]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
cpu: Add per-cpu address space
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
d5a8f07c
FB
20#ifdef _WIN32
21#include <windows.h>
22#else
a98d49b1 23#include <sys/types.h>
d5a8f07c
FB
24#include <sys/mman.h>
25#endif
54936004 26
055403b2 27#include "qemu-common.h"
6180a181 28#include "cpu.h"
b67d9a52 29#include "tcg.h"
b3c7724c 30#include "hw/hw.h"
cc9e98cb 31#include "hw/qdev.h"
1de7afc9 32#include "qemu/osdep.h"
9c17d615 33#include "sysemu/kvm.h"
2ff3de68 34#include "sysemu/sysemu.h"
0d09e41a 35#include "hw/xen/xen.h"
1de7afc9
PB
36#include "qemu/timer.h"
37#include "qemu/config-file.h"
022c62cb 38#include "exec/memory.h"
9c17d615 39#include "sysemu/dma.h"
022c62cb 40#include "exec/address-spaces.h"
53a5960a
PB
41#if defined(CONFIG_USER_ONLY)
42#include <qemu.h>
432d268c 43#else /* !CONFIG_USER_ONLY */
9c17d615 44#include "sysemu/xen-mapcache.h"
6506e4f9 45#include "trace.h"
53a5960a 46#endif
0d6d3c87 47#include "exec/cpu-all.h"
54936004 48
022c62cb 49#include "exec/cputlb.h"
5b6dd868 50#include "translate-all.h"
0cac1b66 51
022c62cb 52#include "exec/memory-internal.h"
220c3ebd 53#include "exec/ram_addr.h"
582b55a9 54#include "qemu/cache-utils.h"
67d95c15 55
b35ba30f
MT
56#include "qemu/range.h"
57
db7b5426 58//#define DEBUG_SUBPAGE
1196be37 59
e2eef170 60#if !defined(CONFIG_USER_ONLY)
981fdf23 61static bool in_migration;
94a6b54f 62
a3161038 63RAMList ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
64
65static MemoryRegion *system_memory;
309cb471 66static MemoryRegion *system_io;
62152b8a 67
f6790af6
AK
68AddressSpace address_space_io;
69AddressSpace address_space_memory;
2673a5da 70
0844e007 71MemoryRegion io_mem_rom, io_mem_notdirty;
acc9d80b 72static MemoryRegion io_mem_unassigned;
0e0df1e2 73
e2eef170 74#endif
9fa3e853 75
bdc44640 76struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
6a00d601
FB
77/* current CPU in the current thread. It is only valid inside
78 cpu_exec() */
4917cf44 79DEFINE_TLS(CPUState *, current_cpu);
2e70f6ef 80/* 0 = Do not count executed instructions.
bf20dc07 81 1 = Precise instruction counting.
2e70f6ef 82 2 = Adaptive rate instruction counting. */
5708fc66 83int use_icount;
6a00d601 84
e2eef170 85#if !defined(CONFIG_USER_ONLY)
4346ae3e 86
1db8abb1
PB
87typedef struct PhysPageEntry PhysPageEntry;
88
89struct PhysPageEntry {
9736e55b 90 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 91 uint32_t skip : 6;
9736e55b 92 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 93 uint32_t ptr : 26;
1db8abb1
PB
94};
95
8b795765
MT
96#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
97
03f49957 98/* Size of the L2 (and L3, etc) page tables. */
57271d63 99#define ADDR_SPACE_BITS 64
03f49957 100
026736ce 101#define P_L2_BITS 9
03f49957
PB
102#define P_L2_SIZE (1 << P_L2_BITS)
103
104#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
105
106typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 107
53cb28cb
MA
108typedef struct PhysPageMap {
109 unsigned sections_nb;
110 unsigned sections_nb_alloc;
111 unsigned nodes_nb;
112 unsigned nodes_nb_alloc;
113 Node *nodes;
114 MemoryRegionSection *sections;
115} PhysPageMap;
116
1db8abb1
PB
117struct AddressSpaceDispatch {
118 /* This is a multi-level map on the physical address space.
119 * The bottom level has pointers to MemoryRegionSections.
120 */
121 PhysPageEntry phys_map;
53cb28cb 122 PhysPageMap map;
acc9d80b 123 AddressSpace *as;
1db8abb1
PB
124};
125
90260c6c
JK
126#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
127typedef struct subpage_t {
128 MemoryRegion iomem;
acc9d80b 129 AddressSpace *as;
90260c6c
JK
130 hwaddr base;
131 uint16_t sub_section[TARGET_PAGE_SIZE];
132} subpage_t;
133
b41aac4f
LPF
134#define PHYS_SECTION_UNASSIGNED 0
135#define PHYS_SECTION_NOTDIRTY 1
136#define PHYS_SECTION_ROM 2
137#define PHYS_SECTION_WATCH 3
5312bd8b 138
e2eef170 139static void io_mem_init(void);
62152b8a 140static void memory_map_init(void);
09daed84 141static void tcg_commit(MemoryListener *listener);
e2eef170 142
1ec9b909 143static MemoryRegion io_mem_watch;
6658ffb8 144#endif
fd6ce8f6 145
6d9a1304 146#if !defined(CONFIG_USER_ONLY)
d6f2ea22 147
53cb28cb 148static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 149{
53cb28cb
MA
150 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
151 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc * 2, 16);
152 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
153 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
d6f2ea22 154 }
f7bf5461
AK
155}
156
53cb28cb 157static uint32_t phys_map_node_alloc(PhysPageMap *map)
f7bf5461
AK
158{
159 unsigned i;
8b795765 160 uint32_t ret;
f7bf5461 161
53cb28cb 162 ret = map->nodes_nb++;
f7bf5461 163 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 164 assert(ret != map->nodes_nb_alloc);
03f49957 165 for (i = 0; i < P_L2_SIZE; ++i) {
53cb28cb
MA
166 map->nodes[ret][i].skip = 1;
167 map->nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
d6f2ea22 168 }
f7bf5461 169 return ret;
d6f2ea22
AK
170}
171
53cb28cb
MA
172static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
173 hwaddr *index, hwaddr *nb, uint16_t leaf,
2999097b 174 int level)
f7bf5461
AK
175{
176 PhysPageEntry *p;
177 int i;
03f49957 178 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 179
9736e55b 180 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
53cb28cb
MA
181 lp->ptr = phys_map_node_alloc(map);
182 p = map->nodes[lp->ptr];
f7bf5461 183 if (level == 0) {
03f49957 184 for (i = 0; i < P_L2_SIZE; i++) {
9736e55b 185 p[i].skip = 0;
b41aac4f 186 p[i].ptr = PHYS_SECTION_UNASSIGNED;
4346ae3e 187 }
67c4d23c 188 }
f7bf5461 189 } else {
53cb28cb 190 p = map->nodes[lp->ptr];
92e873b9 191 }
03f49957 192 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 193
03f49957 194 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 195 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 196 lp->skip = 0;
c19e8800 197 lp->ptr = leaf;
07f07b31
AK
198 *index += step;
199 *nb -= step;
2999097b 200 } else {
53cb28cb 201 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
202 }
203 ++lp;
f7bf5461
AK
204 }
205}
206
ac1970fb 207static void phys_page_set(AddressSpaceDispatch *d,
a8170e5e 208 hwaddr index, hwaddr nb,
2999097b 209 uint16_t leaf)
f7bf5461 210{
2999097b 211 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 212 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 213
53cb28cb 214 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
215}
216
b35ba30f
MT
217/* Compact a non leaf page entry. Simply detect that the entry has a single child,
218 * and update our entry so we can skip it and go directly to the destination.
219 */
220static void phys_page_compact(PhysPageEntry *lp, Node *nodes, unsigned long *compacted)
221{
222 unsigned valid_ptr = P_L2_SIZE;
223 int valid = 0;
224 PhysPageEntry *p;
225 int i;
226
227 if (lp->ptr == PHYS_MAP_NODE_NIL) {
228 return;
229 }
230
231 p = nodes[lp->ptr];
232 for (i = 0; i < P_L2_SIZE; i++) {
233 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
234 continue;
235 }
236
237 valid_ptr = i;
238 valid++;
239 if (p[i].skip) {
240 phys_page_compact(&p[i], nodes, compacted);
241 }
242 }
243
244 /* We can only compress if there's only one child. */
245 if (valid != 1) {
246 return;
247 }
248
249 assert(valid_ptr < P_L2_SIZE);
250
251 /* Don't compress if it won't fit in the # of bits we have. */
252 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
253 return;
254 }
255
256 lp->ptr = p[valid_ptr].ptr;
257 if (!p[valid_ptr].skip) {
258 /* If our only child is a leaf, make this a leaf. */
259 /* By design, we should have made this node a leaf to begin with so we
260 * should never reach here.
261 * But since it's so simple to handle this, let's do it just in case we
262 * change this rule.
263 */
264 lp->skip = 0;
265 } else {
266 lp->skip += p[valid_ptr].skip;
267 }
268}
269
270static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb)
271{
272 DECLARE_BITMAP(compacted, nodes_nb);
273
274 if (d->phys_map.skip) {
53cb28cb 275 phys_page_compact(&d->phys_map, d->map.nodes, compacted);
b35ba30f
MT
276 }
277}
278
97115a8d 279static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr,
9affd6fc 280 Node *nodes, MemoryRegionSection *sections)
92e873b9 281{
31ab2b4a 282 PhysPageEntry *p;
97115a8d 283 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 284 int i;
f1f6e3b8 285
9736e55b 286 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 287 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 288 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 289 }
9affd6fc 290 p = nodes[lp.ptr];
03f49957 291 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 292 }
b35ba30f
MT
293
294 if (sections[lp.ptr].size.hi ||
295 range_covers_byte(sections[lp.ptr].offset_within_address_space,
296 sections[lp.ptr].size.lo, addr)) {
297 return &sections[lp.ptr];
298 } else {
299 return &sections[PHYS_SECTION_UNASSIGNED];
300 }
f3705d53
AK
301}
302
e5548617
BS
303bool memory_region_is_unassigned(MemoryRegion *mr)
304{
2a8e7499 305 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
5b6dd868 306 && mr != &io_mem_watch;
fd6ce8f6 307}
149f54b5 308
c7086b4a 309static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
310 hwaddr addr,
311 bool resolve_subpage)
9f029603 312{
90260c6c
JK
313 MemoryRegionSection *section;
314 subpage_t *subpage;
315
53cb28cb 316 section = phys_page_find(d->phys_map, addr, d->map.nodes, d->map.sections);
90260c6c
JK
317 if (resolve_subpage && section->mr->subpage) {
318 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 319 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c
JK
320 }
321 return section;
9f029603
JK
322}
323
90260c6c 324static MemoryRegionSection *
c7086b4a 325address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 326 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
327{
328 MemoryRegionSection *section;
a87f3954 329 Int128 diff;
149f54b5 330
c7086b4a 331 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
332 /* Compute offset within MemoryRegionSection */
333 addr -= section->offset_within_address_space;
334
335 /* Compute offset within MemoryRegion */
336 *xlat = addr + section->offset_within_region;
337
338 diff = int128_sub(section->mr->size, int128_make64(addr));
3752a036 339 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
149f54b5
PB
340 return section;
341}
90260c6c 342
a87f3954
PB
343static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
344{
345 if (memory_region_is_ram(mr)) {
346 return !(is_write && mr->readonly);
347 }
348 if (memory_region_is_romd(mr)) {
349 return !is_write;
350 }
351
352 return false;
353}
354
5c8a00ce
PB
355MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
356 hwaddr *xlat, hwaddr *plen,
357 bool is_write)
90260c6c 358{
30951157
AK
359 IOMMUTLBEntry iotlb;
360 MemoryRegionSection *section;
361 MemoryRegion *mr;
362 hwaddr len = *plen;
363
364 for (;;) {
a87f3954 365 section = address_space_translate_internal(as->dispatch, addr, &addr, plen, true);
30951157
AK
366 mr = section->mr;
367
368 if (!mr->iommu_ops) {
369 break;
370 }
371
372 iotlb = mr->iommu_ops->translate(mr, addr);
373 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
374 | (addr & iotlb.addr_mask));
375 len = MIN(len, (addr | iotlb.addr_mask) - addr + 1);
376 if (!(iotlb.perm & (1 << is_write))) {
377 mr = &io_mem_unassigned;
378 break;
379 }
380
381 as = iotlb.target_as;
382 }
383
a87f3954
PB
384 if (memory_access_is_direct(mr, is_write)) {
385 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
386 len = MIN(page, len);
387 }
388
30951157
AK
389 *plen = len;
390 *xlat = addr;
391 return mr;
90260c6c
JK
392}
393
394MemoryRegionSection *
395address_space_translate_for_iotlb(AddressSpace *as, hwaddr addr, hwaddr *xlat,
396 hwaddr *plen)
397{
30951157 398 MemoryRegionSection *section;
c7086b4a 399 section = address_space_translate_internal(as->dispatch, addr, xlat, plen, false);
30951157
AK
400
401 assert(!section->mr->iommu_ops);
402 return section;
90260c6c 403}
5b6dd868 404#endif
fd6ce8f6 405
5b6dd868 406void cpu_exec_init_all(void)
fdbb84d1 407{
5b6dd868 408#if !defined(CONFIG_USER_ONLY)
b2a8658e 409 qemu_mutex_init(&ram_list.mutex);
5b6dd868
BS
410 memory_map_init();
411 io_mem_init();
fdbb84d1 412#endif
5b6dd868 413}
fdbb84d1 414
b170fce3 415#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
416
417static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 418{
259186a7 419 CPUState *cpu = opaque;
a513fe19 420
5b6dd868
BS
421 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
422 version_id is increased. */
259186a7
AF
423 cpu->interrupt_request &= ~0x01;
424 tlb_flush(cpu->env_ptr, 1);
5b6dd868
BS
425
426 return 0;
a513fe19 427}
7501267e 428
1a1562f5 429const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
430 .name = "cpu_common",
431 .version_id = 1,
432 .minimum_version_id = 1,
433 .minimum_version_id_old = 1,
434 .post_load = cpu_common_post_load,
435 .fields = (VMStateField []) {
259186a7
AF
436 VMSTATE_UINT32(halted, CPUState),
437 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868
BS
438 VMSTATE_END_OF_LIST()
439 }
440};
1a1562f5 441
5b6dd868 442#endif
ea041c0e 443
38d8f5c8 444CPUState *qemu_get_cpu(int index)
ea041c0e 445{
bdc44640 446 CPUState *cpu;
ea041c0e 447
bdc44640 448 CPU_FOREACH(cpu) {
55e5c285 449 if (cpu->cpu_index == index) {
bdc44640 450 return cpu;
55e5c285 451 }
ea041c0e 452 }
5b6dd868 453
bdc44640 454 return NULL;
ea041c0e
FB
455}
456
09daed84
EI
457#if !defined(CONFIG_USER_ONLY)
458void tcg_cpu_address_space_init(CPUState *cpu, AddressSpace *as)
459{
460 /* We only support one address space per cpu at the moment. */
461 assert(cpu->as == as);
462
463 if (cpu->tcg_as_listener) {
464 memory_listener_unregister(cpu->tcg_as_listener);
465 } else {
466 cpu->tcg_as_listener = g_new0(MemoryListener, 1);
467 }
468 cpu->tcg_as_listener->commit = tcg_commit;
469 memory_listener_register(cpu->tcg_as_listener, as);
470}
471#endif
472
5b6dd868 473void cpu_exec_init(CPUArchState *env)
ea041c0e 474{
5b6dd868 475 CPUState *cpu = ENV_GET_CPU(env);
b170fce3 476 CPUClass *cc = CPU_GET_CLASS(cpu);
bdc44640 477 CPUState *some_cpu;
5b6dd868
BS
478 int cpu_index;
479
480#if defined(CONFIG_USER_ONLY)
481 cpu_list_lock();
482#endif
5b6dd868 483 cpu_index = 0;
bdc44640 484 CPU_FOREACH(some_cpu) {
5b6dd868
BS
485 cpu_index++;
486 }
55e5c285 487 cpu->cpu_index = cpu_index;
1b1ed8dc 488 cpu->numa_node = 0;
5b6dd868
BS
489 QTAILQ_INIT(&env->breakpoints);
490 QTAILQ_INIT(&env->watchpoints);
491#ifndef CONFIG_USER_ONLY
09daed84 492 cpu->as = &address_space_memory;
5b6dd868
BS
493 cpu->thread_id = qemu_get_thread_id();
494#endif
bdc44640 495 QTAILQ_INSERT_TAIL(&cpus, cpu, node);
5b6dd868
BS
496#if defined(CONFIG_USER_ONLY)
497 cpu_list_unlock();
498#endif
e0d47944
AF
499 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
500 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
501 }
5b6dd868 502#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
5b6dd868
BS
503 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
504 cpu_save, cpu_load, env);
b170fce3 505 assert(cc->vmsd == NULL);
e0d47944 506 assert(qdev_get_vmsd(DEVICE(cpu)) == NULL);
5b6dd868 507#endif
b170fce3
AF
508 if (cc->vmsd != NULL) {
509 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
510 }
ea041c0e
FB
511}
512
1fddef4b 513#if defined(TARGET_HAS_ICE)
94df27fd 514#if defined(CONFIG_USER_ONLY)
00b941e5 515static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
94df27fd
PB
516{
517 tb_invalidate_phys_page_range(pc, pc + 1, 0);
518}
519#else
00b941e5 520static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1e7855a5 521{
e8262a1b
MF
522 hwaddr phys = cpu_get_phys_page_debug(cpu, pc);
523 if (phys != -1) {
09daed84 524 tb_invalidate_phys_addr(cpu->as,
29d8ec7b 525 phys | (pc & ~TARGET_PAGE_MASK));
e8262a1b 526 }
1e7855a5 527}
c27004ec 528#endif
94df27fd 529#endif /* TARGET_HAS_ICE */
d720b93d 530
c527ee8f 531#if defined(CONFIG_USER_ONLY)
9349b4f9 532void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
c527ee8f
PB
533
534{
535}
536
9349b4f9 537int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
c527ee8f
PB
538 int flags, CPUWatchpoint **watchpoint)
539{
540 return -ENOSYS;
541}
542#else
6658ffb8 543/* Add a watchpoint. */
9349b4f9 544int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
a1d1bb31 545 int flags, CPUWatchpoint **watchpoint)
6658ffb8 546{
b4051334 547 target_ulong len_mask = ~(len - 1);
c0ce998e 548 CPUWatchpoint *wp;
6658ffb8 549
b4051334 550 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
0dc23828
MF
551 if ((len & (len - 1)) || (addr & ~len_mask) ||
552 len == 0 || len > TARGET_PAGE_SIZE) {
b4051334
AL
553 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
554 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
555 return -EINVAL;
556 }
7267c094 557 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
558
559 wp->vaddr = addr;
b4051334 560 wp->len_mask = len_mask;
a1d1bb31
AL
561 wp->flags = flags;
562
2dc9f411 563 /* keep all GDB-injected watchpoints in front */
c0ce998e 564 if (flags & BP_GDB)
72cf2d4f 565 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
c0ce998e 566 else
72cf2d4f 567 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 568
6658ffb8 569 tlb_flush_page(env, addr);
a1d1bb31
AL
570
571 if (watchpoint)
572 *watchpoint = wp;
573 return 0;
6658ffb8
PB
574}
575
a1d1bb31 576/* Remove a specific watchpoint. */
9349b4f9 577int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
a1d1bb31 578 int flags)
6658ffb8 579{
b4051334 580 target_ulong len_mask = ~(len - 1);
a1d1bb31 581 CPUWatchpoint *wp;
6658ffb8 582
72cf2d4f 583 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 584 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 585 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 586 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
587 return 0;
588 }
589 }
a1d1bb31 590 return -ENOENT;
6658ffb8
PB
591}
592
a1d1bb31 593/* Remove a specific watchpoint by reference. */
9349b4f9 594void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
a1d1bb31 595{
72cf2d4f 596 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 597
a1d1bb31
AL
598 tlb_flush_page(env, watchpoint->vaddr);
599
7267c094 600 g_free(watchpoint);
a1d1bb31
AL
601}
602
603/* Remove all matching watchpoints. */
9349b4f9 604void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
a1d1bb31 605{
c0ce998e 606 CPUWatchpoint *wp, *next;
a1d1bb31 607
72cf2d4f 608 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
609 if (wp->flags & mask)
610 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 611 }
7d03f82f 612}
c527ee8f 613#endif
7d03f82f 614
a1d1bb31 615/* Add a breakpoint. */
9349b4f9 616int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
a1d1bb31 617 CPUBreakpoint **breakpoint)
4c3a88a2 618{
1fddef4b 619#if defined(TARGET_HAS_ICE)
c0ce998e 620 CPUBreakpoint *bp;
3b46e624 621
7267c094 622 bp = g_malloc(sizeof(*bp));
4c3a88a2 623
a1d1bb31
AL
624 bp->pc = pc;
625 bp->flags = flags;
626
2dc9f411 627 /* keep all GDB-injected breakpoints in front */
00b941e5 628 if (flags & BP_GDB) {
72cf2d4f 629 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
00b941e5 630 } else {
72cf2d4f 631 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
00b941e5 632 }
3b46e624 633
00b941e5 634 breakpoint_invalidate(ENV_GET_CPU(env), pc);
a1d1bb31 635
00b941e5 636 if (breakpoint) {
a1d1bb31 637 *breakpoint = bp;
00b941e5 638 }
4c3a88a2
FB
639 return 0;
640#else
a1d1bb31 641 return -ENOSYS;
4c3a88a2
FB
642#endif
643}
644
a1d1bb31 645/* Remove a specific breakpoint. */
9349b4f9 646int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
a1d1bb31 647{
7d03f82f 648#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
649 CPUBreakpoint *bp;
650
72cf2d4f 651 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
652 if (bp->pc == pc && bp->flags == flags) {
653 cpu_breakpoint_remove_by_ref(env, bp);
654 return 0;
655 }
7d03f82f 656 }
a1d1bb31
AL
657 return -ENOENT;
658#else
659 return -ENOSYS;
7d03f82f
EI
660#endif
661}
662
a1d1bb31 663/* Remove a specific breakpoint by reference. */
9349b4f9 664void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
4c3a88a2 665{
1fddef4b 666#if defined(TARGET_HAS_ICE)
72cf2d4f 667 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 668
00b941e5 669 breakpoint_invalidate(ENV_GET_CPU(env), breakpoint->pc);
a1d1bb31 670
7267c094 671 g_free(breakpoint);
a1d1bb31
AL
672#endif
673}
674
675/* Remove all matching breakpoints. */
9349b4f9 676void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
a1d1bb31
AL
677{
678#if defined(TARGET_HAS_ICE)
c0ce998e 679 CPUBreakpoint *bp, *next;
a1d1bb31 680
72cf2d4f 681 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
682 if (bp->flags & mask)
683 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 684 }
4c3a88a2
FB
685#endif
686}
687
c33a346e
FB
688/* enable or disable single step mode. EXCP_DEBUG is returned by the
689 CPU loop after each instruction */
3825b28f 690void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 691{
1fddef4b 692#if defined(TARGET_HAS_ICE)
ed2803da
AF
693 if (cpu->singlestep_enabled != enabled) {
694 cpu->singlestep_enabled = enabled;
695 if (kvm_enabled()) {
38e478ec 696 kvm_update_guest_debug(cpu, 0);
ed2803da 697 } else {
ccbb4d44 698 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 699 /* XXX: only flush what is necessary */
38e478ec 700 CPUArchState *env = cpu->env_ptr;
e22a25c9
AL
701 tb_flush(env);
702 }
c33a346e
FB
703 }
704#endif
705}
706
9349b4f9 707void cpu_abort(CPUArchState *env, const char *fmt, ...)
7501267e 708{
878096ee 709 CPUState *cpu = ENV_GET_CPU(env);
7501267e 710 va_list ap;
493ae1f0 711 va_list ap2;
7501267e
FB
712
713 va_start(ap, fmt);
493ae1f0 714 va_copy(ap2, ap);
7501267e
FB
715 fprintf(stderr, "qemu: fatal: ");
716 vfprintf(stderr, fmt, ap);
717 fprintf(stderr, "\n");
878096ee 718 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
93fcfe39
AL
719 if (qemu_log_enabled()) {
720 qemu_log("qemu: fatal: ");
721 qemu_log_vprintf(fmt, ap2);
722 qemu_log("\n");
a0762859 723 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 724 qemu_log_flush();
93fcfe39 725 qemu_log_close();
924edcae 726 }
493ae1f0 727 va_end(ap2);
f9373291 728 va_end(ap);
fd052bf6
RV
729#if defined(CONFIG_USER_ONLY)
730 {
731 struct sigaction act;
732 sigfillset(&act.sa_mask);
733 act.sa_handler = SIG_DFL;
734 sigaction(SIGABRT, &act, NULL);
735 }
736#endif
7501267e
FB
737 abort();
738}
739
0124311e 740#if !defined(CONFIG_USER_ONLY)
041603fe
PB
741static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
742{
743 RAMBlock *block;
744
745 /* The list is protected by the iothread lock here. */
746 block = ram_list.mru_block;
747 if (block && addr - block->offset < block->length) {
748 goto found;
749 }
750 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
751 if (addr - block->offset < block->length) {
752 goto found;
753 }
754 }
755
756 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
757 abort();
758
759found:
760 ram_list.mru_block = block;
761 return block;
762}
763
a2f4d5be 764static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 765{
041603fe 766 ram_addr_t start1;
a2f4d5be
JQ
767 RAMBlock *block;
768 ram_addr_t end;
769
770 end = TARGET_PAGE_ALIGN(start + length);
771 start &= TARGET_PAGE_MASK;
d24981d3 772
041603fe
PB
773 block = qemu_get_ram_block(start);
774 assert(block == qemu_get_ram_block(end - 1));
775 start1 = (uintptr_t)block->host + (start - block->offset);
776 cpu_tlb_reset_dirty_all(start1, length);
d24981d3
JQ
777}
778
5579c7f3 779/* Note: start and end must be within the same ram block. */
a2f4d5be 780void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t length,
52159192 781 unsigned client)
1ccde1cb 782{
1ccde1cb
FB
783 if (length == 0)
784 return;
ace694cc 785 cpu_physical_memory_clear_dirty_range(start, length, client);
f23db169 786
d24981d3 787 if (tcg_enabled()) {
a2f4d5be 788 tlb_reset_dirty_range_all(start, length);
5579c7f3 789 }
1ccde1cb
FB
790}
791
981fdf23 792static void cpu_physical_memory_set_dirty_tracking(bool enable)
74576198
AL
793{
794 in_migration = enable;
74576198
AL
795}
796
a8170e5e 797hwaddr memory_region_section_get_iotlb(CPUArchState *env,
149f54b5
PB
798 MemoryRegionSection *section,
799 target_ulong vaddr,
800 hwaddr paddr, hwaddr xlat,
801 int prot,
802 target_ulong *address)
e5548617 803{
a8170e5e 804 hwaddr iotlb;
e5548617
BS
805 CPUWatchpoint *wp;
806
cc5bea60 807 if (memory_region_is_ram(section->mr)) {
e5548617
BS
808 /* Normal RAM. */
809 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
149f54b5 810 + xlat;
e5548617 811 if (!section->readonly) {
b41aac4f 812 iotlb |= PHYS_SECTION_NOTDIRTY;
e5548617 813 } else {
b41aac4f 814 iotlb |= PHYS_SECTION_ROM;
e5548617
BS
815 }
816 } else {
1b3fb98f 817 iotlb = section - section->address_space->dispatch->map.sections;
149f54b5 818 iotlb += xlat;
e5548617
BS
819 }
820
821 /* Make accesses to pages with watchpoints go via the
822 watchpoint trap routines. */
823 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
824 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
825 /* Avoid trapping reads of pages with a write breakpoint. */
826 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
b41aac4f 827 iotlb = PHYS_SECTION_WATCH + paddr;
e5548617
BS
828 *address |= TLB_MMIO;
829 break;
830 }
831 }
832 }
833
834 return iotlb;
835}
9fa3e853
FB
836#endif /* defined(CONFIG_USER_ONLY) */
837
e2eef170 838#if !defined(CONFIG_USER_ONLY)
8da3ff18 839
c227f099 840static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 841 uint16_t section);
acc9d80b 842static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
54688b1e 843
575ddeb4 844static void *(*phys_mem_alloc)(size_t size) = qemu_anon_ram_alloc;
91138037
MA
845
846/*
847 * Set a custom physical guest memory alloator.
848 * Accelerators with unusual needs may need this. Hopefully, we can
849 * get rid of it eventually.
850 */
575ddeb4 851void phys_mem_set_alloc(void *(*alloc)(size_t))
91138037
MA
852{
853 phys_mem_alloc = alloc;
854}
855
53cb28cb
MA
856static uint16_t phys_section_add(PhysPageMap *map,
857 MemoryRegionSection *section)
5312bd8b 858{
68f3f65b
PB
859 /* The physical section number is ORed with a page-aligned
860 * pointer to produce the iotlb entries. Thus it should
861 * never overflow into the page-aligned value.
862 */
53cb28cb 863 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 864
53cb28cb
MA
865 if (map->sections_nb == map->sections_nb_alloc) {
866 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
867 map->sections = g_renew(MemoryRegionSection, map->sections,
868 map->sections_nb_alloc);
5312bd8b 869 }
53cb28cb 870 map->sections[map->sections_nb] = *section;
dfde4e6e 871 memory_region_ref(section->mr);
53cb28cb 872 return map->sections_nb++;
5312bd8b
AK
873}
874
058bc4b5
PB
875static void phys_section_destroy(MemoryRegion *mr)
876{
dfde4e6e
PB
877 memory_region_unref(mr);
878
058bc4b5
PB
879 if (mr->subpage) {
880 subpage_t *subpage = container_of(mr, subpage_t, iomem);
881 memory_region_destroy(&subpage->iomem);
882 g_free(subpage);
883 }
884}
885
6092666e 886static void phys_sections_free(PhysPageMap *map)
5312bd8b 887{
9affd6fc
PB
888 while (map->sections_nb > 0) {
889 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
890 phys_section_destroy(section->mr);
891 }
9affd6fc
PB
892 g_free(map->sections);
893 g_free(map->nodes);
5312bd8b
AK
894}
895
ac1970fb 896static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
0f0cb164
AK
897{
898 subpage_t *subpage;
a8170e5e 899 hwaddr base = section->offset_within_address_space
0f0cb164 900 & TARGET_PAGE_MASK;
97115a8d 901 MemoryRegionSection *existing = phys_page_find(d->phys_map, base,
53cb28cb 902 d->map.nodes, d->map.sections);
0f0cb164
AK
903 MemoryRegionSection subsection = {
904 .offset_within_address_space = base,
052e87b0 905 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 906 };
a8170e5e 907 hwaddr start, end;
0f0cb164 908
f3705d53 909 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 910
f3705d53 911 if (!(existing->mr->subpage)) {
acc9d80b 912 subpage = subpage_init(d->as, base);
3be91e86 913 subsection.address_space = d->as;
0f0cb164 914 subsection.mr = &subpage->iomem;
ac1970fb 915 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 916 phys_section_add(&d->map, &subsection));
0f0cb164 917 } else {
f3705d53 918 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
919 }
920 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 921 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
922 subpage_register(subpage, start, end,
923 phys_section_add(&d->map, section));
0f0cb164
AK
924}
925
926
052e87b0
PB
927static void register_multipage(AddressSpaceDispatch *d,
928 MemoryRegionSection *section)
33417e70 929{
a8170e5e 930 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 931 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
932 uint64_t num_pages = int128_get64(int128_rshift(section->size,
933 TARGET_PAGE_BITS));
dd81124b 934
733d5ef5
PB
935 assert(num_pages);
936 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
937}
938
ac1970fb 939static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
0f0cb164 940{
89ae337a 941 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
00752703 942 AddressSpaceDispatch *d = as->next_dispatch;
99b9cc06 943 MemoryRegionSection now = *section, remain = *section;
052e87b0 944 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 945
733d5ef5
PB
946 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
947 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
948 - now.offset_within_address_space;
949
052e87b0 950 now.size = int128_min(int128_make64(left), now.size);
ac1970fb 951 register_subpage(d, &now);
733d5ef5 952 } else {
052e87b0 953 now.size = int128_zero();
733d5ef5 954 }
052e87b0
PB
955 while (int128_ne(remain.size, now.size)) {
956 remain.size = int128_sub(remain.size, now.size);
957 remain.offset_within_address_space += int128_get64(now.size);
958 remain.offset_within_region += int128_get64(now.size);
69b67646 959 now = remain;
052e87b0 960 if (int128_lt(remain.size, page_size)) {
733d5ef5 961 register_subpage(d, &now);
88266249 962 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
052e87b0 963 now.size = page_size;
ac1970fb 964 register_subpage(d, &now);
69b67646 965 } else {
052e87b0 966 now.size = int128_and(now.size, int128_neg(page_size));
ac1970fb 967 register_multipage(d, &now);
69b67646 968 }
0f0cb164
AK
969 }
970}
971
62a2744c
SY
972void qemu_flush_coalesced_mmio_buffer(void)
973{
974 if (kvm_enabled())
975 kvm_flush_coalesced_mmio_buffer();
976}
977
b2a8658e
UD
978void qemu_mutex_lock_ramlist(void)
979{
980 qemu_mutex_lock(&ram_list.mutex);
981}
982
983void qemu_mutex_unlock_ramlist(void)
984{
985 qemu_mutex_unlock(&ram_list.mutex);
986}
987
e1e84ba0 988#ifdef __linux__
c902760f
MT
989
990#include <sys/vfs.h>
991
992#define HUGETLBFS_MAGIC 0x958458f6
993
994static long gethugepagesize(const char *path)
995{
996 struct statfs fs;
997 int ret;
998
999 do {
9742bf26 1000 ret = statfs(path, &fs);
c902760f
MT
1001 } while (ret != 0 && errno == EINTR);
1002
1003 if (ret != 0) {
9742bf26
YT
1004 perror(path);
1005 return 0;
c902760f
MT
1006 }
1007
1008 if (fs.f_type != HUGETLBFS_MAGIC)
9742bf26 1009 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
c902760f
MT
1010
1011 return fs.f_bsize;
1012}
1013
ef36fa14
MT
1014static sigjmp_buf sigjump;
1015
1016static void sigbus_handler(int signal)
1017{
1018 siglongjmp(sigjump, 1);
1019}
1020
04b16653
AW
1021static void *file_ram_alloc(RAMBlock *block,
1022 ram_addr_t memory,
1023 const char *path)
c902760f
MT
1024{
1025 char *filename;
8ca761f6
PF
1026 char *sanitized_name;
1027 char *c;
c902760f
MT
1028 void *area;
1029 int fd;
c902760f
MT
1030 unsigned long hpagesize;
1031
1032 hpagesize = gethugepagesize(path);
1033 if (!hpagesize) {
9742bf26 1034 return NULL;
c902760f
MT
1035 }
1036
1037 if (memory < hpagesize) {
1038 return NULL;
1039 }
1040
1041 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1042 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
1043 return NULL;
1044 }
1045
8ca761f6
PF
1046 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1047 sanitized_name = g_strdup(block->mr->name);
1048 for (c = sanitized_name; *c != '\0'; c++) {
1049 if (*c == '/')
1050 *c = '_';
1051 }
1052
1053 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1054 sanitized_name);
1055 g_free(sanitized_name);
c902760f
MT
1056
1057 fd = mkstemp(filename);
1058 if (fd < 0) {
9742bf26 1059 perror("unable to create backing store for hugepages");
e4ada482 1060 g_free(filename);
9742bf26 1061 return NULL;
c902760f
MT
1062 }
1063 unlink(filename);
e4ada482 1064 g_free(filename);
c902760f
MT
1065
1066 memory = (memory+hpagesize-1) & ~(hpagesize-1);
1067
1068 /*
1069 * ftruncate is not supported by hugetlbfs in older
1070 * hosts, so don't bother bailing out on errors.
1071 * If anything goes wrong with it under other filesystems,
1072 * mmap will fail.
1073 */
1074 if (ftruncate(fd, memory))
9742bf26 1075 perror("ftruncate");
c902760f 1076
c902760f 1077 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
c902760f 1078 if (area == MAP_FAILED) {
9742bf26
YT
1079 perror("file_ram_alloc: can't mmap RAM pages");
1080 close(fd);
1081 return (NULL);
c902760f 1082 }
ef36fa14
MT
1083
1084 if (mem_prealloc) {
1085 int ret, i;
1086 struct sigaction act, oldact;
1087 sigset_t set, oldset;
1088
1089 memset(&act, 0, sizeof(act));
1090 act.sa_handler = &sigbus_handler;
1091 act.sa_flags = 0;
1092
1093 ret = sigaction(SIGBUS, &act, &oldact);
1094 if (ret) {
1095 perror("file_ram_alloc: failed to install signal handler");
1096 exit(1);
1097 }
1098
1099 /* unblock SIGBUS */
1100 sigemptyset(&set);
1101 sigaddset(&set, SIGBUS);
1102 pthread_sigmask(SIG_UNBLOCK, &set, &oldset);
1103
1104 if (sigsetjmp(sigjump, 1)) {
1105 fprintf(stderr, "file_ram_alloc: failed to preallocate pages\n");
1106 exit(1);
1107 }
1108
1109 /* MAP_POPULATE silently ignores failures */
2ba82852 1110 for (i = 0; i < (memory/hpagesize); i++) {
ef36fa14
MT
1111 memset(area + (hpagesize*i), 0, 1);
1112 }
1113
1114 ret = sigaction(SIGBUS, &oldact, NULL);
1115 if (ret) {
1116 perror("file_ram_alloc: failed to reinstall signal handler");
1117 exit(1);
1118 }
1119
1120 pthread_sigmask(SIG_SETMASK, &oldset, NULL);
1121 }
1122
04b16653 1123 block->fd = fd;
c902760f
MT
1124 return area;
1125}
e1e84ba0
MA
1126#else
1127static void *file_ram_alloc(RAMBlock *block,
1128 ram_addr_t memory,
1129 const char *path)
1130{
1131 fprintf(stderr, "-mem-path not supported on this host\n");
1132 exit(1);
1133}
c902760f
MT
1134#endif
1135
d17b5288 1136static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1137{
1138 RAMBlock *block, *next_block;
3e837b2c 1139 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1140
49cd9ac6
SH
1141 assert(size != 0); /* it would hand out same offset multiple times */
1142
a3161038 1143 if (QTAILQ_EMPTY(&ram_list.blocks))
04b16653
AW
1144 return 0;
1145
a3161038 1146 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
f15fbc4b 1147 ram_addr_t end, next = RAM_ADDR_MAX;
04b16653
AW
1148
1149 end = block->offset + block->length;
1150
a3161038 1151 QTAILQ_FOREACH(next_block, &ram_list.blocks, next) {
04b16653
AW
1152 if (next_block->offset >= end) {
1153 next = MIN(next, next_block->offset);
1154 }
1155 }
1156 if (next - end >= size && next - end < mingap) {
3e837b2c 1157 offset = end;
04b16653
AW
1158 mingap = next - end;
1159 }
1160 }
3e837b2c
AW
1161
1162 if (offset == RAM_ADDR_MAX) {
1163 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1164 (uint64_t)size);
1165 abort();
1166 }
1167
04b16653
AW
1168 return offset;
1169}
1170
652d7ec2 1171ram_addr_t last_ram_offset(void)
d17b5288
AW
1172{
1173 RAMBlock *block;
1174 ram_addr_t last = 0;
1175
a3161038 1176 QTAILQ_FOREACH(block, &ram_list.blocks, next)
d17b5288
AW
1177 last = MAX(last, block->offset + block->length);
1178
1179 return last;
1180}
1181
ddb97f1d
JB
1182static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1183{
1184 int ret;
ddb97f1d
JB
1185
1186 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
2ff3de68
MA
1187 if (!qemu_opt_get_bool(qemu_get_machine_opts(),
1188 "dump-guest-core", true)) {
ddb97f1d
JB
1189 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1190 if (ret) {
1191 perror("qemu_madvise");
1192 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1193 "but dump_guest_core=off specified\n");
1194 }
1195 }
1196}
1197
c5705a77 1198void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
84b89d78
CM
1199{
1200 RAMBlock *new_block, *block;
1201
c5705a77 1202 new_block = NULL;
a3161038 1203 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
c5705a77
AK
1204 if (block->offset == addr) {
1205 new_block = block;
1206 break;
1207 }
1208 }
1209 assert(new_block);
1210 assert(!new_block->idstr[0]);
84b89d78 1211
09e5ab63
AL
1212 if (dev) {
1213 char *id = qdev_get_dev_path(dev);
84b89d78
CM
1214 if (id) {
1215 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 1216 g_free(id);
84b89d78
CM
1217 }
1218 }
1219 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1220
b2a8658e
UD
1221 /* This assumes the iothread lock is taken here too. */
1222 qemu_mutex_lock_ramlist();
a3161038 1223 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
c5705a77 1224 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
1225 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1226 new_block->idstr);
1227 abort();
1228 }
1229 }
b2a8658e 1230 qemu_mutex_unlock_ramlist();
c5705a77
AK
1231}
1232
8490fc78
LC
1233static int memory_try_enable_merging(void *addr, size_t len)
1234{
2ff3de68 1235 if (!qemu_opt_get_bool(qemu_get_machine_opts(), "mem-merge", true)) {
8490fc78
LC
1236 /* disabled by the user */
1237 return 0;
1238 }
1239
1240 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1241}
1242
c5705a77
AK
1243ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1244 MemoryRegion *mr)
1245{
abb26d63 1246 RAMBlock *block, *new_block;
2152f5ca
JQ
1247 ram_addr_t old_ram_size, new_ram_size;
1248
1249 old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
c5705a77
AK
1250
1251 size = TARGET_PAGE_ALIGN(size);
1252 new_block = g_malloc0(sizeof(*new_block));
3435f395 1253 new_block->fd = -1;
84b89d78 1254
b2a8658e
UD
1255 /* This assumes the iothread lock is taken here too. */
1256 qemu_mutex_lock_ramlist();
7c637366 1257 new_block->mr = mr;
432d268c 1258 new_block->offset = find_ram_offset(size);
6977dfe6
YT
1259 if (host) {
1260 new_block->host = host;
cd19cfa2 1261 new_block->flags |= RAM_PREALLOC_MASK;
dfeaf2ab
MA
1262 } else if (xen_enabled()) {
1263 if (mem_path) {
1264 fprintf(stderr, "-mem-path not supported with Xen\n");
1265 exit(1);
1266 }
1267 xen_ram_alloc(new_block->offset, size, mr);
6977dfe6
YT
1268 } else {
1269 if (mem_path) {
e1e84ba0
MA
1270 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1271 /*
1272 * file_ram_alloc() needs to allocate just like
1273 * phys_mem_alloc, but we haven't bothered to provide
1274 * a hook there.
1275 */
1276 fprintf(stderr,
1277 "-mem-path not supported with this accelerator\n");
1278 exit(1);
1279 }
6977dfe6 1280 new_block->host = file_ram_alloc(new_block, size, mem_path);
0628c182
MA
1281 }
1282 if (!new_block->host) {
91138037 1283 new_block->host = phys_mem_alloc(size);
39228250
MA
1284 if (!new_block->host) {
1285 fprintf(stderr, "Cannot set up guest memory '%s': %s\n",
1286 new_block->mr->name, strerror(errno));
1287 exit(1);
1288 }
8490fc78 1289 memory_try_enable_merging(new_block->host, size);
6977dfe6 1290 }
c902760f 1291 }
94a6b54f
PB
1292 new_block->length = size;
1293
abb26d63
PB
1294 /* Keep the list sorted from biggest to smallest block. */
1295 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1296 if (block->length < new_block->length) {
1297 break;
1298 }
1299 }
1300 if (block) {
1301 QTAILQ_INSERT_BEFORE(block, new_block, next);
1302 } else {
1303 QTAILQ_INSERT_TAIL(&ram_list.blocks, new_block, next);
1304 }
0d6d3c87 1305 ram_list.mru_block = NULL;
94a6b54f 1306
f798b07f 1307 ram_list.version++;
b2a8658e 1308 qemu_mutex_unlock_ramlist();
f798b07f 1309
2152f5ca
JQ
1310 new_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
1311
1312 if (new_ram_size > old_ram_size) {
1ab4c8ce
JQ
1313 int i;
1314 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1315 ram_list.dirty_memory[i] =
1316 bitmap_zero_extend(ram_list.dirty_memory[i],
1317 old_ram_size, new_ram_size);
1318 }
2152f5ca 1319 }
75218e7f 1320 cpu_physical_memory_set_dirty_range(new_block->offset, size);
94a6b54f 1321
ddb97f1d 1322 qemu_ram_setup_dump(new_block->host, size);
ad0b5321 1323 qemu_madvise(new_block->host, size, QEMU_MADV_HUGEPAGE);
3e469dbf 1324 qemu_madvise(new_block->host, size, QEMU_MADV_DONTFORK);
ddb97f1d 1325
6f0437e8
JK
1326 if (kvm_enabled())
1327 kvm_setup_guest_memory(new_block->host, size);
1328
94a6b54f
PB
1329 return new_block->offset;
1330}
e9a1ab19 1331
c5705a77 1332ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
6977dfe6 1333{
c5705a77 1334 return qemu_ram_alloc_from_ptr(size, NULL, mr);
6977dfe6
YT
1335}
1336
1f2e98b6
AW
1337void qemu_ram_free_from_ptr(ram_addr_t addr)
1338{
1339 RAMBlock *block;
1340
b2a8658e
UD
1341 /* This assumes the iothread lock is taken here too. */
1342 qemu_mutex_lock_ramlist();
a3161038 1343 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1f2e98b6 1344 if (addr == block->offset) {
a3161038 1345 QTAILQ_REMOVE(&ram_list.blocks, block, next);
0d6d3c87 1346 ram_list.mru_block = NULL;
f798b07f 1347 ram_list.version++;
7267c094 1348 g_free(block);
b2a8658e 1349 break;
1f2e98b6
AW
1350 }
1351 }
b2a8658e 1352 qemu_mutex_unlock_ramlist();
1f2e98b6
AW
1353}
1354
c227f099 1355void qemu_ram_free(ram_addr_t addr)
e9a1ab19 1356{
04b16653
AW
1357 RAMBlock *block;
1358
b2a8658e
UD
1359 /* This assumes the iothread lock is taken here too. */
1360 qemu_mutex_lock_ramlist();
a3161038 1361 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
04b16653 1362 if (addr == block->offset) {
a3161038 1363 QTAILQ_REMOVE(&ram_list.blocks, block, next);
0d6d3c87 1364 ram_list.mru_block = NULL;
f798b07f 1365 ram_list.version++;
cd19cfa2
HY
1366 if (block->flags & RAM_PREALLOC_MASK) {
1367 ;
dfeaf2ab
MA
1368 } else if (xen_enabled()) {
1369 xen_invalidate_map_cache_entry(block->host);
089f3f76 1370#ifndef _WIN32
3435f395
MA
1371 } else if (block->fd >= 0) {
1372 munmap(block->host, block->length);
1373 close(block->fd);
089f3f76 1374#endif
04b16653 1375 } else {
dfeaf2ab 1376 qemu_anon_ram_free(block->host, block->length);
04b16653 1377 }
7267c094 1378 g_free(block);
b2a8658e 1379 break;
04b16653
AW
1380 }
1381 }
b2a8658e 1382 qemu_mutex_unlock_ramlist();
04b16653 1383
e9a1ab19
FB
1384}
1385
cd19cfa2
HY
1386#ifndef _WIN32
1387void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1388{
1389 RAMBlock *block;
1390 ram_addr_t offset;
1391 int flags;
1392 void *area, *vaddr;
1393
a3161038 1394 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
cd19cfa2
HY
1395 offset = addr - block->offset;
1396 if (offset < block->length) {
1397 vaddr = block->host + offset;
1398 if (block->flags & RAM_PREALLOC_MASK) {
1399 ;
dfeaf2ab
MA
1400 } else if (xen_enabled()) {
1401 abort();
cd19cfa2
HY
1402 } else {
1403 flags = MAP_FIXED;
1404 munmap(vaddr, length);
3435f395 1405 if (block->fd >= 0) {
cd19cfa2 1406#ifdef MAP_POPULATE
3435f395
MA
1407 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
1408 MAP_PRIVATE;
fd28aa13 1409#else
3435f395 1410 flags |= MAP_PRIVATE;
cd19cfa2 1411#endif
3435f395
MA
1412 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1413 flags, block->fd, offset);
cd19cfa2 1414 } else {
2eb9fbaa
MA
1415 /*
1416 * Remap needs to match alloc. Accelerators that
1417 * set phys_mem_alloc never remap. If they did,
1418 * we'd need a remap hook here.
1419 */
1420 assert(phys_mem_alloc == qemu_anon_ram_alloc);
1421
cd19cfa2
HY
1422 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1423 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1424 flags, -1, 0);
cd19cfa2
HY
1425 }
1426 if (area != vaddr) {
f15fbc4b
AP
1427 fprintf(stderr, "Could not remap addr: "
1428 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
cd19cfa2
HY
1429 length, addr);
1430 exit(1);
1431 }
8490fc78 1432 memory_try_enable_merging(vaddr, length);
ddb97f1d 1433 qemu_ram_setup_dump(vaddr, length);
cd19cfa2
HY
1434 }
1435 return;
1436 }
1437 }
1438}
1439#endif /* !_WIN32 */
1440
1b5ec234
PB
1441/* Return a host pointer to ram allocated with qemu_ram_alloc.
1442 With the exception of the softmmu code in this file, this should
1443 only be used for local memory (e.g. video ram) that the device owns,
1444 and knows it isn't going to access beyond the end of the block.
1445
1446 It should not be used for general purpose DMA.
1447 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1448 */
1449void *qemu_get_ram_ptr(ram_addr_t addr)
1450{
1451 RAMBlock *block = qemu_get_ram_block(addr);
1452
0d6d3c87
PB
1453 if (xen_enabled()) {
1454 /* We need to check if the requested address is in the RAM
1455 * because we don't want to map the entire memory in QEMU.
1456 * In that case just map until the end of the page.
1457 */
1458 if (block->offset == 0) {
1459 return xen_map_cache(addr, 0, 0);
1460 } else if (block->host == NULL) {
1461 block->host =
1462 xen_map_cache(block->offset, block->length, 1);
1463 }
1464 }
1465 return block->host + (addr - block->offset);
dc828ca1
PB
1466}
1467
38bee5dc
SS
1468/* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1469 * but takes a size argument */
cb85f7ab 1470static void *qemu_ram_ptr_length(ram_addr_t addr, hwaddr *size)
38bee5dc 1471{
8ab934f9
SS
1472 if (*size == 0) {
1473 return NULL;
1474 }
868bb33f 1475 if (xen_enabled()) {
e41d7c69 1476 return xen_map_cache(addr, *size, 1);
868bb33f 1477 } else {
38bee5dc
SS
1478 RAMBlock *block;
1479
a3161038 1480 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
38bee5dc
SS
1481 if (addr - block->offset < block->length) {
1482 if (addr - block->offset + *size > block->length)
1483 *size = block->length - addr + block->offset;
1484 return block->host + (addr - block->offset);
1485 }
1486 }
1487
1488 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1489 abort();
38bee5dc
SS
1490 }
1491}
1492
7443b437
PB
1493/* Some of the softmmu routines need to translate from a host pointer
1494 (typically a TLB entry) back to a ram offset. */
1b5ec234 1495MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
5579c7f3 1496{
94a6b54f
PB
1497 RAMBlock *block;
1498 uint8_t *host = ptr;
1499
868bb33f 1500 if (xen_enabled()) {
e41d7c69 1501 *ram_addr = xen_ram_addr_from_mapcache(ptr);
1b5ec234 1502 return qemu_get_ram_block(*ram_addr)->mr;
712c2b41
SS
1503 }
1504
23887b79
PB
1505 block = ram_list.mru_block;
1506 if (block && block->host && host - block->host < block->length) {
1507 goto found;
1508 }
1509
a3161038 1510 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
432d268c
JN
1511 /* This case append when the block is not mapped. */
1512 if (block->host == NULL) {
1513 continue;
1514 }
f471a17e 1515 if (host - block->host < block->length) {
23887b79 1516 goto found;
f471a17e 1517 }
94a6b54f 1518 }
432d268c 1519
1b5ec234 1520 return NULL;
23887b79
PB
1521
1522found:
1523 *ram_addr = block->offset + (host - block->host);
1b5ec234 1524 return block->mr;
e890261f 1525}
f471a17e 1526
a8170e5e 1527static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
0e0df1e2 1528 uint64_t val, unsigned size)
9fa3e853 1529{
52159192 1530 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
0e0df1e2 1531 tb_invalidate_phys_page_fast(ram_addr, size);
3a7d929e 1532 }
0e0df1e2
AK
1533 switch (size) {
1534 case 1:
1535 stb_p(qemu_get_ram_ptr(ram_addr), val);
1536 break;
1537 case 2:
1538 stw_p(qemu_get_ram_ptr(ram_addr), val);
1539 break;
1540 case 4:
1541 stl_p(qemu_get_ram_ptr(ram_addr), val);
1542 break;
1543 default:
1544 abort();
3a7d929e 1545 }
52159192
JQ
1546 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_MIGRATION);
1547 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_VGA);
f23db169
FB
1548 /* we remove the notdirty callback only if the code has been
1549 flushed */
a2cd8c85 1550 if (!cpu_physical_memory_is_clean(ram_addr)) {
4917cf44
AF
1551 CPUArchState *env = current_cpu->env_ptr;
1552 tlb_set_dirty(env, env->mem_io_vaddr);
1553 }
9fa3e853
FB
1554}
1555
b018ddf6
PB
1556static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
1557 unsigned size, bool is_write)
1558{
1559 return is_write;
1560}
1561
0e0df1e2 1562static const MemoryRegionOps notdirty_mem_ops = {
0e0df1e2 1563 .write = notdirty_mem_write,
b018ddf6 1564 .valid.accepts = notdirty_mem_accepts,
0e0df1e2 1565 .endianness = DEVICE_NATIVE_ENDIAN,
1ccde1cb
FB
1566};
1567
0f459d16 1568/* Generate a debug exception if a watchpoint has been hit. */
b4051334 1569static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16 1570{
4917cf44 1571 CPUArchState *env = current_cpu->env_ptr;
06d55cc1 1572 target_ulong pc, cs_base;
0f459d16 1573 target_ulong vaddr;
a1d1bb31 1574 CPUWatchpoint *wp;
06d55cc1 1575 int cpu_flags;
0f459d16 1576
06d55cc1
AL
1577 if (env->watchpoint_hit) {
1578 /* We re-entered the check after replacing the TB. Now raise
1579 * the debug interrupt so that is will trigger after the
1580 * current instruction. */
c3affe56 1581 cpu_interrupt(ENV_GET_CPU(env), CPU_INTERRUPT_DEBUG);
06d55cc1
AL
1582 return;
1583 }
2e70f6ef 1584 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
72cf2d4f 1585 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
1586 if ((vaddr == (wp->vaddr & len_mask) ||
1587 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
1588 wp->flags |= BP_WATCHPOINT_HIT;
1589 if (!env->watchpoint_hit) {
1590 env->watchpoint_hit = wp;
5a316526 1591 tb_check_watchpoint(env);
6e140f28
AL
1592 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
1593 env->exception_index = EXCP_DEBUG;
488d6577 1594 cpu_loop_exit(env);
6e140f28
AL
1595 } else {
1596 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
1597 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
488d6577 1598 cpu_resume_from_signal(env, NULL);
6e140f28 1599 }
06d55cc1 1600 }
6e140f28
AL
1601 } else {
1602 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
1603 }
1604 }
1605}
1606
6658ffb8
PB
1607/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1608 so these check for a hit then pass through to the normal out-of-line
1609 phys routines. */
a8170e5e 1610static uint64_t watch_mem_read(void *opaque, hwaddr addr,
1ec9b909 1611 unsigned size)
6658ffb8 1612{
1ec9b909
AK
1613 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
1614 switch (size) {
1615 case 1: return ldub_phys(addr);
1616 case 2: return lduw_phys(addr);
1617 case 4: return ldl_phys(addr);
1618 default: abort();
1619 }
6658ffb8
PB
1620}
1621
a8170e5e 1622static void watch_mem_write(void *opaque, hwaddr addr,
1ec9b909 1623 uint64_t val, unsigned size)
6658ffb8 1624{
1ec9b909
AK
1625 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
1626 switch (size) {
67364150
MF
1627 case 1:
1628 stb_phys(addr, val);
1629 break;
1630 case 2:
1631 stw_phys(addr, val);
1632 break;
1633 case 4:
1634 stl_phys(addr, val);
1635 break;
1ec9b909
AK
1636 default: abort();
1637 }
6658ffb8
PB
1638}
1639
1ec9b909
AK
1640static const MemoryRegionOps watch_mem_ops = {
1641 .read = watch_mem_read,
1642 .write = watch_mem_write,
1643 .endianness = DEVICE_NATIVE_ENDIAN,
6658ffb8 1644};
6658ffb8 1645
a8170e5e 1646static uint64_t subpage_read(void *opaque, hwaddr addr,
70c68e44 1647 unsigned len)
db7b5426 1648{
acc9d80b
JK
1649 subpage_t *subpage = opaque;
1650 uint8_t buf[4];
791af8c8 1651
db7b5426 1652#if defined(DEBUG_SUBPAGE)
016e9d62 1653 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 1654 subpage, len, addr);
db7b5426 1655#endif
acc9d80b
JK
1656 address_space_read(subpage->as, addr + subpage->base, buf, len);
1657 switch (len) {
1658 case 1:
1659 return ldub_p(buf);
1660 case 2:
1661 return lduw_p(buf);
1662 case 4:
1663 return ldl_p(buf);
1664 default:
1665 abort();
1666 }
db7b5426
BS
1667}
1668
a8170e5e 1669static void subpage_write(void *opaque, hwaddr addr,
70c68e44 1670 uint64_t value, unsigned len)
db7b5426 1671{
acc9d80b
JK
1672 subpage_t *subpage = opaque;
1673 uint8_t buf[4];
1674
db7b5426 1675#if defined(DEBUG_SUBPAGE)
016e9d62 1676 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
1677 " value %"PRIx64"\n",
1678 __func__, subpage, len, addr, value);
db7b5426 1679#endif
acc9d80b
JK
1680 switch (len) {
1681 case 1:
1682 stb_p(buf, value);
1683 break;
1684 case 2:
1685 stw_p(buf, value);
1686 break;
1687 case 4:
1688 stl_p(buf, value);
1689 break;
1690 default:
1691 abort();
1692 }
1693 address_space_write(subpage->as, addr + subpage->base, buf, len);
db7b5426
BS
1694}
1695
c353e4cc 1696static bool subpage_accepts(void *opaque, hwaddr addr,
016e9d62 1697 unsigned len, bool is_write)
c353e4cc 1698{
acc9d80b 1699 subpage_t *subpage = opaque;
c353e4cc 1700#if defined(DEBUG_SUBPAGE)
016e9d62 1701 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 1702 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
1703#endif
1704
acc9d80b 1705 return address_space_access_valid(subpage->as, addr + subpage->base,
016e9d62 1706 len, is_write);
c353e4cc
PB
1707}
1708
70c68e44
AK
1709static const MemoryRegionOps subpage_ops = {
1710 .read = subpage_read,
1711 .write = subpage_write,
c353e4cc 1712 .valid.accepts = subpage_accepts,
70c68e44 1713 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
1714};
1715
c227f099 1716static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 1717 uint16_t section)
db7b5426
BS
1718{
1719 int idx, eidx;
1720
1721 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
1722 return -1;
1723 idx = SUBPAGE_IDX(start);
1724 eidx = SUBPAGE_IDX(end);
1725#if defined(DEBUG_SUBPAGE)
016e9d62
AK
1726 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
1727 __func__, mmio, start, end, idx, eidx, section);
db7b5426 1728#endif
db7b5426 1729 for (; idx <= eidx; idx++) {
5312bd8b 1730 mmio->sub_section[idx] = section;
db7b5426
BS
1731 }
1732
1733 return 0;
1734}
1735
acc9d80b 1736static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
db7b5426 1737{
c227f099 1738 subpage_t *mmio;
db7b5426 1739
7267c094 1740 mmio = g_malloc0(sizeof(subpage_t));
1eec614b 1741
acc9d80b 1742 mmio->as = as;
1eec614b 1743 mmio->base = base;
2c9b15ca 1744 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
70c68e44 1745 "subpage", TARGET_PAGE_SIZE);
b3b00c78 1746 mmio->iomem.subpage = true;
db7b5426 1747#if defined(DEBUG_SUBPAGE)
016e9d62
AK
1748 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
1749 mmio, base, TARGET_PAGE_SIZE);
db7b5426 1750#endif
b41aac4f 1751 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
db7b5426
BS
1752
1753 return mmio;
1754}
1755
53cb28cb 1756static uint16_t dummy_section(PhysPageMap *map, MemoryRegion *mr)
5312bd8b
AK
1757{
1758 MemoryRegionSection section = {
3be91e86 1759 .address_space = &address_space_memory,
5312bd8b
AK
1760 .mr = mr,
1761 .offset_within_address_space = 0,
1762 .offset_within_region = 0,
052e87b0 1763 .size = int128_2_64(),
5312bd8b
AK
1764 };
1765
53cb28cb 1766 return phys_section_add(map, &section);
5312bd8b
AK
1767}
1768
77717094 1769MemoryRegion *iotlb_to_region(AddressSpace *as, hwaddr index)
aa102231 1770{
77717094 1771 return as->dispatch->map.sections[index & ~TARGET_PAGE_MASK].mr;
aa102231
AK
1772}
1773
e9179ce1
AK
1774static void io_mem_init(void)
1775{
2c9b15ca
PB
1776 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, "rom", UINT64_MAX);
1777 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
0e0df1e2 1778 "unassigned", UINT64_MAX);
2c9b15ca 1779 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
0e0df1e2 1780 "notdirty", UINT64_MAX);
2c9b15ca 1781 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1ec9b909 1782 "watch", UINT64_MAX);
e9179ce1
AK
1783}
1784
ac1970fb 1785static void mem_begin(MemoryListener *listener)
00752703
PB
1786{
1787 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
53cb28cb
MA
1788 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
1789 uint16_t n;
1790
1791 n = dummy_section(&d->map, &io_mem_unassigned);
1792 assert(n == PHYS_SECTION_UNASSIGNED);
1793 n = dummy_section(&d->map, &io_mem_notdirty);
1794 assert(n == PHYS_SECTION_NOTDIRTY);
1795 n = dummy_section(&d->map, &io_mem_rom);
1796 assert(n == PHYS_SECTION_ROM);
1797 n = dummy_section(&d->map, &io_mem_watch);
1798 assert(n == PHYS_SECTION_WATCH);
00752703 1799
9736e55b 1800 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
00752703
PB
1801 d->as = as;
1802 as->next_dispatch = d;
1803}
1804
1805static void mem_commit(MemoryListener *listener)
ac1970fb 1806{
89ae337a 1807 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
0475d94f
PB
1808 AddressSpaceDispatch *cur = as->dispatch;
1809 AddressSpaceDispatch *next = as->next_dispatch;
1810
53cb28cb 1811 phys_page_compact_all(next, next->map.nodes_nb);
b35ba30f 1812
0475d94f 1813 as->dispatch = next;
b41aac4f 1814
53cb28cb
MA
1815 if (cur) {
1816 phys_sections_free(&cur->map);
1817 g_free(cur);
1818 }
9affd6fc
PB
1819}
1820
1d71148e 1821static void tcg_commit(MemoryListener *listener)
50c1e149 1822{
182735ef 1823 CPUState *cpu;
117712c3
AK
1824
1825 /* since each CPU stores ram addresses in its TLB cache, we must
1826 reset the modified entries */
1827 /* XXX: slow ! */
bdc44640 1828 CPU_FOREACH(cpu) {
182735ef
AF
1829 CPUArchState *env = cpu->env_ptr;
1830
117712c3
AK
1831 tlb_flush(env, 1);
1832 }
50c1e149
AK
1833}
1834
93632747
AK
1835static void core_log_global_start(MemoryListener *listener)
1836{
981fdf23 1837 cpu_physical_memory_set_dirty_tracking(true);
93632747
AK
1838}
1839
1840static void core_log_global_stop(MemoryListener *listener)
1841{
981fdf23 1842 cpu_physical_memory_set_dirty_tracking(false);
93632747
AK
1843}
1844
93632747 1845static MemoryListener core_memory_listener = {
93632747
AK
1846 .log_global_start = core_log_global_start,
1847 .log_global_stop = core_log_global_stop,
ac1970fb 1848 .priority = 1,
93632747
AK
1849};
1850
ac1970fb
AK
1851void address_space_init_dispatch(AddressSpace *as)
1852{
00752703 1853 as->dispatch = NULL;
89ae337a 1854 as->dispatch_listener = (MemoryListener) {
ac1970fb 1855 .begin = mem_begin,
00752703 1856 .commit = mem_commit,
ac1970fb
AK
1857 .region_add = mem_add,
1858 .region_nop = mem_add,
1859 .priority = 0,
1860 };
89ae337a 1861 memory_listener_register(&as->dispatch_listener, as);
ac1970fb
AK
1862}
1863
83f3c251
AK
1864void address_space_destroy_dispatch(AddressSpace *as)
1865{
1866 AddressSpaceDispatch *d = as->dispatch;
1867
89ae337a 1868 memory_listener_unregister(&as->dispatch_listener);
83f3c251
AK
1869 g_free(d);
1870 as->dispatch = NULL;
1871}
1872
62152b8a
AK
1873static void memory_map_init(void)
1874{
7267c094 1875 system_memory = g_malloc(sizeof(*system_memory));
03f49957 1876
57271d63 1877 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 1878 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 1879
7267c094 1880 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
1881 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
1882 65536);
7dca8043 1883 address_space_init(&address_space_io, system_io, "I/O");
93632747 1884
f6790af6 1885 memory_listener_register(&core_memory_listener, &address_space_memory);
62152b8a
AK
1886}
1887
1888MemoryRegion *get_system_memory(void)
1889{
1890 return system_memory;
1891}
1892
309cb471
AK
1893MemoryRegion *get_system_io(void)
1894{
1895 return system_io;
1896}
1897
e2eef170
PB
1898#endif /* !defined(CONFIG_USER_ONLY) */
1899
13eb76e0
FB
1900/* physical memory access (slow version, mainly for debug) */
1901#if defined(CONFIG_USER_ONLY)
f17ec444 1902int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
a68fe89c 1903 uint8_t *buf, int len, int is_write)
13eb76e0
FB
1904{
1905 int l, flags;
1906 target_ulong page;
53a5960a 1907 void * p;
13eb76e0
FB
1908
1909 while (len > 0) {
1910 page = addr & TARGET_PAGE_MASK;
1911 l = (page + TARGET_PAGE_SIZE) - addr;
1912 if (l > len)
1913 l = len;
1914 flags = page_get_flags(page);
1915 if (!(flags & PAGE_VALID))
a68fe89c 1916 return -1;
13eb76e0
FB
1917 if (is_write) {
1918 if (!(flags & PAGE_WRITE))
a68fe89c 1919 return -1;
579a97f7 1920 /* XXX: this code should not depend on lock_user */
72fb7daa 1921 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 1922 return -1;
72fb7daa
AJ
1923 memcpy(p, buf, l);
1924 unlock_user(p, addr, l);
13eb76e0
FB
1925 } else {
1926 if (!(flags & PAGE_READ))
a68fe89c 1927 return -1;
579a97f7 1928 /* XXX: this code should not depend on lock_user */
72fb7daa 1929 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 1930 return -1;
72fb7daa 1931 memcpy(buf, p, l);
5b257578 1932 unlock_user(p, addr, 0);
13eb76e0
FB
1933 }
1934 len -= l;
1935 buf += l;
1936 addr += l;
1937 }
a68fe89c 1938 return 0;
13eb76e0 1939}
8df1cd07 1940
13eb76e0 1941#else
51d7a9eb 1942
a8170e5e
AK
1943static void invalidate_and_set_dirty(hwaddr addr,
1944 hwaddr length)
51d7a9eb 1945{
a2cd8c85 1946 if (cpu_physical_memory_is_clean(addr)) {
51d7a9eb
AP
1947 /* invalidate code */
1948 tb_invalidate_phys_page_range(addr, addr + length, 0);
1949 /* set dirty bit */
52159192
JQ
1950 cpu_physical_memory_set_dirty_flag(addr, DIRTY_MEMORY_VGA);
1951 cpu_physical_memory_set_dirty_flag(addr, DIRTY_MEMORY_MIGRATION);
51d7a9eb 1952 }
e226939d 1953 xen_modified_memory(addr, length);
51d7a9eb
AP
1954}
1955
23326164 1956static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 1957{
e1622f4b 1958 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
1959
1960 /* Regions are assumed to support 1-4 byte accesses unless
1961 otherwise specified. */
23326164
RH
1962 if (access_size_max == 0) {
1963 access_size_max = 4;
1964 }
1965
1966 /* Bound the maximum access by the alignment of the address. */
1967 if (!mr->ops->impl.unaligned) {
1968 unsigned align_size_max = addr & -addr;
1969 if (align_size_max != 0 && align_size_max < access_size_max) {
1970 access_size_max = align_size_max;
1971 }
82f2563f 1972 }
23326164
RH
1973
1974 /* Don't attempt accesses larger than the maximum. */
1975 if (l > access_size_max) {
1976 l = access_size_max;
82f2563f 1977 }
098178f2
PB
1978 if (l & (l - 1)) {
1979 l = 1 << (qemu_fls(l) - 1);
1980 }
23326164
RH
1981
1982 return l;
82f2563f
PB
1983}
1984
fd8aaa76 1985bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
ac1970fb 1986 int len, bool is_write)
13eb76e0 1987{
149f54b5 1988 hwaddr l;
13eb76e0 1989 uint8_t *ptr;
791af8c8 1990 uint64_t val;
149f54b5 1991 hwaddr addr1;
5c8a00ce 1992 MemoryRegion *mr;
fd8aaa76 1993 bool error = false;
3b46e624 1994
13eb76e0 1995 while (len > 0) {
149f54b5 1996 l = len;
5c8a00ce 1997 mr = address_space_translate(as, addr, &addr1, &l, is_write);
3b46e624 1998
13eb76e0 1999 if (is_write) {
5c8a00ce
PB
2000 if (!memory_access_is_direct(mr, is_write)) {
2001 l = memory_access_size(mr, l, addr1);
4917cf44 2002 /* XXX: could force current_cpu to NULL to avoid
6a00d601 2003 potential bugs */
23326164
RH
2004 switch (l) {
2005 case 8:
2006 /* 64 bit write access */
2007 val = ldq_p(buf);
2008 error |= io_mem_write(mr, addr1, val, 8);
2009 break;
2010 case 4:
1c213d19 2011 /* 32 bit write access */
c27004ec 2012 val = ldl_p(buf);
5c8a00ce 2013 error |= io_mem_write(mr, addr1, val, 4);
23326164
RH
2014 break;
2015 case 2:
1c213d19 2016 /* 16 bit write access */
c27004ec 2017 val = lduw_p(buf);
5c8a00ce 2018 error |= io_mem_write(mr, addr1, val, 2);
23326164
RH
2019 break;
2020 case 1:
1c213d19 2021 /* 8 bit write access */
c27004ec 2022 val = ldub_p(buf);
5c8a00ce 2023 error |= io_mem_write(mr, addr1, val, 1);
23326164
RH
2024 break;
2025 default:
2026 abort();
13eb76e0 2027 }
2bbfa05d 2028 } else {
5c8a00ce 2029 addr1 += memory_region_get_ram_addr(mr);
13eb76e0 2030 /* RAM case */
5579c7f3 2031 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 2032 memcpy(ptr, buf, l);
51d7a9eb 2033 invalidate_and_set_dirty(addr1, l);
13eb76e0
FB
2034 }
2035 } else {
5c8a00ce 2036 if (!memory_access_is_direct(mr, is_write)) {
13eb76e0 2037 /* I/O case */
5c8a00ce 2038 l = memory_access_size(mr, l, addr1);
23326164
RH
2039 switch (l) {
2040 case 8:
2041 /* 64 bit read access */
2042 error |= io_mem_read(mr, addr1, &val, 8);
2043 stq_p(buf, val);
2044 break;
2045 case 4:
13eb76e0 2046 /* 32 bit read access */
5c8a00ce 2047 error |= io_mem_read(mr, addr1, &val, 4);
c27004ec 2048 stl_p(buf, val);
23326164
RH
2049 break;
2050 case 2:
13eb76e0 2051 /* 16 bit read access */
5c8a00ce 2052 error |= io_mem_read(mr, addr1, &val, 2);
c27004ec 2053 stw_p(buf, val);
23326164
RH
2054 break;
2055 case 1:
1c213d19 2056 /* 8 bit read access */
5c8a00ce 2057 error |= io_mem_read(mr, addr1, &val, 1);
c27004ec 2058 stb_p(buf, val);
23326164
RH
2059 break;
2060 default:
2061 abort();
13eb76e0
FB
2062 }
2063 } else {
2064 /* RAM case */
5c8a00ce 2065 ptr = qemu_get_ram_ptr(mr->ram_addr + addr1);
f3705d53 2066 memcpy(buf, ptr, l);
13eb76e0
FB
2067 }
2068 }
2069 len -= l;
2070 buf += l;
2071 addr += l;
2072 }
fd8aaa76
PB
2073
2074 return error;
13eb76e0 2075}
8df1cd07 2076
fd8aaa76 2077bool address_space_write(AddressSpace *as, hwaddr addr,
ac1970fb
AK
2078 const uint8_t *buf, int len)
2079{
fd8aaa76 2080 return address_space_rw(as, addr, (uint8_t *)buf, len, true);
ac1970fb
AK
2081}
2082
fd8aaa76 2083bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len)
ac1970fb 2084{
fd8aaa76 2085 return address_space_rw(as, addr, buf, len, false);
ac1970fb
AK
2086}
2087
2088
a8170e5e 2089void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
ac1970fb
AK
2090 int len, int is_write)
2091{
fd8aaa76 2092 address_space_rw(&address_space_memory, addr, buf, len, is_write);
ac1970fb
AK
2093}
2094
582b55a9
AG
2095enum write_rom_type {
2096 WRITE_DATA,
2097 FLUSH_CACHE,
2098};
2099
2100static inline void cpu_physical_memory_write_rom_internal(
2101 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
d0ecd2aa 2102{
149f54b5 2103 hwaddr l;
d0ecd2aa 2104 uint8_t *ptr;
149f54b5 2105 hwaddr addr1;
5c8a00ce 2106 MemoryRegion *mr;
3b46e624 2107
d0ecd2aa 2108 while (len > 0) {
149f54b5 2109 l = len;
5c8a00ce
PB
2110 mr = address_space_translate(&address_space_memory,
2111 addr, &addr1, &l, true);
3b46e624 2112
5c8a00ce
PB
2113 if (!(memory_region_is_ram(mr) ||
2114 memory_region_is_romd(mr))) {
d0ecd2aa
FB
2115 /* do nothing */
2116 } else {
5c8a00ce 2117 addr1 += memory_region_get_ram_addr(mr);
d0ecd2aa 2118 /* ROM/RAM case */
5579c7f3 2119 ptr = qemu_get_ram_ptr(addr1);
582b55a9
AG
2120 switch (type) {
2121 case WRITE_DATA:
2122 memcpy(ptr, buf, l);
2123 invalidate_and_set_dirty(addr1, l);
2124 break;
2125 case FLUSH_CACHE:
2126 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
2127 break;
2128 }
d0ecd2aa
FB
2129 }
2130 len -= l;
2131 buf += l;
2132 addr += l;
2133 }
2134}
2135
582b55a9
AG
2136/* used for ROM loading : can write in RAM and ROM */
2137void cpu_physical_memory_write_rom(hwaddr addr,
2138 const uint8_t *buf, int len)
2139{
2140 cpu_physical_memory_write_rom_internal(addr, buf, len, WRITE_DATA);
2141}
2142
2143void cpu_flush_icache_range(hwaddr start, int len)
2144{
2145 /*
2146 * This function should do the same thing as an icache flush that was
2147 * triggered from within the guest. For TCG we are always cache coherent,
2148 * so there is no need to flush anything. For KVM / Xen we need to flush
2149 * the host's instruction cache at least.
2150 */
2151 if (tcg_enabled()) {
2152 return;
2153 }
2154
2155 cpu_physical_memory_write_rom_internal(start, NULL, len, FLUSH_CACHE);
2156}
2157
6d16c2f8 2158typedef struct {
d3e71559 2159 MemoryRegion *mr;
6d16c2f8 2160 void *buffer;
a8170e5e
AK
2161 hwaddr addr;
2162 hwaddr len;
6d16c2f8
AL
2163} BounceBuffer;
2164
2165static BounceBuffer bounce;
2166
ba223c29
AL
2167typedef struct MapClient {
2168 void *opaque;
2169 void (*callback)(void *opaque);
72cf2d4f 2170 QLIST_ENTRY(MapClient) link;
ba223c29
AL
2171} MapClient;
2172
72cf2d4f
BS
2173static QLIST_HEAD(map_client_list, MapClient) map_client_list
2174 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29
AL
2175
2176void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
2177{
7267c094 2178 MapClient *client = g_malloc(sizeof(*client));
ba223c29
AL
2179
2180 client->opaque = opaque;
2181 client->callback = callback;
72cf2d4f 2182 QLIST_INSERT_HEAD(&map_client_list, client, link);
ba223c29
AL
2183 return client;
2184}
2185
8b9c99d9 2186static void cpu_unregister_map_client(void *_client)
ba223c29
AL
2187{
2188 MapClient *client = (MapClient *)_client;
2189
72cf2d4f 2190 QLIST_REMOVE(client, link);
7267c094 2191 g_free(client);
ba223c29
AL
2192}
2193
2194static void cpu_notify_map_clients(void)
2195{
2196 MapClient *client;
2197
72cf2d4f
BS
2198 while (!QLIST_EMPTY(&map_client_list)) {
2199 client = QLIST_FIRST(&map_client_list);
ba223c29 2200 client->callback(client->opaque);
34d5e948 2201 cpu_unregister_map_client(client);
ba223c29
AL
2202 }
2203}
2204
51644ab7
PB
2205bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2206{
5c8a00ce 2207 MemoryRegion *mr;
51644ab7
PB
2208 hwaddr l, xlat;
2209
2210 while (len > 0) {
2211 l = len;
5c8a00ce
PB
2212 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2213 if (!memory_access_is_direct(mr, is_write)) {
2214 l = memory_access_size(mr, l, addr);
2215 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
51644ab7
PB
2216 return false;
2217 }
2218 }
2219
2220 len -= l;
2221 addr += l;
2222 }
2223 return true;
2224}
2225
6d16c2f8
AL
2226/* Map a physical memory region into a host virtual address.
2227 * May map a subset of the requested range, given by and returned in *plen.
2228 * May return NULL if resources needed to perform the mapping are exhausted.
2229 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
2230 * Use cpu_register_map_client() to know when retrying the map operation is
2231 * likely to succeed.
6d16c2f8 2232 */
ac1970fb 2233void *address_space_map(AddressSpace *as,
a8170e5e
AK
2234 hwaddr addr,
2235 hwaddr *plen,
ac1970fb 2236 bool is_write)
6d16c2f8 2237{
a8170e5e 2238 hwaddr len = *plen;
e3127ae0
PB
2239 hwaddr done = 0;
2240 hwaddr l, xlat, base;
2241 MemoryRegion *mr, *this_mr;
2242 ram_addr_t raddr;
6d16c2f8 2243
e3127ae0
PB
2244 if (len == 0) {
2245 return NULL;
2246 }
38bee5dc 2247
e3127ae0
PB
2248 l = len;
2249 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2250 if (!memory_access_is_direct(mr, is_write)) {
2251 if (bounce.buffer) {
2252 return NULL;
6d16c2f8 2253 }
e85d9db5
KW
2254 /* Avoid unbounded allocations */
2255 l = MIN(l, TARGET_PAGE_SIZE);
2256 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
2257 bounce.addr = addr;
2258 bounce.len = l;
d3e71559
PB
2259
2260 memory_region_ref(mr);
2261 bounce.mr = mr;
e3127ae0
PB
2262 if (!is_write) {
2263 address_space_read(as, addr, bounce.buffer, l);
8ab934f9 2264 }
6d16c2f8 2265
e3127ae0
PB
2266 *plen = l;
2267 return bounce.buffer;
2268 }
2269
2270 base = xlat;
2271 raddr = memory_region_get_ram_addr(mr);
2272
2273 for (;;) {
6d16c2f8
AL
2274 len -= l;
2275 addr += l;
e3127ae0
PB
2276 done += l;
2277 if (len == 0) {
2278 break;
2279 }
2280
2281 l = len;
2282 this_mr = address_space_translate(as, addr, &xlat, &l, is_write);
2283 if (this_mr != mr || xlat != base + done) {
2284 break;
2285 }
6d16c2f8 2286 }
e3127ae0 2287
d3e71559 2288 memory_region_ref(mr);
e3127ae0
PB
2289 *plen = done;
2290 return qemu_ram_ptr_length(raddr + base, plen);
6d16c2f8
AL
2291}
2292
ac1970fb 2293/* Unmaps a memory region previously mapped by address_space_map().
6d16c2f8
AL
2294 * Will also mark the memory as dirty if is_write == 1. access_len gives
2295 * the amount of memory that was actually read or written by the caller.
2296 */
a8170e5e
AK
2297void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2298 int is_write, hwaddr access_len)
6d16c2f8
AL
2299{
2300 if (buffer != bounce.buffer) {
d3e71559
PB
2301 MemoryRegion *mr;
2302 ram_addr_t addr1;
2303
2304 mr = qemu_ram_addr_from_host(buffer, &addr1);
2305 assert(mr != NULL);
6d16c2f8 2306 if (is_write) {
6d16c2f8
AL
2307 while (access_len) {
2308 unsigned l;
2309 l = TARGET_PAGE_SIZE;
2310 if (l > access_len)
2311 l = access_len;
51d7a9eb 2312 invalidate_and_set_dirty(addr1, l);
6d16c2f8
AL
2313 addr1 += l;
2314 access_len -= l;
2315 }
2316 }
868bb33f 2317 if (xen_enabled()) {
e41d7c69 2318 xen_invalidate_map_cache_entry(buffer);
050a0ddf 2319 }
d3e71559 2320 memory_region_unref(mr);
6d16c2f8
AL
2321 return;
2322 }
2323 if (is_write) {
ac1970fb 2324 address_space_write(as, bounce.addr, bounce.buffer, access_len);
6d16c2f8 2325 }
f8a83245 2326 qemu_vfree(bounce.buffer);
6d16c2f8 2327 bounce.buffer = NULL;
d3e71559 2328 memory_region_unref(bounce.mr);
ba223c29 2329 cpu_notify_map_clients();
6d16c2f8 2330}
d0ecd2aa 2331
a8170e5e
AK
2332void *cpu_physical_memory_map(hwaddr addr,
2333 hwaddr *plen,
ac1970fb
AK
2334 int is_write)
2335{
2336 return address_space_map(&address_space_memory, addr, plen, is_write);
2337}
2338
a8170e5e
AK
2339void cpu_physical_memory_unmap(void *buffer, hwaddr len,
2340 int is_write, hwaddr access_len)
ac1970fb
AK
2341{
2342 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
2343}
2344
8df1cd07 2345/* warning: addr must be aligned */
a8170e5e 2346static inline uint32_t ldl_phys_internal(hwaddr addr,
1e78bcc1 2347 enum device_endian endian)
8df1cd07 2348{
8df1cd07 2349 uint8_t *ptr;
791af8c8 2350 uint64_t val;
5c8a00ce 2351 MemoryRegion *mr;
149f54b5
PB
2352 hwaddr l = 4;
2353 hwaddr addr1;
8df1cd07 2354
5c8a00ce
PB
2355 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2356 false);
2357 if (l < 4 || !memory_access_is_direct(mr, false)) {
8df1cd07 2358 /* I/O case */
5c8a00ce 2359 io_mem_read(mr, addr1, &val, 4);
1e78bcc1
AG
2360#if defined(TARGET_WORDS_BIGENDIAN)
2361 if (endian == DEVICE_LITTLE_ENDIAN) {
2362 val = bswap32(val);
2363 }
2364#else
2365 if (endian == DEVICE_BIG_ENDIAN) {
2366 val = bswap32(val);
2367 }
2368#endif
8df1cd07
FB
2369 } else {
2370 /* RAM case */
5c8a00ce 2371 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
06ef3525 2372 & TARGET_PAGE_MASK)
149f54b5 2373 + addr1);
1e78bcc1
AG
2374 switch (endian) {
2375 case DEVICE_LITTLE_ENDIAN:
2376 val = ldl_le_p(ptr);
2377 break;
2378 case DEVICE_BIG_ENDIAN:
2379 val = ldl_be_p(ptr);
2380 break;
2381 default:
2382 val = ldl_p(ptr);
2383 break;
2384 }
8df1cd07
FB
2385 }
2386 return val;
2387}
2388
a8170e5e 2389uint32_t ldl_phys(hwaddr addr)
1e78bcc1
AG
2390{
2391 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2392}
2393
a8170e5e 2394uint32_t ldl_le_phys(hwaddr addr)
1e78bcc1
AG
2395{
2396 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2397}
2398
a8170e5e 2399uint32_t ldl_be_phys(hwaddr addr)
1e78bcc1
AG
2400{
2401 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
2402}
2403
84b7b8e7 2404/* warning: addr must be aligned */
a8170e5e 2405static inline uint64_t ldq_phys_internal(hwaddr addr,
1e78bcc1 2406 enum device_endian endian)
84b7b8e7 2407{
84b7b8e7
FB
2408 uint8_t *ptr;
2409 uint64_t val;
5c8a00ce 2410 MemoryRegion *mr;
149f54b5
PB
2411 hwaddr l = 8;
2412 hwaddr addr1;
84b7b8e7 2413
5c8a00ce
PB
2414 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2415 false);
2416 if (l < 8 || !memory_access_is_direct(mr, false)) {
84b7b8e7 2417 /* I/O case */
5c8a00ce 2418 io_mem_read(mr, addr1, &val, 8);
968a5627
PB
2419#if defined(TARGET_WORDS_BIGENDIAN)
2420 if (endian == DEVICE_LITTLE_ENDIAN) {
2421 val = bswap64(val);
2422 }
2423#else
2424 if (endian == DEVICE_BIG_ENDIAN) {
2425 val = bswap64(val);
2426 }
84b7b8e7
FB
2427#endif
2428 } else {
2429 /* RAM case */
5c8a00ce 2430 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
06ef3525 2431 & TARGET_PAGE_MASK)
149f54b5 2432 + addr1);
1e78bcc1
AG
2433 switch (endian) {
2434 case DEVICE_LITTLE_ENDIAN:
2435 val = ldq_le_p(ptr);
2436 break;
2437 case DEVICE_BIG_ENDIAN:
2438 val = ldq_be_p(ptr);
2439 break;
2440 default:
2441 val = ldq_p(ptr);
2442 break;
2443 }
84b7b8e7
FB
2444 }
2445 return val;
2446}
2447
a8170e5e 2448uint64_t ldq_phys(hwaddr addr)
1e78bcc1
AG
2449{
2450 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2451}
2452
a8170e5e 2453uint64_t ldq_le_phys(hwaddr addr)
1e78bcc1
AG
2454{
2455 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2456}
2457
a8170e5e 2458uint64_t ldq_be_phys(hwaddr addr)
1e78bcc1
AG
2459{
2460 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
2461}
2462
aab33094 2463/* XXX: optimize */
a8170e5e 2464uint32_t ldub_phys(hwaddr addr)
aab33094
FB
2465{
2466 uint8_t val;
2467 cpu_physical_memory_read(addr, &val, 1);
2468 return val;
2469}
2470
733f0b02 2471/* warning: addr must be aligned */
a8170e5e 2472static inline uint32_t lduw_phys_internal(hwaddr addr,
1e78bcc1 2473 enum device_endian endian)
aab33094 2474{
733f0b02
MT
2475 uint8_t *ptr;
2476 uint64_t val;
5c8a00ce 2477 MemoryRegion *mr;
149f54b5
PB
2478 hwaddr l = 2;
2479 hwaddr addr1;
733f0b02 2480
5c8a00ce
PB
2481 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2482 false);
2483 if (l < 2 || !memory_access_is_direct(mr, false)) {
733f0b02 2484 /* I/O case */
5c8a00ce 2485 io_mem_read(mr, addr1, &val, 2);
1e78bcc1
AG
2486#if defined(TARGET_WORDS_BIGENDIAN)
2487 if (endian == DEVICE_LITTLE_ENDIAN) {
2488 val = bswap16(val);
2489 }
2490#else
2491 if (endian == DEVICE_BIG_ENDIAN) {
2492 val = bswap16(val);
2493 }
2494#endif
733f0b02
MT
2495 } else {
2496 /* RAM case */
5c8a00ce 2497 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
06ef3525 2498 & TARGET_PAGE_MASK)
149f54b5 2499 + addr1);
1e78bcc1
AG
2500 switch (endian) {
2501 case DEVICE_LITTLE_ENDIAN:
2502 val = lduw_le_p(ptr);
2503 break;
2504 case DEVICE_BIG_ENDIAN:
2505 val = lduw_be_p(ptr);
2506 break;
2507 default:
2508 val = lduw_p(ptr);
2509 break;
2510 }
733f0b02
MT
2511 }
2512 return val;
aab33094
FB
2513}
2514
a8170e5e 2515uint32_t lduw_phys(hwaddr addr)
1e78bcc1
AG
2516{
2517 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2518}
2519
a8170e5e 2520uint32_t lduw_le_phys(hwaddr addr)
1e78bcc1
AG
2521{
2522 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2523}
2524
a8170e5e 2525uint32_t lduw_be_phys(hwaddr addr)
1e78bcc1
AG
2526{
2527 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
2528}
2529
8df1cd07
FB
2530/* warning: addr must be aligned. The ram page is not masked as dirty
2531 and the code inside is not invalidated. It is useful if the dirty
2532 bits are used to track modified PTEs */
a8170e5e 2533void stl_phys_notdirty(hwaddr addr, uint32_t val)
8df1cd07 2534{
8df1cd07 2535 uint8_t *ptr;
5c8a00ce 2536 MemoryRegion *mr;
149f54b5
PB
2537 hwaddr l = 4;
2538 hwaddr addr1;
8df1cd07 2539
5c8a00ce
PB
2540 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2541 true);
2542 if (l < 4 || !memory_access_is_direct(mr, true)) {
2543 io_mem_write(mr, addr1, val, 4);
8df1cd07 2544 } else {
5c8a00ce 2545 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
5579c7f3 2546 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 2547 stl_p(ptr, val);
74576198
AL
2548
2549 if (unlikely(in_migration)) {
a2cd8c85 2550 if (cpu_physical_memory_is_clean(addr1)) {
74576198
AL
2551 /* invalidate code */
2552 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2553 /* set dirty bit */
52159192
JQ
2554 cpu_physical_memory_set_dirty_flag(addr1,
2555 DIRTY_MEMORY_MIGRATION);
2556 cpu_physical_memory_set_dirty_flag(addr1, DIRTY_MEMORY_VGA);
74576198
AL
2557 }
2558 }
8df1cd07
FB
2559 }
2560}
2561
2562/* warning: addr must be aligned */
a8170e5e 2563static inline void stl_phys_internal(hwaddr addr, uint32_t val,
1e78bcc1 2564 enum device_endian endian)
8df1cd07 2565{
8df1cd07 2566 uint8_t *ptr;
5c8a00ce 2567 MemoryRegion *mr;
149f54b5
PB
2568 hwaddr l = 4;
2569 hwaddr addr1;
8df1cd07 2570
5c8a00ce
PB
2571 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2572 true);
2573 if (l < 4 || !memory_access_is_direct(mr, true)) {
1e78bcc1
AG
2574#if defined(TARGET_WORDS_BIGENDIAN)
2575 if (endian == DEVICE_LITTLE_ENDIAN) {
2576 val = bswap32(val);
2577 }
2578#else
2579 if (endian == DEVICE_BIG_ENDIAN) {
2580 val = bswap32(val);
2581 }
2582#endif
5c8a00ce 2583 io_mem_write(mr, addr1, val, 4);
8df1cd07 2584 } else {
8df1cd07 2585 /* RAM case */
5c8a00ce 2586 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
5579c7f3 2587 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
2588 switch (endian) {
2589 case DEVICE_LITTLE_ENDIAN:
2590 stl_le_p(ptr, val);
2591 break;
2592 case DEVICE_BIG_ENDIAN:
2593 stl_be_p(ptr, val);
2594 break;
2595 default:
2596 stl_p(ptr, val);
2597 break;
2598 }
51d7a9eb 2599 invalidate_and_set_dirty(addr1, 4);
8df1cd07
FB
2600 }
2601}
2602
a8170e5e 2603void stl_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2604{
2605 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2606}
2607
a8170e5e 2608void stl_le_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2609{
2610 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2611}
2612
a8170e5e 2613void stl_be_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2614{
2615 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2616}
2617
aab33094 2618/* XXX: optimize */
a8170e5e 2619void stb_phys(hwaddr addr, uint32_t val)
aab33094
FB
2620{
2621 uint8_t v = val;
2622 cpu_physical_memory_write(addr, &v, 1);
2623}
2624
733f0b02 2625/* warning: addr must be aligned */
a8170e5e 2626static inline void stw_phys_internal(hwaddr addr, uint32_t val,
1e78bcc1 2627 enum device_endian endian)
aab33094 2628{
733f0b02 2629 uint8_t *ptr;
5c8a00ce 2630 MemoryRegion *mr;
149f54b5
PB
2631 hwaddr l = 2;
2632 hwaddr addr1;
733f0b02 2633
5c8a00ce
PB
2634 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2635 true);
2636 if (l < 2 || !memory_access_is_direct(mr, true)) {
1e78bcc1
AG
2637#if defined(TARGET_WORDS_BIGENDIAN)
2638 if (endian == DEVICE_LITTLE_ENDIAN) {
2639 val = bswap16(val);
2640 }
2641#else
2642 if (endian == DEVICE_BIG_ENDIAN) {
2643 val = bswap16(val);
2644 }
2645#endif
5c8a00ce 2646 io_mem_write(mr, addr1, val, 2);
733f0b02 2647 } else {
733f0b02 2648 /* RAM case */
5c8a00ce 2649 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
733f0b02 2650 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
2651 switch (endian) {
2652 case DEVICE_LITTLE_ENDIAN:
2653 stw_le_p(ptr, val);
2654 break;
2655 case DEVICE_BIG_ENDIAN:
2656 stw_be_p(ptr, val);
2657 break;
2658 default:
2659 stw_p(ptr, val);
2660 break;
2661 }
51d7a9eb 2662 invalidate_and_set_dirty(addr1, 2);
733f0b02 2663 }
aab33094
FB
2664}
2665
a8170e5e 2666void stw_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2667{
2668 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2669}
2670
a8170e5e 2671void stw_le_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2672{
2673 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2674}
2675
a8170e5e 2676void stw_be_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2677{
2678 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2679}
2680
aab33094 2681/* XXX: optimize */
a8170e5e 2682void stq_phys(hwaddr addr, uint64_t val)
aab33094
FB
2683{
2684 val = tswap64(val);
71d2b725 2685 cpu_physical_memory_write(addr, &val, 8);
aab33094
FB
2686}
2687
a8170e5e 2688void stq_le_phys(hwaddr addr, uint64_t val)
1e78bcc1
AG
2689{
2690 val = cpu_to_le64(val);
2691 cpu_physical_memory_write(addr, &val, 8);
2692}
2693
a8170e5e 2694void stq_be_phys(hwaddr addr, uint64_t val)
1e78bcc1
AG
2695{
2696 val = cpu_to_be64(val);
2697 cpu_physical_memory_write(addr, &val, 8);
2698}
2699
5e2972fd 2700/* virtual memory access for debug (includes writing to ROM) */
f17ec444 2701int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
b448f2f3 2702 uint8_t *buf, int len, int is_write)
13eb76e0
FB
2703{
2704 int l;
a8170e5e 2705 hwaddr phys_addr;
9b3c35e0 2706 target_ulong page;
13eb76e0
FB
2707
2708 while (len > 0) {
2709 page = addr & TARGET_PAGE_MASK;
f17ec444 2710 phys_addr = cpu_get_phys_page_debug(cpu, page);
13eb76e0
FB
2711 /* if no physical page mapped, return an error */
2712 if (phys_addr == -1)
2713 return -1;
2714 l = (page + TARGET_PAGE_SIZE) - addr;
2715 if (l > len)
2716 l = len;
5e2972fd 2717 phys_addr += (addr & ~TARGET_PAGE_MASK);
5e2972fd
AL
2718 if (is_write)
2719 cpu_physical_memory_write_rom(phys_addr, buf, l);
2720 else
5e2972fd 2721 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
2722 len -= l;
2723 buf += l;
2724 addr += l;
2725 }
2726 return 0;
2727}
a68fe89c 2728#endif
13eb76e0 2729
8e4a424b
BS
2730#if !defined(CONFIG_USER_ONLY)
2731
2732/*
2733 * A helper function for the _utterly broken_ virtio device model to find out if
2734 * it's running on a big endian machine. Don't do this at home kids!
2735 */
2736bool virtio_is_big_endian(void);
2737bool virtio_is_big_endian(void)
2738{
2739#if defined(TARGET_WORDS_BIGENDIAN)
2740 return true;
2741#else
2742 return false;
2743#endif
2744}
2745
2746#endif
2747
76f35538 2748#ifndef CONFIG_USER_ONLY
a8170e5e 2749bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 2750{
5c8a00ce 2751 MemoryRegion*mr;
149f54b5 2752 hwaddr l = 1;
76f35538 2753
5c8a00ce
PB
2754 mr = address_space_translate(&address_space_memory,
2755 phys_addr, &phys_addr, &l, false);
76f35538 2756
5c8a00ce
PB
2757 return !(memory_region_is_ram(mr) ||
2758 memory_region_is_romd(mr));
76f35538 2759}
bd2fa51f
MH
2760
2761void qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
2762{
2763 RAMBlock *block;
2764
2765 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
2766 func(block->host, block->offset, block->length, opaque);
2767 }
2768}
ec3f8c99 2769#endif