]> git.proxmox.com Git - qemu.git/blame - exec.c
Respect length of watchpoints (Jan Kiszka)
[qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
67b915a5 20#include "config.h"
d5a8f07c 21#ifdef _WIN32
4fddf62a 22#define WIN32_LEAN_AND_MEAN
d5a8f07c
FB
23#include <windows.h>
24#else
a98d49b1 25#include <sys/types.h>
d5a8f07c
FB
26#include <sys/mman.h>
27#endif
54936004
FB
28#include <stdlib.h>
29#include <stdio.h>
30#include <stdarg.h>
31#include <string.h>
32#include <errno.h>
33#include <unistd.h>
34#include <inttypes.h>
35
6180a181
FB
36#include "cpu.h"
37#include "exec-all.h"
ca10f867 38#include "qemu-common.h"
b67d9a52 39#include "tcg.h"
b3c7724c 40#include "hw/hw.h"
74576198 41#include "osdep.h"
7ba1e619 42#include "kvm.h"
53a5960a
PB
43#if defined(CONFIG_USER_ONLY)
44#include <qemu.h>
45#endif
54936004 46
fd6ce8f6 47//#define DEBUG_TB_INVALIDATE
66e85a21 48//#define DEBUG_FLUSH
9fa3e853 49//#define DEBUG_TLB
67d3b957 50//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
51
52/* make various TB consistency checks */
5fafdf24
TS
53//#define DEBUG_TB_CHECK
54//#define DEBUG_TLB_CHECK
fd6ce8f6 55
1196be37 56//#define DEBUG_IOPORT
db7b5426 57//#define DEBUG_SUBPAGE
1196be37 58
99773bd4
PB
59#if !defined(CONFIG_USER_ONLY)
60/* TB consistency checks only implemented for usermode emulation. */
61#undef DEBUG_TB_CHECK
62#endif
63
9fa3e853
FB
64#define SMC_BITMAP_USE_THRESHOLD 10
65
66#define MMAP_AREA_START 0x00000000
67#define MMAP_AREA_END 0xa8000000
fd6ce8f6 68
108c49b8
FB
69#if defined(TARGET_SPARC64)
70#define TARGET_PHYS_ADDR_SPACE_BITS 41
5dcb6b91
BS
71#elif defined(TARGET_SPARC)
72#define TARGET_PHYS_ADDR_SPACE_BITS 36
bedb69ea
JM
73#elif defined(TARGET_ALPHA)
74#define TARGET_PHYS_ADDR_SPACE_BITS 42
75#define TARGET_VIRT_ADDR_SPACE_BITS 42
108c49b8
FB
76#elif defined(TARGET_PPC64)
77#define TARGET_PHYS_ADDR_SPACE_BITS 42
00f82b8a
AJ
78#elif defined(TARGET_X86_64) && !defined(USE_KQEMU)
79#define TARGET_PHYS_ADDR_SPACE_BITS 42
80#elif defined(TARGET_I386) && !defined(USE_KQEMU)
81#define TARGET_PHYS_ADDR_SPACE_BITS 36
108c49b8
FB
82#else
83/* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
84#define TARGET_PHYS_ADDR_SPACE_BITS 32
85#endif
86
bdaf78e0 87static TranslationBlock *tbs;
26a5f13b 88int code_gen_max_blocks;
9fa3e853 89TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 90static int nb_tbs;
eb51d102
FB
91/* any access to the tbs or the page table must use this lock */
92spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 93
141ac468
BS
94#if defined(__arm__) || defined(__sparc_v9__)
95/* The prologue must be reachable with a direct jump. ARM and Sparc64
96 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
97 section close to code segment. */
98#define code_gen_section \
99 __attribute__((__section__(".gen_code"))) \
100 __attribute__((aligned (32)))
101#else
102#define code_gen_section \
103 __attribute__((aligned (32)))
104#endif
105
106uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
107static uint8_t *code_gen_buffer;
108static unsigned long code_gen_buffer_size;
26a5f13b 109/* threshold to flush the translated code buffer */
bdaf78e0 110static unsigned long code_gen_buffer_max_size;
fd6ce8f6
FB
111uint8_t *code_gen_ptr;
112
e2eef170 113#if !defined(CONFIG_USER_ONLY)
00f82b8a 114ram_addr_t phys_ram_size;
9fa3e853
FB
115int phys_ram_fd;
116uint8_t *phys_ram_base;
1ccde1cb 117uint8_t *phys_ram_dirty;
74576198 118static int in_migration;
e9a1ab19 119static ram_addr_t phys_ram_alloc_offset = 0;
e2eef170 120#endif
9fa3e853 121
6a00d601
FB
122CPUState *first_cpu;
123/* current CPU in the current thread. It is only valid inside
124 cpu_exec() */
5fafdf24 125CPUState *cpu_single_env;
2e70f6ef 126/* 0 = Do not count executed instructions.
bf20dc07 127 1 = Precise instruction counting.
2e70f6ef
PB
128 2 = Adaptive rate instruction counting. */
129int use_icount = 0;
130/* Current instruction counter. While executing translated code this may
131 include some instructions that have not yet been executed. */
132int64_t qemu_icount;
6a00d601 133
54936004 134typedef struct PageDesc {
92e873b9 135 /* list of TBs intersecting this ram page */
fd6ce8f6 136 TranslationBlock *first_tb;
9fa3e853
FB
137 /* in order to optimize self modifying code, we count the number
138 of lookups we do to a given page to use a bitmap */
139 unsigned int code_write_count;
140 uint8_t *code_bitmap;
141#if defined(CONFIG_USER_ONLY)
142 unsigned long flags;
143#endif
54936004
FB
144} PageDesc;
145
92e873b9 146typedef struct PhysPageDesc {
0f459d16 147 /* offset in host memory of the page + io_index in the low bits */
00f82b8a 148 ram_addr_t phys_offset;
92e873b9
FB
149} PhysPageDesc;
150
54936004 151#define L2_BITS 10
bedb69ea
JM
152#if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
153/* XXX: this is a temporary hack for alpha target.
154 * In the future, this is to be replaced by a multi-level table
155 * to actually be able to handle the complete 64 bits address space.
156 */
157#define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
158#else
03875444 159#define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
bedb69ea 160#endif
54936004
FB
161
162#define L1_SIZE (1 << L1_BITS)
163#define L2_SIZE (1 << L2_BITS)
164
83fb7adf
FB
165unsigned long qemu_real_host_page_size;
166unsigned long qemu_host_page_bits;
167unsigned long qemu_host_page_size;
168unsigned long qemu_host_page_mask;
54936004 169
92e873b9 170/* XXX: for system emulation, it could just be an array */
54936004 171static PageDesc *l1_map[L1_SIZE];
bdaf78e0 172static PhysPageDesc **l1_phys_map;
54936004 173
e2eef170
PB
174#if !defined(CONFIG_USER_ONLY)
175static void io_mem_init(void);
176
33417e70 177/* io memory support */
33417e70
FB
178CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
179CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 180void *io_mem_opaque[IO_MEM_NB_ENTRIES];
33417e70 181static int io_mem_nb;
6658ffb8
PB
182static int io_mem_watch;
183#endif
33417e70 184
34865134 185/* log support */
d9b630fd 186static const char *logfilename = "/tmp/qemu.log";
34865134
FB
187FILE *logfile;
188int loglevel;
e735b91c 189static int log_append = 0;
34865134 190
e3db7226
FB
191/* statistics */
192static int tlb_flush_count;
193static int tb_flush_count;
194static int tb_phys_invalidate_count;
195
db7b5426
BS
196#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
197typedef struct subpage_t {
198 target_phys_addr_t base;
3ee89922
BS
199 CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4];
200 CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4];
201 void *opaque[TARGET_PAGE_SIZE][2][4];
db7b5426
BS
202} subpage_t;
203
7cb69cae
FB
204#ifdef _WIN32
205static void map_exec(void *addr, long size)
206{
207 DWORD old_protect;
208 VirtualProtect(addr, size,
209 PAGE_EXECUTE_READWRITE, &old_protect);
210
211}
212#else
213static void map_exec(void *addr, long size)
214{
4369415f 215 unsigned long start, end, page_size;
7cb69cae 216
4369415f 217 page_size = getpagesize();
7cb69cae 218 start = (unsigned long)addr;
4369415f 219 start &= ~(page_size - 1);
7cb69cae
FB
220
221 end = (unsigned long)addr + size;
4369415f
FB
222 end += page_size - 1;
223 end &= ~(page_size - 1);
7cb69cae
FB
224
225 mprotect((void *)start, end - start,
226 PROT_READ | PROT_WRITE | PROT_EXEC);
227}
228#endif
229
b346ff46 230static void page_init(void)
54936004 231{
83fb7adf 232 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 233 TARGET_PAGE_SIZE */
c2b48b69
AL
234#ifdef _WIN32
235 {
236 SYSTEM_INFO system_info;
237
238 GetSystemInfo(&system_info);
239 qemu_real_host_page_size = system_info.dwPageSize;
240 }
241#else
242 qemu_real_host_page_size = getpagesize();
243#endif
83fb7adf
FB
244 if (qemu_host_page_size == 0)
245 qemu_host_page_size = qemu_real_host_page_size;
246 if (qemu_host_page_size < TARGET_PAGE_SIZE)
247 qemu_host_page_size = TARGET_PAGE_SIZE;
248 qemu_host_page_bits = 0;
249 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
250 qemu_host_page_bits++;
251 qemu_host_page_mask = ~(qemu_host_page_size - 1);
108c49b8
FB
252 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
253 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
50a9569b
AZ
254
255#if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
256 {
257 long long startaddr, endaddr;
258 FILE *f;
259 int n;
260
c8a706fe 261 mmap_lock();
0776590d 262 last_brk = (unsigned long)sbrk(0);
50a9569b
AZ
263 f = fopen("/proc/self/maps", "r");
264 if (f) {
265 do {
266 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
267 if (n == 2) {
e0b8d65a
BS
268 startaddr = MIN(startaddr,
269 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
270 endaddr = MIN(endaddr,
271 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
b5fc909e 272 page_set_flags(startaddr & TARGET_PAGE_MASK,
50a9569b
AZ
273 TARGET_PAGE_ALIGN(endaddr),
274 PAGE_RESERVED);
275 }
276 } while (!feof(f));
277 fclose(f);
278 }
c8a706fe 279 mmap_unlock();
50a9569b
AZ
280 }
281#endif
54936004
FB
282}
283
434929bf 284static inline PageDesc **page_l1_map(target_ulong index)
54936004 285{
17e2377a
PB
286#if TARGET_LONG_BITS > 32
287 /* Host memory outside guest VM. For 32-bit targets we have already
288 excluded high addresses. */
d8173e0f 289 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
17e2377a
PB
290 return NULL;
291#endif
434929bf
AL
292 return &l1_map[index >> L2_BITS];
293}
294
295static inline PageDesc *page_find_alloc(target_ulong index)
296{
297 PageDesc **lp, *p;
298 lp = page_l1_map(index);
299 if (!lp)
300 return NULL;
301
54936004
FB
302 p = *lp;
303 if (!p) {
304 /* allocate if not found */
17e2377a
PB
305#if defined(CONFIG_USER_ONLY)
306 unsigned long addr;
307 size_t len = sizeof(PageDesc) * L2_SIZE;
308 /* Don't use qemu_malloc because it may recurse. */
309 p = mmap(0, len, PROT_READ | PROT_WRITE,
310 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
54936004 311 *lp = p;
17e2377a
PB
312 addr = h2g(p);
313 if (addr == (target_ulong)addr) {
314 page_set_flags(addr & TARGET_PAGE_MASK,
315 TARGET_PAGE_ALIGN(addr + len),
316 PAGE_RESERVED);
317 }
318#else
319 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
320 *lp = p;
321#endif
54936004
FB
322 }
323 return p + (index & (L2_SIZE - 1));
324}
325
00f82b8a 326static inline PageDesc *page_find(target_ulong index)
54936004 327{
434929bf
AL
328 PageDesc **lp, *p;
329 lp = page_l1_map(index);
330 if (!lp)
331 return NULL;
54936004 332
434929bf 333 p = *lp;
54936004
FB
334 if (!p)
335 return 0;
fd6ce8f6
FB
336 return p + (index & (L2_SIZE - 1));
337}
338
108c49b8 339static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 340{
108c49b8 341 void **lp, **p;
e3f4e2a4 342 PhysPageDesc *pd;
92e873b9 343
108c49b8
FB
344 p = (void **)l1_phys_map;
345#if TARGET_PHYS_ADDR_SPACE_BITS > 32
346
347#if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
348#error unsupported TARGET_PHYS_ADDR_SPACE_BITS
349#endif
350 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
92e873b9
FB
351 p = *lp;
352 if (!p) {
353 /* allocate if not found */
108c49b8
FB
354 if (!alloc)
355 return NULL;
356 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
357 memset(p, 0, sizeof(void *) * L1_SIZE);
358 *lp = p;
359 }
360#endif
361 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
e3f4e2a4
PB
362 pd = *lp;
363 if (!pd) {
364 int i;
108c49b8
FB
365 /* allocate if not found */
366 if (!alloc)
367 return NULL;
e3f4e2a4
PB
368 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
369 *lp = pd;
370 for (i = 0; i < L2_SIZE; i++)
371 pd[i].phys_offset = IO_MEM_UNASSIGNED;
92e873b9 372 }
e3f4e2a4 373 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
92e873b9
FB
374}
375
108c49b8 376static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 377{
108c49b8 378 return phys_page_find_alloc(index, 0);
92e873b9
FB
379}
380
9fa3e853 381#if !defined(CONFIG_USER_ONLY)
6a00d601 382static void tlb_protect_code(ram_addr_t ram_addr);
5fafdf24 383static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 384 target_ulong vaddr);
c8a706fe
PB
385#define mmap_lock() do { } while(0)
386#define mmap_unlock() do { } while(0)
9fa3e853 387#endif
fd6ce8f6 388
4369415f
FB
389#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
390
391#if defined(CONFIG_USER_ONLY)
392/* Currently it is not recommanded to allocate big chunks of data in
393 user mode. It will change when a dedicated libc will be used */
394#define USE_STATIC_CODE_GEN_BUFFER
395#endif
396
397#ifdef USE_STATIC_CODE_GEN_BUFFER
398static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
399#endif
400
8fcd3692 401static void code_gen_alloc(unsigned long tb_size)
26a5f13b 402{
4369415f
FB
403#ifdef USE_STATIC_CODE_GEN_BUFFER
404 code_gen_buffer = static_code_gen_buffer;
405 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
406 map_exec(code_gen_buffer, code_gen_buffer_size);
407#else
26a5f13b
FB
408 code_gen_buffer_size = tb_size;
409 if (code_gen_buffer_size == 0) {
4369415f
FB
410#if defined(CONFIG_USER_ONLY)
411 /* in user mode, phys_ram_size is not meaningful */
412 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
413#else
26a5f13b 414 /* XXX: needs ajustments */
174a9a1f 415 code_gen_buffer_size = (unsigned long)(phys_ram_size / 4);
4369415f 416#endif
26a5f13b
FB
417 }
418 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
419 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
420 /* The code gen buffer location may have constraints depending on
421 the host cpu and OS */
422#if defined(__linux__)
423 {
424 int flags;
141ac468
BS
425 void *start = NULL;
426
26a5f13b
FB
427 flags = MAP_PRIVATE | MAP_ANONYMOUS;
428#if defined(__x86_64__)
429 flags |= MAP_32BIT;
430 /* Cannot map more than that */
431 if (code_gen_buffer_size > (800 * 1024 * 1024))
432 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
433#elif defined(__sparc_v9__)
434 // Map the buffer below 2G, so we can use direct calls and branches
435 flags |= MAP_FIXED;
436 start = (void *) 0x60000000UL;
437 if (code_gen_buffer_size > (512 * 1024 * 1024))
438 code_gen_buffer_size = (512 * 1024 * 1024);
26a5f13b 439#endif
141ac468
BS
440 code_gen_buffer = mmap(start, code_gen_buffer_size,
441 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
442 flags, -1, 0);
443 if (code_gen_buffer == MAP_FAILED) {
444 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
445 exit(1);
446 }
447 }
06e67a82
AL
448#elif defined(__FreeBSD__)
449 {
450 int flags;
451 void *addr = NULL;
452 flags = MAP_PRIVATE | MAP_ANONYMOUS;
453#if defined(__x86_64__)
454 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
455 * 0x40000000 is free */
456 flags |= MAP_FIXED;
457 addr = (void *)0x40000000;
458 /* Cannot map more than that */
459 if (code_gen_buffer_size > (800 * 1024 * 1024))
460 code_gen_buffer_size = (800 * 1024 * 1024);
461#endif
462 code_gen_buffer = mmap(addr, code_gen_buffer_size,
463 PROT_WRITE | PROT_READ | PROT_EXEC,
464 flags, -1, 0);
465 if (code_gen_buffer == MAP_FAILED) {
466 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
467 exit(1);
468 }
469 }
26a5f13b
FB
470#else
471 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
472 if (!code_gen_buffer) {
473 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
474 exit(1);
475 }
476 map_exec(code_gen_buffer, code_gen_buffer_size);
477#endif
4369415f 478#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b
FB
479 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
480 code_gen_buffer_max_size = code_gen_buffer_size -
481 code_gen_max_block_size();
482 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
483 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
484}
485
486/* Must be called before using the QEMU cpus. 'tb_size' is the size
487 (in bytes) allocated to the translation buffer. Zero means default
488 size. */
489void cpu_exec_init_all(unsigned long tb_size)
490{
26a5f13b
FB
491 cpu_gen_init();
492 code_gen_alloc(tb_size);
493 code_gen_ptr = code_gen_buffer;
4369415f 494 page_init();
e2eef170 495#if !defined(CONFIG_USER_ONLY)
26a5f13b 496 io_mem_init();
e2eef170 497#endif
26a5f13b
FB
498}
499
9656f324
PB
500#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
501
502#define CPU_COMMON_SAVE_VERSION 1
503
504static void cpu_common_save(QEMUFile *f, void *opaque)
505{
506 CPUState *env = opaque;
507
508 qemu_put_be32s(f, &env->halted);
509 qemu_put_be32s(f, &env->interrupt_request);
510}
511
512static int cpu_common_load(QEMUFile *f, void *opaque, int version_id)
513{
514 CPUState *env = opaque;
515
516 if (version_id != CPU_COMMON_SAVE_VERSION)
517 return -EINVAL;
518
519 qemu_get_be32s(f, &env->halted);
75f482ae 520 qemu_get_be32s(f, &env->interrupt_request);
9656f324
PB
521 tlb_flush(env, 1);
522
523 return 0;
524}
525#endif
526
6a00d601 527void cpu_exec_init(CPUState *env)
fd6ce8f6 528{
6a00d601
FB
529 CPUState **penv;
530 int cpu_index;
531
6a00d601
FB
532 env->next_cpu = NULL;
533 penv = &first_cpu;
534 cpu_index = 0;
535 while (*penv != NULL) {
536 penv = (CPUState **)&(*penv)->next_cpu;
537 cpu_index++;
538 }
539 env->cpu_index = cpu_index;
540 *penv = env;
b3c7724c 541#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
9656f324
PB
542 register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION,
543 cpu_common_save, cpu_common_load, env);
b3c7724c
PB
544 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
545 cpu_save, cpu_load, env);
546#endif
fd6ce8f6
FB
547}
548
9fa3e853
FB
549static inline void invalidate_page_bitmap(PageDesc *p)
550{
551 if (p->code_bitmap) {
59817ccb 552 qemu_free(p->code_bitmap);
9fa3e853
FB
553 p->code_bitmap = NULL;
554 }
555 p->code_write_count = 0;
556}
557
fd6ce8f6
FB
558/* set to NULL all the 'first_tb' fields in all PageDescs */
559static void page_flush_tb(void)
560{
561 int i, j;
562 PageDesc *p;
563
564 for(i = 0; i < L1_SIZE; i++) {
565 p = l1_map[i];
566 if (p) {
9fa3e853
FB
567 for(j = 0; j < L2_SIZE; j++) {
568 p->first_tb = NULL;
569 invalidate_page_bitmap(p);
570 p++;
571 }
fd6ce8f6
FB
572 }
573 }
574}
575
576/* flush all the translation blocks */
d4e8164f 577/* XXX: tb_flush is currently not thread safe */
6a00d601 578void tb_flush(CPUState *env1)
fd6ce8f6 579{
6a00d601 580 CPUState *env;
0124311e 581#if defined(DEBUG_FLUSH)
ab3d1727
BS
582 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
583 (unsigned long)(code_gen_ptr - code_gen_buffer),
584 nb_tbs, nb_tbs > 0 ?
585 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 586#endif
26a5f13b 587 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
588 cpu_abort(env1, "Internal error: code buffer overflow\n");
589
fd6ce8f6 590 nb_tbs = 0;
3b46e624 591
6a00d601
FB
592 for(env = first_cpu; env != NULL; env = env->next_cpu) {
593 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
594 }
9fa3e853 595
8a8a608f 596 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 597 page_flush_tb();
9fa3e853 598
fd6ce8f6 599 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
600 /* XXX: flush processor icache at this point if cache flush is
601 expensive */
e3db7226 602 tb_flush_count++;
fd6ce8f6
FB
603}
604
605#ifdef DEBUG_TB_CHECK
606
bc98a7ef 607static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
608{
609 TranslationBlock *tb;
610 int i;
611 address &= TARGET_PAGE_MASK;
99773bd4
PB
612 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
613 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
614 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
615 address >= tb->pc + tb->size)) {
616 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
99773bd4 617 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
618 }
619 }
620 }
621}
622
623/* verify that all the pages have correct rights for code */
624static void tb_page_check(void)
625{
626 TranslationBlock *tb;
627 int i, flags1, flags2;
3b46e624 628
99773bd4
PB
629 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
630 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
631 flags1 = page_get_flags(tb->pc);
632 flags2 = page_get_flags(tb->pc + tb->size - 1);
633 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
634 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 635 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
636 }
637 }
638 }
639}
640
bdaf78e0 641static void tb_jmp_check(TranslationBlock *tb)
d4e8164f
FB
642{
643 TranslationBlock *tb1;
644 unsigned int n1;
645
646 /* suppress any remaining jumps to this TB */
647 tb1 = tb->jmp_first;
648 for(;;) {
649 n1 = (long)tb1 & 3;
650 tb1 = (TranslationBlock *)((long)tb1 & ~3);
651 if (n1 == 2)
652 break;
653 tb1 = tb1->jmp_next[n1];
654 }
655 /* check end of list */
656 if (tb1 != tb) {
657 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
658 }
659}
660
fd6ce8f6
FB
661#endif
662
663/* invalidate one TB */
664static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
665 int next_offset)
666{
667 TranslationBlock *tb1;
668 for(;;) {
669 tb1 = *ptb;
670 if (tb1 == tb) {
671 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
672 break;
673 }
674 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
675 }
676}
677
9fa3e853
FB
678static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
679{
680 TranslationBlock *tb1;
681 unsigned int n1;
682
683 for(;;) {
684 tb1 = *ptb;
685 n1 = (long)tb1 & 3;
686 tb1 = (TranslationBlock *)((long)tb1 & ~3);
687 if (tb1 == tb) {
688 *ptb = tb1->page_next[n1];
689 break;
690 }
691 ptb = &tb1->page_next[n1];
692 }
693}
694
d4e8164f
FB
695static inline void tb_jmp_remove(TranslationBlock *tb, int n)
696{
697 TranslationBlock *tb1, **ptb;
698 unsigned int n1;
699
700 ptb = &tb->jmp_next[n];
701 tb1 = *ptb;
702 if (tb1) {
703 /* find tb(n) in circular list */
704 for(;;) {
705 tb1 = *ptb;
706 n1 = (long)tb1 & 3;
707 tb1 = (TranslationBlock *)((long)tb1 & ~3);
708 if (n1 == n && tb1 == tb)
709 break;
710 if (n1 == 2) {
711 ptb = &tb1->jmp_first;
712 } else {
713 ptb = &tb1->jmp_next[n1];
714 }
715 }
716 /* now we can suppress tb(n) from the list */
717 *ptb = tb->jmp_next[n];
718
719 tb->jmp_next[n] = NULL;
720 }
721}
722
723/* reset the jump entry 'n' of a TB so that it is not chained to
724 another TB */
725static inline void tb_reset_jump(TranslationBlock *tb, int n)
726{
727 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
728}
729
2e70f6ef 730void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
fd6ce8f6 731{
6a00d601 732 CPUState *env;
8a40a180 733 PageDesc *p;
d4e8164f 734 unsigned int h, n1;
00f82b8a 735 target_phys_addr_t phys_pc;
8a40a180 736 TranslationBlock *tb1, *tb2;
3b46e624 737
8a40a180
FB
738 /* remove the TB from the hash list */
739 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
740 h = tb_phys_hash_func(phys_pc);
5fafdf24 741 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
742 offsetof(TranslationBlock, phys_hash_next));
743
744 /* remove the TB from the page list */
745 if (tb->page_addr[0] != page_addr) {
746 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
747 tb_page_remove(&p->first_tb, tb);
748 invalidate_page_bitmap(p);
749 }
750 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
751 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
752 tb_page_remove(&p->first_tb, tb);
753 invalidate_page_bitmap(p);
754 }
755
36bdbe54 756 tb_invalidated_flag = 1;
59817ccb 757
fd6ce8f6 758 /* remove the TB from the hash list */
8a40a180 759 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
760 for(env = first_cpu; env != NULL; env = env->next_cpu) {
761 if (env->tb_jmp_cache[h] == tb)
762 env->tb_jmp_cache[h] = NULL;
763 }
d4e8164f
FB
764
765 /* suppress this TB from the two jump lists */
766 tb_jmp_remove(tb, 0);
767 tb_jmp_remove(tb, 1);
768
769 /* suppress any remaining jumps to this TB */
770 tb1 = tb->jmp_first;
771 for(;;) {
772 n1 = (long)tb1 & 3;
773 if (n1 == 2)
774 break;
775 tb1 = (TranslationBlock *)((long)tb1 & ~3);
776 tb2 = tb1->jmp_next[n1];
777 tb_reset_jump(tb1, n1);
778 tb1->jmp_next[n1] = NULL;
779 tb1 = tb2;
780 }
781 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 782
e3db7226 783 tb_phys_invalidate_count++;
9fa3e853
FB
784}
785
786static inline void set_bits(uint8_t *tab, int start, int len)
787{
788 int end, mask, end1;
789
790 end = start + len;
791 tab += start >> 3;
792 mask = 0xff << (start & 7);
793 if ((start & ~7) == (end & ~7)) {
794 if (start < end) {
795 mask &= ~(0xff << (end & 7));
796 *tab |= mask;
797 }
798 } else {
799 *tab++ |= mask;
800 start = (start + 8) & ~7;
801 end1 = end & ~7;
802 while (start < end1) {
803 *tab++ = 0xff;
804 start += 8;
805 }
806 if (start < end) {
807 mask = ~(0xff << (end & 7));
808 *tab |= mask;
809 }
810 }
811}
812
813static void build_page_bitmap(PageDesc *p)
814{
815 int n, tb_start, tb_end;
816 TranslationBlock *tb;
3b46e624 817
b2a7081a 818 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
819 if (!p->code_bitmap)
820 return;
9fa3e853
FB
821
822 tb = p->first_tb;
823 while (tb != NULL) {
824 n = (long)tb & 3;
825 tb = (TranslationBlock *)((long)tb & ~3);
826 /* NOTE: this is subtle as a TB may span two physical pages */
827 if (n == 0) {
828 /* NOTE: tb_end may be after the end of the page, but
829 it is not a problem */
830 tb_start = tb->pc & ~TARGET_PAGE_MASK;
831 tb_end = tb_start + tb->size;
832 if (tb_end > TARGET_PAGE_SIZE)
833 tb_end = TARGET_PAGE_SIZE;
834 } else {
835 tb_start = 0;
836 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
837 }
838 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
839 tb = tb->page_next[n];
840 }
841}
842
2e70f6ef
PB
843TranslationBlock *tb_gen_code(CPUState *env,
844 target_ulong pc, target_ulong cs_base,
845 int flags, int cflags)
d720b93d
FB
846{
847 TranslationBlock *tb;
848 uint8_t *tc_ptr;
849 target_ulong phys_pc, phys_page2, virt_page2;
850 int code_gen_size;
851
c27004ec
FB
852 phys_pc = get_phys_addr_code(env, pc);
853 tb = tb_alloc(pc);
d720b93d
FB
854 if (!tb) {
855 /* flush must be done */
856 tb_flush(env);
857 /* cannot fail at this point */
c27004ec 858 tb = tb_alloc(pc);
2e70f6ef
PB
859 /* Don't forget to invalidate previous TB info. */
860 tb_invalidated_flag = 1;
d720b93d
FB
861 }
862 tc_ptr = code_gen_ptr;
863 tb->tc_ptr = tc_ptr;
864 tb->cs_base = cs_base;
865 tb->flags = flags;
866 tb->cflags = cflags;
d07bde88 867 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 868 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 869
d720b93d 870 /* check next page if needed */
c27004ec 871 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 872 phys_page2 = -1;
c27004ec 873 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
d720b93d
FB
874 phys_page2 = get_phys_addr_code(env, virt_page2);
875 }
876 tb_link_phys(tb, phys_pc, phys_page2);
2e70f6ef 877 return tb;
d720b93d 878}
3b46e624 879
9fa3e853
FB
880/* invalidate all TBs which intersect with the target physical page
881 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
882 the same physical page. 'is_cpu_write_access' should be true if called
883 from a real cpu write access: the virtual CPU will exit the current
884 TB if code is modified inside this TB. */
00f82b8a 885void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
d720b93d
FB
886 int is_cpu_write_access)
887{
6b917547 888 TranslationBlock *tb, *tb_next, *saved_tb;
d720b93d 889 CPUState *env = cpu_single_env;
9fa3e853 890 target_ulong tb_start, tb_end;
6b917547
AL
891 PageDesc *p;
892 int n;
893#ifdef TARGET_HAS_PRECISE_SMC
894 int current_tb_not_found = is_cpu_write_access;
895 TranslationBlock *current_tb = NULL;
896 int current_tb_modified = 0;
897 target_ulong current_pc = 0;
898 target_ulong current_cs_base = 0;
899 int current_flags = 0;
900#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
901
902 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 903 if (!p)
9fa3e853 904 return;
5fafdf24 905 if (!p->code_bitmap &&
d720b93d
FB
906 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
907 is_cpu_write_access) {
9fa3e853
FB
908 /* build code bitmap */
909 build_page_bitmap(p);
910 }
911
912 /* we remove all the TBs in the range [start, end[ */
913 /* XXX: see if in some cases it could be faster to invalidate all the code */
914 tb = p->first_tb;
915 while (tb != NULL) {
916 n = (long)tb & 3;
917 tb = (TranslationBlock *)((long)tb & ~3);
918 tb_next = tb->page_next[n];
919 /* NOTE: this is subtle as a TB may span two physical pages */
920 if (n == 0) {
921 /* NOTE: tb_end may be after the end of the page, but
922 it is not a problem */
923 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
924 tb_end = tb_start + tb->size;
925 } else {
926 tb_start = tb->page_addr[1];
927 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
928 }
929 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
930#ifdef TARGET_HAS_PRECISE_SMC
931 if (current_tb_not_found) {
932 current_tb_not_found = 0;
933 current_tb = NULL;
2e70f6ef 934 if (env->mem_io_pc) {
d720b93d 935 /* now we have a real cpu fault */
2e70f6ef 936 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
937 }
938 }
939 if (current_tb == tb &&
2e70f6ef 940 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
941 /* If we are modifying the current TB, we must stop
942 its execution. We could be more precise by checking
943 that the modification is after the current PC, but it
944 would require a specialized function to partially
945 restore the CPU state */
3b46e624 946
d720b93d 947 current_tb_modified = 1;
5fafdf24 948 cpu_restore_state(current_tb, env,
2e70f6ef 949 env->mem_io_pc, NULL);
6b917547
AL
950 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
951 &current_flags);
d720b93d
FB
952 }
953#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
954 /* we need to do that to handle the case where a signal
955 occurs while doing tb_phys_invalidate() */
956 saved_tb = NULL;
957 if (env) {
958 saved_tb = env->current_tb;
959 env->current_tb = NULL;
960 }
9fa3e853 961 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
962 if (env) {
963 env->current_tb = saved_tb;
964 if (env->interrupt_request && env->current_tb)
965 cpu_interrupt(env, env->interrupt_request);
966 }
9fa3e853
FB
967 }
968 tb = tb_next;
969 }
970#if !defined(CONFIG_USER_ONLY)
971 /* if no code remaining, no need to continue to use slow writes */
972 if (!p->first_tb) {
973 invalidate_page_bitmap(p);
d720b93d 974 if (is_cpu_write_access) {
2e70f6ef 975 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
976 }
977 }
978#endif
979#ifdef TARGET_HAS_PRECISE_SMC
980 if (current_tb_modified) {
981 /* we generate a block containing just the instruction
982 modifying the memory. It will ensure that it cannot modify
983 itself */
ea1c1802 984 env->current_tb = NULL;
2e70f6ef 985 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 986 cpu_resume_from_signal(env, NULL);
9fa3e853 987 }
fd6ce8f6 988#endif
9fa3e853 989}
fd6ce8f6 990
9fa3e853 991/* len must be <= 8 and start must be a multiple of len */
00f82b8a 992static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
9fa3e853
FB
993{
994 PageDesc *p;
995 int offset, b;
59817ccb 996#if 0
a4193c8a
FB
997 if (1) {
998 if (loglevel) {
5fafdf24 999 fprintf(logfile, "modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
2e70f6ef 1000 cpu_single_env->mem_io_vaddr, len,
5fafdf24 1001 cpu_single_env->eip,
a4193c8a
FB
1002 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1003 }
59817ccb
FB
1004 }
1005#endif
9fa3e853 1006 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1007 if (!p)
9fa3e853
FB
1008 return;
1009 if (p->code_bitmap) {
1010 offset = start & ~TARGET_PAGE_MASK;
1011 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1012 if (b & ((1 << len) - 1))
1013 goto do_invalidate;
1014 } else {
1015 do_invalidate:
d720b93d 1016 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1017 }
1018}
1019
9fa3e853 1020#if !defined(CONFIG_SOFTMMU)
00f82b8a 1021static void tb_invalidate_phys_page(target_phys_addr_t addr,
d720b93d 1022 unsigned long pc, void *puc)
9fa3e853 1023{
6b917547 1024 TranslationBlock *tb;
9fa3e853 1025 PageDesc *p;
6b917547 1026 int n;
d720b93d 1027#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1028 TranslationBlock *current_tb = NULL;
d720b93d 1029 CPUState *env = cpu_single_env;
6b917547
AL
1030 int current_tb_modified = 0;
1031 target_ulong current_pc = 0;
1032 target_ulong current_cs_base = 0;
1033 int current_flags = 0;
d720b93d 1034#endif
9fa3e853
FB
1035
1036 addr &= TARGET_PAGE_MASK;
1037 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1038 if (!p)
9fa3e853
FB
1039 return;
1040 tb = p->first_tb;
d720b93d
FB
1041#ifdef TARGET_HAS_PRECISE_SMC
1042 if (tb && pc != 0) {
1043 current_tb = tb_find_pc(pc);
1044 }
1045#endif
9fa3e853
FB
1046 while (tb != NULL) {
1047 n = (long)tb & 3;
1048 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1049#ifdef TARGET_HAS_PRECISE_SMC
1050 if (current_tb == tb &&
2e70f6ef 1051 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1052 /* If we are modifying the current TB, we must stop
1053 its execution. We could be more precise by checking
1054 that the modification is after the current PC, but it
1055 would require a specialized function to partially
1056 restore the CPU state */
3b46e624 1057
d720b93d
FB
1058 current_tb_modified = 1;
1059 cpu_restore_state(current_tb, env, pc, puc);
6b917547
AL
1060 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1061 &current_flags);
d720b93d
FB
1062 }
1063#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1064 tb_phys_invalidate(tb, addr);
1065 tb = tb->page_next[n];
1066 }
fd6ce8f6 1067 p->first_tb = NULL;
d720b93d
FB
1068#ifdef TARGET_HAS_PRECISE_SMC
1069 if (current_tb_modified) {
1070 /* we generate a block containing just the instruction
1071 modifying the memory. It will ensure that it cannot modify
1072 itself */
ea1c1802 1073 env->current_tb = NULL;
2e70f6ef 1074 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1075 cpu_resume_from_signal(env, puc);
1076 }
1077#endif
fd6ce8f6 1078}
9fa3e853 1079#endif
fd6ce8f6
FB
1080
1081/* add the tb in the target page and protect it if necessary */
5fafdf24 1082static inline void tb_alloc_page(TranslationBlock *tb,
53a5960a 1083 unsigned int n, target_ulong page_addr)
fd6ce8f6
FB
1084{
1085 PageDesc *p;
9fa3e853
FB
1086 TranslationBlock *last_first_tb;
1087
1088 tb->page_addr[n] = page_addr;
3a7d929e 1089 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
9fa3e853
FB
1090 tb->page_next[n] = p->first_tb;
1091 last_first_tb = p->first_tb;
1092 p->first_tb = (TranslationBlock *)((long)tb | n);
1093 invalidate_page_bitmap(p);
fd6ce8f6 1094
107db443 1095#if defined(TARGET_HAS_SMC) || 1
d720b93d 1096
9fa3e853 1097#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1098 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1099 target_ulong addr;
1100 PageDesc *p2;
9fa3e853
FB
1101 int prot;
1102
fd6ce8f6
FB
1103 /* force the host page as non writable (writes will have a
1104 page fault + mprotect overhead) */
53a5960a 1105 page_addr &= qemu_host_page_mask;
fd6ce8f6 1106 prot = 0;
53a5960a
PB
1107 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1108 addr += TARGET_PAGE_SIZE) {
1109
1110 p2 = page_find (addr >> TARGET_PAGE_BITS);
1111 if (!p2)
1112 continue;
1113 prot |= p2->flags;
1114 p2->flags &= ~PAGE_WRITE;
1115 page_get_flags(addr);
1116 }
5fafdf24 1117 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1118 (prot & PAGE_BITS) & ~PAGE_WRITE);
1119#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1120 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1121 page_addr);
fd6ce8f6 1122#endif
fd6ce8f6 1123 }
9fa3e853
FB
1124#else
1125 /* if some code is already present, then the pages are already
1126 protected. So we handle the case where only the first TB is
1127 allocated in a physical page */
1128 if (!last_first_tb) {
6a00d601 1129 tlb_protect_code(page_addr);
9fa3e853
FB
1130 }
1131#endif
d720b93d
FB
1132
1133#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1134}
1135
1136/* Allocate a new translation block. Flush the translation buffer if
1137 too many translation blocks or too much generated code. */
c27004ec 1138TranslationBlock *tb_alloc(target_ulong pc)
fd6ce8f6
FB
1139{
1140 TranslationBlock *tb;
fd6ce8f6 1141
26a5f13b
FB
1142 if (nb_tbs >= code_gen_max_blocks ||
1143 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
d4e8164f 1144 return NULL;
fd6ce8f6
FB
1145 tb = &tbs[nb_tbs++];
1146 tb->pc = pc;
b448f2f3 1147 tb->cflags = 0;
d4e8164f
FB
1148 return tb;
1149}
1150
2e70f6ef
PB
1151void tb_free(TranslationBlock *tb)
1152{
bf20dc07 1153 /* In practice this is mostly used for single use temporary TB
2e70f6ef
PB
1154 Ignore the hard cases and just back up if this TB happens to
1155 be the last one generated. */
1156 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1157 code_gen_ptr = tb->tc_ptr;
1158 nb_tbs--;
1159 }
1160}
1161
9fa3e853
FB
1162/* add a new TB and link it to the physical page tables. phys_page2 is
1163 (-1) to indicate that only one page contains the TB. */
5fafdf24 1164void tb_link_phys(TranslationBlock *tb,
9fa3e853 1165 target_ulong phys_pc, target_ulong phys_page2)
d4e8164f 1166{
9fa3e853
FB
1167 unsigned int h;
1168 TranslationBlock **ptb;
1169
c8a706fe
PB
1170 /* Grab the mmap lock to stop another thread invalidating this TB
1171 before we are done. */
1172 mmap_lock();
9fa3e853
FB
1173 /* add in the physical hash table */
1174 h = tb_phys_hash_func(phys_pc);
1175 ptb = &tb_phys_hash[h];
1176 tb->phys_hash_next = *ptb;
1177 *ptb = tb;
fd6ce8f6
FB
1178
1179 /* add in the page list */
9fa3e853
FB
1180 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1181 if (phys_page2 != -1)
1182 tb_alloc_page(tb, 1, phys_page2);
1183 else
1184 tb->page_addr[1] = -1;
9fa3e853 1185
d4e8164f
FB
1186 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1187 tb->jmp_next[0] = NULL;
1188 tb->jmp_next[1] = NULL;
1189
1190 /* init original jump addresses */
1191 if (tb->tb_next_offset[0] != 0xffff)
1192 tb_reset_jump(tb, 0);
1193 if (tb->tb_next_offset[1] != 0xffff)
1194 tb_reset_jump(tb, 1);
8a40a180
FB
1195
1196#ifdef DEBUG_TB_CHECK
1197 tb_page_check();
1198#endif
c8a706fe 1199 mmap_unlock();
fd6ce8f6
FB
1200}
1201
9fa3e853
FB
1202/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1203 tb[1].tc_ptr. Return NULL if not found */
1204TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1205{
9fa3e853
FB
1206 int m_min, m_max, m;
1207 unsigned long v;
1208 TranslationBlock *tb;
a513fe19
FB
1209
1210 if (nb_tbs <= 0)
1211 return NULL;
1212 if (tc_ptr < (unsigned long)code_gen_buffer ||
1213 tc_ptr >= (unsigned long)code_gen_ptr)
1214 return NULL;
1215 /* binary search (cf Knuth) */
1216 m_min = 0;
1217 m_max = nb_tbs - 1;
1218 while (m_min <= m_max) {
1219 m = (m_min + m_max) >> 1;
1220 tb = &tbs[m];
1221 v = (unsigned long)tb->tc_ptr;
1222 if (v == tc_ptr)
1223 return tb;
1224 else if (tc_ptr < v) {
1225 m_max = m - 1;
1226 } else {
1227 m_min = m + 1;
1228 }
5fafdf24 1229 }
a513fe19
FB
1230 return &tbs[m_max];
1231}
7501267e 1232
ea041c0e
FB
1233static void tb_reset_jump_recursive(TranslationBlock *tb);
1234
1235static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1236{
1237 TranslationBlock *tb1, *tb_next, **ptb;
1238 unsigned int n1;
1239
1240 tb1 = tb->jmp_next[n];
1241 if (tb1 != NULL) {
1242 /* find head of list */
1243 for(;;) {
1244 n1 = (long)tb1 & 3;
1245 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1246 if (n1 == 2)
1247 break;
1248 tb1 = tb1->jmp_next[n1];
1249 }
1250 /* we are now sure now that tb jumps to tb1 */
1251 tb_next = tb1;
1252
1253 /* remove tb from the jmp_first list */
1254 ptb = &tb_next->jmp_first;
1255 for(;;) {
1256 tb1 = *ptb;
1257 n1 = (long)tb1 & 3;
1258 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1259 if (n1 == n && tb1 == tb)
1260 break;
1261 ptb = &tb1->jmp_next[n1];
1262 }
1263 *ptb = tb->jmp_next[n];
1264 tb->jmp_next[n] = NULL;
3b46e624 1265
ea041c0e
FB
1266 /* suppress the jump to next tb in generated code */
1267 tb_reset_jump(tb, n);
1268
0124311e 1269 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1270 tb_reset_jump_recursive(tb_next);
1271 }
1272}
1273
1274static void tb_reset_jump_recursive(TranslationBlock *tb)
1275{
1276 tb_reset_jump_recursive2(tb, 0);
1277 tb_reset_jump_recursive2(tb, 1);
1278}
1279
1fddef4b 1280#if defined(TARGET_HAS_ICE)
d720b93d
FB
1281static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1282{
9b3c35e0
JM
1283 target_phys_addr_t addr;
1284 target_ulong pd;
c2f07f81
PB
1285 ram_addr_t ram_addr;
1286 PhysPageDesc *p;
d720b93d 1287
c2f07f81
PB
1288 addr = cpu_get_phys_page_debug(env, pc);
1289 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1290 if (!p) {
1291 pd = IO_MEM_UNASSIGNED;
1292 } else {
1293 pd = p->phys_offset;
1294 }
1295 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1296 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1297}
c27004ec 1298#endif
d720b93d 1299
6658ffb8 1300/* Add a watchpoint. */
a1d1bb31
AL
1301int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1302 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1303{
b4051334 1304 target_ulong len_mask = ~(len - 1);
a1d1bb31 1305 CPUWatchpoint *wp;
6658ffb8 1306
b4051334
AL
1307 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1308 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1309 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1310 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1311 return -EINVAL;
1312 }
a1d1bb31
AL
1313 wp = qemu_malloc(sizeof(*wp));
1314 if (!wp)
1315 return -ENOBUFS;
1316
1317 wp->vaddr = addr;
b4051334 1318 wp->len_mask = len_mask;
a1d1bb31
AL
1319 wp->flags = flags;
1320
1321 wp->next = env->watchpoints;
1322 wp->prev = NULL;
1323 if (wp->next)
1324 wp->next->prev = wp;
1325 env->watchpoints = wp;
6658ffb8 1326
6658ffb8
PB
1327 tlb_flush_page(env, addr);
1328 /* FIXME: This flush is needed because of the hack to make memory ops
1329 terminate the TB. It can be removed once the proper IO trap and
1330 re-execute bits are in. */
1331 tb_flush(env);
a1d1bb31
AL
1332
1333 if (watchpoint)
1334 *watchpoint = wp;
1335 return 0;
6658ffb8
PB
1336}
1337
a1d1bb31
AL
1338/* Remove a specific watchpoint. */
1339int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1340 int flags)
6658ffb8 1341{
b4051334 1342 target_ulong len_mask = ~(len - 1);
a1d1bb31 1343 CPUWatchpoint *wp;
6658ffb8 1344
a1d1bb31 1345 for (wp = env->watchpoints; wp != NULL; wp = wp->next) {
b4051334
AL
1346 if (addr == wp->vaddr && len_mask == wp->len_mask
1347 && flags == wp->flags) {
a1d1bb31 1348 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1349 return 0;
1350 }
1351 }
a1d1bb31 1352 return -ENOENT;
6658ffb8
PB
1353}
1354
a1d1bb31
AL
1355/* Remove a specific watchpoint by reference. */
1356void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1357{
1358 if (watchpoint->next)
1359 watchpoint->next->prev = watchpoint->prev;
1360 if (watchpoint->prev)
1361 watchpoint->prev->next = watchpoint->next;
1362 else
1363 env->watchpoints = watchpoint->next;
7d03f82f 1364
a1d1bb31
AL
1365 tlb_flush_page(env, watchpoint->vaddr);
1366
1367 qemu_free(watchpoint);
1368}
1369
1370/* Remove all matching watchpoints. */
1371void cpu_watchpoint_remove_all(CPUState *env, int mask)
1372{
1373 CPUWatchpoint *wp;
1374
1375 for (wp = env->watchpoints; wp != NULL; wp = wp->next)
1376 if (wp->flags & mask)
1377 cpu_watchpoint_remove_by_ref(env, wp);
7d03f82f
EI
1378}
1379
a1d1bb31
AL
1380/* Add a breakpoint. */
1381int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1382 CPUBreakpoint **breakpoint)
4c3a88a2 1383{
1fddef4b 1384#if defined(TARGET_HAS_ICE)
a1d1bb31 1385 CPUBreakpoint *bp;
3b46e624 1386
a1d1bb31
AL
1387 bp = qemu_malloc(sizeof(*bp));
1388 if (!bp)
1389 return -ENOBUFS;
4c3a88a2 1390
a1d1bb31
AL
1391 bp->pc = pc;
1392 bp->flags = flags;
1393
1394 bp->next = env->breakpoints;
1395 bp->prev = NULL;
1396 if (bp->next)
1397 bp->next->prev = bp;
1398 env->breakpoints = bp;
3b46e624 1399
d720b93d 1400 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1401
1402 if (breakpoint)
1403 *breakpoint = bp;
4c3a88a2
FB
1404 return 0;
1405#else
a1d1bb31 1406 return -ENOSYS;
4c3a88a2
FB
1407#endif
1408}
1409
a1d1bb31
AL
1410/* Remove a specific breakpoint. */
1411int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1412{
7d03f82f 1413#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1414 CPUBreakpoint *bp;
1415
1416 for (bp = env->breakpoints; bp != NULL; bp = bp->next) {
1417 if (bp->pc == pc && bp->flags == flags) {
1418 cpu_breakpoint_remove_by_ref(env, bp);
1419 return 0;
1420 }
7d03f82f 1421 }
a1d1bb31
AL
1422 return -ENOENT;
1423#else
1424 return -ENOSYS;
7d03f82f
EI
1425#endif
1426}
1427
a1d1bb31
AL
1428/* Remove a specific breakpoint by reference. */
1429void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1430{
1fddef4b 1431#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1432 if (breakpoint->next)
1433 breakpoint->next->prev = breakpoint->prev;
1434 if (breakpoint->prev)
1435 breakpoint->prev->next = breakpoint->next;
1436 else
1437 env->breakpoints = breakpoint->next;
d720b93d 1438
a1d1bb31
AL
1439 breakpoint_invalidate(env, breakpoint->pc);
1440
1441 qemu_free(breakpoint);
1442#endif
1443}
1444
1445/* Remove all matching breakpoints. */
1446void cpu_breakpoint_remove_all(CPUState *env, int mask)
1447{
1448#if defined(TARGET_HAS_ICE)
1449 CPUBreakpoint *bp;
1450
1451 for (bp = env->breakpoints; bp != NULL; bp = bp->next)
1452 if (bp->flags & mask)
1453 cpu_breakpoint_remove_by_ref(env, bp);
4c3a88a2
FB
1454#endif
1455}
1456
c33a346e
FB
1457/* enable or disable single step mode. EXCP_DEBUG is returned by the
1458 CPU loop after each instruction */
1459void cpu_single_step(CPUState *env, int enabled)
1460{
1fddef4b 1461#if defined(TARGET_HAS_ICE)
c33a346e
FB
1462 if (env->singlestep_enabled != enabled) {
1463 env->singlestep_enabled = enabled;
1464 /* must flush all the translated code to avoid inconsistancies */
9fa3e853 1465 /* XXX: only flush what is necessary */
0124311e 1466 tb_flush(env);
c33a346e
FB
1467 }
1468#endif
1469}
1470
34865134
FB
1471/* enable or disable low levels log */
1472void cpu_set_log(int log_flags)
1473{
1474 loglevel = log_flags;
1475 if (loglevel && !logfile) {
11fcfab4 1476 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1477 if (!logfile) {
1478 perror(logfilename);
1479 _exit(1);
1480 }
9fa3e853
FB
1481#if !defined(CONFIG_SOFTMMU)
1482 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1483 {
b55266b5 1484 static char logfile_buf[4096];
9fa3e853
FB
1485 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1486 }
1487#else
34865134 1488 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1489#endif
e735b91c
PB
1490 log_append = 1;
1491 }
1492 if (!loglevel && logfile) {
1493 fclose(logfile);
1494 logfile = NULL;
34865134
FB
1495 }
1496}
1497
1498void cpu_set_log_filename(const char *filename)
1499{
1500 logfilename = strdup(filename);
e735b91c
PB
1501 if (logfile) {
1502 fclose(logfile);
1503 logfile = NULL;
1504 }
1505 cpu_set_log(loglevel);
34865134 1506}
c33a346e 1507
0124311e 1508/* mask must never be zero, except for A20 change call */
68a79315 1509void cpu_interrupt(CPUState *env, int mask)
ea041c0e 1510{
d5975363 1511#if !defined(USE_NPTL)
ea041c0e 1512 TranslationBlock *tb;
15a51156 1513 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
d5975363 1514#endif
2e70f6ef 1515 int old_mask;
59817ccb 1516
2e70f6ef 1517 old_mask = env->interrupt_request;
d5975363 1518 /* FIXME: This is probably not threadsafe. A different thread could
bf20dc07 1519 be in the middle of a read-modify-write operation. */
68a79315 1520 env->interrupt_request |= mask;
d5975363
PB
1521#if defined(USE_NPTL)
1522 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1523 problem and hope the cpu will stop of its own accord. For userspace
1524 emulation this often isn't actually as bad as it sounds. Often
1525 signals are used primarily to interrupt blocking syscalls. */
1526#else
2e70f6ef 1527 if (use_icount) {
266910c4 1528 env->icount_decr.u16.high = 0xffff;
2e70f6ef
PB
1529#ifndef CONFIG_USER_ONLY
1530 /* CPU_INTERRUPT_EXIT isn't a real interrupt. It just means
1531 an async event happened and we need to process it. */
1532 if (!can_do_io(env)
1533 && (mask & ~(old_mask | CPU_INTERRUPT_EXIT)) != 0) {
1534 cpu_abort(env, "Raised interrupt while not in I/O function");
1535 }
1536#endif
1537 } else {
1538 tb = env->current_tb;
1539 /* if the cpu is currently executing code, we must unlink it and
1540 all the potentially executing TB */
1541 if (tb && !testandset(&interrupt_lock)) {
1542 env->current_tb = NULL;
1543 tb_reset_jump_recursive(tb);
1544 resetlock(&interrupt_lock);
1545 }
ea041c0e 1546 }
d5975363 1547#endif
ea041c0e
FB
1548}
1549
b54ad049
FB
1550void cpu_reset_interrupt(CPUState *env, int mask)
1551{
1552 env->interrupt_request &= ~mask;
1553}
1554
c7cd6a37 1555const CPULogItem cpu_log_items[] = {
5fafdf24 1556 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1557 "show generated host assembly code for each compiled TB" },
1558 { CPU_LOG_TB_IN_ASM, "in_asm",
1559 "show target assembly code for each compiled TB" },
5fafdf24 1560 { CPU_LOG_TB_OP, "op",
57fec1fe 1561 "show micro ops for each compiled TB" },
f193c797 1562 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1563 "show micro ops "
1564#ifdef TARGET_I386
1565 "before eflags optimization and "
f193c797 1566#endif
e01a1157 1567 "after liveness analysis" },
f193c797
FB
1568 { CPU_LOG_INT, "int",
1569 "show interrupts/exceptions in short format" },
1570 { CPU_LOG_EXEC, "exec",
1571 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1572 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1573 "show CPU state before block translation" },
f193c797
FB
1574#ifdef TARGET_I386
1575 { CPU_LOG_PCALL, "pcall",
1576 "show protected mode far calls/returns/exceptions" },
1577#endif
8e3a9fd2 1578#ifdef DEBUG_IOPORT
fd872598
FB
1579 { CPU_LOG_IOPORT, "ioport",
1580 "show all i/o ports accesses" },
8e3a9fd2 1581#endif
f193c797
FB
1582 { 0, NULL, NULL },
1583};
1584
1585static int cmp1(const char *s1, int n, const char *s2)
1586{
1587 if (strlen(s2) != n)
1588 return 0;
1589 return memcmp(s1, s2, n) == 0;
1590}
3b46e624 1591
f193c797
FB
1592/* takes a comma separated list of log masks. Return 0 if error. */
1593int cpu_str_to_log_mask(const char *str)
1594{
c7cd6a37 1595 const CPULogItem *item;
f193c797
FB
1596 int mask;
1597 const char *p, *p1;
1598
1599 p = str;
1600 mask = 0;
1601 for(;;) {
1602 p1 = strchr(p, ',');
1603 if (!p1)
1604 p1 = p + strlen(p);
8e3a9fd2
FB
1605 if(cmp1(p,p1-p,"all")) {
1606 for(item = cpu_log_items; item->mask != 0; item++) {
1607 mask |= item->mask;
1608 }
1609 } else {
f193c797
FB
1610 for(item = cpu_log_items; item->mask != 0; item++) {
1611 if (cmp1(p, p1 - p, item->name))
1612 goto found;
1613 }
1614 return 0;
8e3a9fd2 1615 }
f193c797
FB
1616 found:
1617 mask |= item->mask;
1618 if (*p1 != ',')
1619 break;
1620 p = p1 + 1;
1621 }
1622 return mask;
1623}
ea041c0e 1624
7501267e
FB
1625void cpu_abort(CPUState *env, const char *fmt, ...)
1626{
1627 va_list ap;
493ae1f0 1628 va_list ap2;
7501267e
FB
1629
1630 va_start(ap, fmt);
493ae1f0 1631 va_copy(ap2, ap);
7501267e
FB
1632 fprintf(stderr, "qemu: fatal: ");
1633 vfprintf(stderr, fmt, ap);
1634 fprintf(stderr, "\n");
1635#ifdef TARGET_I386
7fe48483
FB
1636 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1637#else
1638 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1639#endif
924edcae 1640 if (logfile) {
f9373291 1641 fprintf(logfile, "qemu: fatal: ");
493ae1f0 1642 vfprintf(logfile, fmt, ap2);
f9373291
JM
1643 fprintf(logfile, "\n");
1644#ifdef TARGET_I386
1645 cpu_dump_state(env, logfile, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1646#else
1647 cpu_dump_state(env, logfile, fprintf, 0);
1648#endif
924edcae
AZ
1649 fflush(logfile);
1650 fclose(logfile);
1651 }
493ae1f0 1652 va_end(ap2);
f9373291 1653 va_end(ap);
7501267e
FB
1654 abort();
1655}
1656
c5be9f08
TS
1657CPUState *cpu_copy(CPUState *env)
1658{
01ba9816 1659 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1660 /* preserve chaining and index */
1661 CPUState *next_cpu = new_env->next_cpu;
1662 int cpu_index = new_env->cpu_index;
1663 memcpy(new_env, env, sizeof(CPUState));
1664 new_env->next_cpu = next_cpu;
1665 new_env->cpu_index = cpu_index;
1666 return new_env;
1667}
1668
0124311e
FB
1669#if !defined(CONFIG_USER_ONLY)
1670
5c751e99
EI
1671static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1672{
1673 unsigned int i;
1674
1675 /* Discard jump cache entries for any tb which might potentially
1676 overlap the flushed page. */
1677 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1678 memset (&env->tb_jmp_cache[i], 0,
1679 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1680
1681 i = tb_jmp_cache_hash_page(addr);
1682 memset (&env->tb_jmp_cache[i], 0,
1683 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1684}
1685
ee8b7021
FB
1686/* NOTE: if flush_global is true, also flush global entries (not
1687 implemented yet) */
1688void tlb_flush(CPUState *env, int flush_global)
33417e70 1689{
33417e70 1690 int i;
0124311e 1691
9fa3e853
FB
1692#if defined(DEBUG_TLB)
1693 printf("tlb_flush:\n");
1694#endif
0124311e
FB
1695 /* must reset current TB so that interrupts cannot modify the
1696 links while we are modifying them */
1697 env->current_tb = NULL;
1698
33417e70 1699 for(i = 0; i < CPU_TLB_SIZE; i++) {
84b7b8e7
FB
1700 env->tlb_table[0][i].addr_read = -1;
1701 env->tlb_table[0][i].addr_write = -1;
1702 env->tlb_table[0][i].addr_code = -1;
1703 env->tlb_table[1][i].addr_read = -1;
1704 env->tlb_table[1][i].addr_write = -1;
1705 env->tlb_table[1][i].addr_code = -1;
6fa4cea9
JM
1706#if (NB_MMU_MODES >= 3)
1707 env->tlb_table[2][i].addr_read = -1;
1708 env->tlb_table[2][i].addr_write = -1;
1709 env->tlb_table[2][i].addr_code = -1;
1710#if (NB_MMU_MODES == 4)
1711 env->tlb_table[3][i].addr_read = -1;
1712 env->tlb_table[3][i].addr_write = -1;
1713 env->tlb_table[3][i].addr_code = -1;
1714#endif
1715#endif
33417e70 1716 }
9fa3e853 1717
8a40a180 1718 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 1719
0a962c02
FB
1720#ifdef USE_KQEMU
1721 if (env->kqemu_enabled) {
1722 kqemu_flush(env, flush_global);
1723 }
9fa3e853 1724#endif
e3db7226 1725 tlb_flush_count++;
33417e70
FB
1726}
1727
274da6b2 1728static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1729{
5fafdf24 1730 if (addr == (tlb_entry->addr_read &
84b7b8e7 1731 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1732 addr == (tlb_entry->addr_write &
84b7b8e7 1733 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1734 addr == (tlb_entry->addr_code &
84b7b8e7
FB
1735 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1736 tlb_entry->addr_read = -1;
1737 tlb_entry->addr_write = -1;
1738 tlb_entry->addr_code = -1;
1739 }
61382a50
FB
1740}
1741
2e12669a 1742void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 1743{
8a40a180 1744 int i;
0124311e 1745
9fa3e853 1746#if defined(DEBUG_TLB)
108c49b8 1747 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 1748#endif
0124311e
FB
1749 /* must reset current TB so that interrupts cannot modify the
1750 links while we are modifying them */
1751 env->current_tb = NULL;
61382a50
FB
1752
1753 addr &= TARGET_PAGE_MASK;
1754 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
84b7b8e7
FB
1755 tlb_flush_entry(&env->tlb_table[0][i], addr);
1756 tlb_flush_entry(&env->tlb_table[1][i], addr);
6fa4cea9
JM
1757#if (NB_MMU_MODES >= 3)
1758 tlb_flush_entry(&env->tlb_table[2][i], addr);
1759#if (NB_MMU_MODES == 4)
1760 tlb_flush_entry(&env->tlb_table[3][i], addr);
1761#endif
1762#endif
0124311e 1763
5c751e99 1764 tlb_flush_jmp_cache(env, addr);
9fa3e853 1765
0a962c02
FB
1766#ifdef USE_KQEMU
1767 if (env->kqemu_enabled) {
1768 kqemu_flush_page(env, addr);
1769 }
1770#endif
9fa3e853
FB
1771}
1772
9fa3e853
FB
1773/* update the TLBs so that writes to code in the virtual page 'addr'
1774 can be detected */
6a00d601 1775static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 1776{
5fafdf24 1777 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
1778 ram_addr + TARGET_PAGE_SIZE,
1779 CODE_DIRTY_FLAG);
9fa3e853
FB
1780}
1781
9fa3e853 1782/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 1783 tested for self modifying code */
5fafdf24 1784static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 1785 target_ulong vaddr)
9fa3e853 1786{
3a7d929e 1787 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1ccde1cb
FB
1788}
1789
5fafdf24 1790static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
1791 unsigned long start, unsigned long length)
1792{
1793 unsigned long addr;
84b7b8e7
FB
1794 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1795 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 1796 if ((addr - start) < length) {
0f459d16 1797 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
1798 }
1799 }
1800}
1801
3a7d929e 1802void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 1803 int dirty_flags)
1ccde1cb
FB
1804{
1805 CPUState *env;
4f2ac237 1806 unsigned long length, start1;
0a962c02
FB
1807 int i, mask, len;
1808 uint8_t *p;
1ccde1cb
FB
1809
1810 start &= TARGET_PAGE_MASK;
1811 end = TARGET_PAGE_ALIGN(end);
1812
1813 length = end - start;
1814 if (length == 0)
1815 return;
0a962c02 1816 len = length >> TARGET_PAGE_BITS;
3a7d929e 1817#ifdef USE_KQEMU
6a00d601
FB
1818 /* XXX: should not depend on cpu context */
1819 env = first_cpu;
3a7d929e 1820 if (env->kqemu_enabled) {
f23db169
FB
1821 ram_addr_t addr;
1822 addr = start;
1823 for(i = 0; i < len; i++) {
1824 kqemu_set_notdirty(env, addr);
1825 addr += TARGET_PAGE_SIZE;
1826 }
3a7d929e
FB
1827 }
1828#endif
f23db169
FB
1829 mask = ~dirty_flags;
1830 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1831 for(i = 0; i < len; i++)
1832 p[i] &= mask;
1833
1ccde1cb
FB
1834 /* we modify the TLB cache so that the dirty bit will be set again
1835 when accessing the range */
59817ccb 1836 start1 = start + (unsigned long)phys_ram_base;
6a00d601
FB
1837 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1838 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1839 tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length);
6a00d601 1840 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1841 tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length);
6fa4cea9
JM
1842#if (NB_MMU_MODES >= 3)
1843 for(i = 0; i < CPU_TLB_SIZE; i++)
1844 tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length);
1845#if (NB_MMU_MODES == 4)
1846 for(i = 0; i < CPU_TLB_SIZE; i++)
1847 tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length);
1848#endif
1849#endif
6a00d601 1850 }
1ccde1cb
FB
1851}
1852
74576198
AL
1853int cpu_physical_memory_set_dirty_tracking(int enable)
1854{
1855 in_migration = enable;
1856 return 0;
1857}
1858
1859int cpu_physical_memory_get_dirty_tracking(void)
1860{
1861 return in_migration;
1862}
1863
3a7d929e
FB
1864static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1865{
1866 ram_addr_t ram_addr;
1867
84b7b8e7 1868 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5fafdf24 1869 ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) +
3a7d929e
FB
1870 tlb_entry->addend - (unsigned long)phys_ram_base;
1871 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 1872 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
1873 }
1874 }
1875}
1876
1877/* update the TLB according to the current state of the dirty bits */
1878void cpu_tlb_update_dirty(CPUState *env)
1879{
1880 int i;
1881 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1882 tlb_update_dirty(&env->tlb_table[0][i]);
3a7d929e 1883 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1884 tlb_update_dirty(&env->tlb_table[1][i]);
6fa4cea9
JM
1885#if (NB_MMU_MODES >= 3)
1886 for(i = 0; i < CPU_TLB_SIZE; i++)
1887 tlb_update_dirty(&env->tlb_table[2][i]);
1888#if (NB_MMU_MODES == 4)
1889 for(i = 0; i < CPU_TLB_SIZE; i++)
1890 tlb_update_dirty(&env->tlb_table[3][i]);
1891#endif
1892#endif
3a7d929e
FB
1893}
1894
0f459d16 1895static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 1896{
0f459d16
PB
1897 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
1898 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
1899}
1900
0f459d16
PB
1901/* update the TLB corresponding to virtual page vaddr
1902 so that it is no longer dirty */
1903static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 1904{
1ccde1cb
FB
1905 int i;
1906
0f459d16 1907 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 1908 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
0f459d16
PB
1909 tlb_set_dirty1(&env->tlb_table[0][i], vaddr);
1910 tlb_set_dirty1(&env->tlb_table[1][i], vaddr);
6fa4cea9 1911#if (NB_MMU_MODES >= 3)
0f459d16 1912 tlb_set_dirty1(&env->tlb_table[2][i], vaddr);
6fa4cea9 1913#if (NB_MMU_MODES == 4)
0f459d16 1914 tlb_set_dirty1(&env->tlb_table[3][i], vaddr);
6fa4cea9
JM
1915#endif
1916#endif
9fa3e853
FB
1917}
1918
59817ccb
FB
1919/* add a new TLB entry. At most one entry for a given virtual address
1920 is permitted. Return 0 if OK or 2 if the page could not be mapped
1921 (can only happen in non SOFTMMU mode for I/O pages or pages
1922 conflicting with the host address space). */
5fafdf24
TS
1923int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1924 target_phys_addr_t paddr, int prot,
6ebbf390 1925 int mmu_idx, int is_softmmu)
9fa3e853 1926{
92e873b9 1927 PhysPageDesc *p;
4f2ac237 1928 unsigned long pd;
9fa3e853 1929 unsigned int index;
4f2ac237 1930 target_ulong address;
0f459d16 1931 target_ulong code_address;
108c49b8 1932 target_phys_addr_t addend;
9fa3e853 1933 int ret;
84b7b8e7 1934 CPUTLBEntry *te;
a1d1bb31 1935 CPUWatchpoint *wp;
0f459d16 1936 target_phys_addr_t iotlb;
9fa3e853 1937
92e873b9 1938 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
1939 if (!p) {
1940 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
1941 } else {
1942 pd = p->phys_offset;
9fa3e853
FB
1943 }
1944#if defined(DEBUG_TLB)
6ebbf390
JM
1945 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1946 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
9fa3e853
FB
1947#endif
1948
1949 ret = 0;
0f459d16
PB
1950 address = vaddr;
1951 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
1952 /* IO memory case (romd handled later) */
1953 address |= TLB_MMIO;
1954 }
1955 addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK);
1956 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
1957 /* Normal RAM. */
1958 iotlb = pd & TARGET_PAGE_MASK;
1959 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
1960 iotlb |= IO_MEM_NOTDIRTY;
1961 else
1962 iotlb |= IO_MEM_ROM;
1963 } else {
1964 /* IO handlers are currently passed a phsical address.
1965 It would be nice to pass an offset from the base address
1966 of that region. This would avoid having to special case RAM,
1967 and avoid full address decoding in every device.
1968 We can't use the high bits of pd for this because
1969 IO_MEM_ROMD uses these as a ram address. */
1970 iotlb = (pd & ~TARGET_PAGE_MASK) + paddr;
1971 }
1972
1973 code_address = address;
1974 /* Make accesses to pages with watchpoints go via the
1975 watchpoint trap routines. */
a1d1bb31
AL
1976 for (wp = env->watchpoints; wp != NULL; wp = wp->next) {
1977 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
0f459d16
PB
1978 iotlb = io_mem_watch + paddr;
1979 /* TODO: The memory case can be optimized by not trapping
1980 reads of pages with a write breakpoint. */
1981 address |= TLB_MMIO;
6658ffb8 1982 }
0f459d16 1983 }
d79acba4 1984
0f459d16
PB
1985 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1986 env->iotlb[mmu_idx][index] = iotlb - vaddr;
1987 te = &env->tlb_table[mmu_idx][index];
1988 te->addend = addend - vaddr;
1989 if (prot & PAGE_READ) {
1990 te->addr_read = address;
1991 } else {
1992 te->addr_read = -1;
1993 }
5c751e99 1994
0f459d16
PB
1995 if (prot & PAGE_EXEC) {
1996 te->addr_code = code_address;
1997 } else {
1998 te->addr_code = -1;
1999 }
2000 if (prot & PAGE_WRITE) {
2001 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2002 (pd & IO_MEM_ROMD)) {
2003 /* Write access calls the I/O callback. */
2004 te->addr_write = address | TLB_MMIO;
2005 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2006 !cpu_physical_memory_is_dirty(pd)) {
2007 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 2008 } else {
0f459d16 2009 te->addr_write = address;
9fa3e853 2010 }
0f459d16
PB
2011 } else {
2012 te->addr_write = -1;
9fa3e853 2013 }
9fa3e853
FB
2014 return ret;
2015}
2016
0124311e
FB
2017#else
2018
ee8b7021 2019void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
2020{
2021}
2022
2e12669a 2023void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
2024{
2025}
2026
5fafdf24
TS
2027int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2028 target_phys_addr_t paddr, int prot,
6ebbf390 2029 int mmu_idx, int is_softmmu)
9fa3e853
FB
2030{
2031 return 0;
2032}
0124311e 2033
9fa3e853
FB
2034/* dump memory mappings */
2035void page_dump(FILE *f)
33417e70 2036{
9fa3e853
FB
2037 unsigned long start, end;
2038 int i, j, prot, prot1;
2039 PageDesc *p;
33417e70 2040
9fa3e853
FB
2041 fprintf(f, "%-8s %-8s %-8s %s\n",
2042 "start", "end", "size", "prot");
2043 start = -1;
2044 end = -1;
2045 prot = 0;
2046 for(i = 0; i <= L1_SIZE; i++) {
2047 if (i < L1_SIZE)
2048 p = l1_map[i];
2049 else
2050 p = NULL;
2051 for(j = 0;j < L2_SIZE; j++) {
2052 if (!p)
2053 prot1 = 0;
2054 else
2055 prot1 = p[j].flags;
2056 if (prot1 != prot) {
2057 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2058 if (start != -1) {
2059 fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
5fafdf24 2060 start, end, end - start,
9fa3e853
FB
2061 prot & PAGE_READ ? 'r' : '-',
2062 prot & PAGE_WRITE ? 'w' : '-',
2063 prot & PAGE_EXEC ? 'x' : '-');
2064 }
2065 if (prot1 != 0)
2066 start = end;
2067 else
2068 start = -1;
2069 prot = prot1;
2070 }
2071 if (!p)
2072 break;
2073 }
33417e70 2074 }
33417e70
FB
2075}
2076
53a5960a 2077int page_get_flags(target_ulong address)
33417e70 2078{
9fa3e853
FB
2079 PageDesc *p;
2080
2081 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2082 if (!p)
9fa3e853
FB
2083 return 0;
2084 return p->flags;
2085}
2086
2087/* modify the flags of a page and invalidate the code if
2088 necessary. The flag PAGE_WRITE_ORG is positionned automatically
2089 depending on PAGE_WRITE */
53a5960a 2090void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853
FB
2091{
2092 PageDesc *p;
53a5960a 2093 target_ulong addr;
9fa3e853 2094
c8a706fe 2095 /* mmap_lock should already be held. */
9fa3e853
FB
2096 start = start & TARGET_PAGE_MASK;
2097 end = TARGET_PAGE_ALIGN(end);
2098 if (flags & PAGE_WRITE)
2099 flags |= PAGE_WRITE_ORG;
9fa3e853
FB
2100 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2101 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
17e2377a
PB
2102 /* We may be called for host regions that are outside guest
2103 address space. */
2104 if (!p)
2105 return;
9fa3e853
FB
2106 /* if the write protection is set, then we invalidate the code
2107 inside */
5fafdf24 2108 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2109 (flags & PAGE_WRITE) &&
2110 p->first_tb) {
d720b93d 2111 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2112 }
2113 p->flags = flags;
2114 }
33417e70
FB
2115}
2116
3d97b40b
TS
2117int page_check_range(target_ulong start, target_ulong len, int flags)
2118{
2119 PageDesc *p;
2120 target_ulong end;
2121 target_ulong addr;
2122
55f280c9
AZ
2123 if (start + len < start)
2124 /* we've wrapped around */
2125 return -1;
2126
3d97b40b
TS
2127 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2128 start = start & TARGET_PAGE_MASK;
2129
3d97b40b
TS
2130 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2131 p = page_find(addr >> TARGET_PAGE_BITS);
2132 if( !p )
2133 return -1;
2134 if( !(p->flags & PAGE_VALID) )
2135 return -1;
2136
dae3270c 2137 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2138 return -1;
dae3270c
FB
2139 if (flags & PAGE_WRITE) {
2140 if (!(p->flags & PAGE_WRITE_ORG))
2141 return -1;
2142 /* unprotect the page if it was put read-only because it
2143 contains translated code */
2144 if (!(p->flags & PAGE_WRITE)) {
2145 if (!page_unprotect(addr, 0, NULL))
2146 return -1;
2147 }
2148 return 0;
2149 }
3d97b40b
TS
2150 }
2151 return 0;
2152}
2153
9fa3e853
FB
2154/* called from signal handler: invalidate the code and unprotect the
2155 page. Return TRUE if the fault was succesfully handled. */
53a5960a 2156int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853
FB
2157{
2158 unsigned int page_index, prot, pindex;
2159 PageDesc *p, *p1;
53a5960a 2160 target_ulong host_start, host_end, addr;
9fa3e853 2161
c8a706fe
PB
2162 /* Technically this isn't safe inside a signal handler. However we
2163 know this only ever happens in a synchronous SEGV handler, so in
2164 practice it seems to be ok. */
2165 mmap_lock();
2166
83fb7adf 2167 host_start = address & qemu_host_page_mask;
9fa3e853
FB
2168 page_index = host_start >> TARGET_PAGE_BITS;
2169 p1 = page_find(page_index);
c8a706fe
PB
2170 if (!p1) {
2171 mmap_unlock();
9fa3e853 2172 return 0;
c8a706fe 2173 }
83fb7adf 2174 host_end = host_start + qemu_host_page_size;
9fa3e853
FB
2175 p = p1;
2176 prot = 0;
2177 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2178 prot |= p->flags;
2179 p++;
2180 }
2181 /* if the page was really writable, then we change its
2182 protection back to writable */
2183 if (prot & PAGE_WRITE_ORG) {
2184 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2185 if (!(p1[pindex].flags & PAGE_WRITE)) {
5fafdf24 2186 mprotect((void *)g2h(host_start), qemu_host_page_size,
9fa3e853
FB
2187 (prot & PAGE_BITS) | PAGE_WRITE);
2188 p1[pindex].flags |= PAGE_WRITE;
2189 /* and since the content will be modified, we must invalidate
2190 the corresponding translated code. */
d720b93d 2191 tb_invalidate_phys_page(address, pc, puc);
9fa3e853
FB
2192#ifdef DEBUG_TB_CHECK
2193 tb_invalidate_check(address);
2194#endif
c8a706fe 2195 mmap_unlock();
9fa3e853
FB
2196 return 1;
2197 }
2198 }
c8a706fe 2199 mmap_unlock();
9fa3e853
FB
2200 return 0;
2201}
2202
6a00d601
FB
2203static inline void tlb_set_dirty(CPUState *env,
2204 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2205{
2206}
9fa3e853
FB
2207#endif /* defined(CONFIG_USER_ONLY) */
2208
e2eef170 2209#if !defined(CONFIG_USER_ONLY)
db7b5426 2210static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
00f82b8a
AJ
2211 ram_addr_t memory);
2212static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2213 ram_addr_t orig_memory);
db7b5426
BS
2214#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2215 need_subpage) \
2216 do { \
2217 if (addr > start_addr) \
2218 start_addr2 = 0; \
2219 else { \
2220 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2221 if (start_addr2 > 0) \
2222 need_subpage = 1; \
2223 } \
2224 \
49e9fba2 2225 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2226 end_addr2 = TARGET_PAGE_SIZE - 1; \
2227 else { \
2228 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2229 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2230 need_subpage = 1; \
2231 } \
2232 } while (0)
2233
33417e70
FB
2234/* register physical memory. 'size' must be a multiple of the target
2235 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2236 io memory page */
5fafdf24 2237void cpu_register_physical_memory(target_phys_addr_t start_addr,
00f82b8a
AJ
2238 ram_addr_t size,
2239 ram_addr_t phys_offset)
33417e70 2240{
108c49b8 2241 target_phys_addr_t addr, end_addr;
92e873b9 2242 PhysPageDesc *p;
9d42037b 2243 CPUState *env;
00f82b8a 2244 ram_addr_t orig_size = size;
db7b5426 2245 void *subpage;
33417e70 2246
da260249
FB
2247#ifdef USE_KQEMU
2248 /* XXX: should not depend on cpu context */
2249 env = first_cpu;
2250 if (env->kqemu_enabled) {
2251 kqemu_set_phys_mem(start_addr, size, phys_offset);
2252 }
2253#endif
7ba1e619
AL
2254 if (kvm_enabled())
2255 kvm_set_phys_mem(start_addr, size, phys_offset);
2256
5fd386f6 2257 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
49e9fba2
BS
2258 end_addr = start_addr + (target_phys_addr_t)size;
2259 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
db7b5426
BS
2260 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2261 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
00f82b8a 2262 ram_addr_t orig_memory = p->phys_offset;
db7b5426
BS
2263 target_phys_addr_t start_addr2, end_addr2;
2264 int need_subpage = 0;
2265
2266 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2267 need_subpage);
4254fab8 2268 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426
BS
2269 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2270 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2271 &p->phys_offset, orig_memory);
2272 } else {
2273 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2274 >> IO_MEM_SHIFT];
2275 }
2276 subpage_register(subpage, start_addr2, end_addr2, phys_offset);
2277 } else {
2278 p->phys_offset = phys_offset;
2279 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2280 (phys_offset & IO_MEM_ROMD))
2281 phys_offset += TARGET_PAGE_SIZE;
2282 }
2283 } else {
2284 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2285 p->phys_offset = phys_offset;
2286 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2287 (phys_offset & IO_MEM_ROMD))
2288 phys_offset += TARGET_PAGE_SIZE;
2289 else {
2290 target_phys_addr_t start_addr2, end_addr2;
2291 int need_subpage = 0;
2292
2293 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2294 end_addr2, need_subpage);
2295
4254fab8 2296 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426
BS
2297 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2298 &p->phys_offset, IO_MEM_UNASSIGNED);
2299 subpage_register(subpage, start_addr2, end_addr2,
2300 phys_offset);
2301 }
2302 }
2303 }
33417e70 2304 }
3b46e624 2305
9d42037b
FB
2306 /* since each CPU stores ram addresses in its TLB cache, we must
2307 reset the modified entries */
2308 /* XXX: slow ! */
2309 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2310 tlb_flush(env, 1);
2311 }
33417e70
FB
2312}
2313
ba863458 2314/* XXX: temporary until new memory mapping API */
00f82b8a 2315ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
ba863458
FB
2316{
2317 PhysPageDesc *p;
2318
2319 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2320 if (!p)
2321 return IO_MEM_UNASSIGNED;
2322 return p->phys_offset;
2323}
2324
e9a1ab19 2325/* XXX: better than nothing */
00f82b8a 2326ram_addr_t qemu_ram_alloc(ram_addr_t size)
e9a1ab19
FB
2327{
2328 ram_addr_t addr;
7fb4fdcf 2329 if ((phys_ram_alloc_offset + size) > phys_ram_size) {
012a7045 2330 fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 ")\n",
ed441467 2331 (uint64_t)size, (uint64_t)phys_ram_size);
e9a1ab19
FB
2332 abort();
2333 }
2334 addr = phys_ram_alloc_offset;
2335 phys_ram_alloc_offset = TARGET_PAGE_ALIGN(phys_ram_alloc_offset + size);
2336 return addr;
2337}
2338
2339void qemu_ram_free(ram_addr_t addr)
2340{
2341}
2342
a4193c8a 2343static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 2344{
67d3b957 2345#ifdef DEBUG_UNASSIGNED
ab3d1727 2346 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316 2347#endif
e18231a3
BS
2348#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2349 do_unassigned_access(addr, 0, 0, 0, 1);
2350#endif
2351 return 0;
2352}
2353
2354static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2355{
2356#ifdef DEBUG_UNASSIGNED
2357 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2358#endif
2359#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2360 do_unassigned_access(addr, 0, 0, 0, 2);
2361#endif
2362 return 0;
2363}
2364
2365static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2366{
2367#ifdef DEBUG_UNASSIGNED
2368 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2369#endif
2370#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2371 do_unassigned_access(addr, 0, 0, 0, 4);
67d3b957 2372#endif
33417e70
FB
2373 return 0;
2374}
2375
a4193c8a 2376static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 2377{
67d3b957 2378#ifdef DEBUG_UNASSIGNED
ab3d1727 2379 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 2380#endif
e18231a3
BS
2381#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2382 do_unassigned_access(addr, 1, 0, 0, 1);
2383#endif
2384}
2385
2386static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2387{
2388#ifdef DEBUG_UNASSIGNED
2389 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2390#endif
2391#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2392 do_unassigned_access(addr, 1, 0, 0, 2);
2393#endif
2394}
2395
2396static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2397{
2398#ifdef DEBUG_UNASSIGNED
2399 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2400#endif
2401#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2402 do_unassigned_access(addr, 1, 0, 0, 4);
b4f0a316 2403#endif
33417e70
FB
2404}
2405
2406static CPUReadMemoryFunc *unassigned_mem_read[3] = {
2407 unassigned_mem_readb,
e18231a3
BS
2408 unassigned_mem_readw,
2409 unassigned_mem_readl,
33417e70
FB
2410};
2411
2412static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
2413 unassigned_mem_writeb,
e18231a3
BS
2414 unassigned_mem_writew,
2415 unassigned_mem_writel,
33417e70
FB
2416};
2417
0f459d16
PB
2418static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2419 uint32_t val)
9fa3e853 2420{
3a7d929e 2421 int dirty_flags;
3a7d929e
FB
2422 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2423 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2424#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2425 tb_invalidate_phys_page_fast(ram_addr, 1);
2426 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2427#endif
3a7d929e 2428 }
0f459d16 2429 stb_p(phys_ram_base + ram_addr, val);
f32fc648
FB
2430#ifdef USE_KQEMU
2431 if (cpu_single_env->kqemu_enabled &&
2432 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2433 kqemu_modify_page(cpu_single_env, ram_addr);
2434#endif
f23db169
FB
2435 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2436 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2437 /* we remove the notdirty callback only if the code has been
2438 flushed */
2439 if (dirty_flags == 0xff)
2e70f6ef 2440 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2441}
2442
0f459d16
PB
2443static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2444 uint32_t val)
9fa3e853 2445{
3a7d929e 2446 int dirty_flags;
3a7d929e
FB
2447 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2448 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2449#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2450 tb_invalidate_phys_page_fast(ram_addr, 2);
2451 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2452#endif
3a7d929e 2453 }
0f459d16 2454 stw_p(phys_ram_base + ram_addr, val);
f32fc648
FB
2455#ifdef USE_KQEMU
2456 if (cpu_single_env->kqemu_enabled &&
2457 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2458 kqemu_modify_page(cpu_single_env, ram_addr);
2459#endif
f23db169
FB
2460 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2461 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2462 /* we remove the notdirty callback only if the code has been
2463 flushed */
2464 if (dirty_flags == 0xff)
2e70f6ef 2465 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2466}
2467
0f459d16
PB
2468static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2469 uint32_t val)
9fa3e853 2470{
3a7d929e 2471 int dirty_flags;
3a7d929e
FB
2472 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2473 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2474#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2475 tb_invalidate_phys_page_fast(ram_addr, 4);
2476 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2477#endif
3a7d929e 2478 }
0f459d16 2479 stl_p(phys_ram_base + ram_addr, val);
f32fc648
FB
2480#ifdef USE_KQEMU
2481 if (cpu_single_env->kqemu_enabled &&
2482 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2483 kqemu_modify_page(cpu_single_env, ram_addr);
2484#endif
f23db169
FB
2485 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2486 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2487 /* we remove the notdirty callback only if the code has been
2488 flushed */
2489 if (dirty_flags == 0xff)
2e70f6ef 2490 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2491}
2492
3a7d929e 2493static CPUReadMemoryFunc *error_mem_read[3] = {
9fa3e853
FB
2494 NULL, /* never used */
2495 NULL, /* never used */
2496 NULL, /* never used */
2497};
2498
1ccde1cb
FB
2499static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
2500 notdirty_mem_writeb,
2501 notdirty_mem_writew,
2502 notdirty_mem_writel,
2503};
2504
0f459d16 2505/* Generate a debug exception if a watchpoint has been hit. */
b4051334 2506static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16
PB
2507{
2508 CPUState *env = cpu_single_env;
2509 target_ulong vaddr;
a1d1bb31 2510 CPUWatchpoint *wp;
0f459d16 2511
2e70f6ef 2512 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
a1d1bb31 2513 for (wp = env->watchpoints; wp != NULL; wp = wp->next) {
b4051334
AL
2514 if ((vaddr == (wp->vaddr & len_mask) ||
2515 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
a1d1bb31 2516 env->watchpoint_hit = wp;
0f459d16
PB
2517 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2518 break;
2519 }
2520 }
2521}
2522
6658ffb8
PB
2523/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2524 so these check for a hit then pass through to the normal out-of-line
2525 phys routines. */
2526static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2527{
b4051334 2528 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
6658ffb8
PB
2529 return ldub_phys(addr);
2530}
2531
2532static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2533{
b4051334 2534 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
6658ffb8
PB
2535 return lduw_phys(addr);
2536}
2537
2538static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2539{
b4051334 2540 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
6658ffb8
PB
2541 return ldl_phys(addr);
2542}
2543
6658ffb8
PB
2544static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2545 uint32_t val)
2546{
b4051334 2547 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
6658ffb8
PB
2548 stb_phys(addr, val);
2549}
2550
2551static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2552 uint32_t val)
2553{
b4051334 2554 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
6658ffb8
PB
2555 stw_phys(addr, val);
2556}
2557
2558static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2559 uint32_t val)
2560{
b4051334 2561 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
6658ffb8
PB
2562 stl_phys(addr, val);
2563}
2564
2565static CPUReadMemoryFunc *watch_mem_read[3] = {
2566 watch_mem_readb,
2567 watch_mem_readw,
2568 watch_mem_readl,
2569};
2570
2571static CPUWriteMemoryFunc *watch_mem_write[3] = {
2572 watch_mem_writeb,
2573 watch_mem_writew,
2574 watch_mem_writel,
2575};
6658ffb8 2576
db7b5426
BS
2577static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2578 unsigned int len)
2579{
db7b5426
BS
2580 uint32_t ret;
2581 unsigned int idx;
2582
2583 idx = SUBPAGE_IDX(addr - mmio->base);
2584#if defined(DEBUG_SUBPAGE)
2585 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2586 mmio, len, addr, idx);
2587#endif
3ee89922 2588 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len], addr);
db7b5426
BS
2589
2590 return ret;
2591}
2592
2593static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2594 uint32_t value, unsigned int len)
2595{
db7b5426
BS
2596 unsigned int idx;
2597
2598 idx = SUBPAGE_IDX(addr - mmio->base);
2599#if defined(DEBUG_SUBPAGE)
2600 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2601 mmio, len, addr, idx, value);
2602#endif
3ee89922 2603 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len], addr, value);
db7b5426
BS
2604}
2605
2606static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2607{
2608#if defined(DEBUG_SUBPAGE)
2609 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2610#endif
2611
2612 return subpage_readlen(opaque, addr, 0);
2613}
2614
2615static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2616 uint32_t value)
2617{
2618#if defined(DEBUG_SUBPAGE)
2619 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2620#endif
2621 subpage_writelen(opaque, addr, value, 0);
2622}
2623
2624static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2625{
2626#if defined(DEBUG_SUBPAGE)
2627 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2628#endif
2629
2630 return subpage_readlen(opaque, addr, 1);
2631}
2632
2633static void subpage_writew (void *opaque, target_phys_addr_t addr,
2634 uint32_t value)
2635{
2636#if defined(DEBUG_SUBPAGE)
2637 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2638#endif
2639 subpage_writelen(opaque, addr, value, 1);
2640}
2641
2642static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2643{
2644#if defined(DEBUG_SUBPAGE)
2645 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2646#endif
2647
2648 return subpage_readlen(opaque, addr, 2);
2649}
2650
2651static void subpage_writel (void *opaque,
2652 target_phys_addr_t addr, uint32_t value)
2653{
2654#if defined(DEBUG_SUBPAGE)
2655 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2656#endif
2657 subpage_writelen(opaque, addr, value, 2);
2658}
2659
2660static CPUReadMemoryFunc *subpage_read[] = {
2661 &subpage_readb,
2662 &subpage_readw,
2663 &subpage_readl,
2664};
2665
2666static CPUWriteMemoryFunc *subpage_write[] = {
2667 &subpage_writeb,
2668 &subpage_writew,
2669 &subpage_writel,
2670};
2671
2672static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
00f82b8a 2673 ram_addr_t memory)
db7b5426
BS
2674{
2675 int idx, eidx;
4254fab8 2676 unsigned int i;
db7b5426
BS
2677
2678 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2679 return -1;
2680 idx = SUBPAGE_IDX(start);
2681 eidx = SUBPAGE_IDX(end);
2682#if defined(DEBUG_SUBPAGE)
2683 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__,
2684 mmio, start, end, idx, eidx, memory);
2685#endif
2686 memory >>= IO_MEM_SHIFT;
2687 for (; idx <= eidx; idx++) {
4254fab8 2688 for (i = 0; i < 4; i++) {
3ee89922
BS
2689 if (io_mem_read[memory][i]) {
2690 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2691 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
2692 }
2693 if (io_mem_write[memory][i]) {
2694 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2695 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
2696 }
4254fab8 2697 }
db7b5426
BS
2698 }
2699
2700 return 0;
2701}
2702
00f82b8a
AJ
2703static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2704 ram_addr_t orig_memory)
db7b5426
BS
2705{
2706 subpage_t *mmio;
2707 int subpage_memory;
2708
2709 mmio = qemu_mallocz(sizeof(subpage_t));
2710 if (mmio != NULL) {
2711 mmio->base = base;
2712 subpage_memory = cpu_register_io_memory(0, subpage_read, subpage_write, mmio);
2713#if defined(DEBUG_SUBPAGE)
2714 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2715 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
2716#endif
2717 *phys = subpage_memory | IO_MEM_SUBPAGE;
2718 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory);
2719 }
2720
2721 return mmio;
2722}
2723
33417e70
FB
2724static void io_mem_init(void)
2725{
3a7d929e 2726 cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL);
a4193c8a 2727 cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL);
3a7d929e 2728 cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL);
1ccde1cb
FB
2729 io_mem_nb = 5;
2730
0f459d16 2731 io_mem_watch = cpu_register_io_memory(0, watch_mem_read,
6658ffb8 2732 watch_mem_write, NULL);
1ccde1cb 2733 /* alloc dirty bits array */
0a962c02 2734 phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS);
3a7d929e 2735 memset(phys_ram_dirty, 0xff, phys_ram_size >> TARGET_PAGE_BITS);
33417e70
FB
2736}
2737
2738/* mem_read and mem_write are arrays of functions containing the
2739 function to access byte (index 0), word (index 1) and dword (index
3ee89922
BS
2740 2). Functions can be omitted with a NULL function pointer. The
2741 registered functions may be modified dynamically later.
2742 If io_index is non zero, the corresponding io zone is
4254fab8
BS
2743 modified. If it is zero, a new io zone is allocated. The return
2744 value can be used with cpu_register_physical_memory(). (-1) is
2745 returned if error. */
33417e70
FB
2746int cpu_register_io_memory(int io_index,
2747 CPUReadMemoryFunc **mem_read,
a4193c8a
FB
2748 CPUWriteMemoryFunc **mem_write,
2749 void *opaque)
33417e70 2750{
4254fab8 2751 int i, subwidth = 0;
33417e70
FB
2752
2753 if (io_index <= 0) {
b5ff1b31 2754 if (io_mem_nb >= IO_MEM_NB_ENTRIES)
33417e70
FB
2755 return -1;
2756 io_index = io_mem_nb++;
2757 } else {
2758 if (io_index >= IO_MEM_NB_ENTRIES)
2759 return -1;
2760 }
b5ff1b31 2761
33417e70 2762 for(i = 0;i < 3; i++) {
4254fab8
BS
2763 if (!mem_read[i] || !mem_write[i])
2764 subwidth = IO_MEM_SUBWIDTH;
33417e70
FB
2765 io_mem_read[io_index][i] = mem_read[i];
2766 io_mem_write[io_index][i] = mem_write[i];
2767 }
a4193c8a 2768 io_mem_opaque[io_index] = opaque;
4254fab8 2769 return (io_index << IO_MEM_SHIFT) | subwidth;
33417e70 2770}
61382a50 2771
8926b517
FB
2772CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index)
2773{
2774 return io_mem_write[io_index >> IO_MEM_SHIFT];
2775}
2776
2777CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index)
2778{
2779 return io_mem_read[io_index >> IO_MEM_SHIFT];
2780}
2781
e2eef170
PB
2782#endif /* !defined(CONFIG_USER_ONLY) */
2783
13eb76e0
FB
2784/* physical memory access (slow version, mainly for debug) */
2785#if defined(CONFIG_USER_ONLY)
5fafdf24 2786void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
2787 int len, int is_write)
2788{
2789 int l, flags;
2790 target_ulong page;
53a5960a 2791 void * p;
13eb76e0
FB
2792
2793 while (len > 0) {
2794 page = addr & TARGET_PAGE_MASK;
2795 l = (page + TARGET_PAGE_SIZE) - addr;
2796 if (l > len)
2797 l = len;
2798 flags = page_get_flags(page);
2799 if (!(flags & PAGE_VALID))
2800 return;
2801 if (is_write) {
2802 if (!(flags & PAGE_WRITE))
2803 return;
579a97f7 2804 /* XXX: this code should not depend on lock_user */
72fb7daa 2805 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
579a97f7
FB
2806 /* FIXME - should this return an error rather than just fail? */
2807 return;
72fb7daa
AJ
2808 memcpy(p, buf, l);
2809 unlock_user(p, addr, l);
13eb76e0
FB
2810 } else {
2811 if (!(flags & PAGE_READ))
2812 return;
579a97f7 2813 /* XXX: this code should not depend on lock_user */
72fb7daa 2814 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
579a97f7
FB
2815 /* FIXME - should this return an error rather than just fail? */
2816 return;
72fb7daa 2817 memcpy(buf, p, l);
5b257578 2818 unlock_user(p, addr, 0);
13eb76e0
FB
2819 }
2820 len -= l;
2821 buf += l;
2822 addr += l;
2823 }
2824}
8df1cd07 2825
13eb76e0 2826#else
5fafdf24 2827void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
2828 int len, int is_write)
2829{
2830 int l, io_index;
2831 uint8_t *ptr;
2832 uint32_t val;
2e12669a
FB
2833 target_phys_addr_t page;
2834 unsigned long pd;
92e873b9 2835 PhysPageDesc *p;
3b46e624 2836
13eb76e0
FB
2837 while (len > 0) {
2838 page = addr & TARGET_PAGE_MASK;
2839 l = (page + TARGET_PAGE_SIZE) - addr;
2840 if (l > len)
2841 l = len;
92e873b9 2842 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
2843 if (!p) {
2844 pd = IO_MEM_UNASSIGNED;
2845 } else {
2846 pd = p->phys_offset;
2847 }
3b46e624 2848
13eb76e0 2849 if (is_write) {
3a7d929e 2850 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
13eb76e0 2851 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
6a00d601
FB
2852 /* XXX: could force cpu_single_env to NULL to avoid
2853 potential bugs */
13eb76e0 2854 if (l >= 4 && ((addr & 3) == 0)) {
1c213d19 2855 /* 32 bit write access */
c27004ec 2856 val = ldl_p(buf);
a4193c8a 2857 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
13eb76e0
FB
2858 l = 4;
2859 } else if (l >= 2 && ((addr & 1) == 0)) {
1c213d19 2860 /* 16 bit write access */
c27004ec 2861 val = lduw_p(buf);
a4193c8a 2862 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
13eb76e0
FB
2863 l = 2;
2864 } else {
1c213d19 2865 /* 8 bit write access */
c27004ec 2866 val = ldub_p(buf);
a4193c8a 2867 io_mem_write[io_index][0](io_mem_opaque[io_index], addr, val);
13eb76e0
FB
2868 l = 1;
2869 }
2870 } else {
b448f2f3
FB
2871 unsigned long addr1;
2872 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 2873 /* RAM case */
b448f2f3 2874 ptr = phys_ram_base + addr1;
13eb76e0 2875 memcpy(ptr, buf, l);
3a7d929e
FB
2876 if (!cpu_physical_memory_is_dirty(addr1)) {
2877 /* invalidate code */
2878 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
2879 /* set dirty bit */
5fafdf24 2880 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
f23db169 2881 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 2882 }
13eb76e0
FB
2883 }
2884 } else {
5fafdf24 2885 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 2886 !(pd & IO_MEM_ROMD)) {
13eb76e0
FB
2887 /* I/O case */
2888 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2889 if (l >= 4 && ((addr & 3) == 0)) {
2890 /* 32 bit read access */
a4193c8a 2891 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
c27004ec 2892 stl_p(buf, val);
13eb76e0
FB
2893 l = 4;
2894 } else if (l >= 2 && ((addr & 1) == 0)) {
2895 /* 16 bit read access */
a4193c8a 2896 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
c27004ec 2897 stw_p(buf, val);
13eb76e0
FB
2898 l = 2;
2899 } else {
1c213d19 2900 /* 8 bit read access */
a4193c8a 2901 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr);
c27004ec 2902 stb_p(buf, val);
13eb76e0
FB
2903 l = 1;
2904 }
2905 } else {
2906 /* RAM case */
5fafdf24 2907 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
13eb76e0
FB
2908 (addr & ~TARGET_PAGE_MASK);
2909 memcpy(buf, ptr, l);
2910 }
2911 }
2912 len -= l;
2913 buf += l;
2914 addr += l;
2915 }
2916}
8df1cd07 2917
d0ecd2aa 2918/* used for ROM loading : can write in RAM and ROM */
5fafdf24 2919void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
2920 const uint8_t *buf, int len)
2921{
2922 int l;
2923 uint8_t *ptr;
2924 target_phys_addr_t page;
2925 unsigned long pd;
2926 PhysPageDesc *p;
3b46e624 2927
d0ecd2aa
FB
2928 while (len > 0) {
2929 page = addr & TARGET_PAGE_MASK;
2930 l = (page + TARGET_PAGE_SIZE) - addr;
2931 if (l > len)
2932 l = len;
2933 p = phys_page_find(page >> TARGET_PAGE_BITS);
2934 if (!p) {
2935 pd = IO_MEM_UNASSIGNED;
2936 } else {
2937 pd = p->phys_offset;
2938 }
3b46e624 2939
d0ecd2aa 2940 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
2941 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
2942 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
2943 /* do nothing */
2944 } else {
2945 unsigned long addr1;
2946 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2947 /* ROM/RAM case */
2948 ptr = phys_ram_base + addr1;
2949 memcpy(ptr, buf, l);
2950 }
2951 len -= l;
2952 buf += l;
2953 addr += l;
2954 }
2955}
2956
2957
8df1cd07
FB
2958/* warning: addr must be aligned */
2959uint32_t ldl_phys(target_phys_addr_t addr)
2960{
2961 int io_index;
2962 uint8_t *ptr;
2963 uint32_t val;
2964 unsigned long pd;
2965 PhysPageDesc *p;
2966
2967 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2968 if (!p) {
2969 pd = IO_MEM_UNASSIGNED;
2970 } else {
2971 pd = p->phys_offset;
2972 }
3b46e624 2973
5fafdf24 2974 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 2975 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
2976 /* I/O case */
2977 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2978 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2979 } else {
2980 /* RAM case */
5fafdf24 2981 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
8df1cd07
FB
2982 (addr & ~TARGET_PAGE_MASK);
2983 val = ldl_p(ptr);
2984 }
2985 return val;
2986}
2987
84b7b8e7
FB
2988/* warning: addr must be aligned */
2989uint64_t ldq_phys(target_phys_addr_t addr)
2990{
2991 int io_index;
2992 uint8_t *ptr;
2993 uint64_t val;
2994 unsigned long pd;
2995 PhysPageDesc *p;
2996
2997 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2998 if (!p) {
2999 pd = IO_MEM_UNASSIGNED;
3000 } else {
3001 pd = p->phys_offset;
3002 }
3b46e624 3003
2a4188a3
FB
3004 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3005 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
3006 /* I/O case */
3007 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3008#ifdef TARGET_WORDS_BIGENDIAN
3009 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3010 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3011#else
3012 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3013 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3014#endif
3015 } else {
3016 /* RAM case */
5fafdf24 3017 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
84b7b8e7
FB
3018 (addr & ~TARGET_PAGE_MASK);
3019 val = ldq_p(ptr);
3020 }
3021 return val;
3022}
3023
aab33094
FB
3024/* XXX: optimize */
3025uint32_t ldub_phys(target_phys_addr_t addr)
3026{
3027 uint8_t val;
3028 cpu_physical_memory_read(addr, &val, 1);
3029 return val;
3030}
3031
3032/* XXX: optimize */
3033uint32_t lduw_phys(target_phys_addr_t addr)
3034{
3035 uint16_t val;
3036 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3037 return tswap16(val);
3038}
3039
8df1cd07
FB
3040/* warning: addr must be aligned. The ram page is not masked as dirty
3041 and the code inside is not invalidated. It is useful if the dirty
3042 bits are used to track modified PTEs */
3043void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3044{
3045 int io_index;
3046 uint8_t *ptr;
3047 unsigned long pd;
3048 PhysPageDesc *p;
3049
3050 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3051 if (!p) {
3052 pd = IO_MEM_UNASSIGNED;
3053 } else {
3054 pd = p->phys_offset;
3055 }
3b46e624 3056
3a7d929e 3057 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07
FB
3058 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3059 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3060 } else {
74576198
AL
3061 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3062 ptr = phys_ram_base + addr1;
8df1cd07 3063 stl_p(ptr, val);
74576198
AL
3064
3065 if (unlikely(in_migration)) {
3066 if (!cpu_physical_memory_is_dirty(addr1)) {
3067 /* invalidate code */
3068 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3069 /* set dirty bit */
3070 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3071 (0xff & ~CODE_DIRTY_FLAG);
3072 }
3073 }
8df1cd07
FB
3074 }
3075}
3076
bc98a7ef
JM
3077void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3078{
3079 int io_index;
3080 uint8_t *ptr;
3081 unsigned long pd;
3082 PhysPageDesc *p;
3083
3084 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3085 if (!p) {
3086 pd = IO_MEM_UNASSIGNED;
3087 } else {
3088 pd = p->phys_offset;
3089 }
3b46e624 3090
bc98a7ef
JM
3091 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3092 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3093#ifdef TARGET_WORDS_BIGENDIAN
3094 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3095 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3096#else
3097 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3098 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3099#endif
3100 } else {
5fafdf24 3101 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
3102 (addr & ~TARGET_PAGE_MASK);
3103 stq_p(ptr, val);
3104 }
3105}
3106
8df1cd07 3107/* warning: addr must be aligned */
8df1cd07
FB
3108void stl_phys(target_phys_addr_t addr, uint32_t val)
3109{
3110 int io_index;
3111 uint8_t *ptr;
3112 unsigned long pd;
3113 PhysPageDesc *p;
3114
3115 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3116 if (!p) {
3117 pd = IO_MEM_UNASSIGNED;
3118 } else {
3119 pd = p->phys_offset;
3120 }
3b46e624 3121
3a7d929e 3122 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07
FB
3123 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3124 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3125 } else {
3126 unsigned long addr1;
3127 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3128 /* RAM case */
3129 ptr = phys_ram_base + addr1;
3130 stl_p(ptr, val);
3a7d929e
FB
3131 if (!cpu_physical_memory_is_dirty(addr1)) {
3132 /* invalidate code */
3133 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3134 /* set dirty bit */
f23db169
FB
3135 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3136 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3137 }
8df1cd07
FB
3138 }
3139}
3140
aab33094
FB
3141/* XXX: optimize */
3142void stb_phys(target_phys_addr_t addr, uint32_t val)
3143{
3144 uint8_t v = val;
3145 cpu_physical_memory_write(addr, &v, 1);
3146}
3147
3148/* XXX: optimize */
3149void stw_phys(target_phys_addr_t addr, uint32_t val)
3150{
3151 uint16_t v = tswap16(val);
3152 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3153}
3154
3155/* XXX: optimize */
3156void stq_phys(target_phys_addr_t addr, uint64_t val)
3157{
3158 val = tswap64(val);
3159 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3160}
3161
13eb76e0
FB
3162#endif
3163
3164/* virtual memory access for debug */
5fafdf24 3165int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 3166 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3167{
3168 int l;
9b3c35e0
JM
3169 target_phys_addr_t phys_addr;
3170 target_ulong page;
13eb76e0
FB
3171
3172 while (len > 0) {
3173 page = addr & TARGET_PAGE_MASK;
3174 phys_addr = cpu_get_phys_page_debug(env, page);
3175 /* if no physical page mapped, return an error */
3176 if (phys_addr == -1)
3177 return -1;
3178 l = (page + TARGET_PAGE_SIZE) - addr;
3179 if (l > len)
3180 l = len;
5fafdf24 3181 cpu_physical_memory_rw(phys_addr + (addr & ~TARGET_PAGE_MASK),
b448f2f3 3182 buf, l, is_write);
13eb76e0
FB
3183 len -= l;
3184 buf += l;
3185 addr += l;
3186 }
3187 return 0;
3188}
3189
2e70f6ef
PB
3190/* in deterministic execution mode, instructions doing device I/Os
3191 must be at the end of the TB */
3192void cpu_io_recompile(CPUState *env, void *retaddr)
3193{
3194 TranslationBlock *tb;
3195 uint32_t n, cflags;
3196 target_ulong pc, cs_base;
3197 uint64_t flags;
3198
3199 tb = tb_find_pc((unsigned long)retaddr);
3200 if (!tb) {
3201 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3202 retaddr);
3203 }
3204 n = env->icount_decr.u16.low + tb->icount;
3205 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3206 /* Calculate how many instructions had been executed before the fault
bf20dc07 3207 occurred. */
2e70f6ef
PB
3208 n = n - env->icount_decr.u16.low;
3209 /* Generate a new TB ending on the I/O insn. */
3210 n++;
3211 /* On MIPS and SH, delay slot instructions can only be restarted if
3212 they were already the first instruction in the TB. If this is not
bf20dc07 3213 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
3214 branch. */
3215#if defined(TARGET_MIPS)
3216 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3217 env->active_tc.PC -= 4;
3218 env->icount_decr.u16.low++;
3219 env->hflags &= ~MIPS_HFLAG_BMASK;
3220 }
3221#elif defined(TARGET_SH4)
3222 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3223 && n > 1) {
3224 env->pc -= 2;
3225 env->icount_decr.u16.low++;
3226 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3227 }
3228#endif
3229 /* This should never happen. */
3230 if (n > CF_COUNT_MASK)
3231 cpu_abort(env, "TB too big during recompile");
3232
3233 cflags = n | CF_LAST_IO;
3234 pc = tb->pc;
3235 cs_base = tb->cs_base;
3236 flags = tb->flags;
3237 tb_phys_invalidate(tb, -1);
3238 /* FIXME: In theory this could raise an exception. In practice
3239 we have already translated the block once so it's probably ok. */
3240 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 3241 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
3242 the first in the TB) then we end up generating a whole new TB and
3243 repeating the fault, which is horribly inefficient.
3244 Better would be to execute just this insn uncached, or generate a
3245 second new TB. */
3246 cpu_resume_from_signal(env, NULL);
3247}
3248
e3db7226
FB
3249void dump_exec_info(FILE *f,
3250 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3251{
3252 int i, target_code_size, max_target_code_size;
3253 int direct_jmp_count, direct_jmp2_count, cross_page;
3254 TranslationBlock *tb;
3b46e624 3255
e3db7226
FB
3256 target_code_size = 0;
3257 max_target_code_size = 0;
3258 cross_page = 0;
3259 direct_jmp_count = 0;
3260 direct_jmp2_count = 0;
3261 for(i = 0; i < nb_tbs; i++) {
3262 tb = &tbs[i];
3263 target_code_size += tb->size;
3264 if (tb->size > max_target_code_size)
3265 max_target_code_size = tb->size;
3266 if (tb->page_addr[1] != -1)
3267 cross_page++;
3268 if (tb->tb_next_offset[0] != 0xffff) {
3269 direct_jmp_count++;
3270 if (tb->tb_next_offset[1] != 0xffff) {
3271 direct_jmp2_count++;
3272 }
3273 }
3274 }
3275 /* XXX: avoid using doubles ? */
57fec1fe 3276 cpu_fprintf(f, "Translation buffer state:\n");
26a5f13b
FB
3277 cpu_fprintf(f, "gen code size %ld/%ld\n",
3278 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3279 cpu_fprintf(f, "TB count %d/%d\n",
3280 nb_tbs, code_gen_max_blocks);
5fafdf24 3281 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
3282 nb_tbs ? target_code_size / nb_tbs : 0,
3283 max_target_code_size);
5fafdf24 3284 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
3285 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3286 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
3287 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3288 cross_page,
e3db7226
FB
3289 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3290 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 3291 direct_jmp_count,
e3db7226
FB
3292 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3293 direct_jmp2_count,
3294 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 3295 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
3296 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3297 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3298 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 3299 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
3300}
3301
5fafdf24 3302#if !defined(CONFIG_USER_ONLY)
61382a50
FB
3303
3304#define MMUSUFFIX _cmmu
3305#define GETPC() NULL
3306#define env cpu_single_env
b769d8fe 3307#define SOFTMMU_CODE_ACCESS
61382a50
FB
3308
3309#define SHIFT 0
3310#include "softmmu_template.h"
3311
3312#define SHIFT 1
3313#include "softmmu_template.h"
3314
3315#define SHIFT 2
3316#include "softmmu_template.h"
3317
3318#define SHIFT 3
3319#include "softmmu_template.h"
3320
3321#undef env
3322
3323#endif