]> git.proxmox.com Git - qemu.git/blame - exec.c
Get rid of _t suffix
[qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
d5a8f07c
FB
20#ifdef _WIN32
21#include <windows.h>
22#else
a98d49b1 23#include <sys/types.h>
d5a8f07c
FB
24#include <sys/mman.h>
25#endif
54936004
FB
26#include <stdlib.h>
27#include <stdio.h>
28#include <stdarg.h>
29#include <string.h>
30#include <errno.h>
31#include <unistd.h>
32#include <inttypes.h>
33
6180a181
FB
34#include "cpu.h"
35#include "exec-all.h"
ca10f867 36#include "qemu-common.h"
b67d9a52 37#include "tcg.h"
b3c7724c 38#include "hw/hw.h"
74576198 39#include "osdep.h"
7ba1e619 40#include "kvm.h"
53a5960a
PB
41#if defined(CONFIG_USER_ONLY)
42#include <qemu.h>
43#endif
54936004 44
fd6ce8f6 45//#define DEBUG_TB_INVALIDATE
66e85a21 46//#define DEBUG_FLUSH
9fa3e853 47//#define DEBUG_TLB
67d3b957 48//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
49
50/* make various TB consistency checks */
5fafdf24
TS
51//#define DEBUG_TB_CHECK
52//#define DEBUG_TLB_CHECK
fd6ce8f6 53
1196be37 54//#define DEBUG_IOPORT
db7b5426 55//#define DEBUG_SUBPAGE
1196be37 56
99773bd4
PB
57#if !defined(CONFIG_USER_ONLY)
58/* TB consistency checks only implemented for usermode emulation. */
59#undef DEBUG_TB_CHECK
60#endif
61
9fa3e853
FB
62#define SMC_BITMAP_USE_THRESHOLD 10
63
108c49b8
FB
64#if defined(TARGET_SPARC64)
65#define TARGET_PHYS_ADDR_SPACE_BITS 41
5dcb6b91
BS
66#elif defined(TARGET_SPARC)
67#define TARGET_PHYS_ADDR_SPACE_BITS 36
bedb69ea
JM
68#elif defined(TARGET_ALPHA)
69#define TARGET_PHYS_ADDR_SPACE_BITS 42
70#define TARGET_VIRT_ADDR_SPACE_BITS 42
108c49b8
FB
71#elif defined(TARGET_PPC64)
72#define TARGET_PHYS_ADDR_SPACE_BITS 42
4a1418e0 73#elif defined(TARGET_X86_64)
00f82b8a 74#define TARGET_PHYS_ADDR_SPACE_BITS 42
4a1418e0 75#elif defined(TARGET_I386)
00f82b8a 76#define TARGET_PHYS_ADDR_SPACE_BITS 36
108c49b8 77#else
108c49b8
FB
78#define TARGET_PHYS_ADDR_SPACE_BITS 32
79#endif
80
bdaf78e0 81static TranslationBlock *tbs;
26a5f13b 82int code_gen_max_blocks;
9fa3e853 83TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 84static int nb_tbs;
eb51d102 85/* any access to the tbs or the page table must use this lock */
99a0949b 86a_spinlock tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 87
141ac468
BS
88#if defined(__arm__) || defined(__sparc_v9__)
89/* The prologue must be reachable with a direct jump. ARM and Sparc64
90 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
91 section close to code segment. */
92#define code_gen_section \
93 __attribute__((__section__(".gen_code"))) \
94 __attribute__((aligned (32)))
f8e2af11
SW
95#elif defined(_WIN32)
96/* Maximum alignment for Win32 is 16. */
97#define code_gen_section \
98 __attribute__((aligned (16)))
d03d860b
BS
99#else
100#define code_gen_section \
101 __attribute__((aligned (32)))
102#endif
103
104uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
105static uint8_t *code_gen_buffer;
106static unsigned long code_gen_buffer_size;
26a5f13b 107/* threshold to flush the translated code buffer */
bdaf78e0 108static unsigned long code_gen_buffer_max_size;
fd6ce8f6
FB
109uint8_t *code_gen_ptr;
110
e2eef170 111#if !defined(CONFIG_USER_ONLY)
9fa3e853 112int phys_ram_fd;
1ccde1cb 113uint8_t *phys_ram_dirty;
74576198 114static int in_migration;
94a6b54f
PB
115
116typedef struct RAMBlock {
117 uint8_t *host;
99a0949b 118 a_ram_addr offset;
119 a_ram_addr length;
94a6b54f
PB
120 struct RAMBlock *next;
121} RAMBlock;
122
123static RAMBlock *ram_blocks;
124/* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
ccbb4d44 125 then we can no longer assume contiguous ram offsets, and external uses
94a6b54f 126 of this variable will break. */
99a0949b 127a_ram_addr last_ram_offset;
e2eef170 128#endif
9fa3e853 129
6a00d601
FB
130CPUState *first_cpu;
131/* current CPU in the current thread. It is only valid inside
132 cpu_exec() */
5fafdf24 133CPUState *cpu_single_env;
2e70f6ef 134/* 0 = Do not count executed instructions.
bf20dc07 135 1 = Precise instruction counting.
2e70f6ef
PB
136 2 = Adaptive rate instruction counting. */
137int use_icount = 0;
138/* Current instruction counter. While executing translated code this may
139 include some instructions that have not yet been executed. */
140int64_t qemu_icount;
6a00d601 141
54936004 142typedef struct PageDesc {
92e873b9 143 /* list of TBs intersecting this ram page */
fd6ce8f6 144 TranslationBlock *first_tb;
9fa3e853
FB
145 /* in order to optimize self modifying code, we count the number
146 of lookups we do to a given page to use a bitmap */
147 unsigned int code_write_count;
148 uint8_t *code_bitmap;
149#if defined(CONFIG_USER_ONLY)
150 unsigned long flags;
151#endif
54936004
FB
152} PageDesc;
153
92e873b9 154typedef struct PhysPageDesc {
0f459d16 155 /* offset in host memory of the page + io_index in the low bits */
99a0949b 156 a_ram_addr phys_offset;
157 a_ram_addr region_offset;
92e873b9
FB
158} PhysPageDesc;
159
54936004 160#define L2_BITS 10
bedb69ea
JM
161#if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
162/* XXX: this is a temporary hack for alpha target.
163 * In the future, this is to be replaced by a multi-level table
164 * to actually be able to handle the complete 64 bits address space.
165 */
166#define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
167#else
03875444 168#define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
bedb69ea 169#endif
54936004
FB
170
171#define L1_SIZE (1 << L1_BITS)
172#define L2_SIZE (1 << L2_BITS)
173
83fb7adf
FB
174unsigned long qemu_real_host_page_size;
175unsigned long qemu_host_page_bits;
176unsigned long qemu_host_page_size;
177unsigned long qemu_host_page_mask;
54936004 178
92e873b9 179/* XXX: for system emulation, it could just be an array */
54936004 180static PageDesc *l1_map[L1_SIZE];
bdaf78e0 181static PhysPageDesc **l1_phys_map;
54936004 182
e2eef170
PB
183#if !defined(CONFIG_USER_ONLY)
184static void io_mem_init(void);
185
33417e70 186/* io memory support */
33417e70
FB
187CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
188CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 189void *io_mem_opaque[IO_MEM_NB_ENTRIES];
511d2b14 190static char io_mem_used[IO_MEM_NB_ENTRIES];
6658ffb8
PB
191static int io_mem_watch;
192#endif
33417e70 193
34865134 194/* log support */
d9b630fd 195static const char *logfilename = "/tmp/qemu.log";
34865134
FB
196FILE *logfile;
197int loglevel;
e735b91c 198static int log_append = 0;
34865134 199
e3db7226
FB
200/* statistics */
201static int tlb_flush_count;
202static int tb_flush_count;
203static int tb_phys_invalidate_count;
204
db7b5426 205#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
99a0949b 206typedef struct subpage {
207 a_target_phys_addr base;
d60efc6b
BS
208 CPUReadMemoryFunc * const *mem_read[TARGET_PAGE_SIZE][4];
209 CPUWriteMemoryFunc * const *mem_write[TARGET_PAGE_SIZE][4];
3ee89922 210 void *opaque[TARGET_PAGE_SIZE][2][4];
99a0949b 211 a_ram_addr region_offset[TARGET_PAGE_SIZE][2][4];
212} a_subpage;
db7b5426 213
7cb69cae
FB
214#ifdef _WIN32
215static void map_exec(void *addr, long size)
216{
217 DWORD old_protect;
218 VirtualProtect(addr, size,
219 PAGE_EXECUTE_READWRITE, &old_protect);
220
221}
222#else
223static void map_exec(void *addr, long size)
224{
4369415f 225 unsigned long start, end, page_size;
7cb69cae 226
4369415f 227 page_size = getpagesize();
7cb69cae 228 start = (unsigned long)addr;
4369415f 229 start &= ~(page_size - 1);
7cb69cae
FB
230
231 end = (unsigned long)addr + size;
4369415f
FB
232 end += page_size - 1;
233 end &= ~(page_size - 1);
7cb69cae
FB
234
235 mprotect((void *)start, end - start,
236 PROT_READ | PROT_WRITE | PROT_EXEC);
237}
238#endif
239
b346ff46 240static void page_init(void)
54936004 241{
83fb7adf 242 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 243 TARGET_PAGE_SIZE */
c2b48b69
AL
244#ifdef _WIN32
245 {
246 SYSTEM_INFO system_info;
247
248 GetSystemInfo(&system_info);
249 qemu_real_host_page_size = system_info.dwPageSize;
250 }
251#else
252 qemu_real_host_page_size = getpagesize();
253#endif
83fb7adf
FB
254 if (qemu_host_page_size == 0)
255 qemu_host_page_size = qemu_real_host_page_size;
256 if (qemu_host_page_size < TARGET_PAGE_SIZE)
257 qemu_host_page_size = TARGET_PAGE_SIZE;
258 qemu_host_page_bits = 0;
259 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
260 qemu_host_page_bits++;
261 qemu_host_page_mask = ~(qemu_host_page_size - 1);
108c49b8
FB
262 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
263 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
50a9569b
AZ
264
265#if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
266 {
267 long long startaddr, endaddr;
268 FILE *f;
269 int n;
270
c8a706fe 271 mmap_lock();
0776590d 272 last_brk = (unsigned long)sbrk(0);
50a9569b
AZ
273 f = fopen("/proc/self/maps", "r");
274 if (f) {
275 do {
276 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
277 if (n == 2) {
e0b8d65a
BS
278 startaddr = MIN(startaddr,
279 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
280 endaddr = MIN(endaddr,
281 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
b5fc909e 282 page_set_flags(startaddr & TARGET_PAGE_MASK,
50a9569b
AZ
283 TARGET_PAGE_ALIGN(endaddr),
284 PAGE_RESERVED);
285 }
286 } while (!feof(f));
287 fclose(f);
288 }
c8a706fe 289 mmap_unlock();
50a9569b
AZ
290 }
291#endif
54936004
FB
292}
293
434929bf 294static inline PageDesc **page_l1_map(target_ulong index)
54936004 295{
17e2377a
PB
296#if TARGET_LONG_BITS > 32
297 /* Host memory outside guest VM. For 32-bit targets we have already
298 excluded high addresses. */
d8173e0f 299 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
17e2377a
PB
300 return NULL;
301#endif
434929bf
AL
302 return &l1_map[index >> L2_BITS];
303}
304
305static inline PageDesc *page_find_alloc(target_ulong index)
306{
307 PageDesc **lp, *p;
308 lp = page_l1_map(index);
309 if (!lp)
310 return NULL;
311
54936004
FB
312 p = *lp;
313 if (!p) {
314 /* allocate if not found */
17e2377a 315#if defined(CONFIG_USER_ONLY)
17e2377a
PB
316 size_t len = sizeof(PageDesc) * L2_SIZE;
317 /* Don't use qemu_malloc because it may recurse. */
660f11be 318 p = mmap(NULL, len, PROT_READ | PROT_WRITE,
17e2377a 319 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
54936004 320 *lp = p;
fb1c2cd7
AJ
321 if (h2g_valid(p)) {
322 unsigned long addr = h2g(p);
17e2377a
PB
323 page_set_flags(addr & TARGET_PAGE_MASK,
324 TARGET_PAGE_ALIGN(addr + len),
325 PAGE_RESERVED);
326 }
327#else
328 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
329 *lp = p;
330#endif
54936004
FB
331 }
332 return p + (index & (L2_SIZE - 1));
333}
334
00f82b8a 335static inline PageDesc *page_find(target_ulong index)
54936004 336{
434929bf
AL
337 PageDesc **lp, *p;
338 lp = page_l1_map(index);
339 if (!lp)
340 return NULL;
54936004 341
434929bf 342 p = *lp;
660f11be
BS
343 if (!p) {
344 return NULL;
345 }
fd6ce8f6
FB
346 return p + (index & (L2_SIZE - 1));
347}
348
99a0949b 349static PhysPageDesc *phys_page_find_alloc(a_target_phys_addr index, int alloc)
92e873b9 350{
108c49b8 351 void **lp, **p;
e3f4e2a4 352 PhysPageDesc *pd;
92e873b9 353
108c49b8
FB
354 p = (void **)l1_phys_map;
355#if TARGET_PHYS_ADDR_SPACE_BITS > 32
356
357#if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
358#error unsupported TARGET_PHYS_ADDR_SPACE_BITS
359#endif
360 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
92e873b9
FB
361 p = *lp;
362 if (!p) {
363 /* allocate if not found */
108c49b8
FB
364 if (!alloc)
365 return NULL;
366 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
367 memset(p, 0, sizeof(void *) * L1_SIZE);
368 *lp = p;
369 }
370#endif
371 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
e3f4e2a4
PB
372 pd = *lp;
373 if (!pd) {
374 int i;
108c49b8
FB
375 /* allocate if not found */
376 if (!alloc)
377 return NULL;
e3f4e2a4
PB
378 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
379 *lp = pd;
67c4d23c 380 for (i = 0; i < L2_SIZE; i++) {
e3f4e2a4 381 pd[i].phys_offset = IO_MEM_UNASSIGNED;
67c4d23c
PB
382 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
383 }
92e873b9 384 }
e3f4e2a4 385 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
92e873b9
FB
386}
387
99a0949b 388static inline PhysPageDesc *phys_page_find(a_target_phys_addr index)
92e873b9 389{
108c49b8 390 return phys_page_find_alloc(index, 0);
92e873b9
FB
391}
392
9fa3e853 393#if !defined(CONFIG_USER_ONLY)
99a0949b 394static void tlb_protect_code(a_ram_addr ram_addr);
395static void tlb_unprotect_code_phys(CPUState *env, a_ram_addr ram_addr,
3a7d929e 396 target_ulong vaddr);
c8a706fe
PB
397#define mmap_lock() do { } while(0)
398#define mmap_unlock() do { } while(0)
9fa3e853 399#endif
fd6ce8f6 400
4369415f
FB
401#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
402
403#if defined(CONFIG_USER_ONLY)
ccbb4d44 404/* Currently it is not recommended to allocate big chunks of data in
4369415f
FB
405 user mode. It will change when a dedicated libc will be used */
406#define USE_STATIC_CODE_GEN_BUFFER
407#endif
408
409#ifdef USE_STATIC_CODE_GEN_BUFFER
410static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
411#endif
412
8fcd3692 413static void code_gen_alloc(unsigned long tb_size)
26a5f13b 414{
4369415f
FB
415#ifdef USE_STATIC_CODE_GEN_BUFFER
416 code_gen_buffer = static_code_gen_buffer;
417 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
418 map_exec(code_gen_buffer, code_gen_buffer_size);
419#else
26a5f13b
FB
420 code_gen_buffer_size = tb_size;
421 if (code_gen_buffer_size == 0) {
4369415f
FB
422#if defined(CONFIG_USER_ONLY)
423 /* in user mode, phys_ram_size is not meaningful */
424 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
425#else
ccbb4d44 426 /* XXX: needs adjustments */
94a6b54f 427 code_gen_buffer_size = (unsigned long)(ram_size / 4);
4369415f 428#endif
26a5f13b
FB
429 }
430 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
431 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
432 /* The code gen buffer location may have constraints depending on
433 the host cpu and OS */
434#if defined(__linux__)
435 {
436 int flags;
141ac468
BS
437 void *start = NULL;
438
26a5f13b
FB
439 flags = MAP_PRIVATE | MAP_ANONYMOUS;
440#if defined(__x86_64__)
441 flags |= MAP_32BIT;
442 /* Cannot map more than that */
443 if (code_gen_buffer_size > (800 * 1024 * 1024))
444 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
445#elif defined(__sparc_v9__)
446 // Map the buffer below 2G, so we can use direct calls and branches
447 flags |= MAP_FIXED;
448 start = (void *) 0x60000000UL;
449 if (code_gen_buffer_size > (512 * 1024 * 1024))
450 code_gen_buffer_size = (512 * 1024 * 1024);
1cb0661e 451#elif defined(__arm__)
63d41246 452 /* Map the buffer below 32M, so we can use direct calls and branches */
1cb0661e
AZ
453 flags |= MAP_FIXED;
454 start = (void *) 0x01000000UL;
455 if (code_gen_buffer_size > 16 * 1024 * 1024)
456 code_gen_buffer_size = 16 * 1024 * 1024;
26a5f13b 457#endif
141ac468
BS
458 code_gen_buffer = mmap(start, code_gen_buffer_size,
459 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
460 flags, -1, 0);
461 if (code_gen_buffer == MAP_FAILED) {
462 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
463 exit(1);
464 }
465 }
c5e97233 466#elif defined(__FreeBSD__) || defined(__DragonFly__)
06e67a82
AL
467 {
468 int flags;
469 void *addr = NULL;
470 flags = MAP_PRIVATE | MAP_ANONYMOUS;
471#if defined(__x86_64__)
472 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
473 * 0x40000000 is free */
474 flags |= MAP_FIXED;
475 addr = (void *)0x40000000;
476 /* Cannot map more than that */
477 if (code_gen_buffer_size > (800 * 1024 * 1024))
478 code_gen_buffer_size = (800 * 1024 * 1024);
479#endif
480 code_gen_buffer = mmap(addr, code_gen_buffer_size,
481 PROT_WRITE | PROT_READ | PROT_EXEC,
482 flags, -1, 0);
483 if (code_gen_buffer == MAP_FAILED) {
484 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
485 exit(1);
486 }
487 }
26a5f13b
FB
488#else
489 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
26a5f13b
FB
490 map_exec(code_gen_buffer, code_gen_buffer_size);
491#endif
4369415f 492#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b
FB
493 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
494 code_gen_buffer_max_size = code_gen_buffer_size -
495 code_gen_max_block_size();
496 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
497 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
498}
499
500/* Must be called before using the QEMU cpus. 'tb_size' is the size
501 (in bytes) allocated to the translation buffer. Zero means default
502 size. */
503void cpu_exec_init_all(unsigned long tb_size)
504{
26a5f13b
FB
505 cpu_gen_init();
506 code_gen_alloc(tb_size);
507 code_gen_ptr = code_gen_buffer;
4369415f 508 page_init();
e2eef170 509#if !defined(CONFIG_USER_ONLY)
26a5f13b 510 io_mem_init();
e2eef170 511#endif
26a5f13b
FB
512}
513
9656f324
PB
514#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
515
e7f4eff7 516static void cpu_common_pre_save(const void *opaque)
9656f324 517{
e7f4eff7 518 CPUState *env = (void *)opaque;
9656f324 519
4c0960c0 520 cpu_synchronize_state(env);
9656f324
PB
521}
522
e7f4eff7 523static int cpu_common_pre_load(void *opaque)
9656f324
PB
524{
525 CPUState *env = opaque;
526
4c0960c0 527 cpu_synchronize_state(env);
e7f4eff7
JQ
528 return 0;
529}
530
531static int cpu_common_post_load(void *opaque)
532{
533 CPUState *env = opaque;
9656f324 534
3098dba0
AJ
535 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
536 version_id is increased. */
537 env->interrupt_request &= ~0x01;
9656f324
PB
538 tlb_flush(env, 1);
539
540 return 0;
541}
e7f4eff7
JQ
542
543static const VMStateDescription vmstate_cpu_common = {
544 .name = "cpu_common",
545 .version_id = 1,
546 .minimum_version_id = 1,
547 .minimum_version_id_old = 1,
548 .pre_save = cpu_common_pre_save,
549 .pre_load = cpu_common_pre_load,
550 .post_load = cpu_common_post_load,
551 .fields = (VMStateField []) {
552 VMSTATE_UINT32(halted, CPUState),
553 VMSTATE_UINT32(interrupt_request, CPUState),
554 VMSTATE_END_OF_LIST()
555 }
556};
9656f324
PB
557#endif
558
950f1472
GC
559CPUState *qemu_get_cpu(int cpu)
560{
561 CPUState *env = first_cpu;
562
563 while (env) {
564 if (env->cpu_index == cpu)
565 break;
566 env = env->next_cpu;
567 }
568
569 return env;
570}
571
6a00d601 572void cpu_exec_init(CPUState *env)
fd6ce8f6 573{
6a00d601
FB
574 CPUState **penv;
575 int cpu_index;
576
c2764719
PB
577#if defined(CONFIG_USER_ONLY)
578 cpu_list_lock();
579#endif
6a00d601
FB
580 env->next_cpu = NULL;
581 penv = &first_cpu;
582 cpu_index = 0;
583 while (*penv != NULL) {
1e9fa730 584 penv = &(*penv)->next_cpu;
6a00d601
FB
585 cpu_index++;
586 }
587 env->cpu_index = cpu_index;
268a362c 588 env->numa_node = 0;
72cf2d4f
BS
589 QTAILQ_INIT(&env->breakpoints);
590 QTAILQ_INIT(&env->watchpoints);
6a00d601 591 *penv = env;
c2764719
PB
592#if defined(CONFIG_USER_ONLY)
593 cpu_list_unlock();
594#endif
b3c7724c 595#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
e7f4eff7 596 vmstate_register(cpu_index, &vmstate_cpu_common, env);
b3c7724c
PB
597 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
598 cpu_save, cpu_load, env);
599#endif
fd6ce8f6
FB
600}
601
9fa3e853
FB
602static inline void invalidate_page_bitmap(PageDesc *p)
603{
604 if (p->code_bitmap) {
59817ccb 605 qemu_free(p->code_bitmap);
9fa3e853
FB
606 p->code_bitmap = NULL;
607 }
608 p->code_write_count = 0;
609}
610
fd6ce8f6
FB
611/* set to NULL all the 'first_tb' fields in all PageDescs */
612static void page_flush_tb(void)
613{
614 int i, j;
615 PageDesc *p;
616
617 for(i = 0; i < L1_SIZE; i++) {
618 p = l1_map[i];
619 if (p) {
9fa3e853
FB
620 for(j = 0; j < L2_SIZE; j++) {
621 p->first_tb = NULL;
622 invalidate_page_bitmap(p);
623 p++;
624 }
fd6ce8f6
FB
625 }
626 }
627}
628
629/* flush all the translation blocks */
d4e8164f 630/* XXX: tb_flush is currently not thread safe */
6a00d601 631void tb_flush(CPUState *env1)
fd6ce8f6 632{
6a00d601 633 CPUState *env;
0124311e 634#if defined(DEBUG_FLUSH)
ab3d1727
BS
635 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
636 (unsigned long)(code_gen_ptr - code_gen_buffer),
637 nb_tbs, nb_tbs > 0 ?
638 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 639#endif
26a5f13b 640 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
641 cpu_abort(env1, "Internal error: code buffer overflow\n");
642
fd6ce8f6 643 nb_tbs = 0;
3b46e624 644
6a00d601
FB
645 for(env = first_cpu; env != NULL; env = env->next_cpu) {
646 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
647 }
9fa3e853 648
8a8a608f 649 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 650 page_flush_tb();
9fa3e853 651
fd6ce8f6 652 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
653 /* XXX: flush processor icache at this point if cache flush is
654 expensive */
e3db7226 655 tb_flush_count++;
fd6ce8f6
FB
656}
657
658#ifdef DEBUG_TB_CHECK
659
bc98a7ef 660static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
661{
662 TranslationBlock *tb;
663 int i;
664 address &= TARGET_PAGE_MASK;
99773bd4
PB
665 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
666 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
667 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
668 address >= tb->pc + tb->size)) {
0bf9e31a
BS
669 printf("ERROR invalidate: address=" TARGET_FMT_lx
670 " PC=%08lx size=%04x\n",
99773bd4 671 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
672 }
673 }
674 }
675}
676
677/* verify that all the pages have correct rights for code */
678static void tb_page_check(void)
679{
680 TranslationBlock *tb;
681 int i, flags1, flags2;
3b46e624 682
99773bd4
PB
683 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
684 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
685 flags1 = page_get_flags(tb->pc);
686 flags2 = page_get_flags(tb->pc + tb->size - 1);
687 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
688 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 689 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
690 }
691 }
692 }
693}
694
695#endif
696
697/* invalidate one TB */
698static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
699 int next_offset)
700{
701 TranslationBlock *tb1;
702 for(;;) {
703 tb1 = *ptb;
704 if (tb1 == tb) {
705 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
706 break;
707 }
708 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
709 }
710}
711
9fa3e853
FB
712static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
713{
714 TranslationBlock *tb1;
715 unsigned int n1;
716
717 for(;;) {
718 tb1 = *ptb;
719 n1 = (long)tb1 & 3;
720 tb1 = (TranslationBlock *)((long)tb1 & ~3);
721 if (tb1 == tb) {
722 *ptb = tb1->page_next[n1];
723 break;
724 }
725 ptb = &tb1->page_next[n1];
726 }
727}
728
d4e8164f
FB
729static inline void tb_jmp_remove(TranslationBlock *tb, int n)
730{
731 TranslationBlock *tb1, **ptb;
732 unsigned int n1;
733
734 ptb = &tb->jmp_next[n];
735 tb1 = *ptb;
736 if (tb1) {
737 /* find tb(n) in circular list */
738 for(;;) {
739 tb1 = *ptb;
740 n1 = (long)tb1 & 3;
741 tb1 = (TranslationBlock *)((long)tb1 & ~3);
742 if (n1 == n && tb1 == tb)
743 break;
744 if (n1 == 2) {
745 ptb = &tb1->jmp_first;
746 } else {
747 ptb = &tb1->jmp_next[n1];
748 }
749 }
750 /* now we can suppress tb(n) from the list */
751 *ptb = tb->jmp_next[n];
752
753 tb->jmp_next[n] = NULL;
754 }
755}
756
757/* reset the jump entry 'n' of a TB so that it is not chained to
758 another TB */
759static inline void tb_reset_jump(TranslationBlock *tb, int n)
760{
761 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
762}
763
2e70f6ef 764void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
fd6ce8f6 765{
6a00d601 766 CPUState *env;
8a40a180 767 PageDesc *p;
d4e8164f 768 unsigned int h, n1;
99a0949b 769 a_target_phys_addr phys_pc;
8a40a180 770 TranslationBlock *tb1, *tb2;
3b46e624 771
8a40a180
FB
772 /* remove the TB from the hash list */
773 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
774 h = tb_phys_hash_func(phys_pc);
5fafdf24 775 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
776 offsetof(TranslationBlock, phys_hash_next));
777
778 /* remove the TB from the page list */
779 if (tb->page_addr[0] != page_addr) {
780 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
781 tb_page_remove(&p->first_tb, tb);
782 invalidate_page_bitmap(p);
783 }
784 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
785 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
786 tb_page_remove(&p->first_tb, tb);
787 invalidate_page_bitmap(p);
788 }
789
36bdbe54 790 tb_invalidated_flag = 1;
59817ccb 791
fd6ce8f6 792 /* remove the TB from the hash list */
8a40a180 793 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
794 for(env = first_cpu; env != NULL; env = env->next_cpu) {
795 if (env->tb_jmp_cache[h] == tb)
796 env->tb_jmp_cache[h] = NULL;
797 }
d4e8164f
FB
798
799 /* suppress this TB from the two jump lists */
800 tb_jmp_remove(tb, 0);
801 tb_jmp_remove(tb, 1);
802
803 /* suppress any remaining jumps to this TB */
804 tb1 = tb->jmp_first;
805 for(;;) {
806 n1 = (long)tb1 & 3;
807 if (n1 == 2)
808 break;
809 tb1 = (TranslationBlock *)((long)tb1 & ~3);
810 tb2 = tb1->jmp_next[n1];
811 tb_reset_jump(tb1, n1);
812 tb1->jmp_next[n1] = NULL;
813 tb1 = tb2;
814 }
815 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 816
e3db7226 817 tb_phys_invalidate_count++;
9fa3e853
FB
818}
819
820static inline void set_bits(uint8_t *tab, int start, int len)
821{
822 int end, mask, end1;
823
824 end = start + len;
825 tab += start >> 3;
826 mask = 0xff << (start & 7);
827 if ((start & ~7) == (end & ~7)) {
828 if (start < end) {
829 mask &= ~(0xff << (end & 7));
830 *tab |= mask;
831 }
832 } else {
833 *tab++ |= mask;
834 start = (start + 8) & ~7;
835 end1 = end & ~7;
836 while (start < end1) {
837 *tab++ = 0xff;
838 start += 8;
839 }
840 if (start < end) {
841 mask = ~(0xff << (end & 7));
842 *tab |= mask;
843 }
844 }
845}
846
847static void build_page_bitmap(PageDesc *p)
848{
849 int n, tb_start, tb_end;
850 TranslationBlock *tb;
3b46e624 851
b2a7081a 852 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
853
854 tb = p->first_tb;
855 while (tb != NULL) {
856 n = (long)tb & 3;
857 tb = (TranslationBlock *)((long)tb & ~3);
858 /* NOTE: this is subtle as a TB may span two physical pages */
859 if (n == 0) {
860 /* NOTE: tb_end may be after the end of the page, but
861 it is not a problem */
862 tb_start = tb->pc & ~TARGET_PAGE_MASK;
863 tb_end = tb_start + tb->size;
864 if (tb_end > TARGET_PAGE_SIZE)
865 tb_end = TARGET_PAGE_SIZE;
866 } else {
867 tb_start = 0;
868 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
869 }
870 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
871 tb = tb->page_next[n];
872 }
873}
874
2e70f6ef
PB
875TranslationBlock *tb_gen_code(CPUState *env,
876 target_ulong pc, target_ulong cs_base,
877 int flags, int cflags)
d720b93d
FB
878{
879 TranslationBlock *tb;
880 uint8_t *tc_ptr;
881 target_ulong phys_pc, phys_page2, virt_page2;
882 int code_gen_size;
883
c27004ec
FB
884 phys_pc = get_phys_addr_code(env, pc);
885 tb = tb_alloc(pc);
d720b93d
FB
886 if (!tb) {
887 /* flush must be done */
888 tb_flush(env);
889 /* cannot fail at this point */
c27004ec 890 tb = tb_alloc(pc);
2e70f6ef
PB
891 /* Don't forget to invalidate previous TB info. */
892 tb_invalidated_flag = 1;
d720b93d
FB
893 }
894 tc_ptr = code_gen_ptr;
895 tb->tc_ptr = tc_ptr;
896 tb->cs_base = cs_base;
897 tb->flags = flags;
898 tb->cflags = cflags;
d07bde88 899 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 900 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 901
d720b93d 902 /* check next page if needed */
c27004ec 903 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 904 phys_page2 = -1;
c27004ec 905 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
d720b93d
FB
906 phys_page2 = get_phys_addr_code(env, virt_page2);
907 }
908 tb_link_phys(tb, phys_pc, phys_page2);
2e70f6ef 909 return tb;
d720b93d 910}
3b46e624 911
9fa3e853
FB
912/* invalidate all TBs which intersect with the target physical page
913 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
914 the same physical page. 'is_cpu_write_access' should be true if called
915 from a real cpu write access: the virtual CPU will exit the current
916 TB if code is modified inside this TB. */
99a0949b 917void tb_invalidate_phys_page_range(a_target_phys_addr start, a_target_phys_addr end,
d720b93d
FB
918 int is_cpu_write_access)
919{
6b917547 920 TranslationBlock *tb, *tb_next, *saved_tb;
d720b93d 921 CPUState *env = cpu_single_env;
9fa3e853 922 target_ulong tb_start, tb_end;
6b917547
AL
923 PageDesc *p;
924 int n;
925#ifdef TARGET_HAS_PRECISE_SMC
926 int current_tb_not_found = is_cpu_write_access;
927 TranslationBlock *current_tb = NULL;
928 int current_tb_modified = 0;
929 target_ulong current_pc = 0;
930 target_ulong current_cs_base = 0;
931 int current_flags = 0;
932#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
933
934 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 935 if (!p)
9fa3e853 936 return;
5fafdf24 937 if (!p->code_bitmap &&
d720b93d
FB
938 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
939 is_cpu_write_access) {
9fa3e853
FB
940 /* build code bitmap */
941 build_page_bitmap(p);
942 }
943
944 /* we remove all the TBs in the range [start, end[ */
945 /* XXX: see if in some cases it could be faster to invalidate all the code */
946 tb = p->first_tb;
947 while (tb != NULL) {
948 n = (long)tb & 3;
949 tb = (TranslationBlock *)((long)tb & ~3);
950 tb_next = tb->page_next[n];
951 /* NOTE: this is subtle as a TB may span two physical pages */
952 if (n == 0) {
953 /* NOTE: tb_end may be after the end of the page, but
954 it is not a problem */
955 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
956 tb_end = tb_start + tb->size;
957 } else {
958 tb_start = tb->page_addr[1];
959 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
960 }
961 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
962#ifdef TARGET_HAS_PRECISE_SMC
963 if (current_tb_not_found) {
964 current_tb_not_found = 0;
965 current_tb = NULL;
2e70f6ef 966 if (env->mem_io_pc) {
d720b93d 967 /* now we have a real cpu fault */
2e70f6ef 968 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
969 }
970 }
971 if (current_tb == tb &&
2e70f6ef 972 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
973 /* If we are modifying the current TB, we must stop
974 its execution. We could be more precise by checking
975 that the modification is after the current PC, but it
976 would require a specialized function to partially
977 restore the CPU state */
3b46e624 978
d720b93d 979 current_tb_modified = 1;
5fafdf24 980 cpu_restore_state(current_tb, env,
2e70f6ef 981 env->mem_io_pc, NULL);
6b917547
AL
982 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
983 &current_flags);
d720b93d
FB
984 }
985#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
986 /* we need to do that to handle the case where a signal
987 occurs while doing tb_phys_invalidate() */
988 saved_tb = NULL;
989 if (env) {
990 saved_tb = env->current_tb;
991 env->current_tb = NULL;
992 }
9fa3e853 993 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
994 if (env) {
995 env->current_tb = saved_tb;
996 if (env->interrupt_request && env->current_tb)
997 cpu_interrupt(env, env->interrupt_request);
998 }
9fa3e853
FB
999 }
1000 tb = tb_next;
1001 }
1002#if !defined(CONFIG_USER_ONLY)
1003 /* if no code remaining, no need to continue to use slow writes */
1004 if (!p->first_tb) {
1005 invalidate_page_bitmap(p);
d720b93d 1006 if (is_cpu_write_access) {
2e70f6ef 1007 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
1008 }
1009 }
1010#endif
1011#ifdef TARGET_HAS_PRECISE_SMC
1012 if (current_tb_modified) {
1013 /* we generate a block containing just the instruction
1014 modifying the memory. It will ensure that it cannot modify
1015 itself */
ea1c1802 1016 env->current_tb = NULL;
2e70f6ef 1017 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 1018 cpu_resume_from_signal(env, NULL);
9fa3e853 1019 }
fd6ce8f6 1020#endif
9fa3e853 1021}
fd6ce8f6 1022
9fa3e853 1023/* len must be <= 8 and start must be a multiple of len */
99a0949b 1024static inline void tb_invalidate_phys_page_fast(a_target_phys_addr start, int len)
9fa3e853
FB
1025{
1026 PageDesc *p;
1027 int offset, b;
59817ccb 1028#if 0
a4193c8a 1029 if (1) {
93fcfe39
AL
1030 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1031 cpu_single_env->mem_io_vaddr, len,
1032 cpu_single_env->eip,
1033 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
59817ccb
FB
1034 }
1035#endif
9fa3e853 1036 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1037 if (!p)
9fa3e853
FB
1038 return;
1039 if (p->code_bitmap) {
1040 offset = start & ~TARGET_PAGE_MASK;
1041 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1042 if (b & ((1 << len) - 1))
1043 goto do_invalidate;
1044 } else {
1045 do_invalidate:
d720b93d 1046 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1047 }
1048}
1049
9fa3e853 1050#if !defined(CONFIG_SOFTMMU)
99a0949b 1051static void tb_invalidate_phys_page(a_target_phys_addr addr,
d720b93d 1052 unsigned long pc, void *puc)
9fa3e853 1053{
6b917547 1054 TranslationBlock *tb;
9fa3e853 1055 PageDesc *p;
6b917547 1056 int n;
d720b93d 1057#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1058 TranslationBlock *current_tb = NULL;
d720b93d 1059 CPUState *env = cpu_single_env;
6b917547
AL
1060 int current_tb_modified = 0;
1061 target_ulong current_pc = 0;
1062 target_ulong current_cs_base = 0;
1063 int current_flags = 0;
d720b93d 1064#endif
9fa3e853
FB
1065
1066 addr &= TARGET_PAGE_MASK;
1067 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1068 if (!p)
9fa3e853
FB
1069 return;
1070 tb = p->first_tb;
d720b93d
FB
1071#ifdef TARGET_HAS_PRECISE_SMC
1072 if (tb && pc != 0) {
1073 current_tb = tb_find_pc(pc);
1074 }
1075#endif
9fa3e853
FB
1076 while (tb != NULL) {
1077 n = (long)tb & 3;
1078 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1079#ifdef TARGET_HAS_PRECISE_SMC
1080 if (current_tb == tb &&
2e70f6ef 1081 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1082 /* If we are modifying the current TB, we must stop
1083 its execution. We could be more precise by checking
1084 that the modification is after the current PC, but it
1085 would require a specialized function to partially
1086 restore the CPU state */
3b46e624 1087
d720b93d
FB
1088 current_tb_modified = 1;
1089 cpu_restore_state(current_tb, env, pc, puc);
6b917547
AL
1090 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1091 &current_flags);
d720b93d
FB
1092 }
1093#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1094 tb_phys_invalidate(tb, addr);
1095 tb = tb->page_next[n];
1096 }
fd6ce8f6 1097 p->first_tb = NULL;
d720b93d
FB
1098#ifdef TARGET_HAS_PRECISE_SMC
1099 if (current_tb_modified) {
1100 /* we generate a block containing just the instruction
1101 modifying the memory. It will ensure that it cannot modify
1102 itself */
ea1c1802 1103 env->current_tb = NULL;
2e70f6ef 1104 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1105 cpu_resume_from_signal(env, puc);
1106 }
1107#endif
fd6ce8f6 1108}
9fa3e853 1109#endif
fd6ce8f6
FB
1110
1111/* add the tb in the target page and protect it if necessary */
5fafdf24 1112static inline void tb_alloc_page(TranslationBlock *tb,
53a5960a 1113 unsigned int n, target_ulong page_addr)
fd6ce8f6
FB
1114{
1115 PageDesc *p;
9fa3e853
FB
1116 TranslationBlock *last_first_tb;
1117
1118 tb->page_addr[n] = page_addr;
3a7d929e 1119 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
9fa3e853
FB
1120 tb->page_next[n] = p->first_tb;
1121 last_first_tb = p->first_tb;
1122 p->first_tb = (TranslationBlock *)((long)tb | n);
1123 invalidate_page_bitmap(p);
fd6ce8f6 1124
107db443 1125#if defined(TARGET_HAS_SMC) || 1
d720b93d 1126
9fa3e853 1127#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1128 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1129 target_ulong addr;
1130 PageDesc *p2;
9fa3e853
FB
1131 int prot;
1132
fd6ce8f6
FB
1133 /* force the host page as non writable (writes will have a
1134 page fault + mprotect overhead) */
53a5960a 1135 page_addr &= qemu_host_page_mask;
fd6ce8f6 1136 prot = 0;
53a5960a
PB
1137 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1138 addr += TARGET_PAGE_SIZE) {
1139
1140 p2 = page_find (addr >> TARGET_PAGE_BITS);
1141 if (!p2)
1142 continue;
1143 prot |= p2->flags;
1144 p2->flags &= ~PAGE_WRITE;
1145 page_get_flags(addr);
1146 }
5fafdf24 1147 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1148 (prot & PAGE_BITS) & ~PAGE_WRITE);
1149#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1150 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1151 page_addr);
fd6ce8f6 1152#endif
fd6ce8f6 1153 }
9fa3e853
FB
1154#else
1155 /* if some code is already present, then the pages are already
1156 protected. So we handle the case where only the first TB is
1157 allocated in a physical page */
1158 if (!last_first_tb) {
6a00d601 1159 tlb_protect_code(page_addr);
9fa3e853
FB
1160 }
1161#endif
d720b93d
FB
1162
1163#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1164}
1165
1166/* Allocate a new translation block. Flush the translation buffer if
1167 too many translation blocks or too much generated code. */
c27004ec 1168TranslationBlock *tb_alloc(target_ulong pc)
fd6ce8f6
FB
1169{
1170 TranslationBlock *tb;
fd6ce8f6 1171
26a5f13b
FB
1172 if (nb_tbs >= code_gen_max_blocks ||
1173 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
d4e8164f 1174 return NULL;
fd6ce8f6
FB
1175 tb = &tbs[nb_tbs++];
1176 tb->pc = pc;
b448f2f3 1177 tb->cflags = 0;
d4e8164f
FB
1178 return tb;
1179}
1180
2e70f6ef
PB
1181void tb_free(TranslationBlock *tb)
1182{
bf20dc07 1183 /* In practice this is mostly used for single use temporary TB
2e70f6ef
PB
1184 Ignore the hard cases and just back up if this TB happens to
1185 be the last one generated. */
1186 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1187 code_gen_ptr = tb->tc_ptr;
1188 nb_tbs--;
1189 }
1190}
1191
9fa3e853
FB
1192/* add a new TB and link it to the physical page tables. phys_page2 is
1193 (-1) to indicate that only one page contains the TB. */
5fafdf24 1194void tb_link_phys(TranslationBlock *tb,
9fa3e853 1195 target_ulong phys_pc, target_ulong phys_page2)
d4e8164f 1196{
9fa3e853
FB
1197 unsigned int h;
1198 TranslationBlock **ptb;
1199
c8a706fe
PB
1200 /* Grab the mmap lock to stop another thread invalidating this TB
1201 before we are done. */
1202 mmap_lock();
9fa3e853
FB
1203 /* add in the physical hash table */
1204 h = tb_phys_hash_func(phys_pc);
1205 ptb = &tb_phys_hash[h];
1206 tb->phys_hash_next = *ptb;
1207 *ptb = tb;
fd6ce8f6
FB
1208
1209 /* add in the page list */
9fa3e853
FB
1210 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1211 if (phys_page2 != -1)
1212 tb_alloc_page(tb, 1, phys_page2);
1213 else
1214 tb->page_addr[1] = -1;
9fa3e853 1215
d4e8164f
FB
1216 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1217 tb->jmp_next[0] = NULL;
1218 tb->jmp_next[1] = NULL;
1219
1220 /* init original jump addresses */
1221 if (tb->tb_next_offset[0] != 0xffff)
1222 tb_reset_jump(tb, 0);
1223 if (tb->tb_next_offset[1] != 0xffff)
1224 tb_reset_jump(tb, 1);
8a40a180
FB
1225
1226#ifdef DEBUG_TB_CHECK
1227 tb_page_check();
1228#endif
c8a706fe 1229 mmap_unlock();
fd6ce8f6
FB
1230}
1231
9fa3e853
FB
1232/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1233 tb[1].tc_ptr. Return NULL if not found */
1234TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1235{
9fa3e853
FB
1236 int m_min, m_max, m;
1237 unsigned long v;
1238 TranslationBlock *tb;
a513fe19
FB
1239
1240 if (nb_tbs <= 0)
1241 return NULL;
1242 if (tc_ptr < (unsigned long)code_gen_buffer ||
1243 tc_ptr >= (unsigned long)code_gen_ptr)
1244 return NULL;
1245 /* binary search (cf Knuth) */
1246 m_min = 0;
1247 m_max = nb_tbs - 1;
1248 while (m_min <= m_max) {
1249 m = (m_min + m_max) >> 1;
1250 tb = &tbs[m];
1251 v = (unsigned long)tb->tc_ptr;
1252 if (v == tc_ptr)
1253 return tb;
1254 else if (tc_ptr < v) {
1255 m_max = m - 1;
1256 } else {
1257 m_min = m + 1;
1258 }
5fafdf24 1259 }
a513fe19
FB
1260 return &tbs[m_max];
1261}
7501267e 1262
ea041c0e
FB
1263static void tb_reset_jump_recursive(TranslationBlock *tb);
1264
1265static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1266{
1267 TranslationBlock *tb1, *tb_next, **ptb;
1268 unsigned int n1;
1269
1270 tb1 = tb->jmp_next[n];
1271 if (tb1 != NULL) {
1272 /* find head of list */
1273 for(;;) {
1274 n1 = (long)tb1 & 3;
1275 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1276 if (n1 == 2)
1277 break;
1278 tb1 = tb1->jmp_next[n1];
1279 }
1280 /* we are now sure now that tb jumps to tb1 */
1281 tb_next = tb1;
1282
1283 /* remove tb from the jmp_first list */
1284 ptb = &tb_next->jmp_first;
1285 for(;;) {
1286 tb1 = *ptb;
1287 n1 = (long)tb1 & 3;
1288 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1289 if (n1 == n && tb1 == tb)
1290 break;
1291 ptb = &tb1->jmp_next[n1];
1292 }
1293 *ptb = tb->jmp_next[n];
1294 tb->jmp_next[n] = NULL;
3b46e624 1295
ea041c0e
FB
1296 /* suppress the jump to next tb in generated code */
1297 tb_reset_jump(tb, n);
1298
0124311e 1299 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1300 tb_reset_jump_recursive(tb_next);
1301 }
1302}
1303
1304static void tb_reset_jump_recursive(TranslationBlock *tb)
1305{
1306 tb_reset_jump_recursive2(tb, 0);
1307 tb_reset_jump_recursive2(tb, 1);
1308}
1309
1fddef4b 1310#if defined(TARGET_HAS_ICE)
d720b93d
FB
1311static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1312{
99a0949b 1313 a_target_phys_addr addr;
9b3c35e0 1314 target_ulong pd;
99a0949b 1315 a_ram_addr ram_addr;
c2f07f81 1316 PhysPageDesc *p;
d720b93d 1317
c2f07f81
PB
1318 addr = cpu_get_phys_page_debug(env, pc);
1319 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1320 if (!p) {
1321 pd = IO_MEM_UNASSIGNED;
1322 } else {
1323 pd = p->phys_offset;
1324 }
1325 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1326 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1327}
c27004ec 1328#endif
d720b93d 1329
6658ffb8 1330/* Add a watchpoint. */
a1d1bb31
AL
1331int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1332 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1333{
b4051334 1334 target_ulong len_mask = ~(len - 1);
c0ce998e 1335 CPUWatchpoint *wp;
6658ffb8 1336
b4051334
AL
1337 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1338 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1339 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1340 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1341 return -EINVAL;
1342 }
a1d1bb31 1343 wp = qemu_malloc(sizeof(*wp));
a1d1bb31
AL
1344
1345 wp->vaddr = addr;
b4051334 1346 wp->len_mask = len_mask;
a1d1bb31
AL
1347 wp->flags = flags;
1348
2dc9f411 1349 /* keep all GDB-injected watchpoints in front */
c0ce998e 1350 if (flags & BP_GDB)
72cf2d4f 1351 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
c0ce998e 1352 else
72cf2d4f 1353 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 1354
6658ffb8 1355 tlb_flush_page(env, addr);
a1d1bb31
AL
1356
1357 if (watchpoint)
1358 *watchpoint = wp;
1359 return 0;
6658ffb8
PB
1360}
1361
a1d1bb31
AL
1362/* Remove a specific watchpoint. */
1363int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1364 int flags)
6658ffb8 1365{
b4051334 1366 target_ulong len_mask = ~(len - 1);
a1d1bb31 1367 CPUWatchpoint *wp;
6658ffb8 1368
72cf2d4f 1369 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 1370 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1371 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1372 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1373 return 0;
1374 }
1375 }
a1d1bb31 1376 return -ENOENT;
6658ffb8
PB
1377}
1378
a1d1bb31
AL
1379/* Remove a specific watchpoint by reference. */
1380void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1381{
72cf2d4f 1382 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 1383
a1d1bb31
AL
1384 tlb_flush_page(env, watchpoint->vaddr);
1385
1386 qemu_free(watchpoint);
1387}
1388
1389/* Remove all matching watchpoints. */
1390void cpu_watchpoint_remove_all(CPUState *env, int mask)
1391{
c0ce998e 1392 CPUWatchpoint *wp, *next;
a1d1bb31 1393
72cf2d4f 1394 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
1395 if (wp->flags & mask)
1396 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 1397 }
7d03f82f
EI
1398}
1399
a1d1bb31
AL
1400/* Add a breakpoint. */
1401int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1402 CPUBreakpoint **breakpoint)
4c3a88a2 1403{
1fddef4b 1404#if defined(TARGET_HAS_ICE)
c0ce998e 1405 CPUBreakpoint *bp;
3b46e624 1406
a1d1bb31 1407 bp = qemu_malloc(sizeof(*bp));
4c3a88a2 1408
a1d1bb31
AL
1409 bp->pc = pc;
1410 bp->flags = flags;
1411
2dc9f411 1412 /* keep all GDB-injected breakpoints in front */
c0ce998e 1413 if (flags & BP_GDB)
72cf2d4f 1414 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
c0ce998e 1415 else
72cf2d4f 1416 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 1417
d720b93d 1418 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1419
1420 if (breakpoint)
1421 *breakpoint = bp;
4c3a88a2
FB
1422 return 0;
1423#else
a1d1bb31 1424 return -ENOSYS;
4c3a88a2
FB
1425#endif
1426}
1427
a1d1bb31
AL
1428/* Remove a specific breakpoint. */
1429int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1430{
7d03f82f 1431#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1432 CPUBreakpoint *bp;
1433
72cf2d4f 1434 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
1435 if (bp->pc == pc && bp->flags == flags) {
1436 cpu_breakpoint_remove_by_ref(env, bp);
1437 return 0;
1438 }
7d03f82f 1439 }
a1d1bb31
AL
1440 return -ENOENT;
1441#else
1442 return -ENOSYS;
7d03f82f
EI
1443#endif
1444}
1445
a1d1bb31
AL
1446/* Remove a specific breakpoint by reference. */
1447void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1448{
1fddef4b 1449#if defined(TARGET_HAS_ICE)
72cf2d4f 1450 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 1451
a1d1bb31
AL
1452 breakpoint_invalidate(env, breakpoint->pc);
1453
1454 qemu_free(breakpoint);
1455#endif
1456}
1457
1458/* Remove all matching breakpoints. */
1459void cpu_breakpoint_remove_all(CPUState *env, int mask)
1460{
1461#if defined(TARGET_HAS_ICE)
c0ce998e 1462 CPUBreakpoint *bp, *next;
a1d1bb31 1463
72cf2d4f 1464 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
1465 if (bp->flags & mask)
1466 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 1467 }
4c3a88a2
FB
1468#endif
1469}
1470
c33a346e
FB
1471/* enable or disable single step mode. EXCP_DEBUG is returned by the
1472 CPU loop after each instruction */
1473void cpu_single_step(CPUState *env, int enabled)
1474{
1fddef4b 1475#if defined(TARGET_HAS_ICE)
c33a346e
FB
1476 if (env->singlestep_enabled != enabled) {
1477 env->singlestep_enabled = enabled;
e22a25c9
AL
1478 if (kvm_enabled())
1479 kvm_update_guest_debug(env, 0);
1480 else {
ccbb4d44 1481 /* must flush all the translated code to avoid inconsistencies */
e22a25c9
AL
1482 /* XXX: only flush what is necessary */
1483 tb_flush(env);
1484 }
c33a346e
FB
1485 }
1486#endif
1487}
1488
34865134
FB
1489/* enable or disable low levels log */
1490void cpu_set_log(int log_flags)
1491{
1492 loglevel = log_flags;
1493 if (loglevel && !logfile) {
11fcfab4 1494 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1495 if (!logfile) {
1496 perror(logfilename);
1497 _exit(1);
1498 }
9fa3e853
FB
1499#if !defined(CONFIG_SOFTMMU)
1500 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1501 {
b55266b5 1502 static char logfile_buf[4096];
9fa3e853
FB
1503 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1504 }
bf65f53f
FN
1505#elif !defined(_WIN32)
1506 /* Win32 doesn't support line-buffering and requires size >= 2 */
34865134 1507 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1508#endif
e735b91c
PB
1509 log_append = 1;
1510 }
1511 if (!loglevel && logfile) {
1512 fclose(logfile);
1513 logfile = NULL;
34865134
FB
1514 }
1515}
1516
1517void cpu_set_log_filename(const char *filename)
1518{
1519 logfilename = strdup(filename);
e735b91c
PB
1520 if (logfile) {
1521 fclose(logfile);
1522 logfile = NULL;
1523 }
1524 cpu_set_log(loglevel);
34865134 1525}
c33a346e 1526
3098dba0 1527static void cpu_unlink_tb(CPUState *env)
ea041c0e 1528{
2f7bb878 1529#if defined(CONFIG_USE_NPTL)
3098dba0
AJ
1530 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1531 problem and hope the cpu will stop of its own accord. For userspace
1532 emulation this often isn't actually as bad as it sounds. Often
1533 signals are used primarily to interrupt blocking syscalls. */
1534#else
ea041c0e 1535 TranslationBlock *tb;
99a0949b 1536 static a_spinlock interrupt_lock = SPIN_LOCK_UNLOCKED;
59817ccb 1537
3098dba0
AJ
1538 tb = env->current_tb;
1539 /* if the cpu is currently executing code, we must unlink it and
1540 all the potentially executing TB */
1541 if (tb && !testandset(&interrupt_lock)) {
1542 env->current_tb = NULL;
1543 tb_reset_jump_recursive(tb);
1544 resetlock(&interrupt_lock);
be214e6c 1545 }
3098dba0
AJ
1546#endif
1547}
1548
1549/* mask must never be zero, except for A20 change call */
1550void cpu_interrupt(CPUState *env, int mask)
1551{
1552 int old_mask;
be214e6c 1553
2e70f6ef 1554 old_mask = env->interrupt_request;
68a79315 1555 env->interrupt_request |= mask;
3098dba0 1556
8edac960
AL
1557#ifndef CONFIG_USER_ONLY
1558 /*
1559 * If called from iothread context, wake the target cpu in
1560 * case its halted.
1561 */
1562 if (!qemu_cpu_self(env)) {
1563 qemu_cpu_kick(env);
1564 return;
1565 }
1566#endif
1567
2e70f6ef 1568 if (use_icount) {
266910c4 1569 env->icount_decr.u16.high = 0xffff;
2e70f6ef 1570#ifndef CONFIG_USER_ONLY
2e70f6ef 1571 if (!can_do_io(env)
be214e6c 1572 && (mask & ~old_mask) != 0) {
2e70f6ef
PB
1573 cpu_abort(env, "Raised interrupt while not in I/O function");
1574 }
1575#endif
1576 } else {
3098dba0 1577 cpu_unlink_tb(env);
ea041c0e
FB
1578 }
1579}
1580
b54ad049
FB
1581void cpu_reset_interrupt(CPUState *env, int mask)
1582{
1583 env->interrupt_request &= ~mask;
1584}
1585
3098dba0
AJ
1586void cpu_exit(CPUState *env)
1587{
1588 env->exit_request = 1;
1589 cpu_unlink_tb(env);
1590}
1591
c7cd6a37 1592const CPULogItem cpu_log_items[] = {
5fafdf24 1593 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1594 "show generated host assembly code for each compiled TB" },
1595 { CPU_LOG_TB_IN_ASM, "in_asm",
1596 "show target assembly code for each compiled TB" },
5fafdf24 1597 { CPU_LOG_TB_OP, "op",
57fec1fe 1598 "show micro ops for each compiled TB" },
f193c797 1599 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1600 "show micro ops "
1601#ifdef TARGET_I386
1602 "before eflags optimization and "
f193c797 1603#endif
e01a1157 1604 "after liveness analysis" },
f193c797
FB
1605 { CPU_LOG_INT, "int",
1606 "show interrupts/exceptions in short format" },
1607 { CPU_LOG_EXEC, "exec",
1608 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1609 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1610 "show CPU state before block translation" },
f193c797
FB
1611#ifdef TARGET_I386
1612 { CPU_LOG_PCALL, "pcall",
1613 "show protected mode far calls/returns/exceptions" },
eca1bdf4
AL
1614 { CPU_LOG_RESET, "cpu_reset",
1615 "show CPU state before CPU resets" },
f193c797 1616#endif
8e3a9fd2 1617#ifdef DEBUG_IOPORT
fd872598
FB
1618 { CPU_LOG_IOPORT, "ioport",
1619 "show all i/o ports accesses" },
8e3a9fd2 1620#endif
f193c797
FB
1621 { 0, NULL, NULL },
1622};
1623
1624static int cmp1(const char *s1, int n, const char *s2)
1625{
1626 if (strlen(s2) != n)
1627 return 0;
1628 return memcmp(s1, s2, n) == 0;
1629}
3b46e624 1630
f193c797
FB
1631/* takes a comma separated list of log masks. Return 0 if error. */
1632int cpu_str_to_log_mask(const char *str)
1633{
c7cd6a37 1634 const CPULogItem *item;
f193c797
FB
1635 int mask;
1636 const char *p, *p1;
1637
1638 p = str;
1639 mask = 0;
1640 for(;;) {
1641 p1 = strchr(p, ',');
1642 if (!p1)
1643 p1 = p + strlen(p);
8e3a9fd2
FB
1644 if(cmp1(p,p1-p,"all")) {
1645 for(item = cpu_log_items; item->mask != 0; item++) {
1646 mask |= item->mask;
1647 }
1648 } else {
f193c797
FB
1649 for(item = cpu_log_items; item->mask != 0; item++) {
1650 if (cmp1(p, p1 - p, item->name))
1651 goto found;
1652 }
1653 return 0;
8e3a9fd2 1654 }
f193c797
FB
1655 found:
1656 mask |= item->mask;
1657 if (*p1 != ',')
1658 break;
1659 p = p1 + 1;
1660 }
1661 return mask;
1662}
ea041c0e 1663
7501267e
FB
1664void cpu_abort(CPUState *env, const char *fmt, ...)
1665{
1666 va_list ap;
493ae1f0 1667 va_list ap2;
7501267e
FB
1668
1669 va_start(ap, fmt);
493ae1f0 1670 va_copy(ap2, ap);
7501267e
FB
1671 fprintf(stderr, "qemu: fatal: ");
1672 vfprintf(stderr, fmt, ap);
1673 fprintf(stderr, "\n");
1674#ifdef TARGET_I386
7fe48483
FB
1675 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1676#else
1677 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1678#endif
93fcfe39
AL
1679 if (qemu_log_enabled()) {
1680 qemu_log("qemu: fatal: ");
1681 qemu_log_vprintf(fmt, ap2);
1682 qemu_log("\n");
f9373291 1683#ifdef TARGET_I386
93fcfe39 1684 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
f9373291 1685#else
93fcfe39 1686 log_cpu_state(env, 0);
f9373291 1687#endif
31b1a7b4 1688 qemu_log_flush();
93fcfe39 1689 qemu_log_close();
924edcae 1690 }
493ae1f0 1691 va_end(ap2);
f9373291 1692 va_end(ap);
7501267e
FB
1693 abort();
1694}
1695
c5be9f08
TS
1696CPUState *cpu_copy(CPUState *env)
1697{
01ba9816 1698 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1699 CPUState *next_cpu = new_env->next_cpu;
1700 int cpu_index = new_env->cpu_index;
5a38f081
AL
1701#if defined(TARGET_HAS_ICE)
1702 CPUBreakpoint *bp;
1703 CPUWatchpoint *wp;
1704#endif
1705
c5be9f08 1706 memcpy(new_env, env, sizeof(CPUState));
5a38f081
AL
1707
1708 /* Preserve chaining and index. */
c5be9f08
TS
1709 new_env->next_cpu = next_cpu;
1710 new_env->cpu_index = cpu_index;
5a38f081
AL
1711
1712 /* Clone all break/watchpoints.
1713 Note: Once we support ptrace with hw-debug register access, make sure
1714 BP_CPU break/watchpoints are handled correctly on clone. */
72cf2d4f
BS
1715 QTAILQ_INIT(&env->breakpoints);
1716 QTAILQ_INIT(&env->watchpoints);
5a38f081 1717#if defined(TARGET_HAS_ICE)
72cf2d4f 1718 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
5a38f081
AL
1719 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1720 }
72cf2d4f 1721 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
5a38f081
AL
1722 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1723 wp->flags, NULL);
1724 }
1725#endif
1726
c5be9f08
TS
1727 return new_env;
1728}
1729
0124311e
FB
1730#if !defined(CONFIG_USER_ONLY)
1731
5c751e99
EI
1732static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1733{
1734 unsigned int i;
1735
1736 /* Discard jump cache entries for any tb which might potentially
1737 overlap the flushed page. */
1738 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1739 memset (&env->tb_jmp_cache[i], 0,
1740 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1741
1742 i = tb_jmp_cache_hash_page(addr);
1743 memset (&env->tb_jmp_cache[i], 0,
1744 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1745}
1746
08738984
IK
1747static CPUTLBEntry s_cputlb_empty_entry = {
1748 .addr_read = -1,
1749 .addr_write = -1,
1750 .addr_code = -1,
1751 .addend = -1,
1752};
1753
ee8b7021
FB
1754/* NOTE: if flush_global is true, also flush global entries (not
1755 implemented yet) */
1756void tlb_flush(CPUState *env, int flush_global)
33417e70 1757{
33417e70 1758 int i;
0124311e 1759
9fa3e853
FB
1760#if defined(DEBUG_TLB)
1761 printf("tlb_flush:\n");
1762#endif
0124311e
FB
1763 /* must reset current TB so that interrupts cannot modify the
1764 links while we are modifying them */
1765 env->current_tb = NULL;
1766
33417e70 1767 for(i = 0; i < CPU_TLB_SIZE; i++) {
cfde4bd9
IY
1768 int mmu_idx;
1769 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
08738984 1770 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
cfde4bd9 1771 }
33417e70 1772 }
9fa3e853 1773
8a40a180 1774 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 1775
e3db7226 1776 tlb_flush_count++;
33417e70
FB
1777}
1778
274da6b2 1779static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1780{
5fafdf24 1781 if (addr == (tlb_entry->addr_read &
84b7b8e7 1782 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1783 addr == (tlb_entry->addr_write &
84b7b8e7 1784 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1785 addr == (tlb_entry->addr_code &
84b7b8e7 1786 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
08738984 1787 *tlb_entry = s_cputlb_empty_entry;
84b7b8e7 1788 }
61382a50
FB
1789}
1790
2e12669a 1791void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 1792{
8a40a180 1793 int i;
cfde4bd9 1794 int mmu_idx;
0124311e 1795
9fa3e853 1796#if defined(DEBUG_TLB)
108c49b8 1797 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 1798#endif
0124311e
FB
1799 /* must reset current TB so that interrupts cannot modify the
1800 links while we are modifying them */
1801 env->current_tb = NULL;
61382a50
FB
1802
1803 addr &= TARGET_PAGE_MASK;
1804 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
1805 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1806 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
0124311e 1807
5c751e99 1808 tlb_flush_jmp_cache(env, addr);
9fa3e853
FB
1809}
1810
9fa3e853
FB
1811/* update the TLBs so that writes to code in the virtual page 'addr'
1812 can be detected */
99a0949b 1813static void tlb_protect_code(a_ram_addr ram_addr)
9fa3e853 1814{
5fafdf24 1815 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
1816 ram_addr + TARGET_PAGE_SIZE,
1817 CODE_DIRTY_FLAG);
9fa3e853
FB
1818}
1819
9fa3e853 1820/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 1821 tested for self modifying code */
99a0949b 1822static void tlb_unprotect_code_phys(CPUState *env, a_ram_addr ram_addr,
3a7d929e 1823 target_ulong vaddr)
9fa3e853 1824{
3a7d929e 1825 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1ccde1cb
FB
1826}
1827
5fafdf24 1828static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
1829 unsigned long start, unsigned long length)
1830{
1831 unsigned long addr;
84b7b8e7
FB
1832 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1833 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 1834 if ((addr - start) < length) {
0f459d16 1835 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
1836 }
1837 }
1838}
1839
5579c7f3 1840/* Note: start and end must be within the same ram block. */
99a0949b 1841void cpu_physical_memory_reset_dirty(a_ram_addr start, a_ram_addr end,
0a962c02 1842 int dirty_flags)
1ccde1cb
FB
1843{
1844 CPUState *env;
4f2ac237 1845 unsigned long length, start1;
0a962c02
FB
1846 int i, mask, len;
1847 uint8_t *p;
1ccde1cb
FB
1848
1849 start &= TARGET_PAGE_MASK;
1850 end = TARGET_PAGE_ALIGN(end);
1851
1852 length = end - start;
1853 if (length == 0)
1854 return;
0a962c02 1855 len = length >> TARGET_PAGE_BITS;
f23db169
FB
1856 mask = ~dirty_flags;
1857 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1858 for(i = 0; i < len; i++)
1859 p[i] &= mask;
1860
1ccde1cb
FB
1861 /* we modify the TLB cache so that the dirty bit will be set again
1862 when accessing the range */
5579c7f3
PB
1863 start1 = (unsigned long)qemu_get_ram_ptr(start);
1864 /* Chek that we don't span multiple blocks - this breaks the
1865 address comparisons below. */
1866 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
1867 != (end - 1) - start) {
1868 abort();
1869 }
1870
6a00d601 1871 for(env = first_cpu; env != NULL; env = env->next_cpu) {
cfde4bd9
IY
1872 int mmu_idx;
1873 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1874 for(i = 0; i < CPU_TLB_SIZE; i++)
1875 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
1876 start1, length);
1877 }
6a00d601 1878 }
1ccde1cb
FB
1879}
1880
74576198
AL
1881int cpu_physical_memory_set_dirty_tracking(int enable)
1882{
1883 in_migration = enable;
b0a46a33
JK
1884 if (kvm_enabled()) {
1885 return kvm_set_migration_log(enable);
1886 }
74576198
AL
1887 return 0;
1888}
1889
1890int cpu_physical_memory_get_dirty_tracking(void)
1891{
1892 return in_migration;
1893}
1894
99a0949b 1895int cpu_physical_sync_dirty_bitmap(a_target_phys_addr start_addr,
1896 a_target_phys_addr end_addr)
2bec46dc 1897{
151f7749
JK
1898 int ret = 0;
1899
2bec46dc 1900 if (kvm_enabled())
151f7749
JK
1901 ret = kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
1902 return ret;
2bec46dc
AL
1903}
1904
3a7d929e
FB
1905static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1906{
99a0949b 1907 a_ram_addr ram_addr;
5579c7f3 1908 void *p;
3a7d929e 1909
84b7b8e7 1910 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5579c7f3
PB
1911 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
1912 + tlb_entry->addend);
1913 ram_addr = qemu_ram_addr_from_host(p);
3a7d929e 1914 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 1915 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
1916 }
1917 }
1918}
1919
1920/* update the TLB according to the current state of the dirty bits */
1921void cpu_tlb_update_dirty(CPUState *env)
1922{
1923 int i;
cfde4bd9
IY
1924 int mmu_idx;
1925 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1926 for(i = 0; i < CPU_TLB_SIZE; i++)
1927 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
1928 }
3a7d929e
FB
1929}
1930
0f459d16 1931static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 1932{
0f459d16
PB
1933 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
1934 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
1935}
1936
0f459d16
PB
1937/* update the TLB corresponding to virtual page vaddr
1938 so that it is no longer dirty */
1939static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 1940{
1ccde1cb 1941 int i;
cfde4bd9 1942 int mmu_idx;
1ccde1cb 1943
0f459d16 1944 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 1945 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
1946 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1947 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
9fa3e853
FB
1948}
1949
59817ccb
FB
1950/* add a new TLB entry. At most one entry for a given virtual address
1951 is permitted. Return 0 if OK or 2 if the page could not be mapped
1952 (can only happen in non SOFTMMU mode for I/O pages or pages
1953 conflicting with the host address space). */
5fafdf24 1954int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
99a0949b 1955 a_target_phys_addr paddr, int prot,
6ebbf390 1956 int mmu_idx, int is_softmmu)
9fa3e853 1957{
92e873b9 1958 PhysPageDesc *p;
4f2ac237 1959 unsigned long pd;
9fa3e853 1960 unsigned int index;
4f2ac237 1961 target_ulong address;
0f459d16 1962 target_ulong code_address;
99a0949b 1963 a_target_phys_addr addend;
9fa3e853 1964 int ret;
84b7b8e7 1965 CPUTLBEntry *te;
a1d1bb31 1966 CPUWatchpoint *wp;
99a0949b 1967 a_target_phys_addr iotlb;
9fa3e853 1968
92e873b9 1969 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
1970 if (!p) {
1971 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
1972 } else {
1973 pd = p->phys_offset;
9fa3e853
FB
1974 }
1975#if defined(DEBUG_TLB)
6ebbf390
JM
1976 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1977 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
9fa3e853
FB
1978#endif
1979
1980 ret = 0;
0f459d16
PB
1981 address = vaddr;
1982 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
1983 /* IO memory case (romd handled later) */
1984 address |= TLB_MMIO;
1985 }
5579c7f3 1986 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
0f459d16
PB
1987 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
1988 /* Normal RAM. */
1989 iotlb = pd & TARGET_PAGE_MASK;
1990 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
1991 iotlb |= IO_MEM_NOTDIRTY;
1992 else
1993 iotlb |= IO_MEM_ROM;
1994 } else {
ccbb4d44 1995 /* IO handlers are currently passed a physical address.
0f459d16
PB
1996 It would be nice to pass an offset from the base address
1997 of that region. This would avoid having to special case RAM,
1998 and avoid full address decoding in every device.
1999 We can't use the high bits of pd for this because
2000 IO_MEM_ROMD uses these as a ram address. */
8da3ff18
PB
2001 iotlb = (pd & ~TARGET_PAGE_MASK);
2002 if (p) {
8da3ff18
PB
2003 iotlb += p->region_offset;
2004 } else {
2005 iotlb += paddr;
2006 }
0f459d16
PB
2007 }
2008
2009 code_address = address;
2010 /* Make accesses to pages with watchpoints go via the
2011 watchpoint trap routines. */
72cf2d4f 2012 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
a1d1bb31 2013 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
0f459d16
PB
2014 iotlb = io_mem_watch + paddr;
2015 /* TODO: The memory case can be optimized by not trapping
2016 reads of pages with a write breakpoint. */
2017 address |= TLB_MMIO;
6658ffb8 2018 }
0f459d16 2019 }
d79acba4 2020
0f459d16
PB
2021 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2022 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2023 te = &env->tlb_table[mmu_idx][index];
2024 te->addend = addend - vaddr;
2025 if (prot & PAGE_READ) {
2026 te->addr_read = address;
2027 } else {
2028 te->addr_read = -1;
2029 }
5c751e99 2030
0f459d16
PB
2031 if (prot & PAGE_EXEC) {
2032 te->addr_code = code_address;
2033 } else {
2034 te->addr_code = -1;
2035 }
2036 if (prot & PAGE_WRITE) {
2037 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2038 (pd & IO_MEM_ROMD)) {
2039 /* Write access calls the I/O callback. */
2040 te->addr_write = address | TLB_MMIO;
2041 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2042 !cpu_physical_memory_is_dirty(pd)) {
2043 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 2044 } else {
0f459d16 2045 te->addr_write = address;
9fa3e853 2046 }
0f459d16
PB
2047 } else {
2048 te->addr_write = -1;
9fa3e853 2049 }
9fa3e853
FB
2050 return ret;
2051}
2052
0124311e
FB
2053#else
2054
ee8b7021 2055void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
2056{
2057}
2058
2e12669a 2059void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
2060{
2061}
2062
5fafdf24 2063int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
99a0949b 2064 a_target_phys_addr paddr, int prot,
6ebbf390 2065 int mmu_idx, int is_softmmu)
9fa3e853
FB
2066{
2067 return 0;
2068}
0124311e 2069
edf8e2af
MW
2070/*
2071 * Walks guest process memory "regions" one by one
2072 * and calls callback function 'fn' for each region.
2073 */
2074int walk_memory_regions(void *priv,
2075 int (*fn)(void *, unsigned long, unsigned long, unsigned long))
33417e70 2076{
9fa3e853 2077 unsigned long start, end;
edf8e2af 2078 PageDesc *p = NULL;
9fa3e853 2079 int i, j, prot, prot1;
edf8e2af 2080 int rc = 0;
33417e70 2081
edf8e2af 2082 start = end = -1;
9fa3e853 2083 prot = 0;
edf8e2af
MW
2084
2085 for (i = 0; i <= L1_SIZE; i++) {
2086 p = (i < L1_SIZE) ? l1_map[i] : NULL;
2087 for (j = 0; j < L2_SIZE; j++) {
2088 prot1 = (p == NULL) ? 0 : p[j].flags;
2089 /*
2090 * "region" is one continuous chunk of memory
2091 * that has same protection flags set.
2092 */
9fa3e853
FB
2093 if (prot1 != prot) {
2094 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2095 if (start != -1) {
edf8e2af
MW
2096 rc = (*fn)(priv, start, end, prot);
2097 /* callback can stop iteration by returning != 0 */
2098 if (rc != 0)
2099 return (rc);
9fa3e853
FB
2100 }
2101 if (prot1 != 0)
2102 start = end;
2103 else
2104 start = -1;
2105 prot = prot1;
2106 }
edf8e2af 2107 if (p == NULL)
9fa3e853
FB
2108 break;
2109 }
33417e70 2110 }
edf8e2af
MW
2111 return (rc);
2112}
2113
2114static int dump_region(void *priv, unsigned long start,
2115 unsigned long end, unsigned long prot)
2116{
2117 FILE *f = (FILE *)priv;
2118
2119 (void) fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
2120 start, end, end - start,
2121 ((prot & PAGE_READ) ? 'r' : '-'),
2122 ((prot & PAGE_WRITE) ? 'w' : '-'),
2123 ((prot & PAGE_EXEC) ? 'x' : '-'));
2124
2125 return (0);
2126}
2127
2128/* dump memory mappings */
2129void page_dump(FILE *f)
2130{
2131 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2132 "start", "end", "size", "prot");
2133 walk_memory_regions(f, dump_region);
33417e70
FB
2134}
2135
53a5960a 2136int page_get_flags(target_ulong address)
33417e70 2137{
9fa3e853
FB
2138 PageDesc *p;
2139
2140 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2141 if (!p)
9fa3e853
FB
2142 return 0;
2143 return p->flags;
2144}
2145
2146/* modify the flags of a page and invalidate the code if
ccbb4d44 2147 necessary. The flag PAGE_WRITE_ORG is positioned automatically
9fa3e853 2148 depending on PAGE_WRITE */
53a5960a 2149void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853
FB
2150{
2151 PageDesc *p;
53a5960a 2152 target_ulong addr;
9fa3e853 2153
c8a706fe 2154 /* mmap_lock should already be held. */
9fa3e853
FB
2155 start = start & TARGET_PAGE_MASK;
2156 end = TARGET_PAGE_ALIGN(end);
2157 if (flags & PAGE_WRITE)
2158 flags |= PAGE_WRITE_ORG;
9fa3e853
FB
2159 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2160 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
17e2377a
PB
2161 /* We may be called for host regions that are outside guest
2162 address space. */
2163 if (!p)
2164 return;
9fa3e853
FB
2165 /* if the write protection is set, then we invalidate the code
2166 inside */
5fafdf24 2167 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2168 (flags & PAGE_WRITE) &&
2169 p->first_tb) {
d720b93d 2170 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2171 }
2172 p->flags = flags;
2173 }
33417e70
FB
2174}
2175
3d97b40b
TS
2176int page_check_range(target_ulong start, target_ulong len, int flags)
2177{
2178 PageDesc *p;
2179 target_ulong end;
2180 target_ulong addr;
2181
55f280c9
AZ
2182 if (start + len < start)
2183 /* we've wrapped around */
2184 return -1;
2185
3d97b40b
TS
2186 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2187 start = start & TARGET_PAGE_MASK;
2188
3d97b40b
TS
2189 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2190 p = page_find(addr >> TARGET_PAGE_BITS);
2191 if( !p )
2192 return -1;
2193 if( !(p->flags & PAGE_VALID) )
2194 return -1;
2195
dae3270c 2196 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2197 return -1;
dae3270c
FB
2198 if (flags & PAGE_WRITE) {
2199 if (!(p->flags & PAGE_WRITE_ORG))
2200 return -1;
2201 /* unprotect the page if it was put read-only because it
2202 contains translated code */
2203 if (!(p->flags & PAGE_WRITE)) {
2204 if (!page_unprotect(addr, 0, NULL))
2205 return -1;
2206 }
2207 return 0;
2208 }
3d97b40b
TS
2209 }
2210 return 0;
2211}
2212
9fa3e853 2213/* called from signal handler: invalidate the code and unprotect the
ccbb4d44 2214 page. Return TRUE if the fault was successfully handled. */
53a5960a 2215int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853
FB
2216{
2217 unsigned int page_index, prot, pindex;
2218 PageDesc *p, *p1;
53a5960a 2219 target_ulong host_start, host_end, addr;
9fa3e853 2220
c8a706fe
PB
2221 /* Technically this isn't safe inside a signal handler. However we
2222 know this only ever happens in a synchronous SEGV handler, so in
2223 practice it seems to be ok. */
2224 mmap_lock();
2225
83fb7adf 2226 host_start = address & qemu_host_page_mask;
9fa3e853
FB
2227 page_index = host_start >> TARGET_PAGE_BITS;
2228 p1 = page_find(page_index);
c8a706fe
PB
2229 if (!p1) {
2230 mmap_unlock();
9fa3e853 2231 return 0;
c8a706fe 2232 }
83fb7adf 2233 host_end = host_start + qemu_host_page_size;
9fa3e853
FB
2234 p = p1;
2235 prot = 0;
2236 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2237 prot |= p->flags;
2238 p++;
2239 }
2240 /* if the page was really writable, then we change its
2241 protection back to writable */
2242 if (prot & PAGE_WRITE_ORG) {
2243 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2244 if (!(p1[pindex].flags & PAGE_WRITE)) {
5fafdf24 2245 mprotect((void *)g2h(host_start), qemu_host_page_size,
9fa3e853
FB
2246 (prot & PAGE_BITS) | PAGE_WRITE);
2247 p1[pindex].flags |= PAGE_WRITE;
2248 /* and since the content will be modified, we must invalidate
2249 the corresponding translated code. */
d720b93d 2250 tb_invalidate_phys_page(address, pc, puc);
9fa3e853
FB
2251#ifdef DEBUG_TB_CHECK
2252 tb_invalidate_check(address);
2253#endif
c8a706fe 2254 mmap_unlock();
9fa3e853
FB
2255 return 1;
2256 }
2257 }
c8a706fe 2258 mmap_unlock();
9fa3e853
FB
2259 return 0;
2260}
2261
6a00d601
FB
2262static inline void tlb_set_dirty(CPUState *env,
2263 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2264{
2265}
9fa3e853
FB
2266#endif /* defined(CONFIG_USER_ONLY) */
2267
e2eef170 2268#if !defined(CONFIG_USER_ONLY)
8da3ff18 2269
99a0949b 2270static int subpage_register (a_subpage *mmio, uint32_t start, uint32_t end,
2271 a_ram_addr memory, a_ram_addr region_offset);
2272static void *subpage_init (a_target_phys_addr base, a_ram_addr *phys,
2273 a_ram_addr orig_memory, a_ram_addr region_offset);
db7b5426
BS
2274#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2275 need_subpage) \
2276 do { \
2277 if (addr > start_addr) \
2278 start_addr2 = 0; \
2279 else { \
2280 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2281 if (start_addr2 > 0) \
2282 need_subpage = 1; \
2283 } \
2284 \
49e9fba2 2285 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2286 end_addr2 = TARGET_PAGE_SIZE - 1; \
2287 else { \
2288 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2289 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2290 need_subpage = 1; \
2291 } \
2292 } while (0)
2293
33417e70
FB
2294/* register physical memory. 'size' must be a multiple of the target
2295 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
8da3ff18
PB
2296 io memory page. The address used when calling the IO function is
2297 the offset from the start of the region, plus region_offset. Both
ccbb4d44 2298 start_addr and region_offset are rounded down to a page boundary
8da3ff18
PB
2299 before calculating this offset. This should not be a problem unless
2300 the low bits of start_addr and region_offset differ. */
99a0949b 2301void cpu_register_physical_memory_offset(a_target_phys_addr start_addr,
2302 a_ram_addr size,
2303 a_ram_addr phys_offset,
2304 a_ram_addr region_offset)
33417e70 2305{
99a0949b 2306 a_target_phys_addr addr, end_addr;
92e873b9 2307 PhysPageDesc *p;
9d42037b 2308 CPUState *env;
99a0949b 2309 a_ram_addr orig_size = size;
db7b5426 2310 void *subpage;
33417e70 2311
7ba1e619
AL
2312 if (kvm_enabled())
2313 kvm_set_phys_mem(start_addr, size, phys_offset);
2314
67c4d23c
PB
2315 if (phys_offset == IO_MEM_UNASSIGNED) {
2316 region_offset = start_addr;
2317 }
8da3ff18 2318 region_offset &= TARGET_PAGE_MASK;
5fd386f6 2319 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
99a0949b 2320 end_addr = start_addr + (a_target_phys_addr)size;
49e9fba2 2321 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
db7b5426
BS
2322 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2323 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
99a0949b 2324 a_ram_addr orig_memory = p->phys_offset;
2325 a_target_phys_addr start_addr2, end_addr2;
db7b5426
BS
2326 int need_subpage = 0;
2327
2328 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2329 need_subpage);
4254fab8 2330 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426
BS
2331 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2332 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18
PB
2333 &p->phys_offset, orig_memory,
2334 p->region_offset);
db7b5426
BS
2335 } else {
2336 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2337 >> IO_MEM_SHIFT];
2338 }
8da3ff18
PB
2339 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2340 region_offset);
2341 p->region_offset = 0;
db7b5426
BS
2342 } else {
2343 p->phys_offset = phys_offset;
2344 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2345 (phys_offset & IO_MEM_ROMD))
2346 phys_offset += TARGET_PAGE_SIZE;
2347 }
2348 } else {
2349 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2350 p->phys_offset = phys_offset;
8da3ff18 2351 p->region_offset = region_offset;
db7b5426 2352 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
8da3ff18 2353 (phys_offset & IO_MEM_ROMD)) {
db7b5426 2354 phys_offset += TARGET_PAGE_SIZE;
0e8f0967 2355 } else {
99a0949b 2356 a_target_phys_addr start_addr2, end_addr2;
db7b5426
BS
2357 int need_subpage = 0;
2358
2359 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2360 end_addr2, need_subpage);
2361
4254fab8 2362 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426 2363 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18 2364 &p->phys_offset, IO_MEM_UNASSIGNED,
67c4d23c 2365 addr & TARGET_PAGE_MASK);
db7b5426 2366 subpage_register(subpage, start_addr2, end_addr2,
8da3ff18
PB
2367 phys_offset, region_offset);
2368 p->region_offset = 0;
db7b5426
BS
2369 }
2370 }
2371 }
8da3ff18 2372 region_offset += TARGET_PAGE_SIZE;
33417e70 2373 }
3b46e624 2374
9d42037b
FB
2375 /* since each CPU stores ram addresses in its TLB cache, we must
2376 reset the modified entries */
2377 /* XXX: slow ! */
2378 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2379 tlb_flush(env, 1);
2380 }
33417e70
FB
2381}
2382
ba863458 2383/* XXX: temporary until new memory mapping API */
99a0949b 2384a_ram_addr cpu_get_physical_page_desc(a_target_phys_addr addr)
ba863458
FB
2385{
2386 PhysPageDesc *p;
2387
2388 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2389 if (!p)
2390 return IO_MEM_UNASSIGNED;
2391 return p->phys_offset;
2392}
2393
99a0949b 2394void qemu_register_coalesced_mmio(a_target_phys_addr addr, a_ram_addr size)
f65ed4c1
AL
2395{
2396 if (kvm_enabled())
2397 kvm_coalesce_mmio_region(addr, size);
2398}
2399
99a0949b 2400void qemu_unregister_coalesced_mmio(a_target_phys_addr addr, a_ram_addr size)
f65ed4c1
AL
2401{
2402 if (kvm_enabled())
2403 kvm_uncoalesce_mmio_region(addr, size);
2404}
2405
99a0949b 2406a_ram_addr qemu_ram_alloc(a_ram_addr size)
94a6b54f
PB
2407{
2408 RAMBlock *new_block;
2409
94a6b54f
PB
2410 size = TARGET_PAGE_ALIGN(size);
2411 new_block = qemu_malloc(sizeof(*new_block));
2412
2413 new_block->host = qemu_vmalloc(size);
2414 new_block->offset = last_ram_offset;
2415 new_block->length = size;
2416
2417 new_block->next = ram_blocks;
2418 ram_blocks = new_block;
2419
2420 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2421 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2422 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2423 0xff, size >> TARGET_PAGE_BITS);
2424
2425 last_ram_offset += size;
2426
6f0437e8
JK
2427 if (kvm_enabled())
2428 kvm_setup_guest_memory(new_block->host, size);
2429
94a6b54f
PB
2430 return new_block->offset;
2431}
e9a1ab19 2432
99a0949b 2433void qemu_ram_free(a_ram_addr addr)
e9a1ab19 2434{
94a6b54f 2435 /* TODO: implement this. */
e9a1ab19
FB
2436}
2437
dc828ca1 2438/* Return a host pointer to ram allocated with qemu_ram_alloc.
5579c7f3
PB
2439 With the exception of the softmmu code in this file, this should
2440 only be used for local memory (e.g. video ram) that the device owns,
2441 and knows it isn't going to access beyond the end of the block.
2442
2443 It should not be used for general purpose DMA.
2444 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2445 */
99a0949b 2446void *qemu_get_ram_ptr(a_ram_addr addr)
dc828ca1 2447{
94a6b54f
PB
2448 RAMBlock *prev;
2449 RAMBlock **prevp;
2450 RAMBlock *block;
2451
94a6b54f
PB
2452 prev = NULL;
2453 prevp = &ram_blocks;
2454 block = ram_blocks;
2455 while (block && (block->offset > addr
2456 || block->offset + block->length <= addr)) {
2457 if (prev)
2458 prevp = &prev->next;
2459 prev = block;
2460 block = block->next;
2461 }
2462 if (!block) {
2463 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2464 abort();
2465 }
2466 /* Move this entry to to start of the list. */
2467 if (prev) {
2468 prev->next = block->next;
2469 block->next = *prevp;
2470 *prevp = block;
2471 }
2472 return block->host + (addr - block->offset);
dc828ca1
PB
2473}
2474
5579c7f3
PB
2475/* Some of the softmmu routines need to translate from a host pointer
2476 (typically a TLB entry) back to a ram offset. */
99a0949b 2477a_ram_addr qemu_ram_addr_from_host(void *ptr)
5579c7f3 2478{
94a6b54f
PB
2479 RAMBlock *prev;
2480 RAMBlock **prevp;
2481 RAMBlock *block;
2482 uint8_t *host = ptr;
2483
94a6b54f
PB
2484 prev = NULL;
2485 prevp = &ram_blocks;
2486 block = ram_blocks;
2487 while (block && (block->host > host
2488 || block->host + block->length <= host)) {
2489 if (prev)
2490 prevp = &prev->next;
2491 prev = block;
2492 block = block->next;
2493 }
2494 if (!block) {
2495 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2496 abort();
2497 }
2498 return block->offset + (host - block->host);
5579c7f3
PB
2499}
2500
99a0949b 2501static uint32_t unassigned_mem_readb(void *opaque, a_target_phys_addr addr)
33417e70 2502{
67d3b957 2503#ifdef DEBUG_UNASSIGNED
ab3d1727 2504 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316 2505#endif
faed1c2a 2506#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2507 do_unassigned_access(addr, 0, 0, 0, 1);
2508#endif
2509 return 0;
2510}
2511
99a0949b 2512static uint32_t unassigned_mem_readw(void *opaque, a_target_phys_addr addr)
e18231a3
BS
2513{
2514#ifdef DEBUG_UNASSIGNED
2515 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2516#endif
faed1c2a 2517#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2518 do_unassigned_access(addr, 0, 0, 0, 2);
2519#endif
2520 return 0;
2521}
2522
99a0949b 2523static uint32_t unassigned_mem_readl(void *opaque, a_target_phys_addr addr)
e18231a3
BS
2524{
2525#ifdef DEBUG_UNASSIGNED
2526 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2527#endif
faed1c2a 2528#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 2529 do_unassigned_access(addr, 0, 0, 0, 4);
67d3b957 2530#endif
33417e70
FB
2531 return 0;
2532}
2533
99a0949b 2534static void unassigned_mem_writeb(void *opaque, a_target_phys_addr addr, uint32_t val)
33417e70 2535{
67d3b957 2536#ifdef DEBUG_UNASSIGNED
ab3d1727 2537 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 2538#endif
faed1c2a 2539#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2540 do_unassigned_access(addr, 1, 0, 0, 1);
2541#endif
2542}
2543
99a0949b 2544static void unassigned_mem_writew(void *opaque, a_target_phys_addr addr, uint32_t val)
e18231a3
BS
2545{
2546#ifdef DEBUG_UNASSIGNED
2547 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2548#endif
faed1c2a 2549#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2550 do_unassigned_access(addr, 1, 0, 0, 2);
2551#endif
2552}
2553
99a0949b 2554static void unassigned_mem_writel(void *opaque, a_target_phys_addr addr, uint32_t val)
e18231a3
BS
2555{
2556#ifdef DEBUG_UNASSIGNED
2557 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2558#endif
faed1c2a 2559#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 2560 do_unassigned_access(addr, 1, 0, 0, 4);
b4f0a316 2561#endif
33417e70
FB
2562}
2563
d60efc6b 2564static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
33417e70 2565 unassigned_mem_readb,
e18231a3
BS
2566 unassigned_mem_readw,
2567 unassigned_mem_readl,
33417e70
FB
2568};
2569
d60efc6b 2570static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
33417e70 2571 unassigned_mem_writeb,
e18231a3
BS
2572 unassigned_mem_writew,
2573 unassigned_mem_writel,
33417e70
FB
2574};
2575
99a0949b 2576static void notdirty_mem_writeb(void *opaque, a_target_phys_addr ram_addr,
0f459d16 2577 uint32_t val)
9fa3e853 2578{
3a7d929e 2579 int dirty_flags;
3a7d929e
FB
2580 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2581 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2582#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2583 tb_invalidate_phys_page_fast(ram_addr, 1);
2584 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2585#endif
3a7d929e 2586 }
5579c7f3 2587 stb_p(qemu_get_ram_ptr(ram_addr), val);
f23db169
FB
2588 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2589 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2590 /* we remove the notdirty callback only if the code has been
2591 flushed */
2592 if (dirty_flags == 0xff)
2e70f6ef 2593 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2594}
2595
99a0949b 2596static void notdirty_mem_writew(void *opaque, a_target_phys_addr ram_addr,
0f459d16 2597 uint32_t val)
9fa3e853 2598{
3a7d929e 2599 int dirty_flags;
3a7d929e
FB
2600 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2601 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2602#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2603 tb_invalidate_phys_page_fast(ram_addr, 2);
2604 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2605#endif
3a7d929e 2606 }
5579c7f3 2607 stw_p(qemu_get_ram_ptr(ram_addr), val);
f23db169
FB
2608 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2609 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2610 /* we remove the notdirty callback only if the code has been
2611 flushed */
2612 if (dirty_flags == 0xff)
2e70f6ef 2613 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2614}
2615
99a0949b 2616static void notdirty_mem_writel(void *opaque, a_target_phys_addr ram_addr,
0f459d16 2617 uint32_t val)
9fa3e853 2618{
3a7d929e 2619 int dirty_flags;
3a7d929e
FB
2620 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2621 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2622#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2623 tb_invalidate_phys_page_fast(ram_addr, 4);
2624 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2625#endif
3a7d929e 2626 }
5579c7f3 2627 stl_p(qemu_get_ram_ptr(ram_addr), val);
f23db169
FB
2628 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2629 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2630 /* we remove the notdirty callback only if the code has been
2631 flushed */
2632 if (dirty_flags == 0xff)
2e70f6ef 2633 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2634}
2635
d60efc6b 2636static CPUReadMemoryFunc * const error_mem_read[3] = {
9fa3e853
FB
2637 NULL, /* never used */
2638 NULL, /* never used */
2639 NULL, /* never used */
2640};
2641
d60efc6b 2642static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
1ccde1cb
FB
2643 notdirty_mem_writeb,
2644 notdirty_mem_writew,
2645 notdirty_mem_writel,
2646};
2647
0f459d16 2648/* Generate a debug exception if a watchpoint has been hit. */
b4051334 2649static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16
PB
2650{
2651 CPUState *env = cpu_single_env;
06d55cc1
AL
2652 target_ulong pc, cs_base;
2653 TranslationBlock *tb;
0f459d16 2654 target_ulong vaddr;
a1d1bb31 2655 CPUWatchpoint *wp;
06d55cc1 2656 int cpu_flags;
0f459d16 2657
06d55cc1
AL
2658 if (env->watchpoint_hit) {
2659 /* We re-entered the check after replacing the TB. Now raise
2660 * the debug interrupt so that is will trigger after the
2661 * current instruction. */
2662 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2663 return;
2664 }
2e70f6ef 2665 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
72cf2d4f 2666 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
2667 if ((vaddr == (wp->vaddr & len_mask) ||
2668 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
2669 wp->flags |= BP_WATCHPOINT_HIT;
2670 if (!env->watchpoint_hit) {
2671 env->watchpoint_hit = wp;
2672 tb = tb_find_pc(env->mem_io_pc);
2673 if (!tb) {
2674 cpu_abort(env, "check_watchpoint: could not find TB for "
2675 "pc=%p", (void *)env->mem_io_pc);
2676 }
2677 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
2678 tb_phys_invalidate(tb, -1);
2679 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2680 env->exception_index = EXCP_DEBUG;
2681 } else {
2682 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2683 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2684 }
2685 cpu_resume_from_signal(env, NULL);
06d55cc1 2686 }
6e140f28
AL
2687 } else {
2688 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2689 }
2690 }
2691}
2692
6658ffb8
PB
2693/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2694 so these check for a hit then pass through to the normal out-of-line
2695 phys routines. */
99a0949b 2696static uint32_t watch_mem_readb(void *opaque, a_target_phys_addr addr)
6658ffb8 2697{
b4051334 2698 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
6658ffb8
PB
2699 return ldub_phys(addr);
2700}
2701
99a0949b 2702static uint32_t watch_mem_readw(void *opaque, a_target_phys_addr addr)
6658ffb8 2703{
b4051334 2704 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
6658ffb8
PB
2705 return lduw_phys(addr);
2706}
2707
99a0949b 2708static uint32_t watch_mem_readl(void *opaque, a_target_phys_addr addr)
6658ffb8 2709{
b4051334 2710 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
6658ffb8
PB
2711 return ldl_phys(addr);
2712}
2713
99a0949b 2714static void watch_mem_writeb(void *opaque, a_target_phys_addr addr,
6658ffb8
PB
2715 uint32_t val)
2716{
b4051334 2717 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
6658ffb8
PB
2718 stb_phys(addr, val);
2719}
2720
99a0949b 2721static void watch_mem_writew(void *opaque, a_target_phys_addr addr,
6658ffb8
PB
2722 uint32_t val)
2723{
b4051334 2724 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
6658ffb8
PB
2725 stw_phys(addr, val);
2726}
2727
99a0949b 2728static void watch_mem_writel(void *opaque, a_target_phys_addr addr,
6658ffb8
PB
2729 uint32_t val)
2730{
b4051334 2731 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
6658ffb8
PB
2732 stl_phys(addr, val);
2733}
2734
d60efc6b 2735static CPUReadMemoryFunc * const watch_mem_read[3] = {
6658ffb8
PB
2736 watch_mem_readb,
2737 watch_mem_readw,
2738 watch_mem_readl,
2739};
2740
d60efc6b 2741static CPUWriteMemoryFunc * const watch_mem_write[3] = {
6658ffb8
PB
2742 watch_mem_writeb,
2743 watch_mem_writew,
2744 watch_mem_writel,
2745};
6658ffb8 2746
99a0949b 2747static inline uint32_t subpage_readlen (a_subpage *mmio, a_target_phys_addr addr,
db7b5426
BS
2748 unsigned int len)
2749{
db7b5426
BS
2750 uint32_t ret;
2751 unsigned int idx;
2752
8da3ff18 2753 idx = SUBPAGE_IDX(addr);
db7b5426
BS
2754#if defined(DEBUG_SUBPAGE)
2755 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2756 mmio, len, addr, idx);
2757#endif
8da3ff18
PB
2758 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
2759 addr + mmio->region_offset[idx][0][len]);
db7b5426
BS
2760
2761 return ret;
2762}
2763
99a0949b 2764static inline void subpage_writelen (a_subpage *mmio, a_target_phys_addr addr,
db7b5426
BS
2765 uint32_t value, unsigned int len)
2766{
db7b5426
BS
2767 unsigned int idx;
2768
8da3ff18 2769 idx = SUBPAGE_IDX(addr);
db7b5426
BS
2770#if defined(DEBUG_SUBPAGE)
2771 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2772 mmio, len, addr, idx, value);
2773#endif
8da3ff18
PB
2774 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
2775 addr + mmio->region_offset[idx][1][len],
2776 value);
db7b5426
BS
2777}
2778
99a0949b 2779static uint32_t subpage_readb (void *opaque, a_target_phys_addr addr)
db7b5426
BS
2780{
2781#if defined(DEBUG_SUBPAGE)
2782 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2783#endif
2784
2785 return subpage_readlen(opaque, addr, 0);
2786}
2787
99a0949b 2788static void subpage_writeb (void *opaque, a_target_phys_addr addr,
db7b5426
BS
2789 uint32_t value)
2790{
2791#if defined(DEBUG_SUBPAGE)
2792 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2793#endif
2794 subpage_writelen(opaque, addr, value, 0);
2795}
2796
99a0949b 2797static uint32_t subpage_readw (void *opaque, a_target_phys_addr addr)
db7b5426
BS
2798{
2799#if defined(DEBUG_SUBPAGE)
2800 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2801#endif
2802
2803 return subpage_readlen(opaque, addr, 1);
2804}
2805
99a0949b 2806static void subpage_writew (void *opaque, a_target_phys_addr addr,
db7b5426
BS
2807 uint32_t value)
2808{
2809#if defined(DEBUG_SUBPAGE)
2810 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2811#endif
2812 subpage_writelen(opaque, addr, value, 1);
2813}
2814
99a0949b 2815static uint32_t subpage_readl (void *opaque, a_target_phys_addr addr)
db7b5426
BS
2816{
2817#if defined(DEBUG_SUBPAGE)
2818 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2819#endif
2820
2821 return subpage_readlen(opaque, addr, 2);
2822}
2823
2824static void subpage_writel (void *opaque,
99a0949b 2825 a_target_phys_addr addr, uint32_t value)
db7b5426
BS
2826{
2827#if defined(DEBUG_SUBPAGE)
2828 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2829#endif
2830 subpage_writelen(opaque, addr, value, 2);
2831}
2832
d60efc6b 2833static CPUReadMemoryFunc * const subpage_read[] = {
db7b5426
BS
2834 &subpage_readb,
2835 &subpage_readw,
2836 &subpage_readl,
2837};
2838
d60efc6b 2839static CPUWriteMemoryFunc * const subpage_write[] = {
db7b5426
BS
2840 &subpage_writeb,
2841 &subpage_writew,
2842 &subpage_writel,
2843};
2844
99a0949b 2845static int subpage_register (a_subpage *mmio, uint32_t start, uint32_t end,
2846 a_ram_addr memory, a_ram_addr region_offset)
db7b5426
BS
2847{
2848 int idx, eidx;
4254fab8 2849 unsigned int i;
db7b5426
BS
2850
2851 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2852 return -1;
2853 idx = SUBPAGE_IDX(start);
2854 eidx = SUBPAGE_IDX(end);
2855#if defined(DEBUG_SUBPAGE)
0bf9e31a 2856 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
db7b5426
BS
2857 mmio, start, end, idx, eidx, memory);
2858#endif
2859 memory >>= IO_MEM_SHIFT;
2860 for (; idx <= eidx; idx++) {
4254fab8 2861 for (i = 0; i < 4; i++) {
3ee89922
BS
2862 if (io_mem_read[memory][i]) {
2863 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2864 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
8da3ff18 2865 mmio->region_offset[idx][0][i] = region_offset;
3ee89922
BS
2866 }
2867 if (io_mem_write[memory][i]) {
2868 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2869 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
8da3ff18 2870 mmio->region_offset[idx][1][i] = region_offset;
3ee89922 2871 }
4254fab8 2872 }
db7b5426
BS
2873 }
2874
2875 return 0;
2876}
2877
99a0949b 2878static void *subpage_init (a_target_phys_addr base, a_ram_addr *phys,
2879 a_ram_addr orig_memory, a_ram_addr region_offset)
db7b5426 2880{
99a0949b 2881 a_subpage *mmio;
db7b5426
BS
2882 int subpage_memory;
2883
99a0949b 2884 mmio = qemu_mallocz(sizeof(a_subpage));
1eec614b
AL
2885
2886 mmio->base = base;
1eed09cb 2887 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
db7b5426 2888#if defined(DEBUG_SUBPAGE)
1eec614b
AL
2889 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2890 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 2891#endif
1eec614b
AL
2892 *phys = subpage_memory | IO_MEM_SUBPAGE;
2893 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
8da3ff18 2894 region_offset);
db7b5426
BS
2895
2896 return mmio;
2897}
2898
88715657
AL
2899static int get_free_io_mem_idx(void)
2900{
2901 int i;
2902
2903 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
2904 if (!io_mem_used[i]) {
2905 io_mem_used[i] = 1;
2906 return i;
2907 }
2908
2909 return -1;
2910}
2911
33417e70
FB
2912/* mem_read and mem_write are arrays of functions containing the
2913 function to access byte (index 0), word (index 1) and dword (index
0b4e6e3e 2914 2). Functions can be omitted with a NULL function pointer.
3ee89922 2915 If io_index is non zero, the corresponding io zone is
4254fab8
BS
2916 modified. If it is zero, a new io zone is allocated. The return
2917 value can be used with cpu_register_physical_memory(). (-1) is
2918 returned if error. */
1eed09cb 2919static int cpu_register_io_memory_fixed(int io_index,
d60efc6b
BS
2920 CPUReadMemoryFunc * const *mem_read,
2921 CPUWriteMemoryFunc * const *mem_write,
1eed09cb 2922 void *opaque)
33417e70 2923{
4254fab8 2924 int i, subwidth = 0;
33417e70
FB
2925
2926 if (io_index <= 0) {
88715657
AL
2927 io_index = get_free_io_mem_idx();
2928 if (io_index == -1)
2929 return io_index;
33417e70 2930 } else {
1eed09cb 2931 io_index >>= IO_MEM_SHIFT;
33417e70
FB
2932 if (io_index >= IO_MEM_NB_ENTRIES)
2933 return -1;
2934 }
b5ff1b31 2935
33417e70 2936 for(i = 0;i < 3; i++) {
4254fab8
BS
2937 if (!mem_read[i] || !mem_write[i])
2938 subwidth = IO_MEM_SUBWIDTH;
33417e70
FB
2939 io_mem_read[io_index][i] = mem_read[i];
2940 io_mem_write[io_index][i] = mem_write[i];
2941 }
a4193c8a 2942 io_mem_opaque[io_index] = opaque;
4254fab8 2943 return (io_index << IO_MEM_SHIFT) | subwidth;
33417e70 2944}
61382a50 2945
d60efc6b
BS
2946int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
2947 CPUWriteMemoryFunc * const *mem_write,
1eed09cb
AK
2948 void *opaque)
2949{
2950 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
2951}
2952
88715657
AL
2953void cpu_unregister_io_memory(int io_table_address)
2954{
2955 int i;
2956 int io_index = io_table_address >> IO_MEM_SHIFT;
2957
2958 for (i=0;i < 3; i++) {
2959 io_mem_read[io_index][i] = unassigned_mem_read[i];
2960 io_mem_write[io_index][i] = unassigned_mem_write[i];
2961 }
2962 io_mem_opaque[io_index] = NULL;
2963 io_mem_used[io_index] = 0;
2964}
2965
e9179ce1
AK
2966static void io_mem_init(void)
2967{
2968 int i;
2969
2970 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
2971 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
2972 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
2973 for (i=0; i<5; i++)
2974 io_mem_used[i] = 1;
2975
2976 io_mem_watch = cpu_register_io_memory(watch_mem_read,
2977 watch_mem_write, NULL);
e9179ce1
AK
2978}
2979
e2eef170
PB
2980#endif /* !defined(CONFIG_USER_ONLY) */
2981
13eb76e0
FB
2982/* physical memory access (slow version, mainly for debug) */
2983#if defined(CONFIG_USER_ONLY)
99a0949b 2984void cpu_physical_memory_rw(a_target_phys_addr addr, uint8_t *buf,
13eb76e0
FB
2985 int len, int is_write)
2986{
2987 int l, flags;
2988 target_ulong page;
53a5960a 2989 void * p;
13eb76e0
FB
2990
2991 while (len > 0) {
2992 page = addr & TARGET_PAGE_MASK;
2993 l = (page + TARGET_PAGE_SIZE) - addr;
2994 if (l > len)
2995 l = len;
2996 flags = page_get_flags(page);
2997 if (!(flags & PAGE_VALID))
2998 return;
2999 if (is_write) {
3000 if (!(flags & PAGE_WRITE))
3001 return;
579a97f7 3002 /* XXX: this code should not depend on lock_user */
72fb7daa 3003 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
579a97f7
FB
3004 /* FIXME - should this return an error rather than just fail? */
3005 return;
72fb7daa
AJ
3006 memcpy(p, buf, l);
3007 unlock_user(p, addr, l);
13eb76e0
FB
3008 } else {
3009 if (!(flags & PAGE_READ))
3010 return;
579a97f7 3011 /* XXX: this code should not depend on lock_user */
72fb7daa 3012 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
579a97f7
FB
3013 /* FIXME - should this return an error rather than just fail? */
3014 return;
72fb7daa 3015 memcpy(buf, p, l);
5b257578 3016 unlock_user(p, addr, 0);
13eb76e0
FB
3017 }
3018 len -= l;
3019 buf += l;
3020 addr += l;
3021 }
3022}
8df1cd07 3023
13eb76e0 3024#else
99a0949b 3025void cpu_physical_memory_rw(a_target_phys_addr addr, uint8_t *buf,
13eb76e0
FB
3026 int len, int is_write)
3027{
3028 int l, io_index;
3029 uint8_t *ptr;
3030 uint32_t val;
99a0949b 3031 a_target_phys_addr page;
2e12669a 3032 unsigned long pd;
92e873b9 3033 PhysPageDesc *p;
3b46e624 3034
13eb76e0
FB
3035 while (len > 0) {
3036 page = addr & TARGET_PAGE_MASK;
3037 l = (page + TARGET_PAGE_SIZE) - addr;
3038 if (l > len)
3039 l = len;
92e873b9 3040 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
3041 if (!p) {
3042 pd = IO_MEM_UNASSIGNED;
3043 } else {
3044 pd = p->phys_offset;
3045 }
3b46e624 3046
13eb76e0 3047 if (is_write) {
3a7d929e 3048 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
99a0949b 3049 a_target_phys_addr addr1 = addr;
13eb76e0 3050 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3051 if (p)
6c2934db 3052 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
6a00d601
FB
3053 /* XXX: could force cpu_single_env to NULL to avoid
3054 potential bugs */
6c2934db 3055 if (l >= 4 && ((addr1 & 3) == 0)) {
1c213d19 3056 /* 32 bit write access */
c27004ec 3057 val = ldl_p(buf);
6c2934db 3058 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
13eb76e0 3059 l = 4;
6c2934db 3060 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1c213d19 3061 /* 16 bit write access */
c27004ec 3062 val = lduw_p(buf);
6c2934db 3063 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3064 l = 2;
3065 } else {
1c213d19 3066 /* 8 bit write access */
c27004ec 3067 val = ldub_p(buf);
6c2934db 3068 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3069 l = 1;
3070 }
3071 } else {
b448f2f3
FB
3072 unsigned long addr1;
3073 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 3074 /* RAM case */
5579c7f3 3075 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 3076 memcpy(ptr, buf, l);
3a7d929e
FB
3077 if (!cpu_physical_memory_is_dirty(addr1)) {
3078 /* invalidate code */
3079 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3080 /* set dirty bit */
5fafdf24 3081 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
f23db169 3082 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3083 }
13eb76e0
FB
3084 }
3085 } else {
5fafdf24 3086 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3087 !(pd & IO_MEM_ROMD)) {
99a0949b 3088 a_target_phys_addr addr1 = addr;
13eb76e0
FB
3089 /* I/O case */
3090 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3091 if (p)
6c2934db
AJ
3092 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3093 if (l >= 4 && ((addr1 & 3) == 0)) {
13eb76e0 3094 /* 32 bit read access */
6c2934db 3095 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
c27004ec 3096 stl_p(buf, val);
13eb76e0 3097 l = 4;
6c2934db 3098 } else if (l >= 2 && ((addr1 & 1) == 0)) {
13eb76e0 3099 /* 16 bit read access */
6c2934db 3100 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
c27004ec 3101 stw_p(buf, val);
13eb76e0
FB
3102 l = 2;
3103 } else {
1c213d19 3104 /* 8 bit read access */
6c2934db 3105 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
c27004ec 3106 stb_p(buf, val);
13eb76e0
FB
3107 l = 1;
3108 }
3109 } else {
3110 /* RAM case */
5579c7f3 3111 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
13eb76e0
FB
3112 (addr & ~TARGET_PAGE_MASK);
3113 memcpy(buf, ptr, l);
3114 }
3115 }
3116 len -= l;
3117 buf += l;
3118 addr += l;
3119 }
3120}
8df1cd07 3121
d0ecd2aa 3122/* used for ROM loading : can write in RAM and ROM */
99a0949b 3123void cpu_physical_memory_write_rom(a_target_phys_addr addr,
d0ecd2aa
FB
3124 const uint8_t *buf, int len)
3125{
3126 int l;
3127 uint8_t *ptr;
99a0949b 3128 a_target_phys_addr page;
d0ecd2aa
FB
3129 unsigned long pd;
3130 PhysPageDesc *p;
3b46e624 3131
d0ecd2aa
FB
3132 while (len > 0) {
3133 page = addr & TARGET_PAGE_MASK;
3134 l = (page + TARGET_PAGE_SIZE) - addr;
3135 if (l > len)
3136 l = len;
3137 p = phys_page_find(page >> TARGET_PAGE_BITS);
3138 if (!p) {
3139 pd = IO_MEM_UNASSIGNED;
3140 } else {
3141 pd = p->phys_offset;
3142 }
3b46e624 3143
d0ecd2aa 3144 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
3145 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3146 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
3147 /* do nothing */
3148 } else {
3149 unsigned long addr1;
3150 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3151 /* ROM/RAM case */
5579c7f3 3152 ptr = qemu_get_ram_ptr(addr1);
d0ecd2aa
FB
3153 memcpy(ptr, buf, l);
3154 }
3155 len -= l;
3156 buf += l;
3157 addr += l;
3158 }
3159}
3160
6d16c2f8
AL
3161typedef struct {
3162 void *buffer;
99a0949b 3163 a_target_phys_addr addr;
3164 a_target_phys_addr len;
6d16c2f8
AL
3165} BounceBuffer;
3166
3167static BounceBuffer bounce;
3168
ba223c29
AL
3169typedef struct MapClient {
3170 void *opaque;
3171 void (*callback)(void *opaque);
72cf2d4f 3172 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3173} MapClient;
3174
72cf2d4f
BS
3175static QLIST_HEAD(map_client_list, MapClient) map_client_list
3176 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29
AL
3177
3178void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3179{
3180 MapClient *client = qemu_malloc(sizeof(*client));
3181
3182 client->opaque = opaque;
3183 client->callback = callback;
72cf2d4f 3184 QLIST_INSERT_HEAD(&map_client_list, client, link);
ba223c29
AL
3185 return client;
3186}
3187
3188void cpu_unregister_map_client(void *_client)
3189{
3190 MapClient *client = (MapClient *)_client;
3191
72cf2d4f 3192 QLIST_REMOVE(client, link);
34d5e948 3193 qemu_free(client);
ba223c29
AL
3194}
3195
3196static void cpu_notify_map_clients(void)
3197{
3198 MapClient *client;
3199
72cf2d4f
BS
3200 while (!QLIST_EMPTY(&map_client_list)) {
3201 client = QLIST_FIRST(&map_client_list);
ba223c29 3202 client->callback(client->opaque);
34d5e948 3203 cpu_unregister_map_client(client);
ba223c29
AL
3204 }
3205}
3206
6d16c2f8
AL
3207/* Map a physical memory region into a host virtual address.
3208 * May map a subset of the requested range, given by and returned in *plen.
3209 * May return NULL if resources needed to perform the mapping are exhausted.
3210 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3211 * Use cpu_register_map_client() to know when retrying the map operation is
3212 * likely to succeed.
6d16c2f8 3213 */
99a0949b 3214void *cpu_physical_memory_map(a_target_phys_addr addr,
3215 a_target_phys_addr *plen,
6d16c2f8
AL
3216 int is_write)
3217{
99a0949b 3218 a_target_phys_addr len = *plen;
3219 a_target_phys_addr done = 0;
6d16c2f8
AL
3220 int l;
3221 uint8_t *ret = NULL;
3222 uint8_t *ptr;
99a0949b 3223 a_target_phys_addr page;
6d16c2f8
AL
3224 unsigned long pd;
3225 PhysPageDesc *p;
3226 unsigned long addr1;
3227
3228 while (len > 0) {
3229 page = addr & TARGET_PAGE_MASK;
3230 l = (page + TARGET_PAGE_SIZE) - addr;
3231 if (l > len)
3232 l = len;
3233 p = phys_page_find(page >> TARGET_PAGE_BITS);
3234 if (!p) {
3235 pd = IO_MEM_UNASSIGNED;
3236 } else {
3237 pd = p->phys_offset;
3238 }
3239
3240 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3241 if (done || bounce.buffer) {
3242 break;
3243 }
3244 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3245 bounce.addr = addr;
3246 bounce.len = l;
3247 if (!is_write) {
3248 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3249 }
3250 ptr = bounce.buffer;
3251 } else {
3252 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3253 ptr = qemu_get_ram_ptr(addr1);
6d16c2f8
AL
3254 }
3255 if (!done) {
3256 ret = ptr;
3257 } else if (ret + done != ptr) {
3258 break;
3259 }
3260
3261 len -= l;
3262 addr += l;
3263 done += l;
3264 }
3265 *plen = done;
3266 return ret;
3267}
3268
3269/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3270 * Will also mark the memory as dirty if is_write == 1. access_len gives
3271 * the amount of memory that was actually read or written by the caller.
3272 */
99a0949b 3273void cpu_physical_memory_unmap(void *buffer, a_target_phys_addr len,
3274 int is_write, a_target_phys_addr access_len)
6d16c2f8
AL
3275{
3276 if (buffer != bounce.buffer) {
3277 if (is_write) {
99a0949b 3278 a_ram_addr addr1 = qemu_ram_addr_from_host(buffer);
6d16c2f8
AL
3279 while (access_len) {
3280 unsigned l;
3281 l = TARGET_PAGE_SIZE;
3282 if (l > access_len)
3283 l = access_len;
3284 if (!cpu_physical_memory_is_dirty(addr1)) {
3285 /* invalidate code */
3286 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3287 /* set dirty bit */
3288 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3289 (0xff & ~CODE_DIRTY_FLAG);
3290 }
3291 addr1 += l;
3292 access_len -= l;
3293 }
3294 }
3295 return;
3296 }
3297 if (is_write) {
3298 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3299 }
3300 qemu_free(bounce.buffer);
3301 bounce.buffer = NULL;
ba223c29 3302 cpu_notify_map_clients();
6d16c2f8 3303}
d0ecd2aa 3304
8df1cd07 3305/* warning: addr must be aligned */
99a0949b 3306uint32_t ldl_phys(a_target_phys_addr addr)
8df1cd07
FB
3307{
3308 int io_index;
3309 uint8_t *ptr;
3310 uint32_t val;
3311 unsigned long pd;
3312 PhysPageDesc *p;
3313
3314 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3315 if (!p) {
3316 pd = IO_MEM_UNASSIGNED;
3317 } else {
3318 pd = p->phys_offset;
3319 }
3b46e624 3320
5fafdf24 3321 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3322 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
3323 /* I/O case */
3324 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3325 if (p)
3326 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3327 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3328 } else {
3329 /* RAM case */
5579c7f3 3330 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
8df1cd07
FB
3331 (addr & ~TARGET_PAGE_MASK);
3332 val = ldl_p(ptr);
3333 }
3334 return val;
3335}
3336
84b7b8e7 3337/* warning: addr must be aligned */
99a0949b 3338uint64_t ldq_phys(a_target_phys_addr addr)
84b7b8e7
FB
3339{
3340 int io_index;
3341 uint8_t *ptr;
3342 uint64_t val;
3343 unsigned long pd;
3344 PhysPageDesc *p;
3345
3346 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3347 if (!p) {
3348 pd = IO_MEM_UNASSIGNED;
3349 } else {
3350 pd = p->phys_offset;
3351 }
3b46e624 3352
2a4188a3
FB
3353 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3354 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
3355 /* I/O case */
3356 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3357 if (p)
3358 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
84b7b8e7
FB
3359#ifdef TARGET_WORDS_BIGENDIAN
3360 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3361 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3362#else
3363 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3364 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3365#endif
3366 } else {
3367 /* RAM case */
5579c7f3 3368 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
84b7b8e7
FB
3369 (addr & ~TARGET_PAGE_MASK);
3370 val = ldq_p(ptr);
3371 }
3372 return val;
3373}
3374
aab33094 3375/* XXX: optimize */
99a0949b 3376uint32_t ldub_phys(a_target_phys_addr addr)
aab33094
FB
3377{
3378 uint8_t val;
3379 cpu_physical_memory_read(addr, &val, 1);
3380 return val;
3381}
3382
3383/* XXX: optimize */
99a0949b 3384uint32_t lduw_phys(a_target_phys_addr addr)
aab33094
FB
3385{
3386 uint16_t val;
3387 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3388 return tswap16(val);
3389}
3390
8df1cd07
FB
3391/* warning: addr must be aligned. The ram page is not masked as dirty
3392 and the code inside is not invalidated. It is useful if the dirty
3393 bits are used to track modified PTEs */
99a0949b 3394void stl_phys_notdirty(a_target_phys_addr addr, uint32_t val)
8df1cd07
FB
3395{
3396 int io_index;
3397 uint8_t *ptr;
3398 unsigned long pd;
3399 PhysPageDesc *p;
3400
3401 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3402 if (!p) {
3403 pd = IO_MEM_UNASSIGNED;
3404 } else {
3405 pd = p->phys_offset;
3406 }
3b46e624 3407
3a7d929e 3408 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3409 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3410 if (p)
3411 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3412 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3413 } else {
74576198 3414 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3415 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3416 stl_p(ptr, val);
74576198
AL
3417
3418 if (unlikely(in_migration)) {
3419 if (!cpu_physical_memory_is_dirty(addr1)) {
3420 /* invalidate code */
3421 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3422 /* set dirty bit */
3423 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3424 (0xff & ~CODE_DIRTY_FLAG);
3425 }
3426 }
8df1cd07
FB
3427 }
3428}
3429
99a0949b 3430void stq_phys_notdirty(a_target_phys_addr addr, uint64_t val)
bc98a7ef
JM
3431{
3432 int io_index;
3433 uint8_t *ptr;
3434 unsigned long pd;
3435 PhysPageDesc *p;
3436
3437 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3438 if (!p) {
3439 pd = IO_MEM_UNASSIGNED;
3440 } else {
3441 pd = p->phys_offset;
3442 }
3b46e624 3443
bc98a7ef
JM
3444 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3445 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3446 if (p)
3447 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
bc98a7ef
JM
3448#ifdef TARGET_WORDS_BIGENDIAN
3449 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3450 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3451#else
3452 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3453 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3454#endif
3455 } else {
5579c7f3 3456 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
3457 (addr & ~TARGET_PAGE_MASK);
3458 stq_p(ptr, val);
3459 }
3460}
3461
8df1cd07 3462/* warning: addr must be aligned */
99a0949b 3463void stl_phys(a_target_phys_addr addr, uint32_t val)
8df1cd07
FB
3464{
3465 int io_index;
3466 uint8_t *ptr;
3467 unsigned long pd;
3468 PhysPageDesc *p;
3469
3470 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3471 if (!p) {
3472 pd = IO_MEM_UNASSIGNED;
3473 } else {
3474 pd = p->phys_offset;
3475 }
3b46e624 3476
3a7d929e 3477 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3478 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3479 if (p)
3480 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3481 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3482 } else {
3483 unsigned long addr1;
3484 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3485 /* RAM case */
5579c7f3 3486 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3487 stl_p(ptr, val);
3a7d929e
FB
3488 if (!cpu_physical_memory_is_dirty(addr1)) {
3489 /* invalidate code */
3490 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3491 /* set dirty bit */
f23db169
FB
3492 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3493 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3494 }
8df1cd07
FB
3495 }
3496}
3497
aab33094 3498/* XXX: optimize */
99a0949b 3499void stb_phys(a_target_phys_addr addr, uint32_t val)
aab33094
FB
3500{
3501 uint8_t v = val;
3502 cpu_physical_memory_write(addr, &v, 1);
3503}
3504
3505/* XXX: optimize */
99a0949b 3506void stw_phys(a_target_phys_addr addr, uint32_t val)
aab33094
FB
3507{
3508 uint16_t v = tswap16(val);
3509 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3510}
3511
3512/* XXX: optimize */
99a0949b 3513void stq_phys(a_target_phys_addr addr, uint64_t val)
aab33094
FB
3514{
3515 val = tswap64(val);
3516 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3517}
3518
13eb76e0
FB
3519#endif
3520
5e2972fd 3521/* virtual memory access for debug (includes writing to ROM) */
5fafdf24 3522int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 3523 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3524{
3525 int l;
99a0949b 3526 a_target_phys_addr phys_addr;
9b3c35e0 3527 target_ulong page;
13eb76e0
FB
3528
3529 while (len > 0) {
3530 page = addr & TARGET_PAGE_MASK;
3531 phys_addr = cpu_get_phys_page_debug(env, page);
3532 /* if no physical page mapped, return an error */
3533 if (phys_addr == -1)
3534 return -1;
3535 l = (page + TARGET_PAGE_SIZE) - addr;
3536 if (l > len)
3537 l = len;
5e2972fd
AL
3538 phys_addr += (addr & ~TARGET_PAGE_MASK);
3539#if !defined(CONFIG_USER_ONLY)
3540 if (is_write)
3541 cpu_physical_memory_write_rom(phys_addr, buf, l);
3542 else
3543#endif
3544 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
3545 len -= l;
3546 buf += l;
3547 addr += l;
3548 }
3549 return 0;
3550}
3551
2e70f6ef
PB
3552/* in deterministic execution mode, instructions doing device I/Os
3553 must be at the end of the TB */
3554void cpu_io_recompile(CPUState *env, void *retaddr)
3555{
3556 TranslationBlock *tb;
3557 uint32_t n, cflags;
3558 target_ulong pc, cs_base;
3559 uint64_t flags;
3560
3561 tb = tb_find_pc((unsigned long)retaddr);
3562 if (!tb) {
3563 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3564 retaddr);
3565 }
3566 n = env->icount_decr.u16.low + tb->icount;
3567 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3568 /* Calculate how many instructions had been executed before the fault
bf20dc07 3569 occurred. */
2e70f6ef
PB
3570 n = n - env->icount_decr.u16.low;
3571 /* Generate a new TB ending on the I/O insn. */
3572 n++;
3573 /* On MIPS and SH, delay slot instructions can only be restarted if
3574 they were already the first instruction in the TB. If this is not
bf20dc07 3575 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
3576 branch. */
3577#if defined(TARGET_MIPS)
3578 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3579 env->active_tc.PC -= 4;
3580 env->icount_decr.u16.low++;
3581 env->hflags &= ~MIPS_HFLAG_BMASK;
3582 }
3583#elif defined(TARGET_SH4)
3584 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3585 && n > 1) {
3586 env->pc -= 2;
3587 env->icount_decr.u16.low++;
3588 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3589 }
3590#endif
3591 /* This should never happen. */
3592 if (n > CF_COUNT_MASK)
3593 cpu_abort(env, "TB too big during recompile");
3594
3595 cflags = n | CF_LAST_IO;
3596 pc = tb->pc;
3597 cs_base = tb->cs_base;
3598 flags = tb->flags;
3599 tb_phys_invalidate(tb, -1);
3600 /* FIXME: In theory this could raise an exception. In practice
3601 we have already translated the block once so it's probably ok. */
3602 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 3603 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
3604 the first in the TB) then we end up generating a whole new TB and
3605 repeating the fault, which is horribly inefficient.
3606 Better would be to execute just this insn uncached, or generate a
3607 second new TB. */
3608 cpu_resume_from_signal(env, NULL);
3609}
3610
e3db7226
FB
3611void dump_exec_info(FILE *f,
3612 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3613{
3614 int i, target_code_size, max_target_code_size;
3615 int direct_jmp_count, direct_jmp2_count, cross_page;
3616 TranslationBlock *tb;
3b46e624 3617
e3db7226
FB
3618 target_code_size = 0;
3619 max_target_code_size = 0;
3620 cross_page = 0;
3621 direct_jmp_count = 0;
3622 direct_jmp2_count = 0;
3623 for(i = 0; i < nb_tbs; i++) {
3624 tb = &tbs[i];
3625 target_code_size += tb->size;
3626 if (tb->size > max_target_code_size)
3627 max_target_code_size = tb->size;
3628 if (tb->page_addr[1] != -1)
3629 cross_page++;
3630 if (tb->tb_next_offset[0] != 0xffff) {
3631 direct_jmp_count++;
3632 if (tb->tb_next_offset[1] != 0xffff) {
3633 direct_jmp2_count++;
3634 }
3635 }
3636 }
3637 /* XXX: avoid using doubles ? */
57fec1fe 3638 cpu_fprintf(f, "Translation buffer state:\n");
26a5f13b
FB
3639 cpu_fprintf(f, "gen code size %ld/%ld\n",
3640 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3641 cpu_fprintf(f, "TB count %d/%d\n",
3642 nb_tbs, code_gen_max_blocks);
5fafdf24 3643 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
3644 nb_tbs ? target_code_size / nb_tbs : 0,
3645 max_target_code_size);
5fafdf24 3646 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
3647 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3648 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
3649 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3650 cross_page,
e3db7226
FB
3651 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3652 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 3653 direct_jmp_count,
e3db7226
FB
3654 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3655 direct_jmp2_count,
3656 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 3657 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
3658 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3659 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3660 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 3661 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
3662}
3663
5fafdf24 3664#if !defined(CONFIG_USER_ONLY)
61382a50
FB
3665
3666#define MMUSUFFIX _cmmu
3667#define GETPC() NULL
3668#define env cpu_single_env
b769d8fe 3669#define SOFTMMU_CODE_ACCESS
61382a50
FB
3670
3671#define SHIFT 0
3672#include "softmmu_template.h"
3673
3674#define SHIFT 1
3675#include "softmmu_template.h"
3676
3677#define SHIFT 2
3678#include "softmmu_template.h"
3679
3680#define SHIFT 3
3681#include "softmmu_template.h"
3682
3683#undef env
3684
3685#endif