]> git.proxmox.com Git - qemu.git/blame - exec.c
Fix build with --disable-sdl
[qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
fad6cb1a 18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
54936004 19 */
67b915a5 20#include "config.h"
d5a8f07c 21#ifdef _WIN32
4fddf62a 22#define WIN32_LEAN_AND_MEAN
d5a8f07c
FB
23#include <windows.h>
24#else
a98d49b1 25#include <sys/types.h>
d5a8f07c
FB
26#include <sys/mman.h>
27#endif
54936004
FB
28#include <stdlib.h>
29#include <stdio.h>
30#include <stdarg.h>
31#include <string.h>
32#include <errno.h>
33#include <unistd.h>
34#include <inttypes.h>
35
6180a181
FB
36#include "cpu.h"
37#include "exec-all.h"
ca10f867 38#include "qemu-common.h"
b67d9a52 39#include "tcg.h"
b3c7724c 40#include "hw/hw.h"
74576198 41#include "osdep.h"
7ba1e619 42#include "kvm.h"
53a5960a
PB
43#if defined(CONFIG_USER_ONLY)
44#include <qemu.h>
45#endif
54936004 46
fd6ce8f6 47//#define DEBUG_TB_INVALIDATE
66e85a21 48//#define DEBUG_FLUSH
9fa3e853 49//#define DEBUG_TLB
67d3b957 50//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
51
52/* make various TB consistency checks */
5fafdf24
TS
53//#define DEBUG_TB_CHECK
54//#define DEBUG_TLB_CHECK
fd6ce8f6 55
1196be37 56//#define DEBUG_IOPORT
db7b5426 57//#define DEBUG_SUBPAGE
1196be37 58
99773bd4
PB
59#if !defined(CONFIG_USER_ONLY)
60/* TB consistency checks only implemented for usermode emulation. */
61#undef DEBUG_TB_CHECK
62#endif
63
9fa3e853
FB
64#define SMC_BITMAP_USE_THRESHOLD 10
65
66#define MMAP_AREA_START 0x00000000
67#define MMAP_AREA_END 0xa8000000
fd6ce8f6 68
108c49b8
FB
69#if defined(TARGET_SPARC64)
70#define TARGET_PHYS_ADDR_SPACE_BITS 41
5dcb6b91
BS
71#elif defined(TARGET_SPARC)
72#define TARGET_PHYS_ADDR_SPACE_BITS 36
bedb69ea
JM
73#elif defined(TARGET_ALPHA)
74#define TARGET_PHYS_ADDR_SPACE_BITS 42
75#define TARGET_VIRT_ADDR_SPACE_BITS 42
108c49b8
FB
76#elif defined(TARGET_PPC64)
77#define TARGET_PHYS_ADDR_SPACE_BITS 42
00f82b8a
AJ
78#elif defined(TARGET_X86_64) && !defined(USE_KQEMU)
79#define TARGET_PHYS_ADDR_SPACE_BITS 42
80#elif defined(TARGET_I386) && !defined(USE_KQEMU)
81#define TARGET_PHYS_ADDR_SPACE_BITS 36
108c49b8
FB
82#else
83/* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
84#define TARGET_PHYS_ADDR_SPACE_BITS 32
85#endif
86
bdaf78e0 87static TranslationBlock *tbs;
26a5f13b 88int code_gen_max_blocks;
9fa3e853 89TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 90static int nb_tbs;
eb51d102
FB
91/* any access to the tbs or the page table must use this lock */
92spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 93
141ac468
BS
94#if defined(__arm__) || defined(__sparc_v9__)
95/* The prologue must be reachable with a direct jump. ARM and Sparc64
96 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
97 section close to code segment. */
98#define code_gen_section \
99 __attribute__((__section__(".gen_code"))) \
100 __attribute__((aligned (32)))
101#else
102#define code_gen_section \
103 __attribute__((aligned (32)))
104#endif
105
106uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
107static uint8_t *code_gen_buffer;
108static unsigned long code_gen_buffer_size;
26a5f13b 109/* threshold to flush the translated code buffer */
bdaf78e0 110static unsigned long code_gen_buffer_max_size;
fd6ce8f6
FB
111uint8_t *code_gen_ptr;
112
e2eef170 113#if !defined(CONFIG_USER_ONLY)
00f82b8a 114ram_addr_t phys_ram_size;
9fa3e853
FB
115int phys_ram_fd;
116uint8_t *phys_ram_base;
1ccde1cb 117uint8_t *phys_ram_dirty;
74576198 118static int in_migration;
e9a1ab19 119static ram_addr_t phys_ram_alloc_offset = 0;
e2eef170 120#endif
9fa3e853 121
6a00d601
FB
122CPUState *first_cpu;
123/* current CPU in the current thread. It is only valid inside
124 cpu_exec() */
5fafdf24 125CPUState *cpu_single_env;
2e70f6ef 126/* 0 = Do not count executed instructions.
bf20dc07 127 1 = Precise instruction counting.
2e70f6ef
PB
128 2 = Adaptive rate instruction counting. */
129int use_icount = 0;
130/* Current instruction counter. While executing translated code this may
131 include some instructions that have not yet been executed. */
132int64_t qemu_icount;
6a00d601 133
54936004 134typedef struct PageDesc {
92e873b9 135 /* list of TBs intersecting this ram page */
fd6ce8f6 136 TranslationBlock *first_tb;
9fa3e853
FB
137 /* in order to optimize self modifying code, we count the number
138 of lookups we do to a given page to use a bitmap */
139 unsigned int code_write_count;
140 uint8_t *code_bitmap;
141#if defined(CONFIG_USER_ONLY)
142 unsigned long flags;
143#endif
54936004
FB
144} PageDesc;
145
92e873b9 146typedef struct PhysPageDesc {
0f459d16 147 /* offset in host memory of the page + io_index in the low bits */
00f82b8a 148 ram_addr_t phys_offset;
8da3ff18 149 ram_addr_t region_offset;
92e873b9
FB
150} PhysPageDesc;
151
54936004 152#define L2_BITS 10
bedb69ea
JM
153#if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
154/* XXX: this is a temporary hack for alpha target.
155 * In the future, this is to be replaced by a multi-level table
156 * to actually be able to handle the complete 64 bits address space.
157 */
158#define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
159#else
03875444 160#define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
bedb69ea 161#endif
54936004
FB
162
163#define L1_SIZE (1 << L1_BITS)
164#define L2_SIZE (1 << L2_BITS)
165
83fb7adf
FB
166unsigned long qemu_real_host_page_size;
167unsigned long qemu_host_page_bits;
168unsigned long qemu_host_page_size;
169unsigned long qemu_host_page_mask;
54936004 170
92e873b9 171/* XXX: for system emulation, it could just be an array */
54936004 172static PageDesc *l1_map[L1_SIZE];
bdaf78e0 173static PhysPageDesc **l1_phys_map;
54936004 174
e2eef170
PB
175#if !defined(CONFIG_USER_ONLY)
176static void io_mem_init(void);
177
33417e70 178/* io memory support */
33417e70
FB
179CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
180CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 181void *io_mem_opaque[IO_MEM_NB_ENTRIES];
33417e70 182static int io_mem_nb;
6658ffb8
PB
183static int io_mem_watch;
184#endif
33417e70 185
34865134 186/* log support */
d9b630fd 187static const char *logfilename = "/tmp/qemu.log";
34865134
FB
188FILE *logfile;
189int loglevel;
e735b91c 190static int log_append = 0;
34865134 191
e3db7226
FB
192/* statistics */
193static int tlb_flush_count;
194static int tb_flush_count;
195static int tb_phys_invalidate_count;
196
db7b5426
BS
197#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
198typedef struct subpage_t {
199 target_phys_addr_t base;
3ee89922
BS
200 CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4];
201 CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4];
202 void *opaque[TARGET_PAGE_SIZE][2][4];
8da3ff18 203 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
db7b5426
BS
204} subpage_t;
205
7cb69cae
FB
206#ifdef _WIN32
207static void map_exec(void *addr, long size)
208{
209 DWORD old_protect;
210 VirtualProtect(addr, size,
211 PAGE_EXECUTE_READWRITE, &old_protect);
212
213}
214#else
215static void map_exec(void *addr, long size)
216{
4369415f 217 unsigned long start, end, page_size;
7cb69cae 218
4369415f 219 page_size = getpagesize();
7cb69cae 220 start = (unsigned long)addr;
4369415f 221 start &= ~(page_size - 1);
7cb69cae
FB
222
223 end = (unsigned long)addr + size;
4369415f
FB
224 end += page_size - 1;
225 end &= ~(page_size - 1);
7cb69cae
FB
226
227 mprotect((void *)start, end - start,
228 PROT_READ | PROT_WRITE | PROT_EXEC);
229}
230#endif
231
b346ff46 232static void page_init(void)
54936004 233{
83fb7adf 234 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 235 TARGET_PAGE_SIZE */
c2b48b69
AL
236#ifdef _WIN32
237 {
238 SYSTEM_INFO system_info;
239
240 GetSystemInfo(&system_info);
241 qemu_real_host_page_size = system_info.dwPageSize;
242 }
243#else
244 qemu_real_host_page_size = getpagesize();
245#endif
83fb7adf
FB
246 if (qemu_host_page_size == 0)
247 qemu_host_page_size = qemu_real_host_page_size;
248 if (qemu_host_page_size < TARGET_PAGE_SIZE)
249 qemu_host_page_size = TARGET_PAGE_SIZE;
250 qemu_host_page_bits = 0;
251 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
252 qemu_host_page_bits++;
253 qemu_host_page_mask = ~(qemu_host_page_size - 1);
108c49b8
FB
254 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
255 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
50a9569b
AZ
256
257#if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
258 {
259 long long startaddr, endaddr;
260 FILE *f;
261 int n;
262
c8a706fe 263 mmap_lock();
0776590d 264 last_brk = (unsigned long)sbrk(0);
50a9569b
AZ
265 f = fopen("/proc/self/maps", "r");
266 if (f) {
267 do {
268 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
269 if (n == 2) {
e0b8d65a
BS
270 startaddr = MIN(startaddr,
271 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
272 endaddr = MIN(endaddr,
273 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
b5fc909e 274 page_set_flags(startaddr & TARGET_PAGE_MASK,
50a9569b
AZ
275 TARGET_PAGE_ALIGN(endaddr),
276 PAGE_RESERVED);
277 }
278 } while (!feof(f));
279 fclose(f);
280 }
c8a706fe 281 mmap_unlock();
50a9569b
AZ
282 }
283#endif
54936004
FB
284}
285
434929bf 286static inline PageDesc **page_l1_map(target_ulong index)
54936004 287{
17e2377a
PB
288#if TARGET_LONG_BITS > 32
289 /* Host memory outside guest VM. For 32-bit targets we have already
290 excluded high addresses. */
d8173e0f 291 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
17e2377a
PB
292 return NULL;
293#endif
434929bf
AL
294 return &l1_map[index >> L2_BITS];
295}
296
297static inline PageDesc *page_find_alloc(target_ulong index)
298{
299 PageDesc **lp, *p;
300 lp = page_l1_map(index);
301 if (!lp)
302 return NULL;
303
54936004
FB
304 p = *lp;
305 if (!p) {
306 /* allocate if not found */
17e2377a 307#if defined(CONFIG_USER_ONLY)
17e2377a
PB
308 size_t len = sizeof(PageDesc) * L2_SIZE;
309 /* Don't use qemu_malloc because it may recurse. */
310 p = mmap(0, len, PROT_READ | PROT_WRITE,
311 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
54936004 312 *lp = p;
fb1c2cd7
AJ
313 if (h2g_valid(p)) {
314 unsigned long addr = h2g(p);
17e2377a
PB
315 page_set_flags(addr & TARGET_PAGE_MASK,
316 TARGET_PAGE_ALIGN(addr + len),
317 PAGE_RESERVED);
318 }
319#else
320 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
321 *lp = p;
322#endif
54936004
FB
323 }
324 return p + (index & (L2_SIZE - 1));
325}
326
00f82b8a 327static inline PageDesc *page_find(target_ulong index)
54936004 328{
434929bf
AL
329 PageDesc **lp, *p;
330 lp = page_l1_map(index);
331 if (!lp)
332 return NULL;
54936004 333
434929bf 334 p = *lp;
54936004
FB
335 if (!p)
336 return 0;
fd6ce8f6
FB
337 return p + (index & (L2_SIZE - 1));
338}
339
108c49b8 340static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 341{
108c49b8 342 void **lp, **p;
e3f4e2a4 343 PhysPageDesc *pd;
92e873b9 344
108c49b8
FB
345 p = (void **)l1_phys_map;
346#if TARGET_PHYS_ADDR_SPACE_BITS > 32
347
348#if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
349#error unsupported TARGET_PHYS_ADDR_SPACE_BITS
350#endif
351 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
92e873b9
FB
352 p = *lp;
353 if (!p) {
354 /* allocate if not found */
108c49b8
FB
355 if (!alloc)
356 return NULL;
357 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
358 memset(p, 0, sizeof(void *) * L1_SIZE);
359 *lp = p;
360 }
361#endif
362 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
e3f4e2a4
PB
363 pd = *lp;
364 if (!pd) {
365 int i;
108c49b8
FB
366 /* allocate if not found */
367 if (!alloc)
368 return NULL;
e3f4e2a4
PB
369 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
370 *lp = pd;
371 for (i = 0; i < L2_SIZE; i++)
372 pd[i].phys_offset = IO_MEM_UNASSIGNED;
92e873b9 373 }
e3f4e2a4 374 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
92e873b9
FB
375}
376
108c49b8 377static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 378{
108c49b8 379 return phys_page_find_alloc(index, 0);
92e873b9
FB
380}
381
9fa3e853 382#if !defined(CONFIG_USER_ONLY)
6a00d601 383static void tlb_protect_code(ram_addr_t ram_addr);
5fafdf24 384static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 385 target_ulong vaddr);
c8a706fe
PB
386#define mmap_lock() do { } while(0)
387#define mmap_unlock() do { } while(0)
9fa3e853 388#endif
fd6ce8f6 389
4369415f
FB
390#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
391
392#if defined(CONFIG_USER_ONLY)
393/* Currently it is not recommanded to allocate big chunks of data in
394 user mode. It will change when a dedicated libc will be used */
395#define USE_STATIC_CODE_GEN_BUFFER
396#endif
397
398#ifdef USE_STATIC_CODE_GEN_BUFFER
399static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
400#endif
401
8fcd3692 402static void code_gen_alloc(unsigned long tb_size)
26a5f13b 403{
4369415f
FB
404#ifdef USE_STATIC_CODE_GEN_BUFFER
405 code_gen_buffer = static_code_gen_buffer;
406 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
407 map_exec(code_gen_buffer, code_gen_buffer_size);
408#else
26a5f13b
FB
409 code_gen_buffer_size = tb_size;
410 if (code_gen_buffer_size == 0) {
4369415f
FB
411#if defined(CONFIG_USER_ONLY)
412 /* in user mode, phys_ram_size is not meaningful */
413 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
414#else
26a5f13b 415 /* XXX: needs ajustments */
174a9a1f 416 code_gen_buffer_size = (unsigned long)(phys_ram_size / 4);
4369415f 417#endif
26a5f13b
FB
418 }
419 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
420 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
421 /* The code gen buffer location may have constraints depending on
422 the host cpu and OS */
423#if defined(__linux__)
424 {
425 int flags;
141ac468
BS
426 void *start = NULL;
427
26a5f13b
FB
428 flags = MAP_PRIVATE | MAP_ANONYMOUS;
429#if defined(__x86_64__)
430 flags |= MAP_32BIT;
431 /* Cannot map more than that */
432 if (code_gen_buffer_size > (800 * 1024 * 1024))
433 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
434#elif defined(__sparc_v9__)
435 // Map the buffer below 2G, so we can use direct calls and branches
436 flags |= MAP_FIXED;
437 start = (void *) 0x60000000UL;
438 if (code_gen_buffer_size > (512 * 1024 * 1024))
439 code_gen_buffer_size = (512 * 1024 * 1024);
1cb0661e 440#elif defined(__arm__)
63d41246 441 /* Map the buffer below 32M, so we can use direct calls and branches */
1cb0661e
AZ
442 flags |= MAP_FIXED;
443 start = (void *) 0x01000000UL;
444 if (code_gen_buffer_size > 16 * 1024 * 1024)
445 code_gen_buffer_size = 16 * 1024 * 1024;
26a5f13b 446#endif
141ac468
BS
447 code_gen_buffer = mmap(start, code_gen_buffer_size,
448 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
449 flags, -1, 0);
450 if (code_gen_buffer == MAP_FAILED) {
451 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
452 exit(1);
453 }
454 }
06e67a82
AL
455#elif defined(__FreeBSD__)
456 {
457 int flags;
458 void *addr = NULL;
459 flags = MAP_PRIVATE | MAP_ANONYMOUS;
460#if defined(__x86_64__)
461 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
462 * 0x40000000 is free */
463 flags |= MAP_FIXED;
464 addr = (void *)0x40000000;
465 /* Cannot map more than that */
466 if (code_gen_buffer_size > (800 * 1024 * 1024))
467 code_gen_buffer_size = (800 * 1024 * 1024);
468#endif
469 code_gen_buffer = mmap(addr, code_gen_buffer_size,
470 PROT_WRITE | PROT_READ | PROT_EXEC,
471 flags, -1, 0);
472 if (code_gen_buffer == MAP_FAILED) {
473 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
474 exit(1);
475 }
476 }
26a5f13b
FB
477#else
478 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
479 if (!code_gen_buffer) {
480 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
481 exit(1);
482 }
483 map_exec(code_gen_buffer, code_gen_buffer_size);
484#endif
4369415f 485#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b
FB
486 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
487 code_gen_buffer_max_size = code_gen_buffer_size -
488 code_gen_max_block_size();
489 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
490 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
491}
492
493/* Must be called before using the QEMU cpus. 'tb_size' is the size
494 (in bytes) allocated to the translation buffer. Zero means default
495 size. */
496void cpu_exec_init_all(unsigned long tb_size)
497{
26a5f13b
FB
498 cpu_gen_init();
499 code_gen_alloc(tb_size);
500 code_gen_ptr = code_gen_buffer;
4369415f 501 page_init();
e2eef170 502#if !defined(CONFIG_USER_ONLY)
26a5f13b 503 io_mem_init();
e2eef170 504#endif
26a5f13b
FB
505}
506
9656f324
PB
507#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
508
509#define CPU_COMMON_SAVE_VERSION 1
510
511static void cpu_common_save(QEMUFile *f, void *opaque)
512{
513 CPUState *env = opaque;
514
515 qemu_put_be32s(f, &env->halted);
516 qemu_put_be32s(f, &env->interrupt_request);
517}
518
519static int cpu_common_load(QEMUFile *f, void *opaque, int version_id)
520{
521 CPUState *env = opaque;
522
523 if (version_id != CPU_COMMON_SAVE_VERSION)
524 return -EINVAL;
525
526 qemu_get_be32s(f, &env->halted);
75f482ae 527 qemu_get_be32s(f, &env->interrupt_request);
9656f324
PB
528 tlb_flush(env, 1);
529
530 return 0;
531}
532#endif
533
6a00d601 534void cpu_exec_init(CPUState *env)
fd6ce8f6 535{
6a00d601
FB
536 CPUState **penv;
537 int cpu_index;
538
6a00d601
FB
539 env->next_cpu = NULL;
540 penv = &first_cpu;
541 cpu_index = 0;
542 while (*penv != NULL) {
543 penv = (CPUState **)&(*penv)->next_cpu;
544 cpu_index++;
545 }
546 env->cpu_index = cpu_index;
c0ce998e
AL
547 TAILQ_INIT(&env->breakpoints);
548 TAILQ_INIT(&env->watchpoints);
6a00d601 549 *penv = env;
b3c7724c 550#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
9656f324
PB
551 register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION,
552 cpu_common_save, cpu_common_load, env);
b3c7724c
PB
553 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
554 cpu_save, cpu_load, env);
555#endif
fd6ce8f6
FB
556}
557
9fa3e853
FB
558static inline void invalidate_page_bitmap(PageDesc *p)
559{
560 if (p->code_bitmap) {
59817ccb 561 qemu_free(p->code_bitmap);
9fa3e853
FB
562 p->code_bitmap = NULL;
563 }
564 p->code_write_count = 0;
565}
566
fd6ce8f6
FB
567/* set to NULL all the 'first_tb' fields in all PageDescs */
568static void page_flush_tb(void)
569{
570 int i, j;
571 PageDesc *p;
572
573 for(i = 0; i < L1_SIZE; i++) {
574 p = l1_map[i];
575 if (p) {
9fa3e853
FB
576 for(j = 0; j < L2_SIZE; j++) {
577 p->first_tb = NULL;
578 invalidate_page_bitmap(p);
579 p++;
580 }
fd6ce8f6
FB
581 }
582 }
583}
584
585/* flush all the translation blocks */
d4e8164f 586/* XXX: tb_flush is currently not thread safe */
6a00d601 587void tb_flush(CPUState *env1)
fd6ce8f6 588{
6a00d601 589 CPUState *env;
0124311e 590#if defined(DEBUG_FLUSH)
ab3d1727
BS
591 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
592 (unsigned long)(code_gen_ptr - code_gen_buffer),
593 nb_tbs, nb_tbs > 0 ?
594 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 595#endif
26a5f13b 596 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
597 cpu_abort(env1, "Internal error: code buffer overflow\n");
598
fd6ce8f6 599 nb_tbs = 0;
3b46e624 600
6a00d601
FB
601 for(env = first_cpu; env != NULL; env = env->next_cpu) {
602 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
603 }
9fa3e853 604
8a8a608f 605 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 606 page_flush_tb();
9fa3e853 607
fd6ce8f6 608 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
609 /* XXX: flush processor icache at this point if cache flush is
610 expensive */
e3db7226 611 tb_flush_count++;
fd6ce8f6
FB
612}
613
614#ifdef DEBUG_TB_CHECK
615
bc98a7ef 616static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
617{
618 TranslationBlock *tb;
619 int i;
620 address &= TARGET_PAGE_MASK;
99773bd4
PB
621 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
622 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
623 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
624 address >= tb->pc + tb->size)) {
625 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
99773bd4 626 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
627 }
628 }
629 }
630}
631
632/* verify that all the pages have correct rights for code */
633static void tb_page_check(void)
634{
635 TranslationBlock *tb;
636 int i, flags1, flags2;
3b46e624 637
99773bd4
PB
638 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
639 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
640 flags1 = page_get_flags(tb->pc);
641 flags2 = page_get_flags(tb->pc + tb->size - 1);
642 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
643 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 644 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
645 }
646 }
647 }
648}
649
bdaf78e0 650static void tb_jmp_check(TranslationBlock *tb)
d4e8164f
FB
651{
652 TranslationBlock *tb1;
653 unsigned int n1;
654
655 /* suppress any remaining jumps to this TB */
656 tb1 = tb->jmp_first;
657 for(;;) {
658 n1 = (long)tb1 & 3;
659 tb1 = (TranslationBlock *)((long)tb1 & ~3);
660 if (n1 == 2)
661 break;
662 tb1 = tb1->jmp_next[n1];
663 }
664 /* check end of list */
665 if (tb1 != tb) {
666 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
667 }
668}
669
fd6ce8f6
FB
670#endif
671
672/* invalidate one TB */
673static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
674 int next_offset)
675{
676 TranslationBlock *tb1;
677 for(;;) {
678 tb1 = *ptb;
679 if (tb1 == tb) {
680 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
681 break;
682 }
683 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
684 }
685}
686
9fa3e853
FB
687static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
688{
689 TranslationBlock *tb1;
690 unsigned int n1;
691
692 for(;;) {
693 tb1 = *ptb;
694 n1 = (long)tb1 & 3;
695 tb1 = (TranslationBlock *)((long)tb1 & ~3);
696 if (tb1 == tb) {
697 *ptb = tb1->page_next[n1];
698 break;
699 }
700 ptb = &tb1->page_next[n1];
701 }
702}
703
d4e8164f
FB
704static inline void tb_jmp_remove(TranslationBlock *tb, int n)
705{
706 TranslationBlock *tb1, **ptb;
707 unsigned int n1;
708
709 ptb = &tb->jmp_next[n];
710 tb1 = *ptb;
711 if (tb1) {
712 /* find tb(n) in circular list */
713 for(;;) {
714 tb1 = *ptb;
715 n1 = (long)tb1 & 3;
716 tb1 = (TranslationBlock *)((long)tb1 & ~3);
717 if (n1 == n && tb1 == tb)
718 break;
719 if (n1 == 2) {
720 ptb = &tb1->jmp_first;
721 } else {
722 ptb = &tb1->jmp_next[n1];
723 }
724 }
725 /* now we can suppress tb(n) from the list */
726 *ptb = tb->jmp_next[n];
727
728 tb->jmp_next[n] = NULL;
729 }
730}
731
732/* reset the jump entry 'n' of a TB so that it is not chained to
733 another TB */
734static inline void tb_reset_jump(TranslationBlock *tb, int n)
735{
736 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
737}
738
2e70f6ef 739void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
fd6ce8f6 740{
6a00d601 741 CPUState *env;
8a40a180 742 PageDesc *p;
d4e8164f 743 unsigned int h, n1;
00f82b8a 744 target_phys_addr_t phys_pc;
8a40a180 745 TranslationBlock *tb1, *tb2;
3b46e624 746
8a40a180
FB
747 /* remove the TB from the hash list */
748 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
749 h = tb_phys_hash_func(phys_pc);
5fafdf24 750 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
751 offsetof(TranslationBlock, phys_hash_next));
752
753 /* remove the TB from the page list */
754 if (tb->page_addr[0] != page_addr) {
755 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
756 tb_page_remove(&p->first_tb, tb);
757 invalidate_page_bitmap(p);
758 }
759 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
760 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
761 tb_page_remove(&p->first_tb, tb);
762 invalidate_page_bitmap(p);
763 }
764
36bdbe54 765 tb_invalidated_flag = 1;
59817ccb 766
fd6ce8f6 767 /* remove the TB from the hash list */
8a40a180 768 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
769 for(env = first_cpu; env != NULL; env = env->next_cpu) {
770 if (env->tb_jmp_cache[h] == tb)
771 env->tb_jmp_cache[h] = NULL;
772 }
d4e8164f
FB
773
774 /* suppress this TB from the two jump lists */
775 tb_jmp_remove(tb, 0);
776 tb_jmp_remove(tb, 1);
777
778 /* suppress any remaining jumps to this TB */
779 tb1 = tb->jmp_first;
780 for(;;) {
781 n1 = (long)tb1 & 3;
782 if (n1 == 2)
783 break;
784 tb1 = (TranslationBlock *)((long)tb1 & ~3);
785 tb2 = tb1->jmp_next[n1];
786 tb_reset_jump(tb1, n1);
787 tb1->jmp_next[n1] = NULL;
788 tb1 = tb2;
789 }
790 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 791
e3db7226 792 tb_phys_invalidate_count++;
9fa3e853
FB
793}
794
795static inline void set_bits(uint8_t *tab, int start, int len)
796{
797 int end, mask, end1;
798
799 end = start + len;
800 tab += start >> 3;
801 mask = 0xff << (start & 7);
802 if ((start & ~7) == (end & ~7)) {
803 if (start < end) {
804 mask &= ~(0xff << (end & 7));
805 *tab |= mask;
806 }
807 } else {
808 *tab++ |= mask;
809 start = (start + 8) & ~7;
810 end1 = end & ~7;
811 while (start < end1) {
812 *tab++ = 0xff;
813 start += 8;
814 }
815 if (start < end) {
816 mask = ~(0xff << (end & 7));
817 *tab |= mask;
818 }
819 }
820}
821
822static void build_page_bitmap(PageDesc *p)
823{
824 int n, tb_start, tb_end;
825 TranslationBlock *tb;
3b46e624 826
b2a7081a 827 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
828 if (!p->code_bitmap)
829 return;
9fa3e853
FB
830
831 tb = p->first_tb;
832 while (tb != NULL) {
833 n = (long)tb & 3;
834 tb = (TranslationBlock *)((long)tb & ~3);
835 /* NOTE: this is subtle as a TB may span two physical pages */
836 if (n == 0) {
837 /* NOTE: tb_end may be after the end of the page, but
838 it is not a problem */
839 tb_start = tb->pc & ~TARGET_PAGE_MASK;
840 tb_end = tb_start + tb->size;
841 if (tb_end > TARGET_PAGE_SIZE)
842 tb_end = TARGET_PAGE_SIZE;
843 } else {
844 tb_start = 0;
845 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
846 }
847 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
848 tb = tb->page_next[n];
849 }
850}
851
2e70f6ef
PB
852TranslationBlock *tb_gen_code(CPUState *env,
853 target_ulong pc, target_ulong cs_base,
854 int flags, int cflags)
d720b93d
FB
855{
856 TranslationBlock *tb;
857 uint8_t *tc_ptr;
858 target_ulong phys_pc, phys_page2, virt_page2;
859 int code_gen_size;
860
c27004ec
FB
861 phys_pc = get_phys_addr_code(env, pc);
862 tb = tb_alloc(pc);
d720b93d
FB
863 if (!tb) {
864 /* flush must be done */
865 tb_flush(env);
866 /* cannot fail at this point */
c27004ec 867 tb = tb_alloc(pc);
2e70f6ef
PB
868 /* Don't forget to invalidate previous TB info. */
869 tb_invalidated_flag = 1;
d720b93d
FB
870 }
871 tc_ptr = code_gen_ptr;
872 tb->tc_ptr = tc_ptr;
873 tb->cs_base = cs_base;
874 tb->flags = flags;
875 tb->cflags = cflags;
d07bde88 876 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 877 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 878
d720b93d 879 /* check next page if needed */
c27004ec 880 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 881 phys_page2 = -1;
c27004ec 882 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
d720b93d
FB
883 phys_page2 = get_phys_addr_code(env, virt_page2);
884 }
885 tb_link_phys(tb, phys_pc, phys_page2);
2e70f6ef 886 return tb;
d720b93d 887}
3b46e624 888
9fa3e853
FB
889/* invalidate all TBs which intersect with the target physical page
890 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
891 the same physical page. 'is_cpu_write_access' should be true if called
892 from a real cpu write access: the virtual CPU will exit the current
893 TB if code is modified inside this TB. */
00f82b8a 894void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
d720b93d
FB
895 int is_cpu_write_access)
896{
6b917547 897 TranslationBlock *tb, *tb_next, *saved_tb;
d720b93d 898 CPUState *env = cpu_single_env;
9fa3e853 899 target_ulong tb_start, tb_end;
6b917547
AL
900 PageDesc *p;
901 int n;
902#ifdef TARGET_HAS_PRECISE_SMC
903 int current_tb_not_found = is_cpu_write_access;
904 TranslationBlock *current_tb = NULL;
905 int current_tb_modified = 0;
906 target_ulong current_pc = 0;
907 target_ulong current_cs_base = 0;
908 int current_flags = 0;
909#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
910
911 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 912 if (!p)
9fa3e853 913 return;
5fafdf24 914 if (!p->code_bitmap &&
d720b93d
FB
915 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
916 is_cpu_write_access) {
9fa3e853
FB
917 /* build code bitmap */
918 build_page_bitmap(p);
919 }
920
921 /* we remove all the TBs in the range [start, end[ */
922 /* XXX: see if in some cases it could be faster to invalidate all the code */
923 tb = p->first_tb;
924 while (tb != NULL) {
925 n = (long)tb & 3;
926 tb = (TranslationBlock *)((long)tb & ~3);
927 tb_next = tb->page_next[n];
928 /* NOTE: this is subtle as a TB may span two physical pages */
929 if (n == 0) {
930 /* NOTE: tb_end may be after the end of the page, but
931 it is not a problem */
932 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
933 tb_end = tb_start + tb->size;
934 } else {
935 tb_start = tb->page_addr[1];
936 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
937 }
938 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
939#ifdef TARGET_HAS_PRECISE_SMC
940 if (current_tb_not_found) {
941 current_tb_not_found = 0;
942 current_tb = NULL;
2e70f6ef 943 if (env->mem_io_pc) {
d720b93d 944 /* now we have a real cpu fault */
2e70f6ef 945 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
946 }
947 }
948 if (current_tb == tb &&
2e70f6ef 949 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
950 /* If we are modifying the current TB, we must stop
951 its execution. We could be more precise by checking
952 that the modification is after the current PC, but it
953 would require a specialized function to partially
954 restore the CPU state */
3b46e624 955
d720b93d 956 current_tb_modified = 1;
5fafdf24 957 cpu_restore_state(current_tb, env,
2e70f6ef 958 env->mem_io_pc, NULL);
6b917547
AL
959 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
960 &current_flags);
d720b93d
FB
961 }
962#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
963 /* we need to do that to handle the case where a signal
964 occurs while doing tb_phys_invalidate() */
965 saved_tb = NULL;
966 if (env) {
967 saved_tb = env->current_tb;
968 env->current_tb = NULL;
969 }
9fa3e853 970 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
971 if (env) {
972 env->current_tb = saved_tb;
973 if (env->interrupt_request && env->current_tb)
974 cpu_interrupt(env, env->interrupt_request);
975 }
9fa3e853
FB
976 }
977 tb = tb_next;
978 }
979#if !defined(CONFIG_USER_ONLY)
980 /* if no code remaining, no need to continue to use slow writes */
981 if (!p->first_tb) {
982 invalidate_page_bitmap(p);
d720b93d 983 if (is_cpu_write_access) {
2e70f6ef 984 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
985 }
986 }
987#endif
988#ifdef TARGET_HAS_PRECISE_SMC
989 if (current_tb_modified) {
990 /* we generate a block containing just the instruction
991 modifying the memory. It will ensure that it cannot modify
992 itself */
ea1c1802 993 env->current_tb = NULL;
2e70f6ef 994 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 995 cpu_resume_from_signal(env, NULL);
9fa3e853 996 }
fd6ce8f6 997#endif
9fa3e853 998}
fd6ce8f6 999
9fa3e853 1000/* len must be <= 8 and start must be a multiple of len */
00f82b8a 1001static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
9fa3e853
FB
1002{
1003 PageDesc *p;
1004 int offset, b;
59817ccb 1005#if 0
a4193c8a 1006 if (1) {
93fcfe39
AL
1007 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1008 cpu_single_env->mem_io_vaddr, len,
1009 cpu_single_env->eip,
1010 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
59817ccb
FB
1011 }
1012#endif
9fa3e853 1013 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1014 if (!p)
9fa3e853
FB
1015 return;
1016 if (p->code_bitmap) {
1017 offset = start & ~TARGET_PAGE_MASK;
1018 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1019 if (b & ((1 << len) - 1))
1020 goto do_invalidate;
1021 } else {
1022 do_invalidate:
d720b93d 1023 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1024 }
1025}
1026
9fa3e853 1027#if !defined(CONFIG_SOFTMMU)
00f82b8a 1028static void tb_invalidate_phys_page(target_phys_addr_t addr,
d720b93d 1029 unsigned long pc, void *puc)
9fa3e853 1030{
6b917547 1031 TranslationBlock *tb;
9fa3e853 1032 PageDesc *p;
6b917547 1033 int n;
d720b93d 1034#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1035 TranslationBlock *current_tb = NULL;
d720b93d 1036 CPUState *env = cpu_single_env;
6b917547
AL
1037 int current_tb_modified = 0;
1038 target_ulong current_pc = 0;
1039 target_ulong current_cs_base = 0;
1040 int current_flags = 0;
d720b93d 1041#endif
9fa3e853
FB
1042
1043 addr &= TARGET_PAGE_MASK;
1044 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1045 if (!p)
9fa3e853
FB
1046 return;
1047 tb = p->first_tb;
d720b93d
FB
1048#ifdef TARGET_HAS_PRECISE_SMC
1049 if (tb && pc != 0) {
1050 current_tb = tb_find_pc(pc);
1051 }
1052#endif
9fa3e853
FB
1053 while (tb != NULL) {
1054 n = (long)tb & 3;
1055 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1056#ifdef TARGET_HAS_PRECISE_SMC
1057 if (current_tb == tb &&
2e70f6ef 1058 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1059 /* If we are modifying the current TB, we must stop
1060 its execution. We could be more precise by checking
1061 that the modification is after the current PC, but it
1062 would require a specialized function to partially
1063 restore the CPU state */
3b46e624 1064
d720b93d
FB
1065 current_tb_modified = 1;
1066 cpu_restore_state(current_tb, env, pc, puc);
6b917547
AL
1067 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1068 &current_flags);
d720b93d
FB
1069 }
1070#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1071 tb_phys_invalidate(tb, addr);
1072 tb = tb->page_next[n];
1073 }
fd6ce8f6 1074 p->first_tb = NULL;
d720b93d
FB
1075#ifdef TARGET_HAS_PRECISE_SMC
1076 if (current_tb_modified) {
1077 /* we generate a block containing just the instruction
1078 modifying the memory. It will ensure that it cannot modify
1079 itself */
ea1c1802 1080 env->current_tb = NULL;
2e70f6ef 1081 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1082 cpu_resume_from_signal(env, puc);
1083 }
1084#endif
fd6ce8f6 1085}
9fa3e853 1086#endif
fd6ce8f6
FB
1087
1088/* add the tb in the target page and protect it if necessary */
5fafdf24 1089static inline void tb_alloc_page(TranslationBlock *tb,
53a5960a 1090 unsigned int n, target_ulong page_addr)
fd6ce8f6
FB
1091{
1092 PageDesc *p;
9fa3e853
FB
1093 TranslationBlock *last_first_tb;
1094
1095 tb->page_addr[n] = page_addr;
3a7d929e 1096 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
9fa3e853
FB
1097 tb->page_next[n] = p->first_tb;
1098 last_first_tb = p->first_tb;
1099 p->first_tb = (TranslationBlock *)((long)tb | n);
1100 invalidate_page_bitmap(p);
fd6ce8f6 1101
107db443 1102#if defined(TARGET_HAS_SMC) || 1
d720b93d 1103
9fa3e853 1104#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1105 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1106 target_ulong addr;
1107 PageDesc *p2;
9fa3e853
FB
1108 int prot;
1109
fd6ce8f6
FB
1110 /* force the host page as non writable (writes will have a
1111 page fault + mprotect overhead) */
53a5960a 1112 page_addr &= qemu_host_page_mask;
fd6ce8f6 1113 prot = 0;
53a5960a
PB
1114 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1115 addr += TARGET_PAGE_SIZE) {
1116
1117 p2 = page_find (addr >> TARGET_PAGE_BITS);
1118 if (!p2)
1119 continue;
1120 prot |= p2->flags;
1121 p2->flags &= ~PAGE_WRITE;
1122 page_get_flags(addr);
1123 }
5fafdf24 1124 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1125 (prot & PAGE_BITS) & ~PAGE_WRITE);
1126#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1127 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1128 page_addr);
fd6ce8f6 1129#endif
fd6ce8f6 1130 }
9fa3e853
FB
1131#else
1132 /* if some code is already present, then the pages are already
1133 protected. So we handle the case where only the first TB is
1134 allocated in a physical page */
1135 if (!last_first_tb) {
6a00d601 1136 tlb_protect_code(page_addr);
9fa3e853
FB
1137 }
1138#endif
d720b93d
FB
1139
1140#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1141}
1142
1143/* Allocate a new translation block. Flush the translation buffer if
1144 too many translation blocks or too much generated code. */
c27004ec 1145TranslationBlock *tb_alloc(target_ulong pc)
fd6ce8f6
FB
1146{
1147 TranslationBlock *tb;
fd6ce8f6 1148
26a5f13b
FB
1149 if (nb_tbs >= code_gen_max_blocks ||
1150 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
d4e8164f 1151 return NULL;
fd6ce8f6
FB
1152 tb = &tbs[nb_tbs++];
1153 tb->pc = pc;
b448f2f3 1154 tb->cflags = 0;
d4e8164f
FB
1155 return tb;
1156}
1157
2e70f6ef
PB
1158void tb_free(TranslationBlock *tb)
1159{
bf20dc07 1160 /* In practice this is mostly used for single use temporary TB
2e70f6ef
PB
1161 Ignore the hard cases and just back up if this TB happens to
1162 be the last one generated. */
1163 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1164 code_gen_ptr = tb->tc_ptr;
1165 nb_tbs--;
1166 }
1167}
1168
9fa3e853
FB
1169/* add a new TB and link it to the physical page tables. phys_page2 is
1170 (-1) to indicate that only one page contains the TB. */
5fafdf24 1171void tb_link_phys(TranslationBlock *tb,
9fa3e853 1172 target_ulong phys_pc, target_ulong phys_page2)
d4e8164f 1173{
9fa3e853
FB
1174 unsigned int h;
1175 TranslationBlock **ptb;
1176
c8a706fe
PB
1177 /* Grab the mmap lock to stop another thread invalidating this TB
1178 before we are done. */
1179 mmap_lock();
9fa3e853
FB
1180 /* add in the physical hash table */
1181 h = tb_phys_hash_func(phys_pc);
1182 ptb = &tb_phys_hash[h];
1183 tb->phys_hash_next = *ptb;
1184 *ptb = tb;
fd6ce8f6
FB
1185
1186 /* add in the page list */
9fa3e853
FB
1187 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1188 if (phys_page2 != -1)
1189 tb_alloc_page(tb, 1, phys_page2);
1190 else
1191 tb->page_addr[1] = -1;
9fa3e853 1192
d4e8164f
FB
1193 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1194 tb->jmp_next[0] = NULL;
1195 tb->jmp_next[1] = NULL;
1196
1197 /* init original jump addresses */
1198 if (tb->tb_next_offset[0] != 0xffff)
1199 tb_reset_jump(tb, 0);
1200 if (tb->tb_next_offset[1] != 0xffff)
1201 tb_reset_jump(tb, 1);
8a40a180
FB
1202
1203#ifdef DEBUG_TB_CHECK
1204 tb_page_check();
1205#endif
c8a706fe 1206 mmap_unlock();
fd6ce8f6
FB
1207}
1208
9fa3e853
FB
1209/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1210 tb[1].tc_ptr. Return NULL if not found */
1211TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1212{
9fa3e853
FB
1213 int m_min, m_max, m;
1214 unsigned long v;
1215 TranslationBlock *tb;
a513fe19
FB
1216
1217 if (nb_tbs <= 0)
1218 return NULL;
1219 if (tc_ptr < (unsigned long)code_gen_buffer ||
1220 tc_ptr >= (unsigned long)code_gen_ptr)
1221 return NULL;
1222 /* binary search (cf Knuth) */
1223 m_min = 0;
1224 m_max = nb_tbs - 1;
1225 while (m_min <= m_max) {
1226 m = (m_min + m_max) >> 1;
1227 tb = &tbs[m];
1228 v = (unsigned long)tb->tc_ptr;
1229 if (v == tc_ptr)
1230 return tb;
1231 else if (tc_ptr < v) {
1232 m_max = m - 1;
1233 } else {
1234 m_min = m + 1;
1235 }
5fafdf24 1236 }
a513fe19
FB
1237 return &tbs[m_max];
1238}
7501267e 1239
ea041c0e
FB
1240static void tb_reset_jump_recursive(TranslationBlock *tb);
1241
1242static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1243{
1244 TranslationBlock *tb1, *tb_next, **ptb;
1245 unsigned int n1;
1246
1247 tb1 = tb->jmp_next[n];
1248 if (tb1 != NULL) {
1249 /* find head of list */
1250 for(;;) {
1251 n1 = (long)tb1 & 3;
1252 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1253 if (n1 == 2)
1254 break;
1255 tb1 = tb1->jmp_next[n1];
1256 }
1257 /* we are now sure now that tb jumps to tb1 */
1258 tb_next = tb1;
1259
1260 /* remove tb from the jmp_first list */
1261 ptb = &tb_next->jmp_first;
1262 for(;;) {
1263 tb1 = *ptb;
1264 n1 = (long)tb1 & 3;
1265 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1266 if (n1 == n && tb1 == tb)
1267 break;
1268 ptb = &tb1->jmp_next[n1];
1269 }
1270 *ptb = tb->jmp_next[n];
1271 tb->jmp_next[n] = NULL;
3b46e624 1272
ea041c0e
FB
1273 /* suppress the jump to next tb in generated code */
1274 tb_reset_jump(tb, n);
1275
0124311e 1276 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1277 tb_reset_jump_recursive(tb_next);
1278 }
1279}
1280
1281static void tb_reset_jump_recursive(TranslationBlock *tb)
1282{
1283 tb_reset_jump_recursive2(tb, 0);
1284 tb_reset_jump_recursive2(tb, 1);
1285}
1286
1fddef4b 1287#if defined(TARGET_HAS_ICE)
d720b93d
FB
1288static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1289{
9b3c35e0
JM
1290 target_phys_addr_t addr;
1291 target_ulong pd;
c2f07f81
PB
1292 ram_addr_t ram_addr;
1293 PhysPageDesc *p;
d720b93d 1294
c2f07f81
PB
1295 addr = cpu_get_phys_page_debug(env, pc);
1296 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1297 if (!p) {
1298 pd = IO_MEM_UNASSIGNED;
1299 } else {
1300 pd = p->phys_offset;
1301 }
1302 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1303 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1304}
c27004ec 1305#endif
d720b93d 1306
6658ffb8 1307/* Add a watchpoint. */
a1d1bb31
AL
1308int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1309 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1310{
b4051334 1311 target_ulong len_mask = ~(len - 1);
c0ce998e 1312 CPUWatchpoint *wp;
6658ffb8 1313
b4051334
AL
1314 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1315 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1316 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1317 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1318 return -EINVAL;
1319 }
a1d1bb31
AL
1320 wp = qemu_malloc(sizeof(*wp));
1321 if (!wp)
426cd5d6 1322 return -ENOMEM;
a1d1bb31
AL
1323
1324 wp->vaddr = addr;
b4051334 1325 wp->len_mask = len_mask;
a1d1bb31
AL
1326 wp->flags = flags;
1327
2dc9f411 1328 /* keep all GDB-injected watchpoints in front */
c0ce998e
AL
1329 if (flags & BP_GDB)
1330 TAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1331 else
1332 TAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 1333
6658ffb8 1334 tlb_flush_page(env, addr);
a1d1bb31
AL
1335
1336 if (watchpoint)
1337 *watchpoint = wp;
1338 return 0;
6658ffb8
PB
1339}
1340
a1d1bb31
AL
1341/* Remove a specific watchpoint. */
1342int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1343 int flags)
6658ffb8 1344{
b4051334 1345 target_ulong len_mask = ~(len - 1);
a1d1bb31 1346 CPUWatchpoint *wp;
6658ffb8 1347
c0ce998e 1348 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 1349 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1350 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1351 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1352 return 0;
1353 }
1354 }
a1d1bb31 1355 return -ENOENT;
6658ffb8
PB
1356}
1357
a1d1bb31
AL
1358/* Remove a specific watchpoint by reference. */
1359void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1360{
c0ce998e 1361 TAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 1362
a1d1bb31
AL
1363 tlb_flush_page(env, watchpoint->vaddr);
1364
1365 qemu_free(watchpoint);
1366}
1367
1368/* Remove all matching watchpoints. */
1369void cpu_watchpoint_remove_all(CPUState *env, int mask)
1370{
c0ce998e 1371 CPUWatchpoint *wp, *next;
a1d1bb31 1372
c0ce998e 1373 TAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
1374 if (wp->flags & mask)
1375 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 1376 }
7d03f82f
EI
1377}
1378
a1d1bb31
AL
1379/* Add a breakpoint. */
1380int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1381 CPUBreakpoint **breakpoint)
4c3a88a2 1382{
1fddef4b 1383#if defined(TARGET_HAS_ICE)
c0ce998e 1384 CPUBreakpoint *bp;
3b46e624 1385
a1d1bb31
AL
1386 bp = qemu_malloc(sizeof(*bp));
1387 if (!bp)
426cd5d6 1388 return -ENOMEM;
4c3a88a2 1389
a1d1bb31
AL
1390 bp->pc = pc;
1391 bp->flags = flags;
1392
2dc9f411 1393 /* keep all GDB-injected breakpoints in front */
c0ce998e
AL
1394 if (flags & BP_GDB)
1395 TAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1396 else
1397 TAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 1398
d720b93d 1399 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1400
1401 if (breakpoint)
1402 *breakpoint = bp;
4c3a88a2
FB
1403 return 0;
1404#else
a1d1bb31 1405 return -ENOSYS;
4c3a88a2
FB
1406#endif
1407}
1408
a1d1bb31
AL
1409/* Remove a specific breakpoint. */
1410int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1411{
7d03f82f 1412#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1413 CPUBreakpoint *bp;
1414
c0ce998e 1415 TAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
1416 if (bp->pc == pc && bp->flags == flags) {
1417 cpu_breakpoint_remove_by_ref(env, bp);
1418 return 0;
1419 }
7d03f82f 1420 }
a1d1bb31
AL
1421 return -ENOENT;
1422#else
1423 return -ENOSYS;
7d03f82f
EI
1424#endif
1425}
1426
a1d1bb31
AL
1427/* Remove a specific breakpoint by reference. */
1428void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1429{
1fddef4b 1430#if defined(TARGET_HAS_ICE)
c0ce998e 1431 TAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 1432
a1d1bb31
AL
1433 breakpoint_invalidate(env, breakpoint->pc);
1434
1435 qemu_free(breakpoint);
1436#endif
1437}
1438
1439/* Remove all matching breakpoints. */
1440void cpu_breakpoint_remove_all(CPUState *env, int mask)
1441{
1442#if defined(TARGET_HAS_ICE)
c0ce998e 1443 CPUBreakpoint *bp, *next;
a1d1bb31 1444
c0ce998e 1445 TAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
1446 if (bp->flags & mask)
1447 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 1448 }
4c3a88a2
FB
1449#endif
1450}
1451
c33a346e
FB
1452/* enable or disable single step mode. EXCP_DEBUG is returned by the
1453 CPU loop after each instruction */
1454void cpu_single_step(CPUState *env, int enabled)
1455{
1fddef4b 1456#if defined(TARGET_HAS_ICE)
c33a346e
FB
1457 if (env->singlestep_enabled != enabled) {
1458 env->singlestep_enabled = enabled;
1459 /* must flush all the translated code to avoid inconsistancies */
9fa3e853 1460 /* XXX: only flush what is necessary */
0124311e 1461 tb_flush(env);
c33a346e
FB
1462 }
1463#endif
1464}
1465
34865134
FB
1466/* enable or disable low levels log */
1467void cpu_set_log(int log_flags)
1468{
1469 loglevel = log_flags;
1470 if (loglevel && !logfile) {
11fcfab4 1471 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1472 if (!logfile) {
1473 perror(logfilename);
1474 _exit(1);
1475 }
9fa3e853
FB
1476#if !defined(CONFIG_SOFTMMU)
1477 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1478 {
b55266b5 1479 static char logfile_buf[4096];
9fa3e853
FB
1480 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1481 }
1482#else
34865134 1483 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1484#endif
e735b91c
PB
1485 log_append = 1;
1486 }
1487 if (!loglevel && logfile) {
1488 fclose(logfile);
1489 logfile = NULL;
34865134
FB
1490 }
1491}
1492
1493void cpu_set_log_filename(const char *filename)
1494{
1495 logfilename = strdup(filename);
e735b91c
PB
1496 if (logfile) {
1497 fclose(logfile);
1498 logfile = NULL;
1499 }
1500 cpu_set_log(loglevel);
34865134 1501}
c33a346e 1502
0124311e 1503/* mask must never be zero, except for A20 change call */
68a79315 1504void cpu_interrupt(CPUState *env, int mask)
ea041c0e 1505{
d5975363 1506#if !defined(USE_NPTL)
ea041c0e 1507 TranslationBlock *tb;
15a51156 1508 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
d5975363 1509#endif
2e70f6ef 1510 int old_mask;
59817ccb 1511
2e70f6ef 1512 old_mask = env->interrupt_request;
d5975363 1513 /* FIXME: This is probably not threadsafe. A different thread could
bf20dc07 1514 be in the middle of a read-modify-write operation. */
68a79315 1515 env->interrupt_request |= mask;
d5975363
PB
1516#if defined(USE_NPTL)
1517 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1518 problem and hope the cpu will stop of its own accord. For userspace
1519 emulation this often isn't actually as bad as it sounds. Often
1520 signals are used primarily to interrupt blocking syscalls. */
1521#else
2e70f6ef 1522 if (use_icount) {
266910c4 1523 env->icount_decr.u16.high = 0xffff;
2e70f6ef
PB
1524#ifndef CONFIG_USER_ONLY
1525 /* CPU_INTERRUPT_EXIT isn't a real interrupt. It just means
1526 an async event happened and we need to process it. */
1527 if (!can_do_io(env)
1528 && (mask & ~(old_mask | CPU_INTERRUPT_EXIT)) != 0) {
1529 cpu_abort(env, "Raised interrupt while not in I/O function");
1530 }
1531#endif
1532 } else {
1533 tb = env->current_tb;
1534 /* if the cpu is currently executing code, we must unlink it and
1535 all the potentially executing TB */
1536 if (tb && !testandset(&interrupt_lock)) {
1537 env->current_tb = NULL;
1538 tb_reset_jump_recursive(tb);
1539 resetlock(&interrupt_lock);
1540 }
ea041c0e 1541 }
d5975363 1542#endif
ea041c0e
FB
1543}
1544
b54ad049
FB
1545void cpu_reset_interrupt(CPUState *env, int mask)
1546{
1547 env->interrupt_request &= ~mask;
1548}
1549
c7cd6a37 1550const CPULogItem cpu_log_items[] = {
5fafdf24 1551 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1552 "show generated host assembly code for each compiled TB" },
1553 { CPU_LOG_TB_IN_ASM, "in_asm",
1554 "show target assembly code for each compiled TB" },
5fafdf24 1555 { CPU_LOG_TB_OP, "op",
57fec1fe 1556 "show micro ops for each compiled TB" },
f193c797 1557 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1558 "show micro ops "
1559#ifdef TARGET_I386
1560 "before eflags optimization and "
f193c797 1561#endif
e01a1157 1562 "after liveness analysis" },
f193c797
FB
1563 { CPU_LOG_INT, "int",
1564 "show interrupts/exceptions in short format" },
1565 { CPU_LOG_EXEC, "exec",
1566 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1567 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1568 "show CPU state before block translation" },
f193c797
FB
1569#ifdef TARGET_I386
1570 { CPU_LOG_PCALL, "pcall",
1571 "show protected mode far calls/returns/exceptions" },
1572#endif
8e3a9fd2 1573#ifdef DEBUG_IOPORT
fd872598
FB
1574 { CPU_LOG_IOPORT, "ioport",
1575 "show all i/o ports accesses" },
8e3a9fd2 1576#endif
f193c797
FB
1577 { 0, NULL, NULL },
1578};
1579
1580static int cmp1(const char *s1, int n, const char *s2)
1581{
1582 if (strlen(s2) != n)
1583 return 0;
1584 return memcmp(s1, s2, n) == 0;
1585}
3b46e624 1586
f193c797
FB
1587/* takes a comma separated list of log masks. Return 0 if error. */
1588int cpu_str_to_log_mask(const char *str)
1589{
c7cd6a37 1590 const CPULogItem *item;
f193c797
FB
1591 int mask;
1592 const char *p, *p1;
1593
1594 p = str;
1595 mask = 0;
1596 for(;;) {
1597 p1 = strchr(p, ',');
1598 if (!p1)
1599 p1 = p + strlen(p);
8e3a9fd2
FB
1600 if(cmp1(p,p1-p,"all")) {
1601 for(item = cpu_log_items; item->mask != 0; item++) {
1602 mask |= item->mask;
1603 }
1604 } else {
f193c797
FB
1605 for(item = cpu_log_items; item->mask != 0; item++) {
1606 if (cmp1(p, p1 - p, item->name))
1607 goto found;
1608 }
1609 return 0;
8e3a9fd2 1610 }
f193c797
FB
1611 found:
1612 mask |= item->mask;
1613 if (*p1 != ',')
1614 break;
1615 p = p1 + 1;
1616 }
1617 return mask;
1618}
ea041c0e 1619
7501267e
FB
1620void cpu_abort(CPUState *env, const char *fmt, ...)
1621{
1622 va_list ap;
493ae1f0 1623 va_list ap2;
7501267e
FB
1624
1625 va_start(ap, fmt);
493ae1f0 1626 va_copy(ap2, ap);
7501267e
FB
1627 fprintf(stderr, "qemu: fatal: ");
1628 vfprintf(stderr, fmt, ap);
1629 fprintf(stderr, "\n");
1630#ifdef TARGET_I386
7fe48483
FB
1631 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1632#else
1633 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1634#endif
93fcfe39
AL
1635 if (qemu_log_enabled()) {
1636 qemu_log("qemu: fatal: ");
1637 qemu_log_vprintf(fmt, ap2);
1638 qemu_log("\n");
f9373291 1639#ifdef TARGET_I386
93fcfe39 1640 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
f9373291 1641#else
93fcfe39 1642 log_cpu_state(env, 0);
f9373291 1643#endif
31b1a7b4 1644 qemu_log_flush();
93fcfe39 1645 qemu_log_close();
924edcae 1646 }
493ae1f0 1647 va_end(ap2);
f9373291 1648 va_end(ap);
7501267e
FB
1649 abort();
1650}
1651
c5be9f08
TS
1652CPUState *cpu_copy(CPUState *env)
1653{
01ba9816 1654 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1655 CPUState *next_cpu = new_env->next_cpu;
1656 int cpu_index = new_env->cpu_index;
5a38f081
AL
1657#if defined(TARGET_HAS_ICE)
1658 CPUBreakpoint *bp;
1659 CPUWatchpoint *wp;
1660#endif
1661
c5be9f08 1662 memcpy(new_env, env, sizeof(CPUState));
5a38f081
AL
1663
1664 /* Preserve chaining and index. */
c5be9f08
TS
1665 new_env->next_cpu = next_cpu;
1666 new_env->cpu_index = cpu_index;
5a38f081
AL
1667
1668 /* Clone all break/watchpoints.
1669 Note: Once we support ptrace with hw-debug register access, make sure
1670 BP_CPU break/watchpoints are handled correctly on clone. */
1671 TAILQ_INIT(&env->breakpoints);
1672 TAILQ_INIT(&env->watchpoints);
1673#if defined(TARGET_HAS_ICE)
1674 TAILQ_FOREACH(bp, &env->breakpoints, entry) {
1675 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1676 }
1677 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
1678 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1679 wp->flags, NULL);
1680 }
1681#endif
1682
c5be9f08
TS
1683 return new_env;
1684}
1685
0124311e
FB
1686#if !defined(CONFIG_USER_ONLY)
1687
5c751e99
EI
1688static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1689{
1690 unsigned int i;
1691
1692 /* Discard jump cache entries for any tb which might potentially
1693 overlap the flushed page. */
1694 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1695 memset (&env->tb_jmp_cache[i], 0,
1696 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1697
1698 i = tb_jmp_cache_hash_page(addr);
1699 memset (&env->tb_jmp_cache[i], 0,
1700 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1701}
1702
ee8b7021
FB
1703/* NOTE: if flush_global is true, also flush global entries (not
1704 implemented yet) */
1705void tlb_flush(CPUState *env, int flush_global)
33417e70 1706{
33417e70 1707 int i;
0124311e 1708
9fa3e853
FB
1709#if defined(DEBUG_TLB)
1710 printf("tlb_flush:\n");
1711#endif
0124311e
FB
1712 /* must reset current TB so that interrupts cannot modify the
1713 links while we are modifying them */
1714 env->current_tb = NULL;
1715
33417e70 1716 for(i = 0; i < CPU_TLB_SIZE; i++) {
84b7b8e7
FB
1717 env->tlb_table[0][i].addr_read = -1;
1718 env->tlb_table[0][i].addr_write = -1;
1719 env->tlb_table[0][i].addr_code = -1;
1720 env->tlb_table[1][i].addr_read = -1;
1721 env->tlb_table[1][i].addr_write = -1;
1722 env->tlb_table[1][i].addr_code = -1;
6fa4cea9
JM
1723#if (NB_MMU_MODES >= 3)
1724 env->tlb_table[2][i].addr_read = -1;
1725 env->tlb_table[2][i].addr_write = -1;
1726 env->tlb_table[2][i].addr_code = -1;
1727#if (NB_MMU_MODES == 4)
1728 env->tlb_table[3][i].addr_read = -1;
1729 env->tlb_table[3][i].addr_write = -1;
1730 env->tlb_table[3][i].addr_code = -1;
1731#endif
1732#endif
33417e70 1733 }
9fa3e853 1734
8a40a180 1735 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 1736
0a962c02
FB
1737#ifdef USE_KQEMU
1738 if (env->kqemu_enabled) {
1739 kqemu_flush(env, flush_global);
1740 }
9fa3e853 1741#endif
e3db7226 1742 tlb_flush_count++;
33417e70
FB
1743}
1744
274da6b2 1745static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1746{
5fafdf24 1747 if (addr == (tlb_entry->addr_read &
84b7b8e7 1748 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1749 addr == (tlb_entry->addr_write &
84b7b8e7 1750 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1751 addr == (tlb_entry->addr_code &
84b7b8e7
FB
1752 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1753 tlb_entry->addr_read = -1;
1754 tlb_entry->addr_write = -1;
1755 tlb_entry->addr_code = -1;
1756 }
61382a50
FB
1757}
1758
2e12669a 1759void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 1760{
8a40a180 1761 int i;
0124311e 1762
9fa3e853 1763#if defined(DEBUG_TLB)
108c49b8 1764 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 1765#endif
0124311e
FB
1766 /* must reset current TB so that interrupts cannot modify the
1767 links while we are modifying them */
1768 env->current_tb = NULL;
61382a50
FB
1769
1770 addr &= TARGET_PAGE_MASK;
1771 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
84b7b8e7
FB
1772 tlb_flush_entry(&env->tlb_table[0][i], addr);
1773 tlb_flush_entry(&env->tlb_table[1][i], addr);
6fa4cea9
JM
1774#if (NB_MMU_MODES >= 3)
1775 tlb_flush_entry(&env->tlb_table[2][i], addr);
1776#if (NB_MMU_MODES == 4)
1777 tlb_flush_entry(&env->tlb_table[3][i], addr);
1778#endif
1779#endif
0124311e 1780
5c751e99 1781 tlb_flush_jmp_cache(env, addr);
9fa3e853 1782
0a962c02
FB
1783#ifdef USE_KQEMU
1784 if (env->kqemu_enabled) {
1785 kqemu_flush_page(env, addr);
1786 }
1787#endif
9fa3e853
FB
1788}
1789
9fa3e853
FB
1790/* update the TLBs so that writes to code in the virtual page 'addr'
1791 can be detected */
6a00d601 1792static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 1793{
5fafdf24 1794 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
1795 ram_addr + TARGET_PAGE_SIZE,
1796 CODE_DIRTY_FLAG);
9fa3e853
FB
1797}
1798
9fa3e853 1799/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 1800 tested for self modifying code */
5fafdf24 1801static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 1802 target_ulong vaddr)
9fa3e853 1803{
3a7d929e 1804 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1ccde1cb
FB
1805}
1806
5fafdf24 1807static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
1808 unsigned long start, unsigned long length)
1809{
1810 unsigned long addr;
84b7b8e7
FB
1811 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1812 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 1813 if ((addr - start) < length) {
0f459d16 1814 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
1815 }
1816 }
1817}
1818
3a7d929e 1819void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 1820 int dirty_flags)
1ccde1cb
FB
1821{
1822 CPUState *env;
4f2ac237 1823 unsigned long length, start1;
0a962c02
FB
1824 int i, mask, len;
1825 uint8_t *p;
1ccde1cb
FB
1826
1827 start &= TARGET_PAGE_MASK;
1828 end = TARGET_PAGE_ALIGN(end);
1829
1830 length = end - start;
1831 if (length == 0)
1832 return;
0a962c02 1833 len = length >> TARGET_PAGE_BITS;
3a7d929e 1834#ifdef USE_KQEMU
6a00d601
FB
1835 /* XXX: should not depend on cpu context */
1836 env = first_cpu;
3a7d929e 1837 if (env->kqemu_enabled) {
f23db169
FB
1838 ram_addr_t addr;
1839 addr = start;
1840 for(i = 0; i < len; i++) {
1841 kqemu_set_notdirty(env, addr);
1842 addr += TARGET_PAGE_SIZE;
1843 }
3a7d929e
FB
1844 }
1845#endif
f23db169
FB
1846 mask = ~dirty_flags;
1847 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1848 for(i = 0; i < len; i++)
1849 p[i] &= mask;
1850
1ccde1cb
FB
1851 /* we modify the TLB cache so that the dirty bit will be set again
1852 when accessing the range */
59817ccb 1853 start1 = start + (unsigned long)phys_ram_base;
6a00d601
FB
1854 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1855 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1856 tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length);
6a00d601 1857 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1858 tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length);
6fa4cea9
JM
1859#if (NB_MMU_MODES >= 3)
1860 for(i = 0; i < CPU_TLB_SIZE; i++)
1861 tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length);
1862#if (NB_MMU_MODES == 4)
1863 for(i = 0; i < CPU_TLB_SIZE; i++)
1864 tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length);
1865#endif
1866#endif
6a00d601 1867 }
1ccde1cb
FB
1868}
1869
74576198
AL
1870int cpu_physical_memory_set_dirty_tracking(int enable)
1871{
1872 in_migration = enable;
1873 return 0;
1874}
1875
1876int cpu_physical_memory_get_dirty_tracking(void)
1877{
1878 return in_migration;
1879}
1880
2bec46dc
AL
1881void cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, target_phys_addr_t end_addr)
1882{
1883 if (kvm_enabled())
1884 kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
1885}
1886
3a7d929e
FB
1887static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1888{
1889 ram_addr_t ram_addr;
1890
84b7b8e7 1891 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5fafdf24 1892 ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) +
3a7d929e
FB
1893 tlb_entry->addend - (unsigned long)phys_ram_base;
1894 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 1895 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
1896 }
1897 }
1898}
1899
1900/* update the TLB according to the current state of the dirty bits */
1901void cpu_tlb_update_dirty(CPUState *env)
1902{
1903 int i;
1904 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1905 tlb_update_dirty(&env->tlb_table[0][i]);
3a7d929e 1906 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1907 tlb_update_dirty(&env->tlb_table[1][i]);
6fa4cea9
JM
1908#if (NB_MMU_MODES >= 3)
1909 for(i = 0; i < CPU_TLB_SIZE; i++)
1910 tlb_update_dirty(&env->tlb_table[2][i]);
1911#if (NB_MMU_MODES == 4)
1912 for(i = 0; i < CPU_TLB_SIZE; i++)
1913 tlb_update_dirty(&env->tlb_table[3][i]);
1914#endif
1915#endif
3a7d929e
FB
1916}
1917
0f459d16 1918static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 1919{
0f459d16
PB
1920 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
1921 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
1922}
1923
0f459d16
PB
1924/* update the TLB corresponding to virtual page vaddr
1925 so that it is no longer dirty */
1926static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 1927{
1ccde1cb
FB
1928 int i;
1929
0f459d16 1930 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 1931 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
0f459d16
PB
1932 tlb_set_dirty1(&env->tlb_table[0][i], vaddr);
1933 tlb_set_dirty1(&env->tlb_table[1][i], vaddr);
6fa4cea9 1934#if (NB_MMU_MODES >= 3)
0f459d16 1935 tlb_set_dirty1(&env->tlb_table[2][i], vaddr);
6fa4cea9 1936#if (NB_MMU_MODES == 4)
0f459d16 1937 tlb_set_dirty1(&env->tlb_table[3][i], vaddr);
6fa4cea9
JM
1938#endif
1939#endif
9fa3e853
FB
1940}
1941
59817ccb
FB
1942/* add a new TLB entry. At most one entry for a given virtual address
1943 is permitted. Return 0 if OK or 2 if the page could not be mapped
1944 (can only happen in non SOFTMMU mode for I/O pages or pages
1945 conflicting with the host address space). */
5fafdf24
TS
1946int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1947 target_phys_addr_t paddr, int prot,
6ebbf390 1948 int mmu_idx, int is_softmmu)
9fa3e853 1949{
92e873b9 1950 PhysPageDesc *p;
4f2ac237 1951 unsigned long pd;
9fa3e853 1952 unsigned int index;
4f2ac237 1953 target_ulong address;
0f459d16 1954 target_ulong code_address;
108c49b8 1955 target_phys_addr_t addend;
9fa3e853 1956 int ret;
84b7b8e7 1957 CPUTLBEntry *te;
a1d1bb31 1958 CPUWatchpoint *wp;
0f459d16 1959 target_phys_addr_t iotlb;
9fa3e853 1960
92e873b9 1961 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
1962 if (!p) {
1963 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
1964 } else {
1965 pd = p->phys_offset;
9fa3e853
FB
1966 }
1967#if defined(DEBUG_TLB)
6ebbf390
JM
1968 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1969 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
9fa3e853
FB
1970#endif
1971
1972 ret = 0;
0f459d16
PB
1973 address = vaddr;
1974 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
1975 /* IO memory case (romd handled later) */
1976 address |= TLB_MMIO;
1977 }
1978 addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK);
1979 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
1980 /* Normal RAM. */
1981 iotlb = pd & TARGET_PAGE_MASK;
1982 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
1983 iotlb |= IO_MEM_NOTDIRTY;
1984 else
1985 iotlb |= IO_MEM_ROM;
1986 } else {
1987 /* IO handlers are currently passed a phsical address.
1988 It would be nice to pass an offset from the base address
1989 of that region. This would avoid having to special case RAM,
1990 and avoid full address decoding in every device.
1991 We can't use the high bits of pd for this because
1992 IO_MEM_ROMD uses these as a ram address. */
8da3ff18
PB
1993 iotlb = (pd & ~TARGET_PAGE_MASK);
1994 if (p) {
8da3ff18
PB
1995 iotlb += p->region_offset;
1996 } else {
1997 iotlb += paddr;
1998 }
0f459d16
PB
1999 }
2000
2001 code_address = address;
2002 /* Make accesses to pages with watchpoints go via the
2003 watchpoint trap routines. */
c0ce998e 2004 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
a1d1bb31 2005 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
0f459d16
PB
2006 iotlb = io_mem_watch + paddr;
2007 /* TODO: The memory case can be optimized by not trapping
2008 reads of pages with a write breakpoint. */
2009 address |= TLB_MMIO;
6658ffb8 2010 }
0f459d16 2011 }
d79acba4 2012
0f459d16
PB
2013 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2014 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2015 te = &env->tlb_table[mmu_idx][index];
2016 te->addend = addend - vaddr;
2017 if (prot & PAGE_READ) {
2018 te->addr_read = address;
2019 } else {
2020 te->addr_read = -1;
2021 }
5c751e99 2022
0f459d16
PB
2023 if (prot & PAGE_EXEC) {
2024 te->addr_code = code_address;
2025 } else {
2026 te->addr_code = -1;
2027 }
2028 if (prot & PAGE_WRITE) {
2029 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2030 (pd & IO_MEM_ROMD)) {
2031 /* Write access calls the I/O callback. */
2032 te->addr_write = address | TLB_MMIO;
2033 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2034 !cpu_physical_memory_is_dirty(pd)) {
2035 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 2036 } else {
0f459d16 2037 te->addr_write = address;
9fa3e853 2038 }
0f459d16
PB
2039 } else {
2040 te->addr_write = -1;
9fa3e853 2041 }
9fa3e853
FB
2042 return ret;
2043}
2044
0124311e
FB
2045#else
2046
ee8b7021 2047void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
2048{
2049}
2050
2e12669a 2051void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
2052{
2053}
2054
5fafdf24
TS
2055int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2056 target_phys_addr_t paddr, int prot,
6ebbf390 2057 int mmu_idx, int is_softmmu)
9fa3e853
FB
2058{
2059 return 0;
2060}
0124311e 2061
9fa3e853
FB
2062/* dump memory mappings */
2063void page_dump(FILE *f)
33417e70 2064{
9fa3e853
FB
2065 unsigned long start, end;
2066 int i, j, prot, prot1;
2067 PageDesc *p;
33417e70 2068
9fa3e853
FB
2069 fprintf(f, "%-8s %-8s %-8s %s\n",
2070 "start", "end", "size", "prot");
2071 start = -1;
2072 end = -1;
2073 prot = 0;
2074 for(i = 0; i <= L1_SIZE; i++) {
2075 if (i < L1_SIZE)
2076 p = l1_map[i];
2077 else
2078 p = NULL;
2079 for(j = 0;j < L2_SIZE; j++) {
2080 if (!p)
2081 prot1 = 0;
2082 else
2083 prot1 = p[j].flags;
2084 if (prot1 != prot) {
2085 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2086 if (start != -1) {
2087 fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
5fafdf24 2088 start, end, end - start,
9fa3e853
FB
2089 prot & PAGE_READ ? 'r' : '-',
2090 prot & PAGE_WRITE ? 'w' : '-',
2091 prot & PAGE_EXEC ? 'x' : '-');
2092 }
2093 if (prot1 != 0)
2094 start = end;
2095 else
2096 start = -1;
2097 prot = prot1;
2098 }
2099 if (!p)
2100 break;
2101 }
33417e70 2102 }
33417e70
FB
2103}
2104
53a5960a 2105int page_get_flags(target_ulong address)
33417e70 2106{
9fa3e853
FB
2107 PageDesc *p;
2108
2109 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2110 if (!p)
9fa3e853
FB
2111 return 0;
2112 return p->flags;
2113}
2114
2115/* modify the flags of a page and invalidate the code if
2116 necessary. The flag PAGE_WRITE_ORG is positionned automatically
2117 depending on PAGE_WRITE */
53a5960a 2118void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853
FB
2119{
2120 PageDesc *p;
53a5960a 2121 target_ulong addr;
9fa3e853 2122
c8a706fe 2123 /* mmap_lock should already be held. */
9fa3e853
FB
2124 start = start & TARGET_PAGE_MASK;
2125 end = TARGET_PAGE_ALIGN(end);
2126 if (flags & PAGE_WRITE)
2127 flags |= PAGE_WRITE_ORG;
9fa3e853
FB
2128 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2129 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
17e2377a
PB
2130 /* We may be called for host regions that are outside guest
2131 address space. */
2132 if (!p)
2133 return;
9fa3e853
FB
2134 /* if the write protection is set, then we invalidate the code
2135 inside */
5fafdf24 2136 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2137 (flags & PAGE_WRITE) &&
2138 p->first_tb) {
d720b93d 2139 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2140 }
2141 p->flags = flags;
2142 }
33417e70
FB
2143}
2144
3d97b40b
TS
2145int page_check_range(target_ulong start, target_ulong len, int flags)
2146{
2147 PageDesc *p;
2148 target_ulong end;
2149 target_ulong addr;
2150
55f280c9
AZ
2151 if (start + len < start)
2152 /* we've wrapped around */
2153 return -1;
2154
3d97b40b
TS
2155 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2156 start = start & TARGET_PAGE_MASK;
2157
3d97b40b
TS
2158 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2159 p = page_find(addr >> TARGET_PAGE_BITS);
2160 if( !p )
2161 return -1;
2162 if( !(p->flags & PAGE_VALID) )
2163 return -1;
2164
dae3270c 2165 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2166 return -1;
dae3270c
FB
2167 if (flags & PAGE_WRITE) {
2168 if (!(p->flags & PAGE_WRITE_ORG))
2169 return -1;
2170 /* unprotect the page if it was put read-only because it
2171 contains translated code */
2172 if (!(p->flags & PAGE_WRITE)) {
2173 if (!page_unprotect(addr, 0, NULL))
2174 return -1;
2175 }
2176 return 0;
2177 }
3d97b40b
TS
2178 }
2179 return 0;
2180}
2181
9fa3e853
FB
2182/* called from signal handler: invalidate the code and unprotect the
2183 page. Return TRUE if the fault was succesfully handled. */
53a5960a 2184int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853
FB
2185{
2186 unsigned int page_index, prot, pindex;
2187 PageDesc *p, *p1;
53a5960a 2188 target_ulong host_start, host_end, addr;
9fa3e853 2189
c8a706fe
PB
2190 /* Technically this isn't safe inside a signal handler. However we
2191 know this only ever happens in a synchronous SEGV handler, so in
2192 practice it seems to be ok. */
2193 mmap_lock();
2194
83fb7adf 2195 host_start = address & qemu_host_page_mask;
9fa3e853
FB
2196 page_index = host_start >> TARGET_PAGE_BITS;
2197 p1 = page_find(page_index);
c8a706fe
PB
2198 if (!p1) {
2199 mmap_unlock();
9fa3e853 2200 return 0;
c8a706fe 2201 }
83fb7adf 2202 host_end = host_start + qemu_host_page_size;
9fa3e853
FB
2203 p = p1;
2204 prot = 0;
2205 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2206 prot |= p->flags;
2207 p++;
2208 }
2209 /* if the page was really writable, then we change its
2210 protection back to writable */
2211 if (prot & PAGE_WRITE_ORG) {
2212 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2213 if (!(p1[pindex].flags & PAGE_WRITE)) {
5fafdf24 2214 mprotect((void *)g2h(host_start), qemu_host_page_size,
9fa3e853
FB
2215 (prot & PAGE_BITS) | PAGE_WRITE);
2216 p1[pindex].flags |= PAGE_WRITE;
2217 /* and since the content will be modified, we must invalidate
2218 the corresponding translated code. */
d720b93d 2219 tb_invalidate_phys_page(address, pc, puc);
9fa3e853
FB
2220#ifdef DEBUG_TB_CHECK
2221 tb_invalidate_check(address);
2222#endif
c8a706fe 2223 mmap_unlock();
9fa3e853
FB
2224 return 1;
2225 }
2226 }
c8a706fe 2227 mmap_unlock();
9fa3e853
FB
2228 return 0;
2229}
2230
6a00d601
FB
2231static inline void tlb_set_dirty(CPUState *env,
2232 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2233{
2234}
9fa3e853
FB
2235#endif /* defined(CONFIG_USER_ONLY) */
2236
e2eef170 2237#if !defined(CONFIG_USER_ONLY)
8da3ff18 2238
db7b5426 2239static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
8da3ff18 2240 ram_addr_t memory, ram_addr_t region_offset);
00f82b8a 2241static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
8da3ff18 2242 ram_addr_t orig_memory, ram_addr_t region_offset);
db7b5426
BS
2243#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2244 need_subpage) \
2245 do { \
2246 if (addr > start_addr) \
2247 start_addr2 = 0; \
2248 else { \
2249 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2250 if (start_addr2 > 0) \
2251 need_subpage = 1; \
2252 } \
2253 \
49e9fba2 2254 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2255 end_addr2 = TARGET_PAGE_SIZE - 1; \
2256 else { \
2257 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2258 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2259 need_subpage = 1; \
2260 } \
2261 } while (0)
2262
33417e70
FB
2263/* register physical memory. 'size' must be a multiple of the target
2264 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
8da3ff18
PB
2265 io memory page. The address used when calling the IO function is
2266 the offset from the start of the region, plus region_offset. Both
2267 start_region and regon_offset are rounded down to a page boundary
2268 before calculating this offset. This should not be a problem unless
2269 the low bits of start_addr and region_offset differ. */
2270void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2271 ram_addr_t size,
2272 ram_addr_t phys_offset,
2273 ram_addr_t region_offset)
33417e70 2274{
108c49b8 2275 target_phys_addr_t addr, end_addr;
92e873b9 2276 PhysPageDesc *p;
9d42037b 2277 CPUState *env;
00f82b8a 2278 ram_addr_t orig_size = size;
db7b5426 2279 void *subpage;
33417e70 2280
da260249
FB
2281#ifdef USE_KQEMU
2282 /* XXX: should not depend on cpu context */
2283 env = first_cpu;
2284 if (env->kqemu_enabled) {
2285 kqemu_set_phys_mem(start_addr, size, phys_offset);
2286 }
2287#endif
7ba1e619
AL
2288 if (kvm_enabled())
2289 kvm_set_phys_mem(start_addr, size, phys_offset);
2290
8da3ff18 2291 region_offset &= TARGET_PAGE_MASK;
5fd386f6 2292 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
49e9fba2
BS
2293 end_addr = start_addr + (target_phys_addr_t)size;
2294 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
db7b5426
BS
2295 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2296 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
00f82b8a 2297 ram_addr_t orig_memory = p->phys_offset;
db7b5426
BS
2298 target_phys_addr_t start_addr2, end_addr2;
2299 int need_subpage = 0;
2300
2301 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2302 need_subpage);
4254fab8 2303 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426
BS
2304 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2305 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18
PB
2306 &p->phys_offset, orig_memory,
2307 p->region_offset);
db7b5426
BS
2308 } else {
2309 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2310 >> IO_MEM_SHIFT];
2311 }
8da3ff18
PB
2312 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2313 region_offset);
2314 p->region_offset = 0;
db7b5426
BS
2315 } else {
2316 p->phys_offset = phys_offset;
2317 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2318 (phys_offset & IO_MEM_ROMD))
2319 phys_offset += TARGET_PAGE_SIZE;
2320 }
2321 } else {
2322 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2323 p->phys_offset = phys_offset;
8da3ff18 2324 p->region_offset = region_offset;
db7b5426 2325 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
8da3ff18 2326 (phys_offset & IO_MEM_ROMD)) {
db7b5426 2327 phys_offset += TARGET_PAGE_SIZE;
0e8f0967 2328 } else {
db7b5426
BS
2329 target_phys_addr_t start_addr2, end_addr2;
2330 int need_subpage = 0;
2331
2332 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2333 end_addr2, need_subpage);
2334
4254fab8 2335 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426 2336 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18
PB
2337 &p->phys_offset, IO_MEM_UNASSIGNED,
2338 0);
db7b5426 2339 subpage_register(subpage, start_addr2, end_addr2,
8da3ff18
PB
2340 phys_offset, region_offset);
2341 p->region_offset = 0;
db7b5426
BS
2342 }
2343 }
2344 }
8da3ff18 2345 region_offset += TARGET_PAGE_SIZE;
33417e70 2346 }
3b46e624 2347
9d42037b
FB
2348 /* since each CPU stores ram addresses in its TLB cache, we must
2349 reset the modified entries */
2350 /* XXX: slow ! */
2351 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2352 tlb_flush(env, 1);
2353 }
33417e70
FB
2354}
2355
ba863458 2356/* XXX: temporary until new memory mapping API */
00f82b8a 2357ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
ba863458
FB
2358{
2359 PhysPageDesc *p;
2360
2361 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2362 if (!p)
2363 return IO_MEM_UNASSIGNED;
2364 return p->phys_offset;
2365}
2366
f65ed4c1
AL
2367void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2368{
2369 if (kvm_enabled())
2370 kvm_coalesce_mmio_region(addr, size);
2371}
2372
2373void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2374{
2375 if (kvm_enabled())
2376 kvm_uncoalesce_mmio_region(addr, size);
2377}
2378
e9a1ab19 2379/* XXX: better than nothing */
00f82b8a 2380ram_addr_t qemu_ram_alloc(ram_addr_t size)
e9a1ab19
FB
2381{
2382 ram_addr_t addr;
7fb4fdcf 2383 if ((phys_ram_alloc_offset + size) > phys_ram_size) {
012a7045 2384 fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 ")\n",
ed441467 2385 (uint64_t)size, (uint64_t)phys_ram_size);
e9a1ab19
FB
2386 abort();
2387 }
2388 addr = phys_ram_alloc_offset;
2389 phys_ram_alloc_offset = TARGET_PAGE_ALIGN(phys_ram_alloc_offset + size);
2390 return addr;
2391}
2392
2393void qemu_ram_free(ram_addr_t addr)
2394{
2395}
2396
a4193c8a 2397static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 2398{
67d3b957 2399#ifdef DEBUG_UNASSIGNED
ab3d1727 2400 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316 2401#endif
0a6f8a6d 2402#if defined(TARGET_SPARC)
e18231a3
BS
2403 do_unassigned_access(addr, 0, 0, 0, 1);
2404#endif
2405 return 0;
2406}
2407
2408static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2409{
2410#ifdef DEBUG_UNASSIGNED
2411 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2412#endif
0a6f8a6d 2413#if defined(TARGET_SPARC)
e18231a3
BS
2414 do_unassigned_access(addr, 0, 0, 0, 2);
2415#endif
2416 return 0;
2417}
2418
2419static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2420{
2421#ifdef DEBUG_UNASSIGNED
2422 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2423#endif
0a6f8a6d 2424#if defined(TARGET_SPARC)
e18231a3 2425 do_unassigned_access(addr, 0, 0, 0, 4);
67d3b957 2426#endif
33417e70
FB
2427 return 0;
2428}
2429
a4193c8a 2430static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 2431{
67d3b957 2432#ifdef DEBUG_UNASSIGNED
ab3d1727 2433 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 2434#endif
0a6f8a6d 2435#if defined(TARGET_SPARC)
e18231a3
BS
2436 do_unassigned_access(addr, 1, 0, 0, 1);
2437#endif
2438}
2439
2440static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2441{
2442#ifdef DEBUG_UNASSIGNED
2443 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2444#endif
0a6f8a6d 2445#if defined(TARGET_SPARC)
e18231a3
BS
2446 do_unassigned_access(addr, 1, 0, 0, 2);
2447#endif
2448}
2449
2450static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2451{
2452#ifdef DEBUG_UNASSIGNED
2453 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2454#endif
0a6f8a6d 2455#if defined(TARGET_SPARC)
e18231a3 2456 do_unassigned_access(addr, 1, 0, 0, 4);
b4f0a316 2457#endif
33417e70
FB
2458}
2459
2460static CPUReadMemoryFunc *unassigned_mem_read[3] = {
2461 unassigned_mem_readb,
e18231a3
BS
2462 unassigned_mem_readw,
2463 unassigned_mem_readl,
33417e70
FB
2464};
2465
2466static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
2467 unassigned_mem_writeb,
e18231a3
BS
2468 unassigned_mem_writew,
2469 unassigned_mem_writel,
33417e70
FB
2470};
2471
0f459d16
PB
2472static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2473 uint32_t val)
9fa3e853 2474{
3a7d929e 2475 int dirty_flags;
3a7d929e
FB
2476 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2477 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2478#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2479 tb_invalidate_phys_page_fast(ram_addr, 1);
2480 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2481#endif
3a7d929e 2482 }
0f459d16 2483 stb_p(phys_ram_base + ram_addr, val);
f32fc648
FB
2484#ifdef USE_KQEMU
2485 if (cpu_single_env->kqemu_enabled &&
2486 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2487 kqemu_modify_page(cpu_single_env, ram_addr);
2488#endif
f23db169
FB
2489 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2490 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2491 /* we remove the notdirty callback only if the code has been
2492 flushed */
2493 if (dirty_flags == 0xff)
2e70f6ef 2494 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2495}
2496
0f459d16
PB
2497static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2498 uint32_t val)
9fa3e853 2499{
3a7d929e 2500 int dirty_flags;
3a7d929e
FB
2501 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2502 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2503#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2504 tb_invalidate_phys_page_fast(ram_addr, 2);
2505 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2506#endif
3a7d929e 2507 }
0f459d16 2508 stw_p(phys_ram_base + ram_addr, val);
f32fc648
FB
2509#ifdef USE_KQEMU
2510 if (cpu_single_env->kqemu_enabled &&
2511 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2512 kqemu_modify_page(cpu_single_env, ram_addr);
2513#endif
f23db169
FB
2514 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2515 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2516 /* we remove the notdirty callback only if the code has been
2517 flushed */
2518 if (dirty_flags == 0xff)
2e70f6ef 2519 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2520}
2521
0f459d16
PB
2522static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2523 uint32_t val)
9fa3e853 2524{
3a7d929e 2525 int dirty_flags;
3a7d929e
FB
2526 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2527 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2528#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2529 tb_invalidate_phys_page_fast(ram_addr, 4);
2530 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2531#endif
3a7d929e 2532 }
0f459d16 2533 stl_p(phys_ram_base + ram_addr, val);
f32fc648
FB
2534#ifdef USE_KQEMU
2535 if (cpu_single_env->kqemu_enabled &&
2536 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2537 kqemu_modify_page(cpu_single_env, ram_addr);
2538#endif
f23db169
FB
2539 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2540 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2541 /* we remove the notdirty callback only if the code has been
2542 flushed */
2543 if (dirty_flags == 0xff)
2e70f6ef 2544 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2545}
2546
3a7d929e 2547static CPUReadMemoryFunc *error_mem_read[3] = {
9fa3e853
FB
2548 NULL, /* never used */
2549 NULL, /* never used */
2550 NULL, /* never used */
2551};
2552
1ccde1cb
FB
2553static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
2554 notdirty_mem_writeb,
2555 notdirty_mem_writew,
2556 notdirty_mem_writel,
2557};
2558
0f459d16 2559/* Generate a debug exception if a watchpoint has been hit. */
b4051334 2560static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16
PB
2561{
2562 CPUState *env = cpu_single_env;
06d55cc1
AL
2563 target_ulong pc, cs_base;
2564 TranslationBlock *tb;
0f459d16 2565 target_ulong vaddr;
a1d1bb31 2566 CPUWatchpoint *wp;
06d55cc1 2567 int cpu_flags;
0f459d16 2568
06d55cc1
AL
2569 if (env->watchpoint_hit) {
2570 /* We re-entered the check after replacing the TB. Now raise
2571 * the debug interrupt so that is will trigger after the
2572 * current instruction. */
2573 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2574 return;
2575 }
2e70f6ef 2576 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
c0ce998e 2577 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
2578 if ((vaddr == (wp->vaddr & len_mask) ||
2579 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
2580 wp->flags |= BP_WATCHPOINT_HIT;
2581 if (!env->watchpoint_hit) {
2582 env->watchpoint_hit = wp;
2583 tb = tb_find_pc(env->mem_io_pc);
2584 if (!tb) {
2585 cpu_abort(env, "check_watchpoint: could not find TB for "
2586 "pc=%p", (void *)env->mem_io_pc);
2587 }
2588 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
2589 tb_phys_invalidate(tb, -1);
2590 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2591 env->exception_index = EXCP_DEBUG;
2592 } else {
2593 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2594 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2595 }
2596 cpu_resume_from_signal(env, NULL);
06d55cc1 2597 }
6e140f28
AL
2598 } else {
2599 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2600 }
2601 }
2602}
2603
6658ffb8
PB
2604/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2605 so these check for a hit then pass through to the normal out-of-line
2606 phys routines. */
2607static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2608{
b4051334 2609 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
6658ffb8
PB
2610 return ldub_phys(addr);
2611}
2612
2613static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2614{
b4051334 2615 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
6658ffb8
PB
2616 return lduw_phys(addr);
2617}
2618
2619static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2620{
b4051334 2621 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
6658ffb8
PB
2622 return ldl_phys(addr);
2623}
2624
6658ffb8
PB
2625static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2626 uint32_t val)
2627{
b4051334 2628 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
6658ffb8
PB
2629 stb_phys(addr, val);
2630}
2631
2632static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2633 uint32_t val)
2634{
b4051334 2635 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
6658ffb8
PB
2636 stw_phys(addr, val);
2637}
2638
2639static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2640 uint32_t val)
2641{
b4051334 2642 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
6658ffb8
PB
2643 stl_phys(addr, val);
2644}
2645
2646static CPUReadMemoryFunc *watch_mem_read[3] = {
2647 watch_mem_readb,
2648 watch_mem_readw,
2649 watch_mem_readl,
2650};
2651
2652static CPUWriteMemoryFunc *watch_mem_write[3] = {
2653 watch_mem_writeb,
2654 watch_mem_writew,
2655 watch_mem_writel,
2656};
6658ffb8 2657
db7b5426
BS
2658static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2659 unsigned int len)
2660{
db7b5426
BS
2661 uint32_t ret;
2662 unsigned int idx;
2663
8da3ff18 2664 idx = SUBPAGE_IDX(addr);
db7b5426
BS
2665#if defined(DEBUG_SUBPAGE)
2666 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2667 mmio, len, addr, idx);
2668#endif
8da3ff18
PB
2669 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
2670 addr + mmio->region_offset[idx][0][len]);
db7b5426
BS
2671
2672 return ret;
2673}
2674
2675static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2676 uint32_t value, unsigned int len)
2677{
db7b5426
BS
2678 unsigned int idx;
2679
8da3ff18 2680 idx = SUBPAGE_IDX(addr);
db7b5426
BS
2681#if defined(DEBUG_SUBPAGE)
2682 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2683 mmio, len, addr, idx, value);
2684#endif
8da3ff18
PB
2685 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
2686 addr + mmio->region_offset[idx][1][len],
2687 value);
db7b5426
BS
2688}
2689
2690static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2691{
2692#if defined(DEBUG_SUBPAGE)
2693 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2694#endif
2695
2696 return subpage_readlen(opaque, addr, 0);
2697}
2698
2699static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2700 uint32_t value)
2701{
2702#if defined(DEBUG_SUBPAGE)
2703 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2704#endif
2705 subpage_writelen(opaque, addr, value, 0);
2706}
2707
2708static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2709{
2710#if defined(DEBUG_SUBPAGE)
2711 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2712#endif
2713
2714 return subpage_readlen(opaque, addr, 1);
2715}
2716
2717static void subpage_writew (void *opaque, target_phys_addr_t addr,
2718 uint32_t value)
2719{
2720#if defined(DEBUG_SUBPAGE)
2721 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2722#endif
2723 subpage_writelen(opaque, addr, value, 1);
2724}
2725
2726static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2727{
2728#if defined(DEBUG_SUBPAGE)
2729 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2730#endif
2731
2732 return subpage_readlen(opaque, addr, 2);
2733}
2734
2735static void subpage_writel (void *opaque,
2736 target_phys_addr_t addr, uint32_t value)
2737{
2738#if defined(DEBUG_SUBPAGE)
2739 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2740#endif
2741 subpage_writelen(opaque, addr, value, 2);
2742}
2743
2744static CPUReadMemoryFunc *subpage_read[] = {
2745 &subpage_readb,
2746 &subpage_readw,
2747 &subpage_readl,
2748};
2749
2750static CPUWriteMemoryFunc *subpage_write[] = {
2751 &subpage_writeb,
2752 &subpage_writew,
2753 &subpage_writel,
2754};
2755
2756static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
8da3ff18 2757 ram_addr_t memory, ram_addr_t region_offset)
db7b5426
BS
2758{
2759 int idx, eidx;
4254fab8 2760 unsigned int i;
db7b5426
BS
2761
2762 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2763 return -1;
2764 idx = SUBPAGE_IDX(start);
2765 eidx = SUBPAGE_IDX(end);
2766#if defined(DEBUG_SUBPAGE)
2767 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__,
2768 mmio, start, end, idx, eidx, memory);
2769#endif
2770 memory >>= IO_MEM_SHIFT;
2771 for (; idx <= eidx; idx++) {
4254fab8 2772 for (i = 0; i < 4; i++) {
3ee89922
BS
2773 if (io_mem_read[memory][i]) {
2774 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2775 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
8da3ff18 2776 mmio->region_offset[idx][0][i] = region_offset;
3ee89922
BS
2777 }
2778 if (io_mem_write[memory][i]) {
2779 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2780 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
8da3ff18 2781 mmio->region_offset[idx][1][i] = region_offset;
3ee89922 2782 }
4254fab8 2783 }
db7b5426
BS
2784 }
2785
2786 return 0;
2787}
2788
00f82b8a 2789static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
8da3ff18 2790 ram_addr_t orig_memory, ram_addr_t region_offset)
db7b5426
BS
2791{
2792 subpage_t *mmio;
2793 int subpage_memory;
2794
2795 mmio = qemu_mallocz(sizeof(subpage_t));
2796 if (mmio != NULL) {
2797 mmio->base = base;
2798 subpage_memory = cpu_register_io_memory(0, subpage_read, subpage_write, mmio);
2799#if defined(DEBUG_SUBPAGE)
2800 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2801 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
2802#endif
2803 *phys = subpage_memory | IO_MEM_SUBPAGE;
8da3ff18
PB
2804 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
2805 region_offset);
db7b5426
BS
2806 }
2807
2808 return mmio;
2809}
2810
33417e70
FB
2811static void io_mem_init(void)
2812{
3a7d929e 2813 cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL);
a4193c8a 2814 cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL);
3a7d929e 2815 cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL);
1ccde1cb
FB
2816 io_mem_nb = 5;
2817
0f459d16 2818 io_mem_watch = cpu_register_io_memory(0, watch_mem_read,
6658ffb8 2819 watch_mem_write, NULL);
1ccde1cb 2820 /* alloc dirty bits array */
0a962c02 2821 phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS);
3a7d929e 2822 memset(phys_ram_dirty, 0xff, phys_ram_size >> TARGET_PAGE_BITS);
33417e70
FB
2823}
2824
2825/* mem_read and mem_write are arrays of functions containing the
2826 function to access byte (index 0), word (index 1) and dword (index
3ee89922
BS
2827 2). Functions can be omitted with a NULL function pointer. The
2828 registered functions may be modified dynamically later.
2829 If io_index is non zero, the corresponding io zone is
4254fab8
BS
2830 modified. If it is zero, a new io zone is allocated. The return
2831 value can be used with cpu_register_physical_memory(). (-1) is
2832 returned if error. */
33417e70
FB
2833int cpu_register_io_memory(int io_index,
2834 CPUReadMemoryFunc **mem_read,
a4193c8a
FB
2835 CPUWriteMemoryFunc **mem_write,
2836 void *opaque)
33417e70 2837{
4254fab8 2838 int i, subwidth = 0;
33417e70
FB
2839
2840 if (io_index <= 0) {
b5ff1b31 2841 if (io_mem_nb >= IO_MEM_NB_ENTRIES)
33417e70
FB
2842 return -1;
2843 io_index = io_mem_nb++;
2844 } else {
2845 if (io_index >= IO_MEM_NB_ENTRIES)
2846 return -1;
2847 }
b5ff1b31 2848
33417e70 2849 for(i = 0;i < 3; i++) {
4254fab8
BS
2850 if (!mem_read[i] || !mem_write[i])
2851 subwidth = IO_MEM_SUBWIDTH;
33417e70
FB
2852 io_mem_read[io_index][i] = mem_read[i];
2853 io_mem_write[io_index][i] = mem_write[i];
2854 }
a4193c8a 2855 io_mem_opaque[io_index] = opaque;
4254fab8 2856 return (io_index << IO_MEM_SHIFT) | subwidth;
33417e70 2857}
61382a50 2858
8926b517
FB
2859CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index)
2860{
2861 return io_mem_write[io_index >> IO_MEM_SHIFT];
2862}
2863
2864CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index)
2865{
2866 return io_mem_read[io_index >> IO_MEM_SHIFT];
2867}
2868
e2eef170
PB
2869#endif /* !defined(CONFIG_USER_ONLY) */
2870
13eb76e0
FB
2871/* physical memory access (slow version, mainly for debug) */
2872#if defined(CONFIG_USER_ONLY)
5fafdf24 2873void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
2874 int len, int is_write)
2875{
2876 int l, flags;
2877 target_ulong page;
53a5960a 2878 void * p;
13eb76e0
FB
2879
2880 while (len > 0) {
2881 page = addr & TARGET_PAGE_MASK;
2882 l = (page + TARGET_PAGE_SIZE) - addr;
2883 if (l > len)
2884 l = len;
2885 flags = page_get_flags(page);
2886 if (!(flags & PAGE_VALID))
2887 return;
2888 if (is_write) {
2889 if (!(flags & PAGE_WRITE))
2890 return;
579a97f7 2891 /* XXX: this code should not depend on lock_user */
72fb7daa 2892 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
579a97f7
FB
2893 /* FIXME - should this return an error rather than just fail? */
2894 return;
72fb7daa
AJ
2895 memcpy(p, buf, l);
2896 unlock_user(p, addr, l);
13eb76e0
FB
2897 } else {
2898 if (!(flags & PAGE_READ))
2899 return;
579a97f7 2900 /* XXX: this code should not depend on lock_user */
72fb7daa 2901 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
579a97f7
FB
2902 /* FIXME - should this return an error rather than just fail? */
2903 return;
72fb7daa 2904 memcpy(buf, p, l);
5b257578 2905 unlock_user(p, addr, 0);
13eb76e0
FB
2906 }
2907 len -= l;
2908 buf += l;
2909 addr += l;
2910 }
2911}
8df1cd07 2912
13eb76e0 2913#else
5fafdf24 2914void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
2915 int len, int is_write)
2916{
2917 int l, io_index;
2918 uint8_t *ptr;
2919 uint32_t val;
2e12669a
FB
2920 target_phys_addr_t page;
2921 unsigned long pd;
92e873b9 2922 PhysPageDesc *p;
3b46e624 2923
13eb76e0
FB
2924 while (len > 0) {
2925 page = addr & TARGET_PAGE_MASK;
2926 l = (page + TARGET_PAGE_SIZE) - addr;
2927 if (l > len)
2928 l = len;
92e873b9 2929 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
2930 if (!p) {
2931 pd = IO_MEM_UNASSIGNED;
2932 } else {
2933 pd = p->phys_offset;
2934 }
3b46e624 2935
13eb76e0 2936 if (is_write) {
3a7d929e 2937 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
13eb76e0 2938 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
2939 if (p)
2940 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
6a00d601
FB
2941 /* XXX: could force cpu_single_env to NULL to avoid
2942 potential bugs */
13eb76e0 2943 if (l >= 4 && ((addr & 3) == 0)) {
1c213d19 2944 /* 32 bit write access */
c27004ec 2945 val = ldl_p(buf);
a4193c8a 2946 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
13eb76e0
FB
2947 l = 4;
2948 } else if (l >= 2 && ((addr & 1) == 0)) {
1c213d19 2949 /* 16 bit write access */
c27004ec 2950 val = lduw_p(buf);
a4193c8a 2951 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
13eb76e0
FB
2952 l = 2;
2953 } else {
1c213d19 2954 /* 8 bit write access */
c27004ec 2955 val = ldub_p(buf);
a4193c8a 2956 io_mem_write[io_index][0](io_mem_opaque[io_index], addr, val);
13eb76e0
FB
2957 l = 1;
2958 }
2959 } else {
b448f2f3
FB
2960 unsigned long addr1;
2961 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 2962 /* RAM case */
b448f2f3 2963 ptr = phys_ram_base + addr1;
13eb76e0 2964 memcpy(ptr, buf, l);
3a7d929e
FB
2965 if (!cpu_physical_memory_is_dirty(addr1)) {
2966 /* invalidate code */
2967 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
2968 /* set dirty bit */
5fafdf24 2969 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
f23db169 2970 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 2971 }
13eb76e0
FB
2972 }
2973 } else {
5fafdf24 2974 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 2975 !(pd & IO_MEM_ROMD)) {
13eb76e0
FB
2976 /* I/O case */
2977 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
2978 if (p)
2979 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
13eb76e0
FB
2980 if (l >= 4 && ((addr & 3) == 0)) {
2981 /* 32 bit read access */
a4193c8a 2982 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
c27004ec 2983 stl_p(buf, val);
13eb76e0
FB
2984 l = 4;
2985 } else if (l >= 2 && ((addr & 1) == 0)) {
2986 /* 16 bit read access */
a4193c8a 2987 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
c27004ec 2988 stw_p(buf, val);
13eb76e0
FB
2989 l = 2;
2990 } else {
1c213d19 2991 /* 8 bit read access */
a4193c8a 2992 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr);
c27004ec 2993 stb_p(buf, val);
13eb76e0
FB
2994 l = 1;
2995 }
2996 } else {
2997 /* RAM case */
5fafdf24 2998 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
13eb76e0
FB
2999 (addr & ~TARGET_PAGE_MASK);
3000 memcpy(buf, ptr, l);
3001 }
3002 }
3003 len -= l;
3004 buf += l;
3005 addr += l;
3006 }
3007}
8df1cd07 3008
d0ecd2aa 3009/* used for ROM loading : can write in RAM and ROM */
5fafdf24 3010void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
3011 const uint8_t *buf, int len)
3012{
3013 int l;
3014 uint8_t *ptr;
3015 target_phys_addr_t page;
3016 unsigned long pd;
3017 PhysPageDesc *p;
3b46e624 3018
d0ecd2aa
FB
3019 while (len > 0) {
3020 page = addr & TARGET_PAGE_MASK;
3021 l = (page + TARGET_PAGE_SIZE) - addr;
3022 if (l > len)
3023 l = len;
3024 p = phys_page_find(page >> TARGET_PAGE_BITS);
3025 if (!p) {
3026 pd = IO_MEM_UNASSIGNED;
3027 } else {
3028 pd = p->phys_offset;
3029 }
3b46e624 3030
d0ecd2aa 3031 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
3032 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3033 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
3034 /* do nothing */
3035 } else {
3036 unsigned long addr1;
3037 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3038 /* ROM/RAM case */
3039 ptr = phys_ram_base + addr1;
3040 memcpy(ptr, buf, l);
3041 }
3042 len -= l;
3043 buf += l;
3044 addr += l;
3045 }
3046}
3047
3048
8df1cd07
FB
3049/* warning: addr must be aligned */
3050uint32_t ldl_phys(target_phys_addr_t addr)
3051{
3052 int io_index;
3053 uint8_t *ptr;
3054 uint32_t val;
3055 unsigned long pd;
3056 PhysPageDesc *p;
3057
3058 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3059 if (!p) {
3060 pd = IO_MEM_UNASSIGNED;
3061 } else {
3062 pd = p->phys_offset;
3063 }
3b46e624 3064
5fafdf24 3065 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3066 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
3067 /* I/O case */
3068 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3069 if (p)
3070 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3071 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3072 } else {
3073 /* RAM case */
5fafdf24 3074 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
8df1cd07
FB
3075 (addr & ~TARGET_PAGE_MASK);
3076 val = ldl_p(ptr);
3077 }
3078 return val;
3079}
3080
84b7b8e7
FB
3081/* warning: addr must be aligned */
3082uint64_t ldq_phys(target_phys_addr_t addr)
3083{
3084 int io_index;
3085 uint8_t *ptr;
3086 uint64_t val;
3087 unsigned long pd;
3088 PhysPageDesc *p;
3089
3090 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3091 if (!p) {
3092 pd = IO_MEM_UNASSIGNED;
3093 } else {
3094 pd = p->phys_offset;
3095 }
3b46e624 3096
2a4188a3
FB
3097 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3098 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
3099 /* I/O case */
3100 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3101 if (p)
3102 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
84b7b8e7
FB
3103#ifdef TARGET_WORDS_BIGENDIAN
3104 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3105 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3106#else
3107 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3108 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3109#endif
3110 } else {
3111 /* RAM case */
5fafdf24 3112 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
84b7b8e7
FB
3113 (addr & ~TARGET_PAGE_MASK);
3114 val = ldq_p(ptr);
3115 }
3116 return val;
3117}
3118
aab33094
FB
3119/* XXX: optimize */
3120uint32_t ldub_phys(target_phys_addr_t addr)
3121{
3122 uint8_t val;
3123 cpu_physical_memory_read(addr, &val, 1);
3124 return val;
3125}
3126
3127/* XXX: optimize */
3128uint32_t lduw_phys(target_phys_addr_t addr)
3129{
3130 uint16_t val;
3131 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3132 return tswap16(val);
3133}
3134
8df1cd07
FB
3135/* warning: addr must be aligned. The ram page is not masked as dirty
3136 and the code inside is not invalidated. It is useful if the dirty
3137 bits are used to track modified PTEs */
3138void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3139{
3140 int io_index;
3141 uint8_t *ptr;
3142 unsigned long pd;
3143 PhysPageDesc *p;
3144
3145 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3146 if (!p) {
3147 pd = IO_MEM_UNASSIGNED;
3148 } else {
3149 pd = p->phys_offset;
3150 }
3b46e624 3151
3a7d929e 3152 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3153 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3154 if (p)
3155 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3156 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3157 } else {
74576198
AL
3158 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3159 ptr = phys_ram_base + addr1;
8df1cd07 3160 stl_p(ptr, val);
74576198
AL
3161
3162 if (unlikely(in_migration)) {
3163 if (!cpu_physical_memory_is_dirty(addr1)) {
3164 /* invalidate code */
3165 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3166 /* set dirty bit */
3167 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3168 (0xff & ~CODE_DIRTY_FLAG);
3169 }
3170 }
8df1cd07
FB
3171 }
3172}
3173
bc98a7ef
JM
3174void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3175{
3176 int io_index;
3177 uint8_t *ptr;
3178 unsigned long pd;
3179 PhysPageDesc *p;
3180
3181 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3182 if (!p) {
3183 pd = IO_MEM_UNASSIGNED;
3184 } else {
3185 pd = p->phys_offset;
3186 }
3b46e624 3187
bc98a7ef
JM
3188 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3189 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3190 if (p)
3191 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
bc98a7ef
JM
3192#ifdef TARGET_WORDS_BIGENDIAN
3193 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3194 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3195#else
3196 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3197 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3198#endif
3199 } else {
5fafdf24 3200 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
3201 (addr & ~TARGET_PAGE_MASK);
3202 stq_p(ptr, val);
3203 }
3204}
3205
8df1cd07 3206/* warning: addr must be aligned */
8df1cd07
FB
3207void stl_phys(target_phys_addr_t addr, uint32_t val)
3208{
3209 int io_index;
3210 uint8_t *ptr;
3211 unsigned long pd;
3212 PhysPageDesc *p;
3213
3214 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3215 if (!p) {
3216 pd = IO_MEM_UNASSIGNED;
3217 } else {
3218 pd = p->phys_offset;
3219 }
3b46e624 3220
3a7d929e 3221 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3222 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3223 if (p)
3224 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3225 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3226 } else {
3227 unsigned long addr1;
3228 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3229 /* RAM case */
3230 ptr = phys_ram_base + addr1;
3231 stl_p(ptr, val);
3a7d929e
FB
3232 if (!cpu_physical_memory_is_dirty(addr1)) {
3233 /* invalidate code */
3234 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3235 /* set dirty bit */
f23db169
FB
3236 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3237 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3238 }
8df1cd07
FB
3239 }
3240}
3241
aab33094
FB
3242/* XXX: optimize */
3243void stb_phys(target_phys_addr_t addr, uint32_t val)
3244{
3245 uint8_t v = val;
3246 cpu_physical_memory_write(addr, &v, 1);
3247}
3248
3249/* XXX: optimize */
3250void stw_phys(target_phys_addr_t addr, uint32_t val)
3251{
3252 uint16_t v = tswap16(val);
3253 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3254}
3255
3256/* XXX: optimize */
3257void stq_phys(target_phys_addr_t addr, uint64_t val)
3258{
3259 val = tswap64(val);
3260 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3261}
3262
13eb76e0
FB
3263#endif
3264
3265/* virtual memory access for debug */
5fafdf24 3266int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 3267 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3268{
3269 int l;
9b3c35e0
JM
3270 target_phys_addr_t phys_addr;
3271 target_ulong page;
13eb76e0
FB
3272
3273 while (len > 0) {
3274 page = addr & TARGET_PAGE_MASK;
3275 phys_addr = cpu_get_phys_page_debug(env, page);
3276 /* if no physical page mapped, return an error */
3277 if (phys_addr == -1)
3278 return -1;
3279 l = (page + TARGET_PAGE_SIZE) - addr;
3280 if (l > len)
3281 l = len;
5fafdf24 3282 cpu_physical_memory_rw(phys_addr + (addr & ~TARGET_PAGE_MASK),
b448f2f3 3283 buf, l, is_write);
13eb76e0
FB
3284 len -= l;
3285 buf += l;
3286 addr += l;
3287 }
3288 return 0;
3289}
3290
2e70f6ef
PB
3291/* in deterministic execution mode, instructions doing device I/Os
3292 must be at the end of the TB */
3293void cpu_io_recompile(CPUState *env, void *retaddr)
3294{
3295 TranslationBlock *tb;
3296 uint32_t n, cflags;
3297 target_ulong pc, cs_base;
3298 uint64_t flags;
3299
3300 tb = tb_find_pc((unsigned long)retaddr);
3301 if (!tb) {
3302 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3303 retaddr);
3304 }
3305 n = env->icount_decr.u16.low + tb->icount;
3306 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3307 /* Calculate how many instructions had been executed before the fault
bf20dc07 3308 occurred. */
2e70f6ef
PB
3309 n = n - env->icount_decr.u16.low;
3310 /* Generate a new TB ending on the I/O insn. */
3311 n++;
3312 /* On MIPS and SH, delay slot instructions can only be restarted if
3313 they were already the first instruction in the TB. If this is not
bf20dc07 3314 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
3315 branch. */
3316#if defined(TARGET_MIPS)
3317 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3318 env->active_tc.PC -= 4;
3319 env->icount_decr.u16.low++;
3320 env->hflags &= ~MIPS_HFLAG_BMASK;
3321 }
3322#elif defined(TARGET_SH4)
3323 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3324 && n > 1) {
3325 env->pc -= 2;
3326 env->icount_decr.u16.low++;
3327 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3328 }
3329#endif
3330 /* This should never happen. */
3331 if (n > CF_COUNT_MASK)
3332 cpu_abort(env, "TB too big during recompile");
3333
3334 cflags = n | CF_LAST_IO;
3335 pc = tb->pc;
3336 cs_base = tb->cs_base;
3337 flags = tb->flags;
3338 tb_phys_invalidate(tb, -1);
3339 /* FIXME: In theory this could raise an exception. In practice
3340 we have already translated the block once so it's probably ok. */
3341 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 3342 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
3343 the first in the TB) then we end up generating a whole new TB and
3344 repeating the fault, which is horribly inefficient.
3345 Better would be to execute just this insn uncached, or generate a
3346 second new TB. */
3347 cpu_resume_from_signal(env, NULL);
3348}
3349
e3db7226
FB
3350void dump_exec_info(FILE *f,
3351 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3352{
3353 int i, target_code_size, max_target_code_size;
3354 int direct_jmp_count, direct_jmp2_count, cross_page;
3355 TranslationBlock *tb;
3b46e624 3356
e3db7226
FB
3357 target_code_size = 0;
3358 max_target_code_size = 0;
3359 cross_page = 0;
3360 direct_jmp_count = 0;
3361 direct_jmp2_count = 0;
3362 for(i = 0; i < nb_tbs; i++) {
3363 tb = &tbs[i];
3364 target_code_size += tb->size;
3365 if (tb->size > max_target_code_size)
3366 max_target_code_size = tb->size;
3367 if (tb->page_addr[1] != -1)
3368 cross_page++;
3369 if (tb->tb_next_offset[0] != 0xffff) {
3370 direct_jmp_count++;
3371 if (tb->tb_next_offset[1] != 0xffff) {
3372 direct_jmp2_count++;
3373 }
3374 }
3375 }
3376 /* XXX: avoid using doubles ? */
57fec1fe 3377 cpu_fprintf(f, "Translation buffer state:\n");
26a5f13b
FB
3378 cpu_fprintf(f, "gen code size %ld/%ld\n",
3379 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3380 cpu_fprintf(f, "TB count %d/%d\n",
3381 nb_tbs, code_gen_max_blocks);
5fafdf24 3382 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
3383 nb_tbs ? target_code_size / nb_tbs : 0,
3384 max_target_code_size);
5fafdf24 3385 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
3386 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3387 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
3388 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3389 cross_page,
e3db7226
FB
3390 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3391 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 3392 direct_jmp_count,
e3db7226
FB
3393 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3394 direct_jmp2_count,
3395 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 3396 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
3397 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3398 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3399 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 3400 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
3401}
3402
5fafdf24 3403#if !defined(CONFIG_USER_ONLY)
61382a50
FB
3404
3405#define MMUSUFFIX _cmmu
3406#define GETPC() NULL
3407#define env cpu_single_env
b769d8fe 3408#define SOFTMMU_CODE_ACCESS
61382a50
FB
3409
3410#define SHIFT 0
3411#include "softmmu_template.h"
3412
3413#define SHIFT 1
3414#include "softmmu_template.h"
3415
3416#define SHIFT 2
3417#include "softmmu_template.h"
3418
3419#define SHIFT 3
3420#include "softmmu_template.h"
3421
3422#undef env
3423
3424#endif