]> git.proxmox.com Git - qemu.git/blame - exec.c
Fix vga_screen_dump_blank() PPM generation
[qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
fad6cb1a 18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
54936004 19 */
67b915a5 20#include "config.h"
d5a8f07c
FB
21#ifdef _WIN32
22#include <windows.h>
23#else
a98d49b1 24#include <sys/types.h>
d5a8f07c
FB
25#include <sys/mman.h>
26#endif
54936004
FB
27#include <stdlib.h>
28#include <stdio.h>
29#include <stdarg.h>
30#include <string.h>
31#include <errno.h>
32#include <unistd.h>
33#include <inttypes.h>
34
6180a181
FB
35#include "cpu.h"
36#include "exec-all.h"
ca10f867 37#include "qemu-common.h"
b67d9a52 38#include "tcg.h"
b3c7724c 39#include "hw/hw.h"
74576198 40#include "osdep.h"
7ba1e619 41#include "kvm.h"
53a5960a
PB
42#if defined(CONFIG_USER_ONLY)
43#include <qemu.h>
44#endif
54936004 45
fd6ce8f6 46//#define DEBUG_TB_INVALIDATE
66e85a21 47//#define DEBUG_FLUSH
9fa3e853 48//#define DEBUG_TLB
67d3b957 49//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
50
51/* make various TB consistency checks */
5fafdf24
TS
52//#define DEBUG_TB_CHECK
53//#define DEBUG_TLB_CHECK
fd6ce8f6 54
1196be37 55//#define DEBUG_IOPORT
db7b5426 56//#define DEBUG_SUBPAGE
1196be37 57
99773bd4
PB
58#if !defined(CONFIG_USER_ONLY)
59/* TB consistency checks only implemented for usermode emulation. */
60#undef DEBUG_TB_CHECK
61#endif
62
9fa3e853
FB
63#define SMC_BITMAP_USE_THRESHOLD 10
64
108c49b8
FB
65#if defined(TARGET_SPARC64)
66#define TARGET_PHYS_ADDR_SPACE_BITS 41
5dcb6b91
BS
67#elif defined(TARGET_SPARC)
68#define TARGET_PHYS_ADDR_SPACE_BITS 36
bedb69ea
JM
69#elif defined(TARGET_ALPHA)
70#define TARGET_PHYS_ADDR_SPACE_BITS 42
71#define TARGET_VIRT_ADDR_SPACE_BITS 42
108c49b8
FB
72#elif defined(TARGET_PPC64)
73#define TARGET_PHYS_ADDR_SPACE_BITS 42
640f42e4 74#elif defined(TARGET_X86_64) && !defined(CONFIG_KQEMU)
00f82b8a 75#define TARGET_PHYS_ADDR_SPACE_BITS 42
640f42e4 76#elif defined(TARGET_I386) && !defined(CONFIG_KQEMU)
00f82b8a 77#define TARGET_PHYS_ADDR_SPACE_BITS 36
108c49b8
FB
78#else
79/* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
80#define TARGET_PHYS_ADDR_SPACE_BITS 32
81#endif
82
bdaf78e0 83static TranslationBlock *tbs;
26a5f13b 84int code_gen_max_blocks;
9fa3e853 85TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 86static int nb_tbs;
eb51d102
FB
87/* any access to the tbs or the page table must use this lock */
88spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 89
141ac468
BS
90#if defined(__arm__) || defined(__sparc_v9__)
91/* The prologue must be reachable with a direct jump. ARM and Sparc64
92 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
93 section close to code segment. */
94#define code_gen_section \
95 __attribute__((__section__(".gen_code"))) \
96 __attribute__((aligned (32)))
97#else
98#define code_gen_section \
99 __attribute__((aligned (32)))
100#endif
101
102uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
103static uint8_t *code_gen_buffer;
104static unsigned long code_gen_buffer_size;
26a5f13b 105/* threshold to flush the translated code buffer */
bdaf78e0 106static unsigned long code_gen_buffer_max_size;
fd6ce8f6
FB
107uint8_t *code_gen_ptr;
108
e2eef170 109#if !defined(CONFIG_USER_ONLY)
9fa3e853 110int phys_ram_fd;
1ccde1cb 111uint8_t *phys_ram_dirty;
74576198 112static int in_migration;
94a6b54f
PB
113
114typedef struct RAMBlock {
115 uint8_t *host;
116 ram_addr_t offset;
117 ram_addr_t length;
118 struct RAMBlock *next;
119} RAMBlock;
120
121static RAMBlock *ram_blocks;
122/* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
ccbb4d44 123 then we can no longer assume contiguous ram offsets, and external uses
94a6b54f
PB
124 of this variable will break. */
125ram_addr_t last_ram_offset;
e2eef170 126#endif
9fa3e853 127
6a00d601
FB
128CPUState *first_cpu;
129/* current CPU in the current thread. It is only valid inside
130 cpu_exec() */
5fafdf24 131CPUState *cpu_single_env;
2e70f6ef 132/* 0 = Do not count executed instructions.
bf20dc07 133 1 = Precise instruction counting.
2e70f6ef
PB
134 2 = Adaptive rate instruction counting. */
135int use_icount = 0;
136/* Current instruction counter. While executing translated code this may
137 include some instructions that have not yet been executed. */
138int64_t qemu_icount;
6a00d601 139
54936004 140typedef struct PageDesc {
92e873b9 141 /* list of TBs intersecting this ram page */
fd6ce8f6 142 TranslationBlock *first_tb;
9fa3e853
FB
143 /* in order to optimize self modifying code, we count the number
144 of lookups we do to a given page to use a bitmap */
145 unsigned int code_write_count;
146 uint8_t *code_bitmap;
147#if defined(CONFIG_USER_ONLY)
148 unsigned long flags;
149#endif
54936004
FB
150} PageDesc;
151
92e873b9 152typedef struct PhysPageDesc {
0f459d16 153 /* offset in host memory of the page + io_index in the low bits */
00f82b8a 154 ram_addr_t phys_offset;
8da3ff18 155 ram_addr_t region_offset;
92e873b9
FB
156} PhysPageDesc;
157
54936004 158#define L2_BITS 10
bedb69ea
JM
159#if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
160/* XXX: this is a temporary hack for alpha target.
161 * In the future, this is to be replaced by a multi-level table
162 * to actually be able to handle the complete 64 bits address space.
163 */
164#define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
165#else
03875444 166#define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
bedb69ea 167#endif
54936004
FB
168
169#define L1_SIZE (1 << L1_BITS)
170#define L2_SIZE (1 << L2_BITS)
171
83fb7adf
FB
172unsigned long qemu_real_host_page_size;
173unsigned long qemu_host_page_bits;
174unsigned long qemu_host_page_size;
175unsigned long qemu_host_page_mask;
54936004 176
92e873b9 177/* XXX: for system emulation, it could just be an array */
54936004 178static PageDesc *l1_map[L1_SIZE];
bdaf78e0 179static PhysPageDesc **l1_phys_map;
54936004 180
e2eef170
PB
181#if !defined(CONFIG_USER_ONLY)
182static void io_mem_init(void);
183
33417e70 184/* io memory support */
33417e70
FB
185CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
186CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 187void *io_mem_opaque[IO_MEM_NB_ENTRIES];
511d2b14 188static char io_mem_used[IO_MEM_NB_ENTRIES];
6658ffb8
PB
189static int io_mem_watch;
190#endif
33417e70 191
34865134 192/* log support */
d9b630fd 193static const char *logfilename = "/tmp/qemu.log";
34865134
FB
194FILE *logfile;
195int loglevel;
e735b91c 196static int log_append = 0;
34865134 197
e3db7226
FB
198/* statistics */
199static int tlb_flush_count;
200static int tb_flush_count;
201static int tb_phys_invalidate_count;
202
db7b5426
BS
203#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
204typedef struct subpage_t {
205 target_phys_addr_t base;
3ee89922
BS
206 CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4];
207 CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4];
208 void *opaque[TARGET_PAGE_SIZE][2][4];
8da3ff18 209 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
db7b5426
BS
210} subpage_t;
211
7cb69cae
FB
212#ifdef _WIN32
213static void map_exec(void *addr, long size)
214{
215 DWORD old_protect;
216 VirtualProtect(addr, size,
217 PAGE_EXECUTE_READWRITE, &old_protect);
218
219}
220#else
221static void map_exec(void *addr, long size)
222{
4369415f 223 unsigned long start, end, page_size;
7cb69cae 224
4369415f 225 page_size = getpagesize();
7cb69cae 226 start = (unsigned long)addr;
4369415f 227 start &= ~(page_size - 1);
7cb69cae
FB
228
229 end = (unsigned long)addr + size;
4369415f
FB
230 end += page_size - 1;
231 end &= ~(page_size - 1);
7cb69cae
FB
232
233 mprotect((void *)start, end - start,
234 PROT_READ | PROT_WRITE | PROT_EXEC);
235}
236#endif
237
b346ff46 238static void page_init(void)
54936004 239{
83fb7adf 240 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 241 TARGET_PAGE_SIZE */
c2b48b69
AL
242#ifdef _WIN32
243 {
244 SYSTEM_INFO system_info;
245
246 GetSystemInfo(&system_info);
247 qemu_real_host_page_size = system_info.dwPageSize;
248 }
249#else
250 qemu_real_host_page_size = getpagesize();
251#endif
83fb7adf
FB
252 if (qemu_host_page_size == 0)
253 qemu_host_page_size = qemu_real_host_page_size;
254 if (qemu_host_page_size < TARGET_PAGE_SIZE)
255 qemu_host_page_size = TARGET_PAGE_SIZE;
256 qemu_host_page_bits = 0;
257 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
258 qemu_host_page_bits++;
259 qemu_host_page_mask = ~(qemu_host_page_size - 1);
108c49b8
FB
260 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
261 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
50a9569b
AZ
262
263#if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
264 {
265 long long startaddr, endaddr;
266 FILE *f;
267 int n;
268
c8a706fe 269 mmap_lock();
0776590d 270 last_brk = (unsigned long)sbrk(0);
50a9569b
AZ
271 f = fopen("/proc/self/maps", "r");
272 if (f) {
273 do {
274 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
275 if (n == 2) {
e0b8d65a
BS
276 startaddr = MIN(startaddr,
277 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
278 endaddr = MIN(endaddr,
279 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
b5fc909e 280 page_set_flags(startaddr & TARGET_PAGE_MASK,
50a9569b
AZ
281 TARGET_PAGE_ALIGN(endaddr),
282 PAGE_RESERVED);
283 }
284 } while (!feof(f));
285 fclose(f);
286 }
c8a706fe 287 mmap_unlock();
50a9569b
AZ
288 }
289#endif
54936004
FB
290}
291
434929bf 292static inline PageDesc **page_l1_map(target_ulong index)
54936004 293{
17e2377a
PB
294#if TARGET_LONG_BITS > 32
295 /* Host memory outside guest VM. For 32-bit targets we have already
296 excluded high addresses. */
d8173e0f 297 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
17e2377a
PB
298 return NULL;
299#endif
434929bf
AL
300 return &l1_map[index >> L2_BITS];
301}
302
303static inline PageDesc *page_find_alloc(target_ulong index)
304{
305 PageDesc **lp, *p;
306 lp = page_l1_map(index);
307 if (!lp)
308 return NULL;
309
54936004
FB
310 p = *lp;
311 if (!p) {
312 /* allocate if not found */
17e2377a 313#if defined(CONFIG_USER_ONLY)
17e2377a
PB
314 size_t len = sizeof(PageDesc) * L2_SIZE;
315 /* Don't use qemu_malloc because it may recurse. */
316 p = mmap(0, len, PROT_READ | PROT_WRITE,
317 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
54936004 318 *lp = p;
fb1c2cd7
AJ
319 if (h2g_valid(p)) {
320 unsigned long addr = h2g(p);
17e2377a
PB
321 page_set_flags(addr & TARGET_PAGE_MASK,
322 TARGET_PAGE_ALIGN(addr + len),
323 PAGE_RESERVED);
324 }
325#else
326 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
327 *lp = p;
328#endif
54936004
FB
329 }
330 return p + (index & (L2_SIZE - 1));
331}
332
00f82b8a 333static inline PageDesc *page_find(target_ulong index)
54936004 334{
434929bf
AL
335 PageDesc **lp, *p;
336 lp = page_l1_map(index);
337 if (!lp)
338 return NULL;
54936004 339
434929bf 340 p = *lp;
54936004
FB
341 if (!p)
342 return 0;
fd6ce8f6
FB
343 return p + (index & (L2_SIZE - 1));
344}
345
108c49b8 346static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 347{
108c49b8 348 void **lp, **p;
e3f4e2a4 349 PhysPageDesc *pd;
92e873b9 350
108c49b8
FB
351 p = (void **)l1_phys_map;
352#if TARGET_PHYS_ADDR_SPACE_BITS > 32
353
354#if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
355#error unsupported TARGET_PHYS_ADDR_SPACE_BITS
356#endif
357 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
92e873b9
FB
358 p = *lp;
359 if (!p) {
360 /* allocate if not found */
108c49b8
FB
361 if (!alloc)
362 return NULL;
363 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
364 memset(p, 0, sizeof(void *) * L1_SIZE);
365 *lp = p;
366 }
367#endif
368 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
e3f4e2a4
PB
369 pd = *lp;
370 if (!pd) {
371 int i;
108c49b8
FB
372 /* allocate if not found */
373 if (!alloc)
374 return NULL;
e3f4e2a4
PB
375 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
376 *lp = pd;
67c4d23c 377 for (i = 0; i < L2_SIZE; i++) {
e3f4e2a4 378 pd[i].phys_offset = IO_MEM_UNASSIGNED;
67c4d23c
PB
379 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
380 }
92e873b9 381 }
e3f4e2a4 382 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
92e873b9
FB
383}
384
108c49b8 385static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 386{
108c49b8 387 return phys_page_find_alloc(index, 0);
92e873b9
FB
388}
389
9fa3e853 390#if !defined(CONFIG_USER_ONLY)
6a00d601 391static void tlb_protect_code(ram_addr_t ram_addr);
5fafdf24 392static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 393 target_ulong vaddr);
c8a706fe
PB
394#define mmap_lock() do { } while(0)
395#define mmap_unlock() do { } while(0)
9fa3e853 396#endif
fd6ce8f6 397
4369415f
FB
398#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
399
400#if defined(CONFIG_USER_ONLY)
ccbb4d44 401/* Currently it is not recommended to allocate big chunks of data in
4369415f
FB
402 user mode. It will change when a dedicated libc will be used */
403#define USE_STATIC_CODE_GEN_BUFFER
404#endif
405
406#ifdef USE_STATIC_CODE_GEN_BUFFER
407static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
408#endif
409
8fcd3692 410static void code_gen_alloc(unsigned long tb_size)
26a5f13b 411{
4369415f
FB
412#ifdef USE_STATIC_CODE_GEN_BUFFER
413 code_gen_buffer = static_code_gen_buffer;
414 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
415 map_exec(code_gen_buffer, code_gen_buffer_size);
416#else
26a5f13b
FB
417 code_gen_buffer_size = tb_size;
418 if (code_gen_buffer_size == 0) {
4369415f
FB
419#if defined(CONFIG_USER_ONLY)
420 /* in user mode, phys_ram_size is not meaningful */
421 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
422#else
ccbb4d44 423 /* XXX: needs adjustments */
94a6b54f 424 code_gen_buffer_size = (unsigned long)(ram_size / 4);
4369415f 425#endif
26a5f13b
FB
426 }
427 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
428 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
429 /* The code gen buffer location may have constraints depending on
430 the host cpu and OS */
431#if defined(__linux__)
432 {
433 int flags;
141ac468
BS
434 void *start = NULL;
435
26a5f13b
FB
436 flags = MAP_PRIVATE | MAP_ANONYMOUS;
437#if defined(__x86_64__)
438 flags |= MAP_32BIT;
439 /* Cannot map more than that */
440 if (code_gen_buffer_size > (800 * 1024 * 1024))
441 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
442#elif defined(__sparc_v9__)
443 // Map the buffer below 2G, so we can use direct calls and branches
444 flags |= MAP_FIXED;
445 start = (void *) 0x60000000UL;
446 if (code_gen_buffer_size > (512 * 1024 * 1024))
447 code_gen_buffer_size = (512 * 1024 * 1024);
1cb0661e 448#elif defined(__arm__)
63d41246 449 /* Map the buffer below 32M, so we can use direct calls and branches */
1cb0661e
AZ
450 flags |= MAP_FIXED;
451 start = (void *) 0x01000000UL;
452 if (code_gen_buffer_size > 16 * 1024 * 1024)
453 code_gen_buffer_size = 16 * 1024 * 1024;
26a5f13b 454#endif
141ac468
BS
455 code_gen_buffer = mmap(start, code_gen_buffer_size,
456 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
457 flags, -1, 0);
458 if (code_gen_buffer == MAP_FAILED) {
459 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
460 exit(1);
461 }
462 }
c5e97233 463#elif defined(__FreeBSD__) || defined(__DragonFly__)
06e67a82
AL
464 {
465 int flags;
466 void *addr = NULL;
467 flags = MAP_PRIVATE | MAP_ANONYMOUS;
468#if defined(__x86_64__)
469 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
470 * 0x40000000 is free */
471 flags |= MAP_FIXED;
472 addr = (void *)0x40000000;
473 /* Cannot map more than that */
474 if (code_gen_buffer_size > (800 * 1024 * 1024))
475 code_gen_buffer_size = (800 * 1024 * 1024);
476#endif
477 code_gen_buffer = mmap(addr, code_gen_buffer_size,
478 PROT_WRITE | PROT_READ | PROT_EXEC,
479 flags, -1, 0);
480 if (code_gen_buffer == MAP_FAILED) {
481 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
482 exit(1);
483 }
484 }
26a5f13b
FB
485#else
486 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
26a5f13b
FB
487 map_exec(code_gen_buffer, code_gen_buffer_size);
488#endif
4369415f 489#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b
FB
490 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
491 code_gen_buffer_max_size = code_gen_buffer_size -
492 code_gen_max_block_size();
493 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
494 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
495}
496
497/* Must be called before using the QEMU cpus. 'tb_size' is the size
498 (in bytes) allocated to the translation buffer. Zero means default
499 size. */
500void cpu_exec_init_all(unsigned long tb_size)
501{
26a5f13b
FB
502 cpu_gen_init();
503 code_gen_alloc(tb_size);
504 code_gen_ptr = code_gen_buffer;
4369415f 505 page_init();
e2eef170 506#if !defined(CONFIG_USER_ONLY)
26a5f13b 507 io_mem_init();
e2eef170 508#endif
26a5f13b
FB
509}
510
9656f324
PB
511#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
512
513#define CPU_COMMON_SAVE_VERSION 1
514
515static void cpu_common_save(QEMUFile *f, void *opaque)
516{
517 CPUState *env = opaque;
518
b0a46a33
JK
519 cpu_synchronize_state(env, 0);
520
9656f324
PB
521 qemu_put_be32s(f, &env->halted);
522 qemu_put_be32s(f, &env->interrupt_request);
523}
524
525static int cpu_common_load(QEMUFile *f, void *opaque, int version_id)
526{
527 CPUState *env = opaque;
528
529 if (version_id != CPU_COMMON_SAVE_VERSION)
530 return -EINVAL;
531
532 qemu_get_be32s(f, &env->halted);
75f482ae 533 qemu_get_be32s(f, &env->interrupt_request);
3098dba0
AJ
534 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
535 version_id is increased. */
536 env->interrupt_request &= ~0x01;
9656f324 537 tlb_flush(env, 1);
b0a46a33 538 cpu_synchronize_state(env, 1);
9656f324
PB
539
540 return 0;
541}
542#endif
543
950f1472
GC
544CPUState *qemu_get_cpu(int cpu)
545{
546 CPUState *env = first_cpu;
547
548 while (env) {
549 if (env->cpu_index == cpu)
550 break;
551 env = env->next_cpu;
552 }
553
554 return env;
555}
556
6a00d601 557void cpu_exec_init(CPUState *env)
fd6ce8f6 558{
6a00d601
FB
559 CPUState **penv;
560 int cpu_index;
561
c2764719
PB
562#if defined(CONFIG_USER_ONLY)
563 cpu_list_lock();
564#endif
6a00d601
FB
565 env->next_cpu = NULL;
566 penv = &first_cpu;
567 cpu_index = 0;
568 while (*penv != NULL) {
1e9fa730 569 penv = &(*penv)->next_cpu;
6a00d601
FB
570 cpu_index++;
571 }
572 env->cpu_index = cpu_index;
268a362c 573 env->numa_node = 0;
c0ce998e
AL
574 TAILQ_INIT(&env->breakpoints);
575 TAILQ_INIT(&env->watchpoints);
6a00d601 576 *penv = env;
c2764719
PB
577#if defined(CONFIG_USER_ONLY)
578 cpu_list_unlock();
579#endif
b3c7724c 580#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
9656f324
PB
581 register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION,
582 cpu_common_save, cpu_common_load, env);
b3c7724c
PB
583 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
584 cpu_save, cpu_load, env);
585#endif
fd6ce8f6
FB
586}
587
9fa3e853
FB
588static inline void invalidate_page_bitmap(PageDesc *p)
589{
590 if (p->code_bitmap) {
59817ccb 591 qemu_free(p->code_bitmap);
9fa3e853
FB
592 p->code_bitmap = NULL;
593 }
594 p->code_write_count = 0;
595}
596
fd6ce8f6
FB
597/* set to NULL all the 'first_tb' fields in all PageDescs */
598static void page_flush_tb(void)
599{
600 int i, j;
601 PageDesc *p;
602
603 for(i = 0; i < L1_SIZE; i++) {
604 p = l1_map[i];
605 if (p) {
9fa3e853
FB
606 for(j = 0; j < L2_SIZE; j++) {
607 p->first_tb = NULL;
608 invalidate_page_bitmap(p);
609 p++;
610 }
fd6ce8f6
FB
611 }
612 }
613}
614
615/* flush all the translation blocks */
d4e8164f 616/* XXX: tb_flush is currently not thread safe */
6a00d601 617void tb_flush(CPUState *env1)
fd6ce8f6 618{
6a00d601 619 CPUState *env;
0124311e 620#if defined(DEBUG_FLUSH)
ab3d1727
BS
621 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
622 (unsigned long)(code_gen_ptr - code_gen_buffer),
623 nb_tbs, nb_tbs > 0 ?
624 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 625#endif
26a5f13b 626 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
627 cpu_abort(env1, "Internal error: code buffer overflow\n");
628
fd6ce8f6 629 nb_tbs = 0;
3b46e624 630
6a00d601
FB
631 for(env = first_cpu; env != NULL; env = env->next_cpu) {
632 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
633 }
9fa3e853 634
8a8a608f 635 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 636 page_flush_tb();
9fa3e853 637
fd6ce8f6 638 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
639 /* XXX: flush processor icache at this point if cache flush is
640 expensive */
e3db7226 641 tb_flush_count++;
fd6ce8f6
FB
642}
643
644#ifdef DEBUG_TB_CHECK
645
bc98a7ef 646static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
647{
648 TranslationBlock *tb;
649 int i;
650 address &= TARGET_PAGE_MASK;
99773bd4
PB
651 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
652 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
653 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
654 address >= tb->pc + tb->size)) {
655 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
99773bd4 656 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
657 }
658 }
659 }
660}
661
662/* verify that all the pages have correct rights for code */
663static void tb_page_check(void)
664{
665 TranslationBlock *tb;
666 int i, flags1, flags2;
3b46e624 667
99773bd4
PB
668 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
669 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
670 flags1 = page_get_flags(tb->pc);
671 flags2 = page_get_flags(tb->pc + tb->size - 1);
672 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
673 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 674 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
675 }
676 }
677 }
678}
679
bdaf78e0 680static void tb_jmp_check(TranslationBlock *tb)
d4e8164f
FB
681{
682 TranslationBlock *tb1;
683 unsigned int n1;
684
685 /* suppress any remaining jumps to this TB */
686 tb1 = tb->jmp_first;
687 for(;;) {
688 n1 = (long)tb1 & 3;
689 tb1 = (TranslationBlock *)((long)tb1 & ~3);
690 if (n1 == 2)
691 break;
692 tb1 = tb1->jmp_next[n1];
693 }
694 /* check end of list */
695 if (tb1 != tb) {
696 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
697 }
698}
699
fd6ce8f6
FB
700#endif
701
702/* invalidate one TB */
703static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
704 int next_offset)
705{
706 TranslationBlock *tb1;
707 for(;;) {
708 tb1 = *ptb;
709 if (tb1 == tb) {
710 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
711 break;
712 }
713 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
714 }
715}
716
9fa3e853
FB
717static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
718{
719 TranslationBlock *tb1;
720 unsigned int n1;
721
722 for(;;) {
723 tb1 = *ptb;
724 n1 = (long)tb1 & 3;
725 tb1 = (TranslationBlock *)((long)tb1 & ~3);
726 if (tb1 == tb) {
727 *ptb = tb1->page_next[n1];
728 break;
729 }
730 ptb = &tb1->page_next[n1];
731 }
732}
733
d4e8164f
FB
734static inline void tb_jmp_remove(TranslationBlock *tb, int n)
735{
736 TranslationBlock *tb1, **ptb;
737 unsigned int n1;
738
739 ptb = &tb->jmp_next[n];
740 tb1 = *ptb;
741 if (tb1) {
742 /* find tb(n) in circular list */
743 for(;;) {
744 tb1 = *ptb;
745 n1 = (long)tb1 & 3;
746 tb1 = (TranslationBlock *)((long)tb1 & ~3);
747 if (n1 == n && tb1 == tb)
748 break;
749 if (n1 == 2) {
750 ptb = &tb1->jmp_first;
751 } else {
752 ptb = &tb1->jmp_next[n1];
753 }
754 }
755 /* now we can suppress tb(n) from the list */
756 *ptb = tb->jmp_next[n];
757
758 tb->jmp_next[n] = NULL;
759 }
760}
761
762/* reset the jump entry 'n' of a TB so that it is not chained to
763 another TB */
764static inline void tb_reset_jump(TranslationBlock *tb, int n)
765{
766 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
767}
768
2e70f6ef 769void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
fd6ce8f6 770{
6a00d601 771 CPUState *env;
8a40a180 772 PageDesc *p;
d4e8164f 773 unsigned int h, n1;
00f82b8a 774 target_phys_addr_t phys_pc;
8a40a180 775 TranslationBlock *tb1, *tb2;
3b46e624 776
8a40a180
FB
777 /* remove the TB from the hash list */
778 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
779 h = tb_phys_hash_func(phys_pc);
5fafdf24 780 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
781 offsetof(TranslationBlock, phys_hash_next));
782
783 /* remove the TB from the page list */
784 if (tb->page_addr[0] != page_addr) {
785 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
786 tb_page_remove(&p->first_tb, tb);
787 invalidate_page_bitmap(p);
788 }
789 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
790 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
791 tb_page_remove(&p->first_tb, tb);
792 invalidate_page_bitmap(p);
793 }
794
36bdbe54 795 tb_invalidated_flag = 1;
59817ccb 796
fd6ce8f6 797 /* remove the TB from the hash list */
8a40a180 798 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
799 for(env = first_cpu; env != NULL; env = env->next_cpu) {
800 if (env->tb_jmp_cache[h] == tb)
801 env->tb_jmp_cache[h] = NULL;
802 }
d4e8164f
FB
803
804 /* suppress this TB from the two jump lists */
805 tb_jmp_remove(tb, 0);
806 tb_jmp_remove(tb, 1);
807
808 /* suppress any remaining jumps to this TB */
809 tb1 = tb->jmp_first;
810 for(;;) {
811 n1 = (long)tb1 & 3;
812 if (n1 == 2)
813 break;
814 tb1 = (TranslationBlock *)((long)tb1 & ~3);
815 tb2 = tb1->jmp_next[n1];
816 tb_reset_jump(tb1, n1);
817 tb1->jmp_next[n1] = NULL;
818 tb1 = tb2;
819 }
820 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 821
e3db7226 822 tb_phys_invalidate_count++;
9fa3e853
FB
823}
824
825static inline void set_bits(uint8_t *tab, int start, int len)
826{
827 int end, mask, end1;
828
829 end = start + len;
830 tab += start >> 3;
831 mask = 0xff << (start & 7);
832 if ((start & ~7) == (end & ~7)) {
833 if (start < end) {
834 mask &= ~(0xff << (end & 7));
835 *tab |= mask;
836 }
837 } else {
838 *tab++ |= mask;
839 start = (start + 8) & ~7;
840 end1 = end & ~7;
841 while (start < end1) {
842 *tab++ = 0xff;
843 start += 8;
844 }
845 if (start < end) {
846 mask = ~(0xff << (end & 7));
847 *tab |= mask;
848 }
849 }
850}
851
852static void build_page_bitmap(PageDesc *p)
853{
854 int n, tb_start, tb_end;
855 TranslationBlock *tb;
3b46e624 856
b2a7081a 857 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
858
859 tb = p->first_tb;
860 while (tb != NULL) {
861 n = (long)tb & 3;
862 tb = (TranslationBlock *)((long)tb & ~3);
863 /* NOTE: this is subtle as a TB may span two physical pages */
864 if (n == 0) {
865 /* NOTE: tb_end may be after the end of the page, but
866 it is not a problem */
867 tb_start = tb->pc & ~TARGET_PAGE_MASK;
868 tb_end = tb_start + tb->size;
869 if (tb_end > TARGET_PAGE_SIZE)
870 tb_end = TARGET_PAGE_SIZE;
871 } else {
872 tb_start = 0;
873 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
874 }
875 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
876 tb = tb->page_next[n];
877 }
878}
879
2e70f6ef
PB
880TranslationBlock *tb_gen_code(CPUState *env,
881 target_ulong pc, target_ulong cs_base,
882 int flags, int cflags)
d720b93d
FB
883{
884 TranslationBlock *tb;
885 uint8_t *tc_ptr;
886 target_ulong phys_pc, phys_page2, virt_page2;
887 int code_gen_size;
888
c27004ec
FB
889 phys_pc = get_phys_addr_code(env, pc);
890 tb = tb_alloc(pc);
d720b93d
FB
891 if (!tb) {
892 /* flush must be done */
893 tb_flush(env);
894 /* cannot fail at this point */
c27004ec 895 tb = tb_alloc(pc);
2e70f6ef
PB
896 /* Don't forget to invalidate previous TB info. */
897 tb_invalidated_flag = 1;
d720b93d
FB
898 }
899 tc_ptr = code_gen_ptr;
900 tb->tc_ptr = tc_ptr;
901 tb->cs_base = cs_base;
902 tb->flags = flags;
903 tb->cflags = cflags;
d07bde88 904 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 905 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 906
d720b93d 907 /* check next page if needed */
c27004ec 908 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 909 phys_page2 = -1;
c27004ec 910 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
d720b93d
FB
911 phys_page2 = get_phys_addr_code(env, virt_page2);
912 }
913 tb_link_phys(tb, phys_pc, phys_page2);
2e70f6ef 914 return tb;
d720b93d 915}
3b46e624 916
9fa3e853
FB
917/* invalidate all TBs which intersect with the target physical page
918 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
919 the same physical page. 'is_cpu_write_access' should be true if called
920 from a real cpu write access: the virtual CPU will exit the current
921 TB if code is modified inside this TB. */
00f82b8a 922void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
d720b93d
FB
923 int is_cpu_write_access)
924{
6b917547 925 TranslationBlock *tb, *tb_next, *saved_tb;
d720b93d 926 CPUState *env = cpu_single_env;
9fa3e853 927 target_ulong tb_start, tb_end;
6b917547
AL
928 PageDesc *p;
929 int n;
930#ifdef TARGET_HAS_PRECISE_SMC
931 int current_tb_not_found = is_cpu_write_access;
932 TranslationBlock *current_tb = NULL;
933 int current_tb_modified = 0;
934 target_ulong current_pc = 0;
935 target_ulong current_cs_base = 0;
936 int current_flags = 0;
937#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
938
939 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 940 if (!p)
9fa3e853 941 return;
5fafdf24 942 if (!p->code_bitmap &&
d720b93d
FB
943 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
944 is_cpu_write_access) {
9fa3e853
FB
945 /* build code bitmap */
946 build_page_bitmap(p);
947 }
948
949 /* we remove all the TBs in the range [start, end[ */
950 /* XXX: see if in some cases it could be faster to invalidate all the code */
951 tb = p->first_tb;
952 while (tb != NULL) {
953 n = (long)tb & 3;
954 tb = (TranslationBlock *)((long)tb & ~3);
955 tb_next = tb->page_next[n];
956 /* NOTE: this is subtle as a TB may span two physical pages */
957 if (n == 0) {
958 /* NOTE: tb_end may be after the end of the page, but
959 it is not a problem */
960 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
961 tb_end = tb_start + tb->size;
962 } else {
963 tb_start = tb->page_addr[1];
964 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
965 }
966 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
967#ifdef TARGET_HAS_PRECISE_SMC
968 if (current_tb_not_found) {
969 current_tb_not_found = 0;
970 current_tb = NULL;
2e70f6ef 971 if (env->mem_io_pc) {
d720b93d 972 /* now we have a real cpu fault */
2e70f6ef 973 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
974 }
975 }
976 if (current_tb == tb &&
2e70f6ef 977 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
978 /* If we are modifying the current TB, we must stop
979 its execution. We could be more precise by checking
980 that the modification is after the current PC, but it
981 would require a specialized function to partially
982 restore the CPU state */
3b46e624 983
d720b93d 984 current_tb_modified = 1;
5fafdf24 985 cpu_restore_state(current_tb, env,
2e70f6ef 986 env->mem_io_pc, NULL);
6b917547
AL
987 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
988 &current_flags);
d720b93d
FB
989 }
990#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
991 /* we need to do that to handle the case where a signal
992 occurs while doing tb_phys_invalidate() */
993 saved_tb = NULL;
994 if (env) {
995 saved_tb = env->current_tb;
996 env->current_tb = NULL;
997 }
9fa3e853 998 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
999 if (env) {
1000 env->current_tb = saved_tb;
1001 if (env->interrupt_request && env->current_tb)
1002 cpu_interrupt(env, env->interrupt_request);
1003 }
9fa3e853
FB
1004 }
1005 tb = tb_next;
1006 }
1007#if !defined(CONFIG_USER_ONLY)
1008 /* if no code remaining, no need to continue to use slow writes */
1009 if (!p->first_tb) {
1010 invalidate_page_bitmap(p);
d720b93d 1011 if (is_cpu_write_access) {
2e70f6ef 1012 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
1013 }
1014 }
1015#endif
1016#ifdef TARGET_HAS_PRECISE_SMC
1017 if (current_tb_modified) {
1018 /* we generate a block containing just the instruction
1019 modifying the memory. It will ensure that it cannot modify
1020 itself */
ea1c1802 1021 env->current_tb = NULL;
2e70f6ef 1022 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 1023 cpu_resume_from_signal(env, NULL);
9fa3e853 1024 }
fd6ce8f6 1025#endif
9fa3e853 1026}
fd6ce8f6 1027
9fa3e853 1028/* len must be <= 8 and start must be a multiple of len */
00f82b8a 1029static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
9fa3e853
FB
1030{
1031 PageDesc *p;
1032 int offset, b;
59817ccb 1033#if 0
a4193c8a 1034 if (1) {
93fcfe39
AL
1035 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1036 cpu_single_env->mem_io_vaddr, len,
1037 cpu_single_env->eip,
1038 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
59817ccb
FB
1039 }
1040#endif
9fa3e853 1041 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1042 if (!p)
9fa3e853
FB
1043 return;
1044 if (p->code_bitmap) {
1045 offset = start & ~TARGET_PAGE_MASK;
1046 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1047 if (b & ((1 << len) - 1))
1048 goto do_invalidate;
1049 } else {
1050 do_invalidate:
d720b93d 1051 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1052 }
1053}
1054
9fa3e853 1055#if !defined(CONFIG_SOFTMMU)
00f82b8a 1056static void tb_invalidate_phys_page(target_phys_addr_t addr,
d720b93d 1057 unsigned long pc, void *puc)
9fa3e853 1058{
6b917547 1059 TranslationBlock *tb;
9fa3e853 1060 PageDesc *p;
6b917547 1061 int n;
d720b93d 1062#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1063 TranslationBlock *current_tb = NULL;
d720b93d 1064 CPUState *env = cpu_single_env;
6b917547
AL
1065 int current_tb_modified = 0;
1066 target_ulong current_pc = 0;
1067 target_ulong current_cs_base = 0;
1068 int current_flags = 0;
d720b93d 1069#endif
9fa3e853
FB
1070
1071 addr &= TARGET_PAGE_MASK;
1072 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1073 if (!p)
9fa3e853
FB
1074 return;
1075 tb = p->first_tb;
d720b93d
FB
1076#ifdef TARGET_HAS_PRECISE_SMC
1077 if (tb && pc != 0) {
1078 current_tb = tb_find_pc(pc);
1079 }
1080#endif
9fa3e853
FB
1081 while (tb != NULL) {
1082 n = (long)tb & 3;
1083 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1084#ifdef TARGET_HAS_PRECISE_SMC
1085 if (current_tb == tb &&
2e70f6ef 1086 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1087 /* If we are modifying the current TB, we must stop
1088 its execution. We could be more precise by checking
1089 that the modification is after the current PC, but it
1090 would require a specialized function to partially
1091 restore the CPU state */
3b46e624 1092
d720b93d
FB
1093 current_tb_modified = 1;
1094 cpu_restore_state(current_tb, env, pc, puc);
6b917547
AL
1095 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1096 &current_flags);
d720b93d
FB
1097 }
1098#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1099 tb_phys_invalidate(tb, addr);
1100 tb = tb->page_next[n];
1101 }
fd6ce8f6 1102 p->first_tb = NULL;
d720b93d
FB
1103#ifdef TARGET_HAS_PRECISE_SMC
1104 if (current_tb_modified) {
1105 /* we generate a block containing just the instruction
1106 modifying the memory. It will ensure that it cannot modify
1107 itself */
ea1c1802 1108 env->current_tb = NULL;
2e70f6ef 1109 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1110 cpu_resume_from_signal(env, puc);
1111 }
1112#endif
fd6ce8f6 1113}
9fa3e853 1114#endif
fd6ce8f6
FB
1115
1116/* add the tb in the target page and protect it if necessary */
5fafdf24 1117static inline void tb_alloc_page(TranslationBlock *tb,
53a5960a 1118 unsigned int n, target_ulong page_addr)
fd6ce8f6
FB
1119{
1120 PageDesc *p;
9fa3e853
FB
1121 TranslationBlock *last_first_tb;
1122
1123 tb->page_addr[n] = page_addr;
3a7d929e 1124 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
9fa3e853
FB
1125 tb->page_next[n] = p->first_tb;
1126 last_first_tb = p->first_tb;
1127 p->first_tb = (TranslationBlock *)((long)tb | n);
1128 invalidate_page_bitmap(p);
fd6ce8f6 1129
107db443 1130#if defined(TARGET_HAS_SMC) || 1
d720b93d 1131
9fa3e853 1132#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1133 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1134 target_ulong addr;
1135 PageDesc *p2;
9fa3e853
FB
1136 int prot;
1137
fd6ce8f6
FB
1138 /* force the host page as non writable (writes will have a
1139 page fault + mprotect overhead) */
53a5960a 1140 page_addr &= qemu_host_page_mask;
fd6ce8f6 1141 prot = 0;
53a5960a
PB
1142 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1143 addr += TARGET_PAGE_SIZE) {
1144
1145 p2 = page_find (addr >> TARGET_PAGE_BITS);
1146 if (!p2)
1147 continue;
1148 prot |= p2->flags;
1149 p2->flags &= ~PAGE_WRITE;
1150 page_get_flags(addr);
1151 }
5fafdf24 1152 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1153 (prot & PAGE_BITS) & ~PAGE_WRITE);
1154#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1155 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1156 page_addr);
fd6ce8f6 1157#endif
fd6ce8f6 1158 }
9fa3e853
FB
1159#else
1160 /* if some code is already present, then the pages are already
1161 protected. So we handle the case where only the first TB is
1162 allocated in a physical page */
1163 if (!last_first_tb) {
6a00d601 1164 tlb_protect_code(page_addr);
9fa3e853
FB
1165 }
1166#endif
d720b93d
FB
1167
1168#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1169}
1170
1171/* Allocate a new translation block. Flush the translation buffer if
1172 too many translation blocks or too much generated code. */
c27004ec 1173TranslationBlock *tb_alloc(target_ulong pc)
fd6ce8f6
FB
1174{
1175 TranslationBlock *tb;
fd6ce8f6 1176
26a5f13b
FB
1177 if (nb_tbs >= code_gen_max_blocks ||
1178 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
d4e8164f 1179 return NULL;
fd6ce8f6
FB
1180 tb = &tbs[nb_tbs++];
1181 tb->pc = pc;
b448f2f3 1182 tb->cflags = 0;
d4e8164f
FB
1183 return tb;
1184}
1185
2e70f6ef
PB
1186void tb_free(TranslationBlock *tb)
1187{
bf20dc07 1188 /* In practice this is mostly used for single use temporary TB
2e70f6ef
PB
1189 Ignore the hard cases and just back up if this TB happens to
1190 be the last one generated. */
1191 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1192 code_gen_ptr = tb->tc_ptr;
1193 nb_tbs--;
1194 }
1195}
1196
9fa3e853
FB
1197/* add a new TB and link it to the physical page tables. phys_page2 is
1198 (-1) to indicate that only one page contains the TB. */
5fafdf24 1199void tb_link_phys(TranslationBlock *tb,
9fa3e853 1200 target_ulong phys_pc, target_ulong phys_page2)
d4e8164f 1201{
9fa3e853
FB
1202 unsigned int h;
1203 TranslationBlock **ptb;
1204
c8a706fe
PB
1205 /* Grab the mmap lock to stop another thread invalidating this TB
1206 before we are done. */
1207 mmap_lock();
9fa3e853
FB
1208 /* add in the physical hash table */
1209 h = tb_phys_hash_func(phys_pc);
1210 ptb = &tb_phys_hash[h];
1211 tb->phys_hash_next = *ptb;
1212 *ptb = tb;
fd6ce8f6
FB
1213
1214 /* add in the page list */
9fa3e853
FB
1215 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1216 if (phys_page2 != -1)
1217 tb_alloc_page(tb, 1, phys_page2);
1218 else
1219 tb->page_addr[1] = -1;
9fa3e853 1220
d4e8164f
FB
1221 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1222 tb->jmp_next[0] = NULL;
1223 tb->jmp_next[1] = NULL;
1224
1225 /* init original jump addresses */
1226 if (tb->tb_next_offset[0] != 0xffff)
1227 tb_reset_jump(tb, 0);
1228 if (tb->tb_next_offset[1] != 0xffff)
1229 tb_reset_jump(tb, 1);
8a40a180
FB
1230
1231#ifdef DEBUG_TB_CHECK
1232 tb_page_check();
1233#endif
c8a706fe 1234 mmap_unlock();
fd6ce8f6
FB
1235}
1236
9fa3e853
FB
1237/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1238 tb[1].tc_ptr. Return NULL if not found */
1239TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1240{
9fa3e853
FB
1241 int m_min, m_max, m;
1242 unsigned long v;
1243 TranslationBlock *tb;
a513fe19
FB
1244
1245 if (nb_tbs <= 0)
1246 return NULL;
1247 if (tc_ptr < (unsigned long)code_gen_buffer ||
1248 tc_ptr >= (unsigned long)code_gen_ptr)
1249 return NULL;
1250 /* binary search (cf Knuth) */
1251 m_min = 0;
1252 m_max = nb_tbs - 1;
1253 while (m_min <= m_max) {
1254 m = (m_min + m_max) >> 1;
1255 tb = &tbs[m];
1256 v = (unsigned long)tb->tc_ptr;
1257 if (v == tc_ptr)
1258 return tb;
1259 else if (tc_ptr < v) {
1260 m_max = m - 1;
1261 } else {
1262 m_min = m + 1;
1263 }
5fafdf24 1264 }
a513fe19
FB
1265 return &tbs[m_max];
1266}
7501267e 1267
ea041c0e
FB
1268static void tb_reset_jump_recursive(TranslationBlock *tb);
1269
1270static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1271{
1272 TranslationBlock *tb1, *tb_next, **ptb;
1273 unsigned int n1;
1274
1275 tb1 = tb->jmp_next[n];
1276 if (tb1 != NULL) {
1277 /* find head of list */
1278 for(;;) {
1279 n1 = (long)tb1 & 3;
1280 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1281 if (n1 == 2)
1282 break;
1283 tb1 = tb1->jmp_next[n1];
1284 }
1285 /* we are now sure now that tb jumps to tb1 */
1286 tb_next = tb1;
1287
1288 /* remove tb from the jmp_first list */
1289 ptb = &tb_next->jmp_first;
1290 for(;;) {
1291 tb1 = *ptb;
1292 n1 = (long)tb1 & 3;
1293 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1294 if (n1 == n && tb1 == tb)
1295 break;
1296 ptb = &tb1->jmp_next[n1];
1297 }
1298 *ptb = tb->jmp_next[n];
1299 tb->jmp_next[n] = NULL;
3b46e624 1300
ea041c0e
FB
1301 /* suppress the jump to next tb in generated code */
1302 tb_reset_jump(tb, n);
1303
0124311e 1304 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1305 tb_reset_jump_recursive(tb_next);
1306 }
1307}
1308
1309static void tb_reset_jump_recursive(TranslationBlock *tb)
1310{
1311 tb_reset_jump_recursive2(tb, 0);
1312 tb_reset_jump_recursive2(tb, 1);
1313}
1314
1fddef4b 1315#if defined(TARGET_HAS_ICE)
d720b93d
FB
1316static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1317{
9b3c35e0
JM
1318 target_phys_addr_t addr;
1319 target_ulong pd;
c2f07f81
PB
1320 ram_addr_t ram_addr;
1321 PhysPageDesc *p;
d720b93d 1322
c2f07f81
PB
1323 addr = cpu_get_phys_page_debug(env, pc);
1324 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1325 if (!p) {
1326 pd = IO_MEM_UNASSIGNED;
1327 } else {
1328 pd = p->phys_offset;
1329 }
1330 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1331 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1332}
c27004ec 1333#endif
d720b93d 1334
6658ffb8 1335/* Add a watchpoint. */
a1d1bb31
AL
1336int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1337 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1338{
b4051334 1339 target_ulong len_mask = ~(len - 1);
c0ce998e 1340 CPUWatchpoint *wp;
6658ffb8 1341
b4051334
AL
1342 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1343 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1344 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1345 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1346 return -EINVAL;
1347 }
a1d1bb31 1348 wp = qemu_malloc(sizeof(*wp));
a1d1bb31
AL
1349
1350 wp->vaddr = addr;
b4051334 1351 wp->len_mask = len_mask;
a1d1bb31
AL
1352 wp->flags = flags;
1353
2dc9f411 1354 /* keep all GDB-injected watchpoints in front */
c0ce998e
AL
1355 if (flags & BP_GDB)
1356 TAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1357 else
1358 TAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 1359
6658ffb8 1360 tlb_flush_page(env, addr);
a1d1bb31
AL
1361
1362 if (watchpoint)
1363 *watchpoint = wp;
1364 return 0;
6658ffb8
PB
1365}
1366
a1d1bb31
AL
1367/* Remove a specific watchpoint. */
1368int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1369 int flags)
6658ffb8 1370{
b4051334 1371 target_ulong len_mask = ~(len - 1);
a1d1bb31 1372 CPUWatchpoint *wp;
6658ffb8 1373
c0ce998e 1374 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 1375 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1376 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1377 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1378 return 0;
1379 }
1380 }
a1d1bb31 1381 return -ENOENT;
6658ffb8
PB
1382}
1383
a1d1bb31
AL
1384/* Remove a specific watchpoint by reference. */
1385void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1386{
c0ce998e 1387 TAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 1388
a1d1bb31
AL
1389 tlb_flush_page(env, watchpoint->vaddr);
1390
1391 qemu_free(watchpoint);
1392}
1393
1394/* Remove all matching watchpoints. */
1395void cpu_watchpoint_remove_all(CPUState *env, int mask)
1396{
c0ce998e 1397 CPUWatchpoint *wp, *next;
a1d1bb31 1398
c0ce998e 1399 TAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
1400 if (wp->flags & mask)
1401 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 1402 }
7d03f82f
EI
1403}
1404
a1d1bb31
AL
1405/* Add a breakpoint. */
1406int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1407 CPUBreakpoint **breakpoint)
4c3a88a2 1408{
1fddef4b 1409#if defined(TARGET_HAS_ICE)
c0ce998e 1410 CPUBreakpoint *bp;
3b46e624 1411
a1d1bb31 1412 bp = qemu_malloc(sizeof(*bp));
4c3a88a2 1413
a1d1bb31
AL
1414 bp->pc = pc;
1415 bp->flags = flags;
1416
2dc9f411 1417 /* keep all GDB-injected breakpoints in front */
c0ce998e
AL
1418 if (flags & BP_GDB)
1419 TAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1420 else
1421 TAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 1422
d720b93d 1423 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1424
1425 if (breakpoint)
1426 *breakpoint = bp;
4c3a88a2
FB
1427 return 0;
1428#else
a1d1bb31 1429 return -ENOSYS;
4c3a88a2
FB
1430#endif
1431}
1432
a1d1bb31
AL
1433/* Remove a specific breakpoint. */
1434int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1435{
7d03f82f 1436#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1437 CPUBreakpoint *bp;
1438
c0ce998e 1439 TAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
1440 if (bp->pc == pc && bp->flags == flags) {
1441 cpu_breakpoint_remove_by_ref(env, bp);
1442 return 0;
1443 }
7d03f82f 1444 }
a1d1bb31
AL
1445 return -ENOENT;
1446#else
1447 return -ENOSYS;
7d03f82f
EI
1448#endif
1449}
1450
a1d1bb31
AL
1451/* Remove a specific breakpoint by reference. */
1452void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1453{
1fddef4b 1454#if defined(TARGET_HAS_ICE)
c0ce998e 1455 TAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 1456
a1d1bb31
AL
1457 breakpoint_invalidate(env, breakpoint->pc);
1458
1459 qemu_free(breakpoint);
1460#endif
1461}
1462
1463/* Remove all matching breakpoints. */
1464void cpu_breakpoint_remove_all(CPUState *env, int mask)
1465{
1466#if defined(TARGET_HAS_ICE)
c0ce998e 1467 CPUBreakpoint *bp, *next;
a1d1bb31 1468
c0ce998e 1469 TAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
1470 if (bp->flags & mask)
1471 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 1472 }
4c3a88a2
FB
1473#endif
1474}
1475
c33a346e
FB
1476/* enable or disable single step mode. EXCP_DEBUG is returned by the
1477 CPU loop after each instruction */
1478void cpu_single_step(CPUState *env, int enabled)
1479{
1fddef4b 1480#if defined(TARGET_HAS_ICE)
c33a346e
FB
1481 if (env->singlestep_enabled != enabled) {
1482 env->singlestep_enabled = enabled;
e22a25c9
AL
1483 if (kvm_enabled())
1484 kvm_update_guest_debug(env, 0);
1485 else {
ccbb4d44 1486 /* must flush all the translated code to avoid inconsistencies */
e22a25c9
AL
1487 /* XXX: only flush what is necessary */
1488 tb_flush(env);
1489 }
c33a346e
FB
1490 }
1491#endif
1492}
1493
34865134
FB
1494/* enable or disable low levels log */
1495void cpu_set_log(int log_flags)
1496{
1497 loglevel = log_flags;
1498 if (loglevel && !logfile) {
11fcfab4 1499 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1500 if (!logfile) {
1501 perror(logfilename);
1502 _exit(1);
1503 }
9fa3e853
FB
1504#if !defined(CONFIG_SOFTMMU)
1505 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1506 {
b55266b5 1507 static char logfile_buf[4096];
9fa3e853
FB
1508 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1509 }
1510#else
34865134 1511 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1512#endif
e735b91c
PB
1513 log_append = 1;
1514 }
1515 if (!loglevel && logfile) {
1516 fclose(logfile);
1517 logfile = NULL;
34865134
FB
1518 }
1519}
1520
1521void cpu_set_log_filename(const char *filename)
1522{
1523 logfilename = strdup(filename);
e735b91c
PB
1524 if (logfile) {
1525 fclose(logfile);
1526 logfile = NULL;
1527 }
1528 cpu_set_log(loglevel);
34865134 1529}
c33a346e 1530
3098dba0 1531static void cpu_unlink_tb(CPUState *env)
ea041c0e 1532{
3098dba0
AJ
1533#if defined(USE_NPTL)
1534 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1535 problem and hope the cpu will stop of its own accord. For userspace
1536 emulation this often isn't actually as bad as it sounds. Often
1537 signals are used primarily to interrupt blocking syscalls. */
1538#else
ea041c0e 1539 TranslationBlock *tb;
15a51156 1540 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
59817ccb 1541
3098dba0
AJ
1542 tb = env->current_tb;
1543 /* if the cpu is currently executing code, we must unlink it and
1544 all the potentially executing TB */
1545 if (tb && !testandset(&interrupt_lock)) {
1546 env->current_tb = NULL;
1547 tb_reset_jump_recursive(tb);
1548 resetlock(&interrupt_lock);
be214e6c 1549 }
3098dba0
AJ
1550#endif
1551}
1552
1553/* mask must never be zero, except for A20 change call */
1554void cpu_interrupt(CPUState *env, int mask)
1555{
1556 int old_mask;
be214e6c 1557
2e70f6ef 1558 old_mask = env->interrupt_request;
68a79315 1559 env->interrupt_request |= mask;
3098dba0 1560
8edac960
AL
1561#ifndef CONFIG_USER_ONLY
1562 /*
1563 * If called from iothread context, wake the target cpu in
1564 * case its halted.
1565 */
1566 if (!qemu_cpu_self(env)) {
1567 qemu_cpu_kick(env);
1568 return;
1569 }
1570#endif
1571
2e70f6ef 1572 if (use_icount) {
266910c4 1573 env->icount_decr.u16.high = 0xffff;
2e70f6ef 1574#ifndef CONFIG_USER_ONLY
2e70f6ef 1575 if (!can_do_io(env)
be214e6c 1576 && (mask & ~old_mask) != 0) {
2e70f6ef
PB
1577 cpu_abort(env, "Raised interrupt while not in I/O function");
1578 }
1579#endif
1580 } else {
3098dba0 1581 cpu_unlink_tb(env);
ea041c0e
FB
1582 }
1583}
1584
b54ad049
FB
1585void cpu_reset_interrupt(CPUState *env, int mask)
1586{
1587 env->interrupt_request &= ~mask;
1588}
1589
3098dba0
AJ
1590void cpu_exit(CPUState *env)
1591{
1592 env->exit_request = 1;
1593 cpu_unlink_tb(env);
1594}
1595
c7cd6a37 1596const CPULogItem cpu_log_items[] = {
5fafdf24 1597 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1598 "show generated host assembly code for each compiled TB" },
1599 { CPU_LOG_TB_IN_ASM, "in_asm",
1600 "show target assembly code for each compiled TB" },
5fafdf24 1601 { CPU_LOG_TB_OP, "op",
57fec1fe 1602 "show micro ops for each compiled TB" },
f193c797 1603 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1604 "show micro ops "
1605#ifdef TARGET_I386
1606 "before eflags optimization and "
f193c797 1607#endif
e01a1157 1608 "after liveness analysis" },
f193c797
FB
1609 { CPU_LOG_INT, "int",
1610 "show interrupts/exceptions in short format" },
1611 { CPU_LOG_EXEC, "exec",
1612 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1613 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1614 "show CPU state before block translation" },
f193c797
FB
1615#ifdef TARGET_I386
1616 { CPU_LOG_PCALL, "pcall",
1617 "show protected mode far calls/returns/exceptions" },
eca1bdf4
AL
1618 { CPU_LOG_RESET, "cpu_reset",
1619 "show CPU state before CPU resets" },
f193c797 1620#endif
8e3a9fd2 1621#ifdef DEBUG_IOPORT
fd872598
FB
1622 { CPU_LOG_IOPORT, "ioport",
1623 "show all i/o ports accesses" },
8e3a9fd2 1624#endif
f193c797
FB
1625 { 0, NULL, NULL },
1626};
1627
1628static int cmp1(const char *s1, int n, const char *s2)
1629{
1630 if (strlen(s2) != n)
1631 return 0;
1632 return memcmp(s1, s2, n) == 0;
1633}
3b46e624 1634
f193c797
FB
1635/* takes a comma separated list of log masks. Return 0 if error. */
1636int cpu_str_to_log_mask(const char *str)
1637{
c7cd6a37 1638 const CPULogItem *item;
f193c797
FB
1639 int mask;
1640 const char *p, *p1;
1641
1642 p = str;
1643 mask = 0;
1644 for(;;) {
1645 p1 = strchr(p, ',');
1646 if (!p1)
1647 p1 = p + strlen(p);
8e3a9fd2
FB
1648 if(cmp1(p,p1-p,"all")) {
1649 for(item = cpu_log_items; item->mask != 0; item++) {
1650 mask |= item->mask;
1651 }
1652 } else {
f193c797
FB
1653 for(item = cpu_log_items; item->mask != 0; item++) {
1654 if (cmp1(p, p1 - p, item->name))
1655 goto found;
1656 }
1657 return 0;
8e3a9fd2 1658 }
f193c797
FB
1659 found:
1660 mask |= item->mask;
1661 if (*p1 != ',')
1662 break;
1663 p = p1 + 1;
1664 }
1665 return mask;
1666}
ea041c0e 1667
7501267e
FB
1668void cpu_abort(CPUState *env, const char *fmt, ...)
1669{
1670 va_list ap;
493ae1f0 1671 va_list ap2;
7501267e
FB
1672
1673 va_start(ap, fmt);
493ae1f0 1674 va_copy(ap2, ap);
7501267e
FB
1675 fprintf(stderr, "qemu: fatal: ");
1676 vfprintf(stderr, fmt, ap);
1677 fprintf(stderr, "\n");
1678#ifdef TARGET_I386
7fe48483
FB
1679 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1680#else
1681 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1682#endif
93fcfe39
AL
1683 if (qemu_log_enabled()) {
1684 qemu_log("qemu: fatal: ");
1685 qemu_log_vprintf(fmt, ap2);
1686 qemu_log("\n");
f9373291 1687#ifdef TARGET_I386
93fcfe39 1688 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
f9373291 1689#else
93fcfe39 1690 log_cpu_state(env, 0);
f9373291 1691#endif
31b1a7b4 1692 qemu_log_flush();
93fcfe39 1693 qemu_log_close();
924edcae 1694 }
493ae1f0 1695 va_end(ap2);
f9373291 1696 va_end(ap);
7501267e
FB
1697 abort();
1698}
1699
c5be9f08
TS
1700CPUState *cpu_copy(CPUState *env)
1701{
01ba9816 1702 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1703 CPUState *next_cpu = new_env->next_cpu;
1704 int cpu_index = new_env->cpu_index;
5a38f081
AL
1705#if defined(TARGET_HAS_ICE)
1706 CPUBreakpoint *bp;
1707 CPUWatchpoint *wp;
1708#endif
1709
c5be9f08 1710 memcpy(new_env, env, sizeof(CPUState));
5a38f081
AL
1711
1712 /* Preserve chaining and index. */
c5be9f08
TS
1713 new_env->next_cpu = next_cpu;
1714 new_env->cpu_index = cpu_index;
5a38f081
AL
1715
1716 /* Clone all break/watchpoints.
1717 Note: Once we support ptrace with hw-debug register access, make sure
1718 BP_CPU break/watchpoints are handled correctly on clone. */
1719 TAILQ_INIT(&env->breakpoints);
1720 TAILQ_INIT(&env->watchpoints);
1721#if defined(TARGET_HAS_ICE)
1722 TAILQ_FOREACH(bp, &env->breakpoints, entry) {
1723 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1724 }
1725 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
1726 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1727 wp->flags, NULL);
1728 }
1729#endif
1730
c5be9f08
TS
1731 return new_env;
1732}
1733
0124311e
FB
1734#if !defined(CONFIG_USER_ONLY)
1735
5c751e99
EI
1736static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1737{
1738 unsigned int i;
1739
1740 /* Discard jump cache entries for any tb which might potentially
1741 overlap the flushed page. */
1742 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1743 memset (&env->tb_jmp_cache[i], 0,
1744 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1745
1746 i = tb_jmp_cache_hash_page(addr);
1747 memset (&env->tb_jmp_cache[i], 0,
1748 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1749}
1750
ee8b7021
FB
1751/* NOTE: if flush_global is true, also flush global entries (not
1752 implemented yet) */
1753void tlb_flush(CPUState *env, int flush_global)
33417e70 1754{
33417e70 1755 int i;
0124311e 1756
9fa3e853
FB
1757#if defined(DEBUG_TLB)
1758 printf("tlb_flush:\n");
1759#endif
0124311e
FB
1760 /* must reset current TB so that interrupts cannot modify the
1761 links while we are modifying them */
1762 env->current_tb = NULL;
1763
33417e70 1764 for(i = 0; i < CPU_TLB_SIZE; i++) {
84b7b8e7
FB
1765 env->tlb_table[0][i].addr_read = -1;
1766 env->tlb_table[0][i].addr_write = -1;
1767 env->tlb_table[0][i].addr_code = -1;
1768 env->tlb_table[1][i].addr_read = -1;
1769 env->tlb_table[1][i].addr_write = -1;
1770 env->tlb_table[1][i].addr_code = -1;
6fa4cea9
JM
1771#if (NB_MMU_MODES >= 3)
1772 env->tlb_table[2][i].addr_read = -1;
1773 env->tlb_table[2][i].addr_write = -1;
1774 env->tlb_table[2][i].addr_code = -1;
e37e6ee6
AJ
1775#endif
1776#if (NB_MMU_MODES >= 4)
6fa4cea9
JM
1777 env->tlb_table[3][i].addr_read = -1;
1778 env->tlb_table[3][i].addr_write = -1;
1779 env->tlb_table[3][i].addr_code = -1;
1780#endif
e37e6ee6
AJ
1781#if (NB_MMU_MODES >= 5)
1782 env->tlb_table[4][i].addr_read = -1;
1783 env->tlb_table[4][i].addr_write = -1;
1784 env->tlb_table[4][i].addr_code = -1;
6fa4cea9 1785#endif
e37e6ee6 1786
33417e70 1787 }
9fa3e853 1788
8a40a180 1789 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 1790
640f42e4 1791#ifdef CONFIG_KQEMU
0a962c02
FB
1792 if (env->kqemu_enabled) {
1793 kqemu_flush(env, flush_global);
1794 }
9fa3e853 1795#endif
e3db7226 1796 tlb_flush_count++;
33417e70
FB
1797}
1798
274da6b2 1799static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1800{
5fafdf24 1801 if (addr == (tlb_entry->addr_read &
84b7b8e7 1802 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1803 addr == (tlb_entry->addr_write &
84b7b8e7 1804 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1805 addr == (tlb_entry->addr_code &
84b7b8e7
FB
1806 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1807 tlb_entry->addr_read = -1;
1808 tlb_entry->addr_write = -1;
1809 tlb_entry->addr_code = -1;
1810 }
61382a50
FB
1811}
1812
2e12669a 1813void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 1814{
8a40a180 1815 int i;
0124311e 1816
9fa3e853 1817#if defined(DEBUG_TLB)
108c49b8 1818 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 1819#endif
0124311e
FB
1820 /* must reset current TB so that interrupts cannot modify the
1821 links while we are modifying them */
1822 env->current_tb = NULL;
61382a50
FB
1823
1824 addr &= TARGET_PAGE_MASK;
1825 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
84b7b8e7
FB
1826 tlb_flush_entry(&env->tlb_table[0][i], addr);
1827 tlb_flush_entry(&env->tlb_table[1][i], addr);
6fa4cea9
JM
1828#if (NB_MMU_MODES >= 3)
1829 tlb_flush_entry(&env->tlb_table[2][i], addr);
e37e6ee6
AJ
1830#endif
1831#if (NB_MMU_MODES >= 4)
6fa4cea9
JM
1832 tlb_flush_entry(&env->tlb_table[3][i], addr);
1833#endif
e37e6ee6
AJ
1834#if (NB_MMU_MODES >= 5)
1835 tlb_flush_entry(&env->tlb_table[4][i], addr);
6fa4cea9 1836#endif
0124311e 1837
5c751e99 1838 tlb_flush_jmp_cache(env, addr);
9fa3e853 1839
640f42e4 1840#ifdef CONFIG_KQEMU
0a962c02
FB
1841 if (env->kqemu_enabled) {
1842 kqemu_flush_page(env, addr);
1843 }
1844#endif
9fa3e853
FB
1845}
1846
9fa3e853
FB
1847/* update the TLBs so that writes to code in the virtual page 'addr'
1848 can be detected */
6a00d601 1849static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 1850{
5fafdf24 1851 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
1852 ram_addr + TARGET_PAGE_SIZE,
1853 CODE_DIRTY_FLAG);
9fa3e853
FB
1854}
1855
9fa3e853 1856/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 1857 tested for self modifying code */
5fafdf24 1858static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 1859 target_ulong vaddr)
9fa3e853 1860{
3a7d929e 1861 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1ccde1cb
FB
1862}
1863
5fafdf24 1864static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
1865 unsigned long start, unsigned long length)
1866{
1867 unsigned long addr;
84b7b8e7
FB
1868 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1869 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 1870 if ((addr - start) < length) {
0f459d16 1871 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
1872 }
1873 }
1874}
1875
5579c7f3 1876/* Note: start and end must be within the same ram block. */
3a7d929e 1877void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 1878 int dirty_flags)
1ccde1cb
FB
1879{
1880 CPUState *env;
4f2ac237 1881 unsigned long length, start1;
0a962c02
FB
1882 int i, mask, len;
1883 uint8_t *p;
1ccde1cb
FB
1884
1885 start &= TARGET_PAGE_MASK;
1886 end = TARGET_PAGE_ALIGN(end);
1887
1888 length = end - start;
1889 if (length == 0)
1890 return;
0a962c02 1891 len = length >> TARGET_PAGE_BITS;
640f42e4 1892#ifdef CONFIG_KQEMU
6a00d601
FB
1893 /* XXX: should not depend on cpu context */
1894 env = first_cpu;
3a7d929e 1895 if (env->kqemu_enabled) {
f23db169
FB
1896 ram_addr_t addr;
1897 addr = start;
1898 for(i = 0; i < len; i++) {
1899 kqemu_set_notdirty(env, addr);
1900 addr += TARGET_PAGE_SIZE;
1901 }
3a7d929e
FB
1902 }
1903#endif
f23db169
FB
1904 mask = ~dirty_flags;
1905 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1906 for(i = 0; i < len; i++)
1907 p[i] &= mask;
1908
1ccde1cb
FB
1909 /* we modify the TLB cache so that the dirty bit will be set again
1910 when accessing the range */
5579c7f3
PB
1911 start1 = (unsigned long)qemu_get_ram_ptr(start);
1912 /* Chek that we don't span multiple blocks - this breaks the
1913 address comparisons below. */
1914 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
1915 != (end - 1) - start) {
1916 abort();
1917 }
1918
6a00d601
FB
1919 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1920 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1921 tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length);
6a00d601 1922 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1923 tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length);
6fa4cea9
JM
1924#if (NB_MMU_MODES >= 3)
1925 for(i = 0; i < CPU_TLB_SIZE; i++)
1926 tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length);
e37e6ee6
AJ
1927#endif
1928#if (NB_MMU_MODES >= 4)
6fa4cea9
JM
1929 for(i = 0; i < CPU_TLB_SIZE; i++)
1930 tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length);
1931#endif
e37e6ee6
AJ
1932#if (NB_MMU_MODES >= 5)
1933 for(i = 0; i < CPU_TLB_SIZE; i++)
1934 tlb_reset_dirty_range(&env->tlb_table[4][i], start1, length);
6fa4cea9 1935#endif
6a00d601 1936 }
1ccde1cb
FB
1937}
1938
74576198
AL
1939int cpu_physical_memory_set_dirty_tracking(int enable)
1940{
1941 in_migration = enable;
b0a46a33
JK
1942 if (kvm_enabled()) {
1943 return kvm_set_migration_log(enable);
1944 }
74576198
AL
1945 return 0;
1946}
1947
1948int cpu_physical_memory_get_dirty_tracking(void)
1949{
1950 return in_migration;
1951}
1952
151f7749
JK
1953int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
1954 target_phys_addr_t end_addr)
2bec46dc 1955{
151f7749
JK
1956 int ret = 0;
1957
2bec46dc 1958 if (kvm_enabled())
151f7749
JK
1959 ret = kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
1960 return ret;
2bec46dc
AL
1961}
1962
3a7d929e
FB
1963static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1964{
1965 ram_addr_t ram_addr;
5579c7f3 1966 void *p;
3a7d929e 1967
84b7b8e7 1968 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5579c7f3
PB
1969 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
1970 + tlb_entry->addend);
1971 ram_addr = qemu_ram_addr_from_host(p);
3a7d929e 1972 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 1973 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
1974 }
1975 }
1976}
1977
1978/* update the TLB according to the current state of the dirty bits */
1979void cpu_tlb_update_dirty(CPUState *env)
1980{
1981 int i;
1982 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1983 tlb_update_dirty(&env->tlb_table[0][i]);
3a7d929e 1984 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1985 tlb_update_dirty(&env->tlb_table[1][i]);
6fa4cea9
JM
1986#if (NB_MMU_MODES >= 3)
1987 for(i = 0; i < CPU_TLB_SIZE; i++)
1988 tlb_update_dirty(&env->tlb_table[2][i]);
e37e6ee6
AJ
1989#endif
1990#if (NB_MMU_MODES >= 4)
6fa4cea9
JM
1991 for(i = 0; i < CPU_TLB_SIZE; i++)
1992 tlb_update_dirty(&env->tlb_table[3][i]);
1993#endif
e37e6ee6
AJ
1994#if (NB_MMU_MODES >= 5)
1995 for(i = 0; i < CPU_TLB_SIZE; i++)
1996 tlb_update_dirty(&env->tlb_table[4][i]);
6fa4cea9 1997#endif
3a7d929e
FB
1998}
1999
0f459d16 2000static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 2001{
0f459d16
PB
2002 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2003 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
2004}
2005
0f459d16
PB
2006/* update the TLB corresponding to virtual page vaddr
2007 so that it is no longer dirty */
2008static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 2009{
1ccde1cb
FB
2010 int i;
2011
0f459d16 2012 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 2013 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
0f459d16
PB
2014 tlb_set_dirty1(&env->tlb_table[0][i], vaddr);
2015 tlb_set_dirty1(&env->tlb_table[1][i], vaddr);
6fa4cea9 2016#if (NB_MMU_MODES >= 3)
0f459d16 2017 tlb_set_dirty1(&env->tlb_table[2][i], vaddr);
e37e6ee6
AJ
2018#endif
2019#if (NB_MMU_MODES >= 4)
0f459d16 2020 tlb_set_dirty1(&env->tlb_table[3][i], vaddr);
6fa4cea9 2021#endif
e37e6ee6
AJ
2022#if (NB_MMU_MODES >= 5)
2023 tlb_set_dirty1(&env->tlb_table[4][i], vaddr);
6fa4cea9 2024#endif
9fa3e853
FB
2025}
2026
59817ccb
FB
2027/* add a new TLB entry. At most one entry for a given virtual address
2028 is permitted. Return 0 if OK or 2 if the page could not be mapped
2029 (can only happen in non SOFTMMU mode for I/O pages or pages
2030 conflicting with the host address space). */
5fafdf24
TS
2031int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2032 target_phys_addr_t paddr, int prot,
6ebbf390 2033 int mmu_idx, int is_softmmu)
9fa3e853 2034{
92e873b9 2035 PhysPageDesc *p;
4f2ac237 2036 unsigned long pd;
9fa3e853 2037 unsigned int index;
4f2ac237 2038 target_ulong address;
0f459d16 2039 target_ulong code_address;
108c49b8 2040 target_phys_addr_t addend;
9fa3e853 2041 int ret;
84b7b8e7 2042 CPUTLBEntry *te;
a1d1bb31 2043 CPUWatchpoint *wp;
0f459d16 2044 target_phys_addr_t iotlb;
9fa3e853 2045
92e873b9 2046 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
2047 if (!p) {
2048 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
2049 } else {
2050 pd = p->phys_offset;
9fa3e853
FB
2051 }
2052#if defined(DEBUG_TLB)
6ebbf390
JM
2053 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
2054 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
9fa3e853
FB
2055#endif
2056
2057 ret = 0;
0f459d16
PB
2058 address = vaddr;
2059 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2060 /* IO memory case (romd handled later) */
2061 address |= TLB_MMIO;
2062 }
5579c7f3 2063 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
0f459d16
PB
2064 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2065 /* Normal RAM. */
2066 iotlb = pd & TARGET_PAGE_MASK;
2067 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2068 iotlb |= IO_MEM_NOTDIRTY;
2069 else
2070 iotlb |= IO_MEM_ROM;
2071 } else {
ccbb4d44 2072 /* IO handlers are currently passed a physical address.
0f459d16
PB
2073 It would be nice to pass an offset from the base address
2074 of that region. This would avoid having to special case RAM,
2075 and avoid full address decoding in every device.
2076 We can't use the high bits of pd for this because
2077 IO_MEM_ROMD uses these as a ram address. */
8da3ff18
PB
2078 iotlb = (pd & ~TARGET_PAGE_MASK);
2079 if (p) {
8da3ff18
PB
2080 iotlb += p->region_offset;
2081 } else {
2082 iotlb += paddr;
2083 }
0f459d16
PB
2084 }
2085
2086 code_address = address;
2087 /* Make accesses to pages with watchpoints go via the
2088 watchpoint trap routines. */
c0ce998e 2089 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
a1d1bb31 2090 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
0f459d16
PB
2091 iotlb = io_mem_watch + paddr;
2092 /* TODO: The memory case can be optimized by not trapping
2093 reads of pages with a write breakpoint. */
2094 address |= TLB_MMIO;
6658ffb8 2095 }
0f459d16 2096 }
d79acba4 2097
0f459d16
PB
2098 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2099 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2100 te = &env->tlb_table[mmu_idx][index];
2101 te->addend = addend - vaddr;
2102 if (prot & PAGE_READ) {
2103 te->addr_read = address;
2104 } else {
2105 te->addr_read = -1;
2106 }
5c751e99 2107
0f459d16
PB
2108 if (prot & PAGE_EXEC) {
2109 te->addr_code = code_address;
2110 } else {
2111 te->addr_code = -1;
2112 }
2113 if (prot & PAGE_WRITE) {
2114 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2115 (pd & IO_MEM_ROMD)) {
2116 /* Write access calls the I/O callback. */
2117 te->addr_write = address | TLB_MMIO;
2118 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2119 !cpu_physical_memory_is_dirty(pd)) {
2120 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 2121 } else {
0f459d16 2122 te->addr_write = address;
9fa3e853 2123 }
0f459d16
PB
2124 } else {
2125 te->addr_write = -1;
9fa3e853 2126 }
9fa3e853
FB
2127 return ret;
2128}
2129
0124311e
FB
2130#else
2131
ee8b7021 2132void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
2133{
2134}
2135
2e12669a 2136void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
2137{
2138}
2139
5fafdf24
TS
2140int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2141 target_phys_addr_t paddr, int prot,
6ebbf390 2142 int mmu_idx, int is_softmmu)
9fa3e853
FB
2143{
2144 return 0;
2145}
0124311e 2146
edf8e2af
MW
2147/*
2148 * Walks guest process memory "regions" one by one
2149 * and calls callback function 'fn' for each region.
2150 */
2151int walk_memory_regions(void *priv,
2152 int (*fn)(void *, unsigned long, unsigned long, unsigned long))
33417e70 2153{
9fa3e853 2154 unsigned long start, end;
edf8e2af 2155 PageDesc *p = NULL;
9fa3e853 2156 int i, j, prot, prot1;
edf8e2af 2157 int rc = 0;
33417e70 2158
edf8e2af 2159 start = end = -1;
9fa3e853 2160 prot = 0;
edf8e2af
MW
2161
2162 for (i = 0; i <= L1_SIZE; i++) {
2163 p = (i < L1_SIZE) ? l1_map[i] : NULL;
2164 for (j = 0; j < L2_SIZE; j++) {
2165 prot1 = (p == NULL) ? 0 : p[j].flags;
2166 /*
2167 * "region" is one continuous chunk of memory
2168 * that has same protection flags set.
2169 */
9fa3e853
FB
2170 if (prot1 != prot) {
2171 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2172 if (start != -1) {
edf8e2af
MW
2173 rc = (*fn)(priv, start, end, prot);
2174 /* callback can stop iteration by returning != 0 */
2175 if (rc != 0)
2176 return (rc);
9fa3e853
FB
2177 }
2178 if (prot1 != 0)
2179 start = end;
2180 else
2181 start = -1;
2182 prot = prot1;
2183 }
edf8e2af 2184 if (p == NULL)
9fa3e853
FB
2185 break;
2186 }
33417e70 2187 }
edf8e2af
MW
2188 return (rc);
2189}
2190
2191static int dump_region(void *priv, unsigned long start,
2192 unsigned long end, unsigned long prot)
2193{
2194 FILE *f = (FILE *)priv;
2195
2196 (void) fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
2197 start, end, end - start,
2198 ((prot & PAGE_READ) ? 'r' : '-'),
2199 ((prot & PAGE_WRITE) ? 'w' : '-'),
2200 ((prot & PAGE_EXEC) ? 'x' : '-'));
2201
2202 return (0);
2203}
2204
2205/* dump memory mappings */
2206void page_dump(FILE *f)
2207{
2208 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2209 "start", "end", "size", "prot");
2210 walk_memory_regions(f, dump_region);
33417e70
FB
2211}
2212
53a5960a 2213int page_get_flags(target_ulong address)
33417e70 2214{
9fa3e853
FB
2215 PageDesc *p;
2216
2217 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2218 if (!p)
9fa3e853
FB
2219 return 0;
2220 return p->flags;
2221}
2222
2223/* modify the flags of a page and invalidate the code if
ccbb4d44 2224 necessary. The flag PAGE_WRITE_ORG is positioned automatically
9fa3e853 2225 depending on PAGE_WRITE */
53a5960a 2226void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853
FB
2227{
2228 PageDesc *p;
53a5960a 2229 target_ulong addr;
9fa3e853 2230
c8a706fe 2231 /* mmap_lock should already be held. */
9fa3e853
FB
2232 start = start & TARGET_PAGE_MASK;
2233 end = TARGET_PAGE_ALIGN(end);
2234 if (flags & PAGE_WRITE)
2235 flags |= PAGE_WRITE_ORG;
9fa3e853
FB
2236 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2237 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
17e2377a
PB
2238 /* We may be called for host regions that are outside guest
2239 address space. */
2240 if (!p)
2241 return;
9fa3e853
FB
2242 /* if the write protection is set, then we invalidate the code
2243 inside */
5fafdf24 2244 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2245 (flags & PAGE_WRITE) &&
2246 p->first_tb) {
d720b93d 2247 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2248 }
2249 p->flags = flags;
2250 }
33417e70
FB
2251}
2252
3d97b40b
TS
2253int page_check_range(target_ulong start, target_ulong len, int flags)
2254{
2255 PageDesc *p;
2256 target_ulong end;
2257 target_ulong addr;
2258
55f280c9
AZ
2259 if (start + len < start)
2260 /* we've wrapped around */
2261 return -1;
2262
3d97b40b
TS
2263 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2264 start = start & TARGET_PAGE_MASK;
2265
3d97b40b
TS
2266 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2267 p = page_find(addr >> TARGET_PAGE_BITS);
2268 if( !p )
2269 return -1;
2270 if( !(p->flags & PAGE_VALID) )
2271 return -1;
2272
dae3270c 2273 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2274 return -1;
dae3270c
FB
2275 if (flags & PAGE_WRITE) {
2276 if (!(p->flags & PAGE_WRITE_ORG))
2277 return -1;
2278 /* unprotect the page if it was put read-only because it
2279 contains translated code */
2280 if (!(p->flags & PAGE_WRITE)) {
2281 if (!page_unprotect(addr, 0, NULL))
2282 return -1;
2283 }
2284 return 0;
2285 }
3d97b40b
TS
2286 }
2287 return 0;
2288}
2289
9fa3e853 2290/* called from signal handler: invalidate the code and unprotect the
ccbb4d44 2291 page. Return TRUE if the fault was successfully handled. */
53a5960a 2292int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853
FB
2293{
2294 unsigned int page_index, prot, pindex;
2295 PageDesc *p, *p1;
53a5960a 2296 target_ulong host_start, host_end, addr;
9fa3e853 2297
c8a706fe
PB
2298 /* Technically this isn't safe inside a signal handler. However we
2299 know this only ever happens in a synchronous SEGV handler, so in
2300 practice it seems to be ok. */
2301 mmap_lock();
2302
83fb7adf 2303 host_start = address & qemu_host_page_mask;
9fa3e853
FB
2304 page_index = host_start >> TARGET_PAGE_BITS;
2305 p1 = page_find(page_index);
c8a706fe
PB
2306 if (!p1) {
2307 mmap_unlock();
9fa3e853 2308 return 0;
c8a706fe 2309 }
83fb7adf 2310 host_end = host_start + qemu_host_page_size;
9fa3e853
FB
2311 p = p1;
2312 prot = 0;
2313 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2314 prot |= p->flags;
2315 p++;
2316 }
2317 /* if the page was really writable, then we change its
2318 protection back to writable */
2319 if (prot & PAGE_WRITE_ORG) {
2320 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2321 if (!(p1[pindex].flags & PAGE_WRITE)) {
5fafdf24 2322 mprotect((void *)g2h(host_start), qemu_host_page_size,
9fa3e853
FB
2323 (prot & PAGE_BITS) | PAGE_WRITE);
2324 p1[pindex].flags |= PAGE_WRITE;
2325 /* and since the content will be modified, we must invalidate
2326 the corresponding translated code. */
d720b93d 2327 tb_invalidate_phys_page(address, pc, puc);
9fa3e853
FB
2328#ifdef DEBUG_TB_CHECK
2329 tb_invalidate_check(address);
2330#endif
c8a706fe 2331 mmap_unlock();
9fa3e853
FB
2332 return 1;
2333 }
2334 }
c8a706fe 2335 mmap_unlock();
9fa3e853
FB
2336 return 0;
2337}
2338
6a00d601
FB
2339static inline void tlb_set_dirty(CPUState *env,
2340 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2341{
2342}
9fa3e853
FB
2343#endif /* defined(CONFIG_USER_ONLY) */
2344
e2eef170 2345#if !defined(CONFIG_USER_ONLY)
8da3ff18 2346
db7b5426 2347static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
8da3ff18 2348 ram_addr_t memory, ram_addr_t region_offset);
00f82b8a 2349static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
8da3ff18 2350 ram_addr_t orig_memory, ram_addr_t region_offset);
db7b5426
BS
2351#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2352 need_subpage) \
2353 do { \
2354 if (addr > start_addr) \
2355 start_addr2 = 0; \
2356 else { \
2357 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2358 if (start_addr2 > 0) \
2359 need_subpage = 1; \
2360 } \
2361 \
49e9fba2 2362 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2363 end_addr2 = TARGET_PAGE_SIZE - 1; \
2364 else { \
2365 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2366 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2367 need_subpage = 1; \
2368 } \
2369 } while (0)
2370
33417e70
FB
2371/* register physical memory. 'size' must be a multiple of the target
2372 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
8da3ff18
PB
2373 io memory page. The address used when calling the IO function is
2374 the offset from the start of the region, plus region_offset. Both
ccbb4d44 2375 start_addr and region_offset are rounded down to a page boundary
8da3ff18
PB
2376 before calculating this offset. This should not be a problem unless
2377 the low bits of start_addr and region_offset differ. */
2378void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2379 ram_addr_t size,
2380 ram_addr_t phys_offset,
2381 ram_addr_t region_offset)
33417e70 2382{
108c49b8 2383 target_phys_addr_t addr, end_addr;
92e873b9 2384 PhysPageDesc *p;
9d42037b 2385 CPUState *env;
00f82b8a 2386 ram_addr_t orig_size = size;
db7b5426 2387 void *subpage;
33417e70 2388
640f42e4 2389#ifdef CONFIG_KQEMU
da260249
FB
2390 /* XXX: should not depend on cpu context */
2391 env = first_cpu;
2392 if (env->kqemu_enabled) {
2393 kqemu_set_phys_mem(start_addr, size, phys_offset);
2394 }
2395#endif
7ba1e619
AL
2396 if (kvm_enabled())
2397 kvm_set_phys_mem(start_addr, size, phys_offset);
2398
67c4d23c
PB
2399 if (phys_offset == IO_MEM_UNASSIGNED) {
2400 region_offset = start_addr;
2401 }
8da3ff18 2402 region_offset &= TARGET_PAGE_MASK;
5fd386f6 2403 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
49e9fba2
BS
2404 end_addr = start_addr + (target_phys_addr_t)size;
2405 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
db7b5426
BS
2406 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2407 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
00f82b8a 2408 ram_addr_t orig_memory = p->phys_offset;
db7b5426
BS
2409 target_phys_addr_t start_addr2, end_addr2;
2410 int need_subpage = 0;
2411
2412 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2413 need_subpage);
4254fab8 2414 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426
BS
2415 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2416 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18
PB
2417 &p->phys_offset, orig_memory,
2418 p->region_offset);
db7b5426
BS
2419 } else {
2420 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2421 >> IO_MEM_SHIFT];
2422 }
8da3ff18
PB
2423 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2424 region_offset);
2425 p->region_offset = 0;
db7b5426
BS
2426 } else {
2427 p->phys_offset = phys_offset;
2428 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2429 (phys_offset & IO_MEM_ROMD))
2430 phys_offset += TARGET_PAGE_SIZE;
2431 }
2432 } else {
2433 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2434 p->phys_offset = phys_offset;
8da3ff18 2435 p->region_offset = region_offset;
db7b5426 2436 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
8da3ff18 2437 (phys_offset & IO_MEM_ROMD)) {
db7b5426 2438 phys_offset += TARGET_PAGE_SIZE;
0e8f0967 2439 } else {
db7b5426
BS
2440 target_phys_addr_t start_addr2, end_addr2;
2441 int need_subpage = 0;
2442
2443 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2444 end_addr2, need_subpage);
2445
4254fab8 2446 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426 2447 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18 2448 &p->phys_offset, IO_MEM_UNASSIGNED,
67c4d23c 2449 addr & TARGET_PAGE_MASK);
db7b5426 2450 subpage_register(subpage, start_addr2, end_addr2,
8da3ff18
PB
2451 phys_offset, region_offset);
2452 p->region_offset = 0;
db7b5426
BS
2453 }
2454 }
2455 }
8da3ff18 2456 region_offset += TARGET_PAGE_SIZE;
33417e70 2457 }
3b46e624 2458
9d42037b
FB
2459 /* since each CPU stores ram addresses in its TLB cache, we must
2460 reset the modified entries */
2461 /* XXX: slow ! */
2462 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2463 tlb_flush(env, 1);
2464 }
33417e70
FB
2465}
2466
ba863458 2467/* XXX: temporary until new memory mapping API */
00f82b8a 2468ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
ba863458
FB
2469{
2470 PhysPageDesc *p;
2471
2472 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2473 if (!p)
2474 return IO_MEM_UNASSIGNED;
2475 return p->phys_offset;
2476}
2477
f65ed4c1
AL
2478void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2479{
2480 if (kvm_enabled())
2481 kvm_coalesce_mmio_region(addr, size);
2482}
2483
2484void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2485{
2486 if (kvm_enabled())
2487 kvm_uncoalesce_mmio_region(addr, size);
2488}
2489
640f42e4 2490#ifdef CONFIG_KQEMU
e9a1ab19 2491/* XXX: better than nothing */
94a6b54f 2492static ram_addr_t kqemu_ram_alloc(ram_addr_t size)
e9a1ab19
FB
2493{
2494 ram_addr_t addr;
94a6b54f 2495 if ((last_ram_offset + size) > kqemu_phys_ram_size) {
012a7045 2496 fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 ")\n",
94a6b54f 2497 (uint64_t)size, (uint64_t)kqemu_phys_ram_size);
e9a1ab19
FB
2498 abort();
2499 }
94a6b54f
PB
2500 addr = last_ram_offset;
2501 last_ram_offset = TARGET_PAGE_ALIGN(last_ram_offset + size);
e9a1ab19
FB
2502 return addr;
2503}
94a6b54f
PB
2504#endif
2505
2506ram_addr_t qemu_ram_alloc(ram_addr_t size)
2507{
2508 RAMBlock *new_block;
2509
640f42e4 2510#ifdef CONFIG_KQEMU
94a6b54f
PB
2511 if (kqemu_phys_ram_base) {
2512 return kqemu_ram_alloc(size);
2513 }
2514#endif
2515
2516 size = TARGET_PAGE_ALIGN(size);
2517 new_block = qemu_malloc(sizeof(*new_block));
2518
2519 new_block->host = qemu_vmalloc(size);
2520 new_block->offset = last_ram_offset;
2521 new_block->length = size;
2522
2523 new_block->next = ram_blocks;
2524 ram_blocks = new_block;
2525
2526 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2527 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2528 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2529 0xff, size >> TARGET_PAGE_BITS);
2530
2531 last_ram_offset += size;
2532
6f0437e8
JK
2533 if (kvm_enabled())
2534 kvm_setup_guest_memory(new_block->host, size);
2535
94a6b54f
PB
2536 return new_block->offset;
2537}
e9a1ab19
FB
2538
2539void qemu_ram_free(ram_addr_t addr)
2540{
94a6b54f 2541 /* TODO: implement this. */
e9a1ab19
FB
2542}
2543
dc828ca1 2544/* Return a host pointer to ram allocated with qemu_ram_alloc.
5579c7f3
PB
2545 With the exception of the softmmu code in this file, this should
2546 only be used for local memory (e.g. video ram) that the device owns,
2547 and knows it isn't going to access beyond the end of the block.
2548
2549 It should not be used for general purpose DMA.
2550 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2551 */
dc828ca1
PB
2552void *qemu_get_ram_ptr(ram_addr_t addr)
2553{
94a6b54f
PB
2554 RAMBlock *prev;
2555 RAMBlock **prevp;
2556 RAMBlock *block;
2557
640f42e4 2558#ifdef CONFIG_KQEMU
94a6b54f
PB
2559 if (kqemu_phys_ram_base) {
2560 return kqemu_phys_ram_base + addr;
2561 }
2562#endif
2563
2564 prev = NULL;
2565 prevp = &ram_blocks;
2566 block = ram_blocks;
2567 while (block && (block->offset > addr
2568 || block->offset + block->length <= addr)) {
2569 if (prev)
2570 prevp = &prev->next;
2571 prev = block;
2572 block = block->next;
2573 }
2574 if (!block) {
2575 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2576 abort();
2577 }
2578 /* Move this entry to to start of the list. */
2579 if (prev) {
2580 prev->next = block->next;
2581 block->next = *prevp;
2582 *prevp = block;
2583 }
2584 return block->host + (addr - block->offset);
dc828ca1
PB
2585}
2586
5579c7f3
PB
2587/* Some of the softmmu routines need to translate from a host pointer
2588 (typically a TLB entry) back to a ram offset. */
2589ram_addr_t qemu_ram_addr_from_host(void *ptr)
2590{
94a6b54f
PB
2591 RAMBlock *prev;
2592 RAMBlock **prevp;
2593 RAMBlock *block;
2594 uint8_t *host = ptr;
2595
640f42e4 2596#ifdef CONFIG_KQEMU
94a6b54f
PB
2597 if (kqemu_phys_ram_base) {
2598 return host - kqemu_phys_ram_base;
2599 }
2600#endif
2601
2602 prev = NULL;
2603 prevp = &ram_blocks;
2604 block = ram_blocks;
2605 while (block && (block->host > host
2606 || block->host + block->length <= host)) {
2607 if (prev)
2608 prevp = &prev->next;
2609 prev = block;
2610 block = block->next;
2611 }
2612 if (!block) {
2613 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2614 abort();
2615 }
2616 return block->offset + (host - block->host);
5579c7f3
PB
2617}
2618
a4193c8a 2619static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 2620{
67d3b957 2621#ifdef DEBUG_UNASSIGNED
ab3d1727 2622 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316 2623#endif
0a6f8a6d 2624#if defined(TARGET_SPARC)
e18231a3
BS
2625 do_unassigned_access(addr, 0, 0, 0, 1);
2626#endif
2627 return 0;
2628}
2629
2630static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2631{
2632#ifdef DEBUG_UNASSIGNED
2633 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2634#endif
0a6f8a6d 2635#if defined(TARGET_SPARC)
e18231a3
BS
2636 do_unassigned_access(addr, 0, 0, 0, 2);
2637#endif
2638 return 0;
2639}
2640
2641static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2642{
2643#ifdef DEBUG_UNASSIGNED
2644 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2645#endif
0a6f8a6d 2646#if defined(TARGET_SPARC)
e18231a3 2647 do_unassigned_access(addr, 0, 0, 0, 4);
67d3b957 2648#endif
33417e70
FB
2649 return 0;
2650}
2651
a4193c8a 2652static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 2653{
67d3b957 2654#ifdef DEBUG_UNASSIGNED
ab3d1727 2655 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 2656#endif
0a6f8a6d 2657#if defined(TARGET_SPARC)
e18231a3
BS
2658 do_unassigned_access(addr, 1, 0, 0, 1);
2659#endif
2660}
2661
2662static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2663{
2664#ifdef DEBUG_UNASSIGNED
2665 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2666#endif
0a6f8a6d 2667#if defined(TARGET_SPARC)
e18231a3
BS
2668 do_unassigned_access(addr, 1, 0, 0, 2);
2669#endif
2670}
2671
2672static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2673{
2674#ifdef DEBUG_UNASSIGNED
2675 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2676#endif
0a6f8a6d 2677#if defined(TARGET_SPARC)
e18231a3 2678 do_unassigned_access(addr, 1, 0, 0, 4);
b4f0a316 2679#endif
33417e70
FB
2680}
2681
2682static CPUReadMemoryFunc *unassigned_mem_read[3] = {
2683 unassigned_mem_readb,
e18231a3
BS
2684 unassigned_mem_readw,
2685 unassigned_mem_readl,
33417e70
FB
2686};
2687
2688static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
2689 unassigned_mem_writeb,
e18231a3
BS
2690 unassigned_mem_writew,
2691 unassigned_mem_writel,
33417e70
FB
2692};
2693
0f459d16
PB
2694static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2695 uint32_t val)
9fa3e853 2696{
3a7d929e 2697 int dirty_flags;
3a7d929e
FB
2698 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2699 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2700#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2701 tb_invalidate_phys_page_fast(ram_addr, 1);
2702 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2703#endif
3a7d929e 2704 }
5579c7f3 2705 stb_p(qemu_get_ram_ptr(ram_addr), val);
640f42e4 2706#ifdef CONFIG_KQEMU
f32fc648
FB
2707 if (cpu_single_env->kqemu_enabled &&
2708 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2709 kqemu_modify_page(cpu_single_env, ram_addr);
2710#endif
f23db169
FB
2711 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2712 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2713 /* we remove the notdirty callback only if the code has been
2714 flushed */
2715 if (dirty_flags == 0xff)
2e70f6ef 2716 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2717}
2718
0f459d16
PB
2719static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2720 uint32_t val)
9fa3e853 2721{
3a7d929e 2722 int dirty_flags;
3a7d929e
FB
2723 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2724 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2725#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2726 tb_invalidate_phys_page_fast(ram_addr, 2);
2727 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2728#endif
3a7d929e 2729 }
5579c7f3 2730 stw_p(qemu_get_ram_ptr(ram_addr), val);
640f42e4 2731#ifdef CONFIG_KQEMU
f32fc648
FB
2732 if (cpu_single_env->kqemu_enabled &&
2733 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2734 kqemu_modify_page(cpu_single_env, ram_addr);
2735#endif
f23db169
FB
2736 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2737 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2738 /* we remove the notdirty callback only if the code has been
2739 flushed */
2740 if (dirty_flags == 0xff)
2e70f6ef 2741 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2742}
2743
0f459d16
PB
2744static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2745 uint32_t val)
9fa3e853 2746{
3a7d929e 2747 int dirty_flags;
3a7d929e
FB
2748 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2749 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2750#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2751 tb_invalidate_phys_page_fast(ram_addr, 4);
2752 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2753#endif
3a7d929e 2754 }
5579c7f3 2755 stl_p(qemu_get_ram_ptr(ram_addr), val);
640f42e4 2756#ifdef CONFIG_KQEMU
f32fc648
FB
2757 if (cpu_single_env->kqemu_enabled &&
2758 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2759 kqemu_modify_page(cpu_single_env, ram_addr);
2760#endif
f23db169
FB
2761 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2762 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2763 /* we remove the notdirty callback only if the code has been
2764 flushed */
2765 if (dirty_flags == 0xff)
2e70f6ef 2766 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2767}
2768
3a7d929e 2769static CPUReadMemoryFunc *error_mem_read[3] = {
9fa3e853
FB
2770 NULL, /* never used */
2771 NULL, /* never used */
2772 NULL, /* never used */
2773};
2774
1ccde1cb
FB
2775static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
2776 notdirty_mem_writeb,
2777 notdirty_mem_writew,
2778 notdirty_mem_writel,
2779};
2780
0f459d16 2781/* Generate a debug exception if a watchpoint has been hit. */
b4051334 2782static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16
PB
2783{
2784 CPUState *env = cpu_single_env;
06d55cc1
AL
2785 target_ulong pc, cs_base;
2786 TranslationBlock *tb;
0f459d16 2787 target_ulong vaddr;
a1d1bb31 2788 CPUWatchpoint *wp;
06d55cc1 2789 int cpu_flags;
0f459d16 2790
06d55cc1
AL
2791 if (env->watchpoint_hit) {
2792 /* We re-entered the check after replacing the TB. Now raise
2793 * the debug interrupt so that is will trigger after the
2794 * current instruction. */
2795 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2796 return;
2797 }
2e70f6ef 2798 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
c0ce998e 2799 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
2800 if ((vaddr == (wp->vaddr & len_mask) ||
2801 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
2802 wp->flags |= BP_WATCHPOINT_HIT;
2803 if (!env->watchpoint_hit) {
2804 env->watchpoint_hit = wp;
2805 tb = tb_find_pc(env->mem_io_pc);
2806 if (!tb) {
2807 cpu_abort(env, "check_watchpoint: could not find TB for "
2808 "pc=%p", (void *)env->mem_io_pc);
2809 }
2810 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
2811 tb_phys_invalidate(tb, -1);
2812 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2813 env->exception_index = EXCP_DEBUG;
2814 } else {
2815 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2816 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2817 }
2818 cpu_resume_from_signal(env, NULL);
06d55cc1 2819 }
6e140f28
AL
2820 } else {
2821 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2822 }
2823 }
2824}
2825
6658ffb8
PB
2826/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2827 so these check for a hit then pass through to the normal out-of-line
2828 phys routines. */
2829static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2830{
b4051334 2831 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
6658ffb8
PB
2832 return ldub_phys(addr);
2833}
2834
2835static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2836{
b4051334 2837 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
6658ffb8
PB
2838 return lduw_phys(addr);
2839}
2840
2841static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2842{
b4051334 2843 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
6658ffb8
PB
2844 return ldl_phys(addr);
2845}
2846
6658ffb8
PB
2847static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2848 uint32_t val)
2849{
b4051334 2850 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
6658ffb8
PB
2851 stb_phys(addr, val);
2852}
2853
2854static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2855 uint32_t val)
2856{
b4051334 2857 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
6658ffb8
PB
2858 stw_phys(addr, val);
2859}
2860
2861static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2862 uint32_t val)
2863{
b4051334 2864 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
6658ffb8
PB
2865 stl_phys(addr, val);
2866}
2867
2868static CPUReadMemoryFunc *watch_mem_read[3] = {
2869 watch_mem_readb,
2870 watch_mem_readw,
2871 watch_mem_readl,
2872};
2873
2874static CPUWriteMemoryFunc *watch_mem_write[3] = {
2875 watch_mem_writeb,
2876 watch_mem_writew,
2877 watch_mem_writel,
2878};
6658ffb8 2879
db7b5426
BS
2880static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2881 unsigned int len)
2882{
db7b5426
BS
2883 uint32_t ret;
2884 unsigned int idx;
2885
8da3ff18 2886 idx = SUBPAGE_IDX(addr);
db7b5426
BS
2887#if defined(DEBUG_SUBPAGE)
2888 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2889 mmio, len, addr, idx);
2890#endif
8da3ff18
PB
2891 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
2892 addr + mmio->region_offset[idx][0][len]);
db7b5426
BS
2893
2894 return ret;
2895}
2896
2897static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2898 uint32_t value, unsigned int len)
2899{
db7b5426
BS
2900 unsigned int idx;
2901
8da3ff18 2902 idx = SUBPAGE_IDX(addr);
db7b5426
BS
2903#if defined(DEBUG_SUBPAGE)
2904 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2905 mmio, len, addr, idx, value);
2906#endif
8da3ff18
PB
2907 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
2908 addr + mmio->region_offset[idx][1][len],
2909 value);
db7b5426
BS
2910}
2911
2912static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2913{
2914#if defined(DEBUG_SUBPAGE)
2915 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2916#endif
2917
2918 return subpage_readlen(opaque, addr, 0);
2919}
2920
2921static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2922 uint32_t value)
2923{
2924#if defined(DEBUG_SUBPAGE)
2925 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2926#endif
2927 subpage_writelen(opaque, addr, value, 0);
2928}
2929
2930static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2931{
2932#if defined(DEBUG_SUBPAGE)
2933 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2934#endif
2935
2936 return subpage_readlen(opaque, addr, 1);
2937}
2938
2939static void subpage_writew (void *opaque, target_phys_addr_t addr,
2940 uint32_t value)
2941{
2942#if defined(DEBUG_SUBPAGE)
2943 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2944#endif
2945 subpage_writelen(opaque, addr, value, 1);
2946}
2947
2948static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2949{
2950#if defined(DEBUG_SUBPAGE)
2951 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2952#endif
2953
2954 return subpage_readlen(opaque, addr, 2);
2955}
2956
2957static void subpage_writel (void *opaque,
2958 target_phys_addr_t addr, uint32_t value)
2959{
2960#if defined(DEBUG_SUBPAGE)
2961 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2962#endif
2963 subpage_writelen(opaque, addr, value, 2);
2964}
2965
2966static CPUReadMemoryFunc *subpage_read[] = {
2967 &subpage_readb,
2968 &subpage_readw,
2969 &subpage_readl,
2970};
2971
2972static CPUWriteMemoryFunc *subpage_write[] = {
2973 &subpage_writeb,
2974 &subpage_writew,
2975 &subpage_writel,
2976};
2977
2978static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
8da3ff18 2979 ram_addr_t memory, ram_addr_t region_offset)
db7b5426
BS
2980{
2981 int idx, eidx;
4254fab8 2982 unsigned int i;
db7b5426
BS
2983
2984 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2985 return -1;
2986 idx = SUBPAGE_IDX(start);
2987 eidx = SUBPAGE_IDX(end);
2988#if defined(DEBUG_SUBPAGE)
2989 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__,
2990 mmio, start, end, idx, eidx, memory);
2991#endif
2992 memory >>= IO_MEM_SHIFT;
2993 for (; idx <= eidx; idx++) {
4254fab8 2994 for (i = 0; i < 4; i++) {
3ee89922
BS
2995 if (io_mem_read[memory][i]) {
2996 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2997 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
8da3ff18 2998 mmio->region_offset[idx][0][i] = region_offset;
3ee89922
BS
2999 }
3000 if (io_mem_write[memory][i]) {
3001 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
3002 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
8da3ff18 3003 mmio->region_offset[idx][1][i] = region_offset;
3ee89922 3004 }
4254fab8 3005 }
db7b5426
BS
3006 }
3007
3008 return 0;
3009}
3010
00f82b8a 3011static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
8da3ff18 3012 ram_addr_t orig_memory, ram_addr_t region_offset)
db7b5426
BS
3013{
3014 subpage_t *mmio;
3015 int subpage_memory;
3016
3017 mmio = qemu_mallocz(sizeof(subpage_t));
1eec614b
AL
3018
3019 mmio->base = base;
1eed09cb 3020 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
db7b5426 3021#if defined(DEBUG_SUBPAGE)
1eec614b
AL
3022 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3023 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 3024#endif
1eec614b
AL
3025 *phys = subpage_memory | IO_MEM_SUBPAGE;
3026 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
8da3ff18 3027 region_offset);
db7b5426
BS
3028
3029 return mmio;
3030}
3031
88715657
AL
3032static int get_free_io_mem_idx(void)
3033{
3034 int i;
3035
3036 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3037 if (!io_mem_used[i]) {
3038 io_mem_used[i] = 1;
3039 return i;
3040 }
3041
3042 return -1;
3043}
3044
33417e70
FB
3045/* mem_read and mem_write are arrays of functions containing the
3046 function to access byte (index 0), word (index 1) and dword (index
0b4e6e3e 3047 2). Functions can be omitted with a NULL function pointer.
3ee89922 3048 If io_index is non zero, the corresponding io zone is
4254fab8
BS
3049 modified. If it is zero, a new io zone is allocated. The return
3050 value can be used with cpu_register_physical_memory(). (-1) is
3051 returned if error. */
1eed09cb
AK
3052static int cpu_register_io_memory_fixed(int io_index,
3053 CPUReadMemoryFunc **mem_read,
3054 CPUWriteMemoryFunc **mem_write,
3055 void *opaque)
33417e70 3056{
4254fab8 3057 int i, subwidth = 0;
33417e70
FB
3058
3059 if (io_index <= 0) {
88715657
AL
3060 io_index = get_free_io_mem_idx();
3061 if (io_index == -1)
3062 return io_index;
33417e70 3063 } else {
1eed09cb 3064 io_index >>= IO_MEM_SHIFT;
33417e70
FB
3065 if (io_index >= IO_MEM_NB_ENTRIES)
3066 return -1;
3067 }
b5ff1b31 3068
33417e70 3069 for(i = 0;i < 3; i++) {
4254fab8
BS
3070 if (!mem_read[i] || !mem_write[i])
3071 subwidth = IO_MEM_SUBWIDTH;
33417e70
FB
3072 io_mem_read[io_index][i] = mem_read[i];
3073 io_mem_write[io_index][i] = mem_write[i];
3074 }
a4193c8a 3075 io_mem_opaque[io_index] = opaque;
4254fab8 3076 return (io_index << IO_MEM_SHIFT) | subwidth;
33417e70 3077}
61382a50 3078
1eed09cb
AK
3079int cpu_register_io_memory(CPUReadMemoryFunc **mem_read,
3080 CPUWriteMemoryFunc **mem_write,
3081 void *opaque)
3082{
3083 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
3084}
3085
88715657
AL
3086void cpu_unregister_io_memory(int io_table_address)
3087{
3088 int i;
3089 int io_index = io_table_address >> IO_MEM_SHIFT;
3090
3091 for (i=0;i < 3; i++) {
3092 io_mem_read[io_index][i] = unassigned_mem_read[i];
3093 io_mem_write[io_index][i] = unassigned_mem_write[i];
3094 }
3095 io_mem_opaque[io_index] = NULL;
3096 io_mem_used[io_index] = 0;
3097}
3098
e9179ce1
AK
3099static void io_mem_init(void)
3100{
3101 int i;
3102
3103 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
3104 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
3105 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
3106 for (i=0; i<5; i++)
3107 io_mem_used[i] = 1;
3108
3109 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3110 watch_mem_write, NULL);
3111#ifdef CONFIG_KQEMU
3112 if (kqemu_phys_ram_base) {
3113 /* alloc dirty bits array */
3114 phys_ram_dirty = qemu_vmalloc(kqemu_phys_ram_size >> TARGET_PAGE_BITS);
3115 memset(phys_ram_dirty, 0xff, kqemu_phys_ram_size >> TARGET_PAGE_BITS);
3116 }
3117#endif
3118}
3119
e2eef170
PB
3120#endif /* !defined(CONFIG_USER_ONLY) */
3121
13eb76e0
FB
3122/* physical memory access (slow version, mainly for debug) */
3123#if defined(CONFIG_USER_ONLY)
5fafdf24 3124void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3125 int len, int is_write)
3126{
3127 int l, flags;
3128 target_ulong page;
53a5960a 3129 void * p;
13eb76e0
FB
3130
3131 while (len > 0) {
3132 page = addr & TARGET_PAGE_MASK;
3133 l = (page + TARGET_PAGE_SIZE) - addr;
3134 if (l > len)
3135 l = len;
3136 flags = page_get_flags(page);
3137 if (!(flags & PAGE_VALID))
3138 return;
3139 if (is_write) {
3140 if (!(flags & PAGE_WRITE))
3141 return;
579a97f7 3142 /* XXX: this code should not depend on lock_user */
72fb7daa 3143 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
579a97f7
FB
3144 /* FIXME - should this return an error rather than just fail? */
3145 return;
72fb7daa
AJ
3146 memcpy(p, buf, l);
3147 unlock_user(p, addr, l);
13eb76e0
FB
3148 } else {
3149 if (!(flags & PAGE_READ))
3150 return;
579a97f7 3151 /* XXX: this code should not depend on lock_user */
72fb7daa 3152 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
579a97f7
FB
3153 /* FIXME - should this return an error rather than just fail? */
3154 return;
72fb7daa 3155 memcpy(buf, p, l);
5b257578 3156 unlock_user(p, addr, 0);
13eb76e0
FB
3157 }
3158 len -= l;
3159 buf += l;
3160 addr += l;
3161 }
3162}
8df1cd07 3163
13eb76e0 3164#else
5fafdf24 3165void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3166 int len, int is_write)
3167{
3168 int l, io_index;
3169 uint8_t *ptr;
3170 uint32_t val;
2e12669a
FB
3171 target_phys_addr_t page;
3172 unsigned long pd;
92e873b9 3173 PhysPageDesc *p;
3b46e624 3174
13eb76e0
FB
3175 while (len > 0) {
3176 page = addr & TARGET_PAGE_MASK;
3177 l = (page + TARGET_PAGE_SIZE) - addr;
3178 if (l > len)
3179 l = len;
92e873b9 3180 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
3181 if (!p) {
3182 pd = IO_MEM_UNASSIGNED;
3183 } else {
3184 pd = p->phys_offset;
3185 }
3b46e624 3186
13eb76e0 3187 if (is_write) {
3a7d929e 3188 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
6c2934db 3189 target_phys_addr_t addr1 = addr;
13eb76e0 3190 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3191 if (p)
6c2934db 3192 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
6a00d601
FB
3193 /* XXX: could force cpu_single_env to NULL to avoid
3194 potential bugs */
6c2934db 3195 if (l >= 4 && ((addr1 & 3) == 0)) {
1c213d19 3196 /* 32 bit write access */
c27004ec 3197 val = ldl_p(buf);
6c2934db 3198 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
13eb76e0 3199 l = 4;
6c2934db 3200 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1c213d19 3201 /* 16 bit write access */
c27004ec 3202 val = lduw_p(buf);
6c2934db 3203 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3204 l = 2;
3205 } else {
1c213d19 3206 /* 8 bit write access */
c27004ec 3207 val = ldub_p(buf);
6c2934db 3208 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3209 l = 1;
3210 }
3211 } else {
b448f2f3
FB
3212 unsigned long addr1;
3213 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 3214 /* RAM case */
5579c7f3 3215 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 3216 memcpy(ptr, buf, l);
3a7d929e
FB
3217 if (!cpu_physical_memory_is_dirty(addr1)) {
3218 /* invalidate code */
3219 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3220 /* set dirty bit */
5fafdf24 3221 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
f23db169 3222 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3223 }
13eb76e0
FB
3224 }
3225 } else {
5fafdf24 3226 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3227 !(pd & IO_MEM_ROMD)) {
6c2934db 3228 target_phys_addr_t addr1 = addr;
13eb76e0
FB
3229 /* I/O case */
3230 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3231 if (p)
6c2934db
AJ
3232 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3233 if (l >= 4 && ((addr1 & 3) == 0)) {
13eb76e0 3234 /* 32 bit read access */
6c2934db 3235 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
c27004ec 3236 stl_p(buf, val);
13eb76e0 3237 l = 4;
6c2934db 3238 } else if (l >= 2 && ((addr1 & 1) == 0)) {
13eb76e0 3239 /* 16 bit read access */
6c2934db 3240 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
c27004ec 3241 stw_p(buf, val);
13eb76e0
FB
3242 l = 2;
3243 } else {
1c213d19 3244 /* 8 bit read access */
6c2934db 3245 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
c27004ec 3246 stb_p(buf, val);
13eb76e0
FB
3247 l = 1;
3248 }
3249 } else {
3250 /* RAM case */
5579c7f3 3251 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
13eb76e0
FB
3252 (addr & ~TARGET_PAGE_MASK);
3253 memcpy(buf, ptr, l);
3254 }
3255 }
3256 len -= l;
3257 buf += l;
3258 addr += l;
3259 }
3260}
8df1cd07 3261
d0ecd2aa 3262/* used for ROM loading : can write in RAM and ROM */
5fafdf24 3263void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
3264 const uint8_t *buf, int len)
3265{
3266 int l;
3267 uint8_t *ptr;
3268 target_phys_addr_t page;
3269 unsigned long pd;
3270 PhysPageDesc *p;
3b46e624 3271
d0ecd2aa
FB
3272 while (len > 0) {
3273 page = addr & TARGET_PAGE_MASK;
3274 l = (page + TARGET_PAGE_SIZE) - addr;
3275 if (l > len)
3276 l = len;
3277 p = phys_page_find(page >> TARGET_PAGE_BITS);
3278 if (!p) {
3279 pd = IO_MEM_UNASSIGNED;
3280 } else {
3281 pd = p->phys_offset;
3282 }
3b46e624 3283
d0ecd2aa 3284 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
3285 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3286 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
3287 /* do nothing */
3288 } else {
3289 unsigned long addr1;
3290 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3291 /* ROM/RAM case */
5579c7f3 3292 ptr = qemu_get_ram_ptr(addr1);
d0ecd2aa
FB
3293 memcpy(ptr, buf, l);
3294 }
3295 len -= l;
3296 buf += l;
3297 addr += l;
3298 }
3299}
3300
6d16c2f8
AL
3301typedef struct {
3302 void *buffer;
3303 target_phys_addr_t addr;
3304 target_phys_addr_t len;
3305} BounceBuffer;
3306
3307static BounceBuffer bounce;
3308
ba223c29
AL
3309typedef struct MapClient {
3310 void *opaque;
3311 void (*callback)(void *opaque);
3312 LIST_ENTRY(MapClient) link;
3313} MapClient;
3314
3315static LIST_HEAD(map_client_list, MapClient) map_client_list
3316 = LIST_HEAD_INITIALIZER(map_client_list);
3317
3318void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3319{
3320 MapClient *client = qemu_malloc(sizeof(*client));
3321
3322 client->opaque = opaque;
3323 client->callback = callback;
3324 LIST_INSERT_HEAD(&map_client_list, client, link);
3325 return client;
3326}
3327
3328void cpu_unregister_map_client(void *_client)
3329{
3330 MapClient *client = (MapClient *)_client;
3331
3332 LIST_REMOVE(client, link);
3333}
3334
3335static void cpu_notify_map_clients(void)
3336{
3337 MapClient *client;
3338
3339 while (!LIST_EMPTY(&map_client_list)) {
3340 client = LIST_FIRST(&map_client_list);
3341 client->callback(client->opaque);
3342 LIST_REMOVE(client, link);
3343 }
3344}
3345
6d16c2f8
AL
3346/* Map a physical memory region into a host virtual address.
3347 * May map a subset of the requested range, given by and returned in *plen.
3348 * May return NULL if resources needed to perform the mapping are exhausted.
3349 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3350 * Use cpu_register_map_client() to know when retrying the map operation is
3351 * likely to succeed.
6d16c2f8
AL
3352 */
3353void *cpu_physical_memory_map(target_phys_addr_t addr,
3354 target_phys_addr_t *plen,
3355 int is_write)
3356{
3357 target_phys_addr_t len = *plen;
3358 target_phys_addr_t done = 0;
3359 int l;
3360 uint8_t *ret = NULL;
3361 uint8_t *ptr;
3362 target_phys_addr_t page;
3363 unsigned long pd;
3364 PhysPageDesc *p;
3365 unsigned long addr1;
3366
3367 while (len > 0) {
3368 page = addr & TARGET_PAGE_MASK;
3369 l = (page + TARGET_PAGE_SIZE) - addr;
3370 if (l > len)
3371 l = len;
3372 p = phys_page_find(page >> TARGET_PAGE_BITS);
3373 if (!p) {
3374 pd = IO_MEM_UNASSIGNED;
3375 } else {
3376 pd = p->phys_offset;
3377 }
3378
3379 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3380 if (done || bounce.buffer) {
3381 break;
3382 }
3383 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3384 bounce.addr = addr;
3385 bounce.len = l;
3386 if (!is_write) {
3387 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3388 }
3389 ptr = bounce.buffer;
3390 } else {
3391 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3392 ptr = qemu_get_ram_ptr(addr1);
6d16c2f8
AL
3393 }
3394 if (!done) {
3395 ret = ptr;
3396 } else if (ret + done != ptr) {
3397 break;
3398 }
3399
3400 len -= l;
3401 addr += l;
3402 done += l;
3403 }
3404 *plen = done;
3405 return ret;
3406}
3407
3408/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3409 * Will also mark the memory as dirty if is_write == 1. access_len gives
3410 * the amount of memory that was actually read or written by the caller.
3411 */
3412void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3413 int is_write, target_phys_addr_t access_len)
3414{
3415 if (buffer != bounce.buffer) {
3416 if (is_write) {
5579c7f3 3417 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
6d16c2f8
AL
3418 while (access_len) {
3419 unsigned l;
3420 l = TARGET_PAGE_SIZE;
3421 if (l > access_len)
3422 l = access_len;
3423 if (!cpu_physical_memory_is_dirty(addr1)) {
3424 /* invalidate code */
3425 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3426 /* set dirty bit */
3427 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3428 (0xff & ~CODE_DIRTY_FLAG);
3429 }
3430 addr1 += l;
3431 access_len -= l;
3432 }
3433 }
3434 return;
3435 }
3436 if (is_write) {
3437 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3438 }
3439 qemu_free(bounce.buffer);
3440 bounce.buffer = NULL;
ba223c29 3441 cpu_notify_map_clients();
6d16c2f8 3442}
d0ecd2aa 3443
8df1cd07
FB
3444/* warning: addr must be aligned */
3445uint32_t ldl_phys(target_phys_addr_t addr)
3446{
3447 int io_index;
3448 uint8_t *ptr;
3449 uint32_t val;
3450 unsigned long pd;
3451 PhysPageDesc *p;
3452
3453 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3454 if (!p) {
3455 pd = IO_MEM_UNASSIGNED;
3456 } else {
3457 pd = p->phys_offset;
3458 }
3b46e624 3459
5fafdf24 3460 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3461 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
3462 /* I/O case */
3463 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3464 if (p)
3465 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3466 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3467 } else {
3468 /* RAM case */
5579c7f3 3469 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
8df1cd07
FB
3470 (addr & ~TARGET_PAGE_MASK);
3471 val = ldl_p(ptr);
3472 }
3473 return val;
3474}
3475
84b7b8e7
FB
3476/* warning: addr must be aligned */
3477uint64_t ldq_phys(target_phys_addr_t addr)
3478{
3479 int io_index;
3480 uint8_t *ptr;
3481 uint64_t val;
3482 unsigned long pd;
3483 PhysPageDesc *p;
3484
3485 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3486 if (!p) {
3487 pd = IO_MEM_UNASSIGNED;
3488 } else {
3489 pd = p->phys_offset;
3490 }
3b46e624 3491
2a4188a3
FB
3492 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3493 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
3494 /* I/O case */
3495 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3496 if (p)
3497 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
84b7b8e7
FB
3498#ifdef TARGET_WORDS_BIGENDIAN
3499 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3500 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3501#else
3502 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3503 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3504#endif
3505 } else {
3506 /* RAM case */
5579c7f3 3507 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
84b7b8e7
FB
3508 (addr & ~TARGET_PAGE_MASK);
3509 val = ldq_p(ptr);
3510 }
3511 return val;
3512}
3513
aab33094
FB
3514/* XXX: optimize */
3515uint32_t ldub_phys(target_phys_addr_t addr)
3516{
3517 uint8_t val;
3518 cpu_physical_memory_read(addr, &val, 1);
3519 return val;
3520}
3521
3522/* XXX: optimize */
3523uint32_t lduw_phys(target_phys_addr_t addr)
3524{
3525 uint16_t val;
3526 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3527 return tswap16(val);
3528}
3529
8df1cd07
FB
3530/* warning: addr must be aligned. The ram page is not masked as dirty
3531 and the code inside is not invalidated. It is useful if the dirty
3532 bits are used to track modified PTEs */
3533void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3534{
3535 int io_index;
3536 uint8_t *ptr;
3537 unsigned long pd;
3538 PhysPageDesc *p;
3539
3540 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3541 if (!p) {
3542 pd = IO_MEM_UNASSIGNED;
3543 } else {
3544 pd = p->phys_offset;
3545 }
3b46e624 3546
3a7d929e 3547 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3548 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3549 if (p)
3550 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3551 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3552 } else {
74576198 3553 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3554 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3555 stl_p(ptr, val);
74576198
AL
3556
3557 if (unlikely(in_migration)) {
3558 if (!cpu_physical_memory_is_dirty(addr1)) {
3559 /* invalidate code */
3560 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3561 /* set dirty bit */
3562 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3563 (0xff & ~CODE_DIRTY_FLAG);
3564 }
3565 }
8df1cd07
FB
3566 }
3567}
3568
bc98a7ef
JM
3569void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3570{
3571 int io_index;
3572 uint8_t *ptr;
3573 unsigned long pd;
3574 PhysPageDesc *p;
3575
3576 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3577 if (!p) {
3578 pd = IO_MEM_UNASSIGNED;
3579 } else {
3580 pd = p->phys_offset;
3581 }
3b46e624 3582
bc98a7ef
JM
3583 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3584 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3585 if (p)
3586 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
bc98a7ef
JM
3587#ifdef TARGET_WORDS_BIGENDIAN
3588 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3589 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3590#else
3591 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3592 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3593#endif
3594 } else {
5579c7f3 3595 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
3596 (addr & ~TARGET_PAGE_MASK);
3597 stq_p(ptr, val);
3598 }
3599}
3600
8df1cd07 3601/* warning: addr must be aligned */
8df1cd07
FB
3602void stl_phys(target_phys_addr_t addr, uint32_t val)
3603{
3604 int io_index;
3605 uint8_t *ptr;
3606 unsigned long pd;
3607 PhysPageDesc *p;
3608
3609 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3610 if (!p) {
3611 pd = IO_MEM_UNASSIGNED;
3612 } else {
3613 pd = p->phys_offset;
3614 }
3b46e624 3615
3a7d929e 3616 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3617 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3618 if (p)
3619 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3620 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3621 } else {
3622 unsigned long addr1;
3623 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3624 /* RAM case */
5579c7f3 3625 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3626 stl_p(ptr, val);
3a7d929e
FB
3627 if (!cpu_physical_memory_is_dirty(addr1)) {
3628 /* invalidate code */
3629 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3630 /* set dirty bit */
f23db169
FB
3631 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3632 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3633 }
8df1cd07
FB
3634 }
3635}
3636
aab33094
FB
3637/* XXX: optimize */
3638void stb_phys(target_phys_addr_t addr, uint32_t val)
3639{
3640 uint8_t v = val;
3641 cpu_physical_memory_write(addr, &v, 1);
3642}
3643
3644/* XXX: optimize */
3645void stw_phys(target_phys_addr_t addr, uint32_t val)
3646{
3647 uint16_t v = tswap16(val);
3648 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3649}
3650
3651/* XXX: optimize */
3652void stq_phys(target_phys_addr_t addr, uint64_t val)
3653{
3654 val = tswap64(val);
3655 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3656}
3657
13eb76e0
FB
3658#endif
3659
5e2972fd 3660/* virtual memory access for debug (includes writing to ROM) */
5fafdf24 3661int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 3662 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3663{
3664 int l;
9b3c35e0
JM
3665 target_phys_addr_t phys_addr;
3666 target_ulong page;
13eb76e0
FB
3667
3668 while (len > 0) {
3669 page = addr & TARGET_PAGE_MASK;
3670 phys_addr = cpu_get_phys_page_debug(env, page);
3671 /* if no physical page mapped, return an error */
3672 if (phys_addr == -1)
3673 return -1;
3674 l = (page + TARGET_PAGE_SIZE) - addr;
3675 if (l > len)
3676 l = len;
5e2972fd
AL
3677 phys_addr += (addr & ~TARGET_PAGE_MASK);
3678#if !defined(CONFIG_USER_ONLY)
3679 if (is_write)
3680 cpu_physical_memory_write_rom(phys_addr, buf, l);
3681 else
3682#endif
3683 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
3684 len -= l;
3685 buf += l;
3686 addr += l;
3687 }
3688 return 0;
3689}
3690
2e70f6ef
PB
3691/* in deterministic execution mode, instructions doing device I/Os
3692 must be at the end of the TB */
3693void cpu_io_recompile(CPUState *env, void *retaddr)
3694{
3695 TranslationBlock *tb;
3696 uint32_t n, cflags;
3697 target_ulong pc, cs_base;
3698 uint64_t flags;
3699
3700 tb = tb_find_pc((unsigned long)retaddr);
3701 if (!tb) {
3702 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3703 retaddr);
3704 }
3705 n = env->icount_decr.u16.low + tb->icount;
3706 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3707 /* Calculate how many instructions had been executed before the fault
bf20dc07 3708 occurred. */
2e70f6ef
PB
3709 n = n - env->icount_decr.u16.low;
3710 /* Generate a new TB ending on the I/O insn. */
3711 n++;
3712 /* On MIPS and SH, delay slot instructions can only be restarted if
3713 they were already the first instruction in the TB. If this is not
bf20dc07 3714 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
3715 branch. */
3716#if defined(TARGET_MIPS)
3717 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3718 env->active_tc.PC -= 4;
3719 env->icount_decr.u16.low++;
3720 env->hflags &= ~MIPS_HFLAG_BMASK;
3721 }
3722#elif defined(TARGET_SH4)
3723 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3724 && n > 1) {
3725 env->pc -= 2;
3726 env->icount_decr.u16.low++;
3727 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3728 }
3729#endif
3730 /* This should never happen. */
3731 if (n > CF_COUNT_MASK)
3732 cpu_abort(env, "TB too big during recompile");
3733
3734 cflags = n | CF_LAST_IO;
3735 pc = tb->pc;
3736 cs_base = tb->cs_base;
3737 flags = tb->flags;
3738 tb_phys_invalidate(tb, -1);
3739 /* FIXME: In theory this could raise an exception. In practice
3740 we have already translated the block once so it's probably ok. */
3741 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 3742 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
3743 the first in the TB) then we end up generating a whole new TB and
3744 repeating the fault, which is horribly inefficient.
3745 Better would be to execute just this insn uncached, or generate a
3746 second new TB. */
3747 cpu_resume_from_signal(env, NULL);
3748}
3749
e3db7226
FB
3750void dump_exec_info(FILE *f,
3751 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3752{
3753 int i, target_code_size, max_target_code_size;
3754 int direct_jmp_count, direct_jmp2_count, cross_page;
3755 TranslationBlock *tb;
3b46e624 3756
e3db7226
FB
3757 target_code_size = 0;
3758 max_target_code_size = 0;
3759 cross_page = 0;
3760 direct_jmp_count = 0;
3761 direct_jmp2_count = 0;
3762 for(i = 0; i < nb_tbs; i++) {
3763 tb = &tbs[i];
3764 target_code_size += tb->size;
3765 if (tb->size > max_target_code_size)
3766 max_target_code_size = tb->size;
3767 if (tb->page_addr[1] != -1)
3768 cross_page++;
3769 if (tb->tb_next_offset[0] != 0xffff) {
3770 direct_jmp_count++;
3771 if (tb->tb_next_offset[1] != 0xffff) {
3772 direct_jmp2_count++;
3773 }
3774 }
3775 }
3776 /* XXX: avoid using doubles ? */
57fec1fe 3777 cpu_fprintf(f, "Translation buffer state:\n");
26a5f13b
FB
3778 cpu_fprintf(f, "gen code size %ld/%ld\n",
3779 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3780 cpu_fprintf(f, "TB count %d/%d\n",
3781 nb_tbs, code_gen_max_blocks);
5fafdf24 3782 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
3783 nb_tbs ? target_code_size / nb_tbs : 0,
3784 max_target_code_size);
5fafdf24 3785 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
3786 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3787 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
3788 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3789 cross_page,
e3db7226
FB
3790 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3791 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 3792 direct_jmp_count,
e3db7226
FB
3793 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3794 direct_jmp2_count,
3795 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 3796 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
3797 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3798 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3799 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 3800 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
3801}
3802
5fafdf24 3803#if !defined(CONFIG_USER_ONLY)
61382a50
FB
3804
3805#define MMUSUFFIX _cmmu
3806#define GETPC() NULL
3807#define env cpu_single_env
b769d8fe 3808#define SOFTMMU_CODE_ACCESS
61382a50
FB
3809
3810#define SHIFT 0
3811#include "softmmu_template.h"
3812
3813#define SHIFT 1
3814#include "softmmu_template.h"
3815
3816#define SHIFT 2
3817#include "softmmu_template.h"
3818
3819#define SHIFT 3
3820#include "softmmu_template.h"
3821
3822#undef env
3823
3824#endif