]> git.proxmox.com Git - qemu.git/blame - exec.c
Fix warnings that would be generated by gcc -Wstrict-prototypes
[qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
67b915a5 20#include "config.h"
d5a8f07c 21#ifdef _WIN32
4fddf62a 22#define WIN32_LEAN_AND_MEAN
d5a8f07c
FB
23#include <windows.h>
24#else
a98d49b1 25#include <sys/types.h>
d5a8f07c
FB
26#include <sys/mman.h>
27#endif
54936004
FB
28#include <stdlib.h>
29#include <stdio.h>
30#include <stdarg.h>
31#include <string.h>
32#include <errno.h>
33#include <unistd.h>
34#include <inttypes.h>
35
6180a181
FB
36#include "cpu.h"
37#include "exec-all.h"
ca10f867 38#include "qemu-common.h"
b67d9a52 39#include "tcg.h"
b3c7724c 40#include "hw/hw.h"
53a5960a
PB
41#if defined(CONFIG_USER_ONLY)
42#include <qemu.h>
43#endif
54936004 44
fd6ce8f6 45//#define DEBUG_TB_INVALIDATE
66e85a21 46//#define DEBUG_FLUSH
9fa3e853 47//#define DEBUG_TLB
67d3b957 48//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
49
50/* make various TB consistency checks */
5fafdf24
TS
51//#define DEBUG_TB_CHECK
52//#define DEBUG_TLB_CHECK
fd6ce8f6 53
1196be37 54//#define DEBUG_IOPORT
db7b5426 55//#define DEBUG_SUBPAGE
1196be37 56
99773bd4
PB
57#if !defined(CONFIG_USER_ONLY)
58/* TB consistency checks only implemented for usermode emulation. */
59#undef DEBUG_TB_CHECK
60#endif
61
9fa3e853
FB
62#define SMC_BITMAP_USE_THRESHOLD 10
63
64#define MMAP_AREA_START 0x00000000
65#define MMAP_AREA_END 0xa8000000
fd6ce8f6 66
108c49b8
FB
67#if defined(TARGET_SPARC64)
68#define TARGET_PHYS_ADDR_SPACE_BITS 41
5dcb6b91
BS
69#elif defined(TARGET_SPARC)
70#define TARGET_PHYS_ADDR_SPACE_BITS 36
bedb69ea
JM
71#elif defined(TARGET_ALPHA)
72#define TARGET_PHYS_ADDR_SPACE_BITS 42
73#define TARGET_VIRT_ADDR_SPACE_BITS 42
108c49b8
FB
74#elif defined(TARGET_PPC64)
75#define TARGET_PHYS_ADDR_SPACE_BITS 42
00f82b8a
AJ
76#elif defined(TARGET_X86_64) && !defined(USE_KQEMU)
77#define TARGET_PHYS_ADDR_SPACE_BITS 42
78#elif defined(TARGET_I386) && !defined(USE_KQEMU)
79#define TARGET_PHYS_ADDR_SPACE_BITS 36
108c49b8
FB
80#else
81/* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
82#define TARGET_PHYS_ADDR_SPACE_BITS 32
83#endif
84
fab94c0e 85TranslationBlock *tbs;
26a5f13b 86int code_gen_max_blocks;
9fa3e853 87TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
fd6ce8f6 88int nb_tbs;
eb51d102
FB
89/* any access to the tbs or the page table must use this lock */
90spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 91
141ac468
BS
92#if defined(__arm__) || defined(__sparc_v9__)
93/* The prologue must be reachable with a direct jump. ARM and Sparc64
94 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
95 section close to code segment. */
96#define code_gen_section \
97 __attribute__((__section__(".gen_code"))) \
98 __attribute__((aligned (32)))
99#else
100#define code_gen_section \
101 __attribute__((aligned (32)))
102#endif
103
104uint8_t code_gen_prologue[1024] code_gen_section;
26a5f13b
FB
105uint8_t *code_gen_buffer;
106unsigned long code_gen_buffer_size;
107/* threshold to flush the translated code buffer */
108unsigned long code_gen_buffer_max_size;
fd6ce8f6
FB
109uint8_t *code_gen_ptr;
110
e2eef170 111#if !defined(CONFIG_USER_ONLY)
00f82b8a 112ram_addr_t phys_ram_size;
9fa3e853
FB
113int phys_ram_fd;
114uint8_t *phys_ram_base;
1ccde1cb 115uint8_t *phys_ram_dirty;
e9a1ab19 116static ram_addr_t phys_ram_alloc_offset = 0;
e2eef170 117#endif
9fa3e853 118
6a00d601
FB
119CPUState *first_cpu;
120/* current CPU in the current thread. It is only valid inside
121 cpu_exec() */
5fafdf24 122CPUState *cpu_single_env;
2e70f6ef 123/* 0 = Do not count executed instructions.
bf20dc07 124 1 = Precise instruction counting.
2e70f6ef
PB
125 2 = Adaptive rate instruction counting. */
126int use_icount = 0;
127/* Current instruction counter. While executing translated code this may
128 include some instructions that have not yet been executed. */
129int64_t qemu_icount;
6a00d601 130
54936004 131typedef struct PageDesc {
92e873b9 132 /* list of TBs intersecting this ram page */
fd6ce8f6 133 TranslationBlock *first_tb;
9fa3e853
FB
134 /* in order to optimize self modifying code, we count the number
135 of lookups we do to a given page to use a bitmap */
136 unsigned int code_write_count;
137 uint8_t *code_bitmap;
138#if defined(CONFIG_USER_ONLY)
139 unsigned long flags;
140#endif
54936004
FB
141} PageDesc;
142
92e873b9 143typedef struct PhysPageDesc {
0f459d16 144 /* offset in host memory of the page + io_index in the low bits */
00f82b8a 145 ram_addr_t phys_offset;
92e873b9
FB
146} PhysPageDesc;
147
54936004 148#define L2_BITS 10
bedb69ea
JM
149#if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
150/* XXX: this is a temporary hack for alpha target.
151 * In the future, this is to be replaced by a multi-level table
152 * to actually be able to handle the complete 64 bits address space.
153 */
154#define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
155#else
03875444 156#define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
bedb69ea 157#endif
54936004
FB
158
159#define L1_SIZE (1 << L1_BITS)
160#define L2_SIZE (1 << L2_BITS)
161
83fb7adf
FB
162unsigned long qemu_real_host_page_size;
163unsigned long qemu_host_page_bits;
164unsigned long qemu_host_page_size;
165unsigned long qemu_host_page_mask;
54936004 166
92e873b9 167/* XXX: for system emulation, it could just be an array */
54936004 168static PageDesc *l1_map[L1_SIZE];
0a962c02 169PhysPageDesc **l1_phys_map;
54936004 170
e2eef170
PB
171#if !defined(CONFIG_USER_ONLY)
172static void io_mem_init(void);
173
33417e70 174/* io memory support */
33417e70
FB
175CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
176CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 177void *io_mem_opaque[IO_MEM_NB_ENTRIES];
33417e70 178static int io_mem_nb;
6658ffb8
PB
179static int io_mem_watch;
180#endif
33417e70 181
34865134
FB
182/* log support */
183char *logfilename = "/tmp/qemu.log";
184FILE *logfile;
185int loglevel;
e735b91c 186static int log_append = 0;
34865134 187
e3db7226
FB
188/* statistics */
189static int tlb_flush_count;
190static int tb_flush_count;
191static int tb_phys_invalidate_count;
192
db7b5426
BS
193#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
194typedef struct subpage_t {
195 target_phys_addr_t base;
3ee89922
BS
196 CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4];
197 CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4];
198 void *opaque[TARGET_PAGE_SIZE][2][4];
db7b5426
BS
199} subpage_t;
200
7cb69cae
FB
201#ifdef _WIN32
202static void map_exec(void *addr, long size)
203{
204 DWORD old_protect;
205 VirtualProtect(addr, size,
206 PAGE_EXECUTE_READWRITE, &old_protect);
207
208}
209#else
210static void map_exec(void *addr, long size)
211{
4369415f 212 unsigned long start, end, page_size;
7cb69cae 213
4369415f 214 page_size = getpagesize();
7cb69cae 215 start = (unsigned long)addr;
4369415f 216 start &= ~(page_size - 1);
7cb69cae
FB
217
218 end = (unsigned long)addr + size;
4369415f
FB
219 end += page_size - 1;
220 end &= ~(page_size - 1);
7cb69cae
FB
221
222 mprotect((void *)start, end - start,
223 PROT_READ | PROT_WRITE | PROT_EXEC);
224}
225#endif
226
b346ff46 227static void page_init(void)
54936004 228{
83fb7adf 229 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 230 TARGET_PAGE_SIZE */
67b915a5 231#ifdef _WIN32
d5a8f07c
FB
232 {
233 SYSTEM_INFO system_info;
234 DWORD old_protect;
3b46e624 235
d5a8f07c
FB
236 GetSystemInfo(&system_info);
237 qemu_real_host_page_size = system_info.dwPageSize;
d5a8f07c 238 }
67b915a5 239#else
83fb7adf 240 qemu_real_host_page_size = getpagesize();
67b915a5 241#endif
83fb7adf
FB
242 if (qemu_host_page_size == 0)
243 qemu_host_page_size = qemu_real_host_page_size;
244 if (qemu_host_page_size < TARGET_PAGE_SIZE)
245 qemu_host_page_size = TARGET_PAGE_SIZE;
246 qemu_host_page_bits = 0;
247 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
248 qemu_host_page_bits++;
249 qemu_host_page_mask = ~(qemu_host_page_size - 1);
108c49b8
FB
250 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
251 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
50a9569b
AZ
252
253#if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
254 {
255 long long startaddr, endaddr;
256 FILE *f;
257 int n;
258
c8a706fe 259 mmap_lock();
0776590d 260 last_brk = (unsigned long)sbrk(0);
50a9569b
AZ
261 f = fopen("/proc/self/maps", "r");
262 if (f) {
263 do {
264 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
265 if (n == 2) {
e0b8d65a
BS
266 startaddr = MIN(startaddr,
267 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
268 endaddr = MIN(endaddr,
269 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
b5fc909e 270 page_set_flags(startaddr & TARGET_PAGE_MASK,
50a9569b
AZ
271 TARGET_PAGE_ALIGN(endaddr),
272 PAGE_RESERVED);
273 }
274 } while (!feof(f));
275 fclose(f);
276 }
c8a706fe 277 mmap_unlock();
50a9569b
AZ
278 }
279#endif
54936004
FB
280}
281
00f82b8a 282static inline PageDesc *page_find_alloc(target_ulong index)
54936004 283{
54936004
FB
284 PageDesc **lp, *p;
285
17e2377a
PB
286#if TARGET_LONG_BITS > 32
287 /* Host memory outside guest VM. For 32-bit targets we have already
288 excluded high addresses. */
289 if (index > ((target_ulong)L2_SIZE * L1_SIZE * TARGET_PAGE_SIZE))
290 return NULL;
291#endif
54936004
FB
292 lp = &l1_map[index >> L2_BITS];
293 p = *lp;
294 if (!p) {
295 /* allocate if not found */
17e2377a
PB
296#if defined(CONFIG_USER_ONLY)
297 unsigned long addr;
298 size_t len = sizeof(PageDesc) * L2_SIZE;
299 /* Don't use qemu_malloc because it may recurse. */
300 p = mmap(0, len, PROT_READ | PROT_WRITE,
301 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
54936004 302 *lp = p;
17e2377a
PB
303 addr = h2g(p);
304 if (addr == (target_ulong)addr) {
305 page_set_flags(addr & TARGET_PAGE_MASK,
306 TARGET_PAGE_ALIGN(addr + len),
307 PAGE_RESERVED);
308 }
309#else
310 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
311 *lp = p;
312#endif
54936004
FB
313 }
314 return p + (index & (L2_SIZE - 1));
315}
316
00f82b8a 317static inline PageDesc *page_find(target_ulong index)
54936004 318{
54936004
FB
319 PageDesc *p;
320
54936004
FB
321 p = l1_map[index >> L2_BITS];
322 if (!p)
323 return 0;
fd6ce8f6
FB
324 return p + (index & (L2_SIZE - 1));
325}
326
108c49b8 327static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 328{
108c49b8 329 void **lp, **p;
e3f4e2a4 330 PhysPageDesc *pd;
92e873b9 331
108c49b8
FB
332 p = (void **)l1_phys_map;
333#if TARGET_PHYS_ADDR_SPACE_BITS > 32
334
335#if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
336#error unsupported TARGET_PHYS_ADDR_SPACE_BITS
337#endif
338 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
92e873b9
FB
339 p = *lp;
340 if (!p) {
341 /* allocate if not found */
108c49b8
FB
342 if (!alloc)
343 return NULL;
344 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
345 memset(p, 0, sizeof(void *) * L1_SIZE);
346 *lp = p;
347 }
348#endif
349 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
e3f4e2a4
PB
350 pd = *lp;
351 if (!pd) {
352 int i;
108c49b8
FB
353 /* allocate if not found */
354 if (!alloc)
355 return NULL;
e3f4e2a4
PB
356 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
357 *lp = pd;
358 for (i = 0; i < L2_SIZE; i++)
359 pd[i].phys_offset = IO_MEM_UNASSIGNED;
92e873b9 360 }
e3f4e2a4 361 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
92e873b9
FB
362}
363
108c49b8 364static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 365{
108c49b8 366 return phys_page_find_alloc(index, 0);
92e873b9
FB
367}
368
9fa3e853 369#if !defined(CONFIG_USER_ONLY)
6a00d601 370static void tlb_protect_code(ram_addr_t ram_addr);
5fafdf24 371static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 372 target_ulong vaddr);
c8a706fe
PB
373#define mmap_lock() do { } while(0)
374#define mmap_unlock() do { } while(0)
9fa3e853 375#endif
fd6ce8f6 376
4369415f
FB
377#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
378
379#if defined(CONFIG_USER_ONLY)
380/* Currently it is not recommanded to allocate big chunks of data in
381 user mode. It will change when a dedicated libc will be used */
382#define USE_STATIC_CODE_GEN_BUFFER
383#endif
384
385#ifdef USE_STATIC_CODE_GEN_BUFFER
386static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
387#endif
388
26a5f13b
FB
389void code_gen_alloc(unsigned long tb_size)
390{
4369415f
FB
391#ifdef USE_STATIC_CODE_GEN_BUFFER
392 code_gen_buffer = static_code_gen_buffer;
393 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
394 map_exec(code_gen_buffer, code_gen_buffer_size);
395#else
26a5f13b
FB
396 code_gen_buffer_size = tb_size;
397 if (code_gen_buffer_size == 0) {
4369415f
FB
398#if defined(CONFIG_USER_ONLY)
399 /* in user mode, phys_ram_size is not meaningful */
400 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
401#else
26a5f13b
FB
402 /* XXX: needs ajustments */
403 code_gen_buffer_size = (int)(phys_ram_size / 4);
4369415f 404#endif
26a5f13b
FB
405 }
406 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
407 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
408 /* The code gen buffer location may have constraints depending on
409 the host cpu and OS */
410#if defined(__linux__)
411 {
412 int flags;
141ac468
BS
413 void *start = NULL;
414
26a5f13b
FB
415 flags = MAP_PRIVATE | MAP_ANONYMOUS;
416#if defined(__x86_64__)
417 flags |= MAP_32BIT;
418 /* Cannot map more than that */
419 if (code_gen_buffer_size > (800 * 1024 * 1024))
420 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
421#elif defined(__sparc_v9__)
422 // Map the buffer below 2G, so we can use direct calls and branches
423 flags |= MAP_FIXED;
424 start = (void *) 0x60000000UL;
425 if (code_gen_buffer_size > (512 * 1024 * 1024))
426 code_gen_buffer_size = (512 * 1024 * 1024);
26a5f13b 427#endif
141ac468
BS
428 code_gen_buffer = mmap(start, code_gen_buffer_size,
429 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
430 flags, -1, 0);
431 if (code_gen_buffer == MAP_FAILED) {
432 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
433 exit(1);
434 }
435 }
436#else
437 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
438 if (!code_gen_buffer) {
439 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
440 exit(1);
441 }
442 map_exec(code_gen_buffer, code_gen_buffer_size);
443#endif
4369415f 444#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b
FB
445 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
446 code_gen_buffer_max_size = code_gen_buffer_size -
447 code_gen_max_block_size();
448 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
449 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
450}
451
452/* Must be called before using the QEMU cpus. 'tb_size' is the size
453 (in bytes) allocated to the translation buffer. Zero means default
454 size. */
455void cpu_exec_init_all(unsigned long tb_size)
456{
26a5f13b
FB
457 cpu_gen_init();
458 code_gen_alloc(tb_size);
459 code_gen_ptr = code_gen_buffer;
4369415f 460 page_init();
e2eef170 461#if !defined(CONFIG_USER_ONLY)
26a5f13b 462 io_mem_init();
e2eef170 463#endif
26a5f13b
FB
464}
465
9656f324
PB
466#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
467
468#define CPU_COMMON_SAVE_VERSION 1
469
470static void cpu_common_save(QEMUFile *f, void *opaque)
471{
472 CPUState *env = opaque;
473
474 qemu_put_be32s(f, &env->halted);
475 qemu_put_be32s(f, &env->interrupt_request);
476}
477
478static int cpu_common_load(QEMUFile *f, void *opaque, int version_id)
479{
480 CPUState *env = opaque;
481
482 if (version_id != CPU_COMMON_SAVE_VERSION)
483 return -EINVAL;
484
485 qemu_get_be32s(f, &env->halted);
75f482ae 486 qemu_get_be32s(f, &env->interrupt_request);
9656f324
PB
487 tlb_flush(env, 1);
488
489 return 0;
490}
491#endif
492
6a00d601 493void cpu_exec_init(CPUState *env)
fd6ce8f6 494{
6a00d601
FB
495 CPUState **penv;
496 int cpu_index;
497
6a00d601
FB
498 env->next_cpu = NULL;
499 penv = &first_cpu;
500 cpu_index = 0;
501 while (*penv != NULL) {
502 penv = (CPUState **)&(*penv)->next_cpu;
503 cpu_index++;
504 }
505 env->cpu_index = cpu_index;
6658ffb8 506 env->nb_watchpoints = 0;
6a00d601 507 *penv = env;
b3c7724c 508#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
9656f324
PB
509 register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION,
510 cpu_common_save, cpu_common_load, env);
b3c7724c
PB
511 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
512 cpu_save, cpu_load, env);
513#endif
fd6ce8f6
FB
514}
515
9fa3e853
FB
516static inline void invalidate_page_bitmap(PageDesc *p)
517{
518 if (p->code_bitmap) {
59817ccb 519 qemu_free(p->code_bitmap);
9fa3e853
FB
520 p->code_bitmap = NULL;
521 }
522 p->code_write_count = 0;
523}
524
fd6ce8f6
FB
525/* set to NULL all the 'first_tb' fields in all PageDescs */
526static void page_flush_tb(void)
527{
528 int i, j;
529 PageDesc *p;
530
531 for(i = 0; i < L1_SIZE; i++) {
532 p = l1_map[i];
533 if (p) {
9fa3e853
FB
534 for(j = 0; j < L2_SIZE; j++) {
535 p->first_tb = NULL;
536 invalidate_page_bitmap(p);
537 p++;
538 }
fd6ce8f6
FB
539 }
540 }
541}
542
543/* flush all the translation blocks */
d4e8164f 544/* XXX: tb_flush is currently not thread safe */
6a00d601 545void tb_flush(CPUState *env1)
fd6ce8f6 546{
6a00d601 547 CPUState *env;
0124311e 548#if defined(DEBUG_FLUSH)
ab3d1727
BS
549 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
550 (unsigned long)(code_gen_ptr - code_gen_buffer),
551 nb_tbs, nb_tbs > 0 ?
552 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 553#endif
26a5f13b 554 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
555 cpu_abort(env1, "Internal error: code buffer overflow\n");
556
fd6ce8f6 557 nb_tbs = 0;
3b46e624 558
6a00d601
FB
559 for(env = first_cpu; env != NULL; env = env->next_cpu) {
560 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
561 }
9fa3e853 562
8a8a608f 563 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 564 page_flush_tb();
9fa3e853 565
fd6ce8f6 566 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
567 /* XXX: flush processor icache at this point if cache flush is
568 expensive */
e3db7226 569 tb_flush_count++;
fd6ce8f6
FB
570}
571
572#ifdef DEBUG_TB_CHECK
573
bc98a7ef 574static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
575{
576 TranslationBlock *tb;
577 int i;
578 address &= TARGET_PAGE_MASK;
99773bd4
PB
579 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
580 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
581 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
582 address >= tb->pc + tb->size)) {
583 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
99773bd4 584 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
585 }
586 }
587 }
588}
589
590/* verify that all the pages have correct rights for code */
591static void tb_page_check(void)
592{
593 TranslationBlock *tb;
594 int i, flags1, flags2;
3b46e624 595
99773bd4
PB
596 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
597 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
598 flags1 = page_get_flags(tb->pc);
599 flags2 = page_get_flags(tb->pc + tb->size - 1);
600 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
601 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 602 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
603 }
604 }
605 }
606}
607
d4e8164f
FB
608void tb_jmp_check(TranslationBlock *tb)
609{
610 TranslationBlock *tb1;
611 unsigned int n1;
612
613 /* suppress any remaining jumps to this TB */
614 tb1 = tb->jmp_first;
615 for(;;) {
616 n1 = (long)tb1 & 3;
617 tb1 = (TranslationBlock *)((long)tb1 & ~3);
618 if (n1 == 2)
619 break;
620 tb1 = tb1->jmp_next[n1];
621 }
622 /* check end of list */
623 if (tb1 != tb) {
624 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
625 }
626}
627
fd6ce8f6
FB
628#endif
629
630/* invalidate one TB */
631static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
632 int next_offset)
633{
634 TranslationBlock *tb1;
635 for(;;) {
636 tb1 = *ptb;
637 if (tb1 == tb) {
638 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
639 break;
640 }
641 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
642 }
643}
644
9fa3e853
FB
645static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
646{
647 TranslationBlock *tb1;
648 unsigned int n1;
649
650 for(;;) {
651 tb1 = *ptb;
652 n1 = (long)tb1 & 3;
653 tb1 = (TranslationBlock *)((long)tb1 & ~3);
654 if (tb1 == tb) {
655 *ptb = tb1->page_next[n1];
656 break;
657 }
658 ptb = &tb1->page_next[n1];
659 }
660}
661
d4e8164f
FB
662static inline void tb_jmp_remove(TranslationBlock *tb, int n)
663{
664 TranslationBlock *tb1, **ptb;
665 unsigned int n1;
666
667 ptb = &tb->jmp_next[n];
668 tb1 = *ptb;
669 if (tb1) {
670 /* find tb(n) in circular list */
671 for(;;) {
672 tb1 = *ptb;
673 n1 = (long)tb1 & 3;
674 tb1 = (TranslationBlock *)((long)tb1 & ~3);
675 if (n1 == n && tb1 == tb)
676 break;
677 if (n1 == 2) {
678 ptb = &tb1->jmp_first;
679 } else {
680 ptb = &tb1->jmp_next[n1];
681 }
682 }
683 /* now we can suppress tb(n) from the list */
684 *ptb = tb->jmp_next[n];
685
686 tb->jmp_next[n] = NULL;
687 }
688}
689
690/* reset the jump entry 'n' of a TB so that it is not chained to
691 another TB */
692static inline void tb_reset_jump(TranslationBlock *tb, int n)
693{
694 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
695}
696
2e70f6ef 697void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
fd6ce8f6 698{
6a00d601 699 CPUState *env;
8a40a180 700 PageDesc *p;
d4e8164f 701 unsigned int h, n1;
00f82b8a 702 target_phys_addr_t phys_pc;
8a40a180 703 TranslationBlock *tb1, *tb2;
3b46e624 704
8a40a180
FB
705 /* remove the TB from the hash list */
706 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
707 h = tb_phys_hash_func(phys_pc);
5fafdf24 708 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
709 offsetof(TranslationBlock, phys_hash_next));
710
711 /* remove the TB from the page list */
712 if (tb->page_addr[0] != page_addr) {
713 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
714 tb_page_remove(&p->first_tb, tb);
715 invalidate_page_bitmap(p);
716 }
717 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
718 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
719 tb_page_remove(&p->first_tb, tb);
720 invalidate_page_bitmap(p);
721 }
722
36bdbe54 723 tb_invalidated_flag = 1;
59817ccb 724
fd6ce8f6 725 /* remove the TB from the hash list */
8a40a180 726 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
727 for(env = first_cpu; env != NULL; env = env->next_cpu) {
728 if (env->tb_jmp_cache[h] == tb)
729 env->tb_jmp_cache[h] = NULL;
730 }
d4e8164f
FB
731
732 /* suppress this TB from the two jump lists */
733 tb_jmp_remove(tb, 0);
734 tb_jmp_remove(tb, 1);
735
736 /* suppress any remaining jumps to this TB */
737 tb1 = tb->jmp_first;
738 for(;;) {
739 n1 = (long)tb1 & 3;
740 if (n1 == 2)
741 break;
742 tb1 = (TranslationBlock *)((long)tb1 & ~3);
743 tb2 = tb1->jmp_next[n1];
744 tb_reset_jump(tb1, n1);
745 tb1->jmp_next[n1] = NULL;
746 tb1 = tb2;
747 }
748 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 749
e3db7226 750 tb_phys_invalidate_count++;
9fa3e853
FB
751}
752
753static inline void set_bits(uint8_t *tab, int start, int len)
754{
755 int end, mask, end1;
756
757 end = start + len;
758 tab += start >> 3;
759 mask = 0xff << (start & 7);
760 if ((start & ~7) == (end & ~7)) {
761 if (start < end) {
762 mask &= ~(0xff << (end & 7));
763 *tab |= mask;
764 }
765 } else {
766 *tab++ |= mask;
767 start = (start + 8) & ~7;
768 end1 = end & ~7;
769 while (start < end1) {
770 *tab++ = 0xff;
771 start += 8;
772 }
773 if (start < end) {
774 mask = ~(0xff << (end & 7));
775 *tab |= mask;
776 }
777 }
778}
779
780static void build_page_bitmap(PageDesc *p)
781{
782 int n, tb_start, tb_end;
783 TranslationBlock *tb;
3b46e624 784
b2a7081a 785 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
786 if (!p->code_bitmap)
787 return;
9fa3e853
FB
788
789 tb = p->first_tb;
790 while (tb != NULL) {
791 n = (long)tb & 3;
792 tb = (TranslationBlock *)((long)tb & ~3);
793 /* NOTE: this is subtle as a TB may span two physical pages */
794 if (n == 0) {
795 /* NOTE: tb_end may be after the end of the page, but
796 it is not a problem */
797 tb_start = tb->pc & ~TARGET_PAGE_MASK;
798 tb_end = tb_start + tb->size;
799 if (tb_end > TARGET_PAGE_SIZE)
800 tb_end = TARGET_PAGE_SIZE;
801 } else {
802 tb_start = 0;
803 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
804 }
805 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
806 tb = tb->page_next[n];
807 }
808}
809
2e70f6ef
PB
810TranslationBlock *tb_gen_code(CPUState *env,
811 target_ulong pc, target_ulong cs_base,
812 int flags, int cflags)
d720b93d
FB
813{
814 TranslationBlock *tb;
815 uint8_t *tc_ptr;
816 target_ulong phys_pc, phys_page2, virt_page2;
817 int code_gen_size;
818
c27004ec
FB
819 phys_pc = get_phys_addr_code(env, pc);
820 tb = tb_alloc(pc);
d720b93d
FB
821 if (!tb) {
822 /* flush must be done */
823 tb_flush(env);
824 /* cannot fail at this point */
c27004ec 825 tb = tb_alloc(pc);
2e70f6ef
PB
826 /* Don't forget to invalidate previous TB info. */
827 tb_invalidated_flag = 1;
d720b93d
FB
828 }
829 tc_ptr = code_gen_ptr;
830 tb->tc_ptr = tc_ptr;
831 tb->cs_base = cs_base;
832 tb->flags = flags;
833 tb->cflags = cflags;
d07bde88 834 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 835 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 836
d720b93d 837 /* check next page if needed */
c27004ec 838 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 839 phys_page2 = -1;
c27004ec 840 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
d720b93d
FB
841 phys_page2 = get_phys_addr_code(env, virt_page2);
842 }
843 tb_link_phys(tb, phys_pc, phys_page2);
2e70f6ef 844 return tb;
d720b93d 845}
3b46e624 846
9fa3e853
FB
847/* invalidate all TBs which intersect with the target physical page
848 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
849 the same physical page. 'is_cpu_write_access' should be true if called
850 from a real cpu write access: the virtual CPU will exit the current
851 TB if code is modified inside this TB. */
00f82b8a 852void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
d720b93d
FB
853 int is_cpu_write_access)
854{
855 int n, current_tb_modified, current_tb_not_found, current_flags;
d720b93d 856 CPUState *env = cpu_single_env;
9fa3e853 857 PageDesc *p;
ea1c1802 858 TranslationBlock *tb, *tb_next, *current_tb, *saved_tb;
9fa3e853 859 target_ulong tb_start, tb_end;
d720b93d 860 target_ulong current_pc, current_cs_base;
9fa3e853
FB
861
862 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 863 if (!p)
9fa3e853 864 return;
5fafdf24 865 if (!p->code_bitmap &&
d720b93d
FB
866 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
867 is_cpu_write_access) {
9fa3e853
FB
868 /* build code bitmap */
869 build_page_bitmap(p);
870 }
871
872 /* we remove all the TBs in the range [start, end[ */
873 /* XXX: see if in some cases it could be faster to invalidate all the code */
d720b93d
FB
874 current_tb_not_found = is_cpu_write_access;
875 current_tb_modified = 0;
876 current_tb = NULL; /* avoid warning */
877 current_pc = 0; /* avoid warning */
878 current_cs_base = 0; /* avoid warning */
879 current_flags = 0; /* avoid warning */
9fa3e853
FB
880 tb = p->first_tb;
881 while (tb != NULL) {
882 n = (long)tb & 3;
883 tb = (TranslationBlock *)((long)tb & ~3);
884 tb_next = tb->page_next[n];
885 /* NOTE: this is subtle as a TB may span two physical pages */
886 if (n == 0) {
887 /* NOTE: tb_end may be after the end of the page, but
888 it is not a problem */
889 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
890 tb_end = tb_start + tb->size;
891 } else {
892 tb_start = tb->page_addr[1];
893 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
894 }
895 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
896#ifdef TARGET_HAS_PRECISE_SMC
897 if (current_tb_not_found) {
898 current_tb_not_found = 0;
899 current_tb = NULL;
2e70f6ef 900 if (env->mem_io_pc) {
d720b93d 901 /* now we have a real cpu fault */
2e70f6ef 902 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
903 }
904 }
905 if (current_tb == tb &&
2e70f6ef 906 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
907 /* If we are modifying the current TB, we must stop
908 its execution. We could be more precise by checking
909 that the modification is after the current PC, but it
910 would require a specialized function to partially
911 restore the CPU state */
3b46e624 912
d720b93d 913 current_tb_modified = 1;
5fafdf24 914 cpu_restore_state(current_tb, env,
2e70f6ef 915 env->mem_io_pc, NULL);
d720b93d
FB
916#if defined(TARGET_I386)
917 current_flags = env->hflags;
918 current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
919 current_cs_base = (target_ulong)env->segs[R_CS].base;
920 current_pc = current_cs_base + env->eip;
921#else
922#error unsupported CPU
923#endif
924 }
925#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
926 /* we need to do that to handle the case where a signal
927 occurs while doing tb_phys_invalidate() */
928 saved_tb = NULL;
929 if (env) {
930 saved_tb = env->current_tb;
931 env->current_tb = NULL;
932 }
9fa3e853 933 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
934 if (env) {
935 env->current_tb = saved_tb;
936 if (env->interrupt_request && env->current_tb)
937 cpu_interrupt(env, env->interrupt_request);
938 }
9fa3e853
FB
939 }
940 tb = tb_next;
941 }
942#if !defined(CONFIG_USER_ONLY)
943 /* if no code remaining, no need to continue to use slow writes */
944 if (!p->first_tb) {
945 invalidate_page_bitmap(p);
d720b93d 946 if (is_cpu_write_access) {
2e70f6ef 947 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
948 }
949 }
950#endif
951#ifdef TARGET_HAS_PRECISE_SMC
952 if (current_tb_modified) {
953 /* we generate a block containing just the instruction
954 modifying the memory. It will ensure that it cannot modify
955 itself */
ea1c1802 956 env->current_tb = NULL;
2e70f6ef 957 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 958 cpu_resume_from_signal(env, NULL);
9fa3e853 959 }
fd6ce8f6 960#endif
9fa3e853 961}
fd6ce8f6 962
9fa3e853 963/* len must be <= 8 and start must be a multiple of len */
00f82b8a 964static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
9fa3e853
FB
965{
966 PageDesc *p;
967 int offset, b;
59817ccb 968#if 0
a4193c8a
FB
969 if (1) {
970 if (loglevel) {
5fafdf24 971 fprintf(logfile, "modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
2e70f6ef 972 cpu_single_env->mem_io_vaddr, len,
5fafdf24 973 cpu_single_env->eip,
a4193c8a
FB
974 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
975 }
59817ccb
FB
976 }
977#endif
9fa3e853 978 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 979 if (!p)
9fa3e853
FB
980 return;
981 if (p->code_bitmap) {
982 offset = start & ~TARGET_PAGE_MASK;
983 b = p->code_bitmap[offset >> 3] >> (offset & 7);
984 if (b & ((1 << len) - 1))
985 goto do_invalidate;
986 } else {
987 do_invalidate:
d720b93d 988 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
989 }
990}
991
9fa3e853 992#if !defined(CONFIG_SOFTMMU)
00f82b8a 993static void tb_invalidate_phys_page(target_phys_addr_t addr,
d720b93d 994 unsigned long pc, void *puc)
9fa3e853 995{
d720b93d
FB
996 int n, current_flags, current_tb_modified;
997 target_ulong current_pc, current_cs_base;
9fa3e853 998 PageDesc *p;
d720b93d
FB
999 TranslationBlock *tb, *current_tb;
1000#ifdef TARGET_HAS_PRECISE_SMC
1001 CPUState *env = cpu_single_env;
1002#endif
9fa3e853
FB
1003
1004 addr &= TARGET_PAGE_MASK;
1005 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1006 if (!p)
9fa3e853
FB
1007 return;
1008 tb = p->first_tb;
d720b93d
FB
1009 current_tb_modified = 0;
1010 current_tb = NULL;
1011 current_pc = 0; /* avoid warning */
1012 current_cs_base = 0; /* avoid warning */
1013 current_flags = 0; /* avoid warning */
1014#ifdef TARGET_HAS_PRECISE_SMC
1015 if (tb && pc != 0) {
1016 current_tb = tb_find_pc(pc);
1017 }
1018#endif
9fa3e853
FB
1019 while (tb != NULL) {
1020 n = (long)tb & 3;
1021 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1022#ifdef TARGET_HAS_PRECISE_SMC
1023 if (current_tb == tb &&
2e70f6ef 1024 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1025 /* If we are modifying the current TB, we must stop
1026 its execution. We could be more precise by checking
1027 that the modification is after the current PC, but it
1028 would require a specialized function to partially
1029 restore the CPU state */
3b46e624 1030
d720b93d
FB
1031 current_tb_modified = 1;
1032 cpu_restore_state(current_tb, env, pc, puc);
1033#if defined(TARGET_I386)
1034 current_flags = env->hflags;
1035 current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
1036 current_cs_base = (target_ulong)env->segs[R_CS].base;
1037 current_pc = current_cs_base + env->eip;
1038#else
1039#error unsupported CPU
1040#endif
1041 }
1042#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1043 tb_phys_invalidate(tb, addr);
1044 tb = tb->page_next[n];
1045 }
fd6ce8f6 1046 p->first_tb = NULL;
d720b93d
FB
1047#ifdef TARGET_HAS_PRECISE_SMC
1048 if (current_tb_modified) {
1049 /* we generate a block containing just the instruction
1050 modifying the memory. It will ensure that it cannot modify
1051 itself */
ea1c1802 1052 env->current_tb = NULL;
2e70f6ef 1053 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1054 cpu_resume_from_signal(env, puc);
1055 }
1056#endif
fd6ce8f6 1057}
9fa3e853 1058#endif
fd6ce8f6
FB
1059
1060/* add the tb in the target page and protect it if necessary */
5fafdf24 1061static inline void tb_alloc_page(TranslationBlock *tb,
53a5960a 1062 unsigned int n, target_ulong page_addr)
fd6ce8f6
FB
1063{
1064 PageDesc *p;
9fa3e853
FB
1065 TranslationBlock *last_first_tb;
1066
1067 tb->page_addr[n] = page_addr;
3a7d929e 1068 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
9fa3e853
FB
1069 tb->page_next[n] = p->first_tb;
1070 last_first_tb = p->first_tb;
1071 p->first_tb = (TranslationBlock *)((long)tb | n);
1072 invalidate_page_bitmap(p);
fd6ce8f6 1073
107db443 1074#if defined(TARGET_HAS_SMC) || 1
d720b93d 1075
9fa3e853 1076#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1077 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1078 target_ulong addr;
1079 PageDesc *p2;
9fa3e853
FB
1080 int prot;
1081
fd6ce8f6
FB
1082 /* force the host page as non writable (writes will have a
1083 page fault + mprotect overhead) */
53a5960a 1084 page_addr &= qemu_host_page_mask;
fd6ce8f6 1085 prot = 0;
53a5960a
PB
1086 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1087 addr += TARGET_PAGE_SIZE) {
1088
1089 p2 = page_find (addr >> TARGET_PAGE_BITS);
1090 if (!p2)
1091 continue;
1092 prot |= p2->flags;
1093 p2->flags &= ~PAGE_WRITE;
1094 page_get_flags(addr);
1095 }
5fafdf24 1096 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1097 (prot & PAGE_BITS) & ~PAGE_WRITE);
1098#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1099 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1100 page_addr);
fd6ce8f6 1101#endif
fd6ce8f6 1102 }
9fa3e853
FB
1103#else
1104 /* if some code is already present, then the pages are already
1105 protected. So we handle the case where only the first TB is
1106 allocated in a physical page */
1107 if (!last_first_tb) {
6a00d601 1108 tlb_protect_code(page_addr);
9fa3e853
FB
1109 }
1110#endif
d720b93d
FB
1111
1112#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1113}
1114
1115/* Allocate a new translation block. Flush the translation buffer if
1116 too many translation blocks or too much generated code. */
c27004ec 1117TranslationBlock *tb_alloc(target_ulong pc)
fd6ce8f6
FB
1118{
1119 TranslationBlock *tb;
fd6ce8f6 1120
26a5f13b
FB
1121 if (nb_tbs >= code_gen_max_blocks ||
1122 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
d4e8164f 1123 return NULL;
fd6ce8f6
FB
1124 tb = &tbs[nb_tbs++];
1125 tb->pc = pc;
b448f2f3 1126 tb->cflags = 0;
d4e8164f
FB
1127 return tb;
1128}
1129
2e70f6ef
PB
1130void tb_free(TranslationBlock *tb)
1131{
bf20dc07 1132 /* In practice this is mostly used for single use temporary TB
2e70f6ef
PB
1133 Ignore the hard cases and just back up if this TB happens to
1134 be the last one generated. */
1135 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1136 code_gen_ptr = tb->tc_ptr;
1137 nb_tbs--;
1138 }
1139}
1140
9fa3e853
FB
1141/* add a new TB and link it to the physical page tables. phys_page2 is
1142 (-1) to indicate that only one page contains the TB. */
5fafdf24 1143void tb_link_phys(TranslationBlock *tb,
9fa3e853 1144 target_ulong phys_pc, target_ulong phys_page2)
d4e8164f 1145{
9fa3e853
FB
1146 unsigned int h;
1147 TranslationBlock **ptb;
1148
c8a706fe
PB
1149 /* Grab the mmap lock to stop another thread invalidating this TB
1150 before we are done. */
1151 mmap_lock();
9fa3e853
FB
1152 /* add in the physical hash table */
1153 h = tb_phys_hash_func(phys_pc);
1154 ptb = &tb_phys_hash[h];
1155 tb->phys_hash_next = *ptb;
1156 *ptb = tb;
fd6ce8f6
FB
1157
1158 /* add in the page list */
9fa3e853
FB
1159 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1160 if (phys_page2 != -1)
1161 tb_alloc_page(tb, 1, phys_page2);
1162 else
1163 tb->page_addr[1] = -1;
9fa3e853 1164
d4e8164f
FB
1165 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1166 tb->jmp_next[0] = NULL;
1167 tb->jmp_next[1] = NULL;
1168
1169 /* init original jump addresses */
1170 if (tb->tb_next_offset[0] != 0xffff)
1171 tb_reset_jump(tb, 0);
1172 if (tb->tb_next_offset[1] != 0xffff)
1173 tb_reset_jump(tb, 1);
8a40a180
FB
1174
1175#ifdef DEBUG_TB_CHECK
1176 tb_page_check();
1177#endif
c8a706fe 1178 mmap_unlock();
fd6ce8f6
FB
1179}
1180
9fa3e853
FB
1181/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1182 tb[1].tc_ptr. Return NULL if not found */
1183TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1184{
9fa3e853
FB
1185 int m_min, m_max, m;
1186 unsigned long v;
1187 TranslationBlock *tb;
a513fe19
FB
1188
1189 if (nb_tbs <= 0)
1190 return NULL;
1191 if (tc_ptr < (unsigned long)code_gen_buffer ||
1192 tc_ptr >= (unsigned long)code_gen_ptr)
1193 return NULL;
1194 /* binary search (cf Knuth) */
1195 m_min = 0;
1196 m_max = nb_tbs - 1;
1197 while (m_min <= m_max) {
1198 m = (m_min + m_max) >> 1;
1199 tb = &tbs[m];
1200 v = (unsigned long)tb->tc_ptr;
1201 if (v == tc_ptr)
1202 return tb;
1203 else if (tc_ptr < v) {
1204 m_max = m - 1;
1205 } else {
1206 m_min = m + 1;
1207 }
5fafdf24 1208 }
a513fe19
FB
1209 return &tbs[m_max];
1210}
7501267e 1211
ea041c0e
FB
1212static void tb_reset_jump_recursive(TranslationBlock *tb);
1213
1214static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1215{
1216 TranslationBlock *tb1, *tb_next, **ptb;
1217 unsigned int n1;
1218
1219 tb1 = tb->jmp_next[n];
1220 if (tb1 != NULL) {
1221 /* find head of list */
1222 for(;;) {
1223 n1 = (long)tb1 & 3;
1224 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1225 if (n1 == 2)
1226 break;
1227 tb1 = tb1->jmp_next[n1];
1228 }
1229 /* we are now sure now that tb jumps to tb1 */
1230 tb_next = tb1;
1231
1232 /* remove tb from the jmp_first list */
1233 ptb = &tb_next->jmp_first;
1234 for(;;) {
1235 tb1 = *ptb;
1236 n1 = (long)tb1 & 3;
1237 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1238 if (n1 == n && tb1 == tb)
1239 break;
1240 ptb = &tb1->jmp_next[n1];
1241 }
1242 *ptb = tb->jmp_next[n];
1243 tb->jmp_next[n] = NULL;
3b46e624 1244
ea041c0e
FB
1245 /* suppress the jump to next tb in generated code */
1246 tb_reset_jump(tb, n);
1247
0124311e 1248 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1249 tb_reset_jump_recursive(tb_next);
1250 }
1251}
1252
1253static void tb_reset_jump_recursive(TranslationBlock *tb)
1254{
1255 tb_reset_jump_recursive2(tb, 0);
1256 tb_reset_jump_recursive2(tb, 1);
1257}
1258
1fddef4b 1259#if defined(TARGET_HAS_ICE)
d720b93d
FB
1260static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1261{
9b3c35e0
JM
1262 target_phys_addr_t addr;
1263 target_ulong pd;
c2f07f81
PB
1264 ram_addr_t ram_addr;
1265 PhysPageDesc *p;
d720b93d 1266
c2f07f81
PB
1267 addr = cpu_get_phys_page_debug(env, pc);
1268 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1269 if (!p) {
1270 pd = IO_MEM_UNASSIGNED;
1271 } else {
1272 pd = p->phys_offset;
1273 }
1274 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1275 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1276}
c27004ec 1277#endif
d720b93d 1278
6658ffb8 1279/* Add a watchpoint. */
0f459d16 1280int cpu_watchpoint_insert(CPUState *env, target_ulong addr, int type)
6658ffb8
PB
1281{
1282 int i;
1283
1284 for (i = 0; i < env->nb_watchpoints; i++) {
1285 if (addr == env->watchpoint[i].vaddr)
1286 return 0;
1287 }
1288 if (env->nb_watchpoints >= MAX_WATCHPOINTS)
1289 return -1;
1290
1291 i = env->nb_watchpoints++;
1292 env->watchpoint[i].vaddr = addr;
0f459d16 1293 env->watchpoint[i].type = type;
6658ffb8
PB
1294 tlb_flush_page(env, addr);
1295 /* FIXME: This flush is needed because of the hack to make memory ops
1296 terminate the TB. It can be removed once the proper IO trap and
1297 re-execute bits are in. */
1298 tb_flush(env);
1299 return i;
1300}
1301
1302/* Remove a watchpoint. */
1303int cpu_watchpoint_remove(CPUState *env, target_ulong addr)
1304{
1305 int i;
1306
1307 for (i = 0; i < env->nb_watchpoints; i++) {
1308 if (addr == env->watchpoint[i].vaddr) {
1309 env->nb_watchpoints--;
1310 env->watchpoint[i] = env->watchpoint[env->nb_watchpoints];
1311 tlb_flush_page(env, addr);
1312 return 0;
1313 }
1314 }
1315 return -1;
1316}
1317
7d03f82f
EI
1318/* Remove all watchpoints. */
1319void cpu_watchpoint_remove_all(CPUState *env) {
1320 int i;
1321
1322 for (i = 0; i < env->nb_watchpoints; i++) {
1323 tlb_flush_page(env, env->watchpoint[i].vaddr);
1324 }
1325 env->nb_watchpoints = 0;
1326}
1327
c33a346e
FB
1328/* add a breakpoint. EXCP_DEBUG is returned by the CPU loop if a
1329 breakpoint is reached */
2e12669a 1330int cpu_breakpoint_insert(CPUState *env, target_ulong pc)
4c3a88a2 1331{
1fddef4b 1332#if defined(TARGET_HAS_ICE)
4c3a88a2 1333 int i;
3b46e624 1334
4c3a88a2
FB
1335 for(i = 0; i < env->nb_breakpoints; i++) {
1336 if (env->breakpoints[i] == pc)
1337 return 0;
1338 }
1339
1340 if (env->nb_breakpoints >= MAX_BREAKPOINTS)
1341 return -1;
1342 env->breakpoints[env->nb_breakpoints++] = pc;
3b46e624 1343
d720b93d 1344 breakpoint_invalidate(env, pc);
4c3a88a2
FB
1345 return 0;
1346#else
1347 return -1;
1348#endif
1349}
1350
7d03f82f
EI
1351/* remove all breakpoints */
1352void cpu_breakpoint_remove_all(CPUState *env) {
1353#if defined(TARGET_HAS_ICE)
1354 int i;
1355 for(i = 0; i < env->nb_breakpoints; i++) {
1356 breakpoint_invalidate(env, env->breakpoints[i]);
1357 }
1358 env->nb_breakpoints = 0;
1359#endif
1360}
1361
4c3a88a2 1362/* remove a breakpoint */
2e12669a 1363int cpu_breakpoint_remove(CPUState *env, target_ulong pc)
4c3a88a2 1364{
1fddef4b 1365#if defined(TARGET_HAS_ICE)
4c3a88a2
FB
1366 int i;
1367 for(i = 0; i < env->nb_breakpoints; i++) {
1368 if (env->breakpoints[i] == pc)
1369 goto found;
1370 }
1371 return -1;
1372 found:
4c3a88a2 1373 env->nb_breakpoints--;
1fddef4b
FB
1374 if (i < env->nb_breakpoints)
1375 env->breakpoints[i] = env->breakpoints[env->nb_breakpoints];
d720b93d
FB
1376
1377 breakpoint_invalidate(env, pc);
4c3a88a2
FB
1378 return 0;
1379#else
1380 return -1;
1381#endif
1382}
1383
c33a346e
FB
1384/* enable or disable single step mode. EXCP_DEBUG is returned by the
1385 CPU loop after each instruction */
1386void cpu_single_step(CPUState *env, int enabled)
1387{
1fddef4b 1388#if defined(TARGET_HAS_ICE)
c33a346e
FB
1389 if (env->singlestep_enabled != enabled) {
1390 env->singlestep_enabled = enabled;
1391 /* must flush all the translated code to avoid inconsistancies */
9fa3e853 1392 /* XXX: only flush what is necessary */
0124311e 1393 tb_flush(env);
c33a346e
FB
1394 }
1395#endif
1396}
1397
34865134
FB
1398/* enable or disable low levels log */
1399void cpu_set_log(int log_flags)
1400{
1401 loglevel = log_flags;
1402 if (loglevel && !logfile) {
11fcfab4 1403 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1404 if (!logfile) {
1405 perror(logfilename);
1406 _exit(1);
1407 }
9fa3e853
FB
1408#if !defined(CONFIG_SOFTMMU)
1409 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1410 {
1411 static uint8_t logfile_buf[4096];
1412 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1413 }
1414#else
34865134 1415 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1416#endif
e735b91c
PB
1417 log_append = 1;
1418 }
1419 if (!loglevel && logfile) {
1420 fclose(logfile);
1421 logfile = NULL;
34865134
FB
1422 }
1423}
1424
1425void cpu_set_log_filename(const char *filename)
1426{
1427 logfilename = strdup(filename);
e735b91c
PB
1428 if (logfile) {
1429 fclose(logfile);
1430 logfile = NULL;
1431 }
1432 cpu_set_log(loglevel);
34865134 1433}
c33a346e 1434
0124311e 1435/* mask must never be zero, except for A20 change call */
68a79315 1436void cpu_interrupt(CPUState *env, int mask)
ea041c0e 1437{
d5975363 1438#if !defined(USE_NPTL)
ea041c0e 1439 TranslationBlock *tb;
15a51156 1440 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
d5975363 1441#endif
2e70f6ef 1442 int old_mask;
59817ccb 1443
2e70f6ef 1444 old_mask = env->interrupt_request;
d5975363 1445 /* FIXME: This is probably not threadsafe. A different thread could
bf20dc07 1446 be in the middle of a read-modify-write operation. */
68a79315 1447 env->interrupt_request |= mask;
d5975363
PB
1448#if defined(USE_NPTL)
1449 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1450 problem and hope the cpu will stop of its own accord. For userspace
1451 emulation this often isn't actually as bad as it sounds. Often
1452 signals are used primarily to interrupt blocking syscalls. */
1453#else
2e70f6ef 1454 if (use_icount) {
266910c4 1455 env->icount_decr.u16.high = 0xffff;
2e70f6ef
PB
1456#ifndef CONFIG_USER_ONLY
1457 /* CPU_INTERRUPT_EXIT isn't a real interrupt. It just means
1458 an async event happened and we need to process it. */
1459 if (!can_do_io(env)
1460 && (mask & ~(old_mask | CPU_INTERRUPT_EXIT)) != 0) {
1461 cpu_abort(env, "Raised interrupt while not in I/O function");
1462 }
1463#endif
1464 } else {
1465 tb = env->current_tb;
1466 /* if the cpu is currently executing code, we must unlink it and
1467 all the potentially executing TB */
1468 if (tb && !testandset(&interrupt_lock)) {
1469 env->current_tb = NULL;
1470 tb_reset_jump_recursive(tb);
1471 resetlock(&interrupt_lock);
1472 }
ea041c0e 1473 }
d5975363 1474#endif
ea041c0e
FB
1475}
1476
b54ad049
FB
1477void cpu_reset_interrupt(CPUState *env, int mask)
1478{
1479 env->interrupt_request &= ~mask;
1480}
1481
f193c797 1482CPULogItem cpu_log_items[] = {
5fafdf24 1483 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1484 "show generated host assembly code for each compiled TB" },
1485 { CPU_LOG_TB_IN_ASM, "in_asm",
1486 "show target assembly code for each compiled TB" },
5fafdf24 1487 { CPU_LOG_TB_OP, "op",
57fec1fe 1488 "show micro ops for each compiled TB" },
f193c797 1489 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1490 "show micro ops "
1491#ifdef TARGET_I386
1492 "before eflags optimization and "
f193c797 1493#endif
e01a1157 1494 "after liveness analysis" },
f193c797
FB
1495 { CPU_LOG_INT, "int",
1496 "show interrupts/exceptions in short format" },
1497 { CPU_LOG_EXEC, "exec",
1498 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1499 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1500 "show CPU state before block translation" },
f193c797
FB
1501#ifdef TARGET_I386
1502 { CPU_LOG_PCALL, "pcall",
1503 "show protected mode far calls/returns/exceptions" },
1504#endif
8e3a9fd2 1505#ifdef DEBUG_IOPORT
fd872598
FB
1506 { CPU_LOG_IOPORT, "ioport",
1507 "show all i/o ports accesses" },
8e3a9fd2 1508#endif
f193c797
FB
1509 { 0, NULL, NULL },
1510};
1511
1512static int cmp1(const char *s1, int n, const char *s2)
1513{
1514 if (strlen(s2) != n)
1515 return 0;
1516 return memcmp(s1, s2, n) == 0;
1517}
3b46e624 1518
f193c797
FB
1519/* takes a comma separated list of log masks. Return 0 if error. */
1520int cpu_str_to_log_mask(const char *str)
1521{
1522 CPULogItem *item;
1523 int mask;
1524 const char *p, *p1;
1525
1526 p = str;
1527 mask = 0;
1528 for(;;) {
1529 p1 = strchr(p, ',');
1530 if (!p1)
1531 p1 = p + strlen(p);
8e3a9fd2
FB
1532 if(cmp1(p,p1-p,"all")) {
1533 for(item = cpu_log_items; item->mask != 0; item++) {
1534 mask |= item->mask;
1535 }
1536 } else {
f193c797
FB
1537 for(item = cpu_log_items; item->mask != 0; item++) {
1538 if (cmp1(p, p1 - p, item->name))
1539 goto found;
1540 }
1541 return 0;
8e3a9fd2 1542 }
f193c797
FB
1543 found:
1544 mask |= item->mask;
1545 if (*p1 != ',')
1546 break;
1547 p = p1 + 1;
1548 }
1549 return mask;
1550}
ea041c0e 1551
7501267e
FB
1552void cpu_abort(CPUState *env, const char *fmt, ...)
1553{
1554 va_list ap;
493ae1f0 1555 va_list ap2;
7501267e
FB
1556
1557 va_start(ap, fmt);
493ae1f0 1558 va_copy(ap2, ap);
7501267e
FB
1559 fprintf(stderr, "qemu: fatal: ");
1560 vfprintf(stderr, fmt, ap);
1561 fprintf(stderr, "\n");
1562#ifdef TARGET_I386
7fe48483
FB
1563 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1564#else
1565 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1566#endif
924edcae 1567 if (logfile) {
f9373291 1568 fprintf(logfile, "qemu: fatal: ");
493ae1f0 1569 vfprintf(logfile, fmt, ap2);
f9373291
JM
1570 fprintf(logfile, "\n");
1571#ifdef TARGET_I386
1572 cpu_dump_state(env, logfile, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1573#else
1574 cpu_dump_state(env, logfile, fprintf, 0);
1575#endif
924edcae
AZ
1576 fflush(logfile);
1577 fclose(logfile);
1578 }
493ae1f0 1579 va_end(ap2);
f9373291 1580 va_end(ap);
7501267e
FB
1581 abort();
1582}
1583
c5be9f08
TS
1584CPUState *cpu_copy(CPUState *env)
1585{
01ba9816 1586 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1587 /* preserve chaining and index */
1588 CPUState *next_cpu = new_env->next_cpu;
1589 int cpu_index = new_env->cpu_index;
1590 memcpy(new_env, env, sizeof(CPUState));
1591 new_env->next_cpu = next_cpu;
1592 new_env->cpu_index = cpu_index;
1593 return new_env;
1594}
1595
0124311e
FB
1596#if !defined(CONFIG_USER_ONLY)
1597
5c751e99
EI
1598static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1599{
1600 unsigned int i;
1601
1602 /* Discard jump cache entries for any tb which might potentially
1603 overlap the flushed page. */
1604 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1605 memset (&env->tb_jmp_cache[i], 0,
1606 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1607
1608 i = tb_jmp_cache_hash_page(addr);
1609 memset (&env->tb_jmp_cache[i], 0,
1610 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1611}
1612
ee8b7021
FB
1613/* NOTE: if flush_global is true, also flush global entries (not
1614 implemented yet) */
1615void tlb_flush(CPUState *env, int flush_global)
33417e70 1616{
33417e70 1617 int i;
0124311e 1618
9fa3e853
FB
1619#if defined(DEBUG_TLB)
1620 printf("tlb_flush:\n");
1621#endif
0124311e
FB
1622 /* must reset current TB so that interrupts cannot modify the
1623 links while we are modifying them */
1624 env->current_tb = NULL;
1625
33417e70 1626 for(i = 0; i < CPU_TLB_SIZE; i++) {
84b7b8e7
FB
1627 env->tlb_table[0][i].addr_read = -1;
1628 env->tlb_table[0][i].addr_write = -1;
1629 env->tlb_table[0][i].addr_code = -1;
1630 env->tlb_table[1][i].addr_read = -1;
1631 env->tlb_table[1][i].addr_write = -1;
1632 env->tlb_table[1][i].addr_code = -1;
6fa4cea9
JM
1633#if (NB_MMU_MODES >= 3)
1634 env->tlb_table[2][i].addr_read = -1;
1635 env->tlb_table[2][i].addr_write = -1;
1636 env->tlb_table[2][i].addr_code = -1;
1637#if (NB_MMU_MODES == 4)
1638 env->tlb_table[3][i].addr_read = -1;
1639 env->tlb_table[3][i].addr_write = -1;
1640 env->tlb_table[3][i].addr_code = -1;
1641#endif
1642#endif
33417e70 1643 }
9fa3e853 1644
8a40a180 1645 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 1646
0a962c02
FB
1647#ifdef USE_KQEMU
1648 if (env->kqemu_enabled) {
1649 kqemu_flush(env, flush_global);
1650 }
9fa3e853 1651#endif
e3db7226 1652 tlb_flush_count++;
33417e70
FB
1653}
1654
274da6b2 1655static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1656{
5fafdf24 1657 if (addr == (tlb_entry->addr_read &
84b7b8e7 1658 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1659 addr == (tlb_entry->addr_write &
84b7b8e7 1660 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1661 addr == (tlb_entry->addr_code &
84b7b8e7
FB
1662 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1663 tlb_entry->addr_read = -1;
1664 tlb_entry->addr_write = -1;
1665 tlb_entry->addr_code = -1;
1666 }
61382a50
FB
1667}
1668
2e12669a 1669void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 1670{
8a40a180 1671 int i;
0124311e 1672
9fa3e853 1673#if defined(DEBUG_TLB)
108c49b8 1674 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 1675#endif
0124311e
FB
1676 /* must reset current TB so that interrupts cannot modify the
1677 links while we are modifying them */
1678 env->current_tb = NULL;
61382a50
FB
1679
1680 addr &= TARGET_PAGE_MASK;
1681 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
84b7b8e7
FB
1682 tlb_flush_entry(&env->tlb_table[0][i], addr);
1683 tlb_flush_entry(&env->tlb_table[1][i], addr);
6fa4cea9
JM
1684#if (NB_MMU_MODES >= 3)
1685 tlb_flush_entry(&env->tlb_table[2][i], addr);
1686#if (NB_MMU_MODES == 4)
1687 tlb_flush_entry(&env->tlb_table[3][i], addr);
1688#endif
1689#endif
0124311e 1690
5c751e99 1691 tlb_flush_jmp_cache(env, addr);
9fa3e853 1692
0a962c02
FB
1693#ifdef USE_KQEMU
1694 if (env->kqemu_enabled) {
1695 kqemu_flush_page(env, addr);
1696 }
1697#endif
9fa3e853
FB
1698}
1699
9fa3e853
FB
1700/* update the TLBs so that writes to code in the virtual page 'addr'
1701 can be detected */
6a00d601 1702static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 1703{
5fafdf24 1704 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
1705 ram_addr + TARGET_PAGE_SIZE,
1706 CODE_DIRTY_FLAG);
9fa3e853
FB
1707}
1708
9fa3e853 1709/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 1710 tested for self modifying code */
5fafdf24 1711static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 1712 target_ulong vaddr)
9fa3e853 1713{
3a7d929e 1714 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1ccde1cb
FB
1715}
1716
5fafdf24 1717static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
1718 unsigned long start, unsigned long length)
1719{
1720 unsigned long addr;
84b7b8e7
FB
1721 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1722 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 1723 if ((addr - start) < length) {
0f459d16 1724 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
1725 }
1726 }
1727}
1728
3a7d929e 1729void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 1730 int dirty_flags)
1ccde1cb
FB
1731{
1732 CPUState *env;
4f2ac237 1733 unsigned long length, start1;
0a962c02
FB
1734 int i, mask, len;
1735 uint8_t *p;
1ccde1cb
FB
1736
1737 start &= TARGET_PAGE_MASK;
1738 end = TARGET_PAGE_ALIGN(end);
1739
1740 length = end - start;
1741 if (length == 0)
1742 return;
0a962c02 1743 len = length >> TARGET_PAGE_BITS;
3a7d929e 1744#ifdef USE_KQEMU
6a00d601
FB
1745 /* XXX: should not depend on cpu context */
1746 env = first_cpu;
3a7d929e 1747 if (env->kqemu_enabled) {
f23db169
FB
1748 ram_addr_t addr;
1749 addr = start;
1750 for(i = 0; i < len; i++) {
1751 kqemu_set_notdirty(env, addr);
1752 addr += TARGET_PAGE_SIZE;
1753 }
3a7d929e
FB
1754 }
1755#endif
f23db169
FB
1756 mask = ~dirty_flags;
1757 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1758 for(i = 0; i < len; i++)
1759 p[i] &= mask;
1760
1ccde1cb
FB
1761 /* we modify the TLB cache so that the dirty bit will be set again
1762 when accessing the range */
59817ccb 1763 start1 = start + (unsigned long)phys_ram_base;
6a00d601
FB
1764 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1765 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1766 tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length);
6a00d601 1767 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1768 tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length);
6fa4cea9
JM
1769#if (NB_MMU_MODES >= 3)
1770 for(i = 0; i < CPU_TLB_SIZE; i++)
1771 tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length);
1772#if (NB_MMU_MODES == 4)
1773 for(i = 0; i < CPU_TLB_SIZE; i++)
1774 tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length);
1775#endif
1776#endif
6a00d601 1777 }
1ccde1cb
FB
1778}
1779
3a7d929e
FB
1780static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1781{
1782 ram_addr_t ram_addr;
1783
84b7b8e7 1784 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5fafdf24 1785 ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) +
3a7d929e
FB
1786 tlb_entry->addend - (unsigned long)phys_ram_base;
1787 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 1788 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
1789 }
1790 }
1791}
1792
1793/* update the TLB according to the current state of the dirty bits */
1794void cpu_tlb_update_dirty(CPUState *env)
1795{
1796 int i;
1797 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1798 tlb_update_dirty(&env->tlb_table[0][i]);
3a7d929e 1799 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1800 tlb_update_dirty(&env->tlb_table[1][i]);
6fa4cea9
JM
1801#if (NB_MMU_MODES >= 3)
1802 for(i = 0; i < CPU_TLB_SIZE; i++)
1803 tlb_update_dirty(&env->tlb_table[2][i]);
1804#if (NB_MMU_MODES == 4)
1805 for(i = 0; i < CPU_TLB_SIZE; i++)
1806 tlb_update_dirty(&env->tlb_table[3][i]);
1807#endif
1808#endif
3a7d929e
FB
1809}
1810
0f459d16 1811static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 1812{
0f459d16
PB
1813 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
1814 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
1815}
1816
0f459d16
PB
1817/* update the TLB corresponding to virtual page vaddr
1818 so that it is no longer dirty */
1819static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 1820{
1ccde1cb
FB
1821 int i;
1822
0f459d16 1823 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 1824 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
0f459d16
PB
1825 tlb_set_dirty1(&env->tlb_table[0][i], vaddr);
1826 tlb_set_dirty1(&env->tlb_table[1][i], vaddr);
6fa4cea9 1827#if (NB_MMU_MODES >= 3)
0f459d16 1828 tlb_set_dirty1(&env->tlb_table[2][i], vaddr);
6fa4cea9 1829#if (NB_MMU_MODES == 4)
0f459d16 1830 tlb_set_dirty1(&env->tlb_table[3][i], vaddr);
6fa4cea9
JM
1831#endif
1832#endif
9fa3e853
FB
1833}
1834
59817ccb
FB
1835/* add a new TLB entry. At most one entry for a given virtual address
1836 is permitted. Return 0 if OK or 2 if the page could not be mapped
1837 (can only happen in non SOFTMMU mode for I/O pages or pages
1838 conflicting with the host address space). */
5fafdf24
TS
1839int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1840 target_phys_addr_t paddr, int prot,
6ebbf390 1841 int mmu_idx, int is_softmmu)
9fa3e853 1842{
92e873b9 1843 PhysPageDesc *p;
4f2ac237 1844 unsigned long pd;
9fa3e853 1845 unsigned int index;
4f2ac237 1846 target_ulong address;
0f459d16 1847 target_ulong code_address;
108c49b8 1848 target_phys_addr_t addend;
9fa3e853 1849 int ret;
84b7b8e7 1850 CPUTLBEntry *te;
6658ffb8 1851 int i;
0f459d16 1852 target_phys_addr_t iotlb;
9fa3e853 1853
92e873b9 1854 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
1855 if (!p) {
1856 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
1857 } else {
1858 pd = p->phys_offset;
9fa3e853
FB
1859 }
1860#if defined(DEBUG_TLB)
6ebbf390
JM
1861 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1862 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
9fa3e853
FB
1863#endif
1864
1865 ret = 0;
0f459d16
PB
1866 address = vaddr;
1867 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
1868 /* IO memory case (romd handled later) */
1869 address |= TLB_MMIO;
1870 }
1871 addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK);
1872 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
1873 /* Normal RAM. */
1874 iotlb = pd & TARGET_PAGE_MASK;
1875 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
1876 iotlb |= IO_MEM_NOTDIRTY;
1877 else
1878 iotlb |= IO_MEM_ROM;
1879 } else {
1880 /* IO handlers are currently passed a phsical address.
1881 It would be nice to pass an offset from the base address
1882 of that region. This would avoid having to special case RAM,
1883 and avoid full address decoding in every device.
1884 We can't use the high bits of pd for this because
1885 IO_MEM_ROMD uses these as a ram address. */
1886 iotlb = (pd & ~TARGET_PAGE_MASK) + paddr;
1887 }
1888
1889 code_address = address;
1890 /* Make accesses to pages with watchpoints go via the
1891 watchpoint trap routines. */
1892 for (i = 0; i < env->nb_watchpoints; i++) {
1893 if (vaddr == (env->watchpoint[i].vaddr & TARGET_PAGE_MASK)) {
1894 iotlb = io_mem_watch + paddr;
1895 /* TODO: The memory case can be optimized by not trapping
1896 reads of pages with a write breakpoint. */
1897 address |= TLB_MMIO;
6658ffb8 1898 }
0f459d16 1899 }
d79acba4 1900
0f459d16
PB
1901 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1902 env->iotlb[mmu_idx][index] = iotlb - vaddr;
1903 te = &env->tlb_table[mmu_idx][index];
1904 te->addend = addend - vaddr;
1905 if (prot & PAGE_READ) {
1906 te->addr_read = address;
1907 } else {
1908 te->addr_read = -1;
1909 }
5c751e99 1910
0f459d16
PB
1911 if (prot & PAGE_EXEC) {
1912 te->addr_code = code_address;
1913 } else {
1914 te->addr_code = -1;
1915 }
1916 if (prot & PAGE_WRITE) {
1917 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
1918 (pd & IO_MEM_ROMD)) {
1919 /* Write access calls the I/O callback. */
1920 te->addr_write = address | TLB_MMIO;
1921 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
1922 !cpu_physical_memory_is_dirty(pd)) {
1923 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 1924 } else {
0f459d16 1925 te->addr_write = address;
9fa3e853 1926 }
0f459d16
PB
1927 } else {
1928 te->addr_write = -1;
9fa3e853 1929 }
9fa3e853
FB
1930 return ret;
1931}
1932
0124311e
FB
1933#else
1934
ee8b7021 1935void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
1936{
1937}
1938
2e12669a 1939void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
1940{
1941}
1942
5fafdf24
TS
1943int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1944 target_phys_addr_t paddr, int prot,
6ebbf390 1945 int mmu_idx, int is_softmmu)
9fa3e853
FB
1946{
1947 return 0;
1948}
0124311e 1949
9fa3e853
FB
1950/* dump memory mappings */
1951void page_dump(FILE *f)
33417e70 1952{
9fa3e853
FB
1953 unsigned long start, end;
1954 int i, j, prot, prot1;
1955 PageDesc *p;
33417e70 1956
9fa3e853
FB
1957 fprintf(f, "%-8s %-8s %-8s %s\n",
1958 "start", "end", "size", "prot");
1959 start = -1;
1960 end = -1;
1961 prot = 0;
1962 for(i = 0; i <= L1_SIZE; i++) {
1963 if (i < L1_SIZE)
1964 p = l1_map[i];
1965 else
1966 p = NULL;
1967 for(j = 0;j < L2_SIZE; j++) {
1968 if (!p)
1969 prot1 = 0;
1970 else
1971 prot1 = p[j].flags;
1972 if (prot1 != prot) {
1973 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
1974 if (start != -1) {
1975 fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
5fafdf24 1976 start, end, end - start,
9fa3e853
FB
1977 prot & PAGE_READ ? 'r' : '-',
1978 prot & PAGE_WRITE ? 'w' : '-',
1979 prot & PAGE_EXEC ? 'x' : '-');
1980 }
1981 if (prot1 != 0)
1982 start = end;
1983 else
1984 start = -1;
1985 prot = prot1;
1986 }
1987 if (!p)
1988 break;
1989 }
33417e70 1990 }
33417e70
FB
1991}
1992
53a5960a 1993int page_get_flags(target_ulong address)
33417e70 1994{
9fa3e853
FB
1995 PageDesc *p;
1996
1997 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 1998 if (!p)
9fa3e853
FB
1999 return 0;
2000 return p->flags;
2001}
2002
2003/* modify the flags of a page and invalidate the code if
2004 necessary. The flag PAGE_WRITE_ORG is positionned automatically
2005 depending on PAGE_WRITE */
53a5960a 2006void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853
FB
2007{
2008 PageDesc *p;
53a5960a 2009 target_ulong addr;
9fa3e853 2010
c8a706fe 2011 /* mmap_lock should already be held. */
9fa3e853
FB
2012 start = start & TARGET_PAGE_MASK;
2013 end = TARGET_PAGE_ALIGN(end);
2014 if (flags & PAGE_WRITE)
2015 flags |= PAGE_WRITE_ORG;
9fa3e853
FB
2016 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2017 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
17e2377a
PB
2018 /* We may be called for host regions that are outside guest
2019 address space. */
2020 if (!p)
2021 return;
9fa3e853
FB
2022 /* if the write protection is set, then we invalidate the code
2023 inside */
5fafdf24 2024 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2025 (flags & PAGE_WRITE) &&
2026 p->first_tb) {
d720b93d 2027 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2028 }
2029 p->flags = flags;
2030 }
33417e70
FB
2031}
2032
3d97b40b
TS
2033int page_check_range(target_ulong start, target_ulong len, int flags)
2034{
2035 PageDesc *p;
2036 target_ulong end;
2037 target_ulong addr;
2038
2039 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2040 start = start & TARGET_PAGE_MASK;
2041
2042 if( end < start )
2043 /* we've wrapped around */
2044 return -1;
2045 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2046 p = page_find(addr >> TARGET_PAGE_BITS);
2047 if( !p )
2048 return -1;
2049 if( !(p->flags & PAGE_VALID) )
2050 return -1;
2051
dae3270c 2052 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2053 return -1;
dae3270c
FB
2054 if (flags & PAGE_WRITE) {
2055 if (!(p->flags & PAGE_WRITE_ORG))
2056 return -1;
2057 /* unprotect the page if it was put read-only because it
2058 contains translated code */
2059 if (!(p->flags & PAGE_WRITE)) {
2060 if (!page_unprotect(addr, 0, NULL))
2061 return -1;
2062 }
2063 return 0;
2064 }
3d97b40b
TS
2065 }
2066 return 0;
2067}
2068
9fa3e853
FB
2069/* called from signal handler: invalidate the code and unprotect the
2070 page. Return TRUE if the fault was succesfully handled. */
53a5960a 2071int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853
FB
2072{
2073 unsigned int page_index, prot, pindex;
2074 PageDesc *p, *p1;
53a5960a 2075 target_ulong host_start, host_end, addr;
9fa3e853 2076
c8a706fe
PB
2077 /* Technically this isn't safe inside a signal handler. However we
2078 know this only ever happens in a synchronous SEGV handler, so in
2079 practice it seems to be ok. */
2080 mmap_lock();
2081
83fb7adf 2082 host_start = address & qemu_host_page_mask;
9fa3e853
FB
2083 page_index = host_start >> TARGET_PAGE_BITS;
2084 p1 = page_find(page_index);
c8a706fe
PB
2085 if (!p1) {
2086 mmap_unlock();
9fa3e853 2087 return 0;
c8a706fe 2088 }
83fb7adf 2089 host_end = host_start + qemu_host_page_size;
9fa3e853
FB
2090 p = p1;
2091 prot = 0;
2092 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2093 prot |= p->flags;
2094 p++;
2095 }
2096 /* if the page was really writable, then we change its
2097 protection back to writable */
2098 if (prot & PAGE_WRITE_ORG) {
2099 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2100 if (!(p1[pindex].flags & PAGE_WRITE)) {
5fafdf24 2101 mprotect((void *)g2h(host_start), qemu_host_page_size,
9fa3e853
FB
2102 (prot & PAGE_BITS) | PAGE_WRITE);
2103 p1[pindex].flags |= PAGE_WRITE;
2104 /* and since the content will be modified, we must invalidate
2105 the corresponding translated code. */
d720b93d 2106 tb_invalidate_phys_page(address, pc, puc);
9fa3e853
FB
2107#ifdef DEBUG_TB_CHECK
2108 tb_invalidate_check(address);
2109#endif
c8a706fe 2110 mmap_unlock();
9fa3e853
FB
2111 return 1;
2112 }
2113 }
c8a706fe 2114 mmap_unlock();
9fa3e853
FB
2115 return 0;
2116}
2117
6a00d601
FB
2118static inline void tlb_set_dirty(CPUState *env,
2119 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2120{
2121}
9fa3e853
FB
2122#endif /* defined(CONFIG_USER_ONLY) */
2123
e2eef170 2124#if !defined(CONFIG_USER_ONLY)
db7b5426 2125static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
00f82b8a
AJ
2126 ram_addr_t memory);
2127static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2128 ram_addr_t orig_memory);
db7b5426
BS
2129#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2130 need_subpage) \
2131 do { \
2132 if (addr > start_addr) \
2133 start_addr2 = 0; \
2134 else { \
2135 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2136 if (start_addr2 > 0) \
2137 need_subpage = 1; \
2138 } \
2139 \
49e9fba2 2140 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2141 end_addr2 = TARGET_PAGE_SIZE - 1; \
2142 else { \
2143 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2144 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2145 need_subpage = 1; \
2146 } \
2147 } while (0)
2148
33417e70
FB
2149/* register physical memory. 'size' must be a multiple of the target
2150 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2151 io memory page */
5fafdf24 2152void cpu_register_physical_memory(target_phys_addr_t start_addr,
00f82b8a
AJ
2153 ram_addr_t size,
2154 ram_addr_t phys_offset)
33417e70 2155{
108c49b8 2156 target_phys_addr_t addr, end_addr;
92e873b9 2157 PhysPageDesc *p;
9d42037b 2158 CPUState *env;
00f82b8a 2159 ram_addr_t orig_size = size;
db7b5426 2160 void *subpage;
33417e70 2161
da260249
FB
2162#ifdef USE_KQEMU
2163 /* XXX: should not depend on cpu context */
2164 env = first_cpu;
2165 if (env->kqemu_enabled) {
2166 kqemu_set_phys_mem(start_addr, size, phys_offset);
2167 }
2168#endif
5fd386f6 2169 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
49e9fba2
BS
2170 end_addr = start_addr + (target_phys_addr_t)size;
2171 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
db7b5426
BS
2172 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2173 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
00f82b8a 2174 ram_addr_t orig_memory = p->phys_offset;
db7b5426
BS
2175 target_phys_addr_t start_addr2, end_addr2;
2176 int need_subpage = 0;
2177
2178 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2179 need_subpage);
4254fab8 2180 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426
BS
2181 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2182 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2183 &p->phys_offset, orig_memory);
2184 } else {
2185 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2186 >> IO_MEM_SHIFT];
2187 }
2188 subpage_register(subpage, start_addr2, end_addr2, phys_offset);
2189 } else {
2190 p->phys_offset = phys_offset;
2191 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2192 (phys_offset & IO_MEM_ROMD))
2193 phys_offset += TARGET_PAGE_SIZE;
2194 }
2195 } else {
2196 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2197 p->phys_offset = phys_offset;
2198 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2199 (phys_offset & IO_MEM_ROMD))
2200 phys_offset += TARGET_PAGE_SIZE;
2201 else {
2202 target_phys_addr_t start_addr2, end_addr2;
2203 int need_subpage = 0;
2204
2205 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2206 end_addr2, need_subpage);
2207
4254fab8 2208 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426
BS
2209 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2210 &p->phys_offset, IO_MEM_UNASSIGNED);
2211 subpage_register(subpage, start_addr2, end_addr2,
2212 phys_offset);
2213 }
2214 }
2215 }
33417e70 2216 }
3b46e624 2217
9d42037b
FB
2218 /* since each CPU stores ram addresses in its TLB cache, we must
2219 reset the modified entries */
2220 /* XXX: slow ! */
2221 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2222 tlb_flush(env, 1);
2223 }
33417e70
FB
2224}
2225
ba863458 2226/* XXX: temporary until new memory mapping API */
00f82b8a 2227ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
ba863458
FB
2228{
2229 PhysPageDesc *p;
2230
2231 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2232 if (!p)
2233 return IO_MEM_UNASSIGNED;
2234 return p->phys_offset;
2235}
2236
e9a1ab19 2237/* XXX: better than nothing */
00f82b8a 2238ram_addr_t qemu_ram_alloc(ram_addr_t size)
e9a1ab19
FB
2239{
2240 ram_addr_t addr;
7fb4fdcf 2241 if ((phys_ram_alloc_offset + size) > phys_ram_size) {
ed441467
FB
2242 fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 "\n",
2243 (uint64_t)size, (uint64_t)phys_ram_size);
e9a1ab19
FB
2244 abort();
2245 }
2246 addr = phys_ram_alloc_offset;
2247 phys_ram_alloc_offset = TARGET_PAGE_ALIGN(phys_ram_alloc_offset + size);
2248 return addr;
2249}
2250
2251void qemu_ram_free(ram_addr_t addr)
2252{
2253}
2254
a4193c8a 2255static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 2256{
67d3b957 2257#ifdef DEBUG_UNASSIGNED
ab3d1727 2258 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316
BS
2259#endif
2260#ifdef TARGET_SPARC
6c36d3fa 2261 do_unassigned_access(addr, 0, 0, 0);
f1ccf904
TS
2262#elif TARGET_CRIS
2263 do_unassigned_access(addr, 0, 0, 0);
67d3b957 2264#endif
33417e70
FB
2265 return 0;
2266}
2267
a4193c8a 2268static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 2269{
67d3b957 2270#ifdef DEBUG_UNASSIGNED
ab3d1727 2271 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 2272#endif
b4f0a316 2273#ifdef TARGET_SPARC
6c36d3fa 2274 do_unassigned_access(addr, 1, 0, 0);
f1ccf904
TS
2275#elif TARGET_CRIS
2276 do_unassigned_access(addr, 1, 0, 0);
b4f0a316 2277#endif
33417e70
FB
2278}
2279
2280static CPUReadMemoryFunc *unassigned_mem_read[3] = {
2281 unassigned_mem_readb,
2282 unassigned_mem_readb,
2283 unassigned_mem_readb,
2284};
2285
2286static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
2287 unassigned_mem_writeb,
2288 unassigned_mem_writeb,
2289 unassigned_mem_writeb,
2290};
2291
0f459d16
PB
2292static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2293 uint32_t val)
9fa3e853 2294{
3a7d929e 2295 int dirty_flags;
3a7d929e
FB
2296 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2297 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2298#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2299 tb_invalidate_phys_page_fast(ram_addr, 1);
2300 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2301#endif
3a7d929e 2302 }
0f459d16 2303 stb_p(phys_ram_base + ram_addr, val);
f32fc648
FB
2304#ifdef USE_KQEMU
2305 if (cpu_single_env->kqemu_enabled &&
2306 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2307 kqemu_modify_page(cpu_single_env, ram_addr);
2308#endif
f23db169
FB
2309 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2310 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2311 /* we remove the notdirty callback only if the code has been
2312 flushed */
2313 if (dirty_flags == 0xff)
2e70f6ef 2314 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2315}
2316
0f459d16
PB
2317static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2318 uint32_t val)
9fa3e853 2319{
3a7d929e 2320 int dirty_flags;
3a7d929e
FB
2321 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2322 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2323#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2324 tb_invalidate_phys_page_fast(ram_addr, 2);
2325 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2326#endif
3a7d929e 2327 }
0f459d16 2328 stw_p(phys_ram_base + ram_addr, val);
f32fc648
FB
2329#ifdef USE_KQEMU
2330 if (cpu_single_env->kqemu_enabled &&
2331 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2332 kqemu_modify_page(cpu_single_env, ram_addr);
2333#endif
f23db169
FB
2334 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2335 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2336 /* we remove the notdirty callback only if the code has been
2337 flushed */
2338 if (dirty_flags == 0xff)
2e70f6ef 2339 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2340}
2341
0f459d16
PB
2342static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2343 uint32_t val)
9fa3e853 2344{
3a7d929e 2345 int dirty_flags;
3a7d929e
FB
2346 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2347 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2348#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2349 tb_invalidate_phys_page_fast(ram_addr, 4);
2350 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2351#endif
3a7d929e 2352 }
0f459d16 2353 stl_p(phys_ram_base + ram_addr, val);
f32fc648
FB
2354#ifdef USE_KQEMU
2355 if (cpu_single_env->kqemu_enabled &&
2356 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2357 kqemu_modify_page(cpu_single_env, ram_addr);
2358#endif
f23db169
FB
2359 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2360 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2361 /* we remove the notdirty callback only if the code has been
2362 flushed */
2363 if (dirty_flags == 0xff)
2e70f6ef 2364 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2365}
2366
3a7d929e 2367static CPUReadMemoryFunc *error_mem_read[3] = {
9fa3e853
FB
2368 NULL, /* never used */
2369 NULL, /* never used */
2370 NULL, /* never used */
2371};
2372
1ccde1cb
FB
2373static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
2374 notdirty_mem_writeb,
2375 notdirty_mem_writew,
2376 notdirty_mem_writel,
2377};
2378
0f459d16
PB
2379/* Generate a debug exception if a watchpoint has been hit. */
2380static void check_watchpoint(int offset, int flags)
2381{
2382 CPUState *env = cpu_single_env;
2383 target_ulong vaddr;
2384 int i;
2385
2e70f6ef 2386 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
0f459d16
PB
2387 for (i = 0; i < env->nb_watchpoints; i++) {
2388 if (vaddr == env->watchpoint[i].vaddr
2389 && (env->watchpoint[i].type & flags)) {
2390 env->watchpoint_hit = i + 1;
2391 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2392 break;
2393 }
2394 }
2395}
2396
6658ffb8
PB
2397/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2398 so these check for a hit then pass through to the normal out-of-line
2399 phys routines. */
2400static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2401{
0f459d16 2402 check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_READ);
6658ffb8
PB
2403 return ldub_phys(addr);
2404}
2405
2406static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2407{
0f459d16 2408 check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_READ);
6658ffb8
PB
2409 return lduw_phys(addr);
2410}
2411
2412static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2413{
0f459d16 2414 check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_READ);
6658ffb8
PB
2415 return ldl_phys(addr);
2416}
2417
6658ffb8
PB
2418static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2419 uint32_t val)
2420{
0f459d16 2421 check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_WRITE);
6658ffb8
PB
2422 stb_phys(addr, val);
2423}
2424
2425static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2426 uint32_t val)
2427{
0f459d16 2428 check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_WRITE);
6658ffb8
PB
2429 stw_phys(addr, val);
2430}
2431
2432static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2433 uint32_t val)
2434{
0f459d16 2435 check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_WRITE);
6658ffb8
PB
2436 stl_phys(addr, val);
2437}
2438
2439static CPUReadMemoryFunc *watch_mem_read[3] = {
2440 watch_mem_readb,
2441 watch_mem_readw,
2442 watch_mem_readl,
2443};
2444
2445static CPUWriteMemoryFunc *watch_mem_write[3] = {
2446 watch_mem_writeb,
2447 watch_mem_writew,
2448 watch_mem_writel,
2449};
6658ffb8 2450
db7b5426
BS
2451static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2452 unsigned int len)
2453{
db7b5426
BS
2454 uint32_t ret;
2455 unsigned int idx;
2456
2457 idx = SUBPAGE_IDX(addr - mmio->base);
2458#if defined(DEBUG_SUBPAGE)
2459 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2460 mmio, len, addr, idx);
2461#endif
3ee89922 2462 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len], addr);
db7b5426
BS
2463
2464 return ret;
2465}
2466
2467static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2468 uint32_t value, unsigned int len)
2469{
db7b5426
BS
2470 unsigned int idx;
2471
2472 idx = SUBPAGE_IDX(addr - mmio->base);
2473#if defined(DEBUG_SUBPAGE)
2474 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2475 mmio, len, addr, idx, value);
2476#endif
3ee89922 2477 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len], addr, value);
db7b5426
BS
2478}
2479
2480static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2481{
2482#if defined(DEBUG_SUBPAGE)
2483 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2484#endif
2485
2486 return subpage_readlen(opaque, addr, 0);
2487}
2488
2489static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2490 uint32_t value)
2491{
2492#if defined(DEBUG_SUBPAGE)
2493 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2494#endif
2495 subpage_writelen(opaque, addr, value, 0);
2496}
2497
2498static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2499{
2500#if defined(DEBUG_SUBPAGE)
2501 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2502#endif
2503
2504 return subpage_readlen(opaque, addr, 1);
2505}
2506
2507static void subpage_writew (void *opaque, target_phys_addr_t addr,
2508 uint32_t value)
2509{
2510#if defined(DEBUG_SUBPAGE)
2511 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2512#endif
2513 subpage_writelen(opaque, addr, value, 1);
2514}
2515
2516static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2517{
2518#if defined(DEBUG_SUBPAGE)
2519 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2520#endif
2521
2522 return subpage_readlen(opaque, addr, 2);
2523}
2524
2525static void subpage_writel (void *opaque,
2526 target_phys_addr_t addr, uint32_t value)
2527{
2528#if defined(DEBUG_SUBPAGE)
2529 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2530#endif
2531 subpage_writelen(opaque, addr, value, 2);
2532}
2533
2534static CPUReadMemoryFunc *subpage_read[] = {
2535 &subpage_readb,
2536 &subpage_readw,
2537 &subpage_readl,
2538};
2539
2540static CPUWriteMemoryFunc *subpage_write[] = {
2541 &subpage_writeb,
2542 &subpage_writew,
2543 &subpage_writel,
2544};
2545
2546static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
00f82b8a 2547 ram_addr_t memory)
db7b5426
BS
2548{
2549 int idx, eidx;
4254fab8 2550 unsigned int i;
db7b5426
BS
2551
2552 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2553 return -1;
2554 idx = SUBPAGE_IDX(start);
2555 eidx = SUBPAGE_IDX(end);
2556#if defined(DEBUG_SUBPAGE)
2557 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__,
2558 mmio, start, end, idx, eidx, memory);
2559#endif
2560 memory >>= IO_MEM_SHIFT;
2561 for (; idx <= eidx; idx++) {
4254fab8 2562 for (i = 0; i < 4; i++) {
3ee89922
BS
2563 if (io_mem_read[memory][i]) {
2564 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2565 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
2566 }
2567 if (io_mem_write[memory][i]) {
2568 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2569 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
2570 }
4254fab8 2571 }
db7b5426
BS
2572 }
2573
2574 return 0;
2575}
2576
00f82b8a
AJ
2577static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2578 ram_addr_t orig_memory)
db7b5426
BS
2579{
2580 subpage_t *mmio;
2581 int subpage_memory;
2582
2583 mmio = qemu_mallocz(sizeof(subpage_t));
2584 if (mmio != NULL) {
2585 mmio->base = base;
2586 subpage_memory = cpu_register_io_memory(0, subpage_read, subpage_write, mmio);
2587#if defined(DEBUG_SUBPAGE)
2588 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2589 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
2590#endif
2591 *phys = subpage_memory | IO_MEM_SUBPAGE;
2592 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory);
2593 }
2594
2595 return mmio;
2596}
2597
33417e70
FB
2598static void io_mem_init(void)
2599{
3a7d929e 2600 cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL);
a4193c8a 2601 cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL);
3a7d929e 2602 cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL);
1ccde1cb
FB
2603 io_mem_nb = 5;
2604
0f459d16 2605 io_mem_watch = cpu_register_io_memory(0, watch_mem_read,
6658ffb8 2606 watch_mem_write, NULL);
1ccde1cb 2607 /* alloc dirty bits array */
0a962c02 2608 phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS);
3a7d929e 2609 memset(phys_ram_dirty, 0xff, phys_ram_size >> TARGET_PAGE_BITS);
33417e70
FB
2610}
2611
2612/* mem_read and mem_write are arrays of functions containing the
2613 function to access byte (index 0), word (index 1) and dword (index
3ee89922
BS
2614 2). Functions can be omitted with a NULL function pointer. The
2615 registered functions may be modified dynamically later.
2616 If io_index is non zero, the corresponding io zone is
4254fab8
BS
2617 modified. If it is zero, a new io zone is allocated. The return
2618 value can be used with cpu_register_physical_memory(). (-1) is
2619 returned if error. */
33417e70
FB
2620int cpu_register_io_memory(int io_index,
2621 CPUReadMemoryFunc **mem_read,
a4193c8a
FB
2622 CPUWriteMemoryFunc **mem_write,
2623 void *opaque)
33417e70 2624{
4254fab8 2625 int i, subwidth = 0;
33417e70
FB
2626
2627 if (io_index <= 0) {
b5ff1b31 2628 if (io_mem_nb >= IO_MEM_NB_ENTRIES)
33417e70
FB
2629 return -1;
2630 io_index = io_mem_nb++;
2631 } else {
2632 if (io_index >= IO_MEM_NB_ENTRIES)
2633 return -1;
2634 }
b5ff1b31 2635
33417e70 2636 for(i = 0;i < 3; i++) {
4254fab8
BS
2637 if (!mem_read[i] || !mem_write[i])
2638 subwidth = IO_MEM_SUBWIDTH;
33417e70
FB
2639 io_mem_read[io_index][i] = mem_read[i];
2640 io_mem_write[io_index][i] = mem_write[i];
2641 }
a4193c8a 2642 io_mem_opaque[io_index] = opaque;
4254fab8 2643 return (io_index << IO_MEM_SHIFT) | subwidth;
33417e70 2644}
61382a50 2645
8926b517
FB
2646CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index)
2647{
2648 return io_mem_write[io_index >> IO_MEM_SHIFT];
2649}
2650
2651CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index)
2652{
2653 return io_mem_read[io_index >> IO_MEM_SHIFT];
2654}
2655
e2eef170
PB
2656#endif /* !defined(CONFIG_USER_ONLY) */
2657
13eb76e0
FB
2658/* physical memory access (slow version, mainly for debug) */
2659#if defined(CONFIG_USER_ONLY)
5fafdf24 2660void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
2661 int len, int is_write)
2662{
2663 int l, flags;
2664 target_ulong page;
53a5960a 2665 void * p;
13eb76e0
FB
2666
2667 while (len > 0) {
2668 page = addr & TARGET_PAGE_MASK;
2669 l = (page + TARGET_PAGE_SIZE) - addr;
2670 if (l > len)
2671 l = len;
2672 flags = page_get_flags(page);
2673 if (!(flags & PAGE_VALID))
2674 return;
2675 if (is_write) {
2676 if (!(flags & PAGE_WRITE))
2677 return;
579a97f7 2678 /* XXX: this code should not depend on lock_user */
72fb7daa 2679 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
579a97f7
FB
2680 /* FIXME - should this return an error rather than just fail? */
2681 return;
72fb7daa
AJ
2682 memcpy(p, buf, l);
2683 unlock_user(p, addr, l);
13eb76e0
FB
2684 } else {
2685 if (!(flags & PAGE_READ))
2686 return;
579a97f7 2687 /* XXX: this code should not depend on lock_user */
72fb7daa 2688 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
579a97f7
FB
2689 /* FIXME - should this return an error rather than just fail? */
2690 return;
72fb7daa 2691 memcpy(buf, p, l);
5b257578 2692 unlock_user(p, addr, 0);
13eb76e0
FB
2693 }
2694 len -= l;
2695 buf += l;
2696 addr += l;
2697 }
2698}
8df1cd07 2699
13eb76e0 2700#else
5fafdf24 2701void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
2702 int len, int is_write)
2703{
2704 int l, io_index;
2705 uint8_t *ptr;
2706 uint32_t val;
2e12669a
FB
2707 target_phys_addr_t page;
2708 unsigned long pd;
92e873b9 2709 PhysPageDesc *p;
3b46e624 2710
13eb76e0
FB
2711 while (len > 0) {
2712 page = addr & TARGET_PAGE_MASK;
2713 l = (page + TARGET_PAGE_SIZE) - addr;
2714 if (l > len)
2715 l = len;
92e873b9 2716 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
2717 if (!p) {
2718 pd = IO_MEM_UNASSIGNED;
2719 } else {
2720 pd = p->phys_offset;
2721 }
3b46e624 2722
13eb76e0 2723 if (is_write) {
3a7d929e 2724 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
13eb76e0 2725 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
6a00d601
FB
2726 /* XXX: could force cpu_single_env to NULL to avoid
2727 potential bugs */
13eb76e0 2728 if (l >= 4 && ((addr & 3) == 0)) {
1c213d19 2729 /* 32 bit write access */
c27004ec 2730 val = ldl_p(buf);
a4193c8a 2731 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
13eb76e0
FB
2732 l = 4;
2733 } else if (l >= 2 && ((addr & 1) == 0)) {
1c213d19 2734 /* 16 bit write access */
c27004ec 2735 val = lduw_p(buf);
a4193c8a 2736 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
13eb76e0
FB
2737 l = 2;
2738 } else {
1c213d19 2739 /* 8 bit write access */
c27004ec 2740 val = ldub_p(buf);
a4193c8a 2741 io_mem_write[io_index][0](io_mem_opaque[io_index], addr, val);
13eb76e0
FB
2742 l = 1;
2743 }
2744 } else {
b448f2f3
FB
2745 unsigned long addr1;
2746 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 2747 /* RAM case */
b448f2f3 2748 ptr = phys_ram_base + addr1;
13eb76e0 2749 memcpy(ptr, buf, l);
3a7d929e
FB
2750 if (!cpu_physical_memory_is_dirty(addr1)) {
2751 /* invalidate code */
2752 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
2753 /* set dirty bit */
5fafdf24 2754 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
f23db169 2755 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 2756 }
13eb76e0
FB
2757 }
2758 } else {
5fafdf24 2759 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 2760 !(pd & IO_MEM_ROMD)) {
13eb76e0
FB
2761 /* I/O case */
2762 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2763 if (l >= 4 && ((addr & 3) == 0)) {
2764 /* 32 bit read access */
a4193c8a 2765 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
c27004ec 2766 stl_p(buf, val);
13eb76e0
FB
2767 l = 4;
2768 } else if (l >= 2 && ((addr & 1) == 0)) {
2769 /* 16 bit read access */
a4193c8a 2770 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
c27004ec 2771 stw_p(buf, val);
13eb76e0
FB
2772 l = 2;
2773 } else {
1c213d19 2774 /* 8 bit read access */
a4193c8a 2775 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr);
c27004ec 2776 stb_p(buf, val);
13eb76e0
FB
2777 l = 1;
2778 }
2779 } else {
2780 /* RAM case */
5fafdf24 2781 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
13eb76e0
FB
2782 (addr & ~TARGET_PAGE_MASK);
2783 memcpy(buf, ptr, l);
2784 }
2785 }
2786 len -= l;
2787 buf += l;
2788 addr += l;
2789 }
2790}
8df1cd07 2791
d0ecd2aa 2792/* used for ROM loading : can write in RAM and ROM */
5fafdf24 2793void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
2794 const uint8_t *buf, int len)
2795{
2796 int l;
2797 uint8_t *ptr;
2798 target_phys_addr_t page;
2799 unsigned long pd;
2800 PhysPageDesc *p;
3b46e624 2801
d0ecd2aa
FB
2802 while (len > 0) {
2803 page = addr & TARGET_PAGE_MASK;
2804 l = (page + TARGET_PAGE_SIZE) - addr;
2805 if (l > len)
2806 l = len;
2807 p = phys_page_find(page >> TARGET_PAGE_BITS);
2808 if (!p) {
2809 pd = IO_MEM_UNASSIGNED;
2810 } else {
2811 pd = p->phys_offset;
2812 }
3b46e624 2813
d0ecd2aa 2814 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
2815 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
2816 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
2817 /* do nothing */
2818 } else {
2819 unsigned long addr1;
2820 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2821 /* ROM/RAM case */
2822 ptr = phys_ram_base + addr1;
2823 memcpy(ptr, buf, l);
2824 }
2825 len -= l;
2826 buf += l;
2827 addr += l;
2828 }
2829}
2830
2831
8df1cd07
FB
2832/* warning: addr must be aligned */
2833uint32_t ldl_phys(target_phys_addr_t addr)
2834{
2835 int io_index;
2836 uint8_t *ptr;
2837 uint32_t val;
2838 unsigned long pd;
2839 PhysPageDesc *p;
2840
2841 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2842 if (!p) {
2843 pd = IO_MEM_UNASSIGNED;
2844 } else {
2845 pd = p->phys_offset;
2846 }
3b46e624 2847
5fafdf24 2848 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 2849 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
2850 /* I/O case */
2851 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2852 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2853 } else {
2854 /* RAM case */
5fafdf24 2855 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
8df1cd07
FB
2856 (addr & ~TARGET_PAGE_MASK);
2857 val = ldl_p(ptr);
2858 }
2859 return val;
2860}
2861
84b7b8e7
FB
2862/* warning: addr must be aligned */
2863uint64_t ldq_phys(target_phys_addr_t addr)
2864{
2865 int io_index;
2866 uint8_t *ptr;
2867 uint64_t val;
2868 unsigned long pd;
2869 PhysPageDesc *p;
2870
2871 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2872 if (!p) {
2873 pd = IO_MEM_UNASSIGNED;
2874 } else {
2875 pd = p->phys_offset;
2876 }
3b46e624 2877
2a4188a3
FB
2878 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2879 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
2880 /* I/O case */
2881 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2882#ifdef TARGET_WORDS_BIGENDIAN
2883 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
2884 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
2885#else
2886 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2887 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
2888#endif
2889 } else {
2890 /* RAM case */
5fafdf24 2891 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
84b7b8e7
FB
2892 (addr & ~TARGET_PAGE_MASK);
2893 val = ldq_p(ptr);
2894 }
2895 return val;
2896}
2897
aab33094
FB
2898/* XXX: optimize */
2899uint32_t ldub_phys(target_phys_addr_t addr)
2900{
2901 uint8_t val;
2902 cpu_physical_memory_read(addr, &val, 1);
2903 return val;
2904}
2905
2906/* XXX: optimize */
2907uint32_t lduw_phys(target_phys_addr_t addr)
2908{
2909 uint16_t val;
2910 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
2911 return tswap16(val);
2912}
2913
8df1cd07
FB
2914/* warning: addr must be aligned. The ram page is not masked as dirty
2915 and the code inside is not invalidated. It is useful if the dirty
2916 bits are used to track modified PTEs */
2917void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
2918{
2919 int io_index;
2920 uint8_t *ptr;
2921 unsigned long pd;
2922 PhysPageDesc *p;
2923
2924 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2925 if (!p) {
2926 pd = IO_MEM_UNASSIGNED;
2927 } else {
2928 pd = p->phys_offset;
2929 }
3b46e624 2930
3a7d929e 2931 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07
FB
2932 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2933 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2934 } else {
5fafdf24 2935 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
8df1cd07
FB
2936 (addr & ~TARGET_PAGE_MASK);
2937 stl_p(ptr, val);
2938 }
2939}
2940
bc98a7ef
JM
2941void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
2942{
2943 int io_index;
2944 uint8_t *ptr;
2945 unsigned long pd;
2946 PhysPageDesc *p;
2947
2948 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2949 if (!p) {
2950 pd = IO_MEM_UNASSIGNED;
2951 } else {
2952 pd = p->phys_offset;
2953 }
3b46e624 2954
bc98a7ef
JM
2955 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2956 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2957#ifdef TARGET_WORDS_BIGENDIAN
2958 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
2959 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
2960#else
2961 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2962 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
2963#endif
2964 } else {
5fafdf24 2965 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
2966 (addr & ~TARGET_PAGE_MASK);
2967 stq_p(ptr, val);
2968 }
2969}
2970
8df1cd07 2971/* warning: addr must be aligned */
8df1cd07
FB
2972void stl_phys(target_phys_addr_t addr, uint32_t val)
2973{
2974 int io_index;
2975 uint8_t *ptr;
2976 unsigned long pd;
2977 PhysPageDesc *p;
2978
2979 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2980 if (!p) {
2981 pd = IO_MEM_UNASSIGNED;
2982 } else {
2983 pd = p->phys_offset;
2984 }
3b46e624 2985
3a7d929e 2986 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07
FB
2987 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2988 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2989 } else {
2990 unsigned long addr1;
2991 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2992 /* RAM case */
2993 ptr = phys_ram_base + addr1;
2994 stl_p(ptr, val);
3a7d929e
FB
2995 if (!cpu_physical_memory_is_dirty(addr1)) {
2996 /* invalidate code */
2997 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2998 /* set dirty bit */
f23db169
FB
2999 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3000 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3001 }
8df1cd07
FB
3002 }
3003}
3004
aab33094
FB
3005/* XXX: optimize */
3006void stb_phys(target_phys_addr_t addr, uint32_t val)
3007{
3008 uint8_t v = val;
3009 cpu_physical_memory_write(addr, &v, 1);
3010}
3011
3012/* XXX: optimize */
3013void stw_phys(target_phys_addr_t addr, uint32_t val)
3014{
3015 uint16_t v = tswap16(val);
3016 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3017}
3018
3019/* XXX: optimize */
3020void stq_phys(target_phys_addr_t addr, uint64_t val)
3021{
3022 val = tswap64(val);
3023 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3024}
3025
13eb76e0
FB
3026#endif
3027
3028/* virtual memory access for debug */
5fafdf24 3029int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 3030 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3031{
3032 int l;
9b3c35e0
JM
3033 target_phys_addr_t phys_addr;
3034 target_ulong page;
13eb76e0
FB
3035
3036 while (len > 0) {
3037 page = addr & TARGET_PAGE_MASK;
3038 phys_addr = cpu_get_phys_page_debug(env, page);
3039 /* if no physical page mapped, return an error */
3040 if (phys_addr == -1)
3041 return -1;
3042 l = (page + TARGET_PAGE_SIZE) - addr;
3043 if (l > len)
3044 l = len;
5fafdf24 3045 cpu_physical_memory_rw(phys_addr + (addr & ~TARGET_PAGE_MASK),
b448f2f3 3046 buf, l, is_write);
13eb76e0
FB
3047 len -= l;
3048 buf += l;
3049 addr += l;
3050 }
3051 return 0;
3052}
3053
2e70f6ef
PB
3054/* in deterministic execution mode, instructions doing device I/Os
3055 must be at the end of the TB */
3056void cpu_io_recompile(CPUState *env, void *retaddr)
3057{
3058 TranslationBlock *tb;
3059 uint32_t n, cflags;
3060 target_ulong pc, cs_base;
3061 uint64_t flags;
3062
3063 tb = tb_find_pc((unsigned long)retaddr);
3064 if (!tb) {
3065 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3066 retaddr);
3067 }
3068 n = env->icount_decr.u16.low + tb->icount;
3069 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3070 /* Calculate how many instructions had been executed before the fault
bf20dc07 3071 occurred. */
2e70f6ef
PB
3072 n = n - env->icount_decr.u16.low;
3073 /* Generate a new TB ending on the I/O insn. */
3074 n++;
3075 /* On MIPS and SH, delay slot instructions can only be restarted if
3076 they were already the first instruction in the TB. If this is not
bf20dc07 3077 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
3078 branch. */
3079#if defined(TARGET_MIPS)
3080 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3081 env->active_tc.PC -= 4;
3082 env->icount_decr.u16.low++;
3083 env->hflags &= ~MIPS_HFLAG_BMASK;
3084 }
3085#elif defined(TARGET_SH4)
3086 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3087 && n > 1) {
3088 env->pc -= 2;
3089 env->icount_decr.u16.low++;
3090 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3091 }
3092#endif
3093 /* This should never happen. */
3094 if (n > CF_COUNT_MASK)
3095 cpu_abort(env, "TB too big during recompile");
3096
3097 cflags = n | CF_LAST_IO;
3098 pc = tb->pc;
3099 cs_base = tb->cs_base;
3100 flags = tb->flags;
3101 tb_phys_invalidate(tb, -1);
3102 /* FIXME: In theory this could raise an exception. In practice
3103 we have already translated the block once so it's probably ok. */
3104 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 3105 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
3106 the first in the TB) then we end up generating a whole new TB and
3107 repeating the fault, which is horribly inefficient.
3108 Better would be to execute just this insn uncached, or generate a
3109 second new TB. */
3110 cpu_resume_from_signal(env, NULL);
3111}
3112
e3db7226
FB
3113void dump_exec_info(FILE *f,
3114 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3115{
3116 int i, target_code_size, max_target_code_size;
3117 int direct_jmp_count, direct_jmp2_count, cross_page;
3118 TranslationBlock *tb;
3b46e624 3119
e3db7226
FB
3120 target_code_size = 0;
3121 max_target_code_size = 0;
3122 cross_page = 0;
3123 direct_jmp_count = 0;
3124 direct_jmp2_count = 0;
3125 for(i = 0; i < nb_tbs; i++) {
3126 tb = &tbs[i];
3127 target_code_size += tb->size;
3128 if (tb->size > max_target_code_size)
3129 max_target_code_size = tb->size;
3130 if (tb->page_addr[1] != -1)
3131 cross_page++;
3132 if (tb->tb_next_offset[0] != 0xffff) {
3133 direct_jmp_count++;
3134 if (tb->tb_next_offset[1] != 0xffff) {
3135 direct_jmp2_count++;
3136 }
3137 }
3138 }
3139 /* XXX: avoid using doubles ? */
57fec1fe 3140 cpu_fprintf(f, "Translation buffer state:\n");
26a5f13b
FB
3141 cpu_fprintf(f, "gen code size %ld/%ld\n",
3142 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3143 cpu_fprintf(f, "TB count %d/%d\n",
3144 nb_tbs, code_gen_max_blocks);
5fafdf24 3145 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
3146 nb_tbs ? target_code_size / nb_tbs : 0,
3147 max_target_code_size);
5fafdf24 3148 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
3149 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3150 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
3151 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3152 cross_page,
e3db7226
FB
3153 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3154 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 3155 direct_jmp_count,
e3db7226
FB
3156 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3157 direct_jmp2_count,
3158 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 3159 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
3160 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3161 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3162 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 3163 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
3164}
3165
5fafdf24 3166#if !defined(CONFIG_USER_ONLY)
61382a50
FB
3167
3168#define MMUSUFFIX _cmmu
3169#define GETPC() NULL
3170#define env cpu_single_env
b769d8fe 3171#define SOFTMMU_CODE_ACCESS
61382a50
FB
3172
3173#define SHIFT 0
3174#include "softmmu_template.h"
3175
3176#define SHIFT 1
3177#include "softmmu_template.h"
3178
3179#define SHIFT 2
3180#include "softmmu_template.h"
3181
3182#define SHIFT 3
3183#include "softmmu_template.h"
3184
3185#undef env
3186
3187#endif