]> git.proxmox.com Git - qemu.git/blame - exec.c
x86: Dump debug registers (Jan Kiszka)
[qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
67b915a5 20#include "config.h"
d5a8f07c 21#ifdef _WIN32
4fddf62a 22#define WIN32_LEAN_AND_MEAN
d5a8f07c
FB
23#include <windows.h>
24#else
a98d49b1 25#include <sys/types.h>
d5a8f07c
FB
26#include <sys/mman.h>
27#endif
54936004
FB
28#include <stdlib.h>
29#include <stdio.h>
30#include <stdarg.h>
31#include <string.h>
32#include <errno.h>
33#include <unistd.h>
34#include <inttypes.h>
35
6180a181
FB
36#include "cpu.h"
37#include "exec-all.h"
ca10f867 38#include "qemu-common.h"
b67d9a52 39#include "tcg.h"
b3c7724c 40#include "hw/hw.h"
74576198 41#include "osdep.h"
7ba1e619 42#include "kvm.h"
53a5960a
PB
43#if defined(CONFIG_USER_ONLY)
44#include <qemu.h>
45#endif
54936004 46
fd6ce8f6 47//#define DEBUG_TB_INVALIDATE
66e85a21 48//#define DEBUG_FLUSH
9fa3e853 49//#define DEBUG_TLB
67d3b957 50//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
51
52/* make various TB consistency checks */
5fafdf24
TS
53//#define DEBUG_TB_CHECK
54//#define DEBUG_TLB_CHECK
fd6ce8f6 55
1196be37 56//#define DEBUG_IOPORT
db7b5426 57//#define DEBUG_SUBPAGE
1196be37 58
99773bd4
PB
59#if !defined(CONFIG_USER_ONLY)
60/* TB consistency checks only implemented for usermode emulation. */
61#undef DEBUG_TB_CHECK
62#endif
63
9fa3e853
FB
64#define SMC_BITMAP_USE_THRESHOLD 10
65
66#define MMAP_AREA_START 0x00000000
67#define MMAP_AREA_END 0xa8000000
fd6ce8f6 68
108c49b8
FB
69#if defined(TARGET_SPARC64)
70#define TARGET_PHYS_ADDR_SPACE_BITS 41
5dcb6b91
BS
71#elif defined(TARGET_SPARC)
72#define TARGET_PHYS_ADDR_SPACE_BITS 36
bedb69ea
JM
73#elif defined(TARGET_ALPHA)
74#define TARGET_PHYS_ADDR_SPACE_BITS 42
75#define TARGET_VIRT_ADDR_SPACE_BITS 42
108c49b8
FB
76#elif defined(TARGET_PPC64)
77#define TARGET_PHYS_ADDR_SPACE_BITS 42
00f82b8a
AJ
78#elif defined(TARGET_X86_64) && !defined(USE_KQEMU)
79#define TARGET_PHYS_ADDR_SPACE_BITS 42
80#elif defined(TARGET_I386) && !defined(USE_KQEMU)
81#define TARGET_PHYS_ADDR_SPACE_BITS 36
108c49b8
FB
82#else
83/* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
84#define TARGET_PHYS_ADDR_SPACE_BITS 32
85#endif
86
bdaf78e0 87static TranslationBlock *tbs;
26a5f13b 88int code_gen_max_blocks;
9fa3e853 89TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 90static int nb_tbs;
eb51d102
FB
91/* any access to the tbs or the page table must use this lock */
92spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 93
141ac468
BS
94#if defined(__arm__) || defined(__sparc_v9__)
95/* The prologue must be reachable with a direct jump. ARM and Sparc64
96 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
97 section close to code segment. */
98#define code_gen_section \
99 __attribute__((__section__(".gen_code"))) \
100 __attribute__((aligned (32)))
101#else
102#define code_gen_section \
103 __attribute__((aligned (32)))
104#endif
105
106uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
107static uint8_t *code_gen_buffer;
108static unsigned long code_gen_buffer_size;
26a5f13b 109/* threshold to flush the translated code buffer */
bdaf78e0 110static unsigned long code_gen_buffer_max_size;
fd6ce8f6
FB
111uint8_t *code_gen_ptr;
112
e2eef170 113#if !defined(CONFIG_USER_ONLY)
00f82b8a 114ram_addr_t phys_ram_size;
9fa3e853
FB
115int phys_ram_fd;
116uint8_t *phys_ram_base;
1ccde1cb 117uint8_t *phys_ram_dirty;
74576198 118static int in_migration;
e9a1ab19 119static ram_addr_t phys_ram_alloc_offset = 0;
e2eef170 120#endif
9fa3e853 121
6a00d601
FB
122CPUState *first_cpu;
123/* current CPU in the current thread. It is only valid inside
124 cpu_exec() */
5fafdf24 125CPUState *cpu_single_env;
2e70f6ef 126/* 0 = Do not count executed instructions.
bf20dc07 127 1 = Precise instruction counting.
2e70f6ef
PB
128 2 = Adaptive rate instruction counting. */
129int use_icount = 0;
130/* Current instruction counter. While executing translated code this may
131 include some instructions that have not yet been executed. */
132int64_t qemu_icount;
6a00d601 133
54936004 134typedef struct PageDesc {
92e873b9 135 /* list of TBs intersecting this ram page */
fd6ce8f6 136 TranslationBlock *first_tb;
9fa3e853
FB
137 /* in order to optimize self modifying code, we count the number
138 of lookups we do to a given page to use a bitmap */
139 unsigned int code_write_count;
140 uint8_t *code_bitmap;
141#if defined(CONFIG_USER_ONLY)
142 unsigned long flags;
143#endif
54936004
FB
144} PageDesc;
145
92e873b9 146typedef struct PhysPageDesc {
0f459d16 147 /* offset in host memory of the page + io_index in the low bits */
00f82b8a 148 ram_addr_t phys_offset;
92e873b9
FB
149} PhysPageDesc;
150
54936004 151#define L2_BITS 10
bedb69ea
JM
152#if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
153/* XXX: this is a temporary hack for alpha target.
154 * In the future, this is to be replaced by a multi-level table
155 * to actually be able to handle the complete 64 bits address space.
156 */
157#define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
158#else
03875444 159#define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
bedb69ea 160#endif
54936004
FB
161
162#define L1_SIZE (1 << L1_BITS)
163#define L2_SIZE (1 << L2_BITS)
164
83fb7adf
FB
165unsigned long qemu_real_host_page_size;
166unsigned long qemu_host_page_bits;
167unsigned long qemu_host_page_size;
168unsigned long qemu_host_page_mask;
54936004 169
92e873b9 170/* XXX: for system emulation, it could just be an array */
54936004 171static PageDesc *l1_map[L1_SIZE];
bdaf78e0 172static PhysPageDesc **l1_phys_map;
54936004 173
e2eef170
PB
174#if !defined(CONFIG_USER_ONLY)
175static void io_mem_init(void);
176
33417e70 177/* io memory support */
33417e70
FB
178CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
179CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 180void *io_mem_opaque[IO_MEM_NB_ENTRIES];
33417e70 181static int io_mem_nb;
6658ffb8
PB
182static int io_mem_watch;
183#endif
33417e70 184
34865134 185/* log support */
d9b630fd 186static const char *logfilename = "/tmp/qemu.log";
34865134
FB
187FILE *logfile;
188int loglevel;
e735b91c 189static int log_append = 0;
34865134 190
e3db7226
FB
191/* statistics */
192static int tlb_flush_count;
193static int tb_flush_count;
194static int tb_phys_invalidate_count;
195
db7b5426
BS
196#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
197typedef struct subpage_t {
198 target_phys_addr_t base;
3ee89922
BS
199 CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4];
200 CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4];
201 void *opaque[TARGET_PAGE_SIZE][2][4];
db7b5426
BS
202} subpage_t;
203
7cb69cae
FB
204#ifdef _WIN32
205static void map_exec(void *addr, long size)
206{
207 DWORD old_protect;
208 VirtualProtect(addr, size,
209 PAGE_EXECUTE_READWRITE, &old_protect);
210
211}
212#else
213static void map_exec(void *addr, long size)
214{
4369415f 215 unsigned long start, end, page_size;
7cb69cae 216
4369415f 217 page_size = getpagesize();
7cb69cae 218 start = (unsigned long)addr;
4369415f 219 start &= ~(page_size - 1);
7cb69cae
FB
220
221 end = (unsigned long)addr + size;
4369415f
FB
222 end += page_size - 1;
223 end &= ~(page_size - 1);
7cb69cae
FB
224
225 mprotect((void *)start, end - start,
226 PROT_READ | PROT_WRITE | PROT_EXEC);
227}
228#endif
229
b346ff46 230static void page_init(void)
54936004 231{
83fb7adf 232 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 233 TARGET_PAGE_SIZE */
c2b48b69
AL
234#ifdef _WIN32
235 {
236 SYSTEM_INFO system_info;
237
238 GetSystemInfo(&system_info);
239 qemu_real_host_page_size = system_info.dwPageSize;
240 }
241#else
242 qemu_real_host_page_size = getpagesize();
243#endif
83fb7adf
FB
244 if (qemu_host_page_size == 0)
245 qemu_host_page_size = qemu_real_host_page_size;
246 if (qemu_host_page_size < TARGET_PAGE_SIZE)
247 qemu_host_page_size = TARGET_PAGE_SIZE;
248 qemu_host_page_bits = 0;
249 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
250 qemu_host_page_bits++;
251 qemu_host_page_mask = ~(qemu_host_page_size - 1);
108c49b8
FB
252 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
253 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
50a9569b
AZ
254
255#if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
256 {
257 long long startaddr, endaddr;
258 FILE *f;
259 int n;
260
c8a706fe 261 mmap_lock();
0776590d 262 last_brk = (unsigned long)sbrk(0);
50a9569b
AZ
263 f = fopen("/proc/self/maps", "r");
264 if (f) {
265 do {
266 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
267 if (n == 2) {
e0b8d65a
BS
268 startaddr = MIN(startaddr,
269 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
270 endaddr = MIN(endaddr,
271 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
b5fc909e 272 page_set_flags(startaddr & TARGET_PAGE_MASK,
50a9569b
AZ
273 TARGET_PAGE_ALIGN(endaddr),
274 PAGE_RESERVED);
275 }
276 } while (!feof(f));
277 fclose(f);
278 }
c8a706fe 279 mmap_unlock();
50a9569b
AZ
280 }
281#endif
54936004
FB
282}
283
434929bf 284static inline PageDesc **page_l1_map(target_ulong index)
54936004 285{
17e2377a
PB
286#if TARGET_LONG_BITS > 32
287 /* Host memory outside guest VM. For 32-bit targets we have already
288 excluded high addresses. */
d8173e0f 289 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
17e2377a
PB
290 return NULL;
291#endif
434929bf
AL
292 return &l1_map[index >> L2_BITS];
293}
294
295static inline PageDesc *page_find_alloc(target_ulong index)
296{
297 PageDesc **lp, *p;
298 lp = page_l1_map(index);
299 if (!lp)
300 return NULL;
301
54936004
FB
302 p = *lp;
303 if (!p) {
304 /* allocate if not found */
17e2377a
PB
305#if defined(CONFIG_USER_ONLY)
306 unsigned long addr;
307 size_t len = sizeof(PageDesc) * L2_SIZE;
308 /* Don't use qemu_malloc because it may recurse. */
309 p = mmap(0, len, PROT_READ | PROT_WRITE,
310 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
54936004 311 *lp = p;
17e2377a
PB
312 addr = h2g(p);
313 if (addr == (target_ulong)addr) {
314 page_set_flags(addr & TARGET_PAGE_MASK,
315 TARGET_PAGE_ALIGN(addr + len),
316 PAGE_RESERVED);
317 }
318#else
319 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
320 *lp = p;
321#endif
54936004
FB
322 }
323 return p + (index & (L2_SIZE - 1));
324}
325
00f82b8a 326static inline PageDesc *page_find(target_ulong index)
54936004 327{
434929bf
AL
328 PageDesc **lp, *p;
329 lp = page_l1_map(index);
330 if (!lp)
331 return NULL;
54936004 332
434929bf 333 p = *lp;
54936004
FB
334 if (!p)
335 return 0;
fd6ce8f6
FB
336 return p + (index & (L2_SIZE - 1));
337}
338
108c49b8 339static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 340{
108c49b8 341 void **lp, **p;
e3f4e2a4 342 PhysPageDesc *pd;
92e873b9 343
108c49b8
FB
344 p = (void **)l1_phys_map;
345#if TARGET_PHYS_ADDR_SPACE_BITS > 32
346
347#if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
348#error unsupported TARGET_PHYS_ADDR_SPACE_BITS
349#endif
350 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
92e873b9
FB
351 p = *lp;
352 if (!p) {
353 /* allocate if not found */
108c49b8
FB
354 if (!alloc)
355 return NULL;
356 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
357 memset(p, 0, sizeof(void *) * L1_SIZE);
358 *lp = p;
359 }
360#endif
361 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
e3f4e2a4
PB
362 pd = *lp;
363 if (!pd) {
364 int i;
108c49b8
FB
365 /* allocate if not found */
366 if (!alloc)
367 return NULL;
e3f4e2a4
PB
368 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
369 *lp = pd;
370 for (i = 0; i < L2_SIZE; i++)
371 pd[i].phys_offset = IO_MEM_UNASSIGNED;
92e873b9 372 }
e3f4e2a4 373 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
92e873b9
FB
374}
375
108c49b8 376static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 377{
108c49b8 378 return phys_page_find_alloc(index, 0);
92e873b9
FB
379}
380
9fa3e853 381#if !defined(CONFIG_USER_ONLY)
6a00d601 382static void tlb_protect_code(ram_addr_t ram_addr);
5fafdf24 383static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 384 target_ulong vaddr);
c8a706fe
PB
385#define mmap_lock() do { } while(0)
386#define mmap_unlock() do { } while(0)
9fa3e853 387#endif
fd6ce8f6 388
4369415f
FB
389#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
390
391#if defined(CONFIG_USER_ONLY)
392/* Currently it is not recommanded to allocate big chunks of data in
393 user mode. It will change when a dedicated libc will be used */
394#define USE_STATIC_CODE_GEN_BUFFER
395#endif
396
397#ifdef USE_STATIC_CODE_GEN_BUFFER
398static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
399#endif
400
8fcd3692 401static void code_gen_alloc(unsigned long tb_size)
26a5f13b 402{
4369415f
FB
403#ifdef USE_STATIC_CODE_GEN_BUFFER
404 code_gen_buffer = static_code_gen_buffer;
405 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
406 map_exec(code_gen_buffer, code_gen_buffer_size);
407#else
26a5f13b
FB
408 code_gen_buffer_size = tb_size;
409 if (code_gen_buffer_size == 0) {
4369415f
FB
410#if defined(CONFIG_USER_ONLY)
411 /* in user mode, phys_ram_size is not meaningful */
412 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
413#else
26a5f13b 414 /* XXX: needs ajustments */
174a9a1f 415 code_gen_buffer_size = (unsigned long)(phys_ram_size / 4);
4369415f 416#endif
26a5f13b
FB
417 }
418 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
419 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
420 /* The code gen buffer location may have constraints depending on
421 the host cpu and OS */
422#if defined(__linux__)
423 {
424 int flags;
141ac468
BS
425 void *start = NULL;
426
26a5f13b
FB
427 flags = MAP_PRIVATE | MAP_ANONYMOUS;
428#if defined(__x86_64__)
429 flags |= MAP_32BIT;
430 /* Cannot map more than that */
431 if (code_gen_buffer_size > (800 * 1024 * 1024))
432 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
433#elif defined(__sparc_v9__)
434 // Map the buffer below 2G, so we can use direct calls and branches
435 flags |= MAP_FIXED;
436 start = (void *) 0x60000000UL;
437 if (code_gen_buffer_size > (512 * 1024 * 1024))
438 code_gen_buffer_size = (512 * 1024 * 1024);
26a5f13b 439#endif
141ac468
BS
440 code_gen_buffer = mmap(start, code_gen_buffer_size,
441 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
442 flags, -1, 0);
443 if (code_gen_buffer == MAP_FAILED) {
444 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
445 exit(1);
446 }
447 }
06e67a82
AL
448#elif defined(__FreeBSD__)
449 {
450 int flags;
451 void *addr = NULL;
452 flags = MAP_PRIVATE | MAP_ANONYMOUS;
453#if defined(__x86_64__)
454 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
455 * 0x40000000 is free */
456 flags |= MAP_FIXED;
457 addr = (void *)0x40000000;
458 /* Cannot map more than that */
459 if (code_gen_buffer_size > (800 * 1024 * 1024))
460 code_gen_buffer_size = (800 * 1024 * 1024);
461#endif
462 code_gen_buffer = mmap(addr, code_gen_buffer_size,
463 PROT_WRITE | PROT_READ | PROT_EXEC,
464 flags, -1, 0);
465 if (code_gen_buffer == MAP_FAILED) {
466 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
467 exit(1);
468 }
469 }
26a5f13b
FB
470#else
471 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
472 if (!code_gen_buffer) {
473 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
474 exit(1);
475 }
476 map_exec(code_gen_buffer, code_gen_buffer_size);
477#endif
4369415f 478#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b
FB
479 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
480 code_gen_buffer_max_size = code_gen_buffer_size -
481 code_gen_max_block_size();
482 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
483 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
484}
485
486/* Must be called before using the QEMU cpus. 'tb_size' is the size
487 (in bytes) allocated to the translation buffer. Zero means default
488 size. */
489void cpu_exec_init_all(unsigned long tb_size)
490{
26a5f13b
FB
491 cpu_gen_init();
492 code_gen_alloc(tb_size);
493 code_gen_ptr = code_gen_buffer;
4369415f 494 page_init();
e2eef170 495#if !defined(CONFIG_USER_ONLY)
26a5f13b 496 io_mem_init();
e2eef170 497#endif
26a5f13b
FB
498}
499
9656f324
PB
500#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
501
502#define CPU_COMMON_SAVE_VERSION 1
503
504static void cpu_common_save(QEMUFile *f, void *opaque)
505{
506 CPUState *env = opaque;
507
508 qemu_put_be32s(f, &env->halted);
509 qemu_put_be32s(f, &env->interrupt_request);
510}
511
512static int cpu_common_load(QEMUFile *f, void *opaque, int version_id)
513{
514 CPUState *env = opaque;
515
516 if (version_id != CPU_COMMON_SAVE_VERSION)
517 return -EINVAL;
518
519 qemu_get_be32s(f, &env->halted);
75f482ae 520 qemu_get_be32s(f, &env->interrupt_request);
9656f324
PB
521 tlb_flush(env, 1);
522
523 return 0;
524}
525#endif
526
6a00d601 527void cpu_exec_init(CPUState *env)
fd6ce8f6 528{
6a00d601
FB
529 CPUState **penv;
530 int cpu_index;
531
6a00d601
FB
532 env->next_cpu = NULL;
533 penv = &first_cpu;
534 cpu_index = 0;
535 while (*penv != NULL) {
536 penv = (CPUState **)&(*penv)->next_cpu;
537 cpu_index++;
538 }
539 env->cpu_index = cpu_index;
540 *penv = env;
b3c7724c 541#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
9656f324
PB
542 register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION,
543 cpu_common_save, cpu_common_load, env);
b3c7724c
PB
544 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
545 cpu_save, cpu_load, env);
546#endif
fd6ce8f6
FB
547}
548
9fa3e853
FB
549static inline void invalidate_page_bitmap(PageDesc *p)
550{
551 if (p->code_bitmap) {
59817ccb 552 qemu_free(p->code_bitmap);
9fa3e853
FB
553 p->code_bitmap = NULL;
554 }
555 p->code_write_count = 0;
556}
557
fd6ce8f6
FB
558/* set to NULL all the 'first_tb' fields in all PageDescs */
559static void page_flush_tb(void)
560{
561 int i, j;
562 PageDesc *p;
563
564 for(i = 0; i < L1_SIZE; i++) {
565 p = l1_map[i];
566 if (p) {
9fa3e853
FB
567 for(j = 0; j < L2_SIZE; j++) {
568 p->first_tb = NULL;
569 invalidate_page_bitmap(p);
570 p++;
571 }
fd6ce8f6
FB
572 }
573 }
574}
575
576/* flush all the translation blocks */
d4e8164f 577/* XXX: tb_flush is currently not thread safe */
6a00d601 578void tb_flush(CPUState *env1)
fd6ce8f6 579{
6a00d601 580 CPUState *env;
0124311e 581#if defined(DEBUG_FLUSH)
ab3d1727
BS
582 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
583 (unsigned long)(code_gen_ptr - code_gen_buffer),
584 nb_tbs, nb_tbs > 0 ?
585 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 586#endif
26a5f13b 587 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
588 cpu_abort(env1, "Internal error: code buffer overflow\n");
589
fd6ce8f6 590 nb_tbs = 0;
3b46e624 591
6a00d601
FB
592 for(env = first_cpu; env != NULL; env = env->next_cpu) {
593 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
594 }
9fa3e853 595
8a8a608f 596 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 597 page_flush_tb();
9fa3e853 598
fd6ce8f6 599 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
600 /* XXX: flush processor icache at this point if cache flush is
601 expensive */
e3db7226 602 tb_flush_count++;
fd6ce8f6
FB
603}
604
605#ifdef DEBUG_TB_CHECK
606
bc98a7ef 607static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
608{
609 TranslationBlock *tb;
610 int i;
611 address &= TARGET_PAGE_MASK;
99773bd4
PB
612 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
613 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
614 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
615 address >= tb->pc + tb->size)) {
616 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
99773bd4 617 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
618 }
619 }
620 }
621}
622
623/* verify that all the pages have correct rights for code */
624static void tb_page_check(void)
625{
626 TranslationBlock *tb;
627 int i, flags1, flags2;
3b46e624 628
99773bd4
PB
629 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
630 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
631 flags1 = page_get_flags(tb->pc);
632 flags2 = page_get_flags(tb->pc + tb->size - 1);
633 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
634 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 635 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
636 }
637 }
638 }
639}
640
bdaf78e0 641static void tb_jmp_check(TranslationBlock *tb)
d4e8164f
FB
642{
643 TranslationBlock *tb1;
644 unsigned int n1;
645
646 /* suppress any remaining jumps to this TB */
647 tb1 = tb->jmp_first;
648 for(;;) {
649 n1 = (long)tb1 & 3;
650 tb1 = (TranslationBlock *)((long)tb1 & ~3);
651 if (n1 == 2)
652 break;
653 tb1 = tb1->jmp_next[n1];
654 }
655 /* check end of list */
656 if (tb1 != tb) {
657 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
658 }
659}
660
fd6ce8f6
FB
661#endif
662
663/* invalidate one TB */
664static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
665 int next_offset)
666{
667 TranslationBlock *tb1;
668 for(;;) {
669 tb1 = *ptb;
670 if (tb1 == tb) {
671 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
672 break;
673 }
674 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
675 }
676}
677
9fa3e853
FB
678static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
679{
680 TranslationBlock *tb1;
681 unsigned int n1;
682
683 for(;;) {
684 tb1 = *ptb;
685 n1 = (long)tb1 & 3;
686 tb1 = (TranslationBlock *)((long)tb1 & ~3);
687 if (tb1 == tb) {
688 *ptb = tb1->page_next[n1];
689 break;
690 }
691 ptb = &tb1->page_next[n1];
692 }
693}
694
d4e8164f
FB
695static inline void tb_jmp_remove(TranslationBlock *tb, int n)
696{
697 TranslationBlock *tb1, **ptb;
698 unsigned int n1;
699
700 ptb = &tb->jmp_next[n];
701 tb1 = *ptb;
702 if (tb1) {
703 /* find tb(n) in circular list */
704 for(;;) {
705 tb1 = *ptb;
706 n1 = (long)tb1 & 3;
707 tb1 = (TranslationBlock *)((long)tb1 & ~3);
708 if (n1 == n && tb1 == tb)
709 break;
710 if (n1 == 2) {
711 ptb = &tb1->jmp_first;
712 } else {
713 ptb = &tb1->jmp_next[n1];
714 }
715 }
716 /* now we can suppress tb(n) from the list */
717 *ptb = tb->jmp_next[n];
718
719 tb->jmp_next[n] = NULL;
720 }
721}
722
723/* reset the jump entry 'n' of a TB so that it is not chained to
724 another TB */
725static inline void tb_reset_jump(TranslationBlock *tb, int n)
726{
727 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
728}
729
2e70f6ef 730void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
fd6ce8f6 731{
6a00d601 732 CPUState *env;
8a40a180 733 PageDesc *p;
d4e8164f 734 unsigned int h, n1;
00f82b8a 735 target_phys_addr_t phys_pc;
8a40a180 736 TranslationBlock *tb1, *tb2;
3b46e624 737
8a40a180
FB
738 /* remove the TB from the hash list */
739 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
740 h = tb_phys_hash_func(phys_pc);
5fafdf24 741 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
742 offsetof(TranslationBlock, phys_hash_next));
743
744 /* remove the TB from the page list */
745 if (tb->page_addr[0] != page_addr) {
746 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
747 tb_page_remove(&p->first_tb, tb);
748 invalidate_page_bitmap(p);
749 }
750 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
751 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
752 tb_page_remove(&p->first_tb, tb);
753 invalidate_page_bitmap(p);
754 }
755
36bdbe54 756 tb_invalidated_flag = 1;
59817ccb 757
fd6ce8f6 758 /* remove the TB from the hash list */
8a40a180 759 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
760 for(env = first_cpu; env != NULL; env = env->next_cpu) {
761 if (env->tb_jmp_cache[h] == tb)
762 env->tb_jmp_cache[h] = NULL;
763 }
d4e8164f
FB
764
765 /* suppress this TB from the two jump lists */
766 tb_jmp_remove(tb, 0);
767 tb_jmp_remove(tb, 1);
768
769 /* suppress any remaining jumps to this TB */
770 tb1 = tb->jmp_first;
771 for(;;) {
772 n1 = (long)tb1 & 3;
773 if (n1 == 2)
774 break;
775 tb1 = (TranslationBlock *)((long)tb1 & ~3);
776 tb2 = tb1->jmp_next[n1];
777 tb_reset_jump(tb1, n1);
778 tb1->jmp_next[n1] = NULL;
779 tb1 = tb2;
780 }
781 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 782
e3db7226 783 tb_phys_invalidate_count++;
9fa3e853
FB
784}
785
786static inline void set_bits(uint8_t *tab, int start, int len)
787{
788 int end, mask, end1;
789
790 end = start + len;
791 tab += start >> 3;
792 mask = 0xff << (start & 7);
793 if ((start & ~7) == (end & ~7)) {
794 if (start < end) {
795 mask &= ~(0xff << (end & 7));
796 *tab |= mask;
797 }
798 } else {
799 *tab++ |= mask;
800 start = (start + 8) & ~7;
801 end1 = end & ~7;
802 while (start < end1) {
803 *tab++ = 0xff;
804 start += 8;
805 }
806 if (start < end) {
807 mask = ~(0xff << (end & 7));
808 *tab |= mask;
809 }
810 }
811}
812
813static void build_page_bitmap(PageDesc *p)
814{
815 int n, tb_start, tb_end;
816 TranslationBlock *tb;
3b46e624 817
b2a7081a 818 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
819 if (!p->code_bitmap)
820 return;
9fa3e853
FB
821
822 tb = p->first_tb;
823 while (tb != NULL) {
824 n = (long)tb & 3;
825 tb = (TranslationBlock *)((long)tb & ~3);
826 /* NOTE: this is subtle as a TB may span two physical pages */
827 if (n == 0) {
828 /* NOTE: tb_end may be after the end of the page, but
829 it is not a problem */
830 tb_start = tb->pc & ~TARGET_PAGE_MASK;
831 tb_end = tb_start + tb->size;
832 if (tb_end > TARGET_PAGE_SIZE)
833 tb_end = TARGET_PAGE_SIZE;
834 } else {
835 tb_start = 0;
836 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
837 }
838 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
839 tb = tb->page_next[n];
840 }
841}
842
2e70f6ef
PB
843TranslationBlock *tb_gen_code(CPUState *env,
844 target_ulong pc, target_ulong cs_base,
845 int flags, int cflags)
d720b93d
FB
846{
847 TranslationBlock *tb;
848 uint8_t *tc_ptr;
849 target_ulong phys_pc, phys_page2, virt_page2;
850 int code_gen_size;
851
c27004ec
FB
852 phys_pc = get_phys_addr_code(env, pc);
853 tb = tb_alloc(pc);
d720b93d
FB
854 if (!tb) {
855 /* flush must be done */
856 tb_flush(env);
857 /* cannot fail at this point */
c27004ec 858 tb = tb_alloc(pc);
2e70f6ef
PB
859 /* Don't forget to invalidate previous TB info. */
860 tb_invalidated_flag = 1;
d720b93d
FB
861 }
862 tc_ptr = code_gen_ptr;
863 tb->tc_ptr = tc_ptr;
864 tb->cs_base = cs_base;
865 tb->flags = flags;
866 tb->cflags = cflags;
d07bde88 867 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 868 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 869
d720b93d 870 /* check next page if needed */
c27004ec 871 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 872 phys_page2 = -1;
c27004ec 873 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
d720b93d
FB
874 phys_page2 = get_phys_addr_code(env, virt_page2);
875 }
876 tb_link_phys(tb, phys_pc, phys_page2);
2e70f6ef 877 return tb;
d720b93d 878}
3b46e624 879
9fa3e853
FB
880/* invalidate all TBs which intersect with the target physical page
881 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
882 the same physical page. 'is_cpu_write_access' should be true if called
883 from a real cpu write access: the virtual CPU will exit the current
884 TB if code is modified inside this TB. */
00f82b8a 885void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
d720b93d
FB
886 int is_cpu_write_access)
887{
6b917547 888 TranslationBlock *tb, *tb_next, *saved_tb;
d720b93d 889 CPUState *env = cpu_single_env;
9fa3e853 890 target_ulong tb_start, tb_end;
6b917547
AL
891 PageDesc *p;
892 int n;
893#ifdef TARGET_HAS_PRECISE_SMC
894 int current_tb_not_found = is_cpu_write_access;
895 TranslationBlock *current_tb = NULL;
896 int current_tb_modified = 0;
897 target_ulong current_pc = 0;
898 target_ulong current_cs_base = 0;
899 int current_flags = 0;
900#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
901
902 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 903 if (!p)
9fa3e853 904 return;
5fafdf24 905 if (!p->code_bitmap &&
d720b93d
FB
906 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
907 is_cpu_write_access) {
9fa3e853
FB
908 /* build code bitmap */
909 build_page_bitmap(p);
910 }
911
912 /* we remove all the TBs in the range [start, end[ */
913 /* XXX: see if in some cases it could be faster to invalidate all the code */
914 tb = p->first_tb;
915 while (tb != NULL) {
916 n = (long)tb & 3;
917 tb = (TranslationBlock *)((long)tb & ~3);
918 tb_next = tb->page_next[n];
919 /* NOTE: this is subtle as a TB may span two physical pages */
920 if (n == 0) {
921 /* NOTE: tb_end may be after the end of the page, but
922 it is not a problem */
923 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
924 tb_end = tb_start + tb->size;
925 } else {
926 tb_start = tb->page_addr[1];
927 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
928 }
929 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
930#ifdef TARGET_HAS_PRECISE_SMC
931 if (current_tb_not_found) {
932 current_tb_not_found = 0;
933 current_tb = NULL;
2e70f6ef 934 if (env->mem_io_pc) {
d720b93d 935 /* now we have a real cpu fault */
2e70f6ef 936 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
937 }
938 }
939 if (current_tb == tb &&
2e70f6ef 940 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
941 /* If we are modifying the current TB, we must stop
942 its execution. We could be more precise by checking
943 that the modification is after the current PC, but it
944 would require a specialized function to partially
945 restore the CPU state */
3b46e624 946
d720b93d 947 current_tb_modified = 1;
5fafdf24 948 cpu_restore_state(current_tb, env,
2e70f6ef 949 env->mem_io_pc, NULL);
6b917547
AL
950 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
951 &current_flags);
d720b93d
FB
952 }
953#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
954 /* we need to do that to handle the case where a signal
955 occurs while doing tb_phys_invalidate() */
956 saved_tb = NULL;
957 if (env) {
958 saved_tb = env->current_tb;
959 env->current_tb = NULL;
960 }
9fa3e853 961 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
962 if (env) {
963 env->current_tb = saved_tb;
964 if (env->interrupt_request && env->current_tb)
965 cpu_interrupt(env, env->interrupt_request);
966 }
9fa3e853
FB
967 }
968 tb = tb_next;
969 }
970#if !defined(CONFIG_USER_ONLY)
971 /* if no code remaining, no need to continue to use slow writes */
972 if (!p->first_tb) {
973 invalidate_page_bitmap(p);
d720b93d 974 if (is_cpu_write_access) {
2e70f6ef 975 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
976 }
977 }
978#endif
979#ifdef TARGET_HAS_PRECISE_SMC
980 if (current_tb_modified) {
981 /* we generate a block containing just the instruction
982 modifying the memory. It will ensure that it cannot modify
983 itself */
ea1c1802 984 env->current_tb = NULL;
2e70f6ef 985 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 986 cpu_resume_from_signal(env, NULL);
9fa3e853 987 }
fd6ce8f6 988#endif
9fa3e853 989}
fd6ce8f6 990
9fa3e853 991/* len must be <= 8 and start must be a multiple of len */
00f82b8a 992static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
9fa3e853
FB
993{
994 PageDesc *p;
995 int offset, b;
59817ccb 996#if 0
a4193c8a
FB
997 if (1) {
998 if (loglevel) {
5fafdf24 999 fprintf(logfile, "modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
2e70f6ef 1000 cpu_single_env->mem_io_vaddr, len,
5fafdf24 1001 cpu_single_env->eip,
a4193c8a
FB
1002 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1003 }
59817ccb
FB
1004 }
1005#endif
9fa3e853 1006 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1007 if (!p)
9fa3e853
FB
1008 return;
1009 if (p->code_bitmap) {
1010 offset = start & ~TARGET_PAGE_MASK;
1011 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1012 if (b & ((1 << len) - 1))
1013 goto do_invalidate;
1014 } else {
1015 do_invalidate:
d720b93d 1016 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1017 }
1018}
1019
9fa3e853 1020#if !defined(CONFIG_SOFTMMU)
00f82b8a 1021static void tb_invalidate_phys_page(target_phys_addr_t addr,
d720b93d 1022 unsigned long pc, void *puc)
9fa3e853 1023{
6b917547 1024 TranslationBlock *tb;
9fa3e853 1025 PageDesc *p;
6b917547 1026 int n;
d720b93d 1027#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1028 TranslationBlock *current_tb = NULL;
d720b93d 1029 CPUState *env = cpu_single_env;
6b917547
AL
1030 int current_tb_modified = 0;
1031 target_ulong current_pc = 0;
1032 target_ulong current_cs_base = 0;
1033 int current_flags = 0;
d720b93d 1034#endif
9fa3e853
FB
1035
1036 addr &= TARGET_PAGE_MASK;
1037 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1038 if (!p)
9fa3e853
FB
1039 return;
1040 tb = p->first_tb;
d720b93d
FB
1041#ifdef TARGET_HAS_PRECISE_SMC
1042 if (tb && pc != 0) {
1043 current_tb = tb_find_pc(pc);
1044 }
1045#endif
9fa3e853
FB
1046 while (tb != NULL) {
1047 n = (long)tb & 3;
1048 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1049#ifdef TARGET_HAS_PRECISE_SMC
1050 if (current_tb == tb &&
2e70f6ef 1051 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1052 /* If we are modifying the current TB, we must stop
1053 its execution. We could be more precise by checking
1054 that the modification is after the current PC, but it
1055 would require a specialized function to partially
1056 restore the CPU state */
3b46e624 1057
d720b93d
FB
1058 current_tb_modified = 1;
1059 cpu_restore_state(current_tb, env, pc, puc);
6b917547
AL
1060 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1061 &current_flags);
d720b93d
FB
1062 }
1063#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1064 tb_phys_invalidate(tb, addr);
1065 tb = tb->page_next[n];
1066 }
fd6ce8f6 1067 p->first_tb = NULL;
d720b93d
FB
1068#ifdef TARGET_HAS_PRECISE_SMC
1069 if (current_tb_modified) {
1070 /* we generate a block containing just the instruction
1071 modifying the memory. It will ensure that it cannot modify
1072 itself */
ea1c1802 1073 env->current_tb = NULL;
2e70f6ef 1074 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1075 cpu_resume_from_signal(env, puc);
1076 }
1077#endif
fd6ce8f6 1078}
9fa3e853 1079#endif
fd6ce8f6
FB
1080
1081/* add the tb in the target page and protect it if necessary */
5fafdf24 1082static inline void tb_alloc_page(TranslationBlock *tb,
53a5960a 1083 unsigned int n, target_ulong page_addr)
fd6ce8f6
FB
1084{
1085 PageDesc *p;
9fa3e853
FB
1086 TranslationBlock *last_first_tb;
1087
1088 tb->page_addr[n] = page_addr;
3a7d929e 1089 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
9fa3e853
FB
1090 tb->page_next[n] = p->first_tb;
1091 last_first_tb = p->first_tb;
1092 p->first_tb = (TranslationBlock *)((long)tb | n);
1093 invalidate_page_bitmap(p);
fd6ce8f6 1094
107db443 1095#if defined(TARGET_HAS_SMC) || 1
d720b93d 1096
9fa3e853 1097#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1098 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1099 target_ulong addr;
1100 PageDesc *p2;
9fa3e853
FB
1101 int prot;
1102
fd6ce8f6
FB
1103 /* force the host page as non writable (writes will have a
1104 page fault + mprotect overhead) */
53a5960a 1105 page_addr &= qemu_host_page_mask;
fd6ce8f6 1106 prot = 0;
53a5960a
PB
1107 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1108 addr += TARGET_PAGE_SIZE) {
1109
1110 p2 = page_find (addr >> TARGET_PAGE_BITS);
1111 if (!p2)
1112 continue;
1113 prot |= p2->flags;
1114 p2->flags &= ~PAGE_WRITE;
1115 page_get_flags(addr);
1116 }
5fafdf24 1117 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1118 (prot & PAGE_BITS) & ~PAGE_WRITE);
1119#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1120 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1121 page_addr);
fd6ce8f6 1122#endif
fd6ce8f6 1123 }
9fa3e853
FB
1124#else
1125 /* if some code is already present, then the pages are already
1126 protected. So we handle the case where only the first TB is
1127 allocated in a physical page */
1128 if (!last_first_tb) {
6a00d601 1129 tlb_protect_code(page_addr);
9fa3e853
FB
1130 }
1131#endif
d720b93d
FB
1132
1133#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1134}
1135
1136/* Allocate a new translation block. Flush the translation buffer if
1137 too many translation blocks or too much generated code. */
c27004ec 1138TranslationBlock *tb_alloc(target_ulong pc)
fd6ce8f6
FB
1139{
1140 TranslationBlock *tb;
fd6ce8f6 1141
26a5f13b
FB
1142 if (nb_tbs >= code_gen_max_blocks ||
1143 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
d4e8164f 1144 return NULL;
fd6ce8f6
FB
1145 tb = &tbs[nb_tbs++];
1146 tb->pc = pc;
b448f2f3 1147 tb->cflags = 0;
d4e8164f
FB
1148 return tb;
1149}
1150
2e70f6ef
PB
1151void tb_free(TranslationBlock *tb)
1152{
bf20dc07 1153 /* In practice this is mostly used for single use temporary TB
2e70f6ef
PB
1154 Ignore the hard cases and just back up if this TB happens to
1155 be the last one generated. */
1156 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1157 code_gen_ptr = tb->tc_ptr;
1158 nb_tbs--;
1159 }
1160}
1161
9fa3e853
FB
1162/* add a new TB and link it to the physical page tables. phys_page2 is
1163 (-1) to indicate that only one page contains the TB. */
5fafdf24 1164void tb_link_phys(TranslationBlock *tb,
9fa3e853 1165 target_ulong phys_pc, target_ulong phys_page2)
d4e8164f 1166{
9fa3e853
FB
1167 unsigned int h;
1168 TranslationBlock **ptb;
1169
c8a706fe
PB
1170 /* Grab the mmap lock to stop another thread invalidating this TB
1171 before we are done. */
1172 mmap_lock();
9fa3e853
FB
1173 /* add in the physical hash table */
1174 h = tb_phys_hash_func(phys_pc);
1175 ptb = &tb_phys_hash[h];
1176 tb->phys_hash_next = *ptb;
1177 *ptb = tb;
fd6ce8f6
FB
1178
1179 /* add in the page list */
9fa3e853
FB
1180 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1181 if (phys_page2 != -1)
1182 tb_alloc_page(tb, 1, phys_page2);
1183 else
1184 tb->page_addr[1] = -1;
9fa3e853 1185
d4e8164f
FB
1186 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1187 tb->jmp_next[0] = NULL;
1188 tb->jmp_next[1] = NULL;
1189
1190 /* init original jump addresses */
1191 if (tb->tb_next_offset[0] != 0xffff)
1192 tb_reset_jump(tb, 0);
1193 if (tb->tb_next_offset[1] != 0xffff)
1194 tb_reset_jump(tb, 1);
8a40a180
FB
1195
1196#ifdef DEBUG_TB_CHECK
1197 tb_page_check();
1198#endif
c8a706fe 1199 mmap_unlock();
fd6ce8f6
FB
1200}
1201
9fa3e853
FB
1202/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1203 tb[1].tc_ptr. Return NULL if not found */
1204TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1205{
9fa3e853
FB
1206 int m_min, m_max, m;
1207 unsigned long v;
1208 TranslationBlock *tb;
a513fe19
FB
1209
1210 if (nb_tbs <= 0)
1211 return NULL;
1212 if (tc_ptr < (unsigned long)code_gen_buffer ||
1213 tc_ptr >= (unsigned long)code_gen_ptr)
1214 return NULL;
1215 /* binary search (cf Knuth) */
1216 m_min = 0;
1217 m_max = nb_tbs - 1;
1218 while (m_min <= m_max) {
1219 m = (m_min + m_max) >> 1;
1220 tb = &tbs[m];
1221 v = (unsigned long)tb->tc_ptr;
1222 if (v == tc_ptr)
1223 return tb;
1224 else if (tc_ptr < v) {
1225 m_max = m - 1;
1226 } else {
1227 m_min = m + 1;
1228 }
5fafdf24 1229 }
a513fe19
FB
1230 return &tbs[m_max];
1231}
7501267e 1232
ea041c0e
FB
1233static void tb_reset_jump_recursive(TranslationBlock *tb);
1234
1235static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1236{
1237 TranslationBlock *tb1, *tb_next, **ptb;
1238 unsigned int n1;
1239
1240 tb1 = tb->jmp_next[n];
1241 if (tb1 != NULL) {
1242 /* find head of list */
1243 for(;;) {
1244 n1 = (long)tb1 & 3;
1245 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1246 if (n1 == 2)
1247 break;
1248 tb1 = tb1->jmp_next[n1];
1249 }
1250 /* we are now sure now that tb jumps to tb1 */
1251 tb_next = tb1;
1252
1253 /* remove tb from the jmp_first list */
1254 ptb = &tb_next->jmp_first;
1255 for(;;) {
1256 tb1 = *ptb;
1257 n1 = (long)tb1 & 3;
1258 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1259 if (n1 == n && tb1 == tb)
1260 break;
1261 ptb = &tb1->jmp_next[n1];
1262 }
1263 *ptb = tb->jmp_next[n];
1264 tb->jmp_next[n] = NULL;
3b46e624 1265
ea041c0e
FB
1266 /* suppress the jump to next tb in generated code */
1267 tb_reset_jump(tb, n);
1268
0124311e 1269 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1270 tb_reset_jump_recursive(tb_next);
1271 }
1272}
1273
1274static void tb_reset_jump_recursive(TranslationBlock *tb)
1275{
1276 tb_reset_jump_recursive2(tb, 0);
1277 tb_reset_jump_recursive2(tb, 1);
1278}
1279
1fddef4b 1280#if defined(TARGET_HAS_ICE)
d720b93d
FB
1281static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1282{
9b3c35e0
JM
1283 target_phys_addr_t addr;
1284 target_ulong pd;
c2f07f81
PB
1285 ram_addr_t ram_addr;
1286 PhysPageDesc *p;
d720b93d 1287
c2f07f81
PB
1288 addr = cpu_get_phys_page_debug(env, pc);
1289 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1290 if (!p) {
1291 pd = IO_MEM_UNASSIGNED;
1292 } else {
1293 pd = p->phys_offset;
1294 }
1295 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1296 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1297}
c27004ec 1298#endif
d720b93d 1299
6658ffb8 1300/* Add a watchpoint. */
a1d1bb31
AL
1301int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1302 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1303{
b4051334 1304 target_ulong len_mask = ~(len - 1);
2dc9f411 1305 CPUWatchpoint *wp, *prev_wp;
6658ffb8 1306
b4051334
AL
1307 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1308 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1309 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1310 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1311 return -EINVAL;
1312 }
a1d1bb31
AL
1313 wp = qemu_malloc(sizeof(*wp));
1314 if (!wp)
1315 return -ENOBUFS;
1316
1317 wp->vaddr = addr;
b4051334 1318 wp->len_mask = len_mask;
a1d1bb31
AL
1319 wp->flags = flags;
1320
2dc9f411
AL
1321 /* keep all GDB-injected watchpoints in front */
1322 if (!(flags & BP_GDB) && env->watchpoints) {
1323 prev_wp = env->watchpoints;
1324 while (prev_wp->next != NULL && (prev_wp->next->flags & BP_GDB))
1325 prev_wp = prev_wp->next;
1326 } else {
1327 prev_wp = NULL;
1328 }
1329
1330 /* Insert new watchpoint */
1331 if (prev_wp) {
1332 wp->next = prev_wp->next;
1333 prev_wp->next = wp;
1334 } else {
1335 wp->next = env->watchpoints;
1336 env->watchpoints = wp;
1337 }
a1d1bb31
AL
1338 if (wp->next)
1339 wp->next->prev = wp;
2dc9f411 1340 wp->prev = prev_wp;
6658ffb8 1341
6658ffb8 1342 tlb_flush_page(env, addr);
a1d1bb31
AL
1343
1344 if (watchpoint)
1345 *watchpoint = wp;
1346 return 0;
6658ffb8
PB
1347}
1348
a1d1bb31
AL
1349/* Remove a specific watchpoint. */
1350int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1351 int flags)
6658ffb8 1352{
b4051334 1353 target_ulong len_mask = ~(len - 1);
a1d1bb31 1354 CPUWatchpoint *wp;
6658ffb8 1355
a1d1bb31 1356 for (wp = env->watchpoints; wp != NULL; wp = wp->next) {
b4051334 1357 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1358 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1359 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1360 return 0;
1361 }
1362 }
a1d1bb31 1363 return -ENOENT;
6658ffb8
PB
1364}
1365
a1d1bb31
AL
1366/* Remove a specific watchpoint by reference. */
1367void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1368{
1369 if (watchpoint->next)
1370 watchpoint->next->prev = watchpoint->prev;
1371 if (watchpoint->prev)
1372 watchpoint->prev->next = watchpoint->next;
1373 else
1374 env->watchpoints = watchpoint->next;
7d03f82f 1375
a1d1bb31
AL
1376 tlb_flush_page(env, watchpoint->vaddr);
1377
1378 qemu_free(watchpoint);
1379}
1380
1381/* Remove all matching watchpoints. */
1382void cpu_watchpoint_remove_all(CPUState *env, int mask)
1383{
1384 CPUWatchpoint *wp;
1385
1386 for (wp = env->watchpoints; wp != NULL; wp = wp->next)
1387 if (wp->flags & mask)
1388 cpu_watchpoint_remove_by_ref(env, wp);
7d03f82f
EI
1389}
1390
a1d1bb31
AL
1391/* Add a breakpoint. */
1392int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1393 CPUBreakpoint **breakpoint)
4c3a88a2 1394{
1fddef4b 1395#if defined(TARGET_HAS_ICE)
2dc9f411 1396 CPUBreakpoint *bp, *prev_bp;
3b46e624 1397
a1d1bb31
AL
1398 bp = qemu_malloc(sizeof(*bp));
1399 if (!bp)
1400 return -ENOBUFS;
4c3a88a2 1401
a1d1bb31
AL
1402 bp->pc = pc;
1403 bp->flags = flags;
1404
2dc9f411
AL
1405 /* keep all GDB-injected breakpoints in front */
1406 if (!(flags & BP_GDB) && env->breakpoints) {
1407 prev_bp = env->breakpoints;
1408 while (prev_bp->next != NULL && (prev_bp->next->flags & BP_GDB))
1409 prev_bp = prev_bp->next;
1410 } else {
1411 prev_bp = NULL;
1412 }
1413
1414 /* Insert new breakpoint */
1415 if (prev_bp) {
1416 bp->next = prev_bp->next;
1417 prev_bp->next = bp;
1418 } else {
1419 bp->next = env->breakpoints;
1420 env->breakpoints = bp;
1421 }
a1d1bb31
AL
1422 if (bp->next)
1423 bp->next->prev = bp;
2dc9f411 1424 bp->prev = prev_bp;
3b46e624 1425
d720b93d 1426 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1427
1428 if (breakpoint)
1429 *breakpoint = bp;
4c3a88a2
FB
1430 return 0;
1431#else
a1d1bb31 1432 return -ENOSYS;
4c3a88a2
FB
1433#endif
1434}
1435
a1d1bb31
AL
1436/* Remove a specific breakpoint. */
1437int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1438{
7d03f82f 1439#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1440 CPUBreakpoint *bp;
1441
1442 for (bp = env->breakpoints; bp != NULL; bp = bp->next) {
1443 if (bp->pc == pc && bp->flags == flags) {
1444 cpu_breakpoint_remove_by_ref(env, bp);
1445 return 0;
1446 }
7d03f82f 1447 }
a1d1bb31
AL
1448 return -ENOENT;
1449#else
1450 return -ENOSYS;
7d03f82f
EI
1451#endif
1452}
1453
a1d1bb31
AL
1454/* Remove a specific breakpoint by reference. */
1455void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1456{
1fddef4b 1457#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1458 if (breakpoint->next)
1459 breakpoint->next->prev = breakpoint->prev;
1460 if (breakpoint->prev)
1461 breakpoint->prev->next = breakpoint->next;
1462 else
1463 env->breakpoints = breakpoint->next;
d720b93d 1464
a1d1bb31
AL
1465 breakpoint_invalidate(env, breakpoint->pc);
1466
1467 qemu_free(breakpoint);
1468#endif
1469}
1470
1471/* Remove all matching breakpoints. */
1472void cpu_breakpoint_remove_all(CPUState *env, int mask)
1473{
1474#if defined(TARGET_HAS_ICE)
1475 CPUBreakpoint *bp;
1476
1477 for (bp = env->breakpoints; bp != NULL; bp = bp->next)
1478 if (bp->flags & mask)
1479 cpu_breakpoint_remove_by_ref(env, bp);
4c3a88a2
FB
1480#endif
1481}
1482
c33a346e
FB
1483/* enable or disable single step mode. EXCP_DEBUG is returned by the
1484 CPU loop after each instruction */
1485void cpu_single_step(CPUState *env, int enabled)
1486{
1fddef4b 1487#if defined(TARGET_HAS_ICE)
c33a346e
FB
1488 if (env->singlestep_enabled != enabled) {
1489 env->singlestep_enabled = enabled;
1490 /* must flush all the translated code to avoid inconsistancies */
9fa3e853 1491 /* XXX: only flush what is necessary */
0124311e 1492 tb_flush(env);
c33a346e
FB
1493 }
1494#endif
1495}
1496
34865134
FB
1497/* enable or disable low levels log */
1498void cpu_set_log(int log_flags)
1499{
1500 loglevel = log_flags;
1501 if (loglevel && !logfile) {
11fcfab4 1502 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1503 if (!logfile) {
1504 perror(logfilename);
1505 _exit(1);
1506 }
9fa3e853
FB
1507#if !defined(CONFIG_SOFTMMU)
1508 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1509 {
b55266b5 1510 static char logfile_buf[4096];
9fa3e853
FB
1511 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1512 }
1513#else
34865134 1514 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1515#endif
e735b91c
PB
1516 log_append = 1;
1517 }
1518 if (!loglevel && logfile) {
1519 fclose(logfile);
1520 logfile = NULL;
34865134
FB
1521 }
1522}
1523
1524void cpu_set_log_filename(const char *filename)
1525{
1526 logfilename = strdup(filename);
e735b91c
PB
1527 if (logfile) {
1528 fclose(logfile);
1529 logfile = NULL;
1530 }
1531 cpu_set_log(loglevel);
34865134 1532}
c33a346e 1533
0124311e 1534/* mask must never be zero, except for A20 change call */
68a79315 1535void cpu_interrupt(CPUState *env, int mask)
ea041c0e 1536{
d5975363 1537#if !defined(USE_NPTL)
ea041c0e 1538 TranslationBlock *tb;
15a51156 1539 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
d5975363 1540#endif
2e70f6ef 1541 int old_mask;
59817ccb 1542
2e70f6ef 1543 old_mask = env->interrupt_request;
d5975363 1544 /* FIXME: This is probably not threadsafe. A different thread could
bf20dc07 1545 be in the middle of a read-modify-write operation. */
68a79315 1546 env->interrupt_request |= mask;
d5975363
PB
1547#if defined(USE_NPTL)
1548 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1549 problem and hope the cpu will stop of its own accord. For userspace
1550 emulation this often isn't actually as bad as it sounds. Often
1551 signals are used primarily to interrupt blocking syscalls. */
1552#else
2e70f6ef 1553 if (use_icount) {
266910c4 1554 env->icount_decr.u16.high = 0xffff;
2e70f6ef
PB
1555#ifndef CONFIG_USER_ONLY
1556 /* CPU_INTERRUPT_EXIT isn't a real interrupt. It just means
1557 an async event happened and we need to process it. */
1558 if (!can_do_io(env)
1559 && (mask & ~(old_mask | CPU_INTERRUPT_EXIT)) != 0) {
1560 cpu_abort(env, "Raised interrupt while not in I/O function");
1561 }
1562#endif
1563 } else {
1564 tb = env->current_tb;
1565 /* if the cpu is currently executing code, we must unlink it and
1566 all the potentially executing TB */
1567 if (tb && !testandset(&interrupt_lock)) {
1568 env->current_tb = NULL;
1569 tb_reset_jump_recursive(tb);
1570 resetlock(&interrupt_lock);
1571 }
ea041c0e 1572 }
d5975363 1573#endif
ea041c0e
FB
1574}
1575
b54ad049
FB
1576void cpu_reset_interrupt(CPUState *env, int mask)
1577{
1578 env->interrupt_request &= ~mask;
1579}
1580
c7cd6a37 1581const CPULogItem cpu_log_items[] = {
5fafdf24 1582 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1583 "show generated host assembly code for each compiled TB" },
1584 { CPU_LOG_TB_IN_ASM, "in_asm",
1585 "show target assembly code for each compiled TB" },
5fafdf24 1586 { CPU_LOG_TB_OP, "op",
57fec1fe 1587 "show micro ops for each compiled TB" },
f193c797 1588 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1589 "show micro ops "
1590#ifdef TARGET_I386
1591 "before eflags optimization and "
f193c797 1592#endif
e01a1157 1593 "after liveness analysis" },
f193c797
FB
1594 { CPU_LOG_INT, "int",
1595 "show interrupts/exceptions in short format" },
1596 { CPU_LOG_EXEC, "exec",
1597 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1598 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1599 "show CPU state before block translation" },
f193c797
FB
1600#ifdef TARGET_I386
1601 { CPU_LOG_PCALL, "pcall",
1602 "show protected mode far calls/returns/exceptions" },
1603#endif
8e3a9fd2 1604#ifdef DEBUG_IOPORT
fd872598
FB
1605 { CPU_LOG_IOPORT, "ioport",
1606 "show all i/o ports accesses" },
8e3a9fd2 1607#endif
f193c797
FB
1608 { 0, NULL, NULL },
1609};
1610
1611static int cmp1(const char *s1, int n, const char *s2)
1612{
1613 if (strlen(s2) != n)
1614 return 0;
1615 return memcmp(s1, s2, n) == 0;
1616}
3b46e624 1617
f193c797
FB
1618/* takes a comma separated list of log masks. Return 0 if error. */
1619int cpu_str_to_log_mask(const char *str)
1620{
c7cd6a37 1621 const CPULogItem *item;
f193c797
FB
1622 int mask;
1623 const char *p, *p1;
1624
1625 p = str;
1626 mask = 0;
1627 for(;;) {
1628 p1 = strchr(p, ',');
1629 if (!p1)
1630 p1 = p + strlen(p);
8e3a9fd2
FB
1631 if(cmp1(p,p1-p,"all")) {
1632 for(item = cpu_log_items; item->mask != 0; item++) {
1633 mask |= item->mask;
1634 }
1635 } else {
f193c797
FB
1636 for(item = cpu_log_items; item->mask != 0; item++) {
1637 if (cmp1(p, p1 - p, item->name))
1638 goto found;
1639 }
1640 return 0;
8e3a9fd2 1641 }
f193c797
FB
1642 found:
1643 mask |= item->mask;
1644 if (*p1 != ',')
1645 break;
1646 p = p1 + 1;
1647 }
1648 return mask;
1649}
ea041c0e 1650
7501267e
FB
1651void cpu_abort(CPUState *env, const char *fmt, ...)
1652{
1653 va_list ap;
493ae1f0 1654 va_list ap2;
7501267e
FB
1655
1656 va_start(ap, fmt);
493ae1f0 1657 va_copy(ap2, ap);
7501267e
FB
1658 fprintf(stderr, "qemu: fatal: ");
1659 vfprintf(stderr, fmt, ap);
1660 fprintf(stderr, "\n");
1661#ifdef TARGET_I386
7fe48483
FB
1662 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1663#else
1664 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1665#endif
924edcae 1666 if (logfile) {
f9373291 1667 fprintf(logfile, "qemu: fatal: ");
493ae1f0 1668 vfprintf(logfile, fmt, ap2);
f9373291
JM
1669 fprintf(logfile, "\n");
1670#ifdef TARGET_I386
1671 cpu_dump_state(env, logfile, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1672#else
1673 cpu_dump_state(env, logfile, fprintf, 0);
1674#endif
924edcae
AZ
1675 fflush(logfile);
1676 fclose(logfile);
1677 }
493ae1f0 1678 va_end(ap2);
f9373291 1679 va_end(ap);
7501267e
FB
1680 abort();
1681}
1682
c5be9f08
TS
1683CPUState *cpu_copy(CPUState *env)
1684{
01ba9816 1685 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1686 /* preserve chaining and index */
1687 CPUState *next_cpu = new_env->next_cpu;
1688 int cpu_index = new_env->cpu_index;
1689 memcpy(new_env, env, sizeof(CPUState));
1690 new_env->next_cpu = next_cpu;
1691 new_env->cpu_index = cpu_index;
1692 return new_env;
1693}
1694
0124311e
FB
1695#if !defined(CONFIG_USER_ONLY)
1696
5c751e99
EI
1697static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1698{
1699 unsigned int i;
1700
1701 /* Discard jump cache entries for any tb which might potentially
1702 overlap the flushed page. */
1703 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1704 memset (&env->tb_jmp_cache[i], 0,
1705 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1706
1707 i = tb_jmp_cache_hash_page(addr);
1708 memset (&env->tb_jmp_cache[i], 0,
1709 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1710}
1711
ee8b7021
FB
1712/* NOTE: if flush_global is true, also flush global entries (not
1713 implemented yet) */
1714void tlb_flush(CPUState *env, int flush_global)
33417e70 1715{
33417e70 1716 int i;
0124311e 1717
9fa3e853
FB
1718#if defined(DEBUG_TLB)
1719 printf("tlb_flush:\n");
1720#endif
0124311e
FB
1721 /* must reset current TB so that interrupts cannot modify the
1722 links while we are modifying them */
1723 env->current_tb = NULL;
1724
33417e70 1725 for(i = 0; i < CPU_TLB_SIZE; i++) {
84b7b8e7
FB
1726 env->tlb_table[0][i].addr_read = -1;
1727 env->tlb_table[0][i].addr_write = -1;
1728 env->tlb_table[0][i].addr_code = -1;
1729 env->tlb_table[1][i].addr_read = -1;
1730 env->tlb_table[1][i].addr_write = -1;
1731 env->tlb_table[1][i].addr_code = -1;
6fa4cea9
JM
1732#if (NB_MMU_MODES >= 3)
1733 env->tlb_table[2][i].addr_read = -1;
1734 env->tlb_table[2][i].addr_write = -1;
1735 env->tlb_table[2][i].addr_code = -1;
1736#if (NB_MMU_MODES == 4)
1737 env->tlb_table[3][i].addr_read = -1;
1738 env->tlb_table[3][i].addr_write = -1;
1739 env->tlb_table[3][i].addr_code = -1;
1740#endif
1741#endif
33417e70 1742 }
9fa3e853 1743
8a40a180 1744 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 1745
0a962c02
FB
1746#ifdef USE_KQEMU
1747 if (env->kqemu_enabled) {
1748 kqemu_flush(env, flush_global);
1749 }
9fa3e853 1750#endif
e3db7226 1751 tlb_flush_count++;
33417e70
FB
1752}
1753
274da6b2 1754static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1755{
5fafdf24 1756 if (addr == (tlb_entry->addr_read &
84b7b8e7 1757 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1758 addr == (tlb_entry->addr_write &
84b7b8e7 1759 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1760 addr == (tlb_entry->addr_code &
84b7b8e7
FB
1761 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1762 tlb_entry->addr_read = -1;
1763 tlb_entry->addr_write = -1;
1764 tlb_entry->addr_code = -1;
1765 }
61382a50
FB
1766}
1767
2e12669a 1768void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 1769{
8a40a180 1770 int i;
0124311e 1771
9fa3e853 1772#if defined(DEBUG_TLB)
108c49b8 1773 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 1774#endif
0124311e
FB
1775 /* must reset current TB so that interrupts cannot modify the
1776 links while we are modifying them */
1777 env->current_tb = NULL;
61382a50
FB
1778
1779 addr &= TARGET_PAGE_MASK;
1780 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
84b7b8e7
FB
1781 tlb_flush_entry(&env->tlb_table[0][i], addr);
1782 tlb_flush_entry(&env->tlb_table[1][i], addr);
6fa4cea9
JM
1783#if (NB_MMU_MODES >= 3)
1784 tlb_flush_entry(&env->tlb_table[2][i], addr);
1785#if (NB_MMU_MODES == 4)
1786 tlb_flush_entry(&env->tlb_table[3][i], addr);
1787#endif
1788#endif
0124311e 1789
5c751e99 1790 tlb_flush_jmp_cache(env, addr);
9fa3e853 1791
0a962c02
FB
1792#ifdef USE_KQEMU
1793 if (env->kqemu_enabled) {
1794 kqemu_flush_page(env, addr);
1795 }
1796#endif
9fa3e853
FB
1797}
1798
9fa3e853
FB
1799/* update the TLBs so that writes to code in the virtual page 'addr'
1800 can be detected */
6a00d601 1801static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 1802{
5fafdf24 1803 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
1804 ram_addr + TARGET_PAGE_SIZE,
1805 CODE_DIRTY_FLAG);
9fa3e853
FB
1806}
1807
9fa3e853 1808/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 1809 tested for self modifying code */
5fafdf24 1810static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 1811 target_ulong vaddr)
9fa3e853 1812{
3a7d929e 1813 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1ccde1cb
FB
1814}
1815
5fafdf24 1816static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
1817 unsigned long start, unsigned long length)
1818{
1819 unsigned long addr;
84b7b8e7
FB
1820 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1821 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 1822 if ((addr - start) < length) {
0f459d16 1823 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
1824 }
1825 }
1826}
1827
3a7d929e 1828void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 1829 int dirty_flags)
1ccde1cb
FB
1830{
1831 CPUState *env;
4f2ac237 1832 unsigned long length, start1;
0a962c02
FB
1833 int i, mask, len;
1834 uint8_t *p;
1ccde1cb
FB
1835
1836 start &= TARGET_PAGE_MASK;
1837 end = TARGET_PAGE_ALIGN(end);
1838
1839 length = end - start;
1840 if (length == 0)
1841 return;
0a962c02 1842 len = length >> TARGET_PAGE_BITS;
3a7d929e 1843#ifdef USE_KQEMU
6a00d601
FB
1844 /* XXX: should not depend on cpu context */
1845 env = first_cpu;
3a7d929e 1846 if (env->kqemu_enabled) {
f23db169
FB
1847 ram_addr_t addr;
1848 addr = start;
1849 for(i = 0; i < len; i++) {
1850 kqemu_set_notdirty(env, addr);
1851 addr += TARGET_PAGE_SIZE;
1852 }
3a7d929e
FB
1853 }
1854#endif
f23db169
FB
1855 mask = ~dirty_flags;
1856 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1857 for(i = 0; i < len; i++)
1858 p[i] &= mask;
1859
1ccde1cb
FB
1860 /* we modify the TLB cache so that the dirty bit will be set again
1861 when accessing the range */
59817ccb 1862 start1 = start + (unsigned long)phys_ram_base;
6a00d601
FB
1863 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1864 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1865 tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length);
6a00d601 1866 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1867 tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length);
6fa4cea9
JM
1868#if (NB_MMU_MODES >= 3)
1869 for(i = 0; i < CPU_TLB_SIZE; i++)
1870 tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length);
1871#if (NB_MMU_MODES == 4)
1872 for(i = 0; i < CPU_TLB_SIZE; i++)
1873 tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length);
1874#endif
1875#endif
6a00d601 1876 }
1ccde1cb
FB
1877}
1878
74576198
AL
1879int cpu_physical_memory_set_dirty_tracking(int enable)
1880{
1881 in_migration = enable;
1882 return 0;
1883}
1884
1885int cpu_physical_memory_get_dirty_tracking(void)
1886{
1887 return in_migration;
1888}
1889
3a7d929e
FB
1890static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1891{
1892 ram_addr_t ram_addr;
1893
84b7b8e7 1894 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5fafdf24 1895 ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) +
3a7d929e
FB
1896 tlb_entry->addend - (unsigned long)phys_ram_base;
1897 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 1898 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
1899 }
1900 }
1901}
1902
1903/* update the TLB according to the current state of the dirty bits */
1904void cpu_tlb_update_dirty(CPUState *env)
1905{
1906 int i;
1907 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1908 tlb_update_dirty(&env->tlb_table[0][i]);
3a7d929e 1909 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1910 tlb_update_dirty(&env->tlb_table[1][i]);
6fa4cea9
JM
1911#if (NB_MMU_MODES >= 3)
1912 for(i = 0; i < CPU_TLB_SIZE; i++)
1913 tlb_update_dirty(&env->tlb_table[2][i]);
1914#if (NB_MMU_MODES == 4)
1915 for(i = 0; i < CPU_TLB_SIZE; i++)
1916 tlb_update_dirty(&env->tlb_table[3][i]);
1917#endif
1918#endif
3a7d929e
FB
1919}
1920
0f459d16 1921static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 1922{
0f459d16
PB
1923 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
1924 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
1925}
1926
0f459d16
PB
1927/* update the TLB corresponding to virtual page vaddr
1928 so that it is no longer dirty */
1929static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 1930{
1ccde1cb
FB
1931 int i;
1932
0f459d16 1933 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 1934 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
0f459d16
PB
1935 tlb_set_dirty1(&env->tlb_table[0][i], vaddr);
1936 tlb_set_dirty1(&env->tlb_table[1][i], vaddr);
6fa4cea9 1937#if (NB_MMU_MODES >= 3)
0f459d16 1938 tlb_set_dirty1(&env->tlb_table[2][i], vaddr);
6fa4cea9 1939#if (NB_MMU_MODES == 4)
0f459d16 1940 tlb_set_dirty1(&env->tlb_table[3][i], vaddr);
6fa4cea9
JM
1941#endif
1942#endif
9fa3e853
FB
1943}
1944
59817ccb
FB
1945/* add a new TLB entry. At most one entry for a given virtual address
1946 is permitted. Return 0 if OK or 2 if the page could not be mapped
1947 (can only happen in non SOFTMMU mode for I/O pages or pages
1948 conflicting with the host address space). */
5fafdf24
TS
1949int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1950 target_phys_addr_t paddr, int prot,
6ebbf390 1951 int mmu_idx, int is_softmmu)
9fa3e853 1952{
92e873b9 1953 PhysPageDesc *p;
4f2ac237 1954 unsigned long pd;
9fa3e853 1955 unsigned int index;
4f2ac237 1956 target_ulong address;
0f459d16 1957 target_ulong code_address;
108c49b8 1958 target_phys_addr_t addend;
9fa3e853 1959 int ret;
84b7b8e7 1960 CPUTLBEntry *te;
a1d1bb31 1961 CPUWatchpoint *wp;
0f459d16 1962 target_phys_addr_t iotlb;
9fa3e853 1963
92e873b9 1964 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
1965 if (!p) {
1966 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
1967 } else {
1968 pd = p->phys_offset;
9fa3e853
FB
1969 }
1970#if defined(DEBUG_TLB)
6ebbf390
JM
1971 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1972 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
9fa3e853
FB
1973#endif
1974
1975 ret = 0;
0f459d16
PB
1976 address = vaddr;
1977 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
1978 /* IO memory case (romd handled later) */
1979 address |= TLB_MMIO;
1980 }
1981 addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK);
1982 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
1983 /* Normal RAM. */
1984 iotlb = pd & TARGET_PAGE_MASK;
1985 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
1986 iotlb |= IO_MEM_NOTDIRTY;
1987 else
1988 iotlb |= IO_MEM_ROM;
1989 } else {
1990 /* IO handlers are currently passed a phsical address.
1991 It would be nice to pass an offset from the base address
1992 of that region. This would avoid having to special case RAM,
1993 and avoid full address decoding in every device.
1994 We can't use the high bits of pd for this because
1995 IO_MEM_ROMD uses these as a ram address. */
1996 iotlb = (pd & ~TARGET_PAGE_MASK) + paddr;
1997 }
1998
1999 code_address = address;
2000 /* Make accesses to pages with watchpoints go via the
2001 watchpoint trap routines. */
a1d1bb31
AL
2002 for (wp = env->watchpoints; wp != NULL; wp = wp->next) {
2003 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
0f459d16
PB
2004 iotlb = io_mem_watch + paddr;
2005 /* TODO: The memory case can be optimized by not trapping
2006 reads of pages with a write breakpoint. */
2007 address |= TLB_MMIO;
6658ffb8 2008 }
0f459d16 2009 }
d79acba4 2010
0f459d16
PB
2011 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2012 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2013 te = &env->tlb_table[mmu_idx][index];
2014 te->addend = addend - vaddr;
2015 if (prot & PAGE_READ) {
2016 te->addr_read = address;
2017 } else {
2018 te->addr_read = -1;
2019 }
5c751e99 2020
0f459d16
PB
2021 if (prot & PAGE_EXEC) {
2022 te->addr_code = code_address;
2023 } else {
2024 te->addr_code = -1;
2025 }
2026 if (prot & PAGE_WRITE) {
2027 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2028 (pd & IO_MEM_ROMD)) {
2029 /* Write access calls the I/O callback. */
2030 te->addr_write = address | TLB_MMIO;
2031 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2032 !cpu_physical_memory_is_dirty(pd)) {
2033 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 2034 } else {
0f459d16 2035 te->addr_write = address;
9fa3e853 2036 }
0f459d16
PB
2037 } else {
2038 te->addr_write = -1;
9fa3e853 2039 }
9fa3e853
FB
2040 return ret;
2041}
2042
0124311e
FB
2043#else
2044
ee8b7021 2045void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
2046{
2047}
2048
2e12669a 2049void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
2050{
2051}
2052
5fafdf24
TS
2053int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2054 target_phys_addr_t paddr, int prot,
6ebbf390 2055 int mmu_idx, int is_softmmu)
9fa3e853
FB
2056{
2057 return 0;
2058}
0124311e 2059
9fa3e853
FB
2060/* dump memory mappings */
2061void page_dump(FILE *f)
33417e70 2062{
9fa3e853
FB
2063 unsigned long start, end;
2064 int i, j, prot, prot1;
2065 PageDesc *p;
33417e70 2066
9fa3e853
FB
2067 fprintf(f, "%-8s %-8s %-8s %s\n",
2068 "start", "end", "size", "prot");
2069 start = -1;
2070 end = -1;
2071 prot = 0;
2072 for(i = 0; i <= L1_SIZE; i++) {
2073 if (i < L1_SIZE)
2074 p = l1_map[i];
2075 else
2076 p = NULL;
2077 for(j = 0;j < L2_SIZE; j++) {
2078 if (!p)
2079 prot1 = 0;
2080 else
2081 prot1 = p[j].flags;
2082 if (prot1 != prot) {
2083 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2084 if (start != -1) {
2085 fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
5fafdf24 2086 start, end, end - start,
9fa3e853
FB
2087 prot & PAGE_READ ? 'r' : '-',
2088 prot & PAGE_WRITE ? 'w' : '-',
2089 prot & PAGE_EXEC ? 'x' : '-');
2090 }
2091 if (prot1 != 0)
2092 start = end;
2093 else
2094 start = -1;
2095 prot = prot1;
2096 }
2097 if (!p)
2098 break;
2099 }
33417e70 2100 }
33417e70
FB
2101}
2102
53a5960a 2103int page_get_flags(target_ulong address)
33417e70 2104{
9fa3e853
FB
2105 PageDesc *p;
2106
2107 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2108 if (!p)
9fa3e853
FB
2109 return 0;
2110 return p->flags;
2111}
2112
2113/* modify the flags of a page and invalidate the code if
2114 necessary. The flag PAGE_WRITE_ORG is positionned automatically
2115 depending on PAGE_WRITE */
53a5960a 2116void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853
FB
2117{
2118 PageDesc *p;
53a5960a 2119 target_ulong addr;
9fa3e853 2120
c8a706fe 2121 /* mmap_lock should already be held. */
9fa3e853
FB
2122 start = start & TARGET_PAGE_MASK;
2123 end = TARGET_PAGE_ALIGN(end);
2124 if (flags & PAGE_WRITE)
2125 flags |= PAGE_WRITE_ORG;
9fa3e853
FB
2126 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2127 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
17e2377a
PB
2128 /* We may be called for host regions that are outside guest
2129 address space. */
2130 if (!p)
2131 return;
9fa3e853
FB
2132 /* if the write protection is set, then we invalidate the code
2133 inside */
5fafdf24 2134 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2135 (flags & PAGE_WRITE) &&
2136 p->first_tb) {
d720b93d 2137 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2138 }
2139 p->flags = flags;
2140 }
33417e70
FB
2141}
2142
3d97b40b
TS
2143int page_check_range(target_ulong start, target_ulong len, int flags)
2144{
2145 PageDesc *p;
2146 target_ulong end;
2147 target_ulong addr;
2148
55f280c9
AZ
2149 if (start + len < start)
2150 /* we've wrapped around */
2151 return -1;
2152
3d97b40b
TS
2153 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2154 start = start & TARGET_PAGE_MASK;
2155
3d97b40b
TS
2156 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2157 p = page_find(addr >> TARGET_PAGE_BITS);
2158 if( !p )
2159 return -1;
2160 if( !(p->flags & PAGE_VALID) )
2161 return -1;
2162
dae3270c 2163 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2164 return -1;
dae3270c
FB
2165 if (flags & PAGE_WRITE) {
2166 if (!(p->flags & PAGE_WRITE_ORG))
2167 return -1;
2168 /* unprotect the page if it was put read-only because it
2169 contains translated code */
2170 if (!(p->flags & PAGE_WRITE)) {
2171 if (!page_unprotect(addr, 0, NULL))
2172 return -1;
2173 }
2174 return 0;
2175 }
3d97b40b
TS
2176 }
2177 return 0;
2178}
2179
9fa3e853
FB
2180/* called from signal handler: invalidate the code and unprotect the
2181 page. Return TRUE if the fault was succesfully handled. */
53a5960a 2182int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853
FB
2183{
2184 unsigned int page_index, prot, pindex;
2185 PageDesc *p, *p1;
53a5960a 2186 target_ulong host_start, host_end, addr;
9fa3e853 2187
c8a706fe
PB
2188 /* Technically this isn't safe inside a signal handler. However we
2189 know this only ever happens in a synchronous SEGV handler, so in
2190 practice it seems to be ok. */
2191 mmap_lock();
2192
83fb7adf 2193 host_start = address & qemu_host_page_mask;
9fa3e853
FB
2194 page_index = host_start >> TARGET_PAGE_BITS;
2195 p1 = page_find(page_index);
c8a706fe
PB
2196 if (!p1) {
2197 mmap_unlock();
9fa3e853 2198 return 0;
c8a706fe 2199 }
83fb7adf 2200 host_end = host_start + qemu_host_page_size;
9fa3e853
FB
2201 p = p1;
2202 prot = 0;
2203 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2204 prot |= p->flags;
2205 p++;
2206 }
2207 /* if the page was really writable, then we change its
2208 protection back to writable */
2209 if (prot & PAGE_WRITE_ORG) {
2210 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2211 if (!(p1[pindex].flags & PAGE_WRITE)) {
5fafdf24 2212 mprotect((void *)g2h(host_start), qemu_host_page_size,
9fa3e853
FB
2213 (prot & PAGE_BITS) | PAGE_WRITE);
2214 p1[pindex].flags |= PAGE_WRITE;
2215 /* and since the content will be modified, we must invalidate
2216 the corresponding translated code. */
d720b93d 2217 tb_invalidate_phys_page(address, pc, puc);
9fa3e853
FB
2218#ifdef DEBUG_TB_CHECK
2219 tb_invalidate_check(address);
2220#endif
c8a706fe 2221 mmap_unlock();
9fa3e853
FB
2222 return 1;
2223 }
2224 }
c8a706fe 2225 mmap_unlock();
9fa3e853
FB
2226 return 0;
2227}
2228
6a00d601
FB
2229static inline void tlb_set_dirty(CPUState *env,
2230 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2231{
2232}
9fa3e853
FB
2233#endif /* defined(CONFIG_USER_ONLY) */
2234
e2eef170 2235#if !defined(CONFIG_USER_ONLY)
db7b5426 2236static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
00f82b8a
AJ
2237 ram_addr_t memory);
2238static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2239 ram_addr_t orig_memory);
db7b5426
BS
2240#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2241 need_subpage) \
2242 do { \
2243 if (addr > start_addr) \
2244 start_addr2 = 0; \
2245 else { \
2246 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2247 if (start_addr2 > 0) \
2248 need_subpage = 1; \
2249 } \
2250 \
49e9fba2 2251 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2252 end_addr2 = TARGET_PAGE_SIZE - 1; \
2253 else { \
2254 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2255 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2256 need_subpage = 1; \
2257 } \
2258 } while (0)
2259
33417e70
FB
2260/* register physical memory. 'size' must be a multiple of the target
2261 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2262 io memory page */
5fafdf24 2263void cpu_register_physical_memory(target_phys_addr_t start_addr,
00f82b8a
AJ
2264 ram_addr_t size,
2265 ram_addr_t phys_offset)
33417e70 2266{
108c49b8 2267 target_phys_addr_t addr, end_addr;
92e873b9 2268 PhysPageDesc *p;
9d42037b 2269 CPUState *env;
00f82b8a 2270 ram_addr_t orig_size = size;
db7b5426 2271 void *subpage;
33417e70 2272
da260249
FB
2273#ifdef USE_KQEMU
2274 /* XXX: should not depend on cpu context */
2275 env = first_cpu;
2276 if (env->kqemu_enabled) {
2277 kqemu_set_phys_mem(start_addr, size, phys_offset);
2278 }
2279#endif
7ba1e619
AL
2280 if (kvm_enabled())
2281 kvm_set_phys_mem(start_addr, size, phys_offset);
2282
5fd386f6 2283 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
49e9fba2
BS
2284 end_addr = start_addr + (target_phys_addr_t)size;
2285 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
db7b5426
BS
2286 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2287 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
00f82b8a 2288 ram_addr_t orig_memory = p->phys_offset;
db7b5426
BS
2289 target_phys_addr_t start_addr2, end_addr2;
2290 int need_subpage = 0;
2291
2292 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2293 need_subpage);
4254fab8 2294 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426
BS
2295 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2296 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2297 &p->phys_offset, orig_memory);
2298 } else {
2299 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2300 >> IO_MEM_SHIFT];
2301 }
2302 subpage_register(subpage, start_addr2, end_addr2, phys_offset);
2303 } else {
2304 p->phys_offset = phys_offset;
2305 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2306 (phys_offset & IO_MEM_ROMD))
2307 phys_offset += TARGET_PAGE_SIZE;
2308 }
2309 } else {
2310 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2311 p->phys_offset = phys_offset;
2312 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2313 (phys_offset & IO_MEM_ROMD))
2314 phys_offset += TARGET_PAGE_SIZE;
2315 else {
2316 target_phys_addr_t start_addr2, end_addr2;
2317 int need_subpage = 0;
2318
2319 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2320 end_addr2, need_subpage);
2321
4254fab8 2322 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426
BS
2323 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2324 &p->phys_offset, IO_MEM_UNASSIGNED);
2325 subpage_register(subpage, start_addr2, end_addr2,
2326 phys_offset);
2327 }
2328 }
2329 }
33417e70 2330 }
3b46e624 2331
9d42037b
FB
2332 /* since each CPU stores ram addresses in its TLB cache, we must
2333 reset the modified entries */
2334 /* XXX: slow ! */
2335 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2336 tlb_flush(env, 1);
2337 }
33417e70
FB
2338}
2339
ba863458 2340/* XXX: temporary until new memory mapping API */
00f82b8a 2341ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
ba863458
FB
2342{
2343 PhysPageDesc *p;
2344
2345 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2346 if (!p)
2347 return IO_MEM_UNASSIGNED;
2348 return p->phys_offset;
2349}
2350
e9a1ab19 2351/* XXX: better than nothing */
00f82b8a 2352ram_addr_t qemu_ram_alloc(ram_addr_t size)
e9a1ab19
FB
2353{
2354 ram_addr_t addr;
7fb4fdcf 2355 if ((phys_ram_alloc_offset + size) > phys_ram_size) {
012a7045 2356 fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 ")\n",
ed441467 2357 (uint64_t)size, (uint64_t)phys_ram_size);
e9a1ab19
FB
2358 abort();
2359 }
2360 addr = phys_ram_alloc_offset;
2361 phys_ram_alloc_offset = TARGET_PAGE_ALIGN(phys_ram_alloc_offset + size);
2362 return addr;
2363}
2364
2365void qemu_ram_free(ram_addr_t addr)
2366{
2367}
2368
a4193c8a 2369static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 2370{
67d3b957 2371#ifdef DEBUG_UNASSIGNED
ab3d1727 2372 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316 2373#endif
e18231a3
BS
2374#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2375 do_unassigned_access(addr, 0, 0, 0, 1);
2376#endif
2377 return 0;
2378}
2379
2380static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2381{
2382#ifdef DEBUG_UNASSIGNED
2383 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2384#endif
2385#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2386 do_unassigned_access(addr, 0, 0, 0, 2);
2387#endif
2388 return 0;
2389}
2390
2391static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2392{
2393#ifdef DEBUG_UNASSIGNED
2394 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2395#endif
2396#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2397 do_unassigned_access(addr, 0, 0, 0, 4);
67d3b957 2398#endif
33417e70
FB
2399 return 0;
2400}
2401
a4193c8a 2402static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 2403{
67d3b957 2404#ifdef DEBUG_UNASSIGNED
ab3d1727 2405 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 2406#endif
e18231a3
BS
2407#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2408 do_unassigned_access(addr, 1, 0, 0, 1);
2409#endif
2410}
2411
2412static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2413{
2414#ifdef DEBUG_UNASSIGNED
2415 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2416#endif
2417#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2418 do_unassigned_access(addr, 1, 0, 0, 2);
2419#endif
2420}
2421
2422static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2423{
2424#ifdef DEBUG_UNASSIGNED
2425 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2426#endif
2427#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2428 do_unassigned_access(addr, 1, 0, 0, 4);
b4f0a316 2429#endif
33417e70
FB
2430}
2431
2432static CPUReadMemoryFunc *unassigned_mem_read[3] = {
2433 unassigned_mem_readb,
e18231a3
BS
2434 unassigned_mem_readw,
2435 unassigned_mem_readl,
33417e70
FB
2436};
2437
2438static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
2439 unassigned_mem_writeb,
e18231a3
BS
2440 unassigned_mem_writew,
2441 unassigned_mem_writel,
33417e70
FB
2442};
2443
0f459d16
PB
2444static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2445 uint32_t val)
9fa3e853 2446{
3a7d929e 2447 int dirty_flags;
3a7d929e
FB
2448 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2449 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2450#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2451 tb_invalidate_phys_page_fast(ram_addr, 1);
2452 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2453#endif
3a7d929e 2454 }
0f459d16 2455 stb_p(phys_ram_base + ram_addr, val);
f32fc648
FB
2456#ifdef USE_KQEMU
2457 if (cpu_single_env->kqemu_enabled &&
2458 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2459 kqemu_modify_page(cpu_single_env, ram_addr);
2460#endif
f23db169
FB
2461 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2462 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2463 /* we remove the notdirty callback only if the code has been
2464 flushed */
2465 if (dirty_flags == 0xff)
2e70f6ef 2466 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2467}
2468
0f459d16
PB
2469static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2470 uint32_t val)
9fa3e853 2471{
3a7d929e 2472 int dirty_flags;
3a7d929e
FB
2473 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2474 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2475#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2476 tb_invalidate_phys_page_fast(ram_addr, 2);
2477 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2478#endif
3a7d929e 2479 }
0f459d16 2480 stw_p(phys_ram_base + ram_addr, val);
f32fc648
FB
2481#ifdef USE_KQEMU
2482 if (cpu_single_env->kqemu_enabled &&
2483 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2484 kqemu_modify_page(cpu_single_env, ram_addr);
2485#endif
f23db169
FB
2486 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2487 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2488 /* we remove the notdirty callback only if the code has been
2489 flushed */
2490 if (dirty_flags == 0xff)
2e70f6ef 2491 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2492}
2493
0f459d16
PB
2494static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2495 uint32_t val)
9fa3e853 2496{
3a7d929e 2497 int dirty_flags;
3a7d929e
FB
2498 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2499 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2500#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2501 tb_invalidate_phys_page_fast(ram_addr, 4);
2502 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2503#endif
3a7d929e 2504 }
0f459d16 2505 stl_p(phys_ram_base + ram_addr, val);
f32fc648
FB
2506#ifdef USE_KQEMU
2507 if (cpu_single_env->kqemu_enabled &&
2508 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2509 kqemu_modify_page(cpu_single_env, ram_addr);
2510#endif
f23db169
FB
2511 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2512 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2513 /* we remove the notdirty callback only if the code has been
2514 flushed */
2515 if (dirty_flags == 0xff)
2e70f6ef 2516 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2517}
2518
3a7d929e 2519static CPUReadMemoryFunc *error_mem_read[3] = {
9fa3e853
FB
2520 NULL, /* never used */
2521 NULL, /* never used */
2522 NULL, /* never used */
2523};
2524
1ccde1cb
FB
2525static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
2526 notdirty_mem_writeb,
2527 notdirty_mem_writew,
2528 notdirty_mem_writel,
2529};
2530
0f459d16 2531/* Generate a debug exception if a watchpoint has been hit. */
b4051334 2532static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16
PB
2533{
2534 CPUState *env = cpu_single_env;
06d55cc1
AL
2535 target_ulong pc, cs_base;
2536 TranslationBlock *tb;
0f459d16 2537 target_ulong vaddr;
a1d1bb31 2538 CPUWatchpoint *wp;
06d55cc1 2539 int cpu_flags;
0f459d16 2540
06d55cc1
AL
2541 if (env->watchpoint_hit) {
2542 /* We re-entered the check after replacing the TB. Now raise
2543 * the debug interrupt so that is will trigger after the
2544 * current instruction. */
2545 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2546 return;
2547 }
2e70f6ef 2548 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
a1d1bb31 2549 for (wp = env->watchpoints; wp != NULL; wp = wp->next) {
b4051334
AL
2550 if ((vaddr == (wp->vaddr & len_mask) ||
2551 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
2552 wp->flags |= BP_WATCHPOINT_HIT;
2553 if (!env->watchpoint_hit) {
2554 env->watchpoint_hit = wp;
2555 tb = tb_find_pc(env->mem_io_pc);
2556 if (!tb) {
2557 cpu_abort(env, "check_watchpoint: could not find TB for "
2558 "pc=%p", (void *)env->mem_io_pc);
2559 }
2560 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
2561 tb_phys_invalidate(tb, -1);
2562 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2563 env->exception_index = EXCP_DEBUG;
2564 } else {
2565 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2566 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2567 }
2568 cpu_resume_from_signal(env, NULL);
06d55cc1 2569 }
6e140f28
AL
2570 } else {
2571 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2572 }
2573 }
2574}
2575
6658ffb8
PB
2576/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2577 so these check for a hit then pass through to the normal out-of-line
2578 phys routines. */
2579static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2580{
b4051334 2581 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
6658ffb8
PB
2582 return ldub_phys(addr);
2583}
2584
2585static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2586{
b4051334 2587 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
6658ffb8
PB
2588 return lduw_phys(addr);
2589}
2590
2591static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2592{
b4051334 2593 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
6658ffb8
PB
2594 return ldl_phys(addr);
2595}
2596
6658ffb8
PB
2597static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2598 uint32_t val)
2599{
b4051334 2600 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
6658ffb8
PB
2601 stb_phys(addr, val);
2602}
2603
2604static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2605 uint32_t val)
2606{
b4051334 2607 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
6658ffb8
PB
2608 stw_phys(addr, val);
2609}
2610
2611static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2612 uint32_t val)
2613{
b4051334 2614 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
6658ffb8
PB
2615 stl_phys(addr, val);
2616}
2617
2618static CPUReadMemoryFunc *watch_mem_read[3] = {
2619 watch_mem_readb,
2620 watch_mem_readw,
2621 watch_mem_readl,
2622};
2623
2624static CPUWriteMemoryFunc *watch_mem_write[3] = {
2625 watch_mem_writeb,
2626 watch_mem_writew,
2627 watch_mem_writel,
2628};
6658ffb8 2629
db7b5426
BS
2630static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2631 unsigned int len)
2632{
db7b5426
BS
2633 uint32_t ret;
2634 unsigned int idx;
2635
2636 idx = SUBPAGE_IDX(addr - mmio->base);
2637#if defined(DEBUG_SUBPAGE)
2638 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2639 mmio, len, addr, idx);
2640#endif
3ee89922 2641 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len], addr);
db7b5426
BS
2642
2643 return ret;
2644}
2645
2646static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2647 uint32_t value, unsigned int len)
2648{
db7b5426
BS
2649 unsigned int idx;
2650
2651 idx = SUBPAGE_IDX(addr - mmio->base);
2652#if defined(DEBUG_SUBPAGE)
2653 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2654 mmio, len, addr, idx, value);
2655#endif
3ee89922 2656 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len], addr, value);
db7b5426
BS
2657}
2658
2659static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2660{
2661#if defined(DEBUG_SUBPAGE)
2662 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2663#endif
2664
2665 return subpage_readlen(opaque, addr, 0);
2666}
2667
2668static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2669 uint32_t value)
2670{
2671#if defined(DEBUG_SUBPAGE)
2672 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2673#endif
2674 subpage_writelen(opaque, addr, value, 0);
2675}
2676
2677static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2678{
2679#if defined(DEBUG_SUBPAGE)
2680 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2681#endif
2682
2683 return subpage_readlen(opaque, addr, 1);
2684}
2685
2686static void subpage_writew (void *opaque, target_phys_addr_t addr,
2687 uint32_t value)
2688{
2689#if defined(DEBUG_SUBPAGE)
2690 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2691#endif
2692 subpage_writelen(opaque, addr, value, 1);
2693}
2694
2695static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2696{
2697#if defined(DEBUG_SUBPAGE)
2698 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2699#endif
2700
2701 return subpage_readlen(opaque, addr, 2);
2702}
2703
2704static void subpage_writel (void *opaque,
2705 target_phys_addr_t addr, uint32_t value)
2706{
2707#if defined(DEBUG_SUBPAGE)
2708 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2709#endif
2710 subpage_writelen(opaque, addr, value, 2);
2711}
2712
2713static CPUReadMemoryFunc *subpage_read[] = {
2714 &subpage_readb,
2715 &subpage_readw,
2716 &subpage_readl,
2717};
2718
2719static CPUWriteMemoryFunc *subpage_write[] = {
2720 &subpage_writeb,
2721 &subpage_writew,
2722 &subpage_writel,
2723};
2724
2725static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
00f82b8a 2726 ram_addr_t memory)
db7b5426
BS
2727{
2728 int idx, eidx;
4254fab8 2729 unsigned int i;
db7b5426
BS
2730
2731 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2732 return -1;
2733 idx = SUBPAGE_IDX(start);
2734 eidx = SUBPAGE_IDX(end);
2735#if defined(DEBUG_SUBPAGE)
2736 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__,
2737 mmio, start, end, idx, eidx, memory);
2738#endif
2739 memory >>= IO_MEM_SHIFT;
2740 for (; idx <= eidx; idx++) {
4254fab8 2741 for (i = 0; i < 4; i++) {
3ee89922
BS
2742 if (io_mem_read[memory][i]) {
2743 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2744 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
2745 }
2746 if (io_mem_write[memory][i]) {
2747 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2748 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
2749 }
4254fab8 2750 }
db7b5426
BS
2751 }
2752
2753 return 0;
2754}
2755
00f82b8a
AJ
2756static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2757 ram_addr_t orig_memory)
db7b5426
BS
2758{
2759 subpage_t *mmio;
2760 int subpage_memory;
2761
2762 mmio = qemu_mallocz(sizeof(subpage_t));
2763 if (mmio != NULL) {
2764 mmio->base = base;
2765 subpage_memory = cpu_register_io_memory(0, subpage_read, subpage_write, mmio);
2766#if defined(DEBUG_SUBPAGE)
2767 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2768 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
2769#endif
2770 *phys = subpage_memory | IO_MEM_SUBPAGE;
2771 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory);
2772 }
2773
2774 return mmio;
2775}
2776
33417e70
FB
2777static void io_mem_init(void)
2778{
3a7d929e 2779 cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL);
a4193c8a 2780 cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL);
3a7d929e 2781 cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL);
1ccde1cb
FB
2782 io_mem_nb = 5;
2783
0f459d16 2784 io_mem_watch = cpu_register_io_memory(0, watch_mem_read,
6658ffb8 2785 watch_mem_write, NULL);
1ccde1cb 2786 /* alloc dirty bits array */
0a962c02 2787 phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS);
3a7d929e 2788 memset(phys_ram_dirty, 0xff, phys_ram_size >> TARGET_PAGE_BITS);
33417e70
FB
2789}
2790
2791/* mem_read and mem_write are arrays of functions containing the
2792 function to access byte (index 0), word (index 1) and dword (index
3ee89922
BS
2793 2). Functions can be omitted with a NULL function pointer. The
2794 registered functions may be modified dynamically later.
2795 If io_index is non zero, the corresponding io zone is
4254fab8
BS
2796 modified. If it is zero, a new io zone is allocated. The return
2797 value can be used with cpu_register_physical_memory(). (-1) is
2798 returned if error. */
33417e70
FB
2799int cpu_register_io_memory(int io_index,
2800 CPUReadMemoryFunc **mem_read,
a4193c8a
FB
2801 CPUWriteMemoryFunc **mem_write,
2802 void *opaque)
33417e70 2803{
4254fab8 2804 int i, subwidth = 0;
33417e70
FB
2805
2806 if (io_index <= 0) {
b5ff1b31 2807 if (io_mem_nb >= IO_MEM_NB_ENTRIES)
33417e70
FB
2808 return -1;
2809 io_index = io_mem_nb++;
2810 } else {
2811 if (io_index >= IO_MEM_NB_ENTRIES)
2812 return -1;
2813 }
b5ff1b31 2814
33417e70 2815 for(i = 0;i < 3; i++) {
4254fab8
BS
2816 if (!mem_read[i] || !mem_write[i])
2817 subwidth = IO_MEM_SUBWIDTH;
33417e70
FB
2818 io_mem_read[io_index][i] = mem_read[i];
2819 io_mem_write[io_index][i] = mem_write[i];
2820 }
a4193c8a 2821 io_mem_opaque[io_index] = opaque;
4254fab8 2822 return (io_index << IO_MEM_SHIFT) | subwidth;
33417e70 2823}
61382a50 2824
8926b517
FB
2825CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index)
2826{
2827 return io_mem_write[io_index >> IO_MEM_SHIFT];
2828}
2829
2830CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index)
2831{
2832 return io_mem_read[io_index >> IO_MEM_SHIFT];
2833}
2834
e2eef170
PB
2835#endif /* !defined(CONFIG_USER_ONLY) */
2836
13eb76e0
FB
2837/* physical memory access (slow version, mainly for debug) */
2838#if defined(CONFIG_USER_ONLY)
5fafdf24 2839void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
2840 int len, int is_write)
2841{
2842 int l, flags;
2843 target_ulong page;
53a5960a 2844 void * p;
13eb76e0
FB
2845
2846 while (len > 0) {
2847 page = addr & TARGET_PAGE_MASK;
2848 l = (page + TARGET_PAGE_SIZE) - addr;
2849 if (l > len)
2850 l = len;
2851 flags = page_get_flags(page);
2852 if (!(flags & PAGE_VALID))
2853 return;
2854 if (is_write) {
2855 if (!(flags & PAGE_WRITE))
2856 return;
579a97f7 2857 /* XXX: this code should not depend on lock_user */
72fb7daa 2858 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
579a97f7
FB
2859 /* FIXME - should this return an error rather than just fail? */
2860 return;
72fb7daa
AJ
2861 memcpy(p, buf, l);
2862 unlock_user(p, addr, l);
13eb76e0
FB
2863 } else {
2864 if (!(flags & PAGE_READ))
2865 return;
579a97f7 2866 /* XXX: this code should not depend on lock_user */
72fb7daa 2867 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
579a97f7
FB
2868 /* FIXME - should this return an error rather than just fail? */
2869 return;
72fb7daa 2870 memcpy(buf, p, l);
5b257578 2871 unlock_user(p, addr, 0);
13eb76e0
FB
2872 }
2873 len -= l;
2874 buf += l;
2875 addr += l;
2876 }
2877}
8df1cd07 2878
13eb76e0 2879#else
5fafdf24 2880void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
2881 int len, int is_write)
2882{
2883 int l, io_index;
2884 uint8_t *ptr;
2885 uint32_t val;
2e12669a
FB
2886 target_phys_addr_t page;
2887 unsigned long pd;
92e873b9 2888 PhysPageDesc *p;
3b46e624 2889
13eb76e0
FB
2890 while (len > 0) {
2891 page = addr & TARGET_PAGE_MASK;
2892 l = (page + TARGET_PAGE_SIZE) - addr;
2893 if (l > len)
2894 l = len;
92e873b9 2895 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
2896 if (!p) {
2897 pd = IO_MEM_UNASSIGNED;
2898 } else {
2899 pd = p->phys_offset;
2900 }
3b46e624 2901
13eb76e0 2902 if (is_write) {
3a7d929e 2903 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
13eb76e0 2904 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
6a00d601
FB
2905 /* XXX: could force cpu_single_env to NULL to avoid
2906 potential bugs */
13eb76e0 2907 if (l >= 4 && ((addr & 3) == 0)) {
1c213d19 2908 /* 32 bit write access */
c27004ec 2909 val = ldl_p(buf);
a4193c8a 2910 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
13eb76e0
FB
2911 l = 4;
2912 } else if (l >= 2 && ((addr & 1) == 0)) {
1c213d19 2913 /* 16 bit write access */
c27004ec 2914 val = lduw_p(buf);
a4193c8a 2915 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
13eb76e0
FB
2916 l = 2;
2917 } else {
1c213d19 2918 /* 8 bit write access */
c27004ec 2919 val = ldub_p(buf);
a4193c8a 2920 io_mem_write[io_index][0](io_mem_opaque[io_index], addr, val);
13eb76e0
FB
2921 l = 1;
2922 }
2923 } else {
b448f2f3
FB
2924 unsigned long addr1;
2925 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 2926 /* RAM case */
b448f2f3 2927 ptr = phys_ram_base + addr1;
13eb76e0 2928 memcpy(ptr, buf, l);
3a7d929e
FB
2929 if (!cpu_physical_memory_is_dirty(addr1)) {
2930 /* invalidate code */
2931 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
2932 /* set dirty bit */
5fafdf24 2933 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
f23db169 2934 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 2935 }
13eb76e0
FB
2936 }
2937 } else {
5fafdf24 2938 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 2939 !(pd & IO_MEM_ROMD)) {
13eb76e0
FB
2940 /* I/O case */
2941 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2942 if (l >= 4 && ((addr & 3) == 0)) {
2943 /* 32 bit read access */
a4193c8a 2944 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
c27004ec 2945 stl_p(buf, val);
13eb76e0
FB
2946 l = 4;
2947 } else if (l >= 2 && ((addr & 1) == 0)) {
2948 /* 16 bit read access */
a4193c8a 2949 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
c27004ec 2950 stw_p(buf, val);
13eb76e0
FB
2951 l = 2;
2952 } else {
1c213d19 2953 /* 8 bit read access */
a4193c8a 2954 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr);
c27004ec 2955 stb_p(buf, val);
13eb76e0
FB
2956 l = 1;
2957 }
2958 } else {
2959 /* RAM case */
5fafdf24 2960 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
13eb76e0
FB
2961 (addr & ~TARGET_PAGE_MASK);
2962 memcpy(buf, ptr, l);
2963 }
2964 }
2965 len -= l;
2966 buf += l;
2967 addr += l;
2968 }
2969}
8df1cd07 2970
d0ecd2aa 2971/* used for ROM loading : can write in RAM and ROM */
5fafdf24 2972void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
2973 const uint8_t *buf, int len)
2974{
2975 int l;
2976 uint8_t *ptr;
2977 target_phys_addr_t page;
2978 unsigned long pd;
2979 PhysPageDesc *p;
3b46e624 2980
d0ecd2aa
FB
2981 while (len > 0) {
2982 page = addr & TARGET_PAGE_MASK;
2983 l = (page + TARGET_PAGE_SIZE) - addr;
2984 if (l > len)
2985 l = len;
2986 p = phys_page_find(page >> TARGET_PAGE_BITS);
2987 if (!p) {
2988 pd = IO_MEM_UNASSIGNED;
2989 } else {
2990 pd = p->phys_offset;
2991 }
3b46e624 2992
d0ecd2aa 2993 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
2994 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
2995 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
2996 /* do nothing */
2997 } else {
2998 unsigned long addr1;
2999 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3000 /* ROM/RAM case */
3001 ptr = phys_ram_base + addr1;
3002 memcpy(ptr, buf, l);
3003 }
3004 len -= l;
3005 buf += l;
3006 addr += l;
3007 }
3008}
3009
3010
8df1cd07
FB
3011/* warning: addr must be aligned */
3012uint32_t ldl_phys(target_phys_addr_t addr)
3013{
3014 int io_index;
3015 uint8_t *ptr;
3016 uint32_t val;
3017 unsigned long pd;
3018 PhysPageDesc *p;
3019
3020 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3021 if (!p) {
3022 pd = IO_MEM_UNASSIGNED;
3023 } else {
3024 pd = p->phys_offset;
3025 }
3b46e624 3026
5fafdf24 3027 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3028 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
3029 /* I/O case */
3030 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3031 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3032 } else {
3033 /* RAM case */
5fafdf24 3034 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
8df1cd07
FB
3035 (addr & ~TARGET_PAGE_MASK);
3036 val = ldl_p(ptr);
3037 }
3038 return val;
3039}
3040
84b7b8e7
FB
3041/* warning: addr must be aligned */
3042uint64_t ldq_phys(target_phys_addr_t addr)
3043{
3044 int io_index;
3045 uint8_t *ptr;
3046 uint64_t val;
3047 unsigned long pd;
3048 PhysPageDesc *p;
3049
3050 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3051 if (!p) {
3052 pd = IO_MEM_UNASSIGNED;
3053 } else {
3054 pd = p->phys_offset;
3055 }
3b46e624 3056
2a4188a3
FB
3057 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3058 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
3059 /* I/O case */
3060 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3061#ifdef TARGET_WORDS_BIGENDIAN
3062 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3063 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3064#else
3065 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3066 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3067#endif
3068 } else {
3069 /* RAM case */
5fafdf24 3070 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
84b7b8e7
FB
3071 (addr & ~TARGET_PAGE_MASK);
3072 val = ldq_p(ptr);
3073 }
3074 return val;
3075}
3076
aab33094
FB
3077/* XXX: optimize */
3078uint32_t ldub_phys(target_phys_addr_t addr)
3079{
3080 uint8_t val;
3081 cpu_physical_memory_read(addr, &val, 1);
3082 return val;
3083}
3084
3085/* XXX: optimize */
3086uint32_t lduw_phys(target_phys_addr_t addr)
3087{
3088 uint16_t val;
3089 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3090 return tswap16(val);
3091}
3092
8df1cd07
FB
3093/* warning: addr must be aligned. The ram page is not masked as dirty
3094 and the code inside is not invalidated. It is useful if the dirty
3095 bits are used to track modified PTEs */
3096void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3097{
3098 int io_index;
3099 uint8_t *ptr;
3100 unsigned long pd;
3101 PhysPageDesc *p;
3102
3103 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3104 if (!p) {
3105 pd = IO_MEM_UNASSIGNED;
3106 } else {
3107 pd = p->phys_offset;
3108 }
3b46e624 3109
3a7d929e 3110 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07
FB
3111 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3112 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3113 } else {
74576198
AL
3114 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3115 ptr = phys_ram_base + addr1;
8df1cd07 3116 stl_p(ptr, val);
74576198
AL
3117
3118 if (unlikely(in_migration)) {
3119 if (!cpu_physical_memory_is_dirty(addr1)) {
3120 /* invalidate code */
3121 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3122 /* set dirty bit */
3123 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3124 (0xff & ~CODE_DIRTY_FLAG);
3125 }
3126 }
8df1cd07
FB
3127 }
3128}
3129
bc98a7ef
JM
3130void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3131{
3132 int io_index;
3133 uint8_t *ptr;
3134 unsigned long pd;
3135 PhysPageDesc *p;
3136
3137 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3138 if (!p) {
3139 pd = IO_MEM_UNASSIGNED;
3140 } else {
3141 pd = p->phys_offset;
3142 }
3b46e624 3143
bc98a7ef
JM
3144 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3145 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3146#ifdef TARGET_WORDS_BIGENDIAN
3147 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3148 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3149#else
3150 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3151 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3152#endif
3153 } else {
5fafdf24 3154 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
3155 (addr & ~TARGET_PAGE_MASK);
3156 stq_p(ptr, val);
3157 }
3158}
3159
8df1cd07 3160/* warning: addr must be aligned */
8df1cd07
FB
3161void stl_phys(target_phys_addr_t addr, uint32_t val)
3162{
3163 int io_index;
3164 uint8_t *ptr;
3165 unsigned long pd;
3166 PhysPageDesc *p;
3167
3168 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3169 if (!p) {
3170 pd = IO_MEM_UNASSIGNED;
3171 } else {
3172 pd = p->phys_offset;
3173 }
3b46e624 3174
3a7d929e 3175 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07
FB
3176 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3177 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3178 } else {
3179 unsigned long addr1;
3180 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3181 /* RAM case */
3182 ptr = phys_ram_base + addr1;
3183 stl_p(ptr, val);
3a7d929e
FB
3184 if (!cpu_physical_memory_is_dirty(addr1)) {
3185 /* invalidate code */
3186 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3187 /* set dirty bit */
f23db169
FB
3188 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3189 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3190 }
8df1cd07
FB
3191 }
3192}
3193
aab33094
FB
3194/* XXX: optimize */
3195void stb_phys(target_phys_addr_t addr, uint32_t val)
3196{
3197 uint8_t v = val;
3198 cpu_physical_memory_write(addr, &v, 1);
3199}
3200
3201/* XXX: optimize */
3202void stw_phys(target_phys_addr_t addr, uint32_t val)
3203{
3204 uint16_t v = tswap16(val);
3205 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3206}
3207
3208/* XXX: optimize */
3209void stq_phys(target_phys_addr_t addr, uint64_t val)
3210{
3211 val = tswap64(val);
3212 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3213}
3214
13eb76e0
FB
3215#endif
3216
3217/* virtual memory access for debug */
5fafdf24 3218int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 3219 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3220{
3221 int l;
9b3c35e0
JM
3222 target_phys_addr_t phys_addr;
3223 target_ulong page;
13eb76e0
FB
3224
3225 while (len > 0) {
3226 page = addr & TARGET_PAGE_MASK;
3227 phys_addr = cpu_get_phys_page_debug(env, page);
3228 /* if no physical page mapped, return an error */
3229 if (phys_addr == -1)
3230 return -1;
3231 l = (page + TARGET_PAGE_SIZE) - addr;
3232 if (l > len)
3233 l = len;
5fafdf24 3234 cpu_physical_memory_rw(phys_addr + (addr & ~TARGET_PAGE_MASK),
b448f2f3 3235 buf, l, is_write);
13eb76e0
FB
3236 len -= l;
3237 buf += l;
3238 addr += l;
3239 }
3240 return 0;
3241}
3242
2e70f6ef
PB
3243/* in deterministic execution mode, instructions doing device I/Os
3244 must be at the end of the TB */
3245void cpu_io_recompile(CPUState *env, void *retaddr)
3246{
3247 TranslationBlock *tb;
3248 uint32_t n, cflags;
3249 target_ulong pc, cs_base;
3250 uint64_t flags;
3251
3252 tb = tb_find_pc((unsigned long)retaddr);
3253 if (!tb) {
3254 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3255 retaddr);
3256 }
3257 n = env->icount_decr.u16.low + tb->icount;
3258 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3259 /* Calculate how many instructions had been executed before the fault
bf20dc07 3260 occurred. */
2e70f6ef
PB
3261 n = n - env->icount_decr.u16.low;
3262 /* Generate a new TB ending on the I/O insn. */
3263 n++;
3264 /* On MIPS and SH, delay slot instructions can only be restarted if
3265 they were already the first instruction in the TB. If this is not
bf20dc07 3266 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
3267 branch. */
3268#if defined(TARGET_MIPS)
3269 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3270 env->active_tc.PC -= 4;
3271 env->icount_decr.u16.low++;
3272 env->hflags &= ~MIPS_HFLAG_BMASK;
3273 }
3274#elif defined(TARGET_SH4)
3275 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3276 && n > 1) {
3277 env->pc -= 2;
3278 env->icount_decr.u16.low++;
3279 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3280 }
3281#endif
3282 /* This should never happen. */
3283 if (n > CF_COUNT_MASK)
3284 cpu_abort(env, "TB too big during recompile");
3285
3286 cflags = n | CF_LAST_IO;
3287 pc = tb->pc;
3288 cs_base = tb->cs_base;
3289 flags = tb->flags;
3290 tb_phys_invalidate(tb, -1);
3291 /* FIXME: In theory this could raise an exception. In practice
3292 we have already translated the block once so it's probably ok. */
3293 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 3294 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
3295 the first in the TB) then we end up generating a whole new TB and
3296 repeating the fault, which is horribly inefficient.
3297 Better would be to execute just this insn uncached, or generate a
3298 second new TB. */
3299 cpu_resume_from_signal(env, NULL);
3300}
3301
e3db7226
FB
3302void dump_exec_info(FILE *f,
3303 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3304{
3305 int i, target_code_size, max_target_code_size;
3306 int direct_jmp_count, direct_jmp2_count, cross_page;
3307 TranslationBlock *tb;
3b46e624 3308
e3db7226
FB
3309 target_code_size = 0;
3310 max_target_code_size = 0;
3311 cross_page = 0;
3312 direct_jmp_count = 0;
3313 direct_jmp2_count = 0;
3314 for(i = 0; i < nb_tbs; i++) {
3315 tb = &tbs[i];
3316 target_code_size += tb->size;
3317 if (tb->size > max_target_code_size)
3318 max_target_code_size = tb->size;
3319 if (tb->page_addr[1] != -1)
3320 cross_page++;
3321 if (tb->tb_next_offset[0] != 0xffff) {
3322 direct_jmp_count++;
3323 if (tb->tb_next_offset[1] != 0xffff) {
3324 direct_jmp2_count++;
3325 }
3326 }
3327 }
3328 /* XXX: avoid using doubles ? */
57fec1fe 3329 cpu_fprintf(f, "Translation buffer state:\n");
26a5f13b
FB
3330 cpu_fprintf(f, "gen code size %ld/%ld\n",
3331 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3332 cpu_fprintf(f, "TB count %d/%d\n",
3333 nb_tbs, code_gen_max_blocks);
5fafdf24 3334 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
3335 nb_tbs ? target_code_size / nb_tbs : 0,
3336 max_target_code_size);
5fafdf24 3337 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
3338 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3339 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
3340 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3341 cross_page,
e3db7226
FB
3342 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3343 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 3344 direct_jmp_count,
e3db7226
FB
3345 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3346 direct_jmp2_count,
3347 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 3348 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
3349 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3350 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3351 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 3352 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
3353}
3354
5fafdf24 3355#if !defined(CONFIG_USER_ONLY)
61382a50
FB
3356
3357#define MMUSUFFIX _cmmu
3358#define GETPC() NULL
3359#define env cpu_single_env
b769d8fe 3360#define SOFTMMU_CODE_ACCESS
61382a50
FB
3361
3362#define SHIFT 0
3363#include "softmmu_template.h"
3364
3365#define SHIFT 1
3366#include "softmmu_template.h"
3367
3368#define SHIFT 2
3369#include "softmmu_template.h"
3370
3371#define SHIFT 3
3372#include "softmmu_template.h"
3373
3374#undef env
3375
3376#endif