]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
exec: Make tb_invalidate_phys_addr input an AS
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
d5a8f07c
FB
20#ifdef _WIN32
21#include <windows.h>
22#else
a98d49b1 23#include <sys/types.h>
d5a8f07c
FB
24#include <sys/mman.h>
25#endif
54936004 26
055403b2 27#include "qemu-common.h"
6180a181 28#include "cpu.h"
b67d9a52 29#include "tcg.h"
b3c7724c 30#include "hw/hw.h"
cc9e98cb 31#include "hw/qdev.h"
1de7afc9 32#include "qemu/osdep.h"
9c17d615 33#include "sysemu/kvm.h"
2ff3de68 34#include "sysemu/sysemu.h"
0d09e41a 35#include "hw/xen/xen.h"
1de7afc9
PB
36#include "qemu/timer.h"
37#include "qemu/config-file.h"
022c62cb 38#include "exec/memory.h"
9c17d615 39#include "sysemu/dma.h"
022c62cb 40#include "exec/address-spaces.h"
53a5960a
PB
41#if defined(CONFIG_USER_ONLY)
42#include <qemu.h>
432d268c 43#else /* !CONFIG_USER_ONLY */
9c17d615 44#include "sysemu/xen-mapcache.h"
6506e4f9 45#include "trace.h"
53a5960a 46#endif
0d6d3c87 47#include "exec/cpu-all.h"
54936004 48
022c62cb 49#include "exec/cputlb.h"
5b6dd868 50#include "translate-all.h"
0cac1b66 51
022c62cb 52#include "exec/memory-internal.h"
220c3ebd 53#include "exec/ram_addr.h"
582b55a9 54#include "qemu/cache-utils.h"
67d95c15 55
b35ba30f
MT
56#include "qemu/range.h"
57
db7b5426 58//#define DEBUG_SUBPAGE
1196be37 59
e2eef170 60#if !defined(CONFIG_USER_ONLY)
981fdf23 61static bool in_migration;
94a6b54f 62
a3161038 63RAMList ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
64
65static MemoryRegion *system_memory;
309cb471 66static MemoryRegion *system_io;
62152b8a 67
f6790af6
AK
68AddressSpace address_space_io;
69AddressSpace address_space_memory;
2673a5da 70
0844e007 71MemoryRegion io_mem_rom, io_mem_notdirty;
acc9d80b 72static MemoryRegion io_mem_unassigned;
0e0df1e2 73
e2eef170 74#endif
9fa3e853 75
bdc44640 76struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
6a00d601
FB
77/* current CPU in the current thread. It is only valid inside
78 cpu_exec() */
4917cf44 79DEFINE_TLS(CPUState *, current_cpu);
2e70f6ef 80/* 0 = Do not count executed instructions.
bf20dc07 81 1 = Precise instruction counting.
2e70f6ef 82 2 = Adaptive rate instruction counting. */
5708fc66 83int use_icount;
6a00d601 84
e2eef170 85#if !defined(CONFIG_USER_ONLY)
4346ae3e 86
1db8abb1
PB
87typedef struct PhysPageEntry PhysPageEntry;
88
89struct PhysPageEntry {
9736e55b 90 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 91 uint32_t skip : 6;
9736e55b 92 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 93 uint32_t ptr : 26;
1db8abb1
PB
94};
95
8b795765
MT
96#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
97
03f49957 98/* Size of the L2 (and L3, etc) page tables. */
57271d63 99#define ADDR_SPACE_BITS 64
03f49957 100
026736ce 101#define P_L2_BITS 9
03f49957
PB
102#define P_L2_SIZE (1 << P_L2_BITS)
103
104#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
105
106typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 107
53cb28cb
MA
108typedef struct PhysPageMap {
109 unsigned sections_nb;
110 unsigned sections_nb_alloc;
111 unsigned nodes_nb;
112 unsigned nodes_nb_alloc;
113 Node *nodes;
114 MemoryRegionSection *sections;
115} PhysPageMap;
116
1db8abb1
PB
117struct AddressSpaceDispatch {
118 /* This is a multi-level map on the physical address space.
119 * The bottom level has pointers to MemoryRegionSections.
120 */
121 PhysPageEntry phys_map;
53cb28cb 122 PhysPageMap map;
acc9d80b 123 AddressSpace *as;
1db8abb1
PB
124};
125
90260c6c
JK
126#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
127typedef struct subpage_t {
128 MemoryRegion iomem;
acc9d80b 129 AddressSpace *as;
90260c6c
JK
130 hwaddr base;
131 uint16_t sub_section[TARGET_PAGE_SIZE];
132} subpage_t;
133
b41aac4f
LPF
134#define PHYS_SECTION_UNASSIGNED 0
135#define PHYS_SECTION_NOTDIRTY 1
136#define PHYS_SECTION_ROM 2
137#define PHYS_SECTION_WATCH 3
5312bd8b 138
e2eef170 139static void io_mem_init(void);
62152b8a 140static void memory_map_init(void);
e2eef170 141
1ec9b909 142static MemoryRegion io_mem_watch;
6658ffb8 143#endif
fd6ce8f6 144
6d9a1304 145#if !defined(CONFIG_USER_ONLY)
d6f2ea22 146
53cb28cb 147static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 148{
53cb28cb
MA
149 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
150 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc * 2, 16);
151 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
152 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
d6f2ea22 153 }
f7bf5461
AK
154}
155
53cb28cb 156static uint32_t phys_map_node_alloc(PhysPageMap *map)
f7bf5461
AK
157{
158 unsigned i;
8b795765 159 uint32_t ret;
f7bf5461 160
53cb28cb 161 ret = map->nodes_nb++;
f7bf5461 162 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 163 assert(ret != map->nodes_nb_alloc);
03f49957 164 for (i = 0; i < P_L2_SIZE; ++i) {
53cb28cb
MA
165 map->nodes[ret][i].skip = 1;
166 map->nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
d6f2ea22 167 }
f7bf5461 168 return ret;
d6f2ea22
AK
169}
170
53cb28cb
MA
171static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
172 hwaddr *index, hwaddr *nb, uint16_t leaf,
2999097b 173 int level)
f7bf5461
AK
174{
175 PhysPageEntry *p;
176 int i;
03f49957 177 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 178
9736e55b 179 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
53cb28cb
MA
180 lp->ptr = phys_map_node_alloc(map);
181 p = map->nodes[lp->ptr];
f7bf5461 182 if (level == 0) {
03f49957 183 for (i = 0; i < P_L2_SIZE; i++) {
9736e55b 184 p[i].skip = 0;
b41aac4f 185 p[i].ptr = PHYS_SECTION_UNASSIGNED;
4346ae3e 186 }
67c4d23c 187 }
f7bf5461 188 } else {
53cb28cb 189 p = map->nodes[lp->ptr];
92e873b9 190 }
03f49957 191 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 192
03f49957 193 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 194 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 195 lp->skip = 0;
c19e8800 196 lp->ptr = leaf;
07f07b31
AK
197 *index += step;
198 *nb -= step;
2999097b 199 } else {
53cb28cb 200 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
201 }
202 ++lp;
f7bf5461
AK
203 }
204}
205
ac1970fb 206static void phys_page_set(AddressSpaceDispatch *d,
a8170e5e 207 hwaddr index, hwaddr nb,
2999097b 208 uint16_t leaf)
f7bf5461 209{
2999097b 210 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 211 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 212
53cb28cb 213 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
214}
215
b35ba30f
MT
216/* Compact a non leaf page entry. Simply detect that the entry has a single child,
217 * and update our entry so we can skip it and go directly to the destination.
218 */
219static void phys_page_compact(PhysPageEntry *lp, Node *nodes, unsigned long *compacted)
220{
221 unsigned valid_ptr = P_L2_SIZE;
222 int valid = 0;
223 PhysPageEntry *p;
224 int i;
225
226 if (lp->ptr == PHYS_MAP_NODE_NIL) {
227 return;
228 }
229
230 p = nodes[lp->ptr];
231 for (i = 0; i < P_L2_SIZE; i++) {
232 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
233 continue;
234 }
235
236 valid_ptr = i;
237 valid++;
238 if (p[i].skip) {
239 phys_page_compact(&p[i], nodes, compacted);
240 }
241 }
242
243 /* We can only compress if there's only one child. */
244 if (valid != 1) {
245 return;
246 }
247
248 assert(valid_ptr < P_L2_SIZE);
249
250 /* Don't compress if it won't fit in the # of bits we have. */
251 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
252 return;
253 }
254
255 lp->ptr = p[valid_ptr].ptr;
256 if (!p[valid_ptr].skip) {
257 /* If our only child is a leaf, make this a leaf. */
258 /* By design, we should have made this node a leaf to begin with so we
259 * should never reach here.
260 * But since it's so simple to handle this, let's do it just in case we
261 * change this rule.
262 */
263 lp->skip = 0;
264 } else {
265 lp->skip += p[valid_ptr].skip;
266 }
267}
268
269static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb)
270{
271 DECLARE_BITMAP(compacted, nodes_nb);
272
273 if (d->phys_map.skip) {
53cb28cb 274 phys_page_compact(&d->phys_map, d->map.nodes, compacted);
b35ba30f
MT
275 }
276}
277
97115a8d 278static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr,
9affd6fc 279 Node *nodes, MemoryRegionSection *sections)
92e873b9 280{
31ab2b4a 281 PhysPageEntry *p;
97115a8d 282 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 283 int i;
f1f6e3b8 284
9736e55b 285 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 286 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 287 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 288 }
9affd6fc 289 p = nodes[lp.ptr];
03f49957 290 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 291 }
b35ba30f
MT
292
293 if (sections[lp.ptr].size.hi ||
294 range_covers_byte(sections[lp.ptr].offset_within_address_space,
295 sections[lp.ptr].size.lo, addr)) {
296 return &sections[lp.ptr];
297 } else {
298 return &sections[PHYS_SECTION_UNASSIGNED];
299 }
f3705d53
AK
300}
301
e5548617
BS
302bool memory_region_is_unassigned(MemoryRegion *mr)
303{
2a8e7499 304 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
5b6dd868 305 && mr != &io_mem_watch;
fd6ce8f6 306}
149f54b5 307
c7086b4a 308static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
309 hwaddr addr,
310 bool resolve_subpage)
9f029603 311{
90260c6c
JK
312 MemoryRegionSection *section;
313 subpage_t *subpage;
314
53cb28cb 315 section = phys_page_find(d->phys_map, addr, d->map.nodes, d->map.sections);
90260c6c
JK
316 if (resolve_subpage && section->mr->subpage) {
317 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 318 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c
JK
319 }
320 return section;
9f029603
JK
321}
322
90260c6c 323static MemoryRegionSection *
c7086b4a 324address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 325 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
326{
327 MemoryRegionSection *section;
a87f3954 328 Int128 diff;
149f54b5 329
c7086b4a 330 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
331 /* Compute offset within MemoryRegionSection */
332 addr -= section->offset_within_address_space;
333
334 /* Compute offset within MemoryRegion */
335 *xlat = addr + section->offset_within_region;
336
337 diff = int128_sub(section->mr->size, int128_make64(addr));
3752a036 338 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
149f54b5
PB
339 return section;
340}
90260c6c 341
a87f3954
PB
342static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
343{
344 if (memory_region_is_ram(mr)) {
345 return !(is_write && mr->readonly);
346 }
347 if (memory_region_is_romd(mr)) {
348 return !is_write;
349 }
350
351 return false;
352}
353
5c8a00ce
PB
354MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
355 hwaddr *xlat, hwaddr *plen,
356 bool is_write)
90260c6c 357{
30951157
AK
358 IOMMUTLBEntry iotlb;
359 MemoryRegionSection *section;
360 MemoryRegion *mr;
361 hwaddr len = *plen;
362
363 for (;;) {
a87f3954 364 section = address_space_translate_internal(as->dispatch, addr, &addr, plen, true);
30951157
AK
365 mr = section->mr;
366
367 if (!mr->iommu_ops) {
368 break;
369 }
370
371 iotlb = mr->iommu_ops->translate(mr, addr);
372 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
373 | (addr & iotlb.addr_mask));
374 len = MIN(len, (addr | iotlb.addr_mask) - addr + 1);
375 if (!(iotlb.perm & (1 << is_write))) {
376 mr = &io_mem_unassigned;
377 break;
378 }
379
380 as = iotlb.target_as;
381 }
382
a87f3954
PB
383 if (memory_access_is_direct(mr, is_write)) {
384 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
385 len = MIN(page, len);
386 }
387
30951157
AK
388 *plen = len;
389 *xlat = addr;
390 return mr;
90260c6c
JK
391}
392
393MemoryRegionSection *
394address_space_translate_for_iotlb(AddressSpace *as, hwaddr addr, hwaddr *xlat,
395 hwaddr *plen)
396{
30951157 397 MemoryRegionSection *section;
c7086b4a 398 section = address_space_translate_internal(as->dispatch, addr, xlat, plen, false);
30951157
AK
399
400 assert(!section->mr->iommu_ops);
401 return section;
90260c6c 402}
5b6dd868 403#endif
fd6ce8f6 404
5b6dd868 405void cpu_exec_init_all(void)
fdbb84d1 406{
5b6dd868 407#if !defined(CONFIG_USER_ONLY)
b2a8658e 408 qemu_mutex_init(&ram_list.mutex);
5b6dd868
BS
409 memory_map_init();
410 io_mem_init();
fdbb84d1 411#endif
5b6dd868 412}
fdbb84d1 413
b170fce3 414#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
415
416static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 417{
259186a7 418 CPUState *cpu = opaque;
a513fe19 419
5b6dd868
BS
420 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
421 version_id is increased. */
259186a7
AF
422 cpu->interrupt_request &= ~0x01;
423 tlb_flush(cpu->env_ptr, 1);
5b6dd868
BS
424
425 return 0;
a513fe19 426}
7501267e 427
1a1562f5 428const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
429 .name = "cpu_common",
430 .version_id = 1,
431 .minimum_version_id = 1,
432 .minimum_version_id_old = 1,
433 .post_load = cpu_common_post_load,
434 .fields = (VMStateField []) {
259186a7
AF
435 VMSTATE_UINT32(halted, CPUState),
436 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868
BS
437 VMSTATE_END_OF_LIST()
438 }
439};
1a1562f5 440
5b6dd868 441#endif
ea041c0e 442
38d8f5c8 443CPUState *qemu_get_cpu(int index)
ea041c0e 444{
bdc44640 445 CPUState *cpu;
ea041c0e 446
bdc44640 447 CPU_FOREACH(cpu) {
55e5c285 448 if (cpu->cpu_index == index) {
bdc44640 449 return cpu;
55e5c285 450 }
ea041c0e 451 }
5b6dd868 452
bdc44640 453 return NULL;
ea041c0e
FB
454}
455
5b6dd868 456void cpu_exec_init(CPUArchState *env)
ea041c0e 457{
5b6dd868 458 CPUState *cpu = ENV_GET_CPU(env);
b170fce3 459 CPUClass *cc = CPU_GET_CLASS(cpu);
bdc44640 460 CPUState *some_cpu;
5b6dd868
BS
461 int cpu_index;
462
463#if defined(CONFIG_USER_ONLY)
464 cpu_list_lock();
465#endif
5b6dd868 466 cpu_index = 0;
bdc44640 467 CPU_FOREACH(some_cpu) {
5b6dd868
BS
468 cpu_index++;
469 }
55e5c285 470 cpu->cpu_index = cpu_index;
1b1ed8dc 471 cpu->numa_node = 0;
5b6dd868
BS
472 QTAILQ_INIT(&env->breakpoints);
473 QTAILQ_INIT(&env->watchpoints);
474#ifndef CONFIG_USER_ONLY
475 cpu->thread_id = qemu_get_thread_id();
476#endif
bdc44640 477 QTAILQ_INSERT_TAIL(&cpus, cpu, node);
5b6dd868
BS
478#if defined(CONFIG_USER_ONLY)
479 cpu_list_unlock();
480#endif
e0d47944
AF
481 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
482 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
483 }
5b6dd868 484#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
5b6dd868
BS
485 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
486 cpu_save, cpu_load, env);
b170fce3 487 assert(cc->vmsd == NULL);
e0d47944 488 assert(qdev_get_vmsd(DEVICE(cpu)) == NULL);
5b6dd868 489#endif
b170fce3
AF
490 if (cc->vmsd != NULL) {
491 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
492 }
ea041c0e
FB
493}
494
1fddef4b 495#if defined(TARGET_HAS_ICE)
94df27fd 496#if defined(CONFIG_USER_ONLY)
00b941e5 497static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
94df27fd
PB
498{
499 tb_invalidate_phys_page_range(pc, pc + 1, 0);
500}
501#else
00b941e5 502static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1e7855a5 503{
e8262a1b
MF
504 hwaddr phys = cpu_get_phys_page_debug(cpu, pc);
505 if (phys != -1) {
29d8ec7b
EI
506 tb_invalidate_phys_addr(&address_space_memory,
507 phys | (pc & ~TARGET_PAGE_MASK));
e8262a1b 508 }
1e7855a5 509}
c27004ec 510#endif
94df27fd 511#endif /* TARGET_HAS_ICE */
d720b93d 512
c527ee8f 513#if defined(CONFIG_USER_ONLY)
9349b4f9 514void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
c527ee8f
PB
515
516{
517}
518
9349b4f9 519int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
c527ee8f
PB
520 int flags, CPUWatchpoint **watchpoint)
521{
522 return -ENOSYS;
523}
524#else
6658ffb8 525/* Add a watchpoint. */
9349b4f9 526int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
a1d1bb31 527 int flags, CPUWatchpoint **watchpoint)
6658ffb8 528{
b4051334 529 target_ulong len_mask = ~(len - 1);
c0ce998e 530 CPUWatchpoint *wp;
6658ffb8 531
b4051334 532 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
0dc23828
MF
533 if ((len & (len - 1)) || (addr & ~len_mask) ||
534 len == 0 || len > TARGET_PAGE_SIZE) {
b4051334
AL
535 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
536 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
537 return -EINVAL;
538 }
7267c094 539 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
540
541 wp->vaddr = addr;
b4051334 542 wp->len_mask = len_mask;
a1d1bb31
AL
543 wp->flags = flags;
544
2dc9f411 545 /* keep all GDB-injected watchpoints in front */
c0ce998e 546 if (flags & BP_GDB)
72cf2d4f 547 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
c0ce998e 548 else
72cf2d4f 549 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 550
6658ffb8 551 tlb_flush_page(env, addr);
a1d1bb31
AL
552
553 if (watchpoint)
554 *watchpoint = wp;
555 return 0;
6658ffb8
PB
556}
557
a1d1bb31 558/* Remove a specific watchpoint. */
9349b4f9 559int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
a1d1bb31 560 int flags)
6658ffb8 561{
b4051334 562 target_ulong len_mask = ~(len - 1);
a1d1bb31 563 CPUWatchpoint *wp;
6658ffb8 564
72cf2d4f 565 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 566 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 567 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 568 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
569 return 0;
570 }
571 }
a1d1bb31 572 return -ENOENT;
6658ffb8
PB
573}
574
a1d1bb31 575/* Remove a specific watchpoint by reference. */
9349b4f9 576void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
a1d1bb31 577{
72cf2d4f 578 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 579
a1d1bb31
AL
580 tlb_flush_page(env, watchpoint->vaddr);
581
7267c094 582 g_free(watchpoint);
a1d1bb31
AL
583}
584
585/* Remove all matching watchpoints. */
9349b4f9 586void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
a1d1bb31 587{
c0ce998e 588 CPUWatchpoint *wp, *next;
a1d1bb31 589
72cf2d4f 590 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
591 if (wp->flags & mask)
592 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 593 }
7d03f82f 594}
c527ee8f 595#endif
7d03f82f 596
a1d1bb31 597/* Add a breakpoint. */
9349b4f9 598int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
a1d1bb31 599 CPUBreakpoint **breakpoint)
4c3a88a2 600{
1fddef4b 601#if defined(TARGET_HAS_ICE)
c0ce998e 602 CPUBreakpoint *bp;
3b46e624 603
7267c094 604 bp = g_malloc(sizeof(*bp));
4c3a88a2 605
a1d1bb31
AL
606 bp->pc = pc;
607 bp->flags = flags;
608
2dc9f411 609 /* keep all GDB-injected breakpoints in front */
00b941e5 610 if (flags & BP_GDB) {
72cf2d4f 611 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
00b941e5 612 } else {
72cf2d4f 613 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
00b941e5 614 }
3b46e624 615
00b941e5 616 breakpoint_invalidate(ENV_GET_CPU(env), pc);
a1d1bb31 617
00b941e5 618 if (breakpoint) {
a1d1bb31 619 *breakpoint = bp;
00b941e5 620 }
4c3a88a2
FB
621 return 0;
622#else
a1d1bb31 623 return -ENOSYS;
4c3a88a2
FB
624#endif
625}
626
a1d1bb31 627/* Remove a specific breakpoint. */
9349b4f9 628int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
a1d1bb31 629{
7d03f82f 630#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
631 CPUBreakpoint *bp;
632
72cf2d4f 633 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
634 if (bp->pc == pc && bp->flags == flags) {
635 cpu_breakpoint_remove_by_ref(env, bp);
636 return 0;
637 }
7d03f82f 638 }
a1d1bb31
AL
639 return -ENOENT;
640#else
641 return -ENOSYS;
7d03f82f
EI
642#endif
643}
644
a1d1bb31 645/* Remove a specific breakpoint by reference. */
9349b4f9 646void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
4c3a88a2 647{
1fddef4b 648#if defined(TARGET_HAS_ICE)
72cf2d4f 649 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 650
00b941e5 651 breakpoint_invalidate(ENV_GET_CPU(env), breakpoint->pc);
a1d1bb31 652
7267c094 653 g_free(breakpoint);
a1d1bb31
AL
654#endif
655}
656
657/* Remove all matching breakpoints. */
9349b4f9 658void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
a1d1bb31
AL
659{
660#if defined(TARGET_HAS_ICE)
c0ce998e 661 CPUBreakpoint *bp, *next;
a1d1bb31 662
72cf2d4f 663 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
664 if (bp->flags & mask)
665 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 666 }
4c3a88a2
FB
667#endif
668}
669
c33a346e
FB
670/* enable or disable single step mode. EXCP_DEBUG is returned by the
671 CPU loop after each instruction */
3825b28f 672void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 673{
1fddef4b 674#if defined(TARGET_HAS_ICE)
ed2803da
AF
675 if (cpu->singlestep_enabled != enabled) {
676 cpu->singlestep_enabled = enabled;
677 if (kvm_enabled()) {
38e478ec 678 kvm_update_guest_debug(cpu, 0);
ed2803da 679 } else {
ccbb4d44 680 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 681 /* XXX: only flush what is necessary */
38e478ec 682 CPUArchState *env = cpu->env_ptr;
e22a25c9
AL
683 tb_flush(env);
684 }
c33a346e
FB
685 }
686#endif
687}
688
9349b4f9 689void cpu_abort(CPUArchState *env, const char *fmt, ...)
7501267e 690{
878096ee 691 CPUState *cpu = ENV_GET_CPU(env);
7501267e 692 va_list ap;
493ae1f0 693 va_list ap2;
7501267e
FB
694
695 va_start(ap, fmt);
493ae1f0 696 va_copy(ap2, ap);
7501267e
FB
697 fprintf(stderr, "qemu: fatal: ");
698 vfprintf(stderr, fmt, ap);
699 fprintf(stderr, "\n");
878096ee 700 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
93fcfe39
AL
701 if (qemu_log_enabled()) {
702 qemu_log("qemu: fatal: ");
703 qemu_log_vprintf(fmt, ap2);
704 qemu_log("\n");
a0762859 705 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 706 qemu_log_flush();
93fcfe39 707 qemu_log_close();
924edcae 708 }
493ae1f0 709 va_end(ap2);
f9373291 710 va_end(ap);
fd052bf6
RV
711#if defined(CONFIG_USER_ONLY)
712 {
713 struct sigaction act;
714 sigfillset(&act.sa_mask);
715 act.sa_handler = SIG_DFL;
716 sigaction(SIGABRT, &act, NULL);
717 }
718#endif
7501267e
FB
719 abort();
720}
721
0124311e 722#if !defined(CONFIG_USER_ONLY)
041603fe
PB
723static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
724{
725 RAMBlock *block;
726
727 /* The list is protected by the iothread lock here. */
728 block = ram_list.mru_block;
729 if (block && addr - block->offset < block->length) {
730 goto found;
731 }
732 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
733 if (addr - block->offset < block->length) {
734 goto found;
735 }
736 }
737
738 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
739 abort();
740
741found:
742 ram_list.mru_block = block;
743 return block;
744}
745
a2f4d5be 746static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 747{
041603fe 748 ram_addr_t start1;
a2f4d5be
JQ
749 RAMBlock *block;
750 ram_addr_t end;
751
752 end = TARGET_PAGE_ALIGN(start + length);
753 start &= TARGET_PAGE_MASK;
d24981d3 754
041603fe
PB
755 block = qemu_get_ram_block(start);
756 assert(block == qemu_get_ram_block(end - 1));
757 start1 = (uintptr_t)block->host + (start - block->offset);
758 cpu_tlb_reset_dirty_all(start1, length);
d24981d3
JQ
759}
760
5579c7f3 761/* Note: start and end must be within the same ram block. */
a2f4d5be 762void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t length,
52159192 763 unsigned client)
1ccde1cb 764{
1ccde1cb
FB
765 if (length == 0)
766 return;
ace694cc 767 cpu_physical_memory_clear_dirty_range(start, length, client);
f23db169 768
d24981d3 769 if (tcg_enabled()) {
a2f4d5be 770 tlb_reset_dirty_range_all(start, length);
5579c7f3 771 }
1ccde1cb
FB
772}
773
981fdf23 774static void cpu_physical_memory_set_dirty_tracking(bool enable)
74576198
AL
775{
776 in_migration = enable;
74576198
AL
777}
778
a8170e5e 779hwaddr memory_region_section_get_iotlb(CPUArchState *env,
149f54b5
PB
780 MemoryRegionSection *section,
781 target_ulong vaddr,
782 hwaddr paddr, hwaddr xlat,
783 int prot,
784 target_ulong *address)
e5548617 785{
a8170e5e 786 hwaddr iotlb;
e5548617
BS
787 CPUWatchpoint *wp;
788
cc5bea60 789 if (memory_region_is_ram(section->mr)) {
e5548617
BS
790 /* Normal RAM. */
791 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
149f54b5 792 + xlat;
e5548617 793 if (!section->readonly) {
b41aac4f 794 iotlb |= PHYS_SECTION_NOTDIRTY;
e5548617 795 } else {
b41aac4f 796 iotlb |= PHYS_SECTION_ROM;
e5548617
BS
797 }
798 } else {
53cb28cb 799 iotlb = section - address_space_memory.dispatch->map.sections;
149f54b5 800 iotlb += xlat;
e5548617
BS
801 }
802
803 /* Make accesses to pages with watchpoints go via the
804 watchpoint trap routines. */
805 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
806 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
807 /* Avoid trapping reads of pages with a write breakpoint. */
808 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
b41aac4f 809 iotlb = PHYS_SECTION_WATCH + paddr;
e5548617
BS
810 *address |= TLB_MMIO;
811 break;
812 }
813 }
814 }
815
816 return iotlb;
817}
9fa3e853
FB
818#endif /* defined(CONFIG_USER_ONLY) */
819
e2eef170 820#if !defined(CONFIG_USER_ONLY)
8da3ff18 821
c227f099 822static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 823 uint16_t section);
acc9d80b 824static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
54688b1e 825
575ddeb4 826static void *(*phys_mem_alloc)(size_t size) = qemu_anon_ram_alloc;
91138037
MA
827
828/*
829 * Set a custom physical guest memory alloator.
830 * Accelerators with unusual needs may need this. Hopefully, we can
831 * get rid of it eventually.
832 */
575ddeb4 833void phys_mem_set_alloc(void *(*alloc)(size_t))
91138037
MA
834{
835 phys_mem_alloc = alloc;
836}
837
53cb28cb
MA
838static uint16_t phys_section_add(PhysPageMap *map,
839 MemoryRegionSection *section)
5312bd8b 840{
68f3f65b
PB
841 /* The physical section number is ORed with a page-aligned
842 * pointer to produce the iotlb entries. Thus it should
843 * never overflow into the page-aligned value.
844 */
53cb28cb 845 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 846
53cb28cb
MA
847 if (map->sections_nb == map->sections_nb_alloc) {
848 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
849 map->sections = g_renew(MemoryRegionSection, map->sections,
850 map->sections_nb_alloc);
5312bd8b 851 }
53cb28cb 852 map->sections[map->sections_nb] = *section;
dfde4e6e 853 memory_region_ref(section->mr);
53cb28cb 854 return map->sections_nb++;
5312bd8b
AK
855}
856
058bc4b5
PB
857static void phys_section_destroy(MemoryRegion *mr)
858{
dfde4e6e
PB
859 memory_region_unref(mr);
860
058bc4b5
PB
861 if (mr->subpage) {
862 subpage_t *subpage = container_of(mr, subpage_t, iomem);
863 memory_region_destroy(&subpage->iomem);
864 g_free(subpage);
865 }
866}
867
6092666e 868static void phys_sections_free(PhysPageMap *map)
5312bd8b 869{
9affd6fc
PB
870 while (map->sections_nb > 0) {
871 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
872 phys_section_destroy(section->mr);
873 }
9affd6fc
PB
874 g_free(map->sections);
875 g_free(map->nodes);
5312bd8b
AK
876}
877
ac1970fb 878static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
0f0cb164
AK
879{
880 subpage_t *subpage;
a8170e5e 881 hwaddr base = section->offset_within_address_space
0f0cb164 882 & TARGET_PAGE_MASK;
97115a8d 883 MemoryRegionSection *existing = phys_page_find(d->phys_map, base,
53cb28cb 884 d->map.nodes, d->map.sections);
0f0cb164
AK
885 MemoryRegionSection subsection = {
886 .offset_within_address_space = base,
052e87b0 887 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 888 };
a8170e5e 889 hwaddr start, end;
0f0cb164 890
f3705d53 891 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 892
f3705d53 893 if (!(existing->mr->subpage)) {
acc9d80b 894 subpage = subpage_init(d->as, base);
0f0cb164 895 subsection.mr = &subpage->iomem;
ac1970fb 896 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 897 phys_section_add(&d->map, &subsection));
0f0cb164 898 } else {
f3705d53 899 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
900 }
901 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 902 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
903 subpage_register(subpage, start, end,
904 phys_section_add(&d->map, section));
0f0cb164
AK
905}
906
907
052e87b0
PB
908static void register_multipage(AddressSpaceDispatch *d,
909 MemoryRegionSection *section)
33417e70 910{
a8170e5e 911 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 912 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
913 uint64_t num_pages = int128_get64(int128_rshift(section->size,
914 TARGET_PAGE_BITS));
dd81124b 915
733d5ef5
PB
916 assert(num_pages);
917 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
918}
919
ac1970fb 920static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
0f0cb164 921{
89ae337a 922 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
00752703 923 AddressSpaceDispatch *d = as->next_dispatch;
99b9cc06 924 MemoryRegionSection now = *section, remain = *section;
052e87b0 925 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 926
733d5ef5
PB
927 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
928 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
929 - now.offset_within_address_space;
930
052e87b0 931 now.size = int128_min(int128_make64(left), now.size);
ac1970fb 932 register_subpage(d, &now);
733d5ef5 933 } else {
052e87b0 934 now.size = int128_zero();
733d5ef5 935 }
052e87b0
PB
936 while (int128_ne(remain.size, now.size)) {
937 remain.size = int128_sub(remain.size, now.size);
938 remain.offset_within_address_space += int128_get64(now.size);
939 remain.offset_within_region += int128_get64(now.size);
69b67646 940 now = remain;
052e87b0 941 if (int128_lt(remain.size, page_size)) {
733d5ef5 942 register_subpage(d, &now);
88266249 943 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
052e87b0 944 now.size = page_size;
ac1970fb 945 register_subpage(d, &now);
69b67646 946 } else {
052e87b0 947 now.size = int128_and(now.size, int128_neg(page_size));
ac1970fb 948 register_multipage(d, &now);
69b67646 949 }
0f0cb164
AK
950 }
951}
952
62a2744c
SY
953void qemu_flush_coalesced_mmio_buffer(void)
954{
955 if (kvm_enabled())
956 kvm_flush_coalesced_mmio_buffer();
957}
958
b2a8658e
UD
959void qemu_mutex_lock_ramlist(void)
960{
961 qemu_mutex_lock(&ram_list.mutex);
962}
963
964void qemu_mutex_unlock_ramlist(void)
965{
966 qemu_mutex_unlock(&ram_list.mutex);
967}
968
e1e84ba0 969#ifdef __linux__
c902760f
MT
970
971#include <sys/vfs.h>
972
973#define HUGETLBFS_MAGIC 0x958458f6
974
975static long gethugepagesize(const char *path)
976{
977 struct statfs fs;
978 int ret;
979
980 do {
9742bf26 981 ret = statfs(path, &fs);
c902760f
MT
982 } while (ret != 0 && errno == EINTR);
983
984 if (ret != 0) {
9742bf26
YT
985 perror(path);
986 return 0;
c902760f
MT
987 }
988
989 if (fs.f_type != HUGETLBFS_MAGIC)
9742bf26 990 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
c902760f
MT
991
992 return fs.f_bsize;
993}
994
ef36fa14
MT
995static sigjmp_buf sigjump;
996
997static void sigbus_handler(int signal)
998{
999 siglongjmp(sigjump, 1);
1000}
1001
04b16653
AW
1002static void *file_ram_alloc(RAMBlock *block,
1003 ram_addr_t memory,
1004 const char *path)
c902760f
MT
1005{
1006 char *filename;
8ca761f6
PF
1007 char *sanitized_name;
1008 char *c;
c902760f
MT
1009 void *area;
1010 int fd;
c902760f
MT
1011 unsigned long hpagesize;
1012
1013 hpagesize = gethugepagesize(path);
1014 if (!hpagesize) {
9742bf26 1015 return NULL;
c902760f
MT
1016 }
1017
1018 if (memory < hpagesize) {
1019 return NULL;
1020 }
1021
1022 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1023 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
1024 return NULL;
1025 }
1026
8ca761f6
PF
1027 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1028 sanitized_name = g_strdup(block->mr->name);
1029 for (c = sanitized_name; *c != '\0'; c++) {
1030 if (*c == '/')
1031 *c = '_';
1032 }
1033
1034 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1035 sanitized_name);
1036 g_free(sanitized_name);
c902760f
MT
1037
1038 fd = mkstemp(filename);
1039 if (fd < 0) {
9742bf26 1040 perror("unable to create backing store for hugepages");
e4ada482 1041 g_free(filename);
9742bf26 1042 return NULL;
c902760f
MT
1043 }
1044 unlink(filename);
e4ada482 1045 g_free(filename);
c902760f
MT
1046
1047 memory = (memory+hpagesize-1) & ~(hpagesize-1);
1048
1049 /*
1050 * ftruncate is not supported by hugetlbfs in older
1051 * hosts, so don't bother bailing out on errors.
1052 * If anything goes wrong with it under other filesystems,
1053 * mmap will fail.
1054 */
1055 if (ftruncate(fd, memory))
9742bf26 1056 perror("ftruncate");
c902760f 1057
c902760f 1058 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
c902760f 1059 if (area == MAP_FAILED) {
9742bf26
YT
1060 perror("file_ram_alloc: can't mmap RAM pages");
1061 close(fd);
1062 return (NULL);
c902760f 1063 }
ef36fa14
MT
1064
1065 if (mem_prealloc) {
1066 int ret, i;
1067 struct sigaction act, oldact;
1068 sigset_t set, oldset;
1069
1070 memset(&act, 0, sizeof(act));
1071 act.sa_handler = &sigbus_handler;
1072 act.sa_flags = 0;
1073
1074 ret = sigaction(SIGBUS, &act, &oldact);
1075 if (ret) {
1076 perror("file_ram_alloc: failed to install signal handler");
1077 exit(1);
1078 }
1079
1080 /* unblock SIGBUS */
1081 sigemptyset(&set);
1082 sigaddset(&set, SIGBUS);
1083 pthread_sigmask(SIG_UNBLOCK, &set, &oldset);
1084
1085 if (sigsetjmp(sigjump, 1)) {
1086 fprintf(stderr, "file_ram_alloc: failed to preallocate pages\n");
1087 exit(1);
1088 }
1089
1090 /* MAP_POPULATE silently ignores failures */
2ba82852 1091 for (i = 0; i < (memory/hpagesize); i++) {
ef36fa14
MT
1092 memset(area + (hpagesize*i), 0, 1);
1093 }
1094
1095 ret = sigaction(SIGBUS, &oldact, NULL);
1096 if (ret) {
1097 perror("file_ram_alloc: failed to reinstall signal handler");
1098 exit(1);
1099 }
1100
1101 pthread_sigmask(SIG_SETMASK, &oldset, NULL);
1102 }
1103
04b16653 1104 block->fd = fd;
c902760f
MT
1105 return area;
1106}
e1e84ba0
MA
1107#else
1108static void *file_ram_alloc(RAMBlock *block,
1109 ram_addr_t memory,
1110 const char *path)
1111{
1112 fprintf(stderr, "-mem-path not supported on this host\n");
1113 exit(1);
1114}
c902760f
MT
1115#endif
1116
d17b5288 1117static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1118{
1119 RAMBlock *block, *next_block;
3e837b2c 1120 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1121
49cd9ac6
SH
1122 assert(size != 0); /* it would hand out same offset multiple times */
1123
a3161038 1124 if (QTAILQ_EMPTY(&ram_list.blocks))
04b16653
AW
1125 return 0;
1126
a3161038 1127 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
f15fbc4b 1128 ram_addr_t end, next = RAM_ADDR_MAX;
04b16653
AW
1129
1130 end = block->offset + block->length;
1131
a3161038 1132 QTAILQ_FOREACH(next_block, &ram_list.blocks, next) {
04b16653
AW
1133 if (next_block->offset >= end) {
1134 next = MIN(next, next_block->offset);
1135 }
1136 }
1137 if (next - end >= size && next - end < mingap) {
3e837b2c 1138 offset = end;
04b16653
AW
1139 mingap = next - end;
1140 }
1141 }
3e837b2c
AW
1142
1143 if (offset == RAM_ADDR_MAX) {
1144 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1145 (uint64_t)size);
1146 abort();
1147 }
1148
04b16653
AW
1149 return offset;
1150}
1151
652d7ec2 1152ram_addr_t last_ram_offset(void)
d17b5288
AW
1153{
1154 RAMBlock *block;
1155 ram_addr_t last = 0;
1156
a3161038 1157 QTAILQ_FOREACH(block, &ram_list.blocks, next)
d17b5288
AW
1158 last = MAX(last, block->offset + block->length);
1159
1160 return last;
1161}
1162
ddb97f1d
JB
1163static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1164{
1165 int ret;
ddb97f1d
JB
1166
1167 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
2ff3de68
MA
1168 if (!qemu_opt_get_bool(qemu_get_machine_opts(),
1169 "dump-guest-core", true)) {
ddb97f1d
JB
1170 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1171 if (ret) {
1172 perror("qemu_madvise");
1173 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1174 "but dump_guest_core=off specified\n");
1175 }
1176 }
1177}
1178
c5705a77 1179void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
84b89d78
CM
1180{
1181 RAMBlock *new_block, *block;
1182
c5705a77 1183 new_block = NULL;
a3161038 1184 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
c5705a77
AK
1185 if (block->offset == addr) {
1186 new_block = block;
1187 break;
1188 }
1189 }
1190 assert(new_block);
1191 assert(!new_block->idstr[0]);
84b89d78 1192
09e5ab63
AL
1193 if (dev) {
1194 char *id = qdev_get_dev_path(dev);
84b89d78
CM
1195 if (id) {
1196 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 1197 g_free(id);
84b89d78
CM
1198 }
1199 }
1200 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1201
b2a8658e
UD
1202 /* This assumes the iothread lock is taken here too. */
1203 qemu_mutex_lock_ramlist();
a3161038 1204 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
c5705a77 1205 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
1206 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1207 new_block->idstr);
1208 abort();
1209 }
1210 }
b2a8658e 1211 qemu_mutex_unlock_ramlist();
c5705a77
AK
1212}
1213
8490fc78
LC
1214static int memory_try_enable_merging(void *addr, size_t len)
1215{
2ff3de68 1216 if (!qemu_opt_get_bool(qemu_get_machine_opts(), "mem-merge", true)) {
8490fc78
LC
1217 /* disabled by the user */
1218 return 0;
1219 }
1220
1221 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1222}
1223
c5705a77
AK
1224ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1225 MemoryRegion *mr)
1226{
abb26d63 1227 RAMBlock *block, *new_block;
2152f5ca
JQ
1228 ram_addr_t old_ram_size, new_ram_size;
1229
1230 old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
c5705a77
AK
1231
1232 size = TARGET_PAGE_ALIGN(size);
1233 new_block = g_malloc0(sizeof(*new_block));
3435f395 1234 new_block->fd = -1;
84b89d78 1235
b2a8658e
UD
1236 /* This assumes the iothread lock is taken here too. */
1237 qemu_mutex_lock_ramlist();
7c637366 1238 new_block->mr = mr;
432d268c 1239 new_block->offset = find_ram_offset(size);
6977dfe6
YT
1240 if (host) {
1241 new_block->host = host;
cd19cfa2 1242 new_block->flags |= RAM_PREALLOC_MASK;
dfeaf2ab
MA
1243 } else if (xen_enabled()) {
1244 if (mem_path) {
1245 fprintf(stderr, "-mem-path not supported with Xen\n");
1246 exit(1);
1247 }
1248 xen_ram_alloc(new_block->offset, size, mr);
6977dfe6
YT
1249 } else {
1250 if (mem_path) {
e1e84ba0
MA
1251 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1252 /*
1253 * file_ram_alloc() needs to allocate just like
1254 * phys_mem_alloc, but we haven't bothered to provide
1255 * a hook there.
1256 */
1257 fprintf(stderr,
1258 "-mem-path not supported with this accelerator\n");
1259 exit(1);
1260 }
6977dfe6 1261 new_block->host = file_ram_alloc(new_block, size, mem_path);
0628c182
MA
1262 }
1263 if (!new_block->host) {
91138037 1264 new_block->host = phys_mem_alloc(size);
39228250
MA
1265 if (!new_block->host) {
1266 fprintf(stderr, "Cannot set up guest memory '%s': %s\n",
1267 new_block->mr->name, strerror(errno));
1268 exit(1);
1269 }
8490fc78 1270 memory_try_enable_merging(new_block->host, size);
6977dfe6 1271 }
c902760f 1272 }
94a6b54f
PB
1273 new_block->length = size;
1274
abb26d63
PB
1275 /* Keep the list sorted from biggest to smallest block. */
1276 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1277 if (block->length < new_block->length) {
1278 break;
1279 }
1280 }
1281 if (block) {
1282 QTAILQ_INSERT_BEFORE(block, new_block, next);
1283 } else {
1284 QTAILQ_INSERT_TAIL(&ram_list.blocks, new_block, next);
1285 }
0d6d3c87 1286 ram_list.mru_block = NULL;
94a6b54f 1287
f798b07f 1288 ram_list.version++;
b2a8658e 1289 qemu_mutex_unlock_ramlist();
f798b07f 1290
2152f5ca
JQ
1291 new_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
1292
1293 if (new_ram_size > old_ram_size) {
1ab4c8ce
JQ
1294 int i;
1295 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1296 ram_list.dirty_memory[i] =
1297 bitmap_zero_extend(ram_list.dirty_memory[i],
1298 old_ram_size, new_ram_size);
1299 }
2152f5ca 1300 }
75218e7f 1301 cpu_physical_memory_set_dirty_range(new_block->offset, size);
94a6b54f 1302
ddb97f1d 1303 qemu_ram_setup_dump(new_block->host, size);
ad0b5321 1304 qemu_madvise(new_block->host, size, QEMU_MADV_HUGEPAGE);
3e469dbf 1305 qemu_madvise(new_block->host, size, QEMU_MADV_DONTFORK);
ddb97f1d 1306
6f0437e8
JK
1307 if (kvm_enabled())
1308 kvm_setup_guest_memory(new_block->host, size);
1309
94a6b54f
PB
1310 return new_block->offset;
1311}
e9a1ab19 1312
c5705a77 1313ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
6977dfe6 1314{
c5705a77 1315 return qemu_ram_alloc_from_ptr(size, NULL, mr);
6977dfe6
YT
1316}
1317
1f2e98b6
AW
1318void qemu_ram_free_from_ptr(ram_addr_t addr)
1319{
1320 RAMBlock *block;
1321
b2a8658e
UD
1322 /* This assumes the iothread lock is taken here too. */
1323 qemu_mutex_lock_ramlist();
a3161038 1324 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1f2e98b6 1325 if (addr == block->offset) {
a3161038 1326 QTAILQ_REMOVE(&ram_list.blocks, block, next);
0d6d3c87 1327 ram_list.mru_block = NULL;
f798b07f 1328 ram_list.version++;
7267c094 1329 g_free(block);
b2a8658e 1330 break;
1f2e98b6
AW
1331 }
1332 }
b2a8658e 1333 qemu_mutex_unlock_ramlist();
1f2e98b6
AW
1334}
1335
c227f099 1336void qemu_ram_free(ram_addr_t addr)
e9a1ab19 1337{
04b16653
AW
1338 RAMBlock *block;
1339
b2a8658e
UD
1340 /* This assumes the iothread lock is taken here too. */
1341 qemu_mutex_lock_ramlist();
a3161038 1342 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
04b16653 1343 if (addr == block->offset) {
a3161038 1344 QTAILQ_REMOVE(&ram_list.blocks, block, next);
0d6d3c87 1345 ram_list.mru_block = NULL;
f798b07f 1346 ram_list.version++;
cd19cfa2
HY
1347 if (block->flags & RAM_PREALLOC_MASK) {
1348 ;
dfeaf2ab
MA
1349 } else if (xen_enabled()) {
1350 xen_invalidate_map_cache_entry(block->host);
089f3f76 1351#ifndef _WIN32
3435f395
MA
1352 } else if (block->fd >= 0) {
1353 munmap(block->host, block->length);
1354 close(block->fd);
089f3f76 1355#endif
04b16653 1356 } else {
dfeaf2ab 1357 qemu_anon_ram_free(block->host, block->length);
04b16653 1358 }
7267c094 1359 g_free(block);
b2a8658e 1360 break;
04b16653
AW
1361 }
1362 }
b2a8658e 1363 qemu_mutex_unlock_ramlist();
04b16653 1364
e9a1ab19
FB
1365}
1366
cd19cfa2
HY
1367#ifndef _WIN32
1368void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1369{
1370 RAMBlock *block;
1371 ram_addr_t offset;
1372 int flags;
1373 void *area, *vaddr;
1374
a3161038 1375 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
cd19cfa2
HY
1376 offset = addr - block->offset;
1377 if (offset < block->length) {
1378 vaddr = block->host + offset;
1379 if (block->flags & RAM_PREALLOC_MASK) {
1380 ;
dfeaf2ab
MA
1381 } else if (xen_enabled()) {
1382 abort();
cd19cfa2
HY
1383 } else {
1384 flags = MAP_FIXED;
1385 munmap(vaddr, length);
3435f395 1386 if (block->fd >= 0) {
cd19cfa2 1387#ifdef MAP_POPULATE
3435f395
MA
1388 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
1389 MAP_PRIVATE;
fd28aa13 1390#else
3435f395 1391 flags |= MAP_PRIVATE;
cd19cfa2 1392#endif
3435f395
MA
1393 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1394 flags, block->fd, offset);
cd19cfa2 1395 } else {
2eb9fbaa
MA
1396 /*
1397 * Remap needs to match alloc. Accelerators that
1398 * set phys_mem_alloc never remap. If they did,
1399 * we'd need a remap hook here.
1400 */
1401 assert(phys_mem_alloc == qemu_anon_ram_alloc);
1402
cd19cfa2
HY
1403 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1404 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1405 flags, -1, 0);
cd19cfa2
HY
1406 }
1407 if (area != vaddr) {
f15fbc4b
AP
1408 fprintf(stderr, "Could not remap addr: "
1409 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
cd19cfa2
HY
1410 length, addr);
1411 exit(1);
1412 }
8490fc78 1413 memory_try_enable_merging(vaddr, length);
ddb97f1d 1414 qemu_ram_setup_dump(vaddr, length);
cd19cfa2
HY
1415 }
1416 return;
1417 }
1418 }
1419}
1420#endif /* !_WIN32 */
1421
1b5ec234
PB
1422/* Return a host pointer to ram allocated with qemu_ram_alloc.
1423 With the exception of the softmmu code in this file, this should
1424 only be used for local memory (e.g. video ram) that the device owns,
1425 and knows it isn't going to access beyond the end of the block.
1426
1427 It should not be used for general purpose DMA.
1428 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1429 */
1430void *qemu_get_ram_ptr(ram_addr_t addr)
1431{
1432 RAMBlock *block = qemu_get_ram_block(addr);
1433
0d6d3c87
PB
1434 if (xen_enabled()) {
1435 /* We need to check if the requested address is in the RAM
1436 * because we don't want to map the entire memory in QEMU.
1437 * In that case just map until the end of the page.
1438 */
1439 if (block->offset == 0) {
1440 return xen_map_cache(addr, 0, 0);
1441 } else if (block->host == NULL) {
1442 block->host =
1443 xen_map_cache(block->offset, block->length, 1);
1444 }
1445 }
1446 return block->host + (addr - block->offset);
dc828ca1
PB
1447}
1448
38bee5dc
SS
1449/* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1450 * but takes a size argument */
cb85f7ab 1451static void *qemu_ram_ptr_length(ram_addr_t addr, hwaddr *size)
38bee5dc 1452{
8ab934f9
SS
1453 if (*size == 0) {
1454 return NULL;
1455 }
868bb33f 1456 if (xen_enabled()) {
e41d7c69 1457 return xen_map_cache(addr, *size, 1);
868bb33f 1458 } else {
38bee5dc
SS
1459 RAMBlock *block;
1460
a3161038 1461 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
38bee5dc
SS
1462 if (addr - block->offset < block->length) {
1463 if (addr - block->offset + *size > block->length)
1464 *size = block->length - addr + block->offset;
1465 return block->host + (addr - block->offset);
1466 }
1467 }
1468
1469 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1470 abort();
38bee5dc
SS
1471 }
1472}
1473
7443b437
PB
1474/* Some of the softmmu routines need to translate from a host pointer
1475 (typically a TLB entry) back to a ram offset. */
1b5ec234 1476MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
5579c7f3 1477{
94a6b54f
PB
1478 RAMBlock *block;
1479 uint8_t *host = ptr;
1480
868bb33f 1481 if (xen_enabled()) {
e41d7c69 1482 *ram_addr = xen_ram_addr_from_mapcache(ptr);
1b5ec234 1483 return qemu_get_ram_block(*ram_addr)->mr;
712c2b41
SS
1484 }
1485
23887b79
PB
1486 block = ram_list.mru_block;
1487 if (block && block->host && host - block->host < block->length) {
1488 goto found;
1489 }
1490
a3161038 1491 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
432d268c
JN
1492 /* This case append when the block is not mapped. */
1493 if (block->host == NULL) {
1494 continue;
1495 }
f471a17e 1496 if (host - block->host < block->length) {
23887b79 1497 goto found;
f471a17e 1498 }
94a6b54f 1499 }
432d268c 1500
1b5ec234 1501 return NULL;
23887b79
PB
1502
1503found:
1504 *ram_addr = block->offset + (host - block->host);
1b5ec234 1505 return block->mr;
e890261f 1506}
f471a17e 1507
a8170e5e 1508static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
0e0df1e2 1509 uint64_t val, unsigned size)
9fa3e853 1510{
52159192 1511 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
0e0df1e2 1512 tb_invalidate_phys_page_fast(ram_addr, size);
3a7d929e 1513 }
0e0df1e2
AK
1514 switch (size) {
1515 case 1:
1516 stb_p(qemu_get_ram_ptr(ram_addr), val);
1517 break;
1518 case 2:
1519 stw_p(qemu_get_ram_ptr(ram_addr), val);
1520 break;
1521 case 4:
1522 stl_p(qemu_get_ram_ptr(ram_addr), val);
1523 break;
1524 default:
1525 abort();
3a7d929e 1526 }
52159192
JQ
1527 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_MIGRATION);
1528 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_VGA);
f23db169
FB
1529 /* we remove the notdirty callback only if the code has been
1530 flushed */
a2cd8c85 1531 if (!cpu_physical_memory_is_clean(ram_addr)) {
4917cf44
AF
1532 CPUArchState *env = current_cpu->env_ptr;
1533 tlb_set_dirty(env, env->mem_io_vaddr);
1534 }
9fa3e853
FB
1535}
1536
b018ddf6
PB
1537static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
1538 unsigned size, bool is_write)
1539{
1540 return is_write;
1541}
1542
0e0df1e2 1543static const MemoryRegionOps notdirty_mem_ops = {
0e0df1e2 1544 .write = notdirty_mem_write,
b018ddf6 1545 .valid.accepts = notdirty_mem_accepts,
0e0df1e2 1546 .endianness = DEVICE_NATIVE_ENDIAN,
1ccde1cb
FB
1547};
1548
0f459d16 1549/* Generate a debug exception if a watchpoint has been hit. */
b4051334 1550static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16 1551{
4917cf44 1552 CPUArchState *env = current_cpu->env_ptr;
06d55cc1 1553 target_ulong pc, cs_base;
0f459d16 1554 target_ulong vaddr;
a1d1bb31 1555 CPUWatchpoint *wp;
06d55cc1 1556 int cpu_flags;
0f459d16 1557
06d55cc1
AL
1558 if (env->watchpoint_hit) {
1559 /* We re-entered the check after replacing the TB. Now raise
1560 * the debug interrupt so that is will trigger after the
1561 * current instruction. */
c3affe56 1562 cpu_interrupt(ENV_GET_CPU(env), CPU_INTERRUPT_DEBUG);
06d55cc1
AL
1563 return;
1564 }
2e70f6ef 1565 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
72cf2d4f 1566 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
1567 if ((vaddr == (wp->vaddr & len_mask) ||
1568 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
1569 wp->flags |= BP_WATCHPOINT_HIT;
1570 if (!env->watchpoint_hit) {
1571 env->watchpoint_hit = wp;
5a316526 1572 tb_check_watchpoint(env);
6e140f28
AL
1573 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
1574 env->exception_index = EXCP_DEBUG;
488d6577 1575 cpu_loop_exit(env);
6e140f28
AL
1576 } else {
1577 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
1578 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
488d6577 1579 cpu_resume_from_signal(env, NULL);
6e140f28 1580 }
06d55cc1 1581 }
6e140f28
AL
1582 } else {
1583 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
1584 }
1585 }
1586}
1587
6658ffb8
PB
1588/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1589 so these check for a hit then pass through to the normal out-of-line
1590 phys routines. */
a8170e5e 1591static uint64_t watch_mem_read(void *opaque, hwaddr addr,
1ec9b909 1592 unsigned size)
6658ffb8 1593{
1ec9b909
AK
1594 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
1595 switch (size) {
1596 case 1: return ldub_phys(addr);
1597 case 2: return lduw_phys(addr);
1598 case 4: return ldl_phys(addr);
1599 default: abort();
1600 }
6658ffb8
PB
1601}
1602
a8170e5e 1603static void watch_mem_write(void *opaque, hwaddr addr,
1ec9b909 1604 uint64_t val, unsigned size)
6658ffb8 1605{
1ec9b909
AK
1606 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
1607 switch (size) {
67364150
MF
1608 case 1:
1609 stb_phys(addr, val);
1610 break;
1611 case 2:
1612 stw_phys(addr, val);
1613 break;
1614 case 4:
1615 stl_phys(addr, val);
1616 break;
1ec9b909
AK
1617 default: abort();
1618 }
6658ffb8
PB
1619}
1620
1ec9b909
AK
1621static const MemoryRegionOps watch_mem_ops = {
1622 .read = watch_mem_read,
1623 .write = watch_mem_write,
1624 .endianness = DEVICE_NATIVE_ENDIAN,
6658ffb8 1625};
6658ffb8 1626
a8170e5e 1627static uint64_t subpage_read(void *opaque, hwaddr addr,
70c68e44 1628 unsigned len)
db7b5426 1629{
acc9d80b
JK
1630 subpage_t *subpage = opaque;
1631 uint8_t buf[4];
791af8c8 1632
db7b5426 1633#if defined(DEBUG_SUBPAGE)
016e9d62 1634 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 1635 subpage, len, addr);
db7b5426 1636#endif
acc9d80b
JK
1637 address_space_read(subpage->as, addr + subpage->base, buf, len);
1638 switch (len) {
1639 case 1:
1640 return ldub_p(buf);
1641 case 2:
1642 return lduw_p(buf);
1643 case 4:
1644 return ldl_p(buf);
1645 default:
1646 abort();
1647 }
db7b5426
BS
1648}
1649
a8170e5e 1650static void subpage_write(void *opaque, hwaddr addr,
70c68e44 1651 uint64_t value, unsigned len)
db7b5426 1652{
acc9d80b
JK
1653 subpage_t *subpage = opaque;
1654 uint8_t buf[4];
1655
db7b5426 1656#if defined(DEBUG_SUBPAGE)
016e9d62 1657 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
1658 " value %"PRIx64"\n",
1659 __func__, subpage, len, addr, value);
db7b5426 1660#endif
acc9d80b
JK
1661 switch (len) {
1662 case 1:
1663 stb_p(buf, value);
1664 break;
1665 case 2:
1666 stw_p(buf, value);
1667 break;
1668 case 4:
1669 stl_p(buf, value);
1670 break;
1671 default:
1672 abort();
1673 }
1674 address_space_write(subpage->as, addr + subpage->base, buf, len);
db7b5426
BS
1675}
1676
c353e4cc 1677static bool subpage_accepts(void *opaque, hwaddr addr,
016e9d62 1678 unsigned len, bool is_write)
c353e4cc 1679{
acc9d80b 1680 subpage_t *subpage = opaque;
c353e4cc 1681#if defined(DEBUG_SUBPAGE)
016e9d62 1682 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 1683 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
1684#endif
1685
acc9d80b 1686 return address_space_access_valid(subpage->as, addr + subpage->base,
016e9d62 1687 len, is_write);
c353e4cc
PB
1688}
1689
70c68e44
AK
1690static const MemoryRegionOps subpage_ops = {
1691 .read = subpage_read,
1692 .write = subpage_write,
c353e4cc 1693 .valid.accepts = subpage_accepts,
70c68e44 1694 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
1695};
1696
c227f099 1697static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 1698 uint16_t section)
db7b5426
BS
1699{
1700 int idx, eidx;
1701
1702 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
1703 return -1;
1704 idx = SUBPAGE_IDX(start);
1705 eidx = SUBPAGE_IDX(end);
1706#if defined(DEBUG_SUBPAGE)
016e9d62
AK
1707 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
1708 __func__, mmio, start, end, idx, eidx, section);
db7b5426 1709#endif
db7b5426 1710 for (; idx <= eidx; idx++) {
5312bd8b 1711 mmio->sub_section[idx] = section;
db7b5426
BS
1712 }
1713
1714 return 0;
1715}
1716
acc9d80b 1717static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
db7b5426 1718{
c227f099 1719 subpage_t *mmio;
db7b5426 1720
7267c094 1721 mmio = g_malloc0(sizeof(subpage_t));
1eec614b 1722
acc9d80b 1723 mmio->as = as;
1eec614b 1724 mmio->base = base;
2c9b15ca 1725 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
70c68e44 1726 "subpage", TARGET_PAGE_SIZE);
b3b00c78 1727 mmio->iomem.subpage = true;
db7b5426 1728#if defined(DEBUG_SUBPAGE)
016e9d62
AK
1729 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
1730 mmio, base, TARGET_PAGE_SIZE);
db7b5426 1731#endif
b41aac4f 1732 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
db7b5426
BS
1733
1734 return mmio;
1735}
1736
53cb28cb 1737static uint16_t dummy_section(PhysPageMap *map, MemoryRegion *mr)
5312bd8b
AK
1738{
1739 MemoryRegionSection section = {
1740 .mr = mr,
1741 .offset_within_address_space = 0,
1742 .offset_within_region = 0,
052e87b0 1743 .size = int128_2_64(),
5312bd8b
AK
1744 };
1745
53cb28cb 1746 return phys_section_add(map, &section);
5312bd8b
AK
1747}
1748
a8170e5e 1749MemoryRegion *iotlb_to_region(hwaddr index)
aa102231 1750{
53cb28cb
MA
1751 return address_space_memory.dispatch->map.sections[
1752 index & ~TARGET_PAGE_MASK].mr;
aa102231
AK
1753}
1754
e9179ce1
AK
1755static void io_mem_init(void)
1756{
2c9b15ca
PB
1757 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, "rom", UINT64_MAX);
1758 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
0e0df1e2 1759 "unassigned", UINT64_MAX);
2c9b15ca 1760 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
0e0df1e2 1761 "notdirty", UINT64_MAX);
2c9b15ca 1762 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1ec9b909 1763 "watch", UINT64_MAX);
e9179ce1
AK
1764}
1765
ac1970fb 1766static void mem_begin(MemoryListener *listener)
00752703
PB
1767{
1768 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
53cb28cb
MA
1769 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
1770 uint16_t n;
1771
1772 n = dummy_section(&d->map, &io_mem_unassigned);
1773 assert(n == PHYS_SECTION_UNASSIGNED);
1774 n = dummy_section(&d->map, &io_mem_notdirty);
1775 assert(n == PHYS_SECTION_NOTDIRTY);
1776 n = dummy_section(&d->map, &io_mem_rom);
1777 assert(n == PHYS_SECTION_ROM);
1778 n = dummy_section(&d->map, &io_mem_watch);
1779 assert(n == PHYS_SECTION_WATCH);
00752703 1780
9736e55b 1781 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
00752703
PB
1782 d->as = as;
1783 as->next_dispatch = d;
1784}
1785
1786static void mem_commit(MemoryListener *listener)
ac1970fb 1787{
89ae337a 1788 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
0475d94f
PB
1789 AddressSpaceDispatch *cur = as->dispatch;
1790 AddressSpaceDispatch *next = as->next_dispatch;
1791
53cb28cb 1792 phys_page_compact_all(next, next->map.nodes_nb);
b35ba30f 1793
0475d94f 1794 as->dispatch = next;
b41aac4f 1795
53cb28cb
MA
1796 if (cur) {
1797 phys_sections_free(&cur->map);
1798 g_free(cur);
1799 }
9affd6fc
PB
1800}
1801
1d71148e 1802static void tcg_commit(MemoryListener *listener)
50c1e149 1803{
182735ef 1804 CPUState *cpu;
117712c3
AK
1805
1806 /* since each CPU stores ram addresses in its TLB cache, we must
1807 reset the modified entries */
1808 /* XXX: slow ! */
bdc44640 1809 CPU_FOREACH(cpu) {
182735ef
AF
1810 CPUArchState *env = cpu->env_ptr;
1811
117712c3
AK
1812 tlb_flush(env, 1);
1813 }
50c1e149
AK
1814}
1815
93632747
AK
1816static void core_log_global_start(MemoryListener *listener)
1817{
981fdf23 1818 cpu_physical_memory_set_dirty_tracking(true);
93632747
AK
1819}
1820
1821static void core_log_global_stop(MemoryListener *listener)
1822{
981fdf23 1823 cpu_physical_memory_set_dirty_tracking(false);
93632747
AK
1824}
1825
93632747 1826static MemoryListener core_memory_listener = {
93632747
AK
1827 .log_global_start = core_log_global_start,
1828 .log_global_stop = core_log_global_stop,
ac1970fb 1829 .priority = 1,
93632747
AK
1830};
1831
1d71148e
AK
1832static MemoryListener tcg_memory_listener = {
1833 .commit = tcg_commit,
1834};
1835
ac1970fb
AK
1836void address_space_init_dispatch(AddressSpace *as)
1837{
00752703 1838 as->dispatch = NULL;
89ae337a 1839 as->dispatch_listener = (MemoryListener) {
ac1970fb 1840 .begin = mem_begin,
00752703 1841 .commit = mem_commit,
ac1970fb
AK
1842 .region_add = mem_add,
1843 .region_nop = mem_add,
1844 .priority = 0,
1845 };
89ae337a 1846 memory_listener_register(&as->dispatch_listener, as);
ac1970fb
AK
1847}
1848
83f3c251
AK
1849void address_space_destroy_dispatch(AddressSpace *as)
1850{
1851 AddressSpaceDispatch *d = as->dispatch;
1852
89ae337a 1853 memory_listener_unregister(&as->dispatch_listener);
83f3c251
AK
1854 g_free(d);
1855 as->dispatch = NULL;
1856}
1857
62152b8a
AK
1858static void memory_map_init(void)
1859{
7267c094 1860 system_memory = g_malloc(sizeof(*system_memory));
03f49957 1861
57271d63 1862 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 1863 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 1864
7267c094 1865 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
1866 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
1867 65536);
7dca8043 1868 address_space_init(&address_space_io, system_io, "I/O");
93632747 1869
f6790af6 1870 memory_listener_register(&core_memory_listener, &address_space_memory);
2641689a
LG
1871 if (tcg_enabled()) {
1872 memory_listener_register(&tcg_memory_listener, &address_space_memory);
1873 }
62152b8a
AK
1874}
1875
1876MemoryRegion *get_system_memory(void)
1877{
1878 return system_memory;
1879}
1880
309cb471
AK
1881MemoryRegion *get_system_io(void)
1882{
1883 return system_io;
1884}
1885
e2eef170
PB
1886#endif /* !defined(CONFIG_USER_ONLY) */
1887
13eb76e0
FB
1888/* physical memory access (slow version, mainly for debug) */
1889#if defined(CONFIG_USER_ONLY)
f17ec444 1890int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
a68fe89c 1891 uint8_t *buf, int len, int is_write)
13eb76e0
FB
1892{
1893 int l, flags;
1894 target_ulong page;
53a5960a 1895 void * p;
13eb76e0
FB
1896
1897 while (len > 0) {
1898 page = addr & TARGET_PAGE_MASK;
1899 l = (page + TARGET_PAGE_SIZE) - addr;
1900 if (l > len)
1901 l = len;
1902 flags = page_get_flags(page);
1903 if (!(flags & PAGE_VALID))
a68fe89c 1904 return -1;
13eb76e0
FB
1905 if (is_write) {
1906 if (!(flags & PAGE_WRITE))
a68fe89c 1907 return -1;
579a97f7 1908 /* XXX: this code should not depend on lock_user */
72fb7daa 1909 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 1910 return -1;
72fb7daa
AJ
1911 memcpy(p, buf, l);
1912 unlock_user(p, addr, l);
13eb76e0
FB
1913 } else {
1914 if (!(flags & PAGE_READ))
a68fe89c 1915 return -1;
579a97f7 1916 /* XXX: this code should not depend on lock_user */
72fb7daa 1917 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 1918 return -1;
72fb7daa 1919 memcpy(buf, p, l);
5b257578 1920 unlock_user(p, addr, 0);
13eb76e0
FB
1921 }
1922 len -= l;
1923 buf += l;
1924 addr += l;
1925 }
a68fe89c 1926 return 0;
13eb76e0 1927}
8df1cd07 1928
13eb76e0 1929#else
51d7a9eb 1930
a8170e5e
AK
1931static void invalidate_and_set_dirty(hwaddr addr,
1932 hwaddr length)
51d7a9eb 1933{
a2cd8c85 1934 if (cpu_physical_memory_is_clean(addr)) {
51d7a9eb
AP
1935 /* invalidate code */
1936 tb_invalidate_phys_page_range(addr, addr + length, 0);
1937 /* set dirty bit */
52159192
JQ
1938 cpu_physical_memory_set_dirty_flag(addr, DIRTY_MEMORY_VGA);
1939 cpu_physical_memory_set_dirty_flag(addr, DIRTY_MEMORY_MIGRATION);
51d7a9eb 1940 }
e226939d 1941 xen_modified_memory(addr, length);
51d7a9eb
AP
1942}
1943
23326164 1944static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 1945{
e1622f4b 1946 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
1947
1948 /* Regions are assumed to support 1-4 byte accesses unless
1949 otherwise specified. */
23326164
RH
1950 if (access_size_max == 0) {
1951 access_size_max = 4;
1952 }
1953
1954 /* Bound the maximum access by the alignment of the address. */
1955 if (!mr->ops->impl.unaligned) {
1956 unsigned align_size_max = addr & -addr;
1957 if (align_size_max != 0 && align_size_max < access_size_max) {
1958 access_size_max = align_size_max;
1959 }
82f2563f 1960 }
23326164
RH
1961
1962 /* Don't attempt accesses larger than the maximum. */
1963 if (l > access_size_max) {
1964 l = access_size_max;
82f2563f 1965 }
098178f2
PB
1966 if (l & (l - 1)) {
1967 l = 1 << (qemu_fls(l) - 1);
1968 }
23326164
RH
1969
1970 return l;
82f2563f
PB
1971}
1972
fd8aaa76 1973bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
ac1970fb 1974 int len, bool is_write)
13eb76e0 1975{
149f54b5 1976 hwaddr l;
13eb76e0 1977 uint8_t *ptr;
791af8c8 1978 uint64_t val;
149f54b5 1979 hwaddr addr1;
5c8a00ce 1980 MemoryRegion *mr;
fd8aaa76 1981 bool error = false;
3b46e624 1982
13eb76e0 1983 while (len > 0) {
149f54b5 1984 l = len;
5c8a00ce 1985 mr = address_space_translate(as, addr, &addr1, &l, is_write);
3b46e624 1986
13eb76e0 1987 if (is_write) {
5c8a00ce
PB
1988 if (!memory_access_is_direct(mr, is_write)) {
1989 l = memory_access_size(mr, l, addr1);
4917cf44 1990 /* XXX: could force current_cpu to NULL to avoid
6a00d601 1991 potential bugs */
23326164
RH
1992 switch (l) {
1993 case 8:
1994 /* 64 bit write access */
1995 val = ldq_p(buf);
1996 error |= io_mem_write(mr, addr1, val, 8);
1997 break;
1998 case 4:
1c213d19 1999 /* 32 bit write access */
c27004ec 2000 val = ldl_p(buf);
5c8a00ce 2001 error |= io_mem_write(mr, addr1, val, 4);
23326164
RH
2002 break;
2003 case 2:
1c213d19 2004 /* 16 bit write access */
c27004ec 2005 val = lduw_p(buf);
5c8a00ce 2006 error |= io_mem_write(mr, addr1, val, 2);
23326164
RH
2007 break;
2008 case 1:
1c213d19 2009 /* 8 bit write access */
c27004ec 2010 val = ldub_p(buf);
5c8a00ce 2011 error |= io_mem_write(mr, addr1, val, 1);
23326164
RH
2012 break;
2013 default:
2014 abort();
13eb76e0 2015 }
2bbfa05d 2016 } else {
5c8a00ce 2017 addr1 += memory_region_get_ram_addr(mr);
13eb76e0 2018 /* RAM case */
5579c7f3 2019 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 2020 memcpy(ptr, buf, l);
51d7a9eb 2021 invalidate_and_set_dirty(addr1, l);
13eb76e0
FB
2022 }
2023 } else {
5c8a00ce 2024 if (!memory_access_is_direct(mr, is_write)) {
13eb76e0 2025 /* I/O case */
5c8a00ce 2026 l = memory_access_size(mr, l, addr1);
23326164
RH
2027 switch (l) {
2028 case 8:
2029 /* 64 bit read access */
2030 error |= io_mem_read(mr, addr1, &val, 8);
2031 stq_p(buf, val);
2032 break;
2033 case 4:
13eb76e0 2034 /* 32 bit read access */
5c8a00ce 2035 error |= io_mem_read(mr, addr1, &val, 4);
c27004ec 2036 stl_p(buf, val);
23326164
RH
2037 break;
2038 case 2:
13eb76e0 2039 /* 16 bit read access */
5c8a00ce 2040 error |= io_mem_read(mr, addr1, &val, 2);
c27004ec 2041 stw_p(buf, val);
23326164
RH
2042 break;
2043 case 1:
1c213d19 2044 /* 8 bit read access */
5c8a00ce 2045 error |= io_mem_read(mr, addr1, &val, 1);
c27004ec 2046 stb_p(buf, val);
23326164
RH
2047 break;
2048 default:
2049 abort();
13eb76e0
FB
2050 }
2051 } else {
2052 /* RAM case */
5c8a00ce 2053 ptr = qemu_get_ram_ptr(mr->ram_addr + addr1);
f3705d53 2054 memcpy(buf, ptr, l);
13eb76e0
FB
2055 }
2056 }
2057 len -= l;
2058 buf += l;
2059 addr += l;
2060 }
fd8aaa76
PB
2061
2062 return error;
13eb76e0 2063}
8df1cd07 2064
fd8aaa76 2065bool address_space_write(AddressSpace *as, hwaddr addr,
ac1970fb
AK
2066 const uint8_t *buf, int len)
2067{
fd8aaa76 2068 return address_space_rw(as, addr, (uint8_t *)buf, len, true);
ac1970fb
AK
2069}
2070
fd8aaa76 2071bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len)
ac1970fb 2072{
fd8aaa76 2073 return address_space_rw(as, addr, buf, len, false);
ac1970fb
AK
2074}
2075
2076
a8170e5e 2077void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
ac1970fb
AK
2078 int len, int is_write)
2079{
fd8aaa76 2080 address_space_rw(&address_space_memory, addr, buf, len, is_write);
ac1970fb
AK
2081}
2082
582b55a9
AG
2083enum write_rom_type {
2084 WRITE_DATA,
2085 FLUSH_CACHE,
2086};
2087
2088static inline void cpu_physical_memory_write_rom_internal(
2089 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
d0ecd2aa 2090{
149f54b5 2091 hwaddr l;
d0ecd2aa 2092 uint8_t *ptr;
149f54b5 2093 hwaddr addr1;
5c8a00ce 2094 MemoryRegion *mr;
3b46e624 2095
d0ecd2aa 2096 while (len > 0) {
149f54b5 2097 l = len;
5c8a00ce
PB
2098 mr = address_space_translate(&address_space_memory,
2099 addr, &addr1, &l, true);
3b46e624 2100
5c8a00ce
PB
2101 if (!(memory_region_is_ram(mr) ||
2102 memory_region_is_romd(mr))) {
d0ecd2aa
FB
2103 /* do nothing */
2104 } else {
5c8a00ce 2105 addr1 += memory_region_get_ram_addr(mr);
d0ecd2aa 2106 /* ROM/RAM case */
5579c7f3 2107 ptr = qemu_get_ram_ptr(addr1);
582b55a9
AG
2108 switch (type) {
2109 case WRITE_DATA:
2110 memcpy(ptr, buf, l);
2111 invalidate_and_set_dirty(addr1, l);
2112 break;
2113 case FLUSH_CACHE:
2114 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
2115 break;
2116 }
d0ecd2aa
FB
2117 }
2118 len -= l;
2119 buf += l;
2120 addr += l;
2121 }
2122}
2123
582b55a9
AG
2124/* used for ROM loading : can write in RAM and ROM */
2125void cpu_physical_memory_write_rom(hwaddr addr,
2126 const uint8_t *buf, int len)
2127{
2128 cpu_physical_memory_write_rom_internal(addr, buf, len, WRITE_DATA);
2129}
2130
2131void cpu_flush_icache_range(hwaddr start, int len)
2132{
2133 /*
2134 * This function should do the same thing as an icache flush that was
2135 * triggered from within the guest. For TCG we are always cache coherent,
2136 * so there is no need to flush anything. For KVM / Xen we need to flush
2137 * the host's instruction cache at least.
2138 */
2139 if (tcg_enabled()) {
2140 return;
2141 }
2142
2143 cpu_physical_memory_write_rom_internal(start, NULL, len, FLUSH_CACHE);
2144}
2145
6d16c2f8 2146typedef struct {
d3e71559 2147 MemoryRegion *mr;
6d16c2f8 2148 void *buffer;
a8170e5e
AK
2149 hwaddr addr;
2150 hwaddr len;
6d16c2f8
AL
2151} BounceBuffer;
2152
2153static BounceBuffer bounce;
2154
ba223c29
AL
2155typedef struct MapClient {
2156 void *opaque;
2157 void (*callback)(void *opaque);
72cf2d4f 2158 QLIST_ENTRY(MapClient) link;
ba223c29
AL
2159} MapClient;
2160
72cf2d4f
BS
2161static QLIST_HEAD(map_client_list, MapClient) map_client_list
2162 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29
AL
2163
2164void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
2165{
7267c094 2166 MapClient *client = g_malloc(sizeof(*client));
ba223c29
AL
2167
2168 client->opaque = opaque;
2169 client->callback = callback;
72cf2d4f 2170 QLIST_INSERT_HEAD(&map_client_list, client, link);
ba223c29
AL
2171 return client;
2172}
2173
8b9c99d9 2174static void cpu_unregister_map_client(void *_client)
ba223c29
AL
2175{
2176 MapClient *client = (MapClient *)_client;
2177
72cf2d4f 2178 QLIST_REMOVE(client, link);
7267c094 2179 g_free(client);
ba223c29
AL
2180}
2181
2182static void cpu_notify_map_clients(void)
2183{
2184 MapClient *client;
2185
72cf2d4f
BS
2186 while (!QLIST_EMPTY(&map_client_list)) {
2187 client = QLIST_FIRST(&map_client_list);
ba223c29 2188 client->callback(client->opaque);
34d5e948 2189 cpu_unregister_map_client(client);
ba223c29
AL
2190 }
2191}
2192
51644ab7
PB
2193bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2194{
5c8a00ce 2195 MemoryRegion *mr;
51644ab7
PB
2196 hwaddr l, xlat;
2197
2198 while (len > 0) {
2199 l = len;
5c8a00ce
PB
2200 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2201 if (!memory_access_is_direct(mr, is_write)) {
2202 l = memory_access_size(mr, l, addr);
2203 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
51644ab7
PB
2204 return false;
2205 }
2206 }
2207
2208 len -= l;
2209 addr += l;
2210 }
2211 return true;
2212}
2213
6d16c2f8
AL
2214/* Map a physical memory region into a host virtual address.
2215 * May map a subset of the requested range, given by and returned in *plen.
2216 * May return NULL if resources needed to perform the mapping are exhausted.
2217 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
2218 * Use cpu_register_map_client() to know when retrying the map operation is
2219 * likely to succeed.
6d16c2f8 2220 */
ac1970fb 2221void *address_space_map(AddressSpace *as,
a8170e5e
AK
2222 hwaddr addr,
2223 hwaddr *plen,
ac1970fb 2224 bool is_write)
6d16c2f8 2225{
a8170e5e 2226 hwaddr len = *plen;
e3127ae0
PB
2227 hwaddr done = 0;
2228 hwaddr l, xlat, base;
2229 MemoryRegion *mr, *this_mr;
2230 ram_addr_t raddr;
6d16c2f8 2231
e3127ae0
PB
2232 if (len == 0) {
2233 return NULL;
2234 }
38bee5dc 2235
e3127ae0
PB
2236 l = len;
2237 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2238 if (!memory_access_is_direct(mr, is_write)) {
2239 if (bounce.buffer) {
2240 return NULL;
6d16c2f8 2241 }
e85d9db5
KW
2242 /* Avoid unbounded allocations */
2243 l = MIN(l, TARGET_PAGE_SIZE);
2244 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
2245 bounce.addr = addr;
2246 bounce.len = l;
d3e71559
PB
2247
2248 memory_region_ref(mr);
2249 bounce.mr = mr;
e3127ae0
PB
2250 if (!is_write) {
2251 address_space_read(as, addr, bounce.buffer, l);
8ab934f9 2252 }
6d16c2f8 2253
e3127ae0
PB
2254 *plen = l;
2255 return bounce.buffer;
2256 }
2257
2258 base = xlat;
2259 raddr = memory_region_get_ram_addr(mr);
2260
2261 for (;;) {
6d16c2f8
AL
2262 len -= l;
2263 addr += l;
e3127ae0
PB
2264 done += l;
2265 if (len == 0) {
2266 break;
2267 }
2268
2269 l = len;
2270 this_mr = address_space_translate(as, addr, &xlat, &l, is_write);
2271 if (this_mr != mr || xlat != base + done) {
2272 break;
2273 }
6d16c2f8 2274 }
e3127ae0 2275
d3e71559 2276 memory_region_ref(mr);
e3127ae0
PB
2277 *plen = done;
2278 return qemu_ram_ptr_length(raddr + base, plen);
6d16c2f8
AL
2279}
2280
ac1970fb 2281/* Unmaps a memory region previously mapped by address_space_map().
6d16c2f8
AL
2282 * Will also mark the memory as dirty if is_write == 1. access_len gives
2283 * the amount of memory that was actually read or written by the caller.
2284 */
a8170e5e
AK
2285void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2286 int is_write, hwaddr access_len)
6d16c2f8
AL
2287{
2288 if (buffer != bounce.buffer) {
d3e71559
PB
2289 MemoryRegion *mr;
2290 ram_addr_t addr1;
2291
2292 mr = qemu_ram_addr_from_host(buffer, &addr1);
2293 assert(mr != NULL);
6d16c2f8 2294 if (is_write) {
6d16c2f8
AL
2295 while (access_len) {
2296 unsigned l;
2297 l = TARGET_PAGE_SIZE;
2298 if (l > access_len)
2299 l = access_len;
51d7a9eb 2300 invalidate_and_set_dirty(addr1, l);
6d16c2f8
AL
2301 addr1 += l;
2302 access_len -= l;
2303 }
2304 }
868bb33f 2305 if (xen_enabled()) {
e41d7c69 2306 xen_invalidate_map_cache_entry(buffer);
050a0ddf 2307 }
d3e71559 2308 memory_region_unref(mr);
6d16c2f8
AL
2309 return;
2310 }
2311 if (is_write) {
ac1970fb 2312 address_space_write(as, bounce.addr, bounce.buffer, access_len);
6d16c2f8 2313 }
f8a83245 2314 qemu_vfree(bounce.buffer);
6d16c2f8 2315 bounce.buffer = NULL;
d3e71559 2316 memory_region_unref(bounce.mr);
ba223c29 2317 cpu_notify_map_clients();
6d16c2f8 2318}
d0ecd2aa 2319
a8170e5e
AK
2320void *cpu_physical_memory_map(hwaddr addr,
2321 hwaddr *plen,
ac1970fb
AK
2322 int is_write)
2323{
2324 return address_space_map(&address_space_memory, addr, plen, is_write);
2325}
2326
a8170e5e
AK
2327void cpu_physical_memory_unmap(void *buffer, hwaddr len,
2328 int is_write, hwaddr access_len)
ac1970fb
AK
2329{
2330 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
2331}
2332
8df1cd07 2333/* warning: addr must be aligned */
a8170e5e 2334static inline uint32_t ldl_phys_internal(hwaddr addr,
1e78bcc1 2335 enum device_endian endian)
8df1cd07 2336{
8df1cd07 2337 uint8_t *ptr;
791af8c8 2338 uint64_t val;
5c8a00ce 2339 MemoryRegion *mr;
149f54b5
PB
2340 hwaddr l = 4;
2341 hwaddr addr1;
8df1cd07 2342
5c8a00ce
PB
2343 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2344 false);
2345 if (l < 4 || !memory_access_is_direct(mr, false)) {
8df1cd07 2346 /* I/O case */
5c8a00ce 2347 io_mem_read(mr, addr1, &val, 4);
1e78bcc1
AG
2348#if defined(TARGET_WORDS_BIGENDIAN)
2349 if (endian == DEVICE_LITTLE_ENDIAN) {
2350 val = bswap32(val);
2351 }
2352#else
2353 if (endian == DEVICE_BIG_ENDIAN) {
2354 val = bswap32(val);
2355 }
2356#endif
8df1cd07
FB
2357 } else {
2358 /* RAM case */
5c8a00ce 2359 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
06ef3525 2360 & TARGET_PAGE_MASK)
149f54b5 2361 + addr1);
1e78bcc1
AG
2362 switch (endian) {
2363 case DEVICE_LITTLE_ENDIAN:
2364 val = ldl_le_p(ptr);
2365 break;
2366 case DEVICE_BIG_ENDIAN:
2367 val = ldl_be_p(ptr);
2368 break;
2369 default:
2370 val = ldl_p(ptr);
2371 break;
2372 }
8df1cd07
FB
2373 }
2374 return val;
2375}
2376
a8170e5e 2377uint32_t ldl_phys(hwaddr addr)
1e78bcc1
AG
2378{
2379 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2380}
2381
a8170e5e 2382uint32_t ldl_le_phys(hwaddr addr)
1e78bcc1
AG
2383{
2384 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2385}
2386
a8170e5e 2387uint32_t ldl_be_phys(hwaddr addr)
1e78bcc1
AG
2388{
2389 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
2390}
2391
84b7b8e7 2392/* warning: addr must be aligned */
a8170e5e 2393static inline uint64_t ldq_phys_internal(hwaddr addr,
1e78bcc1 2394 enum device_endian endian)
84b7b8e7 2395{
84b7b8e7
FB
2396 uint8_t *ptr;
2397 uint64_t val;
5c8a00ce 2398 MemoryRegion *mr;
149f54b5
PB
2399 hwaddr l = 8;
2400 hwaddr addr1;
84b7b8e7 2401
5c8a00ce
PB
2402 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2403 false);
2404 if (l < 8 || !memory_access_is_direct(mr, false)) {
84b7b8e7 2405 /* I/O case */
5c8a00ce 2406 io_mem_read(mr, addr1, &val, 8);
968a5627
PB
2407#if defined(TARGET_WORDS_BIGENDIAN)
2408 if (endian == DEVICE_LITTLE_ENDIAN) {
2409 val = bswap64(val);
2410 }
2411#else
2412 if (endian == DEVICE_BIG_ENDIAN) {
2413 val = bswap64(val);
2414 }
84b7b8e7
FB
2415#endif
2416 } else {
2417 /* RAM case */
5c8a00ce 2418 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
06ef3525 2419 & TARGET_PAGE_MASK)
149f54b5 2420 + addr1);
1e78bcc1
AG
2421 switch (endian) {
2422 case DEVICE_LITTLE_ENDIAN:
2423 val = ldq_le_p(ptr);
2424 break;
2425 case DEVICE_BIG_ENDIAN:
2426 val = ldq_be_p(ptr);
2427 break;
2428 default:
2429 val = ldq_p(ptr);
2430 break;
2431 }
84b7b8e7
FB
2432 }
2433 return val;
2434}
2435
a8170e5e 2436uint64_t ldq_phys(hwaddr addr)
1e78bcc1
AG
2437{
2438 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2439}
2440
a8170e5e 2441uint64_t ldq_le_phys(hwaddr addr)
1e78bcc1
AG
2442{
2443 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2444}
2445
a8170e5e 2446uint64_t ldq_be_phys(hwaddr addr)
1e78bcc1
AG
2447{
2448 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
2449}
2450
aab33094 2451/* XXX: optimize */
a8170e5e 2452uint32_t ldub_phys(hwaddr addr)
aab33094
FB
2453{
2454 uint8_t val;
2455 cpu_physical_memory_read(addr, &val, 1);
2456 return val;
2457}
2458
733f0b02 2459/* warning: addr must be aligned */
a8170e5e 2460static inline uint32_t lduw_phys_internal(hwaddr addr,
1e78bcc1 2461 enum device_endian endian)
aab33094 2462{
733f0b02
MT
2463 uint8_t *ptr;
2464 uint64_t val;
5c8a00ce 2465 MemoryRegion *mr;
149f54b5
PB
2466 hwaddr l = 2;
2467 hwaddr addr1;
733f0b02 2468
5c8a00ce
PB
2469 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2470 false);
2471 if (l < 2 || !memory_access_is_direct(mr, false)) {
733f0b02 2472 /* I/O case */
5c8a00ce 2473 io_mem_read(mr, addr1, &val, 2);
1e78bcc1
AG
2474#if defined(TARGET_WORDS_BIGENDIAN)
2475 if (endian == DEVICE_LITTLE_ENDIAN) {
2476 val = bswap16(val);
2477 }
2478#else
2479 if (endian == DEVICE_BIG_ENDIAN) {
2480 val = bswap16(val);
2481 }
2482#endif
733f0b02
MT
2483 } else {
2484 /* RAM case */
5c8a00ce 2485 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
06ef3525 2486 & TARGET_PAGE_MASK)
149f54b5 2487 + addr1);
1e78bcc1
AG
2488 switch (endian) {
2489 case DEVICE_LITTLE_ENDIAN:
2490 val = lduw_le_p(ptr);
2491 break;
2492 case DEVICE_BIG_ENDIAN:
2493 val = lduw_be_p(ptr);
2494 break;
2495 default:
2496 val = lduw_p(ptr);
2497 break;
2498 }
733f0b02
MT
2499 }
2500 return val;
aab33094
FB
2501}
2502
a8170e5e 2503uint32_t lduw_phys(hwaddr addr)
1e78bcc1
AG
2504{
2505 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2506}
2507
a8170e5e 2508uint32_t lduw_le_phys(hwaddr addr)
1e78bcc1
AG
2509{
2510 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2511}
2512
a8170e5e 2513uint32_t lduw_be_phys(hwaddr addr)
1e78bcc1
AG
2514{
2515 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
2516}
2517
8df1cd07
FB
2518/* warning: addr must be aligned. The ram page is not masked as dirty
2519 and the code inside is not invalidated. It is useful if the dirty
2520 bits are used to track modified PTEs */
a8170e5e 2521void stl_phys_notdirty(hwaddr addr, uint32_t val)
8df1cd07 2522{
8df1cd07 2523 uint8_t *ptr;
5c8a00ce 2524 MemoryRegion *mr;
149f54b5
PB
2525 hwaddr l = 4;
2526 hwaddr addr1;
8df1cd07 2527
5c8a00ce
PB
2528 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2529 true);
2530 if (l < 4 || !memory_access_is_direct(mr, true)) {
2531 io_mem_write(mr, addr1, val, 4);
8df1cd07 2532 } else {
5c8a00ce 2533 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
5579c7f3 2534 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 2535 stl_p(ptr, val);
74576198
AL
2536
2537 if (unlikely(in_migration)) {
a2cd8c85 2538 if (cpu_physical_memory_is_clean(addr1)) {
74576198
AL
2539 /* invalidate code */
2540 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2541 /* set dirty bit */
52159192
JQ
2542 cpu_physical_memory_set_dirty_flag(addr1,
2543 DIRTY_MEMORY_MIGRATION);
2544 cpu_physical_memory_set_dirty_flag(addr1, DIRTY_MEMORY_VGA);
74576198
AL
2545 }
2546 }
8df1cd07
FB
2547 }
2548}
2549
2550/* warning: addr must be aligned */
a8170e5e 2551static inline void stl_phys_internal(hwaddr addr, uint32_t val,
1e78bcc1 2552 enum device_endian endian)
8df1cd07 2553{
8df1cd07 2554 uint8_t *ptr;
5c8a00ce 2555 MemoryRegion *mr;
149f54b5
PB
2556 hwaddr l = 4;
2557 hwaddr addr1;
8df1cd07 2558
5c8a00ce
PB
2559 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2560 true);
2561 if (l < 4 || !memory_access_is_direct(mr, true)) {
1e78bcc1
AG
2562#if defined(TARGET_WORDS_BIGENDIAN)
2563 if (endian == DEVICE_LITTLE_ENDIAN) {
2564 val = bswap32(val);
2565 }
2566#else
2567 if (endian == DEVICE_BIG_ENDIAN) {
2568 val = bswap32(val);
2569 }
2570#endif
5c8a00ce 2571 io_mem_write(mr, addr1, val, 4);
8df1cd07 2572 } else {
8df1cd07 2573 /* RAM case */
5c8a00ce 2574 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
5579c7f3 2575 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
2576 switch (endian) {
2577 case DEVICE_LITTLE_ENDIAN:
2578 stl_le_p(ptr, val);
2579 break;
2580 case DEVICE_BIG_ENDIAN:
2581 stl_be_p(ptr, val);
2582 break;
2583 default:
2584 stl_p(ptr, val);
2585 break;
2586 }
51d7a9eb 2587 invalidate_and_set_dirty(addr1, 4);
8df1cd07
FB
2588 }
2589}
2590
a8170e5e 2591void stl_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2592{
2593 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2594}
2595
a8170e5e 2596void stl_le_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2597{
2598 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2599}
2600
a8170e5e 2601void stl_be_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2602{
2603 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2604}
2605
aab33094 2606/* XXX: optimize */
a8170e5e 2607void stb_phys(hwaddr addr, uint32_t val)
aab33094
FB
2608{
2609 uint8_t v = val;
2610 cpu_physical_memory_write(addr, &v, 1);
2611}
2612
733f0b02 2613/* warning: addr must be aligned */
a8170e5e 2614static inline void stw_phys_internal(hwaddr addr, uint32_t val,
1e78bcc1 2615 enum device_endian endian)
aab33094 2616{
733f0b02 2617 uint8_t *ptr;
5c8a00ce 2618 MemoryRegion *mr;
149f54b5
PB
2619 hwaddr l = 2;
2620 hwaddr addr1;
733f0b02 2621
5c8a00ce
PB
2622 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2623 true);
2624 if (l < 2 || !memory_access_is_direct(mr, true)) {
1e78bcc1
AG
2625#if defined(TARGET_WORDS_BIGENDIAN)
2626 if (endian == DEVICE_LITTLE_ENDIAN) {
2627 val = bswap16(val);
2628 }
2629#else
2630 if (endian == DEVICE_BIG_ENDIAN) {
2631 val = bswap16(val);
2632 }
2633#endif
5c8a00ce 2634 io_mem_write(mr, addr1, val, 2);
733f0b02 2635 } else {
733f0b02 2636 /* RAM case */
5c8a00ce 2637 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
733f0b02 2638 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
2639 switch (endian) {
2640 case DEVICE_LITTLE_ENDIAN:
2641 stw_le_p(ptr, val);
2642 break;
2643 case DEVICE_BIG_ENDIAN:
2644 stw_be_p(ptr, val);
2645 break;
2646 default:
2647 stw_p(ptr, val);
2648 break;
2649 }
51d7a9eb 2650 invalidate_and_set_dirty(addr1, 2);
733f0b02 2651 }
aab33094
FB
2652}
2653
a8170e5e 2654void stw_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2655{
2656 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2657}
2658
a8170e5e 2659void stw_le_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2660{
2661 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2662}
2663
a8170e5e 2664void stw_be_phys(hwaddr addr, uint32_t val)
1e78bcc1
AG
2665{
2666 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2667}
2668
aab33094 2669/* XXX: optimize */
a8170e5e 2670void stq_phys(hwaddr addr, uint64_t val)
aab33094
FB
2671{
2672 val = tswap64(val);
71d2b725 2673 cpu_physical_memory_write(addr, &val, 8);
aab33094
FB
2674}
2675
a8170e5e 2676void stq_le_phys(hwaddr addr, uint64_t val)
1e78bcc1
AG
2677{
2678 val = cpu_to_le64(val);
2679 cpu_physical_memory_write(addr, &val, 8);
2680}
2681
a8170e5e 2682void stq_be_phys(hwaddr addr, uint64_t val)
1e78bcc1
AG
2683{
2684 val = cpu_to_be64(val);
2685 cpu_physical_memory_write(addr, &val, 8);
2686}
2687
5e2972fd 2688/* virtual memory access for debug (includes writing to ROM) */
f17ec444 2689int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
b448f2f3 2690 uint8_t *buf, int len, int is_write)
13eb76e0
FB
2691{
2692 int l;
a8170e5e 2693 hwaddr phys_addr;
9b3c35e0 2694 target_ulong page;
13eb76e0
FB
2695
2696 while (len > 0) {
2697 page = addr & TARGET_PAGE_MASK;
f17ec444 2698 phys_addr = cpu_get_phys_page_debug(cpu, page);
13eb76e0
FB
2699 /* if no physical page mapped, return an error */
2700 if (phys_addr == -1)
2701 return -1;
2702 l = (page + TARGET_PAGE_SIZE) - addr;
2703 if (l > len)
2704 l = len;
5e2972fd 2705 phys_addr += (addr & ~TARGET_PAGE_MASK);
5e2972fd
AL
2706 if (is_write)
2707 cpu_physical_memory_write_rom(phys_addr, buf, l);
2708 else
5e2972fd 2709 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
2710 len -= l;
2711 buf += l;
2712 addr += l;
2713 }
2714 return 0;
2715}
a68fe89c 2716#endif
13eb76e0 2717
8e4a424b
BS
2718#if !defined(CONFIG_USER_ONLY)
2719
2720/*
2721 * A helper function for the _utterly broken_ virtio device model to find out if
2722 * it's running on a big endian machine. Don't do this at home kids!
2723 */
2724bool virtio_is_big_endian(void);
2725bool virtio_is_big_endian(void)
2726{
2727#if defined(TARGET_WORDS_BIGENDIAN)
2728 return true;
2729#else
2730 return false;
2731#endif
2732}
2733
2734#endif
2735
76f35538 2736#ifndef CONFIG_USER_ONLY
a8170e5e 2737bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 2738{
5c8a00ce 2739 MemoryRegion*mr;
149f54b5 2740 hwaddr l = 1;
76f35538 2741
5c8a00ce
PB
2742 mr = address_space_translate(&address_space_memory,
2743 phys_addr, &phys_addr, &l, false);
76f35538 2744
5c8a00ce
PB
2745 return !(memory_region_is_ram(mr) ||
2746 memory_region_is_romd(mr));
76f35538 2747}
bd2fa51f
MH
2748
2749void qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
2750{
2751 RAMBlock *block;
2752
2753 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
2754 func(block->host, block->offset, block->length, opaque);
2755 }
2756}
ec3f8c99 2757#endif