0,
1744 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1745}
1746
08738984
IK
1747static CPUTLBEntry s_cputlb_empty_entry = {
1748 .addr_read = -1,
1749 .addr_write = -1,
1750 .addr_code = -1,
1751 .addend = -1,
1752};
1753
ee8b7021
FB
1754/* NOTE: if flush_global is true, also flush global entries (not
1755 implemented yet) */
1756void tlb_flush(CPUState *env, int flush_global)
33417e70 1757{
33417e70 1758 int i;
0124311e 1759
9fa3e853
FB
1760#if defined(DEBUG_TLB)
1761 printf("tlb_flush:\n");
1762#endif
0124311e
FB
1763 /* must reset current TB so that interrupts cannot modify the
1764 links while we are modifying them */
1765 env->current_tb = NULL;
1766
33417e70 1767 for(i = 0; i < CPU_TLB_SIZE; i++) {
cfde4bd9
IY
1768 int mmu_idx;
1769 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
08738984 1770 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
cfde4bd9 1771 }
33417e70 1772 }
9fa3e853 1773
8a40a180 1774 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 1775
e3db7226 1776 tlb_flush_count++;
33417e70
FB
1777}
1778
274da6b2 1779static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1780{
5fafdf24 1781 if (addr == (tlb_entry->addr_read &
84b7b8e7 1782 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1783 addr == (tlb_entry->addr_write &
84b7b8e7 1784 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1785 addr == (tlb_entry->addr_code &
84b7b8e7 1786 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
08738984 1787 *tlb_entry = s_cputlb_empty_entry;
84b7b8e7 1788 }
61382a50
FB
1789}
1790
2e12669a 1791void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 1792{
8a40a180 1793 int i;
cfde4bd9 1794 int mmu_idx;
0124311e 1795
9fa3e853 1796#if defined(DEBUG_TLB)
108c49b8 1797 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 1798#endif
0124311e
FB
1799 /* must reset current TB so that interrupts cannot modify the
1800 links while we are modifying them */
1801 env->current_tb = NULL;
61382a50
FB
1802
1803 addr &= TARGET_PAGE_MASK;
1804 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
1805 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1806 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
0124311e 1807
5c751e99 1808 tlb_flush_jmp_cache(env, addr);
9fa3e853
FB
1809}
1810
9fa3e853
FB
1811/* update the TLBs so that writes to code in the virtual page 'addr'
1812 can be detected */
c227f099 1813static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 1814{
5fafdf24 1815 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
1816 ram_addr + TARGET_PAGE_SIZE,
1817 CODE_DIRTY_FLAG);
9fa3e853
FB
1818}
1819
9fa3e853 1820/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 1821 tested for self modifying code */
c227f099 1822static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 1823 target_ulong vaddr)
9fa3e853 1824{
3a7d929e 1825 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1ccde1cb
FB
1826}
1827
5fafdf24 1828static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
1829 unsigned long start, unsigned long length)
1830{
1831 unsigned long addr;
84b7b8e7
FB
1832 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1833 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 1834 if ((addr - start) < length) {
0f459d16 1835 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
1836 }
1837 }
1838}
1839
5579c7f3 1840/* Note: start and end must be within the same ram block. */
c227f099 1841void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 1842 int dirty_flags)
1ccde1cb
FB
1843{
1844 CPUState *env;
4f2ac237 1845 unsigned long length, start1;
0a962c02
FB
1846 int i, mask, len;
1847 uint8_t *p;
1ccde1cb
FB
1848
1849 start &= TARGET_PAGE_MASK;
1850 end = TARGET_PAGE_ALIGN(end);
1851
1852 length = end - start;
1853 if (length == 0)
1854 return;
0a962c02 1855 len = length >> TARGET_PAGE_BITS;
f23db169
FB
1856 mask = ~dirty_flags;
1857 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1858 for(i = 0; i < len; i++)
1859 p[i] &= mask;
1860
1ccde1cb
FB
1861 /* we modify the TLB cache so that the dirty bit will be set again
1862 when accessing the range */
5579c7f3
PB
1863 start1 = (unsigned long)qemu_get_ram_ptr(start);
1864 /* Chek that we don't span multiple blocks - this breaks the
1865 address comparisons below. */
1866 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
1867 != (end - 1) - start) {
1868 abort();
1869 }
1870
6a00d601 1871 for(env = first_cpu; env != NULL; env = env->next_cpu) {
cfde4bd9
IY
1872 int mmu_idx;
1873 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1874 for(i = 0; i < CPU_TLB_SIZE; i++)
1875 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
1876 start1, length);
1877 }
6a00d601 1878 }
1ccde1cb
FB
1879}
1880
74576198
AL
1881int cpu_physical_memory_set_dirty_tracking(int enable)
1882{
1883 in_migration = enable;
b0a46a33
JK
1884 if (kvm_enabled()) {
1885 return kvm_set_migration_log(enable);
1886 }
74576198
AL
1887 return 0;
1888}
1889
1890int cpu_physical_memory_get_dirty_tracking(void)
1891{
1892 return in_migration;
1893}
1894
c227f099
AL
1895int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
1896 target_phys_addr_t end_addr)
2bec46dc 1897{
151f7749
JK
1898 int ret = 0;
1899
2bec46dc 1900 if (kvm_enabled())
151f7749
JK
1901 ret = kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
1902 return ret;
2bec46dc
AL
1903}
1904
3a7d929e
FB
1905static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1906{
c227f099 1907 ram_addr_t ram_addr;
5579c7f3 1908 void *p;
3a7d929e 1909
84b7b8e7 1910 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5579c7f3
PB
1911 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
1912 + tlb_entry->addend);
1913 ram_addr = qemu_ram_addr_from_host(p);
3a7d929e 1914 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 1915 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
1916 }
1917 }
1918}
1919
1920/* update the TLB according to the current state of the dirty bits */
1921void cpu_tlb_update_dirty(CPUState *env)
1922{
1923 int i;
cfde4bd9
IY
1924 int mmu_idx;
1925 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1926 for(i = 0; i < CPU_TLB_SIZE; i++)
1927 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
1928 }
3a7d929e
FB
1929}
1930
0f459d16 1931static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 1932{
0f459d16
PB
1933 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
1934 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
1935}
1936
0f459d16
PB
1937/* update the TLB corresponding to virtual page vaddr
1938 so that it is no longer dirty */
1939static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 1940{
1ccde1cb 1941 int i;
cfde4bd9 1942 int mmu_idx;
1ccde1cb 1943
0f459d16 1944 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 1945 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
1946 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1947 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
9fa3e853
FB
1948}
1949
59817ccb
FB
1950/* add a new TLB entry. At most one entry for a given virtual address
1951 is permitted. Return 0 if OK or 2 if the page could not be mapped
1952 (can only happen in non SOFTMMU mode for I/O pages or pages
1953 conflicting with the host address space). */
5fafdf24 1954int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
c227f099 1955 target_phys_addr_t paddr, int prot,
6ebbf390 1956 int mmu_idx, int is_softmmu)
9fa3e853 1957{
92e873b9 1958 PhysPageDesc *p;
4f2ac237 1959 unsigned long pd;
9fa3e853 1960 unsigned int index;
4f2ac237 1961 target_ulong address;
0f459d16 1962 target_ulong code_address;
c227f099 1963 target_phys_addr_t addend;
9fa3e853 1964 int ret;
84b7b8e7 1965 CPUTLBEntry *te;
a1d1bb31 1966 CPUWatchpoint *wp;
c227f099 1967 target_phys_addr_t iotlb;
9fa3e853 1968
92e873b9 1969 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
1970 if (!p) {
1971 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
1972 } else {
1973 pd = p->phys_offset;
9fa3e853
FB
1974 }
1975#if defined(DEBUG_TLB)
6ebbf390
JM
1976 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1977 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
9fa3e853
FB
1978#endif
1979
1980 ret = 0;
0f459d16
PB
1981 address = vaddr;
1982 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
1983 /* IO memory case (romd handled later) */
1984 address |= TLB_MMIO;
1985 }
5579c7f3 1986 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
0f459d16
PB
1987 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
1988 /* Normal RAM. */
1989 iotlb = pd & TARGET_PAGE_MASK;
1990 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
1991 iotlb |= IO_MEM_NOTDIRTY;
1992 else
1993 iotlb |= IO_MEM_ROM;
1994 } else {
ccbb4d44 1995 /* IO handlers are currently passed a physical address.
0f459d16
PB
1996 It would be nice to pass an offset from the base address
1997 of that region. This would avoid having to special case RAM,
1998 and avoid full address decoding in every device.
1999 We can't use the high bits of pd for this because
2000 IO_MEM_ROMD uses these as a ram address. */
8da3ff18
PB
2001 iotlb = (pd & ~TARGET_PAGE_MASK);
2002 if (p) {
8da3ff18
PB
2003 iotlb += p->region_offset;
2004 } else {
2005 iotlb += paddr;
2006 }
0f459d16
PB
2007 }
2008
2009 code_address = address;
2010 /* Make accesses to pages with watchpoints go via the
2011 watchpoint trap routines. */
72cf2d4f 2012 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
a1d1bb31 2013 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
0f459d16
PB
2014 iotlb = io_mem_watch + paddr;
2015 /* TODO: The memory case can be optimized by not trapping
2016 reads of pages with a write breakpoint. */
2017 address |= TLB_MMIO;
6658ffb8 2018 }
0f459d16 2019 }
d79acba4 2020
0f459d16
PB
2021 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2022 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2023 te = &env->tlb_table[mmu_idx][index];
2024 te->addend = addend - vaddr;
2025 if (prot & PAGE_READ) {
2026 te->addr_read = address;
2027 } else {
2028 te->addr_read = -1;
2029 }
5c751e99 2030
0f459d16
PB
2031 if (prot & PAGE_EXEC) {
2032 te->addr_code = code_address;
2033 } else {
2034 te->addr_code = -1;
2035 }
2036 if (prot & PAGE_WRITE) {
2037 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2038 (pd & IO_MEM_ROMD)) {
2039 /* Write access calls the I/O callback. */
2040 te->addr_write = address | TLB_MMIO;
2041 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2042 !cpu_physical_memory_is_dirty(pd)) {
2043 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 2044 } else {
0f459d16 2045 te->addr_write = address;
9fa3e853 2046 }
0f459d16
PB
2047 } else {
2048 te->addr_write = -1;
9fa3e853 2049 }
9fa3e853
FB
2050 return ret;
2051}
2052
0124311e
FB
2053#else
2054
ee8b7021 2055void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
2056{
2057}
2058
2e12669a 2059void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
2060{
2061}
2062
5fafdf24 2063int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
c227f099 2064 target_phys_addr_t paddr, int prot,
6ebbf390 2065 int mmu_idx, int is_softmmu)
9fa3e853
FB
2066{
2067 return 0;
2068}
0124311e 2069
edf8e2af
MW
2070/*
2071 * Walks guest process memory "regions" one by one
2072 * and calls callback function 'fn' for each region.
2073 */
2074int walk_memory_regions(void *priv,
2075 int (*fn)(void *, unsigned long, unsigned long, unsigned long))
33417e70 2076{
9fa3e853 2077 unsigned long start, end;
edf8e2af 2078 PageDesc *p = NULL;
9fa3e853 2079 int i, j, prot, prot1;
edf8e2af 2080 int rc = 0;
33417e70 2081
edf8e2af 2082 start = end = -1;
9fa3e853 2083 prot = 0;
edf8e2af
MW
2084
2085 for (i = 0; i <= L1_SIZE; i++) {
2086 p = (i < L1_SIZE) ? l1_map[i] : NULL;
2087 for (j = 0; j < L2_SIZE; j++) {
2088 prot1 = (p == NULL) ? 0 : p[j].flags;
2089 /*
2090 * "region" is one continuous chunk of memory
2091 * that has same protection flags set.
2092 */
9fa3e853
FB
2093 if (prot1 != prot) {
2094 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2095 if (start != -1) {
edf8e2af
MW
2096 rc = (*fn)(priv, start, end, prot);
2097 /* callback can stop iteration by returning != 0 */
2098 if (rc != 0)
2099 return (rc);
9fa3e853
FB
2100 }
2101 if (prot1 != 0)
2102 start = end;
2103 else
2104 start = -1;
2105 prot = prot1;
2106 }
edf8e2af 2107 if (p == NULL)
9fa3e853
FB
2108 break;
2109 }
33417e70 2110 }
edf8e2af
MW
2111 return (rc);
2112}
2113
2114static int dump_region(void *priv, unsigned long start,
2115 unsigned long end, unsigned long prot)
2116{
2117 FILE *f = (FILE *)priv;
2118
2119 (void) fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
2120 start, end, end - start,
2121 ((prot & PAGE_READ) ? 'r' : '-'),
2122 ((prot & PAGE_WRITE) ? 'w' : '-'),
2123 ((prot & PAGE_EXEC) ? 'x' : '-'));
2124
2125 return (0);
2126}
2127
2128/* dump memory mappings */
2129void page_dump(FILE *f)
2130{
2131 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2132 "start", "end", "size", "prot");
2133 walk_memory_regions(f, dump_region);
33417e70
FB
2134}
2135
53a5960a 2136int page_get_flags(target_ulong address)
33417e70 2137{
9fa3e853
FB
2138 PageDesc *p;
2139
2140 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2141 if (!p)
9fa3e853
FB
2142 return 0;
2143 return p->flags;
2144}
2145
2146/* modify the flags of a page and invalidate the code if
ccbb4d44 2147 necessary. The flag PAGE_WRITE_ORG is positioned automatically
9fa3e853 2148 depending on PAGE_WRITE */
53a5960a 2149void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853
FB
2150{
2151 PageDesc *p;
53a5960a 2152 target_ulong addr;
9fa3e853 2153
c8a706fe 2154 /* mmap_lock should already be held. */
9fa3e853
FB
2155 start = start & TARGET_PAGE_MASK;
2156 end = TARGET_PAGE_ALIGN(end);
2157 if (flags & PAGE_WRITE)
2158 flags |= PAGE_WRITE_ORG;
9fa3e853
FB
2159 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2160 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
17e2377a
PB
2161 /* We may be called for host regions that are outside guest
2162 address space. */
2163 if (!p)
2164 return;
9fa3e853
FB
2165 /* if the write protection is set, then we invalidate the code
2166 inside */
5fafdf24 2167 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2168 (flags & PAGE_WRITE) &&
2169 p->first_tb) {
d720b93d 2170 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2171 }
2172 p->flags = flags;
2173 }
33417e70
FB
2174}
2175
3d97b40b
TS
2176int page_check_range(target_ulong start, target_ulong len, int flags)
2177{
2178 PageDesc *p;
2179 target_ulong end;
2180 target_ulong addr;
2181
55f280c9
AZ
2182 if (start + len < start)
2183 /* we've wrapped around */
2184 return -1;
2185
3d97b40b
TS
2186 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2187 start = start & TARGET_PAGE_MASK;
2188
3d97b40b
TS
2189 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2190 p = page_find(addr >> TARGET_PAGE_BITS);
2191 if( !p )
2192 return -1;
2193 if( !(p->flags & PAGE_VALID) )
2194 return -1;
2195
dae3270c 2196 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2197 return -1;
dae3270c
FB
2198 if (flags & PAGE_WRITE) {
2199 if (!(p->flags & PAGE_WRITE_ORG))
2200 return -1;
2201 /* unprotect the page if it was put read-only because it
2202 contains translated code */
2203 if (!(p->flags & PAGE_WRITE)) {
2204 if (!page_unprotect(addr, 0, NULL))
2205 return -1;
2206 }
2207 return 0;
2208 }
3d97b40b
TS
2209 }
2210 return 0;
2211}
2212
9fa3e853 2213/* called from signal handler: invalidate the code and unprotect the
ccbb4d44 2214 page. Return TRUE if the fault was successfully handled. */
53a5960a 2215int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853
FB
2216{
2217 unsigned int page_index, prot, pindex;
2218 PageDesc *p, *p1;
53a5960a 2219 target_ulong host_start, host_end, addr;
9fa3e853 2220
c8a706fe
PB
2221 /* Technically this isn't safe inside a signal handler. However we
2222 know this only ever happens in a synchronous SEGV handler, so in
2223 practice it seems to be ok. */
2224 mmap_lock();
2225
83fb7adf 2226 host_start = address & qemu_host_page_mask;
9fa3e853
FB
2227 page_index = host_start >> TARGET_PAGE_BITS;
2228 p1 = page_find(page_index);
c8a706fe
PB
2229 if (!p1) {
2230 mmap_unlock();
9fa3e853 2231 return 0;
c8a706fe 2232 }
83fb7adf 2233 host_end = host_start + qemu_host_page_size;
9fa3e853
FB
2234 p = p1;
2235 prot = 0;
2236 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2237 prot |= p->flags;
2238 p++;
2239 }
2240 /* if the page was really writable, then we change its
2241 protection back to writable */
2242 if (prot & PAGE_WRITE_ORG) {
2243 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2244 if (!(p1[pindex].flags & PAGE_WRITE)) {
5fafdf24 2245 mprotect((void *)g2h(host_start), qemu_host_page_size,
9fa3e853
FB
2246 (prot & PAGE_BITS) | PAGE_WRITE);
2247 p1[pindex].flags |= PAGE_WRITE;
2248 /* and since the content will be modified, we must invalidate
2249 the corresponding translated code. */
d720b93d 2250 tb_invalidate_phys_page(address, pc, puc);
9fa3e853
FB
2251#ifdef DEBUG_TB_CHECK
2252 tb_invalidate_check(address);
2253#endif
c8a706fe 2254 mmap_unlock();
9fa3e853
FB
2255 return 1;
2256 }
2257 }
c8a706fe 2258 mmap_unlock();
9fa3e853
FB
2259 return 0;
2260}
2261
6a00d601
FB
2262static inline void tlb_set_dirty(CPUState *env,
2263 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2264{
2265}
9fa3e853
FB
2266#endif /* defined(CONFIG_USER_ONLY) */
2267
e2eef170 2268#if !defined(CONFIG_USER_ONLY)
8da3ff18 2269
c227f099
AL
2270static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2271 ram_addr_t memory, ram_addr_t region_offset);
2272static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2273 ram_addr_t orig_memory, ram_addr_t region_offset);
db7b5426
BS
2274#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2275 need_subpage) \
2276 do { \
2277 if (addr > start_addr) \
2278 start_addr2 = 0; \
2279 else { \
2280 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2281 if (start_addr2 > 0) \
2282 need_subpage = 1; \
2283 } \
2284 \
49e9fba2 2285 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2286 end_addr2 = TARGET_PAGE_SIZE - 1; \
2287 else { \
2288 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2289 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2290 need_subpage = 1; \
2291 } \
2292 } while (0)
2293
8f2498f9
MT
2294/* register physical memory.
2295 For RAM, 'size' must be a multiple of the target page size.
2296 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
8da3ff18
PB
2297 io memory page. The address used when calling the IO function is
2298 the offset from the start of the region, plus region_offset. Both
ccbb4d44 2299 start_addr and region_offset are rounded down to a page boundary
8da3ff18
PB
2300 before calculating this offset. This should not be a problem unless
2301 the low bits of start_addr and region_offset differ. */
c227f099
AL
2302void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2303 ram_addr_t size,
2304 ram_addr_t phys_offset,
2305 ram_addr_t region_offset)
33417e70 2306{
c227f099 2307 target_phys_addr_t addr, end_addr;
92e873b9 2308 PhysPageDesc *p;
9d42037b 2309 CPUState *env;
c227f099 2310 ram_addr_t orig_size = size;
db7b5426 2311 void *subpage;
33417e70 2312
7ba1e619
AL
2313 if (kvm_enabled())
2314 kvm_set_phys_mem(start_addr, size, phys_offset);
2315
67c4d23c
PB
2316 if (phys_offset == IO_MEM_UNASSIGNED) {
2317 region_offset = start_addr;
2318 }
8da3ff18 2319 region_offset &= TARGET_PAGE_MASK;
5fd386f6 2320 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
c227f099 2321 end_addr = start_addr + (target_phys_addr_t)size;
49e9fba2 2322 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
db7b5426
BS
2323 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2324 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
c227f099
AL
2325 ram_addr_t orig_memory = p->phys_offset;
2326 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2327 int need_subpage = 0;
2328
2329 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2330 need_subpage);
4254fab8 2331 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426
BS
2332 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2333 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18
PB
2334 &p->phys_offset, orig_memory,
2335 p->region_offset);
db7b5426
BS
2336 } else {
2337 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2338 >> IO_MEM_SHIFT];
2339 }
8da3ff18
PB
2340 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2341 region_offset);
2342 p->region_offset = 0;
db7b5426
BS
2343 } else {
2344 p->phys_offset = phys_offset;
2345 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2346 (phys_offset & IO_MEM_ROMD))
2347 phys_offset += TARGET_PAGE_SIZE;
2348 }
2349 } else {
2350 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2351 p->phys_offset = phys_offset;
8da3ff18 2352 p->region_offset = region_offset;
db7b5426 2353 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
8da3ff18 2354 (phys_offset & IO_MEM_ROMD)) {
db7b5426 2355 phys_offset += TARGET_PAGE_SIZE;
0e8f0967 2356 } else {
c227f099 2357 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2358 int need_subpage = 0;
2359
2360 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2361 end_addr2, need_subpage);
2362
4254fab8 2363 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426 2364 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18 2365 &p->phys_offset, IO_MEM_UNASSIGNED,
67c4d23c 2366 addr & TARGET_PAGE_MASK);
db7b5426 2367 subpage_register(subpage, start_addr2, end_addr2,
8da3ff18
PB
2368 phys_offset, region_offset);
2369 p->region_offset = 0;
db7b5426
BS
2370 }
2371 }
2372 }
8da3ff18 2373 region_offset += TARGET_PAGE_SIZE;
33417e70 2374 }
3b46e624 2375
9d42037b
FB
2376 /* since each CPU stores ram addresses in its TLB cache, we must
2377 reset the modified entries */
2378 /* XXX: slow ! */
2379 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2380 tlb_flush(env, 1);
2381 }
33417e70
FB
2382}
2383
ba863458 2384/* XXX: temporary until new memory mapping API */
c227f099 2385ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
ba863458
FB
2386{
2387 PhysPageDesc *p;
2388
2389 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2390 if (!p)
2391 return IO_MEM_UNASSIGNED;
2392 return p->phys_offset;
2393}
2394
c227f099 2395void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2396{
2397 if (kvm_enabled())
2398 kvm_coalesce_mmio_region(addr, size);
2399}
2400
c227f099 2401void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2402{
2403 if (kvm_enabled())
2404 kvm_uncoalesce_mmio_region(addr, size);
2405}
2406
c227f099 2407ram_addr_t qemu_ram_alloc(ram_addr_t size)
94a6b54f
PB
2408{
2409 RAMBlock *new_block;
2410
94a6b54f
PB
2411 size = TARGET_PAGE_ALIGN(size);
2412 new_block = qemu_malloc(sizeof(*new_block));
2413
2414 new_block->host = qemu_vmalloc(size);
ccb167e9
IE
2415#ifdef MADV_MERGEABLE
2416 madvise(new_block->host, size, MADV_MERGEABLE);
2417#endif
94a6b54f
PB
2418 new_block->offset = last_ram_offset;
2419 new_block->length = size;
2420
2421 new_block->next = ram_blocks;
2422 ram_blocks = new_block;
2423
2424 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2425 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2426 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2427 0xff, size >> TARGET_PAGE_BITS);
2428
2429 last_ram_offset += size;
2430
6f0437e8
JK
2431 if (kvm_enabled())
2432 kvm_setup_guest_memory(new_block->host, size);
2433
94a6b54f
PB
2434 return new_block->offset;
2435}
e9a1ab19 2436
c227f099 2437void qemu_ram_free(ram_addr_t addr)
e9a1ab19 2438{
94a6b54f 2439 /* TODO: implement this. */
e9a1ab19
FB
2440}
2441
dc828ca1 2442/* Return a host pointer to ram allocated with qemu_ram_alloc.
5579c7f3
PB
2443 With the exception of the softmmu code in this file, this should
2444 only be used for local memory (e.g. video ram) that the device owns,
2445 and knows it isn't going to access beyond the end of the block.
2446
2447 It should not be used for general purpose DMA.
2448 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2449 */
c227f099 2450void *qemu_get_ram_ptr(ram_addr_t addr)
dc828ca1 2451{
94a6b54f
PB
2452 RAMBlock *prev;
2453 RAMBlock **prevp;
2454 RAMBlock *block;
2455
94a6b54f
PB
2456 prev = NULL;
2457 prevp = &ram_blocks;
2458 block = ram_blocks;
2459 while (block && (block->offset > addr
2460 || block->offset + block->length <= addr)) {
2461 if (prev)
2462 prevp = &prev->next;
2463 prev = block;
2464 block = block->next;
2465 }
2466 if (!block) {
2467 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2468 abort();
2469 }
2470 /* Move this entry to to start of the list. */
2471 if (prev) {
2472 prev->next = block->next;
2473 block->next = *prevp;
2474 *prevp = block;
2475 }
2476 return block->host + (addr - block->offset);
dc828ca1
PB
2477}
2478
5579c7f3
PB
2479/* Some of the softmmu routines need to translate from a host pointer
2480 (typically a TLB entry) back to a ram offset. */
c227f099 2481ram_addr_t qemu_ram_addr_from_host(void *ptr)
5579c7f3 2482{
94a6b54f
PB
2483 RAMBlock *prev;
2484 RAMBlock **prevp;
2485 RAMBlock *block;
2486 uint8_t *host = ptr;
2487
94a6b54f
PB
2488 prev = NULL;
2489 prevp = &ram_blocks;
2490 block = ram_blocks;
2491 while (block && (block->host > host
2492 || block->host + block->length <= host)) {
2493 if (prev)
2494 prevp = &prev->next;
2495 prev = block;
2496 block = block->next;
2497 }
2498 if (!block) {
2499 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2500 abort();
2501 }
2502 return block->offset + (host - block->host);
5579c7f3
PB
2503}
2504
c227f099 2505static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 2506{
67d3b957 2507#ifdef DEBUG_UNASSIGNED
ab3d1727 2508 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316 2509#endif
faed1c2a 2510#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2511 do_unassigned_access(addr, 0, 0, 0, 1);
2512#endif
2513 return 0;
2514}
2515
c227f099 2516static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
e18231a3
BS
2517{
2518#ifdef DEBUG_UNASSIGNED
2519 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2520#endif
faed1c2a 2521#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2522 do_unassigned_access(addr, 0, 0, 0, 2);
2523#endif
2524 return 0;
2525}
2526
c227f099 2527static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
e18231a3
BS
2528{
2529#ifdef DEBUG_UNASSIGNED
2530 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2531#endif
faed1c2a 2532#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 2533 do_unassigned_access(addr, 0, 0, 0, 4);
67d3b957 2534#endif
33417e70
FB
2535 return 0;
2536}
2537
c227f099 2538static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 2539{
67d3b957 2540#ifdef DEBUG_UNASSIGNED
ab3d1727 2541 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 2542#endif
faed1c2a 2543#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2544 do_unassigned_access(addr, 1, 0, 0, 1);
2545#endif
2546}
2547
c227f099 2548static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
2549{
2550#ifdef DEBUG_UNASSIGNED
2551 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2552#endif
faed1c2a 2553#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2554 do_unassigned_access(addr, 1, 0, 0, 2);
2555#endif
2556}
2557
c227f099 2558static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
2559{
2560#ifdef DEBUG_UNASSIGNED
2561 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2562#endif
faed1c2a 2563#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 2564 do_unassigned_access(addr, 1, 0, 0, 4);
b4f0a316 2565#endif
33417e70
FB
2566}
2567
d60efc6b 2568static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
33417e70 2569 unassigned_mem_readb,
e18231a3
BS
2570 unassigned_mem_readw,
2571 unassigned_mem_readl,
33417e70
FB
2572};
2573
d60efc6b 2574static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
33417e70 2575 unassigned_mem_writeb,
e18231a3
BS
2576 unassigned_mem_writew,
2577 unassigned_mem_writel,
33417e70
FB
2578};
2579
c227f099 2580static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2581 uint32_t val)
9fa3e853 2582{
3a7d929e 2583 int dirty_flags;
3a7d929e
FB
2584 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2585 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2586#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2587 tb_invalidate_phys_page_fast(ram_addr, 1);
2588 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2589#endif
3a7d929e 2590 }
5579c7f3 2591 stb_p(qemu_get_ram_ptr(ram_addr), val);
f23db169
FB
2592 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2593 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2594 /* we remove the notdirty callback only if the code has been
2595 flushed */
2596 if (dirty_flags == 0xff)
2e70f6ef 2597 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2598}
2599
c227f099 2600static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2601 uint32_t val)
9fa3e853 2602{
3a7d929e 2603 int dirty_flags;
3a7d929e
FB
2604 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2605 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2606#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2607 tb_invalidate_phys_page_fast(ram_addr, 2);
2608 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2609#endif
3a7d929e 2610 }
5579c7f3 2611 stw_p(qemu_get_ram_ptr(ram_addr), val);
f23db169
FB
2612 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2613 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2614 /* we remove the notdirty callback only if the code has been
2615 flushed */
2616 if (dirty_flags == 0xff)
2e70f6ef 2617 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2618}
2619
c227f099 2620static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2621 uint32_t val)
9fa3e853 2622{
3a7d929e 2623 int dirty_flags;
3a7d929e
FB
2624 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2625 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2626#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2627 tb_invalidate_phys_page_fast(ram_addr, 4);
2628 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2629#endif
3a7d929e 2630 }
5579c7f3 2631 stl_p(qemu_get_ram_ptr(ram_addr), val);
f23db169
FB
2632 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2633 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2634 /* we remove the notdirty callback only if the code has been
2635 flushed */
2636 if (dirty_flags == 0xff)
2e70f6ef 2637 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2638}
2639
d60efc6b 2640static CPUReadMemoryFunc * const error_mem_read[3] = {
9fa3e853
FB
2641 NULL, /* never used */
2642 NULL, /* never used */
2643 NULL, /* never used */
2644};
2645
d60efc6b 2646static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
1ccde1cb
FB
2647 notdirty_mem_writeb,
2648 notdirty_mem_writew,
2649 notdirty_mem_writel,
2650};
2651
0f459d16 2652/* Generate a debug exception if a watchpoint has been hit. */
b4051334 2653static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16
PB
2654{
2655 CPUState *env = cpu_single_env;
06d55cc1
AL
2656 target_ulong pc, cs_base;
2657 TranslationBlock *tb;
0f459d16 2658 target_ulong vaddr;
a1d1bb31 2659 CPUWatchpoint *wp;
06d55cc1 2660 int cpu_flags;
0f459d16 2661
06d55cc1
AL
2662 if (env->watchpoint_hit) {
2663 /* We re-entered the check after replacing the TB. Now raise
2664 * the debug interrupt so that is will trigger after the
2665 * current instruction. */
2666 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2667 return;
2668 }
2e70f6ef 2669 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
72cf2d4f 2670 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
2671 if ((vaddr == (wp->vaddr & len_mask) ||
2672 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
2673 wp->flags |= BP_WATCHPOINT_HIT;
2674 if (!env->watchpoint_hit) {
2675 env->watchpoint_hit = wp;
2676 tb = tb_find_pc(env->mem_io_pc);
2677 if (!tb) {
2678 cpu_abort(env, "check_watchpoint: could not find TB for "
2679 "pc=%p", (void *)env->mem_io_pc);
2680 }
2681 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
2682 tb_phys_invalidate(tb, -1);
2683 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2684 env->exception_index = EXCP_DEBUG;
2685 } else {
2686 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2687 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2688 }
2689 cpu_resume_from_signal(env, NULL);
06d55cc1 2690 }
6e140f28
AL
2691 } else {
2692 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2693 }
2694 }
2695}
2696
6658ffb8
PB
2697/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2698 so these check for a hit then pass through to the normal out-of-line
2699 phys routines. */
c227f099 2700static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
6658ffb8 2701{
b4051334 2702 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
6658ffb8
PB
2703 return ldub_phys(addr);
2704}
2705
c227f099 2706static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
6658ffb8 2707{
b4051334 2708 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
6658ffb8
PB
2709 return lduw_phys(addr);
2710}
2711
c227f099 2712static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
6658ffb8 2713{
b4051334 2714 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
6658ffb8
PB
2715 return ldl_phys(addr);
2716}
2717
c227f099 2718static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
2719 uint32_t val)
2720{
b4051334 2721 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
6658ffb8
PB
2722 stb_phys(addr, val);
2723}
2724
c227f099 2725static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
2726 uint32_t val)
2727{
b4051334 2728 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
6658ffb8
PB
2729 stw_phys(addr, val);
2730}
2731
c227f099 2732static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
2733 uint32_t val)
2734{
b4051334 2735 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
6658ffb8
PB
2736 stl_phys(addr, val);
2737}
2738
d60efc6b 2739static CPUReadMemoryFunc * const watch_mem_read[3] = {
6658ffb8
PB
2740 watch_mem_readb,
2741 watch_mem_readw,
2742 watch_mem_readl,
2743};
2744
d60efc6b 2745static CPUWriteMemoryFunc * const watch_mem_write[3] = {
6658ffb8
PB
2746 watch_mem_writeb,
2747 watch_mem_writew,
2748 watch_mem_writel,
2749};
6658ffb8 2750
c227f099 2751static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
db7b5426
BS
2752 unsigned int len)
2753{
db7b5426
BS
2754 uint32_t ret;
2755 unsigned int idx;
2756
8da3ff18 2757 idx = SUBPAGE_IDX(addr);
db7b5426
BS
2758#if defined(DEBUG_SUBPAGE)
2759 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2760 mmio, len, addr, idx);
2761#endif
8da3ff18
PB
2762 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
2763 addr + mmio->region_offset[idx][0][len]);
db7b5426
BS
2764
2765 return ret;
2766}
2767
c227f099 2768static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
db7b5426
BS
2769 uint32_t value, unsigned int len)
2770{
db7b5426
BS
2771 unsigned int idx;
2772
8da3ff18 2773 idx = SUBPAGE_IDX(addr);
db7b5426
BS
2774#if defined(DEBUG_SUBPAGE)
2775 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2776 mmio, len, addr, idx, value);
2777#endif
8da3ff18
PB
2778 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
2779 addr + mmio->region_offset[idx][1][len],
2780 value);
db7b5426
BS
2781}
2782
c227f099 2783static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
db7b5426
BS
2784{
2785#if defined(DEBUG_SUBPAGE)
2786 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2787#endif
2788
2789 return subpage_readlen(opaque, addr, 0);
2790}
2791
c227f099 2792static void subpage_writeb (void *opaque, target_phys_addr_t addr,
db7b5426
BS
2793 uint32_t value)
2794{
2795#if defined(DEBUG_SUBPAGE)
2796 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2797#endif
2798 subpage_writelen(opaque, addr, value, 0);
2799}
2800
c227f099 2801static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
db7b5426
BS
2802{
2803#if defined(DEBUG_SUBPAGE)
2804 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2805#endif
2806
2807 return subpage_readlen(opaque, addr, 1);
2808}
2809
c227f099 2810static void subpage_writew (void *opaque, target_phys_addr_t addr,
db7b5426
BS
2811 uint32_t value)
2812{
2813#if defined(DEBUG_SUBPAGE)
2814 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2815#endif
2816 subpage_writelen(opaque, addr, value, 1);
2817}
2818
c227f099 2819static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
db7b5426
BS
2820{
2821#if defined(DEBUG_SUBPAGE)
2822 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2823#endif
2824
2825 return subpage_readlen(opaque, addr, 2);
2826}
2827
2828static void subpage_writel (void *opaque,
c227f099 2829 target_phys_addr_t addr, uint32_t value)
db7b5426
BS
2830{
2831#if defined(DEBUG_SUBPAGE)
2832 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2833#endif
2834 subpage_writelen(opaque, addr, value, 2);
2835}
2836
d60efc6b 2837static CPUReadMemoryFunc * const subpage_read[] = {
db7b5426
BS
2838 &subpage_readb,
2839 &subpage_readw,
2840 &subpage_readl,
2841};
2842
d60efc6b 2843static CPUWriteMemoryFunc * const subpage_write[] = {
db7b5426
BS
2844 &subpage_writeb,
2845 &subpage_writew,
2846 &subpage_writel,
2847};
2848
c227f099
AL
2849static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2850 ram_addr_t memory, ram_addr_t region_offset)
db7b5426
BS
2851{
2852 int idx, eidx;
4254fab8 2853 unsigned int i;
db7b5426
BS
2854
2855 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2856 return -1;
2857 idx = SUBPAGE_IDX(start);
2858 eidx = SUBPAGE_IDX(end);
2859#if defined(DEBUG_SUBPAGE)
0bf9e31a 2860 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
db7b5426
BS
2861 mmio, start, end, idx, eidx, memory);
2862#endif
2863 memory >>= IO_MEM_SHIFT;
2864 for (; idx <= eidx; idx++) {
4254fab8 2865 for (i = 0; i < 4; i++) {
3ee89922
BS
2866 if (io_mem_read[memory][i]) {
2867 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2868 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
8da3ff18 2869 mmio->region_offset[idx][0][i] = region_offset;
3ee89922
BS
2870 }
2871 if (io_mem_write[memory][i]) {
2872 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2873 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
8da3ff18 2874 mmio->region_offset[idx][1][i] = region_offset;
3ee89922 2875 }
4254fab8 2876 }
db7b5426
BS
2877 }
2878
2879 return 0;
2880}
2881
c227f099
AL
2882static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2883 ram_addr_t orig_memory, ram_addr_t region_offset)
db7b5426 2884{
c227f099 2885 subpage_t *mmio;
db7b5426
BS
2886 int subpage_memory;
2887
c227f099 2888 mmio = qemu_mallocz(sizeof(subpage_t));
1eec614b
AL
2889
2890 mmio->base = base;
1eed09cb 2891 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
db7b5426 2892#if defined(DEBUG_SUBPAGE)
1eec614b
AL
2893 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2894 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 2895#endif
1eec614b
AL
2896 *phys = subpage_memory | IO_MEM_SUBPAGE;
2897 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
8da3ff18 2898 region_offset);
db7b5426
BS
2899
2900 return mmio;
2901}
2902
88715657
AL
2903static int get_free_io_mem_idx(void)
2904{
2905 int i;
2906
2907 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
2908 if (!io_mem_used[i]) {
2909 io_mem_used[i] = 1;
2910 return i;
2911 }
2912
2913 return -1;
2914}
2915
33417e70
FB
2916/* mem_read and mem_write are arrays of functions containing the
2917 function to access byte (index 0), word (index 1) and dword (index
0b4e6e3e 2918 2). Functions can be omitted with a NULL function pointer.
3ee89922 2919 If io_index is non zero, the corresponding io zone is
4254fab8
BS
2920 modified. If it is zero, a new io zone is allocated. The return
2921 value can be used with cpu_register_physical_memory(). (-1) is
2922 returned if error. */
1eed09cb 2923static int cpu_register_io_memory_fixed(int io_index,
d60efc6b
BS
2924 CPUReadMemoryFunc * const *mem_read,
2925 CPUWriteMemoryFunc * const *mem_write,
1eed09cb 2926 void *opaque)
33417e70 2927{
4254fab8 2928 int i, subwidth = 0;
33417e70
FB
2929
2930 if (io_index <= 0) {
88715657
AL
2931 io_index = get_free_io_mem_idx();
2932 if (io_index == -1)
2933 return io_index;
33417e70 2934 } else {
1eed09cb 2935 io_index >>= IO_MEM_SHIFT;
33417e70
FB
2936 if (io_index >= IO_MEM_NB_ENTRIES)
2937 return -1;
2938 }
b5ff1b31 2939
33417e70 2940 for(i = 0;i < 3; i++) {
4254fab8
BS
2941 if (!mem_read[i] || !mem_write[i])
2942 subwidth = IO_MEM_SUBWIDTH;
33417e70
FB
2943 io_mem_read[io_index][i] = mem_read[i];
2944 io_mem_write[io_index][i] = mem_write[i];
2945 }
a4193c8a 2946 io_mem_opaque[io_index] = opaque;
4254fab8 2947 return (io_index << IO_MEM_SHIFT) | subwidth;
33417e70 2948}
61382a50 2949
d60efc6b
BS
2950int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
2951 CPUWriteMemoryFunc * const *mem_write,
1eed09cb
AK
2952 void *opaque)
2953{
2954 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
2955}
2956
88715657
AL
2957void cpu_unregister_io_memory(int io_table_address)
2958{
2959 int i;
2960 int io_index = io_table_address >> IO_MEM_SHIFT;
2961
2962 for (i=0;i < 3; i++) {
2963 io_mem_read[io_index][i] = unassigned_mem_read[i];
2964 io_mem_write[io_index][i] = unassigned_mem_write[i];
2965 }
2966 io_mem_opaque[io_index] = NULL;
2967 io_mem_used[io_index] = 0;
2968}
2969
e9179ce1
AK
2970static void io_mem_init(void)
2971{
2972 int i;
2973
2974 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
2975 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
2976 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
2977 for (i=0; i<5; i++)
2978 io_mem_used[i] = 1;
2979
2980 io_mem_watch = cpu_register_io_memory(watch_mem_read,
2981 watch_mem_write, NULL);
e9179ce1
AK
2982}
2983
e2eef170
PB
2984#endif /* !defined(CONFIG_USER_ONLY) */
2985
13eb76e0
FB
2986/* physical memory access (slow version, mainly for debug) */
2987#if defined(CONFIG_USER_ONLY)
c227f099 2988void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
2989 int len, int is_write)
2990{
2991 int l, flags;
2992 target_ulong page;
53a5960a 2993 void * p;
13eb76e0
FB
2994
2995 while (len > 0) {
2996 page = addr & TARGET_PAGE_MASK;
2997 l = (page + TARGET_PAGE_SIZE) - addr;
2998 if (l > len)
2999 l = len;
3000 flags = page_get_flags(page);
3001 if (!(flags & PAGE_VALID))
3002 return;
3003 if (is_write) {
3004 if (!(flags & PAGE_WRITE))
3005 return;
579a97f7 3006 /* XXX: this code should not depend on lock_user */
72fb7daa 3007 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
579a97f7
FB
3008 /* FIXME - should this return an error rather than just fail? */
3009 return;
72fb7daa
AJ
3010 memcpy(p, buf, l);
3011 unlock_user(p, addr, l);
13eb76e0
FB
3012 } else {
3013 if (!(flags & PAGE_READ))
3014 return;
579a97f7 3015 /* XXX: this code should not depend on lock_user */
72fb7daa 3016 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
579a97f7
FB
3017 /* FIXME - should this return an error rather than just fail? */
3018 return;
72fb7daa 3019 memcpy(buf, p, l);
5b257578 3020 unlock_user(p, addr, 0);
13eb76e0
FB
3021 }
3022 len -= l;
3023 buf += l;
3024 addr += l;
3025 }
3026}
8df1cd07 3027
13eb76e0 3028#else
c227f099 3029void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3030 int len, int is_write)
3031{
3032 int l, io_index;
3033 uint8_t *ptr;
3034 uint32_t val;
c227f099 3035 target_phys_addr_t page;
2e12669a 3036 unsigned long pd;
92e873b9 3037 PhysPageDesc *p;
3b46e624 3038
13eb76e0
FB
3039 while (len > 0) {
3040 page = addr & TARGET_PAGE_MASK;
3041 l = (page + TARGET_PAGE_SIZE) - addr;
3042 if (l > len)
3043 l = len;
92e873b9 3044 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
3045 if (!p) {
3046 pd = IO_MEM_UNASSIGNED;
3047 } else {
3048 pd = p->phys_offset;
3049 }
3b46e624 3050
13eb76e0 3051 if (is_write) {
3a7d929e 3052 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
c227f099 3053 target_phys_addr_t addr1 = addr;
13eb76e0 3054 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3055 if (p)
6c2934db 3056 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
6a00d601
FB
3057 /* XXX: could force cpu_single_env to NULL to avoid
3058 potential bugs */
6c2934db 3059 if (l >= 4 && ((addr1 & 3) == 0)) {
1c213d19 3060 /* 32 bit write access */
c27004ec 3061 val = ldl_p(buf);
6c2934db 3062 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
13eb76e0 3063 l = 4;
6c2934db 3064 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1c213d19 3065 /* 16 bit write access */
c27004ec 3066 val = lduw_p(buf);
6c2934db 3067 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3068 l = 2;
3069 } else {
1c213d19 3070 /* 8 bit write access */
c27004ec 3071 val = ldub_p(buf);
6c2934db 3072 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3073 l = 1;
3074 }
3075 } else {
b448f2f3
FB
3076 unsigned long addr1;
3077 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 3078 /* RAM case */
5579c7f3 3079 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 3080 memcpy(ptr, buf, l);
3a7d929e
FB
3081 if (!cpu_physical_memory_is_dirty(addr1)) {
3082 /* invalidate code */
3083 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3084 /* set dirty bit */
5fafdf24 3085 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
f23db169 3086 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3087 }
13eb76e0
FB
3088 }
3089 } else {
5fafdf24 3090 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3091 !(pd & IO_MEM_ROMD)) {
c227f099 3092 target_phys_addr_t addr1 = addr;
13eb76e0
FB
3093 /* I/O case */
3094 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3095 if (p)
6c2934db
AJ
3096 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3097 if (l >= 4 && ((addr1 & 3) == 0)) {
13eb76e0 3098 /* 32 bit read access */
6c2934db 3099 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
c27004ec 3100 stl_p(buf, val);
13eb76e0 3101 l = 4;
6c2934db 3102 } else if (l >= 2 && ((addr1 & 1) == 0)) {
13eb76e0 3103 /* 16 bit read access */
6c2934db 3104 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
c27004ec 3105 stw_p(buf, val);
13eb76e0
FB
3106 l = 2;
3107 } else {
1c213d19 3108 /* 8 bit read access */
6c2934db 3109 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
c27004ec 3110 stb_p(buf, val);
13eb76e0
FB
3111 l = 1;
3112 }
3113 } else {
3114 /* RAM case */
5579c7f3 3115 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
13eb76e0
FB
3116 (addr & ~TARGET_PAGE_MASK);
3117 memcpy(buf, ptr, l);
3118 }
3119 }
3120 len -= l;
3121 buf += l;
3122 addr += l;
3123 }
3124}
8df1cd07 3125
d0ecd2aa 3126/* used for ROM loading : can write in RAM and ROM */
c227f099 3127void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
3128 const uint8_t *buf, int len)
3129{
3130 int l;
3131 uint8_t *ptr;
c227f099 3132 target_phys_addr_t page;
d0ecd2aa
FB
3133 unsigned long pd;
3134 PhysPageDesc *p;
3b46e624 3135
d0ecd2aa
FB
3136 while (len > 0) {
3137 page = addr & TARGET_PAGE_MASK;
3138 l = (page + TARGET_PAGE_SIZE) - addr;
3139 if (l > len)
3140 l = len;
3141 p = phys_page_find(page >> TARGET_PAGE_BITS);
3142 if (!p) {
3143 pd = IO_MEM_UNASSIGNED;
3144 } else {
3145 pd = p->phys_offset;
3146 }
3b46e624 3147
d0ecd2aa 3148 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
3149 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3150 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
3151 /* do nothing */
3152 } else {
3153 unsigned long addr1;
3154 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3155 /* ROM/RAM case */
5579c7f3 3156 ptr = qemu_get_ram_ptr(addr1);
d0ecd2aa
FB
3157 memcpy(ptr, buf, l);
3158 }
3159 len -= l;
3160 buf += l;
3161 addr += l;
3162 }
3163}
3164
6d16c2f8
AL
3165typedef struct {
3166 void *buffer;
c227f099
AL
3167 target_phys_addr_t addr;
3168 target_phys_addr_t len;
6d16c2f8
AL
3169} BounceBuffer;
3170
3171static BounceBuffer bounce;
3172
ba223c29
AL
3173typedef struct MapClient {
3174 void *opaque;
3175 void (*callback)(void *opaque);
72cf2d4f 3176 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3177} MapClient;
3178
72cf2d4f
BS
3179static QLIST_HEAD(map_client_list, MapClient) map_client_list
3180 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29
AL
3181
3182void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3183{
3184 MapClient *client = qemu_malloc(sizeof(*client));
3185
3186 client->opaque = opaque;
3187 client->callback = callback;
72cf2d4f 3188 QLIST_INSERT_HEAD(&map_client_list, client, link);
ba223c29
AL
3189 return client;
3190}
3191
3192void cpu_unregister_map_client(void *_client)
3193{
3194 MapClient *client = (MapClient *)_client;
3195
72cf2d4f 3196 QLIST_REMOVE(client, link);
34d5e948 3197 qemu_free(client);
ba223c29
AL
3198}
3199
3200static void cpu_notify_map_clients(void)
3201{
3202 MapClient *client;
3203
72cf2d4f
BS
3204 while (!QLIST_EMPTY(&map_client_list)) {
3205 client = QLIST_FIRST(&map_client_list);
ba223c29 3206 client->callback(client->opaque);
34d5e948 3207 cpu_unregister_map_client(client);
ba223c29
AL
3208 }
3209}
3210
6d16c2f8
AL
3211/* Map a physical memory region into a host virtual address.
3212 * May map a subset of the requested range, given by and returned in *plen.
3213 * May return NULL if resources needed to perform the mapping are exhausted.
3214 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3215 * Use cpu_register_map_client() to know when retrying the map operation is
3216 * likely to succeed.
6d16c2f8 3217 */
c227f099
AL
3218void *cpu_physical_memory_map(target_phys_addr_t addr,
3219 target_phys_addr_t *plen,
6d16c2f8
AL
3220 int is_write)
3221{
c227f099
AL
3222 target_phys_addr_t len = *plen;
3223 target_phys_addr_t done = 0;
6d16c2f8
AL
3224 int l;
3225 uint8_t *ret = NULL;
3226 uint8_t *ptr;
c227f099 3227 target_phys_addr_t page;
6d16c2f8
AL
3228 unsigned long pd;
3229 PhysPageDesc *p;
3230 unsigned long addr1;
3231
3232 while (len > 0) {
3233 page = addr & TARGET_PAGE_MASK;
3234 l = (page + TARGET_PAGE_SIZE) - addr;
3235 if (l > len)
3236 l = len;
3237 p = phys_page_find(page >> TARGET_PAGE_BITS);
3238 if (!p) {
3239 pd = IO_MEM_UNASSIGNED;
3240 } else {
3241 pd = p->phys_offset;
3242 }
3243
3244 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3245 if (done || bounce.buffer) {
3246 break;
3247 }
3248 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3249 bounce.addr = addr;
3250 bounce.len = l;
3251 if (!is_write) {
3252 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3253 }
3254 ptr = bounce.buffer;
3255 } else {
3256 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3257 ptr = qemu_get_ram_ptr(addr1);
6d16c2f8
AL
3258 }
3259 if (!done) {
3260 ret = ptr;
3261 } else if (ret + done != ptr) {
3262 break;
3263 }
3264
3265 len -= l;
3266 addr += l;
3267 done += l;
3268 }
3269 *plen = done;
3270 return ret;
3271}
3272
3273/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3274 * Will also mark the memory as dirty if is_write == 1. access_len gives
3275 * the amount of memory that was actually read or written by the caller.
3276 */
c227f099
AL
3277void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3278 int is_write, target_phys_addr_t access_len)
6d16c2f8
AL
3279{
3280 if (buffer != bounce.buffer) {
3281 if (is_write) {
c227f099 3282 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
6d16c2f8
AL
3283 while (access_len) {
3284 unsigned l;
3285 l = TARGET_PAGE_SIZE;
3286 if (l > access_len)
3287 l = access_len;
3288 if (!cpu_physical_memory_is_dirty(addr1)) {
3289 /* invalidate code */
3290 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3291 /* set dirty bit */
3292 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3293 (0xff & ~CODE_DIRTY_FLAG);
3294 }
3295 addr1 += l;
3296 access_len -= l;
3297 }
3298 }
3299 return;
3300 }
3301 if (is_write) {
3302 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3303 }
3304 qemu_free(bounce.buffer);
3305 bounce.buffer = NULL;
ba223c29 3306 cpu_notify_map_clients();
6d16c2f8 3307}
d0ecd2aa 3308
8df1cd07 3309/* warning: addr must be aligned */
c227f099 3310uint32_t ldl_phys(target_phys_addr_t addr)
8df1cd07
FB
3311{
3312 int io_index;
3313 uint8_t *ptr;
3314 uint32_t val;
3315 unsigned long pd;
3316 PhysPageDesc *p;
3317
3318 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3319 if (!p) {
3320 pd = IO_MEM_UNASSIGNED;
3321 } else {
3322 pd = p->phys_offset;
3323 }
3b46e624 3324
5fafdf24 3325 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3326 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
3327 /* I/O case */
3328 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3329 if (p)
3330 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3331 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3332 } else {
3333 /* RAM case */
5579c7f3 3334 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
8df1cd07
FB
3335 (addr & ~TARGET_PAGE_MASK);
3336 val = ldl_p(ptr);
3337 }
3338 return val;
3339}
3340
84b7b8e7 3341/* warning: addr must be aligned */
c227f099 3342uint64_t ldq_phys(target_phys_addr_t addr)
84b7b8e7
FB
3343{
3344 int io_index;
3345 uint8_t *ptr;
3346 uint64_t val;
3347 unsigned long pd;
3348 PhysPageDesc *p;
3349
3350 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3351 if (!p) {
3352 pd = IO_MEM_UNASSIGNED;
3353 } else {
3354 pd = p->phys_offset;
3355 }
3b46e624 3356
2a4188a3
FB
3357 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3358 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
3359 /* I/O case */
3360 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3361 if (p)
3362 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
84b7b8e7
FB
3363#ifdef TARGET_WORDS_BIGENDIAN
3364 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3365 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3366#else
3367 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3368 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3369#endif
3370 } else {
3371 /* RAM case */
5579c7f3 3372 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
84b7b8e7
FB
3373 (addr & ~TARGET_PAGE_MASK);
3374 val = ldq_p(ptr);
3375 }
3376 return val;
3377}
3378
aab33094 3379/* XXX: optimize */
c227f099 3380uint32_t ldub_phys(target_phys_addr_t addr)
aab33094
FB
3381{
3382 uint8_t val;
3383 cpu_physical_memory_read(addr, &val, 1);
3384 return val;
3385}
3386
3387/* XXX: optimize */
c227f099 3388uint32_t lduw_phys(target_phys_addr_t addr)
aab33094
FB
3389{
3390 uint16_t val;
3391 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3392 return tswap16(val);
3393}
3394
8df1cd07
FB
3395/* warning: addr must be aligned. The ram page is not masked as dirty
3396 and the code inside is not invalidated. It is useful if the dirty
3397 bits are used to track modified PTEs */
c227f099 3398void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
3399{
3400 int io_index;
3401 uint8_t *ptr;
3402 unsigned long pd;
3403 PhysPageDesc *p;
3404
3405 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3406 if (!p) {
3407 pd = IO_MEM_UNASSIGNED;
3408 } else {
3409 pd = p->phys_offset;
3410 }
3b46e624 3411
3a7d929e 3412 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3413 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3414 if (p)
3415 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3416 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3417 } else {
74576198 3418 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3419 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3420 stl_p(ptr, val);
74576198
AL
3421
3422 if (unlikely(in_migration)) {
3423 if (!cpu_physical_memory_is_dirty(addr1)) {
3424 /* invalidate code */
3425 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3426 /* set dirty bit */
3427 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3428 (0xff & ~CODE_DIRTY_FLAG);
3429 }
3430 }
8df1cd07
FB
3431 }
3432}
3433
c227f099 3434void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
bc98a7ef
JM
3435{
3436 int io_index;
3437 uint8_t *ptr;
3438 unsigned long pd;
3439 PhysPageDesc *p;
3440
3441 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3442 if (!p) {
3443 pd = IO_MEM_UNASSIGNED;
3444 } else {
3445 pd = p->phys_offset;
3446 }
3b46e624 3447
bc98a7ef
JM
3448 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3449 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3450 if (p)
3451 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
bc98a7ef
JM
3452#ifdef TARGET_WORDS_BIGENDIAN
3453 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3454 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3455#else
3456 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3457 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3458#endif
3459 } else {
5579c7f3 3460 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
3461 (addr & ~TARGET_PAGE_MASK);
3462 stq_p(ptr, val);
3463 }
3464}
3465
8df1cd07 3466/* warning: addr must be aligned */
c227f099 3467void stl_phys(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
3468{
3469 int io_index;
3470 uint8_t *ptr;
3471 unsigned long pd;
3472 PhysPageDesc *p;
3473
3474 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3475 if (!p) {
3476 pd = IO_MEM_UNASSIGNED;
3477 } else {
3478 pd = p->phys_offset;
3479 }
3b46e624 3480
3a7d929e 3481 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3482 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3483 if (p)
3484 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3485 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3486 } else {
3487 unsigned long addr1;
3488 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3489 /* RAM case */
5579c7f3 3490 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3491 stl_p(ptr, val);
3a7d929e
FB
3492 if (!cpu_physical_memory_is_dirty(addr1)) {
3493 /* invalidate code */
3494 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3495 /* set dirty bit */
f23db169
FB
3496 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3497 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3498 }
8df1cd07
FB
3499 }
3500}
3501
aab33094 3502/* XXX: optimize */
c227f099 3503void stb_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
3504{
3505 uint8_t v = val;
3506 cpu_physical_memory_write(addr, &v, 1);
3507}
3508
3509/* XXX: optimize */
c227f099 3510void stw_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
3511{
3512 uint16_t v = tswap16(val);
3513 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3514}
3515
3516/* XXX: optimize */
c227f099 3517void stq_phys(target_phys_addr_t addr, uint64_t val)
aab33094
FB
3518{
3519 val = tswap64(val);
3520 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3521}
3522
13eb76e0
FB
3523#endif
3524
5e2972fd 3525/* virtual memory access for debug (includes writing to ROM) */
5fafdf24 3526int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 3527 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3528{
3529 int l;
c227f099 3530 target_phys_addr_t phys_addr;
9b3c35e0 3531 target_ulong page;
13eb76e0
FB
3532
3533 while (len > 0) {
3534 page = addr & TARGET_PAGE_MASK;
3535 phys_addr = cpu_get_phys_page_debug(env, page);
3536 /* if no physical page mapped, return an error */
3537 if (phys_addr == -1)
3538 return -1;
3539 l = (page + TARGET_PAGE_SIZE) - addr;
3540 if (l > len)
3541 l = len;
5e2972fd
AL
3542 phys_addr += (addr & ~TARGET_PAGE_MASK);
3543#if !defined(CONFIG_USER_ONLY)
3544 if (is_write)
3545 cpu_physical_memory_write_rom(phys_addr, buf, l);
3546 else
3547#endif
3548 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
3549 len -= l;
3550 buf += l;
3551 addr += l;
3552 }
3553 return 0;
3554}
3555
2e70f6ef
PB
3556/* in deterministic execution mode, instructions doing device I/Os
3557 must be at the end of the TB */
3558void cpu_io_recompile(CPUState *env, void *retaddr)
3559{
3560 TranslationBlock *tb;
3561 uint32_t n, cflags;
3562 target_ulong pc, cs_base;
3563 uint64_t flags;
3564
3565 tb = tb_find_pc((unsigned long)retaddr);
3566 if (!tb) {
3567 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3568 retaddr);
3569 }
3570 n = env->icount_decr.u16.low + tb->icount;
3571 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3572 /* Calculate how many instructions had been executed before the fault
bf20dc07 3573 occurred. */
2e70f6ef
PB
3574 n = n - env->icount_decr.u16.low;
3575 /* Generate a new TB ending on the I/O insn. */
3576 n++;
3577 /* On MIPS and SH, delay slot instructions can only be restarted if
3578 they were already the first instruction in the TB. If this is not
bf20dc07 3579 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
3580 branch. */
3581#if defined(TARGET_MIPS)
3582 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3583 env->active_tc.PC -= 4;
3584 env->icount_decr.u16.low++;
3585 env->hflags &= ~MIPS_HFLAG_BMASK;
3586 }
3587#elif defined(TARGET_SH4)
3588 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3589 && n > 1) {
3590 env->pc -= 2;
3591 env->icount_decr.u16.low++;
3592 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3593 }
3594#endif
3595 /* This should never happen. */
3596 if (n > CF_COUNT_MASK)
3597 cpu_abort(env, "TB too big during recompile");
3598
3599 cflags = n | CF_LAST_IO;
3600 pc = tb->pc;
3601 cs_base = tb->cs_base;
3602 flags = tb->flags;
3603 tb_phys_invalidate(tb, -1);
3604 /* FIXME: In theory this could raise an exception. In practice
3605 we have already translated the block once so it's probably ok. */
3606 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 3607 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
3608 the first in the TB) then we end up generating a whole new TB and
3609 repeating the fault, which is horribly inefficient.
3610 Better would be to execute just this insn uncached, or generate a
3611 second new TB. */
3612 cpu_resume_from_signal(env, NULL);
3613}
3614
e3db7226
FB
3615void dump_exec_info(FILE *f,
3616 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3617{
3618 int i, target_code_size, max_target_code_size;
3619 int direct_jmp_count, direct_jmp2_count, cross_page;
3620 TranslationBlock *tb;
3b46e624 3621
e3db7226
FB
3622 target_code_size = 0;
3623 max_target_code_size = 0;
3624 cross_page = 0;
3625 direct_jmp_count = 0;
3626 direct_jmp2_count = 0;
3627 for(i = 0; i < nb_tbs; i++) {
3628 tb = &tbs[i];
3629 target_code_size += tb->size;
3630 if (tb->size > max_target_code_size)
3631 max_target_code_size = tb->size;
3632 if (tb->page_addr[1] != -1)
3633 cross_page++;
3634 if (tb->tb_next_offset[0] != 0xffff) {
3635 direct_jmp_count++;
3636 if (tb->tb_next_offset[1] != 0xffff) {
3637 direct_jmp2_count++;
3638 }
3639 }
3640 }
3641 /* XXX: avoid using doubles ? */
57fec1fe 3642 cpu_fprintf(f, "Translation buffer state:\n");
26a5f13b
FB
3643 cpu_fprintf(f, "gen code size %ld/%ld\n",
3644 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3645 cpu_fprintf(f, "TB count %d/%d\n",
3646 nb_tbs, code_gen_max_blocks);
5fafdf24 3647 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
3648 nb_tbs ? target_code_size / nb_tbs : 0,
3649 max_target_code_size);
5fafdf24 3650 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
3651 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3652 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
3653 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3654 cross_page,
e3db7226
FB
3655 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3656 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 3657 direct_jmp_count,
e3db7226
FB
3658 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3659 direct_jmp2_count,
3660 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 3661 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
3662 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3663 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3664 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 3665 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
3666}
3667
5fafdf24 3668#if !defined(CONFIG_USER_ONLY)
61382a50
FB
3669
3670#define MMUSUFFIX _cmmu
3671#define GETPC() NULL
3672#define env cpu_single_env
b769d8fe 3673#define SOFTMMU_CODE_ACCESS
61382a50
FB
3674
3675#define SHIFT 0
3676#include "softmmu_template.h"
3677
3678#define SHIFT 1
3679#include "softmmu_template.h"
3680
3681#define SHIFT 2
3682#include "softmmu_template.h"
3683
3684#define SHIFT 3
3685#include "softmmu_template.h"
3686
3687#undef env
3688
3689#endif