]> git.proxmox.com Git - qemu.git/blame - exec.c
The _exit syscall is used for both thread termination in NPTL applications,
[qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
fad6cb1a 18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
54936004 19 */
67b915a5 20#include "config.h"
d5a8f07c 21#ifdef _WIN32
4fddf62a 22#define WIN32_LEAN_AND_MEAN
d5a8f07c
FB
23#include <windows.h>
24#else
a98d49b1 25#include <sys/types.h>
d5a8f07c
FB
26#include <sys/mman.h>
27#endif
54936004
FB
28#include <stdlib.h>
29#include <stdio.h>
30#include <stdarg.h>
31#include <string.h>
32#include <errno.h>
33#include <unistd.h>
34#include <inttypes.h>
35
6180a181
FB
36#include "cpu.h"
37#include "exec-all.h"
ca10f867 38#include "qemu-common.h"
b67d9a52 39#include "tcg.h"
b3c7724c 40#include "hw/hw.h"
74576198 41#include "osdep.h"
7ba1e619 42#include "kvm.h"
53a5960a
PB
43#if defined(CONFIG_USER_ONLY)
44#include <qemu.h>
45#endif
54936004 46
fd6ce8f6 47//#define DEBUG_TB_INVALIDATE
66e85a21 48//#define DEBUG_FLUSH
9fa3e853 49//#define DEBUG_TLB
67d3b957 50//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
51
52/* make various TB consistency checks */
5fafdf24
TS
53//#define DEBUG_TB_CHECK
54//#define DEBUG_TLB_CHECK
fd6ce8f6 55
1196be37 56//#define DEBUG_IOPORT
db7b5426 57//#define DEBUG_SUBPAGE
1196be37 58
99773bd4
PB
59#if !defined(CONFIG_USER_ONLY)
60/* TB consistency checks only implemented for usermode emulation. */
61#undef DEBUG_TB_CHECK
62#endif
63
9fa3e853
FB
64#define SMC_BITMAP_USE_THRESHOLD 10
65
66#define MMAP_AREA_START 0x00000000
67#define MMAP_AREA_END 0xa8000000
fd6ce8f6 68
108c49b8
FB
69#if defined(TARGET_SPARC64)
70#define TARGET_PHYS_ADDR_SPACE_BITS 41
5dcb6b91
BS
71#elif defined(TARGET_SPARC)
72#define TARGET_PHYS_ADDR_SPACE_BITS 36
bedb69ea
JM
73#elif defined(TARGET_ALPHA)
74#define TARGET_PHYS_ADDR_SPACE_BITS 42
75#define TARGET_VIRT_ADDR_SPACE_BITS 42
108c49b8
FB
76#elif defined(TARGET_PPC64)
77#define TARGET_PHYS_ADDR_SPACE_BITS 42
00f82b8a
AJ
78#elif defined(TARGET_X86_64) && !defined(USE_KQEMU)
79#define TARGET_PHYS_ADDR_SPACE_BITS 42
80#elif defined(TARGET_I386) && !defined(USE_KQEMU)
81#define TARGET_PHYS_ADDR_SPACE_BITS 36
108c49b8
FB
82#else
83/* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
84#define TARGET_PHYS_ADDR_SPACE_BITS 32
85#endif
86
bdaf78e0 87static TranslationBlock *tbs;
26a5f13b 88int code_gen_max_blocks;
9fa3e853 89TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 90static int nb_tbs;
eb51d102
FB
91/* any access to the tbs or the page table must use this lock */
92spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 93
141ac468
BS
94#if defined(__arm__) || defined(__sparc_v9__)
95/* The prologue must be reachable with a direct jump. ARM and Sparc64
96 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
97 section close to code segment. */
98#define code_gen_section \
99 __attribute__((__section__(".gen_code"))) \
100 __attribute__((aligned (32)))
101#else
102#define code_gen_section \
103 __attribute__((aligned (32)))
104#endif
105
106uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
107static uint8_t *code_gen_buffer;
108static unsigned long code_gen_buffer_size;
26a5f13b 109/* threshold to flush the translated code buffer */
bdaf78e0 110static unsigned long code_gen_buffer_max_size;
fd6ce8f6
FB
111uint8_t *code_gen_ptr;
112
e2eef170 113#if !defined(CONFIG_USER_ONLY)
00f82b8a 114ram_addr_t phys_ram_size;
9fa3e853
FB
115int phys_ram_fd;
116uint8_t *phys_ram_base;
1ccde1cb 117uint8_t *phys_ram_dirty;
74576198 118static int in_migration;
e9a1ab19 119static ram_addr_t phys_ram_alloc_offset = 0;
e2eef170 120#endif
9fa3e853 121
6a00d601
FB
122CPUState *first_cpu;
123/* current CPU in the current thread. It is only valid inside
124 cpu_exec() */
5fafdf24 125CPUState *cpu_single_env;
2e70f6ef 126/* 0 = Do not count executed instructions.
bf20dc07 127 1 = Precise instruction counting.
2e70f6ef
PB
128 2 = Adaptive rate instruction counting. */
129int use_icount = 0;
130/* Current instruction counter. While executing translated code this may
131 include some instructions that have not yet been executed. */
132int64_t qemu_icount;
6a00d601 133
54936004 134typedef struct PageDesc {
92e873b9 135 /* list of TBs intersecting this ram page */
fd6ce8f6 136 TranslationBlock *first_tb;
9fa3e853
FB
137 /* in order to optimize self modifying code, we count the number
138 of lookups we do to a given page to use a bitmap */
139 unsigned int code_write_count;
140 uint8_t *code_bitmap;
141#if defined(CONFIG_USER_ONLY)
142 unsigned long flags;
143#endif
54936004
FB
144} PageDesc;
145
92e873b9 146typedef struct PhysPageDesc {
0f459d16 147 /* offset in host memory of the page + io_index in the low bits */
00f82b8a 148 ram_addr_t phys_offset;
8da3ff18 149 ram_addr_t region_offset;
92e873b9
FB
150} PhysPageDesc;
151
54936004 152#define L2_BITS 10
bedb69ea
JM
153#if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
154/* XXX: this is a temporary hack for alpha target.
155 * In the future, this is to be replaced by a multi-level table
156 * to actually be able to handle the complete 64 bits address space.
157 */
158#define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
159#else
03875444 160#define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
bedb69ea 161#endif
54936004
FB
162
163#define L1_SIZE (1 << L1_BITS)
164#define L2_SIZE (1 << L2_BITS)
165
83fb7adf
FB
166unsigned long qemu_real_host_page_size;
167unsigned long qemu_host_page_bits;
168unsigned long qemu_host_page_size;
169unsigned long qemu_host_page_mask;
54936004 170
92e873b9 171/* XXX: for system emulation, it could just be an array */
54936004 172static PageDesc *l1_map[L1_SIZE];
bdaf78e0 173static PhysPageDesc **l1_phys_map;
54936004 174
e2eef170
PB
175#if !defined(CONFIG_USER_ONLY)
176static void io_mem_init(void);
177
33417e70 178/* io memory support */
33417e70
FB
179CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
180CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 181void *io_mem_opaque[IO_MEM_NB_ENTRIES];
88715657 182char io_mem_used[IO_MEM_NB_ENTRIES];
6658ffb8
PB
183static int io_mem_watch;
184#endif
33417e70 185
34865134 186/* log support */
d9b630fd 187static const char *logfilename = "/tmp/qemu.log";
34865134
FB
188FILE *logfile;
189int loglevel;
e735b91c 190static int log_append = 0;
34865134 191
e3db7226
FB
192/* statistics */
193static int tlb_flush_count;
194static int tb_flush_count;
195static int tb_phys_invalidate_count;
196
db7b5426
BS
197#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
198typedef struct subpage_t {
199 target_phys_addr_t base;
3ee89922
BS
200 CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4];
201 CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4];
202 void *opaque[TARGET_PAGE_SIZE][2][4];
8da3ff18 203 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
db7b5426
BS
204} subpage_t;
205
7cb69cae
FB
206#ifdef _WIN32
207static void map_exec(void *addr, long size)
208{
209 DWORD old_protect;
210 VirtualProtect(addr, size,
211 PAGE_EXECUTE_READWRITE, &old_protect);
212
213}
214#else
215static void map_exec(void *addr, long size)
216{
4369415f 217 unsigned long start, end, page_size;
7cb69cae 218
4369415f 219 page_size = getpagesize();
7cb69cae 220 start = (unsigned long)addr;
4369415f 221 start &= ~(page_size - 1);
7cb69cae
FB
222
223 end = (unsigned long)addr + size;
4369415f
FB
224 end += page_size - 1;
225 end &= ~(page_size - 1);
7cb69cae
FB
226
227 mprotect((void *)start, end - start,
228 PROT_READ | PROT_WRITE | PROT_EXEC);
229}
230#endif
231
b346ff46 232static void page_init(void)
54936004 233{
83fb7adf 234 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 235 TARGET_PAGE_SIZE */
c2b48b69
AL
236#ifdef _WIN32
237 {
238 SYSTEM_INFO system_info;
239
240 GetSystemInfo(&system_info);
241 qemu_real_host_page_size = system_info.dwPageSize;
242 }
243#else
244 qemu_real_host_page_size = getpagesize();
245#endif
83fb7adf
FB
246 if (qemu_host_page_size == 0)
247 qemu_host_page_size = qemu_real_host_page_size;
248 if (qemu_host_page_size < TARGET_PAGE_SIZE)
249 qemu_host_page_size = TARGET_PAGE_SIZE;
250 qemu_host_page_bits = 0;
251 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
252 qemu_host_page_bits++;
253 qemu_host_page_mask = ~(qemu_host_page_size - 1);
108c49b8
FB
254 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
255 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
50a9569b
AZ
256
257#if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
258 {
259 long long startaddr, endaddr;
260 FILE *f;
261 int n;
262
c8a706fe 263 mmap_lock();
0776590d 264 last_brk = (unsigned long)sbrk(0);
50a9569b
AZ
265 f = fopen("/proc/self/maps", "r");
266 if (f) {
267 do {
268 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
269 if (n == 2) {
e0b8d65a
BS
270 startaddr = MIN(startaddr,
271 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
272 endaddr = MIN(endaddr,
273 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
b5fc909e 274 page_set_flags(startaddr & TARGET_PAGE_MASK,
50a9569b
AZ
275 TARGET_PAGE_ALIGN(endaddr),
276 PAGE_RESERVED);
277 }
278 } while (!feof(f));
279 fclose(f);
280 }
c8a706fe 281 mmap_unlock();
50a9569b
AZ
282 }
283#endif
54936004
FB
284}
285
434929bf 286static inline PageDesc **page_l1_map(target_ulong index)
54936004 287{
17e2377a
PB
288#if TARGET_LONG_BITS > 32
289 /* Host memory outside guest VM. For 32-bit targets we have already
290 excluded high addresses. */
d8173e0f 291 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
17e2377a
PB
292 return NULL;
293#endif
434929bf
AL
294 return &l1_map[index >> L2_BITS];
295}
296
297static inline PageDesc *page_find_alloc(target_ulong index)
298{
299 PageDesc **lp, *p;
300 lp = page_l1_map(index);
301 if (!lp)
302 return NULL;
303
54936004
FB
304 p = *lp;
305 if (!p) {
306 /* allocate if not found */
17e2377a 307#if defined(CONFIG_USER_ONLY)
17e2377a
PB
308 size_t len = sizeof(PageDesc) * L2_SIZE;
309 /* Don't use qemu_malloc because it may recurse. */
310 p = mmap(0, len, PROT_READ | PROT_WRITE,
311 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
54936004 312 *lp = p;
fb1c2cd7
AJ
313 if (h2g_valid(p)) {
314 unsigned long addr = h2g(p);
17e2377a
PB
315 page_set_flags(addr & TARGET_PAGE_MASK,
316 TARGET_PAGE_ALIGN(addr + len),
317 PAGE_RESERVED);
318 }
319#else
320 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
321 *lp = p;
322#endif
54936004
FB
323 }
324 return p + (index & (L2_SIZE - 1));
325}
326
00f82b8a 327static inline PageDesc *page_find(target_ulong index)
54936004 328{
434929bf
AL
329 PageDesc **lp, *p;
330 lp = page_l1_map(index);
331 if (!lp)
332 return NULL;
54936004 333
434929bf 334 p = *lp;
54936004
FB
335 if (!p)
336 return 0;
fd6ce8f6
FB
337 return p + (index & (L2_SIZE - 1));
338}
339
108c49b8 340static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 341{
108c49b8 342 void **lp, **p;
e3f4e2a4 343 PhysPageDesc *pd;
92e873b9 344
108c49b8
FB
345 p = (void **)l1_phys_map;
346#if TARGET_PHYS_ADDR_SPACE_BITS > 32
347
348#if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
349#error unsupported TARGET_PHYS_ADDR_SPACE_BITS
350#endif
351 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
92e873b9
FB
352 p = *lp;
353 if (!p) {
354 /* allocate if not found */
108c49b8
FB
355 if (!alloc)
356 return NULL;
357 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
358 memset(p, 0, sizeof(void *) * L1_SIZE);
359 *lp = p;
360 }
361#endif
362 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
e3f4e2a4
PB
363 pd = *lp;
364 if (!pd) {
365 int i;
108c49b8
FB
366 /* allocate if not found */
367 if (!alloc)
368 return NULL;
e3f4e2a4
PB
369 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
370 *lp = pd;
67c4d23c 371 for (i = 0; i < L2_SIZE; i++) {
e3f4e2a4 372 pd[i].phys_offset = IO_MEM_UNASSIGNED;
67c4d23c
PB
373 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
374 }
92e873b9 375 }
e3f4e2a4 376 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
92e873b9
FB
377}
378
108c49b8 379static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 380{
108c49b8 381 return phys_page_find_alloc(index, 0);
92e873b9
FB
382}
383
9fa3e853 384#if !defined(CONFIG_USER_ONLY)
6a00d601 385static void tlb_protect_code(ram_addr_t ram_addr);
5fafdf24 386static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 387 target_ulong vaddr);
c8a706fe
PB
388#define mmap_lock() do { } while(0)
389#define mmap_unlock() do { } while(0)
9fa3e853 390#endif
fd6ce8f6 391
4369415f
FB
392#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
393
394#if defined(CONFIG_USER_ONLY)
395/* Currently it is not recommanded to allocate big chunks of data in
396 user mode. It will change when a dedicated libc will be used */
397#define USE_STATIC_CODE_GEN_BUFFER
398#endif
399
400#ifdef USE_STATIC_CODE_GEN_BUFFER
401static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
402#endif
403
8fcd3692 404static void code_gen_alloc(unsigned long tb_size)
26a5f13b 405{
4369415f
FB
406#ifdef USE_STATIC_CODE_GEN_BUFFER
407 code_gen_buffer = static_code_gen_buffer;
408 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
409 map_exec(code_gen_buffer, code_gen_buffer_size);
410#else
26a5f13b
FB
411 code_gen_buffer_size = tb_size;
412 if (code_gen_buffer_size == 0) {
4369415f
FB
413#if defined(CONFIG_USER_ONLY)
414 /* in user mode, phys_ram_size is not meaningful */
415 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
416#else
26a5f13b 417 /* XXX: needs ajustments */
174a9a1f 418 code_gen_buffer_size = (unsigned long)(phys_ram_size / 4);
4369415f 419#endif
26a5f13b
FB
420 }
421 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
422 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
423 /* The code gen buffer location may have constraints depending on
424 the host cpu and OS */
425#if defined(__linux__)
426 {
427 int flags;
141ac468
BS
428 void *start = NULL;
429
26a5f13b
FB
430 flags = MAP_PRIVATE | MAP_ANONYMOUS;
431#if defined(__x86_64__)
432 flags |= MAP_32BIT;
433 /* Cannot map more than that */
434 if (code_gen_buffer_size > (800 * 1024 * 1024))
435 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
436#elif defined(__sparc_v9__)
437 // Map the buffer below 2G, so we can use direct calls and branches
438 flags |= MAP_FIXED;
439 start = (void *) 0x60000000UL;
440 if (code_gen_buffer_size > (512 * 1024 * 1024))
441 code_gen_buffer_size = (512 * 1024 * 1024);
1cb0661e 442#elif defined(__arm__)
63d41246 443 /* Map the buffer below 32M, so we can use direct calls and branches */
1cb0661e
AZ
444 flags |= MAP_FIXED;
445 start = (void *) 0x01000000UL;
446 if (code_gen_buffer_size > 16 * 1024 * 1024)
447 code_gen_buffer_size = 16 * 1024 * 1024;
26a5f13b 448#endif
141ac468
BS
449 code_gen_buffer = mmap(start, code_gen_buffer_size,
450 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
451 flags, -1, 0);
452 if (code_gen_buffer == MAP_FAILED) {
453 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
454 exit(1);
455 }
456 }
06e67a82
AL
457#elif defined(__FreeBSD__)
458 {
459 int flags;
460 void *addr = NULL;
461 flags = MAP_PRIVATE | MAP_ANONYMOUS;
462#if defined(__x86_64__)
463 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
464 * 0x40000000 is free */
465 flags |= MAP_FIXED;
466 addr = (void *)0x40000000;
467 /* Cannot map more than that */
468 if (code_gen_buffer_size > (800 * 1024 * 1024))
469 code_gen_buffer_size = (800 * 1024 * 1024);
470#endif
471 code_gen_buffer = mmap(addr, code_gen_buffer_size,
472 PROT_WRITE | PROT_READ | PROT_EXEC,
473 flags, -1, 0);
474 if (code_gen_buffer == MAP_FAILED) {
475 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
476 exit(1);
477 }
478 }
26a5f13b
FB
479#else
480 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
26a5f13b
FB
481 map_exec(code_gen_buffer, code_gen_buffer_size);
482#endif
4369415f 483#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b
FB
484 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
485 code_gen_buffer_max_size = code_gen_buffer_size -
486 code_gen_max_block_size();
487 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
488 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
489}
490
491/* Must be called before using the QEMU cpus. 'tb_size' is the size
492 (in bytes) allocated to the translation buffer. Zero means default
493 size. */
494void cpu_exec_init_all(unsigned long tb_size)
495{
26a5f13b
FB
496 cpu_gen_init();
497 code_gen_alloc(tb_size);
498 code_gen_ptr = code_gen_buffer;
4369415f 499 page_init();
e2eef170 500#if !defined(CONFIG_USER_ONLY)
26a5f13b 501 io_mem_init();
e2eef170 502#endif
26a5f13b
FB
503}
504
9656f324
PB
505#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
506
507#define CPU_COMMON_SAVE_VERSION 1
508
509static void cpu_common_save(QEMUFile *f, void *opaque)
510{
511 CPUState *env = opaque;
512
513 qemu_put_be32s(f, &env->halted);
514 qemu_put_be32s(f, &env->interrupt_request);
515}
516
517static int cpu_common_load(QEMUFile *f, void *opaque, int version_id)
518{
519 CPUState *env = opaque;
520
521 if (version_id != CPU_COMMON_SAVE_VERSION)
522 return -EINVAL;
523
524 qemu_get_be32s(f, &env->halted);
75f482ae 525 qemu_get_be32s(f, &env->interrupt_request);
9656f324
PB
526 tlb_flush(env, 1);
527
528 return 0;
529}
530#endif
531
6a00d601 532void cpu_exec_init(CPUState *env)
fd6ce8f6 533{
6a00d601
FB
534 CPUState **penv;
535 int cpu_index;
536
c2764719
PB
537#if defined(CONFIG_USER_ONLY)
538 cpu_list_lock();
539#endif
6a00d601
FB
540 env->next_cpu = NULL;
541 penv = &first_cpu;
542 cpu_index = 0;
543 while (*penv != NULL) {
544 penv = (CPUState **)&(*penv)->next_cpu;
545 cpu_index++;
546 }
547 env->cpu_index = cpu_index;
c0ce998e
AL
548 TAILQ_INIT(&env->breakpoints);
549 TAILQ_INIT(&env->watchpoints);
6a00d601 550 *penv = env;
c2764719
PB
551#if defined(CONFIG_USER_ONLY)
552 cpu_list_unlock();
553#endif
b3c7724c 554#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
9656f324
PB
555 register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION,
556 cpu_common_save, cpu_common_load, env);
b3c7724c
PB
557 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
558 cpu_save, cpu_load, env);
559#endif
fd6ce8f6
FB
560}
561
9fa3e853
FB
562static inline void invalidate_page_bitmap(PageDesc *p)
563{
564 if (p->code_bitmap) {
59817ccb 565 qemu_free(p->code_bitmap);
9fa3e853
FB
566 p->code_bitmap = NULL;
567 }
568 p->code_write_count = 0;
569}
570
fd6ce8f6
FB
571/* set to NULL all the 'first_tb' fields in all PageDescs */
572static void page_flush_tb(void)
573{
574 int i, j;
575 PageDesc *p;
576
577 for(i = 0; i < L1_SIZE; i++) {
578 p = l1_map[i];
579 if (p) {
9fa3e853
FB
580 for(j = 0; j < L2_SIZE; j++) {
581 p->first_tb = NULL;
582 invalidate_page_bitmap(p);
583 p++;
584 }
fd6ce8f6
FB
585 }
586 }
587}
588
589/* flush all the translation blocks */
d4e8164f 590/* XXX: tb_flush is currently not thread safe */
6a00d601 591void tb_flush(CPUState *env1)
fd6ce8f6 592{
6a00d601 593 CPUState *env;
0124311e 594#if defined(DEBUG_FLUSH)
ab3d1727
BS
595 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
596 (unsigned long)(code_gen_ptr - code_gen_buffer),
597 nb_tbs, nb_tbs > 0 ?
598 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 599#endif
26a5f13b 600 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
601 cpu_abort(env1, "Internal error: code buffer overflow\n");
602
fd6ce8f6 603 nb_tbs = 0;
3b46e624 604
6a00d601
FB
605 for(env = first_cpu; env != NULL; env = env->next_cpu) {
606 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
607 }
9fa3e853 608
8a8a608f 609 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 610 page_flush_tb();
9fa3e853 611
fd6ce8f6 612 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
613 /* XXX: flush processor icache at this point if cache flush is
614 expensive */
e3db7226 615 tb_flush_count++;
fd6ce8f6
FB
616}
617
618#ifdef DEBUG_TB_CHECK
619
bc98a7ef 620static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
621{
622 TranslationBlock *tb;
623 int i;
624 address &= TARGET_PAGE_MASK;
99773bd4
PB
625 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
626 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
627 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
628 address >= tb->pc + tb->size)) {
629 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
99773bd4 630 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
631 }
632 }
633 }
634}
635
636/* verify that all the pages have correct rights for code */
637static void tb_page_check(void)
638{
639 TranslationBlock *tb;
640 int i, flags1, flags2;
3b46e624 641
99773bd4
PB
642 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
643 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
644 flags1 = page_get_flags(tb->pc);
645 flags2 = page_get_flags(tb->pc + tb->size - 1);
646 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
647 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 648 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
649 }
650 }
651 }
652}
653
bdaf78e0 654static void tb_jmp_check(TranslationBlock *tb)
d4e8164f
FB
655{
656 TranslationBlock *tb1;
657 unsigned int n1;
658
659 /* suppress any remaining jumps to this TB */
660 tb1 = tb->jmp_first;
661 for(;;) {
662 n1 = (long)tb1 & 3;
663 tb1 = (TranslationBlock *)((long)tb1 & ~3);
664 if (n1 == 2)
665 break;
666 tb1 = tb1->jmp_next[n1];
667 }
668 /* check end of list */
669 if (tb1 != tb) {
670 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
671 }
672}
673
fd6ce8f6
FB
674#endif
675
676/* invalidate one TB */
677static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
678 int next_offset)
679{
680 TranslationBlock *tb1;
681 for(;;) {
682 tb1 = *ptb;
683 if (tb1 == tb) {
684 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
685 break;
686 }
687 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
688 }
689}
690
9fa3e853
FB
691static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
692{
693 TranslationBlock *tb1;
694 unsigned int n1;
695
696 for(;;) {
697 tb1 = *ptb;
698 n1 = (long)tb1 & 3;
699 tb1 = (TranslationBlock *)((long)tb1 & ~3);
700 if (tb1 == tb) {
701 *ptb = tb1->page_next[n1];
702 break;
703 }
704 ptb = &tb1->page_next[n1];
705 }
706}
707
d4e8164f
FB
708static inline void tb_jmp_remove(TranslationBlock *tb, int n)
709{
710 TranslationBlock *tb1, **ptb;
711 unsigned int n1;
712
713 ptb = &tb->jmp_next[n];
714 tb1 = *ptb;
715 if (tb1) {
716 /* find tb(n) in circular list */
717 for(;;) {
718 tb1 = *ptb;
719 n1 = (long)tb1 & 3;
720 tb1 = (TranslationBlock *)((long)tb1 & ~3);
721 if (n1 == n && tb1 == tb)
722 break;
723 if (n1 == 2) {
724 ptb = &tb1->jmp_first;
725 } else {
726 ptb = &tb1->jmp_next[n1];
727 }
728 }
729 /* now we can suppress tb(n) from the list */
730 *ptb = tb->jmp_next[n];
731
732 tb->jmp_next[n] = NULL;
733 }
734}
735
736/* reset the jump entry 'n' of a TB so that it is not chained to
737 another TB */
738static inline void tb_reset_jump(TranslationBlock *tb, int n)
739{
740 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
741}
742
2e70f6ef 743void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
fd6ce8f6 744{
6a00d601 745 CPUState *env;
8a40a180 746 PageDesc *p;
d4e8164f 747 unsigned int h, n1;
00f82b8a 748 target_phys_addr_t phys_pc;
8a40a180 749 TranslationBlock *tb1, *tb2;
3b46e624 750
8a40a180
FB
751 /* remove the TB from the hash list */
752 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
753 h = tb_phys_hash_func(phys_pc);
5fafdf24 754 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
755 offsetof(TranslationBlock, phys_hash_next));
756
757 /* remove the TB from the page list */
758 if (tb->page_addr[0] != page_addr) {
759 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
760 tb_page_remove(&p->first_tb, tb);
761 invalidate_page_bitmap(p);
762 }
763 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
764 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
765 tb_page_remove(&p->first_tb, tb);
766 invalidate_page_bitmap(p);
767 }
768
36bdbe54 769 tb_invalidated_flag = 1;
59817ccb 770
fd6ce8f6 771 /* remove the TB from the hash list */
8a40a180 772 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
773 for(env = first_cpu; env != NULL; env = env->next_cpu) {
774 if (env->tb_jmp_cache[h] == tb)
775 env->tb_jmp_cache[h] = NULL;
776 }
d4e8164f
FB
777
778 /* suppress this TB from the two jump lists */
779 tb_jmp_remove(tb, 0);
780 tb_jmp_remove(tb, 1);
781
782 /* suppress any remaining jumps to this TB */
783 tb1 = tb->jmp_first;
784 for(;;) {
785 n1 = (long)tb1 & 3;
786 if (n1 == 2)
787 break;
788 tb1 = (TranslationBlock *)((long)tb1 & ~3);
789 tb2 = tb1->jmp_next[n1];
790 tb_reset_jump(tb1, n1);
791 tb1->jmp_next[n1] = NULL;
792 tb1 = tb2;
793 }
794 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 795
e3db7226 796 tb_phys_invalidate_count++;
9fa3e853
FB
797}
798
799static inline void set_bits(uint8_t *tab, int start, int len)
800{
801 int end, mask, end1;
802
803 end = start + len;
804 tab += start >> 3;
805 mask = 0xff << (start & 7);
806 if ((start & ~7) == (end & ~7)) {
807 if (start < end) {
808 mask &= ~(0xff << (end & 7));
809 *tab |= mask;
810 }
811 } else {
812 *tab++ |= mask;
813 start = (start + 8) & ~7;
814 end1 = end & ~7;
815 while (start < end1) {
816 *tab++ = 0xff;
817 start += 8;
818 }
819 if (start < end) {
820 mask = ~(0xff << (end & 7));
821 *tab |= mask;
822 }
823 }
824}
825
826static void build_page_bitmap(PageDesc *p)
827{
828 int n, tb_start, tb_end;
829 TranslationBlock *tb;
3b46e624 830
b2a7081a 831 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
832
833 tb = p->first_tb;
834 while (tb != NULL) {
835 n = (long)tb & 3;
836 tb = (TranslationBlock *)((long)tb & ~3);
837 /* NOTE: this is subtle as a TB may span two physical pages */
838 if (n == 0) {
839 /* NOTE: tb_end may be after the end of the page, but
840 it is not a problem */
841 tb_start = tb->pc & ~TARGET_PAGE_MASK;
842 tb_end = tb_start + tb->size;
843 if (tb_end > TARGET_PAGE_SIZE)
844 tb_end = TARGET_PAGE_SIZE;
845 } else {
846 tb_start = 0;
847 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
848 }
849 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
850 tb = tb->page_next[n];
851 }
852}
853
2e70f6ef
PB
854TranslationBlock *tb_gen_code(CPUState *env,
855 target_ulong pc, target_ulong cs_base,
856 int flags, int cflags)
d720b93d
FB
857{
858 TranslationBlock *tb;
859 uint8_t *tc_ptr;
860 target_ulong phys_pc, phys_page2, virt_page2;
861 int code_gen_size;
862
c27004ec
FB
863 phys_pc = get_phys_addr_code(env, pc);
864 tb = tb_alloc(pc);
d720b93d
FB
865 if (!tb) {
866 /* flush must be done */
867 tb_flush(env);
868 /* cannot fail at this point */
c27004ec 869 tb = tb_alloc(pc);
2e70f6ef
PB
870 /* Don't forget to invalidate previous TB info. */
871 tb_invalidated_flag = 1;
d720b93d
FB
872 }
873 tc_ptr = code_gen_ptr;
874 tb->tc_ptr = tc_ptr;
875 tb->cs_base = cs_base;
876 tb->flags = flags;
877 tb->cflags = cflags;
d07bde88 878 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 879 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 880
d720b93d 881 /* check next page if needed */
c27004ec 882 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 883 phys_page2 = -1;
c27004ec 884 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
d720b93d
FB
885 phys_page2 = get_phys_addr_code(env, virt_page2);
886 }
887 tb_link_phys(tb, phys_pc, phys_page2);
2e70f6ef 888 return tb;
d720b93d 889}
3b46e624 890
9fa3e853
FB
891/* invalidate all TBs which intersect with the target physical page
892 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
893 the same physical page. 'is_cpu_write_access' should be true if called
894 from a real cpu write access: the virtual CPU will exit the current
895 TB if code is modified inside this TB. */
00f82b8a 896void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
d720b93d
FB
897 int is_cpu_write_access)
898{
6b917547 899 TranslationBlock *tb, *tb_next, *saved_tb;
d720b93d 900 CPUState *env = cpu_single_env;
9fa3e853 901 target_ulong tb_start, tb_end;
6b917547
AL
902 PageDesc *p;
903 int n;
904#ifdef TARGET_HAS_PRECISE_SMC
905 int current_tb_not_found = is_cpu_write_access;
906 TranslationBlock *current_tb = NULL;
907 int current_tb_modified = 0;
908 target_ulong current_pc = 0;
909 target_ulong current_cs_base = 0;
910 int current_flags = 0;
911#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
912
913 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 914 if (!p)
9fa3e853 915 return;
5fafdf24 916 if (!p->code_bitmap &&
d720b93d
FB
917 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
918 is_cpu_write_access) {
9fa3e853
FB
919 /* build code bitmap */
920 build_page_bitmap(p);
921 }
922
923 /* we remove all the TBs in the range [start, end[ */
924 /* XXX: see if in some cases it could be faster to invalidate all the code */
925 tb = p->first_tb;
926 while (tb != NULL) {
927 n = (long)tb & 3;
928 tb = (TranslationBlock *)((long)tb & ~3);
929 tb_next = tb->page_next[n];
930 /* NOTE: this is subtle as a TB may span two physical pages */
931 if (n == 0) {
932 /* NOTE: tb_end may be after the end of the page, but
933 it is not a problem */
934 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
935 tb_end = tb_start + tb->size;
936 } else {
937 tb_start = tb->page_addr[1];
938 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
939 }
940 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
941#ifdef TARGET_HAS_PRECISE_SMC
942 if (current_tb_not_found) {
943 current_tb_not_found = 0;
944 current_tb = NULL;
2e70f6ef 945 if (env->mem_io_pc) {
d720b93d 946 /* now we have a real cpu fault */
2e70f6ef 947 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
948 }
949 }
950 if (current_tb == tb &&
2e70f6ef 951 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
952 /* If we are modifying the current TB, we must stop
953 its execution. We could be more precise by checking
954 that the modification is after the current PC, but it
955 would require a specialized function to partially
956 restore the CPU state */
3b46e624 957
d720b93d 958 current_tb_modified = 1;
5fafdf24 959 cpu_restore_state(current_tb, env,
2e70f6ef 960 env->mem_io_pc, NULL);
6b917547
AL
961 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
962 &current_flags);
d720b93d
FB
963 }
964#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
965 /* we need to do that to handle the case where a signal
966 occurs while doing tb_phys_invalidate() */
967 saved_tb = NULL;
968 if (env) {
969 saved_tb = env->current_tb;
970 env->current_tb = NULL;
971 }
9fa3e853 972 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
973 if (env) {
974 env->current_tb = saved_tb;
975 if (env->interrupt_request && env->current_tb)
976 cpu_interrupt(env, env->interrupt_request);
977 }
9fa3e853
FB
978 }
979 tb = tb_next;
980 }
981#if !defined(CONFIG_USER_ONLY)
982 /* if no code remaining, no need to continue to use slow writes */
983 if (!p->first_tb) {
984 invalidate_page_bitmap(p);
d720b93d 985 if (is_cpu_write_access) {
2e70f6ef 986 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
987 }
988 }
989#endif
990#ifdef TARGET_HAS_PRECISE_SMC
991 if (current_tb_modified) {
992 /* we generate a block containing just the instruction
993 modifying the memory. It will ensure that it cannot modify
994 itself */
ea1c1802 995 env->current_tb = NULL;
2e70f6ef 996 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 997 cpu_resume_from_signal(env, NULL);
9fa3e853 998 }
fd6ce8f6 999#endif
9fa3e853 1000}
fd6ce8f6 1001
9fa3e853 1002/* len must be <= 8 and start must be a multiple of len */
00f82b8a 1003static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
9fa3e853
FB
1004{
1005 PageDesc *p;
1006 int offset, b;
59817ccb 1007#if 0
a4193c8a 1008 if (1) {
93fcfe39
AL
1009 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1010 cpu_single_env->mem_io_vaddr, len,
1011 cpu_single_env->eip,
1012 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
59817ccb
FB
1013 }
1014#endif
9fa3e853 1015 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1016 if (!p)
9fa3e853
FB
1017 return;
1018 if (p->code_bitmap) {
1019 offset = start & ~TARGET_PAGE_MASK;
1020 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1021 if (b & ((1 << len) - 1))
1022 goto do_invalidate;
1023 } else {
1024 do_invalidate:
d720b93d 1025 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1026 }
1027}
1028
9fa3e853 1029#if !defined(CONFIG_SOFTMMU)
00f82b8a 1030static void tb_invalidate_phys_page(target_phys_addr_t addr,
d720b93d 1031 unsigned long pc, void *puc)
9fa3e853 1032{
6b917547 1033 TranslationBlock *tb;
9fa3e853 1034 PageDesc *p;
6b917547 1035 int n;
d720b93d 1036#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1037 TranslationBlock *current_tb = NULL;
d720b93d 1038 CPUState *env = cpu_single_env;
6b917547
AL
1039 int current_tb_modified = 0;
1040 target_ulong current_pc = 0;
1041 target_ulong current_cs_base = 0;
1042 int current_flags = 0;
d720b93d 1043#endif
9fa3e853
FB
1044
1045 addr &= TARGET_PAGE_MASK;
1046 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1047 if (!p)
9fa3e853
FB
1048 return;
1049 tb = p->first_tb;
d720b93d
FB
1050#ifdef TARGET_HAS_PRECISE_SMC
1051 if (tb && pc != 0) {
1052 current_tb = tb_find_pc(pc);
1053 }
1054#endif
9fa3e853
FB
1055 while (tb != NULL) {
1056 n = (long)tb & 3;
1057 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1058#ifdef TARGET_HAS_PRECISE_SMC
1059 if (current_tb == tb &&
2e70f6ef 1060 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1061 /* If we are modifying the current TB, we must stop
1062 its execution. We could be more precise by checking
1063 that the modification is after the current PC, but it
1064 would require a specialized function to partially
1065 restore the CPU state */
3b46e624 1066
d720b93d
FB
1067 current_tb_modified = 1;
1068 cpu_restore_state(current_tb, env, pc, puc);
6b917547
AL
1069 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1070 &current_flags);
d720b93d
FB
1071 }
1072#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1073 tb_phys_invalidate(tb, addr);
1074 tb = tb->page_next[n];
1075 }
fd6ce8f6 1076 p->first_tb = NULL;
d720b93d
FB
1077#ifdef TARGET_HAS_PRECISE_SMC
1078 if (current_tb_modified) {
1079 /* we generate a block containing just the instruction
1080 modifying the memory. It will ensure that it cannot modify
1081 itself */
ea1c1802 1082 env->current_tb = NULL;
2e70f6ef 1083 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1084 cpu_resume_from_signal(env, puc);
1085 }
1086#endif
fd6ce8f6 1087}
9fa3e853 1088#endif
fd6ce8f6
FB
1089
1090/* add the tb in the target page and protect it if necessary */
5fafdf24 1091static inline void tb_alloc_page(TranslationBlock *tb,
53a5960a 1092 unsigned int n, target_ulong page_addr)
fd6ce8f6
FB
1093{
1094 PageDesc *p;
9fa3e853
FB
1095 TranslationBlock *last_first_tb;
1096
1097 tb->page_addr[n] = page_addr;
3a7d929e 1098 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
9fa3e853
FB
1099 tb->page_next[n] = p->first_tb;
1100 last_first_tb = p->first_tb;
1101 p->first_tb = (TranslationBlock *)((long)tb | n);
1102 invalidate_page_bitmap(p);
fd6ce8f6 1103
107db443 1104#if defined(TARGET_HAS_SMC) || 1
d720b93d 1105
9fa3e853 1106#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1107 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1108 target_ulong addr;
1109 PageDesc *p2;
9fa3e853
FB
1110 int prot;
1111
fd6ce8f6
FB
1112 /* force the host page as non writable (writes will have a
1113 page fault + mprotect overhead) */
53a5960a 1114 page_addr &= qemu_host_page_mask;
fd6ce8f6 1115 prot = 0;
53a5960a
PB
1116 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1117 addr += TARGET_PAGE_SIZE) {
1118
1119 p2 = page_find (addr >> TARGET_PAGE_BITS);
1120 if (!p2)
1121 continue;
1122 prot |= p2->flags;
1123 p2->flags &= ~PAGE_WRITE;
1124 page_get_flags(addr);
1125 }
5fafdf24 1126 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1127 (prot & PAGE_BITS) & ~PAGE_WRITE);
1128#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1129 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1130 page_addr);
fd6ce8f6 1131#endif
fd6ce8f6 1132 }
9fa3e853
FB
1133#else
1134 /* if some code is already present, then the pages are already
1135 protected. So we handle the case where only the first TB is
1136 allocated in a physical page */
1137 if (!last_first_tb) {
6a00d601 1138 tlb_protect_code(page_addr);
9fa3e853
FB
1139 }
1140#endif
d720b93d
FB
1141
1142#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1143}
1144
1145/* Allocate a new translation block. Flush the translation buffer if
1146 too many translation blocks or too much generated code. */
c27004ec 1147TranslationBlock *tb_alloc(target_ulong pc)
fd6ce8f6
FB
1148{
1149 TranslationBlock *tb;
fd6ce8f6 1150
26a5f13b
FB
1151 if (nb_tbs >= code_gen_max_blocks ||
1152 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
d4e8164f 1153 return NULL;
fd6ce8f6
FB
1154 tb = &tbs[nb_tbs++];
1155 tb->pc = pc;
b448f2f3 1156 tb->cflags = 0;
d4e8164f
FB
1157 return tb;
1158}
1159
2e70f6ef
PB
1160void tb_free(TranslationBlock *tb)
1161{
bf20dc07 1162 /* In practice this is mostly used for single use temporary TB
2e70f6ef
PB
1163 Ignore the hard cases and just back up if this TB happens to
1164 be the last one generated. */
1165 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1166 code_gen_ptr = tb->tc_ptr;
1167 nb_tbs--;
1168 }
1169}
1170
9fa3e853
FB
1171/* add a new TB and link it to the physical page tables. phys_page2 is
1172 (-1) to indicate that only one page contains the TB. */
5fafdf24 1173void tb_link_phys(TranslationBlock *tb,
9fa3e853 1174 target_ulong phys_pc, target_ulong phys_page2)
d4e8164f 1175{
9fa3e853
FB
1176 unsigned int h;
1177 TranslationBlock **ptb;
1178
c8a706fe
PB
1179 /* Grab the mmap lock to stop another thread invalidating this TB
1180 before we are done. */
1181 mmap_lock();
9fa3e853
FB
1182 /* add in the physical hash table */
1183 h = tb_phys_hash_func(phys_pc);
1184 ptb = &tb_phys_hash[h];
1185 tb->phys_hash_next = *ptb;
1186 *ptb = tb;
fd6ce8f6
FB
1187
1188 /* add in the page list */
9fa3e853
FB
1189 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1190 if (phys_page2 != -1)
1191 tb_alloc_page(tb, 1, phys_page2);
1192 else
1193 tb->page_addr[1] = -1;
9fa3e853 1194
d4e8164f
FB
1195 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1196 tb->jmp_next[0] = NULL;
1197 tb->jmp_next[1] = NULL;
1198
1199 /* init original jump addresses */
1200 if (tb->tb_next_offset[0] != 0xffff)
1201 tb_reset_jump(tb, 0);
1202 if (tb->tb_next_offset[1] != 0xffff)
1203 tb_reset_jump(tb, 1);
8a40a180
FB
1204
1205#ifdef DEBUG_TB_CHECK
1206 tb_page_check();
1207#endif
c8a706fe 1208 mmap_unlock();
fd6ce8f6
FB
1209}
1210
9fa3e853
FB
1211/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1212 tb[1].tc_ptr. Return NULL if not found */
1213TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1214{
9fa3e853
FB
1215 int m_min, m_max, m;
1216 unsigned long v;
1217 TranslationBlock *tb;
a513fe19
FB
1218
1219 if (nb_tbs <= 0)
1220 return NULL;
1221 if (tc_ptr < (unsigned long)code_gen_buffer ||
1222 tc_ptr >= (unsigned long)code_gen_ptr)
1223 return NULL;
1224 /* binary search (cf Knuth) */
1225 m_min = 0;
1226 m_max = nb_tbs - 1;
1227 while (m_min <= m_max) {
1228 m = (m_min + m_max) >> 1;
1229 tb = &tbs[m];
1230 v = (unsigned long)tb->tc_ptr;
1231 if (v == tc_ptr)
1232 return tb;
1233 else if (tc_ptr < v) {
1234 m_max = m - 1;
1235 } else {
1236 m_min = m + 1;
1237 }
5fafdf24 1238 }
a513fe19
FB
1239 return &tbs[m_max];
1240}
7501267e 1241
ea041c0e
FB
1242static void tb_reset_jump_recursive(TranslationBlock *tb);
1243
1244static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1245{
1246 TranslationBlock *tb1, *tb_next, **ptb;
1247 unsigned int n1;
1248
1249 tb1 = tb->jmp_next[n];
1250 if (tb1 != NULL) {
1251 /* find head of list */
1252 for(;;) {
1253 n1 = (long)tb1 & 3;
1254 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1255 if (n1 == 2)
1256 break;
1257 tb1 = tb1->jmp_next[n1];
1258 }
1259 /* we are now sure now that tb jumps to tb1 */
1260 tb_next = tb1;
1261
1262 /* remove tb from the jmp_first list */
1263 ptb = &tb_next->jmp_first;
1264 for(;;) {
1265 tb1 = *ptb;
1266 n1 = (long)tb1 & 3;
1267 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1268 if (n1 == n && tb1 == tb)
1269 break;
1270 ptb = &tb1->jmp_next[n1];
1271 }
1272 *ptb = tb->jmp_next[n];
1273 tb->jmp_next[n] = NULL;
3b46e624 1274
ea041c0e
FB
1275 /* suppress the jump to next tb in generated code */
1276 tb_reset_jump(tb, n);
1277
0124311e 1278 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1279 tb_reset_jump_recursive(tb_next);
1280 }
1281}
1282
1283static void tb_reset_jump_recursive(TranslationBlock *tb)
1284{
1285 tb_reset_jump_recursive2(tb, 0);
1286 tb_reset_jump_recursive2(tb, 1);
1287}
1288
1fddef4b 1289#if defined(TARGET_HAS_ICE)
d720b93d
FB
1290static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1291{
9b3c35e0
JM
1292 target_phys_addr_t addr;
1293 target_ulong pd;
c2f07f81
PB
1294 ram_addr_t ram_addr;
1295 PhysPageDesc *p;
d720b93d 1296
c2f07f81
PB
1297 addr = cpu_get_phys_page_debug(env, pc);
1298 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1299 if (!p) {
1300 pd = IO_MEM_UNASSIGNED;
1301 } else {
1302 pd = p->phys_offset;
1303 }
1304 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1305 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1306}
c27004ec 1307#endif
d720b93d 1308
6658ffb8 1309/* Add a watchpoint. */
a1d1bb31
AL
1310int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1311 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1312{
b4051334 1313 target_ulong len_mask = ~(len - 1);
c0ce998e 1314 CPUWatchpoint *wp;
6658ffb8 1315
b4051334
AL
1316 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1317 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1318 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1319 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1320 return -EINVAL;
1321 }
a1d1bb31 1322 wp = qemu_malloc(sizeof(*wp));
a1d1bb31
AL
1323
1324 wp->vaddr = addr;
b4051334 1325 wp->len_mask = len_mask;
a1d1bb31
AL
1326 wp->flags = flags;
1327
2dc9f411 1328 /* keep all GDB-injected watchpoints in front */
c0ce998e
AL
1329 if (flags & BP_GDB)
1330 TAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1331 else
1332 TAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 1333
6658ffb8 1334 tlb_flush_page(env, addr);
a1d1bb31
AL
1335
1336 if (watchpoint)
1337 *watchpoint = wp;
1338 return 0;
6658ffb8
PB
1339}
1340
a1d1bb31
AL
1341/* Remove a specific watchpoint. */
1342int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1343 int flags)
6658ffb8 1344{
b4051334 1345 target_ulong len_mask = ~(len - 1);
a1d1bb31 1346 CPUWatchpoint *wp;
6658ffb8 1347
c0ce998e 1348 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 1349 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1350 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1351 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1352 return 0;
1353 }
1354 }
a1d1bb31 1355 return -ENOENT;
6658ffb8
PB
1356}
1357
a1d1bb31
AL
1358/* Remove a specific watchpoint by reference. */
1359void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1360{
c0ce998e 1361 TAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 1362
a1d1bb31
AL
1363 tlb_flush_page(env, watchpoint->vaddr);
1364
1365 qemu_free(watchpoint);
1366}
1367
1368/* Remove all matching watchpoints. */
1369void cpu_watchpoint_remove_all(CPUState *env, int mask)
1370{
c0ce998e 1371 CPUWatchpoint *wp, *next;
a1d1bb31 1372
c0ce998e 1373 TAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
1374 if (wp->flags & mask)
1375 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 1376 }
7d03f82f
EI
1377}
1378
a1d1bb31
AL
1379/* Add a breakpoint. */
1380int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1381 CPUBreakpoint **breakpoint)
4c3a88a2 1382{
1fddef4b 1383#if defined(TARGET_HAS_ICE)
c0ce998e 1384 CPUBreakpoint *bp;
3b46e624 1385
a1d1bb31 1386 bp = qemu_malloc(sizeof(*bp));
4c3a88a2 1387
a1d1bb31
AL
1388 bp->pc = pc;
1389 bp->flags = flags;
1390
2dc9f411 1391 /* keep all GDB-injected breakpoints in front */
c0ce998e
AL
1392 if (flags & BP_GDB)
1393 TAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1394 else
1395 TAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 1396
d720b93d 1397 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1398
1399 if (breakpoint)
1400 *breakpoint = bp;
4c3a88a2
FB
1401 return 0;
1402#else
a1d1bb31 1403 return -ENOSYS;
4c3a88a2
FB
1404#endif
1405}
1406
a1d1bb31
AL
1407/* Remove a specific breakpoint. */
1408int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1409{
7d03f82f 1410#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1411 CPUBreakpoint *bp;
1412
c0ce998e 1413 TAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
1414 if (bp->pc == pc && bp->flags == flags) {
1415 cpu_breakpoint_remove_by_ref(env, bp);
1416 return 0;
1417 }
7d03f82f 1418 }
a1d1bb31
AL
1419 return -ENOENT;
1420#else
1421 return -ENOSYS;
7d03f82f
EI
1422#endif
1423}
1424
a1d1bb31
AL
1425/* Remove a specific breakpoint by reference. */
1426void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1427{
1fddef4b 1428#if defined(TARGET_HAS_ICE)
c0ce998e 1429 TAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 1430
a1d1bb31
AL
1431 breakpoint_invalidate(env, breakpoint->pc);
1432
1433 qemu_free(breakpoint);
1434#endif
1435}
1436
1437/* Remove all matching breakpoints. */
1438void cpu_breakpoint_remove_all(CPUState *env, int mask)
1439{
1440#if defined(TARGET_HAS_ICE)
c0ce998e 1441 CPUBreakpoint *bp, *next;
a1d1bb31 1442
c0ce998e 1443 TAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
1444 if (bp->flags & mask)
1445 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 1446 }
4c3a88a2
FB
1447#endif
1448}
1449
c33a346e
FB
1450/* enable or disable single step mode. EXCP_DEBUG is returned by the
1451 CPU loop after each instruction */
1452void cpu_single_step(CPUState *env, int enabled)
1453{
1fddef4b 1454#if defined(TARGET_HAS_ICE)
c33a346e
FB
1455 if (env->singlestep_enabled != enabled) {
1456 env->singlestep_enabled = enabled;
1457 /* must flush all the translated code to avoid inconsistancies */
9fa3e853 1458 /* XXX: only flush what is necessary */
0124311e 1459 tb_flush(env);
c33a346e
FB
1460 }
1461#endif
1462}
1463
34865134
FB
1464/* enable or disable low levels log */
1465void cpu_set_log(int log_flags)
1466{
1467 loglevel = log_flags;
1468 if (loglevel && !logfile) {
11fcfab4 1469 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1470 if (!logfile) {
1471 perror(logfilename);
1472 _exit(1);
1473 }
9fa3e853
FB
1474#if !defined(CONFIG_SOFTMMU)
1475 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1476 {
b55266b5 1477 static char logfile_buf[4096];
9fa3e853
FB
1478 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1479 }
1480#else
34865134 1481 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1482#endif
e735b91c
PB
1483 log_append = 1;
1484 }
1485 if (!loglevel && logfile) {
1486 fclose(logfile);
1487 logfile = NULL;
34865134
FB
1488 }
1489}
1490
1491void cpu_set_log_filename(const char *filename)
1492{
1493 logfilename = strdup(filename);
e735b91c
PB
1494 if (logfile) {
1495 fclose(logfile);
1496 logfile = NULL;
1497 }
1498 cpu_set_log(loglevel);
34865134 1499}
c33a346e 1500
0124311e 1501/* mask must never be zero, except for A20 change call */
68a79315 1502void cpu_interrupt(CPUState *env, int mask)
ea041c0e 1503{
d5975363 1504#if !defined(USE_NPTL)
ea041c0e 1505 TranslationBlock *tb;
15a51156 1506 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
d5975363 1507#endif
2e70f6ef 1508 int old_mask;
59817ccb 1509
be214e6c
AJ
1510 if (mask & CPU_INTERRUPT_EXIT) {
1511 env->exit_request = 1;
1512 mask &= ~CPU_INTERRUPT_EXIT;
1513 }
1514
2e70f6ef 1515 old_mask = env->interrupt_request;
68a79315 1516 env->interrupt_request |= mask;
d5975363
PB
1517#if defined(USE_NPTL)
1518 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1519 problem and hope the cpu will stop of its own accord. For userspace
1520 emulation this often isn't actually as bad as it sounds. Often
1521 signals are used primarily to interrupt blocking syscalls. */
1522#else
2e70f6ef 1523 if (use_icount) {
266910c4 1524 env->icount_decr.u16.high = 0xffff;
2e70f6ef 1525#ifndef CONFIG_USER_ONLY
2e70f6ef 1526 if (!can_do_io(env)
be214e6c 1527 && (mask & ~old_mask) != 0) {
2e70f6ef
PB
1528 cpu_abort(env, "Raised interrupt while not in I/O function");
1529 }
1530#endif
1531 } else {
1532 tb = env->current_tb;
1533 /* if the cpu is currently executing code, we must unlink it and
1534 all the potentially executing TB */
1535 if (tb && !testandset(&interrupt_lock)) {
1536 env->current_tb = NULL;
1537 tb_reset_jump_recursive(tb);
1538 resetlock(&interrupt_lock);
1539 }
ea041c0e 1540 }
d5975363 1541#endif
ea041c0e
FB
1542}
1543
b54ad049
FB
1544void cpu_reset_interrupt(CPUState *env, int mask)
1545{
1546 env->interrupt_request &= ~mask;
1547}
1548
c7cd6a37 1549const CPULogItem cpu_log_items[] = {
5fafdf24 1550 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1551 "show generated host assembly code for each compiled TB" },
1552 { CPU_LOG_TB_IN_ASM, "in_asm",
1553 "show target assembly code for each compiled TB" },
5fafdf24 1554 { CPU_LOG_TB_OP, "op",
57fec1fe 1555 "show micro ops for each compiled TB" },
f193c797 1556 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1557 "show micro ops "
1558#ifdef TARGET_I386
1559 "before eflags optimization and "
f193c797 1560#endif
e01a1157 1561 "after liveness analysis" },
f193c797
FB
1562 { CPU_LOG_INT, "int",
1563 "show interrupts/exceptions in short format" },
1564 { CPU_LOG_EXEC, "exec",
1565 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1566 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1567 "show CPU state before block translation" },
f193c797
FB
1568#ifdef TARGET_I386
1569 { CPU_LOG_PCALL, "pcall",
1570 "show protected mode far calls/returns/exceptions" },
eca1bdf4
AL
1571 { CPU_LOG_RESET, "cpu_reset",
1572 "show CPU state before CPU resets" },
f193c797 1573#endif
8e3a9fd2 1574#ifdef DEBUG_IOPORT
fd872598
FB
1575 { CPU_LOG_IOPORT, "ioport",
1576 "show all i/o ports accesses" },
8e3a9fd2 1577#endif
f193c797
FB
1578 { 0, NULL, NULL },
1579};
1580
1581static int cmp1(const char *s1, int n, const char *s2)
1582{
1583 if (strlen(s2) != n)
1584 return 0;
1585 return memcmp(s1, s2, n) == 0;
1586}
3b46e624 1587
f193c797
FB
1588/* takes a comma separated list of log masks. Return 0 if error. */
1589int cpu_str_to_log_mask(const char *str)
1590{
c7cd6a37 1591 const CPULogItem *item;
f193c797
FB
1592 int mask;
1593 const char *p, *p1;
1594
1595 p = str;
1596 mask = 0;
1597 for(;;) {
1598 p1 = strchr(p, ',');
1599 if (!p1)
1600 p1 = p + strlen(p);
8e3a9fd2
FB
1601 if(cmp1(p,p1-p,"all")) {
1602 for(item = cpu_log_items; item->mask != 0; item++) {
1603 mask |= item->mask;
1604 }
1605 } else {
f193c797
FB
1606 for(item = cpu_log_items; item->mask != 0; item++) {
1607 if (cmp1(p, p1 - p, item->name))
1608 goto found;
1609 }
1610 return 0;
8e3a9fd2 1611 }
f193c797
FB
1612 found:
1613 mask |= item->mask;
1614 if (*p1 != ',')
1615 break;
1616 p = p1 + 1;
1617 }
1618 return mask;
1619}
ea041c0e 1620
7501267e
FB
1621void cpu_abort(CPUState *env, const char *fmt, ...)
1622{
1623 va_list ap;
493ae1f0 1624 va_list ap2;
7501267e
FB
1625
1626 va_start(ap, fmt);
493ae1f0 1627 va_copy(ap2, ap);
7501267e
FB
1628 fprintf(stderr, "qemu: fatal: ");
1629 vfprintf(stderr, fmt, ap);
1630 fprintf(stderr, "\n");
1631#ifdef TARGET_I386
7fe48483
FB
1632 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1633#else
1634 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1635#endif
93fcfe39
AL
1636 if (qemu_log_enabled()) {
1637 qemu_log("qemu: fatal: ");
1638 qemu_log_vprintf(fmt, ap2);
1639 qemu_log("\n");
f9373291 1640#ifdef TARGET_I386
93fcfe39 1641 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
f9373291 1642#else
93fcfe39 1643 log_cpu_state(env, 0);
f9373291 1644#endif
31b1a7b4 1645 qemu_log_flush();
93fcfe39 1646 qemu_log_close();
924edcae 1647 }
493ae1f0 1648 va_end(ap2);
f9373291 1649 va_end(ap);
7501267e
FB
1650 abort();
1651}
1652
c5be9f08
TS
1653CPUState *cpu_copy(CPUState *env)
1654{
01ba9816 1655 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1656 CPUState *next_cpu = new_env->next_cpu;
1657 int cpu_index = new_env->cpu_index;
5a38f081
AL
1658#if defined(TARGET_HAS_ICE)
1659 CPUBreakpoint *bp;
1660 CPUWatchpoint *wp;
1661#endif
1662
c5be9f08 1663 memcpy(new_env, env, sizeof(CPUState));
5a38f081
AL
1664
1665 /* Preserve chaining and index. */
c5be9f08
TS
1666 new_env->next_cpu = next_cpu;
1667 new_env->cpu_index = cpu_index;
5a38f081
AL
1668
1669 /* Clone all break/watchpoints.
1670 Note: Once we support ptrace with hw-debug register access, make sure
1671 BP_CPU break/watchpoints are handled correctly on clone. */
1672 TAILQ_INIT(&env->breakpoints);
1673 TAILQ_INIT(&env->watchpoints);
1674#if defined(TARGET_HAS_ICE)
1675 TAILQ_FOREACH(bp, &env->breakpoints, entry) {
1676 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1677 }
1678 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
1679 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1680 wp->flags, NULL);
1681 }
1682#endif
1683
c5be9f08
TS
1684 return new_env;
1685}
1686
0124311e
FB
1687#if !defined(CONFIG_USER_ONLY)
1688
5c751e99
EI
1689static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1690{
1691 unsigned int i;
1692
1693 /* Discard jump cache entries for any tb which might potentially
1694 overlap the flushed page. */
1695 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1696 memset (&env->tb_jmp_cache[i], 0,
1697 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1698
1699 i = tb_jmp_cache_hash_page(addr);
1700 memset (&env->tb_jmp_cache[i], 0,
1701 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1702}
1703
ee8b7021
FB
1704/* NOTE: if flush_global is true, also flush global entries (not
1705 implemented yet) */
1706void tlb_flush(CPUState *env, int flush_global)
33417e70 1707{
33417e70 1708 int i;
0124311e 1709
9fa3e853
FB
1710#if defined(DEBUG_TLB)
1711 printf("tlb_flush:\n");
1712#endif
0124311e
FB
1713 /* must reset current TB so that interrupts cannot modify the
1714 links while we are modifying them */
1715 env->current_tb = NULL;
1716
33417e70 1717 for(i = 0; i < CPU_TLB_SIZE; i++) {
84b7b8e7
FB
1718 env->tlb_table[0][i].addr_read = -1;
1719 env->tlb_table[0][i].addr_write = -1;
1720 env->tlb_table[0][i].addr_code = -1;
1721 env->tlb_table[1][i].addr_read = -1;
1722 env->tlb_table[1][i].addr_write = -1;
1723 env->tlb_table[1][i].addr_code = -1;
6fa4cea9
JM
1724#if (NB_MMU_MODES >= 3)
1725 env->tlb_table[2][i].addr_read = -1;
1726 env->tlb_table[2][i].addr_write = -1;
1727 env->tlb_table[2][i].addr_code = -1;
1728#if (NB_MMU_MODES == 4)
1729 env->tlb_table[3][i].addr_read = -1;
1730 env->tlb_table[3][i].addr_write = -1;
1731 env->tlb_table[3][i].addr_code = -1;
1732#endif
1733#endif
33417e70 1734 }
9fa3e853 1735
8a40a180 1736 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 1737
0a962c02
FB
1738#ifdef USE_KQEMU
1739 if (env->kqemu_enabled) {
1740 kqemu_flush(env, flush_global);
1741 }
9fa3e853 1742#endif
e3db7226 1743 tlb_flush_count++;
33417e70
FB
1744}
1745
274da6b2 1746static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1747{
5fafdf24 1748 if (addr == (tlb_entry->addr_read &
84b7b8e7 1749 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1750 addr == (tlb_entry->addr_write &
84b7b8e7 1751 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1752 addr == (tlb_entry->addr_code &
84b7b8e7
FB
1753 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1754 tlb_entry->addr_read = -1;
1755 tlb_entry->addr_write = -1;
1756 tlb_entry->addr_code = -1;
1757 }
61382a50
FB
1758}
1759
2e12669a 1760void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 1761{
8a40a180 1762 int i;
0124311e 1763
9fa3e853 1764#if defined(DEBUG_TLB)
108c49b8 1765 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 1766#endif
0124311e
FB
1767 /* must reset current TB so that interrupts cannot modify the
1768 links while we are modifying them */
1769 env->current_tb = NULL;
61382a50
FB
1770
1771 addr &= TARGET_PAGE_MASK;
1772 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
84b7b8e7
FB
1773 tlb_flush_entry(&env->tlb_table[0][i], addr);
1774 tlb_flush_entry(&env->tlb_table[1][i], addr);
6fa4cea9
JM
1775#if (NB_MMU_MODES >= 3)
1776 tlb_flush_entry(&env->tlb_table[2][i], addr);
1777#if (NB_MMU_MODES == 4)
1778 tlb_flush_entry(&env->tlb_table[3][i], addr);
1779#endif
1780#endif
0124311e 1781
5c751e99 1782 tlb_flush_jmp_cache(env, addr);
9fa3e853 1783
0a962c02
FB
1784#ifdef USE_KQEMU
1785 if (env->kqemu_enabled) {
1786 kqemu_flush_page(env, addr);
1787 }
1788#endif
9fa3e853
FB
1789}
1790
9fa3e853
FB
1791/* update the TLBs so that writes to code in the virtual page 'addr'
1792 can be detected */
6a00d601 1793static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 1794{
5fafdf24 1795 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
1796 ram_addr + TARGET_PAGE_SIZE,
1797 CODE_DIRTY_FLAG);
9fa3e853
FB
1798}
1799
9fa3e853 1800/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 1801 tested for self modifying code */
5fafdf24 1802static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 1803 target_ulong vaddr)
9fa3e853 1804{
3a7d929e 1805 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1ccde1cb
FB
1806}
1807
5fafdf24 1808static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
1809 unsigned long start, unsigned long length)
1810{
1811 unsigned long addr;
84b7b8e7
FB
1812 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1813 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 1814 if ((addr - start) < length) {
0f459d16 1815 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
1816 }
1817 }
1818}
1819
3a7d929e 1820void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 1821 int dirty_flags)
1ccde1cb
FB
1822{
1823 CPUState *env;
4f2ac237 1824 unsigned long length, start1;
0a962c02
FB
1825 int i, mask, len;
1826 uint8_t *p;
1ccde1cb
FB
1827
1828 start &= TARGET_PAGE_MASK;
1829 end = TARGET_PAGE_ALIGN(end);
1830
1831 length = end - start;
1832 if (length == 0)
1833 return;
0a962c02 1834 len = length >> TARGET_PAGE_BITS;
3a7d929e 1835#ifdef USE_KQEMU
6a00d601
FB
1836 /* XXX: should not depend on cpu context */
1837 env = first_cpu;
3a7d929e 1838 if (env->kqemu_enabled) {
f23db169
FB
1839 ram_addr_t addr;
1840 addr = start;
1841 for(i = 0; i < len; i++) {
1842 kqemu_set_notdirty(env, addr);
1843 addr += TARGET_PAGE_SIZE;
1844 }
3a7d929e
FB
1845 }
1846#endif
f23db169
FB
1847 mask = ~dirty_flags;
1848 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1849 for(i = 0; i < len; i++)
1850 p[i] &= mask;
1851
1ccde1cb
FB
1852 /* we modify the TLB cache so that the dirty bit will be set again
1853 when accessing the range */
59817ccb 1854 start1 = start + (unsigned long)phys_ram_base;
6a00d601
FB
1855 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1856 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1857 tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length);
6a00d601 1858 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1859 tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length);
6fa4cea9
JM
1860#if (NB_MMU_MODES >= 3)
1861 for(i = 0; i < CPU_TLB_SIZE; i++)
1862 tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length);
1863#if (NB_MMU_MODES == 4)
1864 for(i = 0; i < CPU_TLB_SIZE; i++)
1865 tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length);
1866#endif
1867#endif
6a00d601 1868 }
1ccde1cb
FB
1869}
1870
74576198
AL
1871int cpu_physical_memory_set_dirty_tracking(int enable)
1872{
1873 in_migration = enable;
1874 return 0;
1875}
1876
1877int cpu_physical_memory_get_dirty_tracking(void)
1878{
1879 return in_migration;
1880}
1881
2bec46dc
AL
1882void cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, target_phys_addr_t end_addr)
1883{
1884 if (kvm_enabled())
1885 kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
1886}
1887
3a7d929e
FB
1888static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1889{
1890 ram_addr_t ram_addr;
1891
84b7b8e7 1892 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5fafdf24 1893 ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) +
3a7d929e
FB
1894 tlb_entry->addend - (unsigned long)phys_ram_base;
1895 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 1896 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
1897 }
1898 }
1899}
1900
1901/* update the TLB according to the current state of the dirty bits */
1902void cpu_tlb_update_dirty(CPUState *env)
1903{
1904 int i;
1905 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1906 tlb_update_dirty(&env->tlb_table[0][i]);
3a7d929e 1907 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1908 tlb_update_dirty(&env->tlb_table[1][i]);
6fa4cea9
JM
1909#if (NB_MMU_MODES >= 3)
1910 for(i = 0; i < CPU_TLB_SIZE; i++)
1911 tlb_update_dirty(&env->tlb_table[2][i]);
1912#if (NB_MMU_MODES == 4)
1913 for(i = 0; i < CPU_TLB_SIZE; i++)
1914 tlb_update_dirty(&env->tlb_table[3][i]);
1915#endif
1916#endif
3a7d929e
FB
1917}
1918
0f459d16 1919static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 1920{
0f459d16
PB
1921 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
1922 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
1923}
1924
0f459d16
PB
1925/* update the TLB corresponding to virtual page vaddr
1926 so that it is no longer dirty */
1927static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 1928{
1ccde1cb
FB
1929 int i;
1930
0f459d16 1931 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 1932 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
0f459d16
PB
1933 tlb_set_dirty1(&env->tlb_table[0][i], vaddr);
1934 tlb_set_dirty1(&env->tlb_table[1][i], vaddr);
6fa4cea9 1935#if (NB_MMU_MODES >= 3)
0f459d16 1936 tlb_set_dirty1(&env->tlb_table[2][i], vaddr);
6fa4cea9 1937#if (NB_MMU_MODES == 4)
0f459d16 1938 tlb_set_dirty1(&env->tlb_table[3][i], vaddr);
6fa4cea9
JM
1939#endif
1940#endif
9fa3e853
FB
1941}
1942
59817ccb
FB
1943/* add a new TLB entry. At most one entry for a given virtual address
1944 is permitted. Return 0 if OK or 2 if the page could not be mapped
1945 (can only happen in non SOFTMMU mode for I/O pages or pages
1946 conflicting with the host address space). */
5fafdf24
TS
1947int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1948 target_phys_addr_t paddr, int prot,
6ebbf390 1949 int mmu_idx, int is_softmmu)
9fa3e853 1950{
92e873b9 1951 PhysPageDesc *p;
4f2ac237 1952 unsigned long pd;
9fa3e853 1953 unsigned int index;
4f2ac237 1954 target_ulong address;
0f459d16 1955 target_ulong code_address;
108c49b8 1956 target_phys_addr_t addend;
9fa3e853 1957 int ret;
84b7b8e7 1958 CPUTLBEntry *te;
a1d1bb31 1959 CPUWatchpoint *wp;
0f459d16 1960 target_phys_addr_t iotlb;
9fa3e853 1961
92e873b9 1962 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
1963 if (!p) {
1964 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
1965 } else {
1966 pd = p->phys_offset;
9fa3e853
FB
1967 }
1968#if defined(DEBUG_TLB)
6ebbf390
JM
1969 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1970 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
9fa3e853
FB
1971#endif
1972
1973 ret = 0;
0f459d16
PB
1974 address = vaddr;
1975 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
1976 /* IO memory case (romd handled later) */
1977 address |= TLB_MMIO;
1978 }
1979 addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK);
1980 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
1981 /* Normal RAM. */
1982 iotlb = pd & TARGET_PAGE_MASK;
1983 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
1984 iotlb |= IO_MEM_NOTDIRTY;
1985 else
1986 iotlb |= IO_MEM_ROM;
1987 } else {
1988 /* IO handlers are currently passed a phsical address.
1989 It would be nice to pass an offset from the base address
1990 of that region. This would avoid having to special case RAM,
1991 and avoid full address decoding in every device.
1992 We can't use the high bits of pd for this because
1993 IO_MEM_ROMD uses these as a ram address. */
8da3ff18
PB
1994 iotlb = (pd & ~TARGET_PAGE_MASK);
1995 if (p) {
8da3ff18
PB
1996 iotlb += p->region_offset;
1997 } else {
1998 iotlb += paddr;
1999 }
0f459d16
PB
2000 }
2001
2002 code_address = address;
2003 /* Make accesses to pages with watchpoints go via the
2004 watchpoint trap routines. */
c0ce998e 2005 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
a1d1bb31 2006 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
0f459d16
PB
2007 iotlb = io_mem_watch + paddr;
2008 /* TODO: The memory case can be optimized by not trapping
2009 reads of pages with a write breakpoint. */
2010 address |= TLB_MMIO;
6658ffb8 2011 }
0f459d16 2012 }
d79acba4 2013
0f459d16
PB
2014 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2015 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2016 te = &env->tlb_table[mmu_idx][index];
2017 te->addend = addend - vaddr;
2018 if (prot & PAGE_READ) {
2019 te->addr_read = address;
2020 } else {
2021 te->addr_read = -1;
2022 }
5c751e99 2023
0f459d16
PB
2024 if (prot & PAGE_EXEC) {
2025 te->addr_code = code_address;
2026 } else {
2027 te->addr_code = -1;
2028 }
2029 if (prot & PAGE_WRITE) {
2030 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2031 (pd & IO_MEM_ROMD)) {
2032 /* Write access calls the I/O callback. */
2033 te->addr_write = address | TLB_MMIO;
2034 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2035 !cpu_physical_memory_is_dirty(pd)) {
2036 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 2037 } else {
0f459d16 2038 te->addr_write = address;
9fa3e853 2039 }
0f459d16
PB
2040 } else {
2041 te->addr_write = -1;
9fa3e853 2042 }
9fa3e853
FB
2043 return ret;
2044}
2045
0124311e
FB
2046#else
2047
ee8b7021 2048void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
2049{
2050}
2051
2e12669a 2052void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
2053{
2054}
2055
5fafdf24
TS
2056int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2057 target_phys_addr_t paddr, int prot,
6ebbf390 2058 int mmu_idx, int is_softmmu)
9fa3e853
FB
2059{
2060 return 0;
2061}
0124311e 2062
9fa3e853
FB
2063/* dump memory mappings */
2064void page_dump(FILE *f)
33417e70 2065{
9fa3e853
FB
2066 unsigned long start, end;
2067 int i, j, prot, prot1;
2068 PageDesc *p;
33417e70 2069
9fa3e853
FB
2070 fprintf(f, "%-8s %-8s %-8s %s\n",
2071 "start", "end", "size", "prot");
2072 start = -1;
2073 end = -1;
2074 prot = 0;
2075 for(i = 0; i <= L1_SIZE; i++) {
2076 if (i < L1_SIZE)
2077 p = l1_map[i];
2078 else
2079 p = NULL;
2080 for(j = 0;j < L2_SIZE; j++) {
2081 if (!p)
2082 prot1 = 0;
2083 else
2084 prot1 = p[j].flags;
2085 if (prot1 != prot) {
2086 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2087 if (start != -1) {
2088 fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
5fafdf24 2089 start, end, end - start,
9fa3e853
FB
2090 prot & PAGE_READ ? 'r' : '-',
2091 prot & PAGE_WRITE ? 'w' : '-',
2092 prot & PAGE_EXEC ? 'x' : '-');
2093 }
2094 if (prot1 != 0)
2095 start = end;
2096 else
2097 start = -1;
2098 prot = prot1;
2099 }
2100 if (!p)
2101 break;
2102 }
33417e70 2103 }
33417e70
FB
2104}
2105
53a5960a 2106int page_get_flags(target_ulong address)
33417e70 2107{
9fa3e853
FB
2108 PageDesc *p;
2109
2110 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2111 if (!p)
9fa3e853
FB
2112 return 0;
2113 return p->flags;
2114}
2115
2116/* modify the flags of a page and invalidate the code if
2117 necessary. The flag PAGE_WRITE_ORG is positionned automatically
2118 depending on PAGE_WRITE */
53a5960a 2119void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853
FB
2120{
2121 PageDesc *p;
53a5960a 2122 target_ulong addr;
9fa3e853 2123
c8a706fe 2124 /* mmap_lock should already be held. */
9fa3e853
FB
2125 start = start & TARGET_PAGE_MASK;
2126 end = TARGET_PAGE_ALIGN(end);
2127 if (flags & PAGE_WRITE)
2128 flags |= PAGE_WRITE_ORG;
9fa3e853
FB
2129 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2130 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
17e2377a
PB
2131 /* We may be called for host regions that are outside guest
2132 address space. */
2133 if (!p)
2134 return;
9fa3e853
FB
2135 /* if the write protection is set, then we invalidate the code
2136 inside */
5fafdf24 2137 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2138 (flags & PAGE_WRITE) &&
2139 p->first_tb) {
d720b93d 2140 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2141 }
2142 p->flags = flags;
2143 }
33417e70
FB
2144}
2145
3d97b40b
TS
2146int page_check_range(target_ulong start, target_ulong len, int flags)
2147{
2148 PageDesc *p;
2149 target_ulong end;
2150 target_ulong addr;
2151
55f280c9
AZ
2152 if (start + len < start)
2153 /* we've wrapped around */
2154 return -1;
2155
3d97b40b
TS
2156 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2157 start = start & TARGET_PAGE_MASK;
2158
3d97b40b
TS
2159 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2160 p = page_find(addr >> TARGET_PAGE_BITS);
2161 if( !p )
2162 return -1;
2163 if( !(p->flags & PAGE_VALID) )
2164 return -1;
2165
dae3270c 2166 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2167 return -1;
dae3270c
FB
2168 if (flags & PAGE_WRITE) {
2169 if (!(p->flags & PAGE_WRITE_ORG))
2170 return -1;
2171 /* unprotect the page if it was put read-only because it
2172 contains translated code */
2173 if (!(p->flags & PAGE_WRITE)) {
2174 if (!page_unprotect(addr, 0, NULL))
2175 return -1;
2176 }
2177 return 0;
2178 }
3d97b40b
TS
2179 }
2180 return 0;
2181}
2182
9fa3e853
FB
2183/* called from signal handler: invalidate the code and unprotect the
2184 page. Return TRUE if the fault was succesfully handled. */
53a5960a 2185int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853
FB
2186{
2187 unsigned int page_index, prot, pindex;
2188 PageDesc *p, *p1;
53a5960a 2189 target_ulong host_start, host_end, addr;
9fa3e853 2190
c8a706fe
PB
2191 /* Technically this isn't safe inside a signal handler. However we
2192 know this only ever happens in a synchronous SEGV handler, so in
2193 practice it seems to be ok. */
2194 mmap_lock();
2195
83fb7adf 2196 host_start = address & qemu_host_page_mask;
9fa3e853
FB
2197 page_index = host_start >> TARGET_PAGE_BITS;
2198 p1 = page_find(page_index);
c8a706fe
PB
2199 if (!p1) {
2200 mmap_unlock();
9fa3e853 2201 return 0;
c8a706fe 2202 }
83fb7adf 2203 host_end = host_start + qemu_host_page_size;
9fa3e853
FB
2204 p = p1;
2205 prot = 0;
2206 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2207 prot |= p->flags;
2208 p++;
2209 }
2210 /* if the page was really writable, then we change its
2211 protection back to writable */
2212 if (prot & PAGE_WRITE_ORG) {
2213 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2214 if (!(p1[pindex].flags & PAGE_WRITE)) {
5fafdf24 2215 mprotect((void *)g2h(host_start), qemu_host_page_size,
9fa3e853
FB
2216 (prot & PAGE_BITS) | PAGE_WRITE);
2217 p1[pindex].flags |= PAGE_WRITE;
2218 /* and since the content will be modified, we must invalidate
2219 the corresponding translated code. */
d720b93d 2220 tb_invalidate_phys_page(address, pc, puc);
9fa3e853
FB
2221#ifdef DEBUG_TB_CHECK
2222 tb_invalidate_check(address);
2223#endif
c8a706fe 2224 mmap_unlock();
9fa3e853
FB
2225 return 1;
2226 }
2227 }
c8a706fe 2228 mmap_unlock();
9fa3e853
FB
2229 return 0;
2230}
2231
6a00d601
FB
2232static inline void tlb_set_dirty(CPUState *env,
2233 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2234{
2235}
9fa3e853
FB
2236#endif /* defined(CONFIG_USER_ONLY) */
2237
e2eef170 2238#if !defined(CONFIG_USER_ONLY)
8da3ff18 2239
db7b5426 2240static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
8da3ff18 2241 ram_addr_t memory, ram_addr_t region_offset);
00f82b8a 2242static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
8da3ff18 2243 ram_addr_t orig_memory, ram_addr_t region_offset);
db7b5426
BS
2244#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2245 need_subpage) \
2246 do { \
2247 if (addr > start_addr) \
2248 start_addr2 = 0; \
2249 else { \
2250 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2251 if (start_addr2 > 0) \
2252 need_subpage = 1; \
2253 } \
2254 \
49e9fba2 2255 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2256 end_addr2 = TARGET_PAGE_SIZE - 1; \
2257 else { \
2258 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2259 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2260 need_subpage = 1; \
2261 } \
2262 } while (0)
2263
33417e70
FB
2264/* register physical memory. 'size' must be a multiple of the target
2265 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
8da3ff18
PB
2266 io memory page. The address used when calling the IO function is
2267 the offset from the start of the region, plus region_offset. Both
2268 start_region and regon_offset are rounded down to a page boundary
2269 before calculating this offset. This should not be a problem unless
2270 the low bits of start_addr and region_offset differ. */
2271void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2272 ram_addr_t size,
2273 ram_addr_t phys_offset,
2274 ram_addr_t region_offset)
33417e70 2275{
108c49b8 2276 target_phys_addr_t addr, end_addr;
92e873b9 2277 PhysPageDesc *p;
9d42037b 2278 CPUState *env;
00f82b8a 2279 ram_addr_t orig_size = size;
db7b5426 2280 void *subpage;
33417e70 2281
da260249
FB
2282#ifdef USE_KQEMU
2283 /* XXX: should not depend on cpu context */
2284 env = first_cpu;
2285 if (env->kqemu_enabled) {
2286 kqemu_set_phys_mem(start_addr, size, phys_offset);
2287 }
2288#endif
7ba1e619
AL
2289 if (kvm_enabled())
2290 kvm_set_phys_mem(start_addr, size, phys_offset);
2291
67c4d23c
PB
2292 if (phys_offset == IO_MEM_UNASSIGNED) {
2293 region_offset = start_addr;
2294 }
8da3ff18 2295 region_offset &= TARGET_PAGE_MASK;
5fd386f6 2296 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
49e9fba2
BS
2297 end_addr = start_addr + (target_phys_addr_t)size;
2298 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
db7b5426
BS
2299 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2300 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
00f82b8a 2301 ram_addr_t orig_memory = p->phys_offset;
db7b5426
BS
2302 target_phys_addr_t start_addr2, end_addr2;
2303 int need_subpage = 0;
2304
2305 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2306 need_subpage);
4254fab8 2307 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426
BS
2308 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2309 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18
PB
2310 &p->phys_offset, orig_memory,
2311 p->region_offset);
db7b5426
BS
2312 } else {
2313 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2314 >> IO_MEM_SHIFT];
2315 }
8da3ff18
PB
2316 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2317 region_offset);
2318 p->region_offset = 0;
db7b5426
BS
2319 } else {
2320 p->phys_offset = phys_offset;
2321 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2322 (phys_offset & IO_MEM_ROMD))
2323 phys_offset += TARGET_PAGE_SIZE;
2324 }
2325 } else {
2326 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2327 p->phys_offset = phys_offset;
8da3ff18 2328 p->region_offset = region_offset;
db7b5426 2329 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
8da3ff18 2330 (phys_offset & IO_MEM_ROMD)) {
db7b5426 2331 phys_offset += TARGET_PAGE_SIZE;
0e8f0967 2332 } else {
db7b5426
BS
2333 target_phys_addr_t start_addr2, end_addr2;
2334 int need_subpage = 0;
2335
2336 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2337 end_addr2, need_subpage);
2338
4254fab8 2339 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426 2340 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18 2341 &p->phys_offset, IO_MEM_UNASSIGNED,
67c4d23c 2342 addr & TARGET_PAGE_MASK);
db7b5426 2343 subpage_register(subpage, start_addr2, end_addr2,
8da3ff18
PB
2344 phys_offset, region_offset);
2345 p->region_offset = 0;
db7b5426
BS
2346 }
2347 }
2348 }
8da3ff18 2349 region_offset += TARGET_PAGE_SIZE;
33417e70 2350 }
3b46e624 2351
9d42037b
FB
2352 /* since each CPU stores ram addresses in its TLB cache, we must
2353 reset the modified entries */
2354 /* XXX: slow ! */
2355 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2356 tlb_flush(env, 1);
2357 }
33417e70
FB
2358}
2359
ba863458 2360/* XXX: temporary until new memory mapping API */
00f82b8a 2361ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
ba863458
FB
2362{
2363 PhysPageDesc *p;
2364
2365 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2366 if (!p)
2367 return IO_MEM_UNASSIGNED;
2368 return p->phys_offset;
2369}
2370
f65ed4c1
AL
2371void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2372{
2373 if (kvm_enabled())
2374 kvm_coalesce_mmio_region(addr, size);
2375}
2376
2377void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2378{
2379 if (kvm_enabled())
2380 kvm_uncoalesce_mmio_region(addr, size);
2381}
2382
e9a1ab19 2383/* XXX: better than nothing */
00f82b8a 2384ram_addr_t qemu_ram_alloc(ram_addr_t size)
e9a1ab19
FB
2385{
2386 ram_addr_t addr;
7fb4fdcf 2387 if ((phys_ram_alloc_offset + size) > phys_ram_size) {
012a7045 2388 fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 ")\n",
ed441467 2389 (uint64_t)size, (uint64_t)phys_ram_size);
e9a1ab19
FB
2390 abort();
2391 }
2392 addr = phys_ram_alloc_offset;
2393 phys_ram_alloc_offset = TARGET_PAGE_ALIGN(phys_ram_alloc_offset + size);
2394 return addr;
2395}
2396
2397void qemu_ram_free(ram_addr_t addr)
2398{
2399}
2400
a4193c8a 2401static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 2402{
67d3b957 2403#ifdef DEBUG_UNASSIGNED
ab3d1727 2404 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316 2405#endif
0a6f8a6d 2406#if defined(TARGET_SPARC)
e18231a3
BS
2407 do_unassigned_access(addr, 0, 0, 0, 1);
2408#endif
2409 return 0;
2410}
2411
2412static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2413{
2414#ifdef DEBUG_UNASSIGNED
2415 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2416#endif
0a6f8a6d 2417#if defined(TARGET_SPARC)
e18231a3
BS
2418 do_unassigned_access(addr, 0, 0, 0, 2);
2419#endif
2420 return 0;
2421}
2422
2423static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2424{
2425#ifdef DEBUG_UNASSIGNED
2426 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2427#endif
0a6f8a6d 2428#if defined(TARGET_SPARC)
e18231a3 2429 do_unassigned_access(addr, 0, 0, 0, 4);
67d3b957 2430#endif
33417e70
FB
2431 return 0;
2432}
2433
a4193c8a 2434static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 2435{
67d3b957 2436#ifdef DEBUG_UNASSIGNED
ab3d1727 2437 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 2438#endif
0a6f8a6d 2439#if defined(TARGET_SPARC)
e18231a3
BS
2440 do_unassigned_access(addr, 1, 0, 0, 1);
2441#endif
2442}
2443
2444static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2445{
2446#ifdef DEBUG_UNASSIGNED
2447 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2448#endif
0a6f8a6d 2449#if defined(TARGET_SPARC)
e18231a3
BS
2450 do_unassigned_access(addr, 1, 0, 0, 2);
2451#endif
2452}
2453
2454static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2455{
2456#ifdef DEBUG_UNASSIGNED
2457 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2458#endif
0a6f8a6d 2459#if defined(TARGET_SPARC)
e18231a3 2460 do_unassigned_access(addr, 1, 0, 0, 4);
b4f0a316 2461#endif
33417e70
FB
2462}
2463
2464static CPUReadMemoryFunc *unassigned_mem_read[3] = {
2465 unassigned_mem_readb,
e18231a3
BS
2466 unassigned_mem_readw,
2467 unassigned_mem_readl,
33417e70
FB
2468};
2469
2470static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
2471 unassigned_mem_writeb,
e18231a3
BS
2472 unassigned_mem_writew,
2473 unassigned_mem_writel,
33417e70
FB
2474};
2475
0f459d16
PB
2476static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2477 uint32_t val)
9fa3e853 2478{
3a7d929e 2479 int dirty_flags;
3a7d929e
FB
2480 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2481 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2482#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2483 tb_invalidate_phys_page_fast(ram_addr, 1);
2484 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2485#endif
3a7d929e 2486 }
0f459d16 2487 stb_p(phys_ram_base + ram_addr, val);
f32fc648
FB
2488#ifdef USE_KQEMU
2489 if (cpu_single_env->kqemu_enabled &&
2490 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2491 kqemu_modify_page(cpu_single_env, ram_addr);
2492#endif
f23db169
FB
2493 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2494 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2495 /* we remove the notdirty callback only if the code has been
2496 flushed */
2497 if (dirty_flags == 0xff)
2e70f6ef 2498 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2499}
2500
0f459d16
PB
2501static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2502 uint32_t val)
9fa3e853 2503{
3a7d929e 2504 int dirty_flags;
3a7d929e
FB
2505 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2506 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2507#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2508 tb_invalidate_phys_page_fast(ram_addr, 2);
2509 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2510#endif
3a7d929e 2511 }
0f459d16 2512 stw_p(phys_ram_base + ram_addr, val);
f32fc648
FB
2513#ifdef USE_KQEMU
2514 if (cpu_single_env->kqemu_enabled &&
2515 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2516 kqemu_modify_page(cpu_single_env, ram_addr);
2517#endif
f23db169
FB
2518 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2519 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2520 /* we remove the notdirty callback only if the code has been
2521 flushed */
2522 if (dirty_flags == 0xff)
2e70f6ef 2523 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2524}
2525
0f459d16
PB
2526static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2527 uint32_t val)
9fa3e853 2528{
3a7d929e 2529 int dirty_flags;
3a7d929e
FB
2530 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2531 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2532#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2533 tb_invalidate_phys_page_fast(ram_addr, 4);
2534 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2535#endif
3a7d929e 2536 }
0f459d16 2537 stl_p(phys_ram_base + ram_addr, val);
f32fc648
FB
2538#ifdef USE_KQEMU
2539 if (cpu_single_env->kqemu_enabled &&
2540 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2541 kqemu_modify_page(cpu_single_env, ram_addr);
2542#endif
f23db169
FB
2543 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2544 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2545 /* we remove the notdirty callback only if the code has been
2546 flushed */
2547 if (dirty_flags == 0xff)
2e70f6ef 2548 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2549}
2550
3a7d929e 2551static CPUReadMemoryFunc *error_mem_read[3] = {
9fa3e853
FB
2552 NULL, /* never used */
2553 NULL, /* never used */
2554 NULL, /* never used */
2555};
2556
1ccde1cb
FB
2557static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
2558 notdirty_mem_writeb,
2559 notdirty_mem_writew,
2560 notdirty_mem_writel,
2561};
2562
0f459d16 2563/* Generate a debug exception if a watchpoint has been hit. */
b4051334 2564static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16
PB
2565{
2566 CPUState *env = cpu_single_env;
06d55cc1
AL
2567 target_ulong pc, cs_base;
2568 TranslationBlock *tb;
0f459d16 2569 target_ulong vaddr;
a1d1bb31 2570 CPUWatchpoint *wp;
06d55cc1 2571 int cpu_flags;
0f459d16 2572
06d55cc1
AL
2573 if (env->watchpoint_hit) {
2574 /* We re-entered the check after replacing the TB. Now raise
2575 * the debug interrupt so that is will trigger after the
2576 * current instruction. */
2577 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2578 return;
2579 }
2e70f6ef 2580 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
c0ce998e 2581 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
2582 if ((vaddr == (wp->vaddr & len_mask) ||
2583 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
2584 wp->flags |= BP_WATCHPOINT_HIT;
2585 if (!env->watchpoint_hit) {
2586 env->watchpoint_hit = wp;
2587 tb = tb_find_pc(env->mem_io_pc);
2588 if (!tb) {
2589 cpu_abort(env, "check_watchpoint: could not find TB for "
2590 "pc=%p", (void *)env->mem_io_pc);
2591 }
2592 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
2593 tb_phys_invalidate(tb, -1);
2594 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2595 env->exception_index = EXCP_DEBUG;
2596 } else {
2597 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2598 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2599 }
2600 cpu_resume_from_signal(env, NULL);
06d55cc1 2601 }
6e140f28
AL
2602 } else {
2603 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2604 }
2605 }
2606}
2607
6658ffb8
PB
2608/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2609 so these check for a hit then pass through to the normal out-of-line
2610 phys routines. */
2611static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2612{
b4051334 2613 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
6658ffb8
PB
2614 return ldub_phys(addr);
2615}
2616
2617static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2618{
b4051334 2619 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
6658ffb8
PB
2620 return lduw_phys(addr);
2621}
2622
2623static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2624{
b4051334 2625 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
6658ffb8
PB
2626 return ldl_phys(addr);
2627}
2628
6658ffb8
PB
2629static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2630 uint32_t val)
2631{
b4051334 2632 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
6658ffb8
PB
2633 stb_phys(addr, val);
2634}
2635
2636static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2637 uint32_t val)
2638{
b4051334 2639 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
6658ffb8
PB
2640 stw_phys(addr, val);
2641}
2642
2643static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2644 uint32_t val)
2645{
b4051334 2646 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
6658ffb8
PB
2647 stl_phys(addr, val);
2648}
2649
2650static CPUReadMemoryFunc *watch_mem_read[3] = {
2651 watch_mem_readb,
2652 watch_mem_readw,
2653 watch_mem_readl,
2654};
2655
2656static CPUWriteMemoryFunc *watch_mem_write[3] = {
2657 watch_mem_writeb,
2658 watch_mem_writew,
2659 watch_mem_writel,
2660};
6658ffb8 2661
db7b5426
BS
2662static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2663 unsigned int len)
2664{
db7b5426
BS
2665 uint32_t ret;
2666 unsigned int idx;
2667
8da3ff18 2668 idx = SUBPAGE_IDX(addr);
db7b5426
BS
2669#if defined(DEBUG_SUBPAGE)
2670 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2671 mmio, len, addr, idx);
2672#endif
8da3ff18
PB
2673 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
2674 addr + mmio->region_offset[idx][0][len]);
db7b5426
BS
2675
2676 return ret;
2677}
2678
2679static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2680 uint32_t value, unsigned int len)
2681{
db7b5426
BS
2682 unsigned int idx;
2683
8da3ff18 2684 idx = SUBPAGE_IDX(addr);
db7b5426
BS
2685#if defined(DEBUG_SUBPAGE)
2686 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2687 mmio, len, addr, idx, value);
2688#endif
8da3ff18
PB
2689 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
2690 addr + mmio->region_offset[idx][1][len],
2691 value);
db7b5426
BS
2692}
2693
2694static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2695{
2696#if defined(DEBUG_SUBPAGE)
2697 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2698#endif
2699
2700 return subpage_readlen(opaque, addr, 0);
2701}
2702
2703static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2704 uint32_t value)
2705{
2706#if defined(DEBUG_SUBPAGE)
2707 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2708#endif
2709 subpage_writelen(opaque, addr, value, 0);
2710}
2711
2712static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2713{
2714#if defined(DEBUG_SUBPAGE)
2715 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2716#endif
2717
2718 return subpage_readlen(opaque, addr, 1);
2719}
2720
2721static void subpage_writew (void *opaque, target_phys_addr_t addr,
2722 uint32_t value)
2723{
2724#if defined(DEBUG_SUBPAGE)
2725 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2726#endif
2727 subpage_writelen(opaque, addr, value, 1);
2728}
2729
2730static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2731{
2732#if defined(DEBUG_SUBPAGE)
2733 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2734#endif
2735
2736 return subpage_readlen(opaque, addr, 2);
2737}
2738
2739static void subpage_writel (void *opaque,
2740 target_phys_addr_t addr, uint32_t value)
2741{
2742#if defined(DEBUG_SUBPAGE)
2743 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2744#endif
2745 subpage_writelen(opaque, addr, value, 2);
2746}
2747
2748static CPUReadMemoryFunc *subpage_read[] = {
2749 &subpage_readb,
2750 &subpage_readw,
2751 &subpage_readl,
2752};
2753
2754static CPUWriteMemoryFunc *subpage_write[] = {
2755 &subpage_writeb,
2756 &subpage_writew,
2757 &subpage_writel,
2758};
2759
2760static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
8da3ff18 2761 ram_addr_t memory, ram_addr_t region_offset)
db7b5426
BS
2762{
2763 int idx, eidx;
4254fab8 2764 unsigned int i;
db7b5426
BS
2765
2766 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2767 return -1;
2768 idx = SUBPAGE_IDX(start);
2769 eidx = SUBPAGE_IDX(end);
2770#if defined(DEBUG_SUBPAGE)
2771 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__,
2772 mmio, start, end, idx, eidx, memory);
2773#endif
2774 memory >>= IO_MEM_SHIFT;
2775 for (; idx <= eidx; idx++) {
4254fab8 2776 for (i = 0; i < 4; i++) {
3ee89922
BS
2777 if (io_mem_read[memory][i]) {
2778 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2779 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
8da3ff18 2780 mmio->region_offset[idx][0][i] = region_offset;
3ee89922
BS
2781 }
2782 if (io_mem_write[memory][i]) {
2783 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2784 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
8da3ff18 2785 mmio->region_offset[idx][1][i] = region_offset;
3ee89922 2786 }
4254fab8 2787 }
db7b5426
BS
2788 }
2789
2790 return 0;
2791}
2792
00f82b8a 2793static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
8da3ff18 2794 ram_addr_t orig_memory, ram_addr_t region_offset)
db7b5426
BS
2795{
2796 subpage_t *mmio;
2797 int subpage_memory;
2798
2799 mmio = qemu_mallocz(sizeof(subpage_t));
1eec614b
AL
2800
2801 mmio->base = base;
2802 subpage_memory = cpu_register_io_memory(0, subpage_read, subpage_write, mmio);
db7b5426 2803#if defined(DEBUG_SUBPAGE)
1eec614b
AL
2804 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2805 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 2806#endif
1eec614b
AL
2807 *phys = subpage_memory | IO_MEM_SUBPAGE;
2808 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
8da3ff18 2809 region_offset);
db7b5426
BS
2810
2811 return mmio;
2812}
2813
88715657
AL
2814static int get_free_io_mem_idx(void)
2815{
2816 int i;
2817
2818 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
2819 if (!io_mem_used[i]) {
2820 io_mem_used[i] = 1;
2821 return i;
2822 }
2823
2824 return -1;
2825}
2826
33417e70
FB
2827static void io_mem_init(void)
2828{
88715657
AL
2829 int i;
2830
3a7d929e 2831 cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL);
a4193c8a 2832 cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL);
3a7d929e 2833 cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL);
88715657
AL
2834 for (i=0; i<5; i++)
2835 io_mem_used[i] = 1;
1ccde1cb 2836
0f459d16 2837 io_mem_watch = cpu_register_io_memory(0, watch_mem_read,
6658ffb8 2838 watch_mem_write, NULL);
1ccde1cb 2839 /* alloc dirty bits array */
0a962c02 2840 phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS);
3a7d929e 2841 memset(phys_ram_dirty, 0xff, phys_ram_size >> TARGET_PAGE_BITS);
33417e70
FB
2842}
2843
2844/* mem_read and mem_write are arrays of functions containing the
2845 function to access byte (index 0), word (index 1) and dword (index
3ee89922
BS
2846 2). Functions can be omitted with a NULL function pointer. The
2847 registered functions may be modified dynamically later.
2848 If io_index is non zero, the corresponding io zone is
4254fab8
BS
2849 modified. If it is zero, a new io zone is allocated. The return
2850 value can be used with cpu_register_physical_memory(). (-1) is
2851 returned if error. */
33417e70
FB
2852int cpu_register_io_memory(int io_index,
2853 CPUReadMemoryFunc **mem_read,
a4193c8a
FB
2854 CPUWriteMemoryFunc **mem_write,
2855 void *opaque)
33417e70 2856{
4254fab8 2857 int i, subwidth = 0;
33417e70
FB
2858
2859 if (io_index <= 0) {
88715657
AL
2860 io_index = get_free_io_mem_idx();
2861 if (io_index == -1)
2862 return io_index;
33417e70
FB
2863 } else {
2864 if (io_index >= IO_MEM_NB_ENTRIES)
2865 return -1;
2866 }
b5ff1b31 2867
33417e70 2868 for(i = 0;i < 3; i++) {
4254fab8
BS
2869 if (!mem_read[i] || !mem_write[i])
2870 subwidth = IO_MEM_SUBWIDTH;
33417e70
FB
2871 io_mem_read[io_index][i] = mem_read[i];
2872 io_mem_write[io_index][i] = mem_write[i];
2873 }
a4193c8a 2874 io_mem_opaque[io_index] = opaque;
4254fab8 2875 return (io_index << IO_MEM_SHIFT) | subwidth;
33417e70 2876}
61382a50 2877
88715657
AL
2878void cpu_unregister_io_memory(int io_table_address)
2879{
2880 int i;
2881 int io_index = io_table_address >> IO_MEM_SHIFT;
2882
2883 for (i=0;i < 3; i++) {
2884 io_mem_read[io_index][i] = unassigned_mem_read[i];
2885 io_mem_write[io_index][i] = unassigned_mem_write[i];
2886 }
2887 io_mem_opaque[io_index] = NULL;
2888 io_mem_used[io_index] = 0;
2889}
2890
8926b517
FB
2891CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index)
2892{
2893 return io_mem_write[io_index >> IO_MEM_SHIFT];
2894}
2895
2896CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index)
2897{
2898 return io_mem_read[io_index >> IO_MEM_SHIFT];
2899}
2900
e2eef170
PB
2901#endif /* !defined(CONFIG_USER_ONLY) */
2902
13eb76e0
FB
2903/* physical memory access (slow version, mainly for debug) */
2904#if defined(CONFIG_USER_ONLY)
5fafdf24 2905void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
2906 int len, int is_write)
2907{
2908 int l, flags;
2909 target_ulong page;
53a5960a 2910 void * p;
13eb76e0
FB
2911
2912 while (len > 0) {
2913 page = addr & TARGET_PAGE_MASK;
2914 l = (page + TARGET_PAGE_SIZE) - addr;
2915 if (l > len)
2916 l = len;
2917 flags = page_get_flags(page);
2918 if (!(flags & PAGE_VALID))
2919 return;
2920 if (is_write) {
2921 if (!(flags & PAGE_WRITE))
2922 return;
579a97f7 2923 /* XXX: this code should not depend on lock_user */
72fb7daa 2924 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
579a97f7
FB
2925 /* FIXME - should this return an error rather than just fail? */
2926 return;
72fb7daa
AJ
2927 memcpy(p, buf, l);
2928 unlock_user(p, addr, l);
13eb76e0
FB
2929 } else {
2930 if (!(flags & PAGE_READ))
2931 return;
579a97f7 2932 /* XXX: this code should not depend on lock_user */
72fb7daa 2933 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
579a97f7
FB
2934 /* FIXME - should this return an error rather than just fail? */
2935 return;
72fb7daa 2936 memcpy(buf, p, l);
5b257578 2937 unlock_user(p, addr, 0);
13eb76e0
FB
2938 }
2939 len -= l;
2940 buf += l;
2941 addr += l;
2942 }
2943}
8df1cd07 2944
13eb76e0 2945#else
5fafdf24 2946void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
2947 int len, int is_write)
2948{
2949 int l, io_index;
2950 uint8_t *ptr;
2951 uint32_t val;
2e12669a
FB
2952 target_phys_addr_t page;
2953 unsigned long pd;
92e873b9 2954 PhysPageDesc *p;
3b46e624 2955
13eb76e0
FB
2956 while (len > 0) {
2957 page = addr & TARGET_PAGE_MASK;
2958 l = (page + TARGET_PAGE_SIZE) - addr;
2959 if (l > len)
2960 l = len;
92e873b9 2961 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
2962 if (!p) {
2963 pd = IO_MEM_UNASSIGNED;
2964 } else {
2965 pd = p->phys_offset;
2966 }
3b46e624 2967
13eb76e0 2968 if (is_write) {
3a7d929e 2969 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
6c2934db 2970 target_phys_addr_t addr1 = addr;
13eb76e0 2971 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 2972 if (p)
6c2934db 2973 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
6a00d601
FB
2974 /* XXX: could force cpu_single_env to NULL to avoid
2975 potential bugs */
6c2934db 2976 if (l >= 4 && ((addr1 & 3) == 0)) {
1c213d19 2977 /* 32 bit write access */
c27004ec 2978 val = ldl_p(buf);
6c2934db 2979 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
13eb76e0 2980 l = 4;
6c2934db 2981 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1c213d19 2982 /* 16 bit write access */
c27004ec 2983 val = lduw_p(buf);
6c2934db 2984 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
2985 l = 2;
2986 } else {
1c213d19 2987 /* 8 bit write access */
c27004ec 2988 val = ldub_p(buf);
6c2934db 2989 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
2990 l = 1;
2991 }
2992 } else {
b448f2f3
FB
2993 unsigned long addr1;
2994 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 2995 /* RAM case */
b448f2f3 2996 ptr = phys_ram_base + addr1;
13eb76e0 2997 memcpy(ptr, buf, l);
3a7d929e
FB
2998 if (!cpu_physical_memory_is_dirty(addr1)) {
2999 /* invalidate code */
3000 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3001 /* set dirty bit */
5fafdf24 3002 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
f23db169 3003 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3004 }
13eb76e0
FB
3005 }
3006 } else {
5fafdf24 3007 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3008 !(pd & IO_MEM_ROMD)) {
6c2934db 3009 target_phys_addr_t addr1 = addr;
13eb76e0
FB
3010 /* I/O case */
3011 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3012 if (p)
6c2934db
AJ
3013 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3014 if (l >= 4 && ((addr1 & 3) == 0)) {
13eb76e0 3015 /* 32 bit read access */
6c2934db 3016 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
c27004ec 3017 stl_p(buf, val);
13eb76e0 3018 l = 4;
6c2934db 3019 } else if (l >= 2 && ((addr1 & 1) == 0)) {
13eb76e0 3020 /* 16 bit read access */
6c2934db 3021 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
c27004ec 3022 stw_p(buf, val);
13eb76e0
FB
3023 l = 2;
3024 } else {
1c213d19 3025 /* 8 bit read access */
6c2934db 3026 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
c27004ec 3027 stb_p(buf, val);
13eb76e0
FB
3028 l = 1;
3029 }
3030 } else {
3031 /* RAM case */
5fafdf24 3032 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
13eb76e0
FB
3033 (addr & ~TARGET_PAGE_MASK);
3034 memcpy(buf, ptr, l);
3035 }
3036 }
3037 len -= l;
3038 buf += l;
3039 addr += l;
3040 }
3041}
8df1cd07 3042
d0ecd2aa 3043/* used for ROM loading : can write in RAM and ROM */
5fafdf24 3044void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
3045 const uint8_t *buf, int len)
3046{
3047 int l;
3048 uint8_t *ptr;
3049 target_phys_addr_t page;
3050 unsigned long pd;
3051 PhysPageDesc *p;
3b46e624 3052
d0ecd2aa
FB
3053 while (len > 0) {
3054 page = addr & TARGET_PAGE_MASK;
3055 l = (page + TARGET_PAGE_SIZE) - addr;
3056 if (l > len)
3057 l = len;
3058 p = phys_page_find(page >> TARGET_PAGE_BITS);
3059 if (!p) {
3060 pd = IO_MEM_UNASSIGNED;
3061 } else {
3062 pd = p->phys_offset;
3063 }
3b46e624 3064
d0ecd2aa 3065 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
3066 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3067 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
3068 /* do nothing */
3069 } else {
3070 unsigned long addr1;
3071 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3072 /* ROM/RAM case */
3073 ptr = phys_ram_base + addr1;
3074 memcpy(ptr, buf, l);
3075 }
3076 len -= l;
3077 buf += l;
3078 addr += l;
3079 }
3080}
3081
6d16c2f8
AL
3082typedef struct {
3083 void *buffer;
3084 target_phys_addr_t addr;
3085 target_phys_addr_t len;
3086} BounceBuffer;
3087
3088static BounceBuffer bounce;
3089
ba223c29
AL
3090typedef struct MapClient {
3091 void *opaque;
3092 void (*callback)(void *opaque);
3093 LIST_ENTRY(MapClient) link;
3094} MapClient;
3095
3096static LIST_HEAD(map_client_list, MapClient) map_client_list
3097 = LIST_HEAD_INITIALIZER(map_client_list);
3098
3099void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3100{
3101 MapClient *client = qemu_malloc(sizeof(*client));
3102
3103 client->opaque = opaque;
3104 client->callback = callback;
3105 LIST_INSERT_HEAD(&map_client_list, client, link);
3106 return client;
3107}
3108
3109void cpu_unregister_map_client(void *_client)
3110{
3111 MapClient *client = (MapClient *)_client;
3112
3113 LIST_REMOVE(client, link);
3114}
3115
3116static void cpu_notify_map_clients(void)
3117{
3118 MapClient *client;
3119
3120 while (!LIST_EMPTY(&map_client_list)) {
3121 client = LIST_FIRST(&map_client_list);
3122 client->callback(client->opaque);
3123 LIST_REMOVE(client, link);
3124 }
3125}
3126
6d16c2f8
AL
3127/* Map a physical memory region into a host virtual address.
3128 * May map a subset of the requested range, given by and returned in *plen.
3129 * May return NULL if resources needed to perform the mapping are exhausted.
3130 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3131 * Use cpu_register_map_client() to know when retrying the map operation is
3132 * likely to succeed.
6d16c2f8
AL
3133 */
3134void *cpu_physical_memory_map(target_phys_addr_t addr,
3135 target_phys_addr_t *plen,
3136 int is_write)
3137{
3138 target_phys_addr_t len = *plen;
3139 target_phys_addr_t done = 0;
3140 int l;
3141 uint8_t *ret = NULL;
3142 uint8_t *ptr;
3143 target_phys_addr_t page;
3144 unsigned long pd;
3145 PhysPageDesc *p;
3146 unsigned long addr1;
3147
3148 while (len > 0) {
3149 page = addr & TARGET_PAGE_MASK;
3150 l = (page + TARGET_PAGE_SIZE) - addr;
3151 if (l > len)
3152 l = len;
3153 p = phys_page_find(page >> TARGET_PAGE_BITS);
3154 if (!p) {
3155 pd = IO_MEM_UNASSIGNED;
3156 } else {
3157 pd = p->phys_offset;
3158 }
3159
3160 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3161 if (done || bounce.buffer) {
3162 break;
3163 }
3164 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3165 bounce.addr = addr;
3166 bounce.len = l;
3167 if (!is_write) {
3168 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3169 }
3170 ptr = bounce.buffer;
3171 } else {
3172 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3173 ptr = phys_ram_base + addr1;
3174 }
3175 if (!done) {
3176 ret = ptr;
3177 } else if (ret + done != ptr) {
3178 break;
3179 }
3180
3181 len -= l;
3182 addr += l;
3183 done += l;
3184 }
3185 *plen = done;
3186 return ret;
3187}
3188
3189/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3190 * Will also mark the memory as dirty if is_write == 1. access_len gives
3191 * the amount of memory that was actually read or written by the caller.
3192 */
3193void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3194 int is_write, target_phys_addr_t access_len)
3195{
3196 if (buffer != bounce.buffer) {
3197 if (is_write) {
3198 unsigned long addr1 = (uint8_t *)buffer - phys_ram_base;
3199 while (access_len) {
3200 unsigned l;
3201 l = TARGET_PAGE_SIZE;
3202 if (l > access_len)
3203 l = access_len;
3204 if (!cpu_physical_memory_is_dirty(addr1)) {
3205 /* invalidate code */
3206 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3207 /* set dirty bit */
3208 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3209 (0xff & ~CODE_DIRTY_FLAG);
3210 }
3211 addr1 += l;
3212 access_len -= l;
3213 }
3214 }
3215 return;
3216 }
3217 if (is_write) {
3218 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3219 }
3220 qemu_free(bounce.buffer);
3221 bounce.buffer = NULL;
ba223c29 3222 cpu_notify_map_clients();
6d16c2f8 3223}
d0ecd2aa 3224
8df1cd07
FB
3225/* warning: addr must be aligned */
3226uint32_t ldl_phys(target_phys_addr_t addr)
3227{
3228 int io_index;
3229 uint8_t *ptr;
3230 uint32_t val;
3231 unsigned long pd;
3232 PhysPageDesc *p;
3233
3234 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3235 if (!p) {
3236 pd = IO_MEM_UNASSIGNED;
3237 } else {
3238 pd = p->phys_offset;
3239 }
3b46e624 3240
5fafdf24 3241 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3242 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
3243 /* I/O case */
3244 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3245 if (p)
3246 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3247 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3248 } else {
3249 /* RAM case */
5fafdf24 3250 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
8df1cd07
FB
3251 (addr & ~TARGET_PAGE_MASK);
3252 val = ldl_p(ptr);
3253 }
3254 return val;
3255}
3256
84b7b8e7
FB
3257/* warning: addr must be aligned */
3258uint64_t ldq_phys(target_phys_addr_t addr)
3259{
3260 int io_index;
3261 uint8_t *ptr;
3262 uint64_t val;
3263 unsigned long pd;
3264 PhysPageDesc *p;
3265
3266 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3267 if (!p) {
3268 pd = IO_MEM_UNASSIGNED;
3269 } else {
3270 pd = p->phys_offset;
3271 }
3b46e624 3272
2a4188a3
FB
3273 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3274 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
3275 /* I/O case */
3276 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3277 if (p)
3278 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
84b7b8e7
FB
3279#ifdef TARGET_WORDS_BIGENDIAN
3280 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3281 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3282#else
3283 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3284 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3285#endif
3286 } else {
3287 /* RAM case */
5fafdf24 3288 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
84b7b8e7
FB
3289 (addr & ~TARGET_PAGE_MASK);
3290 val = ldq_p(ptr);
3291 }
3292 return val;
3293}
3294
aab33094
FB
3295/* XXX: optimize */
3296uint32_t ldub_phys(target_phys_addr_t addr)
3297{
3298 uint8_t val;
3299 cpu_physical_memory_read(addr, &val, 1);
3300 return val;
3301}
3302
3303/* XXX: optimize */
3304uint32_t lduw_phys(target_phys_addr_t addr)
3305{
3306 uint16_t val;
3307 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3308 return tswap16(val);
3309}
3310
8df1cd07
FB
3311/* warning: addr must be aligned. The ram page is not masked as dirty
3312 and the code inside is not invalidated. It is useful if the dirty
3313 bits are used to track modified PTEs */
3314void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3315{
3316 int io_index;
3317 uint8_t *ptr;
3318 unsigned long pd;
3319 PhysPageDesc *p;
3320
3321 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3322 if (!p) {
3323 pd = IO_MEM_UNASSIGNED;
3324 } else {
3325 pd = p->phys_offset;
3326 }
3b46e624 3327
3a7d929e 3328 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3329 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3330 if (p)
3331 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3332 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3333 } else {
74576198
AL
3334 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3335 ptr = phys_ram_base + addr1;
8df1cd07 3336 stl_p(ptr, val);
74576198
AL
3337
3338 if (unlikely(in_migration)) {
3339 if (!cpu_physical_memory_is_dirty(addr1)) {
3340 /* invalidate code */
3341 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3342 /* set dirty bit */
3343 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3344 (0xff & ~CODE_DIRTY_FLAG);
3345 }
3346 }
8df1cd07
FB
3347 }
3348}
3349
bc98a7ef
JM
3350void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3351{
3352 int io_index;
3353 uint8_t *ptr;
3354 unsigned long pd;
3355 PhysPageDesc *p;
3356
3357 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3358 if (!p) {
3359 pd = IO_MEM_UNASSIGNED;
3360 } else {
3361 pd = p->phys_offset;
3362 }
3b46e624 3363
bc98a7ef
JM
3364 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3365 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3366 if (p)
3367 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
bc98a7ef
JM
3368#ifdef TARGET_WORDS_BIGENDIAN
3369 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3370 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3371#else
3372 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3373 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3374#endif
3375 } else {
5fafdf24 3376 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
3377 (addr & ~TARGET_PAGE_MASK);
3378 stq_p(ptr, val);
3379 }
3380}
3381
8df1cd07 3382/* warning: addr must be aligned */
8df1cd07
FB
3383void stl_phys(target_phys_addr_t addr, uint32_t val)
3384{
3385 int io_index;
3386 uint8_t *ptr;
3387 unsigned long pd;
3388 PhysPageDesc *p;
3389
3390 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3391 if (!p) {
3392 pd = IO_MEM_UNASSIGNED;
3393 } else {
3394 pd = p->phys_offset;
3395 }
3b46e624 3396
3a7d929e 3397 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3398 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3399 if (p)
3400 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3401 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3402 } else {
3403 unsigned long addr1;
3404 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3405 /* RAM case */
3406 ptr = phys_ram_base + addr1;
3407 stl_p(ptr, val);
3a7d929e
FB
3408 if (!cpu_physical_memory_is_dirty(addr1)) {
3409 /* invalidate code */
3410 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3411 /* set dirty bit */
f23db169
FB
3412 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3413 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3414 }
8df1cd07
FB
3415 }
3416}
3417
aab33094
FB
3418/* XXX: optimize */
3419void stb_phys(target_phys_addr_t addr, uint32_t val)
3420{
3421 uint8_t v = val;
3422 cpu_physical_memory_write(addr, &v, 1);
3423}
3424
3425/* XXX: optimize */
3426void stw_phys(target_phys_addr_t addr, uint32_t val)
3427{
3428 uint16_t v = tswap16(val);
3429 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3430}
3431
3432/* XXX: optimize */
3433void stq_phys(target_phys_addr_t addr, uint64_t val)
3434{
3435 val = tswap64(val);
3436 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3437}
3438
13eb76e0
FB
3439#endif
3440
3441/* virtual memory access for debug */
5fafdf24 3442int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 3443 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3444{
3445 int l;
9b3c35e0
JM
3446 target_phys_addr_t phys_addr;
3447 target_ulong page;
13eb76e0
FB
3448
3449 while (len > 0) {
3450 page = addr & TARGET_PAGE_MASK;
3451 phys_addr = cpu_get_phys_page_debug(env, page);
3452 /* if no physical page mapped, return an error */
3453 if (phys_addr == -1)
3454 return -1;
3455 l = (page + TARGET_PAGE_SIZE) - addr;
3456 if (l > len)
3457 l = len;
5fafdf24 3458 cpu_physical_memory_rw(phys_addr + (addr & ~TARGET_PAGE_MASK),
b448f2f3 3459 buf, l, is_write);
13eb76e0
FB
3460 len -= l;
3461 buf += l;
3462 addr += l;
3463 }
3464 return 0;
3465}
3466
2e70f6ef
PB
3467/* in deterministic execution mode, instructions doing device I/Os
3468 must be at the end of the TB */
3469void cpu_io_recompile(CPUState *env, void *retaddr)
3470{
3471 TranslationBlock *tb;
3472 uint32_t n, cflags;
3473 target_ulong pc, cs_base;
3474 uint64_t flags;
3475
3476 tb = tb_find_pc((unsigned long)retaddr);
3477 if (!tb) {
3478 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3479 retaddr);
3480 }
3481 n = env->icount_decr.u16.low + tb->icount;
3482 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3483 /* Calculate how many instructions had been executed before the fault
bf20dc07 3484 occurred. */
2e70f6ef
PB
3485 n = n - env->icount_decr.u16.low;
3486 /* Generate a new TB ending on the I/O insn. */
3487 n++;
3488 /* On MIPS and SH, delay slot instructions can only be restarted if
3489 they were already the first instruction in the TB. If this is not
bf20dc07 3490 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
3491 branch. */
3492#if defined(TARGET_MIPS)
3493 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3494 env->active_tc.PC -= 4;
3495 env->icount_decr.u16.low++;
3496 env->hflags &= ~MIPS_HFLAG_BMASK;
3497 }
3498#elif defined(TARGET_SH4)
3499 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3500 && n > 1) {
3501 env->pc -= 2;
3502 env->icount_decr.u16.low++;
3503 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3504 }
3505#endif
3506 /* This should never happen. */
3507 if (n > CF_COUNT_MASK)
3508 cpu_abort(env, "TB too big during recompile");
3509
3510 cflags = n | CF_LAST_IO;
3511 pc = tb->pc;
3512 cs_base = tb->cs_base;
3513 flags = tb->flags;
3514 tb_phys_invalidate(tb, -1);
3515 /* FIXME: In theory this could raise an exception. In practice
3516 we have already translated the block once so it's probably ok. */
3517 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 3518 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
3519 the first in the TB) then we end up generating a whole new TB and
3520 repeating the fault, which is horribly inefficient.
3521 Better would be to execute just this insn uncached, or generate a
3522 second new TB. */
3523 cpu_resume_from_signal(env, NULL);
3524}
3525
e3db7226
FB
3526void dump_exec_info(FILE *f,
3527 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3528{
3529 int i, target_code_size, max_target_code_size;
3530 int direct_jmp_count, direct_jmp2_count, cross_page;
3531 TranslationBlock *tb;
3b46e624 3532
e3db7226
FB
3533 target_code_size = 0;
3534 max_target_code_size = 0;
3535 cross_page = 0;
3536 direct_jmp_count = 0;
3537 direct_jmp2_count = 0;
3538 for(i = 0; i < nb_tbs; i++) {
3539 tb = &tbs[i];
3540 target_code_size += tb->size;
3541 if (tb->size > max_target_code_size)
3542 max_target_code_size = tb->size;
3543 if (tb->page_addr[1] != -1)
3544 cross_page++;
3545 if (tb->tb_next_offset[0] != 0xffff) {
3546 direct_jmp_count++;
3547 if (tb->tb_next_offset[1] != 0xffff) {
3548 direct_jmp2_count++;
3549 }
3550 }
3551 }
3552 /* XXX: avoid using doubles ? */
57fec1fe 3553 cpu_fprintf(f, "Translation buffer state:\n");
26a5f13b
FB
3554 cpu_fprintf(f, "gen code size %ld/%ld\n",
3555 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3556 cpu_fprintf(f, "TB count %d/%d\n",
3557 nb_tbs, code_gen_max_blocks);
5fafdf24 3558 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
3559 nb_tbs ? target_code_size / nb_tbs : 0,
3560 max_target_code_size);
5fafdf24 3561 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
3562 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3563 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
3564 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3565 cross_page,
e3db7226
FB
3566 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3567 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 3568 direct_jmp_count,
e3db7226
FB
3569 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3570 direct_jmp2_count,
3571 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 3572 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
3573 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3574 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3575 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 3576 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
3577}
3578
5fafdf24 3579#if !defined(CONFIG_USER_ONLY)
61382a50
FB
3580
3581#define MMUSUFFIX _cmmu
3582#define GETPC() NULL
3583#define env cpu_single_env
b769d8fe 3584#define SOFTMMU_CODE_ACCESS
61382a50
FB
3585
3586#define SHIFT 0
3587#include "softmmu_template.h"
3588
3589#define SHIFT 1
3590#include "softmmu_template.h"
3591
3592#define SHIFT 2
3593#include "softmmu_template.h"
3594
3595#define SHIFT 3
3596#include "softmmu_template.h"
3597
3598#undef env
3599
3600#endif