]> git.proxmox.com Git - qemu.git/blame - exec.c
Add a configure switch to enable / disable all user targets. I felt compelled to...
[qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
d5a8f07c
FB
20#ifdef _WIN32
21#include <windows.h>
22#else
a98d49b1 23#include <sys/types.h>
d5a8f07c
FB
24#include <sys/mman.h>
25#endif
54936004
FB
26#include <stdlib.h>
27#include <stdio.h>
28#include <stdarg.h>
29#include <string.h>
30#include <errno.h>
31#include <unistd.h>
32#include <inttypes.h>
33
6180a181
FB
34#include "cpu.h"
35#include "exec-all.h"
ca10f867 36#include "qemu-common.h"
b67d9a52 37#include "tcg.h"
b3c7724c 38#include "hw/hw.h"
74576198 39#include "osdep.h"
7ba1e619 40#include "kvm.h"
53a5960a
PB
41#if defined(CONFIG_USER_ONLY)
42#include <qemu.h>
43#endif
54936004 44
fd6ce8f6 45//#define DEBUG_TB_INVALIDATE
66e85a21 46//#define DEBUG_FLUSH
9fa3e853 47//#define DEBUG_TLB
67d3b957 48//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
49
50/* make various TB consistency checks */
5fafdf24
TS
51//#define DEBUG_TB_CHECK
52//#define DEBUG_TLB_CHECK
fd6ce8f6 53
1196be37 54//#define DEBUG_IOPORT
db7b5426 55//#define DEBUG_SUBPAGE
1196be37 56
99773bd4
PB
57#if !defined(CONFIG_USER_ONLY)
58/* TB consistency checks only implemented for usermode emulation. */
59#undef DEBUG_TB_CHECK
60#endif
61
9fa3e853
FB
62#define SMC_BITMAP_USE_THRESHOLD 10
63
108c49b8
FB
64#if defined(TARGET_SPARC64)
65#define TARGET_PHYS_ADDR_SPACE_BITS 41
5dcb6b91
BS
66#elif defined(TARGET_SPARC)
67#define TARGET_PHYS_ADDR_SPACE_BITS 36
bedb69ea
JM
68#elif defined(TARGET_ALPHA)
69#define TARGET_PHYS_ADDR_SPACE_BITS 42
70#define TARGET_VIRT_ADDR_SPACE_BITS 42
108c49b8
FB
71#elif defined(TARGET_PPC64)
72#define TARGET_PHYS_ADDR_SPACE_BITS 42
640f42e4 73#elif defined(TARGET_X86_64) && !defined(CONFIG_KQEMU)
00f82b8a 74#define TARGET_PHYS_ADDR_SPACE_BITS 42
640f42e4 75#elif defined(TARGET_I386) && !defined(CONFIG_KQEMU)
00f82b8a 76#define TARGET_PHYS_ADDR_SPACE_BITS 36
108c49b8
FB
77#else
78/* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
79#define TARGET_PHYS_ADDR_SPACE_BITS 32
80#endif
81
bdaf78e0 82static TranslationBlock *tbs;
26a5f13b 83int code_gen_max_blocks;
9fa3e853 84TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 85static int nb_tbs;
eb51d102
FB
86/* any access to the tbs or the page table must use this lock */
87spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 88
141ac468
BS
89#if defined(__arm__) || defined(__sparc_v9__)
90/* The prologue must be reachable with a direct jump. ARM and Sparc64
91 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
92 section close to code segment. */
93#define code_gen_section \
94 __attribute__((__section__(".gen_code"))) \
95 __attribute__((aligned (32)))
f8e2af11
SW
96#elif defined(_WIN32)
97/* Maximum alignment for Win32 is 16. */
98#define code_gen_section \
99 __attribute__((aligned (16)))
d03d860b
BS
100#else
101#define code_gen_section \
102 __attribute__((aligned (32)))
103#endif
104
105uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
106static uint8_t *code_gen_buffer;
107static unsigned long code_gen_buffer_size;
26a5f13b 108/* threshold to flush the translated code buffer */
bdaf78e0 109static unsigned long code_gen_buffer_max_size;
fd6ce8f6
FB
110uint8_t *code_gen_ptr;
111
e2eef170 112#if !defined(CONFIG_USER_ONLY)
9fa3e853 113int phys_ram_fd;
1ccde1cb 114uint8_t *phys_ram_dirty;
74576198 115static int in_migration;
94a6b54f
PB
116
117typedef struct RAMBlock {
118 uint8_t *host;
119 ram_addr_t offset;
120 ram_addr_t length;
121 struct RAMBlock *next;
122} RAMBlock;
123
124static RAMBlock *ram_blocks;
125/* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
ccbb4d44 126 then we can no longer assume contiguous ram offsets, and external uses
94a6b54f
PB
127 of this variable will break. */
128ram_addr_t last_ram_offset;
e2eef170 129#endif
9fa3e853 130
6a00d601
FB
131CPUState *first_cpu;
132/* current CPU in the current thread. It is only valid inside
133 cpu_exec() */
5fafdf24 134CPUState *cpu_single_env;
2e70f6ef 135/* 0 = Do not count executed instructions.
bf20dc07 136 1 = Precise instruction counting.
2e70f6ef
PB
137 2 = Adaptive rate instruction counting. */
138int use_icount = 0;
139/* Current instruction counter. While executing translated code this may
140 include some instructions that have not yet been executed. */
141int64_t qemu_icount;
6a00d601 142
54936004 143typedef struct PageDesc {
92e873b9 144 /* list of TBs intersecting this ram page */
fd6ce8f6 145 TranslationBlock *first_tb;
9fa3e853
FB
146 /* in order to optimize self modifying code, we count the number
147 of lookups we do to a given page to use a bitmap */
148 unsigned int code_write_count;
149 uint8_t *code_bitmap;
150#if defined(CONFIG_USER_ONLY)
151 unsigned long flags;
152#endif
54936004
FB
153} PageDesc;
154
92e873b9 155typedef struct PhysPageDesc {
0f459d16 156 /* offset in host memory of the page + io_index in the low bits */
00f82b8a 157 ram_addr_t phys_offset;
8da3ff18 158 ram_addr_t region_offset;
92e873b9
FB
159} PhysPageDesc;
160
54936004 161#define L2_BITS 10
bedb69ea
JM
162#if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
163/* XXX: this is a temporary hack for alpha target.
164 * In the future, this is to be replaced by a multi-level table
165 * to actually be able to handle the complete 64 bits address space.
166 */
167#define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
168#else
03875444 169#define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
bedb69ea 170#endif
54936004
FB
171
172#define L1_SIZE (1 << L1_BITS)
173#define L2_SIZE (1 << L2_BITS)
174
83fb7adf
FB
175unsigned long qemu_real_host_page_size;
176unsigned long qemu_host_page_bits;
177unsigned long qemu_host_page_size;
178unsigned long qemu_host_page_mask;
54936004 179
92e873b9 180/* XXX: for system emulation, it could just be an array */
54936004 181static PageDesc *l1_map[L1_SIZE];
bdaf78e0 182static PhysPageDesc **l1_phys_map;
54936004 183
e2eef170
PB
184#if !defined(CONFIG_USER_ONLY)
185static void io_mem_init(void);
186
33417e70 187/* io memory support */
33417e70
FB
188CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
189CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 190void *io_mem_opaque[IO_MEM_NB_ENTRIES];
511d2b14 191static char io_mem_used[IO_MEM_NB_ENTRIES];
6658ffb8
PB
192static int io_mem_watch;
193#endif
33417e70 194
34865134 195/* log support */
d9b630fd 196static const char *logfilename = "/tmp/qemu.log";
34865134
FB
197FILE *logfile;
198int loglevel;
e735b91c 199static int log_append = 0;
34865134 200
e3db7226
FB
201/* statistics */
202static int tlb_flush_count;
203static int tb_flush_count;
204static int tb_phys_invalidate_count;
205
db7b5426
BS
206#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
207typedef struct subpage_t {
208 target_phys_addr_t base;
3ee89922
BS
209 CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4];
210 CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4];
211 void *opaque[TARGET_PAGE_SIZE][2][4];
8da3ff18 212 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
db7b5426
BS
213} subpage_t;
214
7cb69cae
FB
215#ifdef _WIN32
216static void map_exec(void *addr, long size)
217{
218 DWORD old_protect;
219 VirtualProtect(addr, size,
220 PAGE_EXECUTE_READWRITE, &old_protect);
221
222}
223#else
224static void map_exec(void *addr, long size)
225{
4369415f 226 unsigned long start, end, page_size;
7cb69cae 227
4369415f 228 page_size = getpagesize();
7cb69cae 229 start = (unsigned long)addr;
4369415f 230 start &= ~(page_size - 1);
7cb69cae
FB
231
232 end = (unsigned long)addr + size;
4369415f
FB
233 end += page_size - 1;
234 end &= ~(page_size - 1);
7cb69cae
FB
235
236 mprotect((void *)start, end - start,
237 PROT_READ | PROT_WRITE | PROT_EXEC);
238}
239#endif
240
b346ff46 241static void page_init(void)
54936004 242{
83fb7adf 243 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 244 TARGET_PAGE_SIZE */
c2b48b69
AL
245#ifdef _WIN32
246 {
247 SYSTEM_INFO system_info;
248
249 GetSystemInfo(&system_info);
250 qemu_real_host_page_size = system_info.dwPageSize;
251 }
252#else
253 qemu_real_host_page_size = getpagesize();
254#endif
83fb7adf
FB
255 if (qemu_host_page_size == 0)
256 qemu_host_page_size = qemu_real_host_page_size;
257 if (qemu_host_page_size < TARGET_PAGE_SIZE)
258 qemu_host_page_size = TARGET_PAGE_SIZE;
259 qemu_host_page_bits = 0;
260 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
261 qemu_host_page_bits++;
262 qemu_host_page_mask = ~(qemu_host_page_size - 1);
108c49b8
FB
263 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
264 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
50a9569b
AZ
265
266#if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
267 {
268 long long startaddr, endaddr;
269 FILE *f;
270 int n;
271
c8a706fe 272 mmap_lock();
0776590d 273 last_brk = (unsigned long)sbrk(0);
50a9569b
AZ
274 f = fopen("/proc/self/maps", "r");
275 if (f) {
276 do {
277 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
278 if (n == 2) {
e0b8d65a
BS
279 startaddr = MIN(startaddr,
280 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
281 endaddr = MIN(endaddr,
282 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
b5fc909e 283 page_set_flags(startaddr & TARGET_PAGE_MASK,
50a9569b
AZ
284 TARGET_PAGE_ALIGN(endaddr),
285 PAGE_RESERVED);
286 }
287 } while (!feof(f));
288 fclose(f);
289 }
c8a706fe 290 mmap_unlock();
50a9569b
AZ
291 }
292#endif
54936004
FB
293}
294
434929bf 295static inline PageDesc **page_l1_map(target_ulong index)
54936004 296{
17e2377a
PB
297#if TARGET_LONG_BITS > 32
298 /* Host memory outside guest VM. For 32-bit targets we have already
299 excluded high addresses. */
d8173e0f 300 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
17e2377a
PB
301 return NULL;
302#endif
434929bf
AL
303 return &l1_map[index >> L2_BITS];
304}
305
306static inline PageDesc *page_find_alloc(target_ulong index)
307{
308 PageDesc **lp, *p;
309 lp = page_l1_map(index);
310 if (!lp)
311 return NULL;
312
54936004
FB
313 p = *lp;
314 if (!p) {
315 /* allocate if not found */
17e2377a 316#if defined(CONFIG_USER_ONLY)
17e2377a
PB
317 size_t len = sizeof(PageDesc) * L2_SIZE;
318 /* Don't use qemu_malloc because it may recurse. */
660f11be 319 p = mmap(NULL, len, PROT_READ | PROT_WRITE,
17e2377a 320 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
54936004 321 *lp = p;
fb1c2cd7
AJ
322 if (h2g_valid(p)) {
323 unsigned long addr = h2g(p);
17e2377a
PB
324 page_set_flags(addr & TARGET_PAGE_MASK,
325 TARGET_PAGE_ALIGN(addr + len),
326 PAGE_RESERVED);
327 }
328#else
329 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
330 *lp = p;
331#endif
54936004
FB
332 }
333 return p + (index & (L2_SIZE - 1));
334}
335
00f82b8a 336static inline PageDesc *page_find(target_ulong index)
54936004 337{
434929bf
AL
338 PageDesc **lp, *p;
339 lp = page_l1_map(index);
340 if (!lp)
341 return NULL;
54936004 342
434929bf 343 p = *lp;
660f11be
BS
344 if (!p) {
345 return NULL;
346 }
fd6ce8f6
FB
347 return p + (index & (L2_SIZE - 1));
348}
349
108c49b8 350static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 351{
108c49b8 352 void **lp, **p;
e3f4e2a4 353 PhysPageDesc *pd;
92e873b9 354
108c49b8
FB
355 p = (void **)l1_phys_map;
356#if TARGET_PHYS_ADDR_SPACE_BITS > 32
357
358#if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
359#error unsupported TARGET_PHYS_ADDR_SPACE_BITS
360#endif
361 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
92e873b9
FB
362 p = *lp;
363 if (!p) {
364 /* allocate if not found */
108c49b8
FB
365 if (!alloc)
366 return NULL;
367 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
368 memset(p, 0, sizeof(void *) * L1_SIZE);
369 *lp = p;
370 }
371#endif
372 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
e3f4e2a4
PB
373 pd = *lp;
374 if (!pd) {
375 int i;
108c49b8
FB
376 /* allocate if not found */
377 if (!alloc)
378 return NULL;
e3f4e2a4
PB
379 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
380 *lp = pd;
67c4d23c 381 for (i = 0; i < L2_SIZE; i++) {
e3f4e2a4 382 pd[i].phys_offset = IO_MEM_UNASSIGNED;
67c4d23c
PB
383 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
384 }
92e873b9 385 }
e3f4e2a4 386 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
92e873b9
FB
387}
388
108c49b8 389static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 390{
108c49b8 391 return phys_page_find_alloc(index, 0);
92e873b9
FB
392}
393
9fa3e853 394#if !defined(CONFIG_USER_ONLY)
6a00d601 395static void tlb_protect_code(ram_addr_t ram_addr);
5fafdf24 396static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 397 target_ulong vaddr);
c8a706fe
PB
398#define mmap_lock() do { } while(0)
399#define mmap_unlock() do { } while(0)
9fa3e853 400#endif
fd6ce8f6 401
4369415f
FB
402#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
403
404#if defined(CONFIG_USER_ONLY)
ccbb4d44 405/* Currently it is not recommended to allocate big chunks of data in
4369415f
FB
406 user mode. It will change when a dedicated libc will be used */
407#define USE_STATIC_CODE_GEN_BUFFER
408#endif
409
410#ifdef USE_STATIC_CODE_GEN_BUFFER
411static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
412#endif
413
8fcd3692 414static void code_gen_alloc(unsigned long tb_size)
26a5f13b 415{
4369415f
FB
416#ifdef USE_STATIC_CODE_GEN_BUFFER
417 code_gen_buffer = static_code_gen_buffer;
418 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
419 map_exec(code_gen_buffer, code_gen_buffer_size);
420#else
26a5f13b
FB
421 code_gen_buffer_size = tb_size;
422 if (code_gen_buffer_size == 0) {
4369415f
FB
423#if defined(CONFIG_USER_ONLY)
424 /* in user mode, phys_ram_size is not meaningful */
425 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
426#else
ccbb4d44 427 /* XXX: needs adjustments */
94a6b54f 428 code_gen_buffer_size = (unsigned long)(ram_size / 4);
4369415f 429#endif
26a5f13b
FB
430 }
431 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
432 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
433 /* The code gen buffer location may have constraints depending on
434 the host cpu and OS */
435#if defined(__linux__)
436 {
437 int flags;
141ac468
BS
438 void *start = NULL;
439
26a5f13b
FB
440 flags = MAP_PRIVATE | MAP_ANONYMOUS;
441#if defined(__x86_64__)
442 flags |= MAP_32BIT;
443 /* Cannot map more than that */
444 if (code_gen_buffer_size > (800 * 1024 * 1024))
445 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
446#elif defined(__sparc_v9__)
447 // Map the buffer below 2G, so we can use direct calls and branches
448 flags |= MAP_FIXED;
449 start = (void *) 0x60000000UL;
450 if (code_gen_buffer_size > (512 * 1024 * 1024))
451 code_gen_buffer_size = (512 * 1024 * 1024);
1cb0661e 452#elif defined(__arm__)
63d41246 453 /* Map the buffer below 32M, so we can use direct calls and branches */
1cb0661e
AZ
454 flags |= MAP_FIXED;
455 start = (void *) 0x01000000UL;
456 if (code_gen_buffer_size > 16 * 1024 * 1024)
457 code_gen_buffer_size = 16 * 1024 * 1024;
26a5f13b 458#endif
141ac468
BS
459 code_gen_buffer = mmap(start, code_gen_buffer_size,
460 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
461 flags, -1, 0);
462 if (code_gen_buffer == MAP_FAILED) {
463 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
464 exit(1);
465 }
466 }
c5e97233 467#elif defined(__FreeBSD__) || defined(__DragonFly__)
06e67a82
AL
468 {
469 int flags;
470 void *addr = NULL;
471 flags = MAP_PRIVATE | MAP_ANONYMOUS;
472#if defined(__x86_64__)
473 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
474 * 0x40000000 is free */
475 flags |= MAP_FIXED;
476 addr = (void *)0x40000000;
477 /* Cannot map more than that */
478 if (code_gen_buffer_size > (800 * 1024 * 1024))
479 code_gen_buffer_size = (800 * 1024 * 1024);
480#endif
481 code_gen_buffer = mmap(addr, code_gen_buffer_size,
482 PROT_WRITE | PROT_READ | PROT_EXEC,
483 flags, -1, 0);
484 if (code_gen_buffer == MAP_FAILED) {
485 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
486 exit(1);
487 }
488 }
26a5f13b
FB
489#else
490 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
26a5f13b
FB
491 map_exec(code_gen_buffer, code_gen_buffer_size);
492#endif
4369415f 493#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b
FB
494 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
495 code_gen_buffer_max_size = code_gen_buffer_size -
496 code_gen_max_block_size();
497 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
498 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
499}
500
501/* Must be called before using the QEMU cpus. 'tb_size' is the size
502 (in bytes) allocated to the translation buffer. Zero means default
503 size. */
504void cpu_exec_init_all(unsigned long tb_size)
505{
26a5f13b
FB
506 cpu_gen_init();
507 code_gen_alloc(tb_size);
508 code_gen_ptr = code_gen_buffer;
4369415f 509 page_init();
e2eef170 510#if !defined(CONFIG_USER_ONLY)
26a5f13b 511 io_mem_init();
e2eef170 512#endif
26a5f13b
FB
513}
514
9656f324
PB
515#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
516
517#define CPU_COMMON_SAVE_VERSION 1
518
519static void cpu_common_save(QEMUFile *f, void *opaque)
520{
521 CPUState *env = opaque;
522
b0a46a33
JK
523 cpu_synchronize_state(env, 0);
524
9656f324
PB
525 qemu_put_be32s(f, &env->halted);
526 qemu_put_be32s(f, &env->interrupt_request);
527}
528
529static int cpu_common_load(QEMUFile *f, void *opaque, int version_id)
530{
531 CPUState *env = opaque;
532
533 if (version_id != CPU_COMMON_SAVE_VERSION)
534 return -EINVAL;
535
536 qemu_get_be32s(f, &env->halted);
75f482ae 537 qemu_get_be32s(f, &env->interrupt_request);
3098dba0
AJ
538 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
539 version_id is increased. */
540 env->interrupt_request &= ~0x01;
9656f324 541 tlb_flush(env, 1);
b0a46a33 542 cpu_synchronize_state(env, 1);
9656f324
PB
543
544 return 0;
545}
546#endif
547
950f1472
GC
548CPUState *qemu_get_cpu(int cpu)
549{
550 CPUState *env = first_cpu;
551
552 while (env) {
553 if (env->cpu_index == cpu)
554 break;
555 env = env->next_cpu;
556 }
557
558 return env;
559}
560
6a00d601 561void cpu_exec_init(CPUState *env)
fd6ce8f6 562{
6a00d601
FB
563 CPUState **penv;
564 int cpu_index;
565
c2764719
PB
566#if defined(CONFIG_USER_ONLY)
567 cpu_list_lock();
568#endif
6a00d601
FB
569 env->next_cpu = NULL;
570 penv = &first_cpu;
571 cpu_index = 0;
572 while (*penv != NULL) {
1e9fa730 573 penv = &(*penv)->next_cpu;
6a00d601
FB
574 cpu_index++;
575 }
576 env->cpu_index = cpu_index;
268a362c 577 env->numa_node = 0;
c0ce998e
AL
578 TAILQ_INIT(&env->breakpoints);
579 TAILQ_INIT(&env->watchpoints);
6a00d601 580 *penv = env;
c2764719
PB
581#if defined(CONFIG_USER_ONLY)
582 cpu_list_unlock();
583#endif
b3c7724c 584#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
9656f324
PB
585 register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION,
586 cpu_common_save, cpu_common_load, env);
b3c7724c
PB
587 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
588 cpu_save, cpu_load, env);
589#endif
fd6ce8f6
FB
590}
591
9fa3e853
FB
592static inline void invalidate_page_bitmap(PageDesc *p)
593{
594 if (p->code_bitmap) {
59817ccb 595 qemu_free(p->code_bitmap);
9fa3e853
FB
596 p->code_bitmap = NULL;
597 }
598 p->code_write_count = 0;
599}
600
fd6ce8f6
FB
601/* set to NULL all the 'first_tb' fields in all PageDescs */
602static void page_flush_tb(void)
603{
604 int i, j;
605 PageDesc *p;
606
607 for(i = 0; i < L1_SIZE; i++) {
608 p = l1_map[i];
609 if (p) {
9fa3e853
FB
610 for(j = 0; j < L2_SIZE; j++) {
611 p->first_tb = NULL;
612 invalidate_page_bitmap(p);
613 p++;
614 }
fd6ce8f6
FB
615 }
616 }
617}
618
619/* flush all the translation blocks */
d4e8164f 620/* XXX: tb_flush is currently not thread safe */
6a00d601 621void tb_flush(CPUState *env1)
fd6ce8f6 622{
6a00d601 623 CPUState *env;
0124311e 624#if defined(DEBUG_FLUSH)
ab3d1727
BS
625 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
626 (unsigned long)(code_gen_ptr - code_gen_buffer),
627 nb_tbs, nb_tbs > 0 ?
628 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 629#endif
26a5f13b 630 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
631 cpu_abort(env1, "Internal error: code buffer overflow\n");
632
fd6ce8f6 633 nb_tbs = 0;
3b46e624 634
6a00d601
FB
635 for(env = first_cpu; env != NULL; env = env->next_cpu) {
636 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
637 }
9fa3e853 638
8a8a608f 639 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 640 page_flush_tb();
9fa3e853 641
fd6ce8f6 642 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
643 /* XXX: flush processor icache at this point if cache flush is
644 expensive */
e3db7226 645 tb_flush_count++;
fd6ce8f6
FB
646}
647
648#ifdef DEBUG_TB_CHECK
649
bc98a7ef 650static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
651{
652 TranslationBlock *tb;
653 int i;
654 address &= TARGET_PAGE_MASK;
99773bd4
PB
655 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
656 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
657 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
658 address >= tb->pc + tb->size)) {
0bf9e31a
BS
659 printf("ERROR invalidate: address=" TARGET_FMT_lx
660 " PC=%08lx size=%04x\n",
99773bd4 661 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
662 }
663 }
664 }
665}
666
667/* verify that all the pages have correct rights for code */
668static void tb_page_check(void)
669{
670 TranslationBlock *tb;
671 int i, flags1, flags2;
3b46e624 672
99773bd4
PB
673 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
674 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
675 flags1 = page_get_flags(tb->pc);
676 flags2 = page_get_flags(tb->pc + tb->size - 1);
677 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
678 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 679 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
680 }
681 }
682 }
683}
684
685#endif
686
687/* invalidate one TB */
688static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
689 int next_offset)
690{
691 TranslationBlock *tb1;
692 for(;;) {
693 tb1 = *ptb;
694 if (tb1 == tb) {
695 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
696 break;
697 }
698 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
699 }
700}
701
9fa3e853
FB
702static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
703{
704 TranslationBlock *tb1;
705 unsigned int n1;
706
707 for(;;) {
708 tb1 = *ptb;
709 n1 = (long)tb1 & 3;
710 tb1 = (TranslationBlock *)((long)tb1 & ~3);
711 if (tb1 == tb) {
712 *ptb = tb1->page_next[n1];
713 break;
714 }
715 ptb = &tb1->page_next[n1];
716 }
717}
718
d4e8164f
FB
719static inline void tb_jmp_remove(TranslationBlock *tb, int n)
720{
721 TranslationBlock *tb1, **ptb;
722 unsigned int n1;
723
724 ptb = &tb->jmp_next[n];
725 tb1 = *ptb;
726 if (tb1) {
727 /* find tb(n) in circular list */
728 for(;;) {
729 tb1 = *ptb;
730 n1 = (long)tb1 & 3;
731 tb1 = (TranslationBlock *)((long)tb1 & ~3);
732 if (n1 == n && tb1 == tb)
733 break;
734 if (n1 == 2) {
735 ptb = &tb1->jmp_first;
736 } else {
737 ptb = &tb1->jmp_next[n1];
738 }
739 }
740 /* now we can suppress tb(n) from the list */
741 *ptb = tb->jmp_next[n];
742
743 tb->jmp_next[n] = NULL;
744 }
745}
746
747/* reset the jump entry 'n' of a TB so that it is not chained to
748 another TB */
749static inline void tb_reset_jump(TranslationBlock *tb, int n)
750{
751 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
752}
753
2e70f6ef 754void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
fd6ce8f6 755{
6a00d601 756 CPUState *env;
8a40a180 757 PageDesc *p;
d4e8164f 758 unsigned int h, n1;
00f82b8a 759 target_phys_addr_t phys_pc;
8a40a180 760 TranslationBlock *tb1, *tb2;
3b46e624 761
8a40a180
FB
762 /* remove the TB from the hash list */
763 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
764 h = tb_phys_hash_func(phys_pc);
5fafdf24 765 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
766 offsetof(TranslationBlock, phys_hash_next));
767
768 /* remove the TB from the page list */
769 if (tb->page_addr[0] != page_addr) {
770 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
771 tb_page_remove(&p->first_tb, tb);
772 invalidate_page_bitmap(p);
773 }
774 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
775 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
776 tb_page_remove(&p->first_tb, tb);
777 invalidate_page_bitmap(p);
778 }
779
36bdbe54 780 tb_invalidated_flag = 1;
59817ccb 781
fd6ce8f6 782 /* remove the TB from the hash list */
8a40a180 783 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
784 for(env = first_cpu; env != NULL; env = env->next_cpu) {
785 if (env->tb_jmp_cache[h] == tb)
786 env->tb_jmp_cache[h] = NULL;
787 }
d4e8164f
FB
788
789 /* suppress this TB from the two jump lists */
790 tb_jmp_remove(tb, 0);
791 tb_jmp_remove(tb, 1);
792
793 /* suppress any remaining jumps to this TB */
794 tb1 = tb->jmp_first;
795 for(;;) {
796 n1 = (long)tb1 & 3;
797 if (n1 == 2)
798 break;
799 tb1 = (TranslationBlock *)((long)tb1 & ~3);
800 tb2 = tb1->jmp_next[n1];
801 tb_reset_jump(tb1, n1);
802 tb1->jmp_next[n1] = NULL;
803 tb1 = tb2;
804 }
805 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 806
e3db7226 807 tb_phys_invalidate_count++;
9fa3e853
FB
808}
809
810static inline void set_bits(uint8_t *tab, int start, int len)
811{
812 int end, mask, end1;
813
814 end = start + len;
815 tab += start >> 3;
816 mask = 0xff << (start & 7);
817 if ((start & ~7) == (end & ~7)) {
818 if (start < end) {
819 mask &= ~(0xff << (end & 7));
820 *tab |= mask;
821 }
822 } else {
823 *tab++ |= mask;
824 start = (start + 8) & ~7;
825 end1 = end & ~7;
826 while (start < end1) {
827 *tab++ = 0xff;
828 start += 8;
829 }
830 if (start < end) {
831 mask = ~(0xff << (end & 7));
832 *tab |= mask;
833 }
834 }
835}
836
837static void build_page_bitmap(PageDesc *p)
838{
839 int n, tb_start, tb_end;
840 TranslationBlock *tb;
3b46e624 841
b2a7081a 842 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
843
844 tb = p->first_tb;
845 while (tb != NULL) {
846 n = (long)tb & 3;
847 tb = (TranslationBlock *)((long)tb & ~3);
848 /* NOTE: this is subtle as a TB may span two physical pages */
849 if (n == 0) {
850 /* NOTE: tb_end may be after the end of the page, but
851 it is not a problem */
852 tb_start = tb->pc & ~TARGET_PAGE_MASK;
853 tb_end = tb_start + tb->size;
854 if (tb_end > TARGET_PAGE_SIZE)
855 tb_end = TARGET_PAGE_SIZE;
856 } else {
857 tb_start = 0;
858 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
859 }
860 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
861 tb = tb->page_next[n];
862 }
863}
864
2e70f6ef
PB
865TranslationBlock *tb_gen_code(CPUState *env,
866 target_ulong pc, target_ulong cs_base,
867 int flags, int cflags)
d720b93d
FB
868{
869 TranslationBlock *tb;
870 uint8_t *tc_ptr;
871 target_ulong phys_pc, phys_page2, virt_page2;
872 int code_gen_size;
873
c27004ec
FB
874 phys_pc = get_phys_addr_code(env, pc);
875 tb = tb_alloc(pc);
d720b93d
FB
876 if (!tb) {
877 /* flush must be done */
878 tb_flush(env);
879 /* cannot fail at this point */
c27004ec 880 tb = tb_alloc(pc);
2e70f6ef
PB
881 /* Don't forget to invalidate previous TB info. */
882 tb_invalidated_flag = 1;
d720b93d
FB
883 }
884 tc_ptr = code_gen_ptr;
885 tb->tc_ptr = tc_ptr;
886 tb->cs_base = cs_base;
887 tb->flags = flags;
888 tb->cflags = cflags;
d07bde88 889 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 890 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 891
d720b93d 892 /* check next page if needed */
c27004ec 893 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 894 phys_page2 = -1;
c27004ec 895 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
d720b93d
FB
896 phys_page2 = get_phys_addr_code(env, virt_page2);
897 }
898 tb_link_phys(tb, phys_pc, phys_page2);
2e70f6ef 899 return tb;
d720b93d 900}
3b46e624 901
9fa3e853
FB
902/* invalidate all TBs which intersect with the target physical page
903 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
904 the same physical page. 'is_cpu_write_access' should be true if called
905 from a real cpu write access: the virtual CPU will exit the current
906 TB if code is modified inside this TB. */
00f82b8a 907void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
d720b93d
FB
908 int is_cpu_write_access)
909{
6b917547 910 TranslationBlock *tb, *tb_next, *saved_tb;
d720b93d 911 CPUState *env = cpu_single_env;
9fa3e853 912 target_ulong tb_start, tb_end;
6b917547
AL
913 PageDesc *p;
914 int n;
915#ifdef TARGET_HAS_PRECISE_SMC
916 int current_tb_not_found = is_cpu_write_access;
917 TranslationBlock *current_tb = NULL;
918 int current_tb_modified = 0;
919 target_ulong current_pc = 0;
920 target_ulong current_cs_base = 0;
921 int current_flags = 0;
922#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
923
924 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 925 if (!p)
9fa3e853 926 return;
5fafdf24 927 if (!p->code_bitmap &&
d720b93d
FB
928 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
929 is_cpu_write_access) {
9fa3e853
FB
930 /* build code bitmap */
931 build_page_bitmap(p);
932 }
933
934 /* we remove all the TBs in the range [start, end[ */
935 /* XXX: see if in some cases it could be faster to invalidate all the code */
936 tb = p->first_tb;
937 while (tb != NULL) {
938 n = (long)tb & 3;
939 tb = (TranslationBlock *)((long)tb & ~3);
940 tb_next = tb->page_next[n];
941 /* NOTE: this is subtle as a TB may span two physical pages */
942 if (n == 0) {
943 /* NOTE: tb_end may be after the end of the page, but
944 it is not a problem */
945 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
946 tb_end = tb_start + tb->size;
947 } else {
948 tb_start = tb->page_addr[1];
949 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
950 }
951 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
952#ifdef TARGET_HAS_PRECISE_SMC
953 if (current_tb_not_found) {
954 current_tb_not_found = 0;
955 current_tb = NULL;
2e70f6ef 956 if (env->mem_io_pc) {
d720b93d 957 /* now we have a real cpu fault */
2e70f6ef 958 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
959 }
960 }
961 if (current_tb == tb &&
2e70f6ef 962 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
963 /* If we are modifying the current TB, we must stop
964 its execution. We could be more precise by checking
965 that the modification is after the current PC, but it
966 would require a specialized function to partially
967 restore the CPU state */
3b46e624 968
d720b93d 969 current_tb_modified = 1;
5fafdf24 970 cpu_restore_state(current_tb, env,
2e70f6ef 971 env->mem_io_pc, NULL);
6b917547
AL
972 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
973 &current_flags);
d720b93d
FB
974 }
975#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
976 /* we need to do that to handle the case where a signal
977 occurs while doing tb_phys_invalidate() */
978 saved_tb = NULL;
979 if (env) {
980 saved_tb = env->current_tb;
981 env->current_tb = NULL;
982 }
9fa3e853 983 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
984 if (env) {
985 env->current_tb = saved_tb;
986 if (env->interrupt_request && env->current_tb)
987 cpu_interrupt(env, env->interrupt_request);
988 }
9fa3e853
FB
989 }
990 tb = tb_next;
991 }
992#if !defined(CONFIG_USER_ONLY)
993 /* if no code remaining, no need to continue to use slow writes */
994 if (!p->first_tb) {
995 invalidate_page_bitmap(p);
d720b93d 996 if (is_cpu_write_access) {
2e70f6ef 997 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
998 }
999 }
1000#endif
1001#ifdef TARGET_HAS_PRECISE_SMC
1002 if (current_tb_modified) {
1003 /* we generate a block containing just the instruction
1004 modifying the memory. It will ensure that it cannot modify
1005 itself */
ea1c1802 1006 env->current_tb = NULL;
2e70f6ef 1007 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 1008 cpu_resume_from_signal(env, NULL);
9fa3e853 1009 }
fd6ce8f6 1010#endif
9fa3e853 1011}
fd6ce8f6 1012
9fa3e853 1013/* len must be <= 8 and start must be a multiple of len */
00f82b8a 1014static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
9fa3e853
FB
1015{
1016 PageDesc *p;
1017 int offset, b;
59817ccb 1018#if 0
a4193c8a 1019 if (1) {
93fcfe39
AL
1020 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1021 cpu_single_env->mem_io_vaddr, len,
1022 cpu_single_env->eip,
1023 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
59817ccb
FB
1024 }
1025#endif
9fa3e853 1026 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1027 if (!p)
9fa3e853
FB
1028 return;
1029 if (p->code_bitmap) {
1030 offset = start & ~TARGET_PAGE_MASK;
1031 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1032 if (b & ((1 << len) - 1))
1033 goto do_invalidate;
1034 } else {
1035 do_invalidate:
d720b93d 1036 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1037 }
1038}
1039
9fa3e853 1040#if !defined(CONFIG_SOFTMMU)
00f82b8a 1041static void tb_invalidate_phys_page(target_phys_addr_t addr,
d720b93d 1042 unsigned long pc, void *puc)
9fa3e853 1043{
6b917547 1044 TranslationBlock *tb;
9fa3e853 1045 PageDesc *p;
6b917547 1046 int n;
d720b93d 1047#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1048 TranslationBlock *current_tb = NULL;
d720b93d 1049 CPUState *env = cpu_single_env;
6b917547
AL
1050 int current_tb_modified = 0;
1051 target_ulong current_pc = 0;
1052 target_ulong current_cs_base = 0;
1053 int current_flags = 0;
d720b93d 1054#endif
9fa3e853
FB
1055
1056 addr &= TARGET_PAGE_MASK;
1057 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1058 if (!p)
9fa3e853
FB
1059 return;
1060 tb = p->first_tb;
d720b93d
FB
1061#ifdef TARGET_HAS_PRECISE_SMC
1062 if (tb && pc != 0) {
1063 current_tb = tb_find_pc(pc);
1064 }
1065#endif
9fa3e853
FB
1066 while (tb != NULL) {
1067 n = (long)tb & 3;
1068 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1069#ifdef TARGET_HAS_PRECISE_SMC
1070 if (current_tb == tb &&
2e70f6ef 1071 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1072 /* If we are modifying the current TB, we must stop
1073 its execution. We could be more precise by checking
1074 that the modification is after the current PC, but it
1075 would require a specialized function to partially
1076 restore the CPU state */
3b46e624 1077
d720b93d
FB
1078 current_tb_modified = 1;
1079 cpu_restore_state(current_tb, env, pc, puc);
6b917547
AL
1080 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1081 &current_flags);
d720b93d
FB
1082 }
1083#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1084 tb_phys_invalidate(tb, addr);
1085 tb = tb->page_next[n];
1086 }
fd6ce8f6 1087 p->first_tb = NULL;
d720b93d
FB
1088#ifdef TARGET_HAS_PRECISE_SMC
1089 if (current_tb_modified) {
1090 /* we generate a block containing just the instruction
1091 modifying the memory. It will ensure that it cannot modify
1092 itself */
ea1c1802 1093 env->current_tb = NULL;
2e70f6ef 1094 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1095 cpu_resume_from_signal(env, puc);
1096 }
1097#endif
fd6ce8f6 1098}
9fa3e853 1099#endif
fd6ce8f6
FB
1100
1101/* add the tb in the target page and protect it if necessary */
5fafdf24 1102static inline void tb_alloc_page(TranslationBlock *tb,
53a5960a 1103 unsigned int n, target_ulong page_addr)
fd6ce8f6
FB
1104{
1105 PageDesc *p;
9fa3e853
FB
1106 TranslationBlock *last_first_tb;
1107
1108 tb->page_addr[n] = page_addr;
3a7d929e 1109 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
9fa3e853
FB
1110 tb->page_next[n] = p->first_tb;
1111 last_first_tb = p->first_tb;
1112 p->first_tb = (TranslationBlock *)((long)tb | n);
1113 invalidate_page_bitmap(p);
fd6ce8f6 1114
107db443 1115#if defined(TARGET_HAS_SMC) || 1
d720b93d 1116
9fa3e853 1117#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1118 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1119 target_ulong addr;
1120 PageDesc *p2;
9fa3e853
FB
1121 int prot;
1122
fd6ce8f6
FB
1123 /* force the host page as non writable (writes will have a
1124 page fault + mprotect overhead) */
53a5960a 1125 page_addr &= qemu_host_page_mask;
fd6ce8f6 1126 prot = 0;
53a5960a
PB
1127 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1128 addr += TARGET_PAGE_SIZE) {
1129
1130 p2 = page_find (addr >> TARGET_PAGE_BITS);
1131 if (!p2)
1132 continue;
1133 prot |= p2->flags;
1134 p2->flags &= ~PAGE_WRITE;
1135 page_get_flags(addr);
1136 }
5fafdf24 1137 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1138 (prot & PAGE_BITS) & ~PAGE_WRITE);
1139#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1140 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1141 page_addr);
fd6ce8f6 1142#endif
fd6ce8f6 1143 }
9fa3e853
FB
1144#else
1145 /* if some code is already present, then the pages are already
1146 protected. So we handle the case where only the first TB is
1147 allocated in a physical page */
1148 if (!last_first_tb) {
6a00d601 1149 tlb_protect_code(page_addr);
9fa3e853
FB
1150 }
1151#endif
d720b93d
FB
1152
1153#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1154}
1155
1156/* Allocate a new translation block. Flush the translation buffer if
1157 too many translation blocks or too much generated code. */
c27004ec 1158TranslationBlock *tb_alloc(target_ulong pc)
fd6ce8f6
FB
1159{
1160 TranslationBlock *tb;
fd6ce8f6 1161
26a5f13b
FB
1162 if (nb_tbs >= code_gen_max_blocks ||
1163 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
d4e8164f 1164 return NULL;
fd6ce8f6
FB
1165 tb = &tbs[nb_tbs++];
1166 tb->pc = pc;
b448f2f3 1167 tb->cflags = 0;
d4e8164f
FB
1168 return tb;
1169}
1170
2e70f6ef
PB
1171void tb_free(TranslationBlock *tb)
1172{
bf20dc07 1173 /* In practice this is mostly used for single use temporary TB
2e70f6ef
PB
1174 Ignore the hard cases and just back up if this TB happens to
1175 be the last one generated. */
1176 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1177 code_gen_ptr = tb->tc_ptr;
1178 nb_tbs--;
1179 }
1180}
1181
9fa3e853
FB
1182/* add a new TB and link it to the physical page tables. phys_page2 is
1183 (-1) to indicate that only one page contains the TB. */
5fafdf24 1184void tb_link_phys(TranslationBlock *tb,
9fa3e853 1185 target_ulong phys_pc, target_ulong phys_page2)
d4e8164f 1186{
9fa3e853
FB
1187 unsigned int h;
1188 TranslationBlock **ptb;
1189
c8a706fe
PB
1190 /* Grab the mmap lock to stop another thread invalidating this TB
1191 before we are done. */
1192 mmap_lock();
9fa3e853
FB
1193 /* add in the physical hash table */
1194 h = tb_phys_hash_func(phys_pc);
1195 ptb = &tb_phys_hash[h];
1196 tb->phys_hash_next = *ptb;
1197 *ptb = tb;
fd6ce8f6
FB
1198
1199 /* add in the page list */
9fa3e853
FB
1200 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1201 if (phys_page2 != -1)
1202 tb_alloc_page(tb, 1, phys_page2);
1203 else
1204 tb->page_addr[1] = -1;
9fa3e853 1205
d4e8164f
FB
1206 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1207 tb->jmp_next[0] = NULL;
1208 tb->jmp_next[1] = NULL;
1209
1210 /* init original jump addresses */
1211 if (tb->tb_next_offset[0] != 0xffff)
1212 tb_reset_jump(tb, 0);
1213 if (tb->tb_next_offset[1] != 0xffff)
1214 tb_reset_jump(tb, 1);
8a40a180
FB
1215
1216#ifdef DEBUG_TB_CHECK
1217 tb_page_check();
1218#endif
c8a706fe 1219 mmap_unlock();
fd6ce8f6
FB
1220}
1221
9fa3e853
FB
1222/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1223 tb[1].tc_ptr. Return NULL if not found */
1224TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1225{
9fa3e853
FB
1226 int m_min, m_max, m;
1227 unsigned long v;
1228 TranslationBlock *tb;
a513fe19
FB
1229
1230 if (nb_tbs <= 0)
1231 return NULL;
1232 if (tc_ptr < (unsigned long)code_gen_buffer ||
1233 tc_ptr >= (unsigned long)code_gen_ptr)
1234 return NULL;
1235 /* binary search (cf Knuth) */
1236 m_min = 0;
1237 m_max = nb_tbs - 1;
1238 while (m_min <= m_max) {
1239 m = (m_min + m_max) >> 1;
1240 tb = &tbs[m];
1241 v = (unsigned long)tb->tc_ptr;
1242 if (v == tc_ptr)
1243 return tb;
1244 else if (tc_ptr < v) {
1245 m_max = m - 1;
1246 } else {
1247 m_min = m + 1;
1248 }
5fafdf24 1249 }
a513fe19
FB
1250 return &tbs[m_max];
1251}
7501267e 1252
ea041c0e
FB
1253static void tb_reset_jump_recursive(TranslationBlock *tb);
1254
1255static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1256{
1257 TranslationBlock *tb1, *tb_next, **ptb;
1258 unsigned int n1;
1259
1260 tb1 = tb->jmp_next[n];
1261 if (tb1 != NULL) {
1262 /* find head of list */
1263 for(;;) {
1264 n1 = (long)tb1 & 3;
1265 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1266 if (n1 == 2)
1267 break;
1268 tb1 = tb1->jmp_next[n1];
1269 }
1270 /* we are now sure now that tb jumps to tb1 */
1271 tb_next = tb1;
1272
1273 /* remove tb from the jmp_first list */
1274 ptb = &tb_next->jmp_first;
1275 for(;;) {
1276 tb1 = *ptb;
1277 n1 = (long)tb1 & 3;
1278 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1279 if (n1 == n && tb1 == tb)
1280 break;
1281 ptb = &tb1->jmp_next[n1];
1282 }
1283 *ptb = tb->jmp_next[n];
1284 tb->jmp_next[n] = NULL;
3b46e624 1285
ea041c0e
FB
1286 /* suppress the jump to next tb in generated code */
1287 tb_reset_jump(tb, n);
1288
0124311e 1289 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1290 tb_reset_jump_recursive(tb_next);
1291 }
1292}
1293
1294static void tb_reset_jump_recursive(TranslationBlock *tb)
1295{
1296 tb_reset_jump_recursive2(tb, 0);
1297 tb_reset_jump_recursive2(tb, 1);
1298}
1299
1fddef4b 1300#if defined(TARGET_HAS_ICE)
d720b93d
FB
1301static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1302{
9b3c35e0
JM
1303 target_phys_addr_t addr;
1304 target_ulong pd;
c2f07f81
PB
1305 ram_addr_t ram_addr;
1306 PhysPageDesc *p;
d720b93d 1307
c2f07f81
PB
1308 addr = cpu_get_phys_page_debug(env, pc);
1309 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1310 if (!p) {
1311 pd = IO_MEM_UNASSIGNED;
1312 } else {
1313 pd = p->phys_offset;
1314 }
1315 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1316 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1317}
c27004ec 1318#endif
d720b93d 1319
6658ffb8 1320/* Add a watchpoint. */
a1d1bb31
AL
1321int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1322 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1323{
b4051334 1324 target_ulong len_mask = ~(len - 1);
c0ce998e 1325 CPUWatchpoint *wp;
6658ffb8 1326
b4051334
AL
1327 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1328 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1329 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1330 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1331 return -EINVAL;
1332 }
a1d1bb31 1333 wp = qemu_malloc(sizeof(*wp));
a1d1bb31
AL
1334
1335 wp->vaddr = addr;
b4051334 1336 wp->len_mask = len_mask;
a1d1bb31
AL
1337 wp->flags = flags;
1338
2dc9f411 1339 /* keep all GDB-injected watchpoints in front */
c0ce998e
AL
1340 if (flags & BP_GDB)
1341 TAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1342 else
1343 TAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 1344
6658ffb8 1345 tlb_flush_page(env, addr);
a1d1bb31
AL
1346
1347 if (watchpoint)
1348 *watchpoint = wp;
1349 return 0;
6658ffb8
PB
1350}
1351
a1d1bb31
AL
1352/* Remove a specific watchpoint. */
1353int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1354 int flags)
6658ffb8 1355{
b4051334 1356 target_ulong len_mask = ~(len - 1);
a1d1bb31 1357 CPUWatchpoint *wp;
6658ffb8 1358
c0ce998e 1359 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 1360 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1361 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1362 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1363 return 0;
1364 }
1365 }
a1d1bb31 1366 return -ENOENT;
6658ffb8
PB
1367}
1368
a1d1bb31
AL
1369/* Remove a specific watchpoint by reference. */
1370void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1371{
c0ce998e 1372 TAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 1373
a1d1bb31
AL
1374 tlb_flush_page(env, watchpoint->vaddr);
1375
1376 qemu_free(watchpoint);
1377}
1378
1379/* Remove all matching watchpoints. */
1380void cpu_watchpoint_remove_all(CPUState *env, int mask)
1381{
c0ce998e 1382 CPUWatchpoint *wp, *next;
a1d1bb31 1383
c0ce998e 1384 TAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
1385 if (wp->flags & mask)
1386 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 1387 }
7d03f82f
EI
1388}
1389
a1d1bb31
AL
1390/* Add a breakpoint. */
1391int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1392 CPUBreakpoint **breakpoint)
4c3a88a2 1393{
1fddef4b 1394#if defined(TARGET_HAS_ICE)
c0ce998e 1395 CPUBreakpoint *bp;
3b46e624 1396
a1d1bb31 1397 bp = qemu_malloc(sizeof(*bp));
4c3a88a2 1398
a1d1bb31
AL
1399 bp->pc = pc;
1400 bp->flags = flags;
1401
2dc9f411 1402 /* keep all GDB-injected breakpoints in front */
c0ce998e
AL
1403 if (flags & BP_GDB)
1404 TAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1405 else
1406 TAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 1407
d720b93d 1408 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1409
1410 if (breakpoint)
1411 *breakpoint = bp;
4c3a88a2
FB
1412 return 0;
1413#else
a1d1bb31 1414 return -ENOSYS;
4c3a88a2
FB
1415#endif
1416}
1417
a1d1bb31
AL
1418/* Remove a specific breakpoint. */
1419int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1420{
7d03f82f 1421#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1422 CPUBreakpoint *bp;
1423
c0ce998e 1424 TAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
1425 if (bp->pc == pc && bp->flags == flags) {
1426 cpu_breakpoint_remove_by_ref(env, bp);
1427 return 0;
1428 }
7d03f82f 1429 }
a1d1bb31
AL
1430 return -ENOENT;
1431#else
1432 return -ENOSYS;
7d03f82f
EI
1433#endif
1434}
1435
a1d1bb31
AL
1436/* Remove a specific breakpoint by reference. */
1437void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1438{
1fddef4b 1439#if defined(TARGET_HAS_ICE)
c0ce998e 1440 TAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 1441
a1d1bb31
AL
1442 breakpoint_invalidate(env, breakpoint->pc);
1443
1444 qemu_free(breakpoint);
1445#endif
1446}
1447
1448/* Remove all matching breakpoints. */
1449void cpu_breakpoint_remove_all(CPUState *env, int mask)
1450{
1451#if defined(TARGET_HAS_ICE)
c0ce998e 1452 CPUBreakpoint *bp, *next;
a1d1bb31 1453
c0ce998e 1454 TAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
1455 if (bp->flags & mask)
1456 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 1457 }
4c3a88a2
FB
1458#endif
1459}
1460
c33a346e
FB
1461/* enable or disable single step mode. EXCP_DEBUG is returned by the
1462 CPU loop after each instruction */
1463void cpu_single_step(CPUState *env, int enabled)
1464{
1fddef4b 1465#if defined(TARGET_HAS_ICE)
c33a346e
FB
1466 if (env->singlestep_enabled != enabled) {
1467 env->singlestep_enabled = enabled;
e22a25c9
AL
1468 if (kvm_enabled())
1469 kvm_update_guest_debug(env, 0);
1470 else {
ccbb4d44 1471 /* must flush all the translated code to avoid inconsistencies */
e22a25c9
AL
1472 /* XXX: only flush what is necessary */
1473 tb_flush(env);
1474 }
c33a346e
FB
1475 }
1476#endif
1477}
1478
34865134
FB
1479/* enable or disable low levels log */
1480void cpu_set_log(int log_flags)
1481{
1482 loglevel = log_flags;
1483 if (loglevel && !logfile) {
11fcfab4 1484 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1485 if (!logfile) {
1486 perror(logfilename);
1487 _exit(1);
1488 }
9fa3e853
FB
1489#if !defined(CONFIG_SOFTMMU)
1490 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1491 {
b55266b5 1492 static char logfile_buf[4096];
9fa3e853
FB
1493 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1494 }
bf65f53f
FN
1495#elif !defined(_WIN32)
1496 /* Win32 doesn't support line-buffering and requires size >= 2 */
34865134 1497 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1498#endif
e735b91c
PB
1499 log_append = 1;
1500 }
1501 if (!loglevel && logfile) {
1502 fclose(logfile);
1503 logfile = NULL;
34865134
FB
1504 }
1505}
1506
1507void cpu_set_log_filename(const char *filename)
1508{
1509 logfilename = strdup(filename);
e735b91c
PB
1510 if (logfile) {
1511 fclose(logfile);
1512 logfile = NULL;
1513 }
1514 cpu_set_log(loglevel);
34865134 1515}
c33a346e 1516
3098dba0 1517static void cpu_unlink_tb(CPUState *env)
ea041c0e 1518{
2f7bb878 1519#if defined(CONFIG_USE_NPTL)
3098dba0
AJ
1520 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1521 problem and hope the cpu will stop of its own accord. For userspace
1522 emulation this often isn't actually as bad as it sounds. Often
1523 signals are used primarily to interrupt blocking syscalls. */
1524#else
ea041c0e 1525 TranslationBlock *tb;
15a51156 1526 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
59817ccb 1527
3098dba0
AJ
1528 tb = env->current_tb;
1529 /* if the cpu is currently executing code, we must unlink it and
1530 all the potentially executing TB */
1531 if (tb && !testandset(&interrupt_lock)) {
1532 env->current_tb = NULL;
1533 tb_reset_jump_recursive(tb);
1534 resetlock(&interrupt_lock);
be214e6c 1535 }
3098dba0
AJ
1536#endif
1537}
1538
1539/* mask must never be zero, except for A20 change call */
1540void cpu_interrupt(CPUState *env, int mask)
1541{
1542 int old_mask;
be214e6c 1543
2e70f6ef 1544 old_mask = env->interrupt_request;
68a79315 1545 env->interrupt_request |= mask;
3098dba0 1546
8edac960
AL
1547#ifndef CONFIG_USER_ONLY
1548 /*
1549 * If called from iothread context, wake the target cpu in
1550 * case its halted.
1551 */
1552 if (!qemu_cpu_self(env)) {
1553 qemu_cpu_kick(env);
1554 return;
1555 }
1556#endif
1557
2e70f6ef 1558 if (use_icount) {
266910c4 1559 env->icount_decr.u16.high = 0xffff;
2e70f6ef 1560#ifndef CONFIG_USER_ONLY
2e70f6ef 1561 if (!can_do_io(env)
be214e6c 1562 && (mask & ~old_mask) != 0) {
2e70f6ef
PB
1563 cpu_abort(env, "Raised interrupt while not in I/O function");
1564 }
1565#endif
1566 } else {
3098dba0 1567 cpu_unlink_tb(env);
ea041c0e
FB
1568 }
1569}
1570
b54ad049
FB
1571void cpu_reset_interrupt(CPUState *env, int mask)
1572{
1573 env->interrupt_request &= ~mask;
1574}
1575
3098dba0
AJ
1576void cpu_exit(CPUState *env)
1577{
1578 env->exit_request = 1;
1579 cpu_unlink_tb(env);
1580}
1581
c7cd6a37 1582const CPULogItem cpu_log_items[] = {
5fafdf24 1583 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1584 "show generated host assembly code for each compiled TB" },
1585 { CPU_LOG_TB_IN_ASM, "in_asm",
1586 "show target assembly code for each compiled TB" },
5fafdf24 1587 { CPU_LOG_TB_OP, "op",
57fec1fe 1588 "show micro ops for each compiled TB" },
f193c797 1589 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1590 "show micro ops "
1591#ifdef TARGET_I386
1592 "before eflags optimization and "
f193c797 1593#endif
e01a1157 1594 "after liveness analysis" },
f193c797
FB
1595 { CPU_LOG_INT, "int",
1596 "show interrupts/exceptions in short format" },
1597 { CPU_LOG_EXEC, "exec",
1598 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1599 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1600 "show CPU state before block translation" },
f193c797
FB
1601#ifdef TARGET_I386
1602 { CPU_LOG_PCALL, "pcall",
1603 "show protected mode far calls/returns/exceptions" },
eca1bdf4
AL
1604 { CPU_LOG_RESET, "cpu_reset",
1605 "show CPU state before CPU resets" },
f193c797 1606#endif
8e3a9fd2 1607#ifdef DEBUG_IOPORT
fd872598
FB
1608 { CPU_LOG_IOPORT, "ioport",
1609 "show all i/o ports accesses" },
8e3a9fd2 1610#endif
f193c797
FB
1611 { 0, NULL, NULL },
1612};
1613
1614static int cmp1(const char *s1, int n, const char *s2)
1615{
1616 if (strlen(s2) != n)
1617 return 0;
1618 return memcmp(s1, s2, n) == 0;
1619}
3b46e624 1620
f193c797
FB
1621/* takes a comma separated list of log masks. Return 0 if error. */
1622int cpu_str_to_log_mask(const char *str)
1623{
c7cd6a37 1624 const CPULogItem *item;
f193c797
FB
1625 int mask;
1626 const char *p, *p1;
1627
1628 p = str;
1629 mask = 0;
1630 for(;;) {
1631 p1 = strchr(p, ',');
1632 if (!p1)
1633 p1 = p + strlen(p);
8e3a9fd2
FB
1634 if(cmp1(p,p1-p,"all")) {
1635 for(item = cpu_log_items; item->mask != 0; item++) {
1636 mask |= item->mask;
1637 }
1638 } else {
f193c797
FB
1639 for(item = cpu_log_items; item->mask != 0; item++) {
1640 if (cmp1(p, p1 - p, item->name))
1641 goto found;
1642 }
1643 return 0;
8e3a9fd2 1644 }
f193c797
FB
1645 found:
1646 mask |= item->mask;
1647 if (*p1 != ',')
1648 break;
1649 p = p1 + 1;
1650 }
1651 return mask;
1652}
ea041c0e 1653
7501267e
FB
1654void cpu_abort(CPUState *env, const char *fmt, ...)
1655{
1656 va_list ap;
493ae1f0 1657 va_list ap2;
7501267e
FB
1658
1659 va_start(ap, fmt);
493ae1f0 1660 va_copy(ap2, ap);
7501267e
FB
1661 fprintf(stderr, "qemu: fatal: ");
1662 vfprintf(stderr, fmt, ap);
1663 fprintf(stderr, "\n");
1664#ifdef TARGET_I386
7fe48483
FB
1665 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1666#else
1667 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1668#endif
93fcfe39
AL
1669 if (qemu_log_enabled()) {
1670 qemu_log("qemu: fatal: ");
1671 qemu_log_vprintf(fmt, ap2);
1672 qemu_log("\n");
f9373291 1673#ifdef TARGET_I386
93fcfe39 1674 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
f9373291 1675#else
93fcfe39 1676 log_cpu_state(env, 0);
f9373291 1677#endif
31b1a7b4 1678 qemu_log_flush();
93fcfe39 1679 qemu_log_close();
924edcae 1680 }
493ae1f0 1681 va_end(ap2);
f9373291 1682 va_end(ap);
7501267e
FB
1683 abort();
1684}
1685
c5be9f08
TS
1686CPUState *cpu_copy(CPUState *env)
1687{
01ba9816 1688 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1689 CPUState *next_cpu = new_env->next_cpu;
1690 int cpu_index = new_env->cpu_index;
5a38f081
AL
1691#if defined(TARGET_HAS_ICE)
1692 CPUBreakpoint *bp;
1693 CPUWatchpoint *wp;
1694#endif
1695
c5be9f08 1696 memcpy(new_env, env, sizeof(CPUState));
5a38f081
AL
1697
1698 /* Preserve chaining and index. */
c5be9f08
TS
1699 new_env->next_cpu = next_cpu;
1700 new_env->cpu_index = cpu_index;
5a38f081
AL
1701
1702 /* Clone all break/watchpoints.
1703 Note: Once we support ptrace with hw-debug register access, make sure
1704 BP_CPU break/watchpoints are handled correctly on clone. */
1705 TAILQ_INIT(&env->breakpoints);
1706 TAILQ_INIT(&env->watchpoints);
1707#if defined(TARGET_HAS_ICE)
1708 TAILQ_FOREACH(bp, &env->breakpoints, entry) {
1709 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1710 }
1711 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
1712 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1713 wp->flags, NULL);
1714 }
1715#endif
1716
c5be9f08
TS
1717 return new_env;
1718}
1719
0124311e
FB
1720#if !defined(CONFIG_USER_ONLY)
1721
5c751e99
EI
1722static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1723{
1724 unsigned int i;
1725
1726 /* Discard jump cache entries for any tb which might potentially
1727 overlap the flushed page. */
1728 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1729 memset (&env->tb_jmp_cache[i], 0,
1730 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1731
1732 i = tb_jmp_cache_hash_page(addr);
1733 memset (&env->tb_jmp_cache[i], 0,
1734 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1735}
1736
08738984
IK
1737static CPUTLBEntry s_cputlb_empty_entry = {
1738 .addr_read = -1,
1739 .addr_write = -1,
1740 .addr_code = -1,
1741 .addend = -1,
1742};
1743
ee8b7021
FB
1744/* NOTE: if flush_global is true, also flush global entries (not
1745 implemented yet) */
1746void tlb_flush(CPUState *env, int flush_global)
33417e70 1747{
33417e70 1748 int i;
0124311e 1749
9fa3e853
FB
1750#if defined(DEBUG_TLB)
1751 printf("tlb_flush:\n");
1752#endif
0124311e
FB
1753 /* must reset current TB so that interrupts cannot modify the
1754 links while we are modifying them */
1755 env->current_tb = NULL;
1756
33417e70 1757 for(i = 0; i < CPU_TLB_SIZE; i++) {
cfde4bd9
IY
1758 int mmu_idx;
1759 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
08738984 1760 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
cfde4bd9 1761 }
33417e70 1762 }
9fa3e853 1763
8a40a180 1764 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 1765
640f42e4 1766#ifdef CONFIG_KQEMU
0a962c02
FB
1767 if (env->kqemu_enabled) {
1768 kqemu_flush(env, flush_global);
1769 }
9fa3e853 1770#endif
e3db7226 1771 tlb_flush_count++;
33417e70
FB
1772}
1773
274da6b2 1774static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1775{
5fafdf24 1776 if (addr == (tlb_entry->addr_read &
84b7b8e7 1777 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1778 addr == (tlb_entry->addr_write &
84b7b8e7 1779 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1780 addr == (tlb_entry->addr_code &
84b7b8e7 1781 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
08738984 1782 *tlb_entry = s_cputlb_empty_entry;
84b7b8e7 1783 }
61382a50
FB
1784}
1785
2e12669a 1786void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 1787{
8a40a180 1788 int i;
cfde4bd9 1789 int mmu_idx;
0124311e 1790
9fa3e853 1791#if defined(DEBUG_TLB)
108c49b8 1792 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 1793#endif
0124311e
FB
1794 /* must reset current TB so that interrupts cannot modify the
1795 links while we are modifying them */
1796 env->current_tb = NULL;
61382a50
FB
1797
1798 addr &= TARGET_PAGE_MASK;
1799 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
1800 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1801 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
0124311e 1802
5c751e99 1803 tlb_flush_jmp_cache(env, addr);
9fa3e853 1804
640f42e4 1805#ifdef CONFIG_KQEMU
0a962c02
FB
1806 if (env->kqemu_enabled) {
1807 kqemu_flush_page(env, addr);
1808 }
1809#endif
9fa3e853
FB
1810}
1811
9fa3e853
FB
1812/* update the TLBs so that writes to code in the virtual page 'addr'
1813 can be detected */
6a00d601 1814static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 1815{
5fafdf24 1816 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
1817 ram_addr + TARGET_PAGE_SIZE,
1818 CODE_DIRTY_FLAG);
9fa3e853
FB
1819}
1820
9fa3e853 1821/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 1822 tested for self modifying code */
5fafdf24 1823static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 1824 target_ulong vaddr)
9fa3e853 1825{
3a7d929e 1826 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1ccde1cb
FB
1827}
1828
5fafdf24 1829static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
1830 unsigned long start, unsigned long length)
1831{
1832 unsigned long addr;
84b7b8e7
FB
1833 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1834 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 1835 if ((addr - start) < length) {
0f459d16 1836 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
1837 }
1838 }
1839}
1840
5579c7f3 1841/* Note: start and end must be within the same ram block. */
3a7d929e 1842void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 1843 int dirty_flags)
1ccde1cb
FB
1844{
1845 CPUState *env;
4f2ac237 1846 unsigned long length, start1;
0a962c02
FB
1847 int i, mask, len;
1848 uint8_t *p;
1ccde1cb
FB
1849
1850 start &= TARGET_PAGE_MASK;
1851 end = TARGET_PAGE_ALIGN(end);
1852
1853 length = end - start;
1854 if (length == 0)
1855 return;
0a962c02 1856 len = length >> TARGET_PAGE_BITS;
640f42e4 1857#ifdef CONFIG_KQEMU
6a00d601
FB
1858 /* XXX: should not depend on cpu context */
1859 env = first_cpu;
3a7d929e 1860 if (env->kqemu_enabled) {
f23db169
FB
1861 ram_addr_t addr;
1862 addr = start;
1863 for(i = 0; i < len; i++) {
1864 kqemu_set_notdirty(env, addr);
1865 addr += TARGET_PAGE_SIZE;
1866 }
3a7d929e
FB
1867 }
1868#endif
f23db169
FB
1869 mask = ~dirty_flags;
1870 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1871 for(i = 0; i < len; i++)
1872 p[i] &= mask;
1873
1ccde1cb
FB
1874 /* we modify the TLB cache so that the dirty bit will be set again
1875 when accessing the range */
5579c7f3
PB
1876 start1 = (unsigned long)qemu_get_ram_ptr(start);
1877 /* Chek that we don't span multiple blocks - this breaks the
1878 address comparisons below. */
1879 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
1880 != (end - 1) - start) {
1881 abort();
1882 }
1883
6a00d601 1884 for(env = first_cpu; env != NULL; env = env->next_cpu) {
cfde4bd9
IY
1885 int mmu_idx;
1886 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1887 for(i = 0; i < CPU_TLB_SIZE; i++)
1888 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
1889 start1, length);
1890 }
6a00d601 1891 }
1ccde1cb
FB
1892}
1893
74576198
AL
1894int cpu_physical_memory_set_dirty_tracking(int enable)
1895{
1896 in_migration = enable;
b0a46a33
JK
1897 if (kvm_enabled()) {
1898 return kvm_set_migration_log(enable);
1899 }
74576198
AL
1900 return 0;
1901}
1902
1903int cpu_physical_memory_get_dirty_tracking(void)
1904{
1905 return in_migration;
1906}
1907
151f7749
JK
1908int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
1909 target_phys_addr_t end_addr)
2bec46dc 1910{
151f7749
JK
1911 int ret = 0;
1912
2bec46dc 1913 if (kvm_enabled())
151f7749
JK
1914 ret = kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
1915 return ret;
2bec46dc
AL
1916}
1917
3a7d929e
FB
1918static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1919{
1920 ram_addr_t ram_addr;
5579c7f3 1921 void *p;
3a7d929e 1922
84b7b8e7 1923 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5579c7f3
PB
1924 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
1925 + tlb_entry->addend);
1926 ram_addr = qemu_ram_addr_from_host(p);
3a7d929e 1927 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 1928 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
1929 }
1930 }
1931}
1932
1933/* update the TLB according to the current state of the dirty bits */
1934void cpu_tlb_update_dirty(CPUState *env)
1935{
1936 int i;
cfde4bd9
IY
1937 int mmu_idx;
1938 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1939 for(i = 0; i < CPU_TLB_SIZE; i++)
1940 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
1941 }
3a7d929e
FB
1942}
1943
0f459d16 1944static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 1945{
0f459d16
PB
1946 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
1947 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
1948}
1949
0f459d16
PB
1950/* update the TLB corresponding to virtual page vaddr
1951 so that it is no longer dirty */
1952static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 1953{
1ccde1cb 1954 int i;
cfde4bd9 1955 int mmu_idx;
1ccde1cb 1956
0f459d16 1957 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 1958 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
1959 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1960 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
9fa3e853
FB
1961}
1962
59817ccb
FB
1963/* add a new TLB entry. At most one entry for a given virtual address
1964 is permitted. Return 0 if OK or 2 if the page could not be mapped
1965 (can only happen in non SOFTMMU mode for I/O pages or pages
1966 conflicting with the host address space). */
5fafdf24
TS
1967int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1968 target_phys_addr_t paddr, int prot,
6ebbf390 1969 int mmu_idx, int is_softmmu)
9fa3e853 1970{
92e873b9 1971 PhysPageDesc *p;
4f2ac237 1972 unsigned long pd;
9fa3e853 1973 unsigned int index;
4f2ac237 1974 target_ulong address;
0f459d16 1975 target_ulong code_address;
108c49b8 1976 target_phys_addr_t addend;
9fa3e853 1977 int ret;
84b7b8e7 1978 CPUTLBEntry *te;
a1d1bb31 1979 CPUWatchpoint *wp;
0f459d16 1980 target_phys_addr_t iotlb;
9fa3e853 1981
92e873b9 1982 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
1983 if (!p) {
1984 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
1985 } else {
1986 pd = p->phys_offset;
9fa3e853
FB
1987 }
1988#if defined(DEBUG_TLB)
6ebbf390
JM
1989 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1990 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
9fa3e853
FB
1991#endif
1992
1993 ret = 0;
0f459d16
PB
1994 address = vaddr;
1995 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
1996 /* IO memory case (romd handled later) */
1997 address |= TLB_MMIO;
1998 }
5579c7f3 1999 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
0f459d16
PB
2000 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2001 /* Normal RAM. */
2002 iotlb = pd & TARGET_PAGE_MASK;
2003 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2004 iotlb |= IO_MEM_NOTDIRTY;
2005 else
2006 iotlb |= IO_MEM_ROM;
2007 } else {
ccbb4d44 2008 /* IO handlers are currently passed a physical address.
0f459d16
PB
2009 It would be nice to pass an offset from the base address
2010 of that region. This would avoid having to special case RAM,
2011 and avoid full address decoding in every device.
2012 We can't use the high bits of pd for this because
2013 IO_MEM_ROMD uses these as a ram address. */
8da3ff18
PB
2014 iotlb = (pd & ~TARGET_PAGE_MASK);
2015 if (p) {
8da3ff18
PB
2016 iotlb += p->region_offset;
2017 } else {
2018 iotlb += paddr;
2019 }
0f459d16
PB
2020 }
2021
2022 code_address = address;
2023 /* Make accesses to pages with watchpoints go via the
2024 watchpoint trap routines. */
c0ce998e 2025 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
a1d1bb31 2026 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
0f459d16
PB
2027 iotlb = io_mem_watch + paddr;
2028 /* TODO: The memory case can be optimized by not trapping
2029 reads of pages with a write breakpoint. */
2030 address |= TLB_MMIO;
6658ffb8 2031 }
0f459d16 2032 }
d79acba4 2033
0f459d16
PB
2034 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2035 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2036 te = &env->tlb_table[mmu_idx][index];
2037 te->addend = addend - vaddr;
2038 if (prot & PAGE_READ) {
2039 te->addr_read = address;
2040 } else {
2041 te->addr_read = -1;
2042 }
5c751e99 2043
0f459d16
PB
2044 if (prot & PAGE_EXEC) {
2045 te->addr_code = code_address;
2046 } else {
2047 te->addr_code = -1;
2048 }
2049 if (prot & PAGE_WRITE) {
2050 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2051 (pd & IO_MEM_ROMD)) {
2052 /* Write access calls the I/O callback. */
2053 te->addr_write = address | TLB_MMIO;
2054 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2055 !cpu_physical_memory_is_dirty(pd)) {
2056 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 2057 } else {
0f459d16 2058 te->addr_write = address;
9fa3e853 2059 }
0f459d16
PB
2060 } else {
2061 te->addr_write = -1;
9fa3e853 2062 }
9fa3e853
FB
2063 return ret;
2064}
2065
0124311e
FB
2066#else
2067
ee8b7021 2068void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
2069{
2070}
2071
2e12669a 2072void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
2073{
2074}
2075
5fafdf24
TS
2076int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2077 target_phys_addr_t paddr, int prot,
6ebbf390 2078 int mmu_idx, int is_softmmu)
9fa3e853
FB
2079{
2080 return 0;
2081}
0124311e 2082
edf8e2af
MW
2083/*
2084 * Walks guest process memory "regions" one by one
2085 * and calls callback function 'fn' for each region.
2086 */
2087int walk_memory_regions(void *priv,
2088 int (*fn)(void *, unsigned long, unsigned long, unsigned long))
33417e70 2089{
9fa3e853 2090 unsigned long start, end;
edf8e2af 2091 PageDesc *p = NULL;
9fa3e853 2092 int i, j, prot, prot1;
edf8e2af 2093 int rc = 0;
33417e70 2094
edf8e2af 2095 start = end = -1;
9fa3e853 2096 prot = 0;
edf8e2af
MW
2097
2098 for (i = 0; i <= L1_SIZE; i++) {
2099 p = (i < L1_SIZE) ? l1_map[i] : NULL;
2100 for (j = 0; j < L2_SIZE; j++) {
2101 prot1 = (p == NULL) ? 0 : p[j].flags;
2102 /*
2103 * "region" is one continuous chunk of memory
2104 * that has same protection flags set.
2105 */
9fa3e853
FB
2106 if (prot1 != prot) {
2107 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2108 if (start != -1) {
edf8e2af
MW
2109 rc = (*fn)(priv, start, end, prot);
2110 /* callback can stop iteration by returning != 0 */
2111 if (rc != 0)
2112 return (rc);
9fa3e853
FB
2113 }
2114 if (prot1 != 0)
2115 start = end;
2116 else
2117 start = -1;
2118 prot = prot1;
2119 }
edf8e2af 2120 if (p == NULL)
9fa3e853
FB
2121 break;
2122 }
33417e70 2123 }
edf8e2af
MW
2124 return (rc);
2125}
2126
2127static int dump_region(void *priv, unsigned long start,
2128 unsigned long end, unsigned long prot)
2129{
2130 FILE *f = (FILE *)priv;
2131
2132 (void) fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
2133 start, end, end - start,
2134 ((prot & PAGE_READ) ? 'r' : '-'),
2135 ((prot & PAGE_WRITE) ? 'w' : '-'),
2136 ((prot & PAGE_EXEC) ? 'x' : '-'));
2137
2138 return (0);
2139}
2140
2141/* dump memory mappings */
2142void page_dump(FILE *f)
2143{
2144 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2145 "start", "end", "size", "prot");
2146 walk_memory_regions(f, dump_region);
33417e70
FB
2147}
2148
53a5960a 2149int page_get_flags(target_ulong address)
33417e70 2150{
9fa3e853
FB
2151 PageDesc *p;
2152
2153 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2154 if (!p)
9fa3e853
FB
2155 return 0;
2156 return p->flags;
2157}
2158
2159/* modify the flags of a page and invalidate the code if
ccbb4d44 2160 necessary. The flag PAGE_WRITE_ORG is positioned automatically
9fa3e853 2161 depending on PAGE_WRITE */
53a5960a 2162void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853
FB
2163{
2164 PageDesc *p;
53a5960a 2165 target_ulong addr;
9fa3e853 2166
c8a706fe 2167 /* mmap_lock should already be held. */
9fa3e853
FB
2168 start = start & TARGET_PAGE_MASK;
2169 end = TARGET_PAGE_ALIGN(end);
2170 if (flags & PAGE_WRITE)
2171 flags |= PAGE_WRITE_ORG;
9fa3e853
FB
2172 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2173 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
17e2377a
PB
2174 /* We may be called for host regions that are outside guest
2175 address space. */
2176 if (!p)
2177 return;
9fa3e853
FB
2178 /* if the write protection is set, then we invalidate the code
2179 inside */
5fafdf24 2180 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2181 (flags & PAGE_WRITE) &&
2182 p->first_tb) {
d720b93d 2183 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2184 }
2185 p->flags = flags;
2186 }
33417e70
FB
2187}
2188
3d97b40b
TS
2189int page_check_range(target_ulong start, target_ulong len, int flags)
2190{
2191 PageDesc *p;
2192 target_ulong end;
2193 target_ulong addr;
2194
55f280c9
AZ
2195 if (start + len < start)
2196 /* we've wrapped around */
2197 return -1;
2198
3d97b40b
TS
2199 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2200 start = start & TARGET_PAGE_MASK;
2201
3d97b40b
TS
2202 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2203 p = page_find(addr >> TARGET_PAGE_BITS);
2204 if( !p )
2205 return -1;
2206 if( !(p->flags & PAGE_VALID) )
2207 return -1;
2208
dae3270c 2209 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2210 return -1;
dae3270c
FB
2211 if (flags & PAGE_WRITE) {
2212 if (!(p->flags & PAGE_WRITE_ORG))
2213 return -1;
2214 /* unprotect the page if it was put read-only because it
2215 contains translated code */
2216 if (!(p->flags & PAGE_WRITE)) {
2217 if (!page_unprotect(addr, 0, NULL))
2218 return -1;
2219 }
2220 return 0;
2221 }
3d97b40b
TS
2222 }
2223 return 0;
2224}
2225
9fa3e853 2226/* called from signal handler: invalidate the code and unprotect the
ccbb4d44 2227 page. Return TRUE if the fault was successfully handled. */
53a5960a 2228int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853
FB
2229{
2230 unsigned int page_index, prot, pindex;
2231 PageDesc *p, *p1;
53a5960a 2232 target_ulong host_start, host_end, addr;
9fa3e853 2233
c8a706fe
PB
2234 /* Technically this isn't safe inside a signal handler. However we
2235 know this only ever happens in a synchronous SEGV handler, so in
2236 practice it seems to be ok. */
2237 mmap_lock();
2238
83fb7adf 2239 host_start = address & qemu_host_page_mask;
9fa3e853
FB
2240 page_index = host_start >> TARGET_PAGE_BITS;
2241 p1 = page_find(page_index);
c8a706fe
PB
2242 if (!p1) {
2243 mmap_unlock();
9fa3e853 2244 return 0;
c8a706fe 2245 }
83fb7adf 2246 host_end = host_start + qemu_host_page_size;
9fa3e853
FB
2247 p = p1;
2248 prot = 0;
2249 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2250 prot |= p->flags;
2251 p++;
2252 }
2253 /* if the page was really writable, then we change its
2254 protection back to writable */
2255 if (prot & PAGE_WRITE_ORG) {
2256 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2257 if (!(p1[pindex].flags & PAGE_WRITE)) {
5fafdf24 2258 mprotect((void *)g2h(host_start), qemu_host_page_size,
9fa3e853
FB
2259 (prot & PAGE_BITS) | PAGE_WRITE);
2260 p1[pindex].flags |= PAGE_WRITE;
2261 /* and since the content will be modified, we must invalidate
2262 the corresponding translated code. */
d720b93d 2263 tb_invalidate_phys_page(address, pc, puc);
9fa3e853
FB
2264#ifdef DEBUG_TB_CHECK
2265 tb_invalidate_check(address);
2266#endif
c8a706fe 2267 mmap_unlock();
9fa3e853
FB
2268 return 1;
2269 }
2270 }
c8a706fe 2271 mmap_unlock();
9fa3e853
FB
2272 return 0;
2273}
2274
6a00d601
FB
2275static inline void tlb_set_dirty(CPUState *env,
2276 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2277{
2278}
9fa3e853
FB
2279#endif /* defined(CONFIG_USER_ONLY) */
2280
e2eef170 2281#if !defined(CONFIG_USER_ONLY)
8da3ff18 2282
db7b5426 2283static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
8da3ff18 2284 ram_addr_t memory, ram_addr_t region_offset);
00f82b8a 2285static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
8da3ff18 2286 ram_addr_t orig_memory, ram_addr_t region_offset);
db7b5426
BS
2287#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2288 need_subpage) \
2289 do { \
2290 if (addr > start_addr) \
2291 start_addr2 = 0; \
2292 else { \
2293 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2294 if (start_addr2 > 0) \
2295 need_subpage = 1; \
2296 } \
2297 \
49e9fba2 2298 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2299 end_addr2 = TARGET_PAGE_SIZE - 1; \
2300 else { \
2301 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2302 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2303 need_subpage = 1; \
2304 } \
2305 } while (0)
2306
33417e70
FB
2307/* register physical memory. 'size' must be a multiple of the target
2308 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
8da3ff18
PB
2309 io memory page. The address used when calling the IO function is
2310 the offset from the start of the region, plus region_offset. Both
ccbb4d44 2311 start_addr and region_offset are rounded down to a page boundary
8da3ff18
PB
2312 before calculating this offset. This should not be a problem unless
2313 the low bits of start_addr and region_offset differ. */
2314void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2315 ram_addr_t size,
2316 ram_addr_t phys_offset,
2317 ram_addr_t region_offset)
33417e70 2318{
108c49b8 2319 target_phys_addr_t addr, end_addr;
92e873b9 2320 PhysPageDesc *p;
9d42037b 2321 CPUState *env;
00f82b8a 2322 ram_addr_t orig_size = size;
db7b5426 2323 void *subpage;
33417e70 2324
640f42e4 2325#ifdef CONFIG_KQEMU
da260249
FB
2326 /* XXX: should not depend on cpu context */
2327 env = first_cpu;
2328 if (env->kqemu_enabled) {
2329 kqemu_set_phys_mem(start_addr, size, phys_offset);
2330 }
2331#endif
7ba1e619
AL
2332 if (kvm_enabled())
2333 kvm_set_phys_mem(start_addr, size, phys_offset);
2334
67c4d23c
PB
2335 if (phys_offset == IO_MEM_UNASSIGNED) {
2336 region_offset = start_addr;
2337 }
8da3ff18 2338 region_offset &= TARGET_PAGE_MASK;
5fd386f6 2339 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
49e9fba2
BS
2340 end_addr = start_addr + (target_phys_addr_t)size;
2341 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
db7b5426
BS
2342 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2343 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
00f82b8a 2344 ram_addr_t orig_memory = p->phys_offset;
db7b5426
BS
2345 target_phys_addr_t start_addr2, end_addr2;
2346 int need_subpage = 0;
2347
2348 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2349 need_subpage);
4254fab8 2350 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426
BS
2351 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2352 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18
PB
2353 &p->phys_offset, orig_memory,
2354 p->region_offset);
db7b5426
BS
2355 } else {
2356 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2357 >> IO_MEM_SHIFT];
2358 }
8da3ff18
PB
2359 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2360 region_offset);
2361 p->region_offset = 0;
db7b5426
BS
2362 } else {
2363 p->phys_offset = phys_offset;
2364 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2365 (phys_offset & IO_MEM_ROMD))
2366 phys_offset += TARGET_PAGE_SIZE;
2367 }
2368 } else {
2369 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2370 p->phys_offset = phys_offset;
8da3ff18 2371 p->region_offset = region_offset;
db7b5426 2372 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
8da3ff18 2373 (phys_offset & IO_MEM_ROMD)) {
db7b5426 2374 phys_offset += TARGET_PAGE_SIZE;
0e8f0967 2375 } else {
db7b5426
BS
2376 target_phys_addr_t start_addr2, end_addr2;
2377 int need_subpage = 0;
2378
2379 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2380 end_addr2, need_subpage);
2381
4254fab8 2382 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426 2383 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18 2384 &p->phys_offset, IO_MEM_UNASSIGNED,
67c4d23c 2385 addr & TARGET_PAGE_MASK);
db7b5426 2386 subpage_register(subpage, start_addr2, end_addr2,
8da3ff18
PB
2387 phys_offset, region_offset);
2388 p->region_offset = 0;
db7b5426
BS
2389 }
2390 }
2391 }
8da3ff18 2392 region_offset += TARGET_PAGE_SIZE;
33417e70 2393 }
3b46e624 2394
9d42037b
FB
2395 /* since each CPU stores ram addresses in its TLB cache, we must
2396 reset the modified entries */
2397 /* XXX: slow ! */
2398 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2399 tlb_flush(env, 1);
2400 }
33417e70
FB
2401}
2402
ba863458 2403/* XXX: temporary until new memory mapping API */
00f82b8a 2404ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
ba863458
FB
2405{
2406 PhysPageDesc *p;
2407
2408 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2409 if (!p)
2410 return IO_MEM_UNASSIGNED;
2411 return p->phys_offset;
2412}
2413
f65ed4c1
AL
2414void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2415{
2416 if (kvm_enabled())
2417 kvm_coalesce_mmio_region(addr, size);
2418}
2419
2420void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2421{
2422 if (kvm_enabled())
2423 kvm_uncoalesce_mmio_region(addr, size);
2424}
2425
640f42e4 2426#ifdef CONFIG_KQEMU
e9a1ab19 2427/* XXX: better than nothing */
94a6b54f 2428static ram_addr_t kqemu_ram_alloc(ram_addr_t size)
e9a1ab19
FB
2429{
2430 ram_addr_t addr;
94a6b54f 2431 if ((last_ram_offset + size) > kqemu_phys_ram_size) {
012a7045 2432 fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 ")\n",
94a6b54f 2433 (uint64_t)size, (uint64_t)kqemu_phys_ram_size);
e9a1ab19
FB
2434 abort();
2435 }
94a6b54f
PB
2436 addr = last_ram_offset;
2437 last_ram_offset = TARGET_PAGE_ALIGN(last_ram_offset + size);
e9a1ab19
FB
2438 return addr;
2439}
94a6b54f
PB
2440#endif
2441
2442ram_addr_t qemu_ram_alloc(ram_addr_t size)
2443{
2444 RAMBlock *new_block;
2445
640f42e4 2446#ifdef CONFIG_KQEMU
94a6b54f
PB
2447 if (kqemu_phys_ram_base) {
2448 return kqemu_ram_alloc(size);
2449 }
2450#endif
2451
2452 size = TARGET_PAGE_ALIGN(size);
2453 new_block = qemu_malloc(sizeof(*new_block));
2454
2455 new_block->host = qemu_vmalloc(size);
2456 new_block->offset = last_ram_offset;
2457 new_block->length = size;
2458
2459 new_block->next = ram_blocks;
2460 ram_blocks = new_block;
2461
2462 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2463 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2464 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2465 0xff, size >> TARGET_PAGE_BITS);
2466
2467 last_ram_offset += size;
2468
6f0437e8
JK
2469 if (kvm_enabled())
2470 kvm_setup_guest_memory(new_block->host, size);
2471
94a6b54f
PB
2472 return new_block->offset;
2473}
e9a1ab19
FB
2474
2475void qemu_ram_free(ram_addr_t addr)
2476{
94a6b54f 2477 /* TODO: implement this. */
e9a1ab19
FB
2478}
2479
dc828ca1 2480/* Return a host pointer to ram allocated with qemu_ram_alloc.
5579c7f3
PB
2481 With the exception of the softmmu code in this file, this should
2482 only be used for local memory (e.g. video ram) that the device owns,
2483 and knows it isn't going to access beyond the end of the block.
2484
2485 It should not be used for general purpose DMA.
2486 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2487 */
dc828ca1
PB
2488void *qemu_get_ram_ptr(ram_addr_t addr)
2489{
94a6b54f
PB
2490 RAMBlock *prev;
2491 RAMBlock **prevp;
2492 RAMBlock *block;
2493
640f42e4 2494#ifdef CONFIG_KQEMU
94a6b54f
PB
2495 if (kqemu_phys_ram_base) {
2496 return kqemu_phys_ram_base + addr;
2497 }
2498#endif
2499
2500 prev = NULL;
2501 prevp = &ram_blocks;
2502 block = ram_blocks;
2503 while (block && (block->offset > addr
2504 || block->offset + block->length <= addr)) {
2505 if (prev)
2506 prevp = &prev->next;
2507 prev = block;
2508 block = block->next;
2509 }
2510 if (!block) {
2511 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2512 abort();
2513 }
2514 /* Move this entry to to start of the list. */
2515 if (prev) {
2516 prev->next = block->next;
2517 block->next = *prevp;
2518 *prevp = block;
2519 }
2520 return block->host + (addr - block->offset);
dc828ca1
PB
2521}
2522
5579c7f3
PB
2523/* Some of the softmmu routines need to translate from a host pointer
2524 (typically a TLB entry) back to a ram offset. */
2525ram_addr_t qemu_ram_addr_from_host(void *ptr)
2526{
94a6b54f
PB
2527 RAMBlock *prev;
2528 RAMBlock **prevp;
2529 RAMBlock *block;
2530 uint8_t *host = ptr;
2531
640f42e4 2532#ifdef CONFIG_KQEMU
94a6b54f
PB
2533 if (kqemu_phys_ram_base) {
2534 return host - kqemu_phys_ram_base;
2535 }
2536#endif
2537
2538 prev = NULL;
2539 prevp = &ram_blocks;
2540 block = ram_blocks;
2541 while (block && (block->host > host
2542 || block->host + block->length <= host)) {
2543 if (prev)
2544 prevp = &prev->next;
2545 prev = block;
2546 block = block->next;
2547 }
2548 if (!block) {
2549 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2550 abort();
2551 }
2552 return block->offset + (host - block->host);
5579c7f3
PB
2553}
2554
a4193c8a 2555static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 2556{
67d3b957 2557#ifdef DEBUG_UNASSIGNED
ab3d1727 2558 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316 2559#endif
0a6f8a6d 2560#if defined(TARGET_SPARC)
e18231a3
BS
2561 do_unassigned_access(addr, 0, 0, 0, 1);
2562#endif
2563 return 0;
2564}
2565
2566static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2567{
2568#ifdef DEBUG_UNASSIGNED
2569 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2570#endif
0a6f8a6d 2571#if defined(TARGET_SPARC)
e18231a3
BS
2572 do_unassigned_access(addr, 0, 0, 0, 2);
2573#endif
2574 return 0;
2575}
2576
2577static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2578{
2579#ifdef DEBUG_UNASSIGNED
2580 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2581#endif
0a6f8a6d 2582#if defined(TARGET_SPARC)
e18231a3 2583 do_unassigned_access(addr, 0, 0, 0, 4);
67d3b957 2584#endif
33417e70
FB
2585 return 0;
2586}
2587
a4193c8a 2588static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 2589{
67d3b957 2590#ifdef DEBUG_UNASSIGNED
ab3d1727 2591 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 2592#endif
0a6f8a6d 2593#if defined(TARGET_SPARC)
e18231a3
BS
2594 do_unassigned_access(addr, 1, 0, 0, 1);
2595#endif
2596}
2597
2598static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2599{
2600#ifdef DEBUG_UNASSIGNED
2601 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2602#endif
0a6f8a6d 2603#if defined(TARGET_SPARC)
e18231a3
BS
2604 do_unassigned_access(addr, 1, 0, 0, 2);
2605#endif
2606}
2607
2608static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2609{
2610#ifdef DEBUG_UNASSIGNED
2611 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2612#endif
0a6f8a6d 2613#if defined(TARGET_SPARC)
e18231a3 2614 do_unassigned_access(addr, 1, 0, 0, 4);
b4f0a316 2615#endif
33417e70
FB
2616}
2617
2618static CPUReadMemoryFunc *unassigned_mem_read[3] = {
2619 unassigned_mem_readb,
e18231a3
BS
2620 unassigned_mem_readw,
2621 unassigned_mem_readl,
33417e70
FB
2622};
2623
2624static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
2625 unassigned_mem_writeb,
e18231a3
BS
2626 unassigned_mem_writew,
2627 unassigned_mem_writel,
33417e70
FB
2628};
2629
0f459d16
PB
2630static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2631 uint32_t val)
9fa3e853 2632{
3a7d929e 2633 int dirty_flags;
3a7d929e
FB
2634 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2635 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2636#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2637 tb_invalidate_phys_page_fast(ram_addr, 1);
2638 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2639#endif
3a7d929e 2640 }
5579c7f3 2641 stb_p(qemu_get_ram_ptr(ram_addr), val);
640f42e4 2642#ifdef CONFIG_KQEMU
f32fc648
FB
2643 if (cpu_single_env->kqemu_enabled &&
2644 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2645 kqemu_modify_page(cpu_single_env, ram_addr);
2646#endif
f23db169
FB
2647 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2648 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2649 /* we remove the notdirty callback only if the code has been
2650 flushed */
2651 if (dirty_flags == 0xff)
2e70f6ef 2652 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2653}
2654
0f459d16
PB
2655static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2656 uint32_t val)
9fa3e853 2657{
3a7d929e 2658 int dirty_flags;
3a7d929e
FB
2659 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2660 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2661#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2662 tb_invalidate_phys_page_fast(ram_addr, 2);
2663 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2664#endif
3a7d929e 2665 }
5579c7f3 2666 stw_p(qemu_get_ram_ptr(ram_addr), val);
640f42e4 2667#ifdef CONFIG_KQEMU
f32fc648
FB
2668 if (cpu_single_env->kqemu_enabled &&
2669 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2670 kqemu_modify_page(cpu_single_env, ram_addr);
2671#endif
f23db169
FB
2672 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2673 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2674 /* we remove the notdirty callback only if the code has been
2675 flushed */
2676 if (dirty_flags == 0xff)
2e70f6ef 2677 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2678}
2679
0f459d16
PB
2680static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2681 uint32_t val)
9fa3e853 2682{
3a7d929e 2683 int dirty_flags;
3a7d929e
FB
2684 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2685 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2686#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2687 tb_invalidate_phys_page_fast(ram_addr, 4);
2688 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2689#endif
3a7d929e 2690 }
5579c7f3 2691 stl_p(qemu_get_ram_ptr(ram_addr), val);
640f42e4 2692#ifdef CONFIG_KQEMU
f32fc648
FB
2693 if (cpu_single_env->kqemu_enabled &&
2694 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2695 kqemu_modify_page(cpu_single_env, ram_addr);
2696#endif
f23db169
FB
2697 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2698 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2699 /* we remove the notdirty callback only if the code has been
2700 flushed */
2701 if (dirty_flags == 0xff)
2e70f6ef 2702 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2703}
2704
3a7d929e 2705static CPUReadMemoryFunc *error_mem_read[3] = {
9fa3e853
FB
2706 NULL, /* never used */
2707 NULL, /* never used */
2708 NULL, /* never used */
2709};
2710
1ccde1cb
FB
2711static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
2712 notdirty_mem_writeb,
2713 notdirty_mem_writew,
2714 notdirty_mem_writel,
2715};
2716
0f459d16 2717/* Generate a debug exception if a watchpoint has been hit. */
b4051334 2718static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16
PB
2719{
2720 CPUState *env = cpu_single_env;
06d55cc1
AL
2721 target_ulong pc, cs_base;
2722 TranslationBlock *tb;
0f459d16 2723 target_ulong vaddr;
a1d1bb31 2724 CPUWatchpoint *wp;
06d55cc1 2725 int cpu_flags;
0f459d16 2726
06d55cc1
AL
2727 if (env->watchpoint_hit) {
2728 /* We re-entered the check after replacing the TB. Now raise
2729 * the debug interrupt so that is will trigger after the
2730 * current instruction. */
2731 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2732 return;
2733 }
2e70f6ef 2734 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
c0ce998e 2735 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
2736 if ((vaddr == (wp->vaddr & len_mask) ||
2737 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
2738 wp->flags |= BP_WATCHPOINT_HIT;
2739 if (!env->watchpoint_hit) {
2740 env->watchpoint_hit = wp;
2741 tb = tb_find_pc(env->mem_io_pc);
2742 if (!tb) {
2743 cpu_abort(env, "check_watchpoint: could not find TB for "
2744 "pc=%p", (void *)env->mem_io_pc);
2745 }
2746 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
2747 tb_phys_invalidate(tb, -1);
2748 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2749 env->exception_index = EXCP_DEBUG;
2750 } else {
2751 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2752 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2753 }
2754 cpu_resume_from_signal(env, NULL);
06d55cc1 2755 }
6e140f28
AL
2756 } else {
2757 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2758 }
2759 }
2760}
2761
6658ffb8
PB
2762/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2763 so these check for a hit then pass through to the normal out-of-line
2764 phys routines. */
2765static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2766{
b4051334 2767 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
6658ffb8
PB
2768 return ldub_phys(addr);
2769}
2770
2771static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2772{
b4051334 2773 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
6658ffb8
PB
2774 return lduw_phys(addr);
2775}
2776
2777static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2778{
b4051334 2779 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
6658ffb8
PB
2780 return ldl_phys(addr);
2781}
2782
6658ffb8
PB
2783static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2784 uint32_t val)
2785{
b4051334 2786 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
6658ffb8
PB
2787 stb_phys(addr, val);
2788}
2789
2790static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2791 uint32_t val)
2792{
b4051334 2793 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
6658ffb8
PB
2794 stw_phys(addr, val);
2795}
2796
2797static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2798 uint32_t val)
2799{
b4051334 2800 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
6658ffb8
PB
2801 stl_phys(addr, val);
2802}
2803
2804static CPUReadMemoryFunc *watch_mem_read[3] = {
2805 watch_mem_readb,
2806 watch_mem_readw,
2807 watch_mem_readl,
2808};
2809
2810static CPUWriteMemoryFunc *watch_mem_write[3] = {
2811 watch_mem_writeb,
2812 watch_mem_writew,
2813 watch_mem_writel,
2814};
6658ffb8 2815
db7b5426
BS
2816static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2817 unsigned int len)
2818{
db7b5426
BS
2819 uint32_t ret;
2820 unsigned int idx;
2821
8da3ff18 2822 idx = SUBPAGE_IDX(addr);
db7b5426
BS
2823#if defined(DEBUG_SUBPAGE)
2824 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2825 mmio, len, addr, idx);
2826#endif
8da3ff18
PB
2827 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
2828 addr + mmio->region_offset[idx][0][len]);
db7b5426
BS
2829
2830 return ret;
2831}
2832
2833static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2834 uint32_t value, unsigned int len)
2835{
db7b5426
BS
2836 unsigned int idx;
2837
8da3ff18 2838 idx = SUBPAGE_IDX(addr);
db7b5426
BS
2839#if defined(DEBUG_SUBPAGE)
2840 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2841 mmio, len, addr, idx, value);
2842#endif
8da3ff18
PB
2843 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
2844 addr + mmio->region_offset[idx][1][len],
2845 value);
db7b5426
BS
2846}
2847
2848static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2849{
2850#if defined(DEBUG_SUBPAGE)
2851 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2852#endif
2853
2854 return subpage_readlen(opaque, addr, 0);
2855}
2856
2857static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2858 uint32_t value)
2859{
2860#if defined(DEBUG_SUBPAGE)
2861 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2862#endif
2863 subpage_writelen(opaque, addr, value, 0);
2864}
2865
2866static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2867{
2868#if defined(DEBUG_SUBPAGE)
2869 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2870#endif
2871
2872 return subpage_readlen(opaque, addr, 1);
2873}
2874
2875static void subpage_writew (void *opaque, target_phys_addr_t addr,
2876 uint32_t value)
2877{
2878#if defined(DEBUG_SUBPAGE)
2879 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2880#endif
2881 subpage_writelen(opaque, addr, value, 1);
2882}
2883
2884static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2885{
2886#if defined(DEBUG_SUBPAGE)
2887 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2888#endif
2889
2890 return subpage_readlen(opaque, addr, 2);
2891}
2892
2893static void subpage_writel (void *opaque,
2894 target_phys_addr_t addr, uint32_t value)
2895{
2896#if defined(DEBUG_SUBPAGE)
2897 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2898#endif
2899 subpage_writelen(opaque, addr, value, 2);
2900}
2901
2902static CPUReadMemoryFunc *subpage_read[] = {
2903 &subpage_readb,
2904 &subpage_readw,
2905 &subpage_readl,
2906};
2907
2908static CPUWriteMemoryFunc *subpage_write[] = {
2909 &subpage_writeb,
2910 &subpage_writew,
2911 &subpage_writel,
2912};
2913
2914static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
8da3ff18 2915 ram_addr_t memory, ram_addr_t region_offset)
db7b5426
BS
2916{
2917 int idx, eidx;
4254fab8 2918 unsigned int i;
db7b5426
BS
2919
2920 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2921 return -1;
2922 idx = SUBPAGE_IDX(start);
2923 eidx = SUBPAGE_IDX(end);
2924#if defined(DEBUG_SUBPAGE)
0bf9e31a 2925 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
db7b5426
BS
2926 mmio, start, end, idx, eidx, memory);
2927#endif
2928 memory >>= IO_MEM_SHIFT;
2929 for (; idx <= eidx; idx++) {
4254fab8 2930 for (i = 0; i < 4; i++) {
3ee89922
BS
2931 if (io_mem_read[memory][i]) {
2932 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2933 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
8da3ff18 2934 mmio->region_offset[idx][0][i] = region_offset;
3ee89922
BS
2935 }
2936 if (io_mem_write[memory][i]) {
2937 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2938 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
8da3ff18 2939 mmio->region_offset[idx][1][i] = region_offset;
3ee89922 2940 }
4254fab8 2941 }
db7b5426
BS
2942 }
2943
2944 return 0;
2945}
2946
00f82b8a 2947static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
8da3ff18 2948 ram_addr_t orig_memory, ram_addr_t region_offset)
db7b5426
BS
2949{
2950 subpage_t *mmio;
2951 int subpage_memory;
2952
2953 mmio = qemu_mallocz(sizeof(subpage_t));
1eec614b
AL
2954
2955 mmio->base = base;
1eed09cb 2956 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
db7b5426 2957#if defined(DEBUG_SUBPAGE)
1eec614b
AL
2958 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2959 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 2960#endif
1eec614b
AL
2961 *phys = subpage_memory | IO_MEM_SUBPAGE;
2962 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
8da3ff18 2963 region_offset);
db7b5426
BS
2964
2965 return mmio;
2966}
2967
88715657
AL
2968static int get_free_io_mem_idx(void)
2969{
2970 int i;
2971
2972 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
2973 if (!io_mem_used[i]) {
2974 io_mem_used[i] = 1;
2975 return i;
2976 }
2977
2978 return -1;
2979}
2980
33417e70
FB
2981/* mem_read and mem_write are arrays of functions containing the
2982 function to access byte (index 0), word (index 1) and dword (index
0b4e6e3e 2983 2). Functions can be omitted with a NULL function pointer.
3ee89922 2984 If io_index is non zero, the corresponding io zone is
4254fab8
BS
2985 modified. If it is zero, a new io zone is allocated. The return
2986 value can be used with cpu_register_physical_memory(). (-1) is
2987 returned if error. */
1eed09cb
AK
2988static int cpu_register_io_memory_fixed(int io_index,
2989 CPUReadMemoryFunc **mem_read,
2990 CPUWriteMemoryFunc **mem_write,
2991 void *opaque)
33417e70 2992{
4254fab8 2993 int i, subwidth = 0;
33417e70
FB
2994
2995 if (io_index <= 0) {
88715657
AL
2996 io_index = get_free_io_mem_idx();
2997 if (io_index == -1)
2998 return io_index;
33417e70 2999 } else {
1eed09cb 3000 io_index >>= IO_MEM_SHIFT;
33417e70
FB
3001 if (io_index >= IO_MEM_NB_ENTRIES)
3002 return -1;
3003 }
b5ff1b31 3004
33417e70 3005 for(i = 0;i < 3; i++) {
4254fab8
BS
3006 if (!mem_read[i] || !mem_write[i])
3007 subwidth = IO_MEM_SUBWIDTH;
33417e70
FB
3008 io_mem_read[io_index][i] = mem_read[i];
3009 io_mem_write[io_index][i] = mem_write[i];
3010 }
a4193c8a 3011 io_mem_opaque[io_index] = opaque;
4254fab8 3012 return (io_index << IO_MEM_SHIFT) | subwidth;
33417e70 3013}
61382a50 3014
1eed09cb
AK
3015int cpu_register_io_memory(CPUReadMemoryFunc **mem_read,
3016 CPUWriteMemoryFunc **mem_write,
3017 void *opaque)
3018{
3019 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
3020}
3021
88715657
AL
3022void cpu_unregister_io_memory(int io_table_address)
3023{
3024 int i;
3025 int io_index = io_table_address >> IO_MEM_SHIFT;
3026
3027 for (i=0;i < 3; i++) {
3028 io_mem_read[io_index][i] = unassigned_mem_read[i];
3029 io_mem_write[io_index][i] = unassigned_mem_write[i];
3030 }
3031 io_mem_opaque[io_index] = NULL;
3032 io_mem_used[io_index] = 0;
3033}
3034
e9179ce1
AK
3035static void io_mem_init(void)
3036{
3037 int i;
3038
3039 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
3040 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
3041 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
3042 for (i=0; i<5; i++)
3043 io_mem_used[i] = 1;
3044
3045 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3046 watch_mem_write, NULL);
3047#ifdef CONFIG_KQEMU
3048 if (kqemu_phys_ram_base) {
3049 /* alloc dirty bits array */
3050 phys_ram_dirty = qemu_vmalloc(kqemu_phys_ram_size >> TARGET_PAGE_BITS);
3051 memset(phys_ram_dirty, 0xff, kqemu_phys_ram_size >> TARGET_PAGE_BITS);
3052 }
3053#endif
3054}
3055
e2eef170
PB
3056#endif /* !defined(CONFIG_USER_ONLY) */
3057
13eb76e0
FB
3058/* physical memory access (slow version, mainly for debug) */
3059#if defined(CONFIG_USER_ONLY)
5fafdf24 3060void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3061 int len, int is_write)
3062{
3063 int l, flags;
3064 target_ulong page;
53a5960a 3065 void * p;
13eb76e0
FB
3066
3067 while (len > 0) {
3068 page = addr & TARGET_PAGE_MASK;
3069 l = (page + TARGET_PAGE_SIZE) - addr;
3070 if (l > len)
3071 l = len;
3072 flags = page_get_flags(page);
3073 if (!(flags & PAGE_VALID))
3074 return;
3075 if (is_write) {
3076 if (!(flags & PAGE_WRITE))
3077 return;
579a97f7 3078 /* XXX: this code should not depend on lock_user */
72fb7daa 3079 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
579a97f7
FB
3080 /* FIXME - should this return an error rather than just fail? */
3081 return;
72fb7daa
AJ
3082 memcpy(p, buf, l);
3083 unlock_user(p, addr, l);
13eb76e0
FB
3084 } else {
3085 if (!(flags & PAGE_READ))
3086 return;
579a97f7 3087 /* XXX: this code should not depend on lock_user */
72fb7daa 3088 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
579a97f7
FB
3089 /* FIXME - should this return an error rather than just fail? */
3090 return;
72fb7daa 3091 memcpy(buf, p, l);
5b257578 3092 unlock_user(p, addr, 0);
13eb76e0
FB
3093 }
3094 len -= l;
3095 buf += l;
3096 addr += l;
3097 }
3098}
8df1cd07 3099
13eb76e0 3100#else
5fafdf24 3101void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3102 int len, int is_write)
3103{
3104 int l, io_index;
3105 uint8_t *ptr;
3106 uint32_t val;
2e12669a
FB
3107 target_phys_addr_t page;
3108 unsigned long pd;
92e873b9 3109 PhysPageDesc *p;
3b46e624 3110
13eb76e0
FB
3111 while (len > 0) {
3112 page = addr & TARGET_PAGE_MASK;
3113 l = (page + TARGET_PAGE_SIZE) - addr;
3114 if (l > len)
3115 l = len;
92e873b9 3116 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
3117 if (!p) {
3118 pd = IO_MEM_UNASSIGNED;
3119 } else {
3120 pd = p->phys_offset;
3121 }
3b46e624 3122
13eb76e0 3123 if (is_write) {
3a7d929e 3124 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
6c2934db 3125 target_phys_addr_t addr1 = addr;
13eb76e0 3126 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3127 if (p)
6c2934db 3128 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
6a00d601
FB
3129 /* XXX: could force cpu_single_env to NULL to avoid
3130 potential bugs */
6c2934db 3131 if (l >= 4 && ((addr1 & 3) == 0)) {
1c213d19 3132 /* 32 bit write access */
c27004ec 3133 val = ldl_p(buf);
6c2934db 3134 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
13eb76e0 3135 l = 4;
6c2934db 3136 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1c213d19 3137 /* 16 bit write access */
c27004ec 3138 val = lduw_p(buf);
6c2934db 3139 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3140 l = 2;
3141 } else {
1c213d19 3142 /* 8 bit write access */
c27004ec 3143 val = ldub_p(buf);
6c2934db 3144 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3145 l = 1;
3146 }
3147 } else {
b448f2f3
FB
3148 unsigned long addr1;
3149 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 3150 /* RAM case */
5579c7f3 3151 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 3152 memcpy(ptr, buf, l);
3a7d929e
FB
3153 if (!cpu_physical_memory_is_dirty(addr1)) {
3154 /* invalidate code */
3155 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3156 /* set dirty bit */
5fafdf24 3157 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
f23db169 3158 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3159 }
13eb76e0
FB
3160 }
3161 } else {
5fafdf24 3162 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3163 !(pd & IO_MEM_ROMD)) {
6c2934db 3164 target_phys_addr_t addr1 = addr;
13eb76e0
FB
3165 /* I/O case */
3166 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3167 if (p)
6c2934db
AJ
3168 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3169 if (l >= 4 && ((addr1 & 3) == 0)) {
13eb76e0 3170 /* 32 bit read access */
6c2934db 3171 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
c27004ec 3172 stl_p(buf, val);
13eb76e0 3173 l = 4;
6c2934db 3174 } else if (l >= 2 && ((addr1 & 1) == 0)) {
13eb76e0 3175 /* 16 bit read access */
6c2934db 3176 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
c27004ec 3177 stw_p(buf, val);
13eb76e0
FB
3178 l = 2;
3179 } else {
1c213d19 3180 /* 8 bit read access */
6c2934db 3181 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
c27004ec 3182 stb_p(buf, val);
13eb76e0
FB
3183 l = 1;
3184 }
3185 } else {
3186 /* RAM case */
5579c7f3 3187 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
13eb76e0
FB
3188 (addr & ~TARGET_PAGE_MASK);
3189 memcpy(buf, ptr, l);
3190 }
3191 }
3192 len -= l;
3193 buf += l;
3194 addr += l;
3195 }
3196}
8df1cd07 3197
d0ecd2aa 3198/* used for ROM loading : can write in RAM and ROM */
5fafdf24 3199void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
3200 const uint8_t *buf, int len)
3201{
3202 int l;
3203 uint8_t *ptr;
3204 target_phys_addr_t page;
3205 unsigned long pd;
3206 PhysPageDesc *p;
3b46e624 3207
d0ecd2aa
FB
3208 while (len > 0) {
3209 page = addr & TARGET_PAGE_MASK;
3210 l = (page + TARGET_PAGE_SIZE) - addr;
3211 if (l > len)
3212 l = len;
3213 p = phys_page_find(page >> TARGET_PAGE_BITS);
3214 if (!p) {
3215 pd = IO_MEM_UNASSIGNED;
3216 } else {
3217 pd = p->phys_offset;
3218 }
3b46e624 3219
d0ecd2aa 3220 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
3221 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3222 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
3223 /* do nothing */
3224 } else {
3225 unsigned long addr1;
3226 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3227 /* ROM/RAM case */
5579c7f3 3228 ptr = qemu_get_ram_ptr(addr1);
d0ecd2aa
FB
3229 memcpy(ptr, buf, l);
3230 }
3231 len -= l;
3232 buf += l;
3233 addr += l;
3234 }
3235}
3236
6d16c2f8
AL
3237typedef struct {
3238 void *buffer;
3239 target_phys_addr_t addr;
3240 target_phys_addr_t len;
3241} BounceBuffer;
3242
3243static BounceBuffer bounce;
3244
ba223c29
AL
3245typedef struct MapClient {
3246 void *opaque;
3247 void (*callback)(void *opaque);
3248 LIST_ENTRY(MapClient) link;
3249} MapClient;
3250
3251static LIST_HEAD(map_client_list, MapClient) map_client_list
3252 = LIST_HEAD_INITIALIZER(map_client_list);
3253
3254void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3255{
3256 MapClient *client = qemu_malloc(sizeof(*client));
3257
3258 client->opaque = opaque;
3259 client->callback = callback;
3260 LIST_INSERT_HEAD(&map_client_list, client, link);
3261 return client;
3262}
3263
3264void cpu_unregister_map_client(void *_client)
3265{
3266 MapClient *client = (MapClient *)_client;
3267
3268 LIST_REMOVE(client, link);
34d5e948 3269 qemu_free(client);
ba223c29
AL
3270}
3271
3272static void cpu_notify_map_clients(void)
3273{
3274 MapClient *client;
3275
3276 while (!LIST_EMPTY(&map_client_list)) {
3277 client = LIST_FIRST(&map_client_list);
3278 client->callback(client->opaque);
34d5e948 3279 cpu_unregister_map_client(client);
ba223c29
AL
3280 }
3281}
3282
6d16c2f8
AL
3283/* Map a physical memory region into a host virtual address.
3284 * May map a subset of the requested range, given by and returned in *plen.
3285 * May return NULL if resources needed to perform the mapping are exhausted.
3286 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3287 * Use cpu_register_map_client() to know when retrying the map operation is
3288 * likely to succeed.
6d16c2f8
AL
3289 */
3290void *cpu_physical_memory_map(target_phys_addr_t addr,
3291 target_phys_addr_t *plen,
3292 int is_write)
3293{
3294 target_phys_addr_t len = *plen;
3295 target_phys_addr_t done = 0;
3296 int l;
3297 uint8_t *ret = NULL;
3298 uint8_t *ptr;
3299 target_phys_addr_t page;
3300 unsigned long pd;
3301 PhysPageDesc *p;
3302 unsigned long addr1;
3303
3304 while (len > 0) {
3305 page = addr & TARGET_PAGE_MASK;
3306 l = (page + TARGET_PAGE_SIZE) - addr;
3307 if (l > len)
3308 l = len;
3309 p = phys_page_find(page >> TARGET_PAGE_BITS);
3310 if (!p) {
3311 pd = IO_MEM_UNASSIGNED;
3312 } else {
3313 pd = p->phys_offset;
3314 }
3315
3316 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3317 if (done || bounce.buffer) {
3318 break;
3319 }
3320 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3321 bounce.addr = addr;
3322 bounce.len = l;
3323 if (!is_write) {
3324 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3325 }
3326 ptr = bounce.buffer;
3327 } else {
3328 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3329 ptr = qemu_get_ram_ptr(addr1);
6d16c2f8
AL
3330 }
3331 if (!done) {
3332 ret = ptr;
3333 } else if (ret + done != ptr) {
3334 break;
3335 }
3336
3337 len -= l;
3338 addr += l;
3339 done += l;
3340 }
3341 *plen = done;
3342 return ret;
3343}
3344
3345/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3346 * Will also mark the memory as dirty if is_write == 1. access_len gives
3347 * the amount of memory that was actually read or written by the caller.
3348 */
3349void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3350 int is_write, target_phys_addr_t access_len)
3351{
3352 if (buffer != bounce.buffer) {
3353 if (is_write) {
5579c7f3 3354 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
6d16c2f8
AL
3355 while (access_len) {
3356 unsigned l;
3357 l = TARGET_PAGE_SIZE;
3358 if (l > access_len)
3359 l = access_len;
3360 if (!cpu_physical_memory_is_dirty(addr1)) {
3361 /* invalidate code */
3362 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3363 /* set dirty bit */
3364 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3365 (0xff & ~CODE_DIRTY_FLAG);
3366 }
3367 addr1 += l;
3368 access_len -= l;
3369 }
3370 }
3371 return;
3372 }
3373 if (is_write) {
3374 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3375 }
3376 qemu_free(bounce.buffer);
3377 bounce.buffer = NULL;
ba223c29 3378 cpu_notify_map_clients();
6d16c2f8 3379}
d0ecd2aa 3380
8df1cd07
FB
3381/* warning: addr must be aligned */
3382uint32_t ldl_phys(target_phys_addr_t addr)
3383{
3384 int io_index;
3385 uint8_t *ptr;
3386 uint32_t val;
3387 unsigned long pd;
3388 PhysPageDesc *p;
3389
3390 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3391 if (!p) {
3392 pd = IO_MEM_UNASSIGNED;
3393 } else {
3394 pd = p->phys_offset;
3395 }
3b46e624 3396
5fafdf24 3397 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3398 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
3399 /* I/O case */
3400 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3401 if (p)
3402 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3403 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3404 } else {
3405 /* RAM case */
5579c7f3 3406 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
8df1cd07
FB
3407 (addr & ~TARGET_PAGE_MASK);
3408 val = ldl_p(ptr);
3409 }
3410 return val;
3411}
3412
84b7b8e7
FB
3413/* warning: addr must be aligned */
3414uint64_t ldq_phys(target_phys_addr_t addr)
3415{
3416 int io_index;
3417 uint8_t *ptr;
3418 uint64_t val;
3419 unsigned long pd;
3420 PhysPageDesc *p;
3421
3422 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3423 if (!p) {
3424 pd = IO_MEM_UNASSIGNED;
3425 } else {
3426 pd = p->phys_offset;
3427 }
3b46e624 3428
2a4188a3
FB
3429 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3430 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
3431 /* I/O case */
3432 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3433 if (p)
3434 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
84b7b8e7
FB
3435#ifdef TARGET_WORDS_BIGENDIAN
3436 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3437 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3438#else
3439 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3440 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3441#endif
3442 } else {
3443 /* RAM case */
5579c7f3 3444 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
84b7b8e7
FB
3445 (addr & ~TARGET_PAGE_MASK);
3446 val = ldq_p(ptr);
3447 }
3448 return val;
3449}
3450
aab33094
FB
3451/* XXX: optimize */
3452uint32_t ldub_phys(target_phys_addr_t addr)
3453{
3454 uint8_t val;
3455 cpu_physical_memory_read(addr, &val, 1);
3456 return val;
3457}
3458
3459/* XXX: optimize */
3460uint32_t lduw_phys(target_phys_addr_t addr)
3461{
3462 uint16_t val;
3463 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3464 return tswap16(val);
3465}
3466
8df1cd07
FB
3467/* warning: addr must be aligned. The ram page is not masked as dirty
3468 and the code inside is not invalidated. It is useful if the dirty
3469 bits are used to track modified PTEs */
3470void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3471{
3472 int io_index;
3473 uint8_t *ptr;
3474 unsigned long pd;
3475 PhysPageDesc *p;
3476
3477 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3478 if (!p) {
3479 pd = IO_MEM_UNASSIGNED;
3480 } else {
3481 pd = p->phys_offset;
3482 }
3b46e624 3483
3a7d929e 3484 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3485 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3486 if (p)
3487 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3488 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3489 } else {
74576198 3490 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3491 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3492 stl_p(ptr, val);
74576198
AL
3493
3494 if (unlikely(in_migration)) {
3495 if (!cpu_physical_memory_is_dirty(addr1)) {
3496 /* invalidate code */
3497 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3498 /* set dirty bit */
3499 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3500 (0xff & ~CODE_DIRTY_FLAG);
3501 }
3502 }
8df1cd07
FB
3503 }
3504}
3505
bc98a7ef
JM
3506void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3507{
3508 int io_index;
3509 uint8_t *ptr;
3510 unsigned long pd;
3511 PhysPageDesc *p;
3512
3513 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3514 if (!p) {
3515 pd = IO_MEM_UNASSIGNED;
3516 } else {
3517 pd = p->phys_offset;
3518 }
3b46e624 3519
bc98a7ef
JM
3520 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3521 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3522 if (p)
3523 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
bc98a7ef
JM
3524#ifdef TARGET_WORDS_BIGENDIAN
3525 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3526 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3527#else
3528 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3529 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3530#endif
3531 } else {
5579c7f3 3532 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
3533 (addr & ~TARGET_PAGE_MASK);
3534 stq_p(ptr, val);
3535 }
3536}
3537
8df1cd07 3538/* warning: addr must be aligned */
8df1cd07
FB
3539void stl_phys(target_phys_addr_t addr, uint32_t val)
3540{
3541 int io_index;
3542 uint8_t *ptr;
3543 unsigned long pd;
3544 PhysPageDesc *p;
3545
3546 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3547 if (!p) {
3548 pd = IO_MEM_UNASSIGNED;
3549 } else {
3550 pd = p->phys_offset;
3551 }
3b46e624 3552
3a7d929e 3553 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3554 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3555 if (p)
3556 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3557 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3558 } else {
3559 unsigned long addr1;
3560 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3561 /* RAM case */
5579c7f3 3562 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3563 stl_p(ptr, val);
3a7d929e
FB
3564 if (!cpu_physical_memory_is_dirty(addr1)) {
3565 /* invalidate code */
3566 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3567 /* set dirty bit */
f23db169
FB
3568 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3569 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3570 }
8df1cd07
FB
3571 }
3572}
3573
aab33094
FB
3574/* XXX: optimize */
3575void stb_phys(target_phys_addr_t addr, uint32_t val)
3576{
3577 uint8_t v = val;
3578 cpu_physical_memory_write(addr, &v, 1);
3579}
3580
3581/* XXX: optimize */
3582void stw_phys(target_phys_addr_t addr, uint32_t val)
3583{
3584 uint16_t v = tswap16(val);
3585 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3586}
3587
3588/* XXX: optimize */
3589void stq_phys(target_phys_addr_t addr, uint64_t val)
3590{
3591 val = tswap64(val);
3592 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3593}
3594
13eb76e0
FB
3595#endif
3596
5e2972fd 3597/* virtual memory access for debug (includes writing to ROM) */
5fafdf24 3598int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 3599 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3600{
3601 int l;
9b3c35e0
JM
3602 target_phys_addr_t phys_addr;
3603 target_ulong page;
13eb76e0
FB
3604
3605 while (len > 0) {
3606 page = addr & TARGET_PAGE_MASK;
3607 phys_addr = cpu_get_phys_page_debug(env, page);
3608 /* if no physical page mapped, return an error */
3609 if (phys_addr == -1)
3610 return -1;
3611 l = (page + TARGET_PAGE_SIZE) - addr;
3612 if (l > len)
3613 l = len;
5e2972fd
AL
3614 phys_addr += (addr & ~TARGET_PAGE_MASK);
3615#if !defined(CONFIG_USER_ONLY)
3616 if (is_write)
3617 cpu_physical_memory_write_rom(phys_addr, buf, l);
3618 else
3619#endif
3620 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
3621 len -= l;
3622 buf += l;
3623 addr += l;
3624 }
3625 return 0;
3626}
3627
2e70f6ef
PB
3628/* in deterministic execution mode, instructions doing device I/Os
3629 must be at the end of the TB */
3630void cpu_io_recompile(CPUState *env, void *retaddr)
3631{
3632 TranslationBlock *tb;
3633 uint32_t n, cflags;
3634 target_ulong pc, cs_base;
3635 uint64_t flags;
3636
3637 tb = tb_find_pc((unsigned long)retaddr);
3638 if (!tb) {
3639 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3640 retaddr);
3641 }
3642 n = env->icount_decr.u16.low + tb->icount;
3643 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3644 /* Calculate how many instructions had been executed before the fault
bf20dc07 3645 occurred. */
2e70f6ef
PB
3646 n = n - env->icount_decr.u16.low;
3647 /* Generate a new TB ending on the I/O insn. */
3648 n++;
3649 /* On MIPS and SH, delay slot instructions can only be restarted if
3650 they were already the first instruction in the TB. If this is not
bf20dc07 3651 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
3652 branch. */
3653#if defined(TARGET_MIPS)
3654 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3655 env->active_tc.PC -= 4;
3656 env->icount_decr.u16.low++;
3657 env->hflags &= ~MIPS_HFLAG_BMASK;
3658 }
3659#elif defined(TARGET_SH4)
3660 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3661 && n > 1) {
3662 env->pc -= 2;
3663 env->icount_decr.u16.low++;
3664 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3665 }
3666#endif
3667 /* This should never happen. */
3668 if (n > CF_COUNT_MASK)
3669 cpu_abort(env, "TB too big during recompile");
3670
3671 cflags = n | CF_LAST_IO;
3672 pc = tb->pc;
3673 cs_base = tb->cs_base;
3674 flags = tb->flags;
3675 tb_phys_invalidate(tb, -1);
3676 /* FIXME: In theory this could raise an exception. In practice
3677 we have already translated the block once so it's probably ok. */
3678 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 3679 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
3680 the first in the TB) then we end up generating a whole new TB and
3681 repeating the fault, which is horribly inefficient.
3682 Better would be to execute just this insn uncached, or generate a
3683 second new TB. */
3684 cpu_resume_from_signal(env, NULL);
3685}
3686
e3db7226
FB
3687void dump_exec_info(FILE *f,
3688 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3689{
3690 int i, target_code_size, max_target_code_size;
3691 int direct_jmp_count, direct_jmp2_count, cross_page;
3692 TranslationBlock *tb;
3b46e624 3693
e3db7226
FB
3694 target_code_size = 0;
3695 max_target_code_size = 0;
3696 cross_page = 0;
3697 direct_jmp_count = 0;
3698 direct_jmp2_count = 0;
3699 for(i = 0; i < nb_tbs; i++) {
3700 tb = &tbs[i];
3701 target_code_size += tb->size;
3702 if (tb->size > max_target_code_size)
3703 max_target_code_size = tb->size;
3704 if (tb->page_addr[1] != -1)
3705 cross_page++;
3706 if (tb->tb_next_offset[0] != 0xffff) {
3707 direct_jmp_count++;
3708 if (tb->tb_next_offset[1] != 0xffff) {
3709 direct_jmp2_count++;
3710 }
3711 }
3712 }
3713 /* XXX: avoid using doubles ? */
57fec1fe 3714 cpu_fprintf(f, "Translation buffer state:\n");
26a5f13b
FB
3715 cpu_fprintf(f, "gen code size %ld/%ld\n",
3716 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3717 cpu_fprintf(f, "TB count %d/%d\n",
3718 nb_tbs, code_gen_max_blocks);
5fafdf24 3719 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
3720 nb_tbs ? target_code_size / nb_tbs : 0,
3721 max_target_code_size);
5fafdf24 3722 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
3723 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3724 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
3725 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3726 cross_page,
e3db7226
FB
3727 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3728 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 3729 direct_jmp_count,
e3db7226
FB
3730 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3731 direct_jmp2_count,
3732 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 3733 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
3734 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3735 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3736 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 3737 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
3738}
3739
5fafdf24 3740#if !defined(CONFIG_USER_ONLY)
61382a50
FB
3741
3742#define MMUSUFFIX _cmmu
3743#define GETPC() NULL
3744#define env cpu_single_env
b769d8fe 3745#define SOFTMMU_CODE_ACCESS
61382a50
FB
3746
3747#define SHIFT 0
3748#include "softmmu_template.h"
3749
3750#define SHIFT 1
3751#include "softmmu_template.h"
3752
3753#define SHIFT 2
3754#include "softmmu_template.h"
3755
3756#define SHIFT 3
3757#include "softmmu_template.h"
3758
3759#undef env
3760
3761#endif