]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
Set mem_io_vaddr on io_read (Jan Kiszka)
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
67b915a5 20#include "config.h"
d5a8f07c 21#ifdef _WIN32
4fddf62a 22#define WIN32_LEAN_AND_MEAN
d5a8f07c
FB
23#include <windows.h>
24#else
a98d49b1 25#include <sys/types.h>
d5a8f07c
FB
26#include <sys/mman.h>
27#endif
54936004
FB
28#include <stdlib.h>
29#include <stdio.h>
30#include <stdarg.h>
31#include <string.h>
32#include <errno.h>
33#include <unistd.h>
34#include <inttypes.h>
35
6180a181
FB
36#include "cpu.h"
37#include "exec-all.h"
ca10f867 38#include "qemu-common.h"
b67d9a52 39#include "tcg.h"
b3c7724c 40#include "hw/hw.h"
74576198 41#include "osdep.h"
7ba1e619 42#include "kvm.h"
53a5960a
PB
43#if defined(CONFIG_USER_ONLY)
44#include <qemu.h>
45#endif
54936004 46
fd6ce8f6 47//#define DEBUG_TB_INVALIDATE
66e85a21 48//#define DEBUG_FLUSH
9fa3e853 49//#define DEBUG_TLB
67d3b957 50//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
51
52/* make various TB consistency checks */
5fafdf24
TS
53//#define DEBUG_TB_CHECK
54//#define DEBUG_TLB_CHECK
fd6ce8f6 55
1196be37 56//#define DEBUG_IOPORT
db7b5426 57//#define DEBUG_SUBPAGE
1196be37 58
99773bd4
PB
59#if !defined(CONFIG_USER_ONLY)
60/* TB consistency checks only implemented for usermode emulation. */
61#undef DEBUG_TB_CHECK
62#endif
63
9fa3e853
FB
64#define SMC_BITMAP_USE_THRESHOLD 10
65
66#define MMAP_AREA_START 0x00000000
67#define MMAP_AREA_END 0xa8000000
fd6ce8f6 68
108c49b8
FB
69#if defined(TARGET_SPARC64)
70#define TARGET_PHYS_ADDR_SPACE_BITS 41
5dcb6b91
BS
71#elif defined(TARGET_SPARC)
72#define TARGET_PHYS_ADDR_SPACE_BITS 36
bedb69ea
JM
73#elif defined(TARGET_ALPHA)
74#define TARGET_PHYS_ADDR_SPACE_BITS 42
75#define TARGET_VIRT_ADDR_SPACE_BITS 42
108c49b8
FB
76#elif defined(TARGET_PPC64)
77#define TARGET_PHYS_ADDR_SPACE_BITS 42
00f82b8a
AJ
78#elif defined(TARGET_X86_64) && !defined(USE_KQEMU)
79#define TARGET_PHYS_ADDR_SPACE_BITS 42
80#elif defined(TARGET_I386) && !defined(USE_KQEMU)
81#define TARGET_PHYS_ADDR_SPACE_BITS 36
108c49b8
FB
82#else
83/* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
84#define TARGET_PHYS_ADDR_SPACE_BITS 32
85#endif
86
bdaf78e0 87static TranslationBlock *tbs;
26a5f13b 88int code_gen_max_blocks;
9fa3e853 89TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 90static int nb_tbs;
eb51d102
FB
91/* any access to the tbs or the page table must use this lock */
92spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 93
141ac468
BS
94#if defined(__arm__) || defined(__sparc_v9__)
95/* The prologue must be reachable with a direct jump. ARM and Sparc64
96 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
97 section close to code segment. */
98#define code_gen_section \
99 __attribute__((__section__(".gen_code"))) \
100 __attribute__((aligned (32)))
101#else
102#define code_gen_section \
103 __attribute__((aligned (32)))
104#endif
105
106uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
107static uint8_t *code_gen_buffer;
108static unsigned long code_gen_buffer_size;
26a5f13b 109/* threshold to flush the translated code buffer */
bdaf78e0 110static unsigned long code_gen_buffer_max_size;
fd6ce8f6
FB
111uint8_t *code_gen_ptr;
112
e2eef170 113#if !defined(CONFIG_USER_ONLY)
00f82b8a 114ram_addr_t phys_ram_size;
9fa3e853
FB
115int phys_ram_fd;
116uint8_t *phys_ram_base;
1ccde1cb 117uint8_t *phys_ram_dirty;
74576198 118static int in_migration;
e9a1ab19 119static ram_addr_t phys_ram_alloc_offset = 0;
e2eef170 120#endif
9fa3e853 121
6a00d601
FB
122CPUState *first_cpu;
123/* current CPU in the current thread. It is only valid inside
124 cpu_exec() */
5fafdf24 125CPUState *cpu_single_env;
2e70f6ef 126/* 0 = Do not count executed instructions.
bf20dc07 127 1 = Precise instruction counting.
2e70f6ef
PB
128 2 = Adaptive rate instruction counting. */
129int use_icount = 0;
130/* Current instruction counter. While executing translated code this may
131 include some instructions that have not yet been executed. */
132int64_t qemu_icount;
6a00d601 133
54936004 134typedef struct PageDesc {
92e873b9 135 /* list of TBs intersecting this ram page */
fd6ce8f6 136 TranslationBlock *first_tb;
9fa3e853
FB
137 /* in order to optimize self modifying code, we count the number
138 of lookups we do to a given page to use a bitmap */
139 unsigned int code_write_count;
140 uint8_t *code_bitmap;
141#if defined(CONFIG_USER_ONLY)
142 unsigned long flags;
143#endif
54936004
FB
144} PageDesc;
145
92e873b9 146typedef struct PhysPageDesc {
0f459d16 147 /* offset in host memory of the page + io_index in the low bits */
00f82b8a 148 ram_addr_t phys_offset;
92e873b9
FB
149} PhysPageDesc;
150
54936004 151#define L2_BITS 10
bedb69ea
JM
152#if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
153/* XXX: this is a temporary hack for alpha target.
154 * In the future, this is to be replaced by a multi-level table
155 * to actually be able to handle the complete 64 bits address space.
156 */
157#define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
158#else
03875444 159#define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
bedb69ea 160#endif
54936004
FB
161
162#define L1_SIZE (1 << L1_BITS)
163#define L2_SIZE (1 << L2_BITS)
164
83fb7adf
FB
165unsigned long qemu_real_host_page_size;
166unsigned long qemu_host_page_bits;
167unsigned long qemu_host_page_size;
168unsigned long qemu_host_page_mask;
54936004 169
92e873b9 170/* XXX: for system emulation, it could just be an array */
54936004 171static PageDesc *l1_map[L1_SIZE];
bdaf78e0 172static PhysPageDesc **l1_phys_map;
54936004 173
e2eef170
PB
174#if !defined(CONFIG_USER_ONLY)
175static void io_mem_init(void);
176
33417e70 177/* io memory support */
33417e70
FB
178CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
179CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 180void *io_mem_opaque[IO_MEM_NB_ENTRIES];
33417e70 181static int io_mem_nb;
6658ffb8
PB
182static int io_mem_watch;
183#endif
33417e70 184
34865134 185/* log support */
d9b630fd 186static const char *logfilename = "/tmp/qemu.log";
34865134
FB
187FILE *logfile;
188int loglevel;
e735b91c 189static int log_append = 0;
34865134 190
e3db7226
FB
191/* statistics */
192static int tlb_flush_count;
193static int tb_flush_count;
194static int tb_phys_invalidate_count;
195
db7b5426
BS
196#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
197typedef struct subpage_t {
198 target_phys_addr_t base;
3ee89922
BS
199 CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4];
200 CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4];
201 void *opaque[TARGET_PAGE_SIZE][2][4];
db7b5426
BS
202} subpage_t;
203
7cb69cae
FB
204#ifdef _WIN32
205static void map_exec(void *addr, long size)
206{
207 DWORD old_protect;
208 VirtualProtect(addr, size,
209 PAGE_EXECUTE_READWRITE, &old_protect);
210
211}
212#else
213static void map_exec(void *addr, long size)
214{
4369415f 215 unsigned long start, end, page_size;
7cb69cae 216
4369415f 217 page_size = getpagesize();
7cb69cae 218 start = (unsigned long)addr;
4369415f 219 start &= ~(page_size - 1);
7cb69cae
FB
220
221 end = (unsigned long)addr + size;
4369415f
FB
222 end += page_size - 1;
223 end &= ~(page_size - 1);
7cb69cae
FB
224
225 mprotect((void *)start, end - start,
226 PROT_READ | PROT_WRITE | PROT_EXEC);
227}
228#endif
229
b346ff46 230static void page_init(void)
54936004 231{
83fb7adf 232 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 233 TARGET_PAGE_SIZE */
c2b48b69
AL
234#ifdef _WIN32
235 {
236 SYSTEM_INFO system_info;
237
238 GetSystemInfo(&system_info);
239 qemu_real_host_page_size = system_info.dwPageSize;
240 }
241#else
242 qemu_real_host_page_size = getpagesize();
243#endif
83fb7adf
FB
244 if (qemu_host_page_size == 0)
245 qemu_host_page_size = qemu_real_host_page_size;
246 if (qemu_host_page_size < TARGET_PAGE_SIZE)
247 qemu_host_page_size = TARGET_PAGE_SIZE;
248 qemu_host_page_bits = 0;
249 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
250 qemu_host_page_bits++;
251 qemu_host_page_mask = ~(qemu_host_page_size - 1);
108c49b8
FB
252 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
253 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
50a9569b
AZ
254
255#if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
256 {
257 long long startaddr, endaddr;
258 FILE *f;
259 int n;
260
c8a706fe 261 mmap_lock();
0776590d 262 last_brk = (unsigned long)sbrk(0);
50a9569b
AZ
263 f = fopen("/proc/self/maps", "r");
264 if (f) {
265 do {
266 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
267 if (n == 2) {
e0b8d65a
BS
268 startaddr = MIN(startaddr,
269 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
270 endaddr = MIN(endaddr,
271 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
b5fc909e 272 page_set_flags(startaddr & TARGET_PAGE_MASK,
50a9569b
AZ
273 TARGET_PAGE_ALIGN(endaddr),
274 PAGE_RESERVED);
275 }
276 } while (!feof(f));
277 fclose(f);
278 }
c8a706fe 279 mmap_unlock();
50a9569b
AZ
280 }
281#endif
54936004
FB
282}
283
434929bf 284static inline PageDesc **page_l1_map(target_ulong index)
54936004 285{
17e2377a
PB
286#if TARGET_LONG_BITS > 32
287 /* Host memory outside guest VM. For 32-bit targets we have already
288 excluded high addresses. */
d8173e0f 289 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
17e2377a
PB
290 return NULL;
291#endif
434929bf
AL
292 return &l1_map[index >> L2_BITS];
293}
294
295static inline PageDesc *page_find_alloc(target_ulong index)
296{
297 PageDesc **lp, *p;
298 lp = page_l1_map(index);
299 if (!lp)
300 return NULL;
301
54936004
FB
302 p = *lp;
303 if (!p) {
304 /* allocate if not found */
17e2377a
PB
305#if defined(CONFIG_USER_ONLY)
306 unsigned long addr;
307 size_t len = sizeof(PageDesc) * L2_SIZE;
308 /* Don't use qemu_malloc because it may recurse. */
309 p = mmap(0, len, PROT_READ | PROT_WRITE,
310 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
54936004 311 *lp = p;
17e2377a
PB
312 addr = h2g(p);
313 if (addr == (target_ulong)addr) {
314 page_set_flags(addr & TARGET_PAGE_MASK,
315 TARGET_PAGE_ALIGN(addr + len),
316 PAGE_RESERVED);
317 }
318#else
319 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
320 *lp = p;
321#endif
54936004
FB
322 }
323 return p + (index & (L2_SIZE - 1));
324}
325
00f82b8a 326static inline PageDesc *page_find(target_ulong index)
54936004 327{
434929bf
AL
328 PageDesc **lp, *p;
329 lp = page_l1_map(index);
330 if (!lp)
331 return NULL;
54936004 332
434929bf 333 p = *lp;
54936004
FB
334 if (!p)
335 return 0;
fd6ce8f6
FB
336 return p + (index & (L2_SIZE - 1));
337}
338
108c49b8 339static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 340{
108c49b8 341 void **lp, **p;
e3f4e2a4 342 PhysPageDesc *pd;
92e873b9 343
108c49b8
FB
344 p = (void **)l1_phys_map;
345#if TARGET_PHYS_ADDR_SPACE_BITS > 32
346
347#if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
348#error unsupported TARGET_PHYS_ADDR_SPACE_BITS
349#endif
350 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
92e873b9
FB
351 p = *lp;
352 if (!p) {
353 /* allocate if not found */
108c49b8
FB
354 if (!alloc)
355 return NULL;
356 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
357 memset(p, 0, sizeof(void *) * L1_SIZE);
358 *lp = p;
359 }
360#endif
361 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
e3f4e2a4
PB
362 pd = *lp;
363 if (!pd) {
364 int i;
108c49b8
FB
365 /* allocate if not found */
366 if (!alloc)
367 return NULL;
e3f4e2a4
PB
368 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
369 *lp = pd;
370 for (i = 0; i < L2_SIZE; i++)
371 pd[i].phys_offset = IO_MEM_UNASSIGNED;
92e873b9 372 }
e3f4e2a4 373 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
92e873b9
FB
374}
375
108c49b8 376static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 377{
108c49b8 378 return phys_page_find_alloc(index, 0);
92e873b9
FB
379}
380
9fa3e853 381#if !defined(CONFIG_USER_ONLY)
6a00d601 382static void tlb_protect_code(ram_addr_t ram_addr);
5fafdf24 383static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 384 target_ulong vaddr);
c8a706fe
PB
385#define mmap_lock() do { } while(0)
386#define mmap_unlock() do { } while(0)
9fa3e853 387#endif
fd6ce8f6 388
4369415f
FB
389#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
390
391#if defined(CONFIG_USER_ONLY)
392/* Currently it is not recommanded to allocate big chunks of data in
393 user mode. It will change when a dedicated libc will be used */
394#define USE_STATIC_CODE_GEN_BUFFER
395#endif
396
397#ifdef USE_STATIC_CODE_GEN_BUFFER
398static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
399#endif
400
8fcd3692 401static void code_gen_alloc(unsigned long tb_size)
26a5f13b 402{
4369415f
FB
403#ifdef USE_STATIC_CODE_GEN_BUFFER
404 code_gen_buffer = static_code_gen_buffer;
405 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
406 map_exec(code_gen_buffer, code_gen_buffer_size);
407#else
26a5f13b
FB
408 code_gen_buffer_size = tb_size;
409 if (code_gen_buffer_size == 0) {
4369415f
FB
410#if defined(CONFIG_USER_ONLY)
411 /* in user mode, phys_ram_size is not meaningful */
412 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
413#else
26a5f13b 414 /* XXX: needs ajustments */
174a9a1f 415 code_gen_buffer_size = (unsigned long)(phys_ram_size / 4);
4369415f 416#endif
26a5f13b
FB
417 }
418 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
419 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
420 /* The code gen buffer location may have constraints depending on
421 the host cpu and OS */
422#if defined(__linux__)
423 {
424 int flags;
141ac468
BS
425 void *start = NULL;
426
26a5f13b
FB
427 flags = MAP_PRIVATE | MAP_ANONYMOUS;
428#if defined(__x86_64__)
429 flags |= MAP_32BIT;
430 /* Cannot map more than that */
431 if (code_gen_buffer_size > (800 * 1024 * 1024))
432 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
433#elif defined(__sparc_v9__)
434 // Map the buffer below 2G, so we can use direct calls and branches
435 flags |= MAP_FIXED;
436 start = (void *) 0x60000000UL;
437 if (code_gen_buffer_size > (512 * 1024 * 1024))
438 code_gen_buffer_size = (512 * 1024 * 1024);
26a5f13b 439#endif
141ac468
BS
440 code_gen_buffer = mmap(start, code_gen_buffer_size,
441 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
442 flags, -1, 0);
443 if (code_gen_buffer == MAP_FAILED) {
444 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
445 exit(1);
446 }
447 }
06e67a82
AL
448#elif defined(__FreeBSD__)
449 {
450 int flags;
451 void *addr = NULL;
452 flags = MAP_PRIVATE | MAP_ANONYMOUS;
453#if defined(__x86_64__)
454 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
455 * 0x40000000 is free */
456 flags |= MAP_FIXED;
457 addr = (void *)0x40000000;
458 /* Cannot map more than that */
459 if (code_gen_buffer_size > (800 * 1024 * 1024))
460 code_gen_buffer_size = (800 * 1024 * 1024);
461#endif
462 code_gen_buffer = mmap(addr, code_gen_buffer_size,
463 PROT_WRITE | PROT_READ | PROT_EXEC,
464 flags, -1, 0);
465 if (code_gen_buffer == MAP_FAILED) {
466 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
467 exit(1);
468 }
469 }
26a5f13b
FB
470#else
471 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
472 if (!code_gen_buffer) {
473 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
474 exit(1);
475 }
476 map_exec(code_gen_buffer, code_gen_buffer_size);
477#endif
4369415f 478#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b
FB
479 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
480 code_gen_buffer_max_size = code_gen_buffer_size -
481 code_gen_max_block_size();
482 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
483 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
484}
485
486/* Must be called before using the QEMU cpus. 'tb_size' is the size
487 (in bytes) allocated to the translation buffer. Zero means default
488 size. */
489void cpu_exec_init_all(unsigned long tb_size)
490{
26a5f13b
FB
491 cpu_gen_init();
492 code_gen_alloc(tb_size);
493 code_gen_ptr = code_gen_buffer;
4369415f 494 page_init();
e2eef170 495#if !defined(CONFIG_USER_ONLY)
26a5f13b 496 io_mem_init();
e2eef170 497#endif
26a5f13b
FB
498}
499
9656f324
PB
500#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
501
502#define CPU_COMMON_SAVE_VERSION 1
503
504static void cpu_common_save(QEMUFile *f, void *opaque)
505{
506 CPUState *env = opaque;
507
508 qemu_put_be32s(f, &env->halted);
509 qemu_put_be32s(f, &env->interrupt_request);
510}
511
512static int cpu_common_load(QEMUFile *f, void *opaque, int version_id)
513{
514 CPUState *env = opaque;
515
516 if (version_id != CPU_COMMON_SAVE_VERSION)
517 return -EINVAL;
518
519 qemu_get_be32s(f, &env->halted);
75f482ae 520 qemu_get_be32s(f, &env->interrupt_request);
9656f324
PB
521 tlb_flush(env, 1);
522
523 return 0;
524}
525#endif
526
6a00d601 527void cpu_exec_init(CPUState *env)
fd6ce8f6 528{
6a00d601
FB
529 CPUState **penv;
530 int cpu_index;
531
6a00d601
FB
532 env->next_cpu = NULL;
533 penv = &first_cpu;
534 cpu_index = 0;
535 while (*penv != NULL) {
536 penv = (CPUState **)&(*penv)->next_cpu;
537 cpu_index++;
538 }
539 env->cpu_index = cpu_index;
540 *penv = env;
b3c7724c 541#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
9656f324
PB
542 register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION,
543 cpu_common_save, cpu_common_load, env);
b3c7724c
PB
544 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
545 cpu_save, cpu_load, env);
546#endif
fd6ce8f6
FB
547}
548
9fa3e853
FB
549static inline void invalidate_page_bitmap(PageDesc *p)
550{
551 if (p->code_bitmap) {
59817ccb 552 qemu_free(p->code_bitmap);
9fa3e853
FB
553 p->code_bitmap = NULL;
554 }
555 p->code_write_count = 0;
556}
557
fd6ce8f6
FB
558/* set to NULL all the 'first_tb' fields in all PageDescs */
559static void page_flush_tb(void)
560{
561 int i, j;
562 PageDesc *p;
563
564 for(i = 0; i < L1_SIZE; i++) {
565 p = l1_map[i];
566 if (p) {
9fa3e853
FB
567 for(j = 0; j < L2_SIZE; j++) {
568 p->first_tb = NULL;
569 invalidate_page_bitmap(p);
570 p++;
571 }
fd6ce8f6
FB
572 }
573 }
574}
575
576/* flush all the translation blocks */
d4e8164f 577/* XXX: tb_flush is currently not thread safe */
6a00d601 578void tb_flush(CPUState *env1)
fd6ce8f6 579{
6a00d601 580 CPUState *env;
0124311e 581#if defined(DEBUG_FLUSH)
ab3d1727
BS
582 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
583 (unsigned long)(code_gen_ptr - code_gen_buffer),
584 nb_tbs, nb_tbs > 0 ?
585 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 586#endif
26a5f13b 587 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
588 cpu_abort(env1, "Internal error: code buffer overflow\n");
589
fd6ce8f6 590 nb_tbs = 0;
3b46e624 591
6a00d601
FB
592 for(env = first_cpu; env != NULL; env = env->next_cpu) {
593 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
594 }
9fa3e853 595
8a8a608f 596 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 597 page_flush_tb();
9fa3e853 598
fd6ce8f6 599 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
600 /* XXX: flush processor icache at this point if cache flush is
601 expensive */
e3db7226 602 tb_flush_count++;
fd6ce8f6
FB
603}
604
605#ifdef DEBUG_TB_CHECK
606
bc98a7ef 607static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
608{
609 TranslationBlock *tb;
610 int i;
611 address &= TARGET_PAGE_MASK;
99773bd4
PB
612 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
613 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
614 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
615 address >= tb->pc + tb->size)) {
616 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
99773bd4 617 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
618 }
619 }
620 }
621}
622
623/* verify that all the pages have correct rights for code */
624static void tb_page_check(void)
625{
626 TranslationBlock *tb;
627 int i, flags1, flags2;
3b46e624 628
99773bd4
PB
629 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
630 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
631 flags1 = page_get_flags(tb->pc);
632 flags2 = page_get_flags(tb->pc + tb->size - 1);
633 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
634 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 635 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
636 }
637 }
638 }
639}
640
bdaf78e0 641static void tb_jmp_check(TranslationBlock *tb)
d4e8164f
FB
642{
643 TranslationBlock *tb1;
644 unsigned int n1;
645
646 /* suppress any remaining jumps to this TB */
647 tb1 = tb->jmp_first;
648 for(;;) {
649 n1 = (long)tb1 & 3;
650 tb1 = (TranslationBlock *)((long)tb1 & ~3);
651 if (n1 == 2)
652 break;
653 tb1 = tb1->jmp_next[n1];
654 }
655 /* check end of list */
656 if (tb1 != tb) {
657 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
658 }
659}
660
fd6ce8f6
FB
661#endif
662
663/* invalidate one TB */
664static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
665 int next_offset)
666{
667 TranslationBlock *tb1;
668 for(;;) {
669 tb1 = *ptb;
670 if (tb1 == tb) {
671 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
672 break;
673 }
674 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
675 }
676}
677
9fa3e853
FB
678static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
679{
680 TranslationBlock *tb1;
681 unsigned int n1;
682
683 for(;;) {
684 tb1 = *ptb;
685 n1 = (long)tb1 & 3;
686 tb1 = (TranslationBlock *)((long)tb1 & ~3);
687 if (tb1 == tb) {
688 *ptb = tb1->page_next[n1];
689 break;
690 }
691 ptb = &tb1->page_next[n1];
692 }
693}
694
d4e8164f
FB
695static inline void tb_jmp_remove(TranslationBlock *tb, int n)
696{
697 TranslationBlock *tb1, **ptb;
698 unsigned int n1;
699
700 ptb = &tb->jmp_next[n];
701 tb1 = *ptb;
702 if (tb1) {
703 /* find tb(n) in circular list */
704 for(;;) {
705 tb1 = *ptb;
706 n1 = (long)tb1 & 3;
707 tb1 = (TranslationBlock *)((long)tb1 & ~3);
708 if (n1 == n && tb1 == tb)
709 break;
710 if (n1 == 2) {
711 ptb = &tb1->jmp_first;
712 } else {
713 ptb = &tb1->jmp_next[n1];
714 }
715 }
716 /* now we can suppress tb(n) from the list */
717 *ptb = tb->jmp_next[n];
718
719 tb->jmp_next[n] = NULL;
720 }
721}
722
723/* reset the jump entry 'n' of a TB so that it is not chained to
724 another TB */
725static inline void tb_reset_jump(TranslationBlock *tb, int n)
726{
727 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
728}
729
2e70f6ef 730void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
fd6ce8f6 731{
6a00d601 732 CPUState *env;
8a40a180 733 PageDesc *p;
d4e8164f 734 unsigned int h, n1;
00f82b8a 735 target_phys_addr_t phys_pc;
8a40a180 736 TranslationBlock *tb1, *tb2;
3b46e624 737
8a40a180
FB
738 /* remove the TB from the hash list */
739 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
740 h = tb_phys_hash_func(phys_pc);
5fafdf24 741 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
742 offsetof(TranslationBlock, phys_hash_next));
743
744 /* remove the TB from the page list */
745 if (tb->page_addr[0] != page_addr) {
746 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
747 tb_page_remove(&p->first_tb, tb);
748 invalidate_page_bitmap(p);
749 }
750 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
751 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
752 tb_page_remove(&p->first_tb, tb);
753 invalidate_page_bitmap(p);
754 }
755
36bdbe54 756 tb_invalidated_flag = 1;
59817ccb 757
fd6ce8f6 758 /* remove the TB from the hash list */
8a40a180 759 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
760 for(env = first_cpu; env != NULL; env = env->next_cpu) {
761 if (env->tb_jmp_cache[h] == tb)
762 env->tb_jmp_cache[h] = NULL;
763 }
d4e8164f
FB
764
765 /* suppress this TB from the two jump lists */
766 tb_jmp_remove(tb, 0);
767 tb_jmp_remove(tb, 1);
768
769 /* suppress any remaining jumps to this TB */
770 tb1 = tb->jmp_first;
771 for(;;) {
772 n1 = (long)tb1 & 3;
773 if (n1 == 2)
774 break;
775 tb1 = (TranslationBlock *)((long)tb1 & ~3);
776 tb2 = tb1->jmp_next[n1];
777 tb_reset_jump(tb1, n1);
778 tb1->jmp_next[n1] = NULL;
779 tb1 = tb2;
780 }
781 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 782
e3db7226 783 tb_phys_invalidate_count++;
9fa3e853
FB
784}
785
786static inline void set_bits(uint8_t *tab, int start, int len)
787{
788 int end, mask, end1;
789
790 end = start + len;
791 tab += start >> 3;
792 mask = 0xff << (start & 7);
793 if ((start & ~7) == (end & ~7)) {
794 if (start < end) {
795 mask &= ~(0xff << (end & 7));
796 *tab |= mask;
797 }
798 } else {
799 *tab++ |= mask;
800 start = (start + 8) & ~7;
801 end1 = end & ~7;
802 while (start < end1) {
803 *tab++ = 0xff;
804 start += 8;
805 }
806 if (start < end) {
807 mask = ~(0xff << (end & 7));
808 *tab |= mask;
809 }
810 }
811}
812
813static void build_page_bitmap(PageDesc *p)
814{
815 int n, tb_start, tb_end;
816 TranslationBlock *tb;
3b46e624 817
b2a7081a 818 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
819 if (!p->code_bitmap)
820 return;
9fa3e853
FB
821
822 tb = p->first_tb;
823 while (tb != NULL) {
824 n = (long)tb & 3;
825 tb = (TranslationBlock *)((long)tb & ~3);
826 /* NOTE: this is subtle as a TB may span two physical pages */
827 if (n == 0) {
828 /* NOTE: tb_end may be after the end of the page, but
829 it is not a problem */
830 tb_start = tb->pc & ~TARGET_PAGE_MASK;
831 tb_end = tb_start + tb->size;
832 if (tb_end > TARGET_PAGE_SIZE)
833 tb_end = TARGET_PAGE_SIZE;
834 } else {
835 tb_start = 0;
836 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
837 }
838 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
839 tb = tb->page_next[n];
840 }
841}
842
2e70f6ef
PB
843TranslationBlock *tb_gen_code(CPUState *env,
844 target_ulong pc, target_ulong cs_base,
845 int flags, int cflags)
d720b93d
FB
846{
847 TranslationBlock *tb;
848 uint8_t *tc_ptr;
849 target_ulong phys_pc, phys_page2, virt_page2;
850 int code_gen_size;
851
c27004ec
FB
852 phys_pc = get_phys_addr_code(env, pc);
853 tb = tb_alloc(pc);
d720b93d
FB
854 if (!tb) {
855 /* flush must be done */
856 tb_flush(env);
857 /* cannot fail at this point */
c27004ec 858 tb = tb_alloc(pc);
2e70f6ef
PB
859 /* Don't forget to invalidate previous TB info. */
860 tb_invalidated_flag = 1;
d720b93d
FB
861 }
862 tc_ptr = code_gen_ptr;
863 tb->tc_ptr = tc_ptr;
864 tb->cs_base = cs_base;
865 tb->flags = flags;
866 tb->cflags = cflags;
d07bde88 867 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 868 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 869
d720b93d 870 /* check next page if needed */
c27004ec 871 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 872 phys_page2 = -1;
c27004ec 873 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
d720b93d
FB
874 phys_page2 = get_phys_addr_code(env, virt_page2);
875 }
876 tb_link_phys(tb, phys_pc, phys_page2);
2e70f6ef 877 return tb;
d720b93d 878}
3b46e624 879
9fa3e853
FB
880/* invalidate all TBs which intersect with the target physical page
881 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
882 the same physical page. 'is_cpu_write_access' should be true if called
883 from a real cpu write access: the virtual CPU will exit the current
884 TB if code is modified inside this TB. */
00f82b8a 885void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
d720b93d
FB
886 int is_cpu_write_access)
887{
6b917547 888 TranslationBlock *tb, *tb_next, *saved_tb;
d720b93d 889 CPUState *env = cpu_single_env;
9fa3e853 890 target_ulong tb_start, tb_end;
6b917547
AL
891 PageDesc *p;
892 int n;
893#ifdef TARGET_HAS_PRECISE_SMC
894 int current_tb_not_found = is_cpu_write_access;
895 TranslationBlock *current_tb = NULL;
896 int current_tb_modified = 0;
897 target_ulong current_pc = 0;
898 target_ulong current_cs_base = 0;
899 int current_flags = 0;
900#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
901
902 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 903 if (!p)
9fa3e853 904 return;
5fafdf24 905 if (!p->code_bitmap &&
d720b93d
FB
906 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
907 is_cpu_write_access) {
9fa3e853
FB
908 /* build code bitmap */
909 build_page_bitmap(p);
910 }
911
912 /* we remove all the TBs in the range [start, end[ */
913 /* XXX: see if in some cases it could be faster to invalidate all the code */
914 tb = p->first_tb;
915 while (tb != NULL) {
916 n = (long)tb & 3;
917 tb = (TranslationBlock *)((long)tb & ~3);
918 tb_next = tb->page_next[n];
919 /* NOTE: this is subtle as a TB may span two physical pages */
920 if (n == 0) {
921 /* NOTE: tb_end may be after the end of the page, but
922 it is not a problem */
923 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
924 tb_end = tb_start + tb->size;
925 } else {
926 tb_start = tb->page_addr[1];
927 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
928 }
929 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
930#ifdef TARGET_HAS_PRECISE_SMC
931 if (current_tb_not_found) {
932 current_tb_not_found = 0;
933 current_tb = NULL;
2e70f6ef 934 if (env->mem_io_pc) {
d720b93d 935 /* now we have a real cpu fault */
2e70f6ef 936 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
937 }
938 }
939 if (current_tb == tb &&
2e70f6ef 940 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
941 /* If we are modifying the current TB, we must stop
942 its execution. We could be more precise by checking
943 that the modification is after the current PC, but it
944 would require a specialized function to partially
945 restore the CPU state */
3b46e624 946
d720b93d 947 current_tb_modified = 1;
5fafdf24 948 cpu_restore_state(current_tb, env,
2e70f6ef 949 env->mem_io_pc, NULL);
6b917547
AL
950 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
951 &current_flags);
d720b93d
FB
952 }
953#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
954 /* we need to do that to handle the case where a signal
955 occurs while doing tb_phys_invalidate() */
956 saved_tb = NULL;
957 if (env) {
958 saved_tb = env->current_tb;
959 env->current_tb = NULL;
960 }
9fa3e853 961 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
962 if (env) {
963 env->current_tb = saved_tb;
964 if (env->interrupt_request && env->current_tb)
965 cpu_interrupt(env, env->interrupt_request);
966 }
9fa3e853
FB
967 }
968 tb = tb_next;
969 }
970#if !defined(CONFIG_USER_ONLY)
971 /* if no code remaining, no need to continue to use slow writes */
972 if (!p->first_tb) {
973 invalidate_page_bitmap(p);
d720b93d 974 if (is_cpu_write_access) {
2e70f6ef 975 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
976 }
977 }
978#endif
979#ifdef TARGET_HAS_PRECISE_SMC
980 if (current_tb_modified) {
981 /* we generate a block containing just the instruction
982 modifying the memory. It will ensure that it cannot modify
983 itself */
ea1c1802 984 env->current_tb = NULL;
2e70f6ef 985 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 986 cpu_resume_from_signal(env, NULL);
9fa3e853 987 }
fd6ce8f6 988#endif
9fa3e853 989}
fd6ce8f6 990
9fa3e853 991/* len must be <= 8 and start must be a multiple of len */
00f82b8a 992static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
9fa3e853
FB
993{
994 PageDesc *p;
995 int offset, b;
59817ccb 996#if 0
a4193c8a
FB
997 if (1) {
998 if (loglevel) {
5fafdf24 999 fprintf(logfile, "modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
2e70f6ef 1000 cpu_single_env->mem_io_vaddr, len,
5fafdf24 1001 cpu_single_env->eip,
a4193c8a
FB
1002 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1003 }
59817ccb
FB
1004 }
1005#endif
9fa3e853 1006 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1007 if (!p)
9fa3e853
FB
1008 return;
1009 if (p->code_bitmap) {
1010 offset = start & ~TARGET_PAGE_MASK;
1011 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1012 if (b & ((1 << len) - 1))
1013 goto do_invalidate;
1014 } else {
1015 do_invalidate:
d720b93d 1016 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1017 }
1018}
1019
9fa3e853 1020#if !defined(CONFIG_SOFTMMU)
00f82b8a 1021static void tb_invalidate_phys_page(target_phys_addr_t addr,
d720b93d 1022 unsigned long pc, void *puc)
9fa3e853 1023{
6b917547 1024 TranslationBlock *tb;
9fa3e853 1025 PageDesc *p;
6b917547 1026 int n;
d720b93d 1027#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1028 TranslationBlock *current_tb = NULL;
d720b93d 1029 CPUState *env = cpu_single_env;
6b917547
AL
1030 int current_tb_modified = 0;
1031 target_ulong current_pc = 0;
1032 target_ulong current_cs_base = 0;
1033 int current_flags = 0;
d720b93d 1034#endif
9fa3e853
FB
1035
1036 addr &= TARGET_PAGE_MASK;
1037 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1038 if (!p)
9fa3e853
FB
1039 return;
1040 tb = p->first_tb;
d720b93d
FB
1041#ifdef TARGET_HAS_PRECISE_SMC
1042 if (tb && pc != 0) {
1043 current_tb = tb_find_pc(pc);
1044 }
1045#endif
9fa3e853
FB
1046 while (tb != NULL) {
1047 n = (long)tb & 3;
1048 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1049#ifdef TARGET_HAS_PRECISE_SMC
1050 if (current_tb == tb &&
2e70f6ef 1051 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1052 /* If we are modifying the current TB, we must stop
1053 its execution. We could be more precise by checking
1054 that the modification is after the current PC, but it
1055 would require a specialized function to partially
1056 restore the CPU state */
3b46e624 1057
d720b93d
FB
1058 current_tb_modified = 1;
1059 cpu_restore_state(current_tb, env, pc, puc);
6b917547
AL
1060 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1061 &current_flags);
d720b93d
FB
1062 }
1063#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1064 tb_phys_invalidate(tb, addr);
1065 tb = tb->page_next[n];
1066 }
fd6ce8f6 1067 p->first_tb = NULL;
d720b93d
FB
1068#ifdef TARGET_HAS_PRECISE_SMC
1069 if (current_tb_modified) {
1070 /* we generate a block containing just the instruction
1071 modifying the memory. It will ensure that it cannot modify
1072 itself */
ea1c1802 1073 env->current_tb = NULL;
2e70f6ef 1074 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1075 cpu_resume_from_signal(env, puc);
1076 }
1077#endif
fd6ce8f6 1078}
9fa3e853 1079#endif
fd6ce8f6
FB
1080
1081/* add the tb in the target page and protect it if necessary */
5fafdf24 1082static inline void tb_alloc_page(TranslationBlock *tb,
53a5960a 1083 unsigned int n, target_ulong page_addr)
fd6ce8f6
FB
1084{
1085 PageDesc *p;
9fa3e853
FB
1086 TranslationBlock *last_first_tb;
1087
1088 tb->page_addr[n] = page_addr;
3a7d929e 1089 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
9fa3e853
FB
1090 tb->page_next[n] = p->first_tb;
1091 last_first_tb = p->first_tb;
1092 p->first_tb = (TranslationBlock *)((long)tb | n);
1093 invalidate_page_bitmap(p);
fd6ce8f6 1094
107db443 1095#if defined(TARGET_HAS_SMC) || 1
d720b93d 1096
9fa3e853 1097#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1098 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1099 target_ulong addr;
1100 PageDesc *p2;
9fa3e853
FB
1101 int prot;
1102
fd6ce8f6
FB
1103 /* force the host page as non writable (writes will have a
1104 page fault + mprotect overhead) */
53a5960a 1105 page_addr &= qemu_host_page_mask;
fd6ce8f6 1106 prot = 0;
53a5960a
PB
1107 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1108 addr += TARGET_PAGE_SIZE) {
1109
1110 p2 = page_find (addr >> TARGET_PAGE_BITS);
1111 if (!p2)
1112 continue;
1113 prot |= p2->flags;
1114 p2->flags &= ~PAGE_WRITE;
1115 page_get_flags(addr);
1116 }
5fafdf24 1117 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1118 (prot & PAGE_BITS) & ~PAGE_WRITE);
1119#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1120 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1121 page_addr);
fd6ce8f6 1122#endif
fd6ce8f6 1123 }
9fa3e853
FB
1124#else
1125 /* if some code is already present, then the pages are already
1126 protected. So we handle the case where only the first TB is
1127 allocated in a physical page */
1128 if (!last_first_tb) {
6a00d601 1129 tlb_protect_code(page_addr);
9fa3e853
FB
1130 }
1131#endif
d720b93d
FB
1132
1133#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1134}
1135
1136/* Allocate a new translation block. Flush the translation buffer if
1137 too many translation blocks or too much generated code. */
c27004ec 1138TranslationBlock *tb_alloc(target_ulong pc)
fd6ce8f6
FB
1139{
1140 TranslationBlock *tb;
fd6ce8f6 1141
26a5f13b
FB
1142 if (nb_tbs >= code_gen_max_blocks ||
1143 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
d4e8164f 1144 return NULL;
fd6ce8f6
FB
1145 tb = &tbs[nb_tbs++];
1146 tb->pc = pc;
b448f2f3 1147 tb->cflags = 0;
d4e8164f
FB
1148 return tb;
1149}
1150
2e70f6ef
PB
1151void tb_free(TranslationBlock *tb)
1152{
bf20dc07 1153 /* In practice this is mostly used for single use temporary TB
2e70f6ef
PB
1154 Ignore the hard cases and just back up if this TB happens to
1155 be the last one generated. */
1156 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1157 code_gen_ptr = tb->tc_ptr;
1158 nb_tbs--;
1159 }
1160}
1161
9fa3e853
FB
1162/* add a new TB and link it to the physical page tables. phys_page2 is
1163 (-1) to indicate that only one page contains the TB. */
5fafdf24 1164void tb_link_phys(TranslationBlock *tb,
9fa3e853 1165 target_ulong phys_pc, target_ulong phys_page2)
d4e8164f 1166{
9fa3e853
FB
1167 unsigned int h;
1168 TranslationBlock **ptb;
1169
c8a706fe
PB
1170 /* Grab the mmap lock to stop another thread invalidating this TB
1171 before we are done. */
1172 mmap_lock();
9fa3e853
FB
1173 /* add in the physical hash table */
1174 h = tb_phys_hash_func(phys_pc);
1175 ptb = &tb_phys_hash[h];
1176 tb->phys_hash_next = *ptb;
1177 *ptb = tb;
fd6ce8f6
FB
1178
1179 /* add in the page list */
9fa3e853
FB
1180 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1181 if (phys_page2 != -1)
1182 tb_alloc_page(tb, 1, phys_page2);
1183 else
1184 tb->page_addr[1] = -1;
9fa3e853 1185
d4e8164f
FB
1186 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1187 tb->jmp_next[0] = NULL;
1188 tb->jmp_next[1] = NULL;
1189
1190 /* init original jump addresses */
1191 if (tb->tb_next_offset[0] != 0xffff)
1192 tb_reset_jump(tb, 0);
1193 if (tb->tb_next_offset[1] != 0xffff)
1194 tb_reset_jump(tb, 1);
8a40a180
FB
1195
1196#ifdef DEBUG_TB_CHECK
1197 tb_page_check();
1198#endif
c8a706fe 1199 mmap_unlock();
fd6ce8f6
FB
1200}
1201
9fa3e853
FB
1202/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1203 tb[1].tc_ptr. Return NULL if not found */
1204TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1205{
9fa3e853
FB
1206 int m_min, m_max, m;
1207 unsigned long v;
1208 TranslationBlock *tb;
a513fe19
FB
1209
1210 if (nb_tbs <= 0)
1211 return NULL;
1212 if (tc_ptr < (unsigned long)code_gen_buffer ||
1213 tc_ptr >= (unsigned long)code_gen_ptr)
1214 return NULL;
1215 /* binary search (cf Knuth) */
1216 m_min = 0;
1217 m_max = nb_tbs - 1;
1218 while (m_min <= m_max) {
1219 m = (m_min + m_max) >> 1;
1220 tb = &tbs[m];
1221 v = (unsigned long)tb->tc_ptr;
1222 if (v == tc_ptr)
1223 return tb;
1224 else if (tc_ptr < v) {
1225 m_max = m - 1;
1226 } else {
1227 m_min = m + 1;
1228 }
5fafdf24 1229 }
a513fe19
FB
1230 return &tbs[m_max];
1231}
7501267e 1232
ea041c0e
FB
1233static void tb_reset_jump_recursive(TranslationBlock *tb);
1234
1235static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1236{
1237 TranslationBlock *tb1, *tb_next, **ptb;
1238 unsigned int n1;
1239
1240 tb1 = tb->jmp_next[n];
1241 if (tb1 != NULL) {
1242 /* find head of list */
1243 for(;;) {
1244 n1 = (long)tb1 & 3;
1245 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1246 if (n1 == 2)
1247 break;
1248 tb1 = tb1->jmp_next[n1];
1249 }
1250 /* we are now sure now that tb jumps to tb1 */
1251 tb_next = tb1;
1252
1253 /* remove tb from the jmp_first list */
1254 ptb = &tb_next->jmp_first;
1255 for(;;) {
1256 tb1 = *ptb;
1257 n1 = (long)tb1 & 3;
1258 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1259 if (n1 == n && tb1 == tb)
1260 break;
1261 ptb = &tb1->jmp_next[n1];
1262 }
1263 *ptb = tb->jmp_next[n];
1264 tb->jmp_next[n] = NULL;
3b46e624 1265
ea041c0e
FB
1266 /* suppress the jump to next tb in generated code */
1267 tb_reset_jump(tb, n);
1268
0124311e 1269 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1270 tb_reset_jump_recursive(tb_next);
1271 }
1272}
1273
1274static void tb_reset_jump_recursive(TranslationBlock *tb)
1275{
1276 tb_reset_jump_recursive2(tb, 0);
1277 tb_reset_jump_recursive2(tb, 1);
1278}
1279
1fddef4b 1280#if defined(TARGET_HAS_ICE)
d720b93d
FB
1281static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1282{
9b3c35e0
JM
1283 target_phys_addr_t addr;
1284 target_ulong pd;
c2f07f81
PB
1285 ram_addr_t ram_addr;
1286 PhysPageDesc *p;
d720b93d 1287
c2f07f81
PB
1288 addr = cpu_get_phys_page_debug(env, pc);
1289 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1290 if (!p) {
1291 pd = IO_MEM_UNASSIGNED;
1292 } else {
1293 pd = p->phys_offset;
1294 }
1295 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1296 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1297}
c27004ec 1298#endif
d720b93d 1299
6658ffb8 1300/* Add a watchpoint. */
a1d1bb31
AL
1301int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1302 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1303{
a1d1bb31 1304 CPUWatchpoint *wp;
6658ffb8 1305
a1d1bb31
AL
1306 wp = qemu_malloc(sizeof(*wp));
1307 if (!wp)
1308 return -ENOBUFS;
1309
1310 wp->vaddr = addr;
1311 wp->len_mask = 0;
1312 wp->flags = flags;
1313
1314 wp->next = env->watchpoints;
1315 wp->prev = NULL;
1316 if (wp->next)
1317 wp->next->prev = wp;
1318 env->watchpoints = wp;
6658ffb8 1319
6658ffb8
PB
1320 tlb_flush_page(env, addr);
1321 /* FIXME: This flush is needed because of the hack to make memory ops
1322 terminate the TB. It can be removed once the proper IO trap and
1323 re-execute bits are in. */
1324 tb_flush(env);
a1d1bb31
AL
1325
1326 if (watchpoint)
1327 *watchpoint = wp;
1328 return 0;
6658ffb8
PB
1329}
1330
a1d1bb31
AL
1331/* Remove a specific watchpoint. */
1332int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1333 int flags)
6658ffb8 1334{
a1d1bb31 1335 CPUWatchpoint *wp;
6658ffb8 1336
a1d1bb31
AL
1337 for (wp = env->watchpoints; wp != NULL; wp = wp->next) {
1338 if (addr == wp->vaddr && flags == wp->flags) {
1339 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1340 return 0;
1341 }
1342 }
a1d1bb31 1343 return -ENOENT;
6658ffb8
PB
1344}
1345
a1d1bb31
AL
1346/* Remove a specific watchpoint by reference. */
1347void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1348{
1349 if (watchpoint->next)
1350 watchpoint->next->prev = watchpoint->prev;
1351 if (watchpoint->prev)
1352 watchpoint->prev->next = watchpoint->next;
1353 else
1354 env->watchpoints = watchpoint->next;
7d03f82f 1355
a1d1bb31
AL
1356 tlb_flush_page(env, watchpoint->vaddr);
1357
1358 qemu_free(watchpoint);
1359}
1360
1361/* Remove all matching watchpoints. */
1362void cpu_watchpoint_remove_all(CPUState *env, int mask)
1363{
1364 CPUWatchpoint *wp;
1365
1366 for (wp = env->watchpoints; wp != NULL; wp = wp->next)
1367 if (wp->flags & mask)
1368 cpu_watchpoint_remove_by_ref(env, wp);
7d03f82f
EI
1369}
1370
a1d1bb31
AL
1371/* Add a breakpoint. */
1372int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1373 CPUBreakpoint **breakpoint)
4c3a88a2 1374{
1fddef4b 1375#if defined(TARGET_HAS_ICE)
a1d1bb31 1376 CPUBreakpoint *bp;
3b46e624 1377
a1d1bb31
AL
1378 bp = qemu_malloc(sizeof(*bp));
1379 if (!bp)
1380 return -ENOBUFS;
4c3a88a2 1381
a1d1bb31
AL
1382 bp->pc = pc;
1383 bp->flags = flags;
1384
1385 bp->next = env->breakpoints;
1386 bp->prev = NULL;
1387 if (bp->next)
1388 bp->next->prev = bp;
1389 env->breakpoints = bp;
3b46e624 1390
d720b93d 1391 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1392
1393 if (breakpoint)
1394 *breakpoint = bp;
4c3a88a2
FB
1395 return 0;
1396#else
a1d1bb31 1397 return -ENOSYS;
4c3a88a2
FB
1398#endif
1399}
1400
a1d1bb31
AL
1401/* Remove a specific breakpoint. */
1402int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1403{
7d03f82f 1404#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1405 CPUBreakpoint *bp;
1406
1407 for (bp = env->breakpoints; bp != NULL; bp = bp->next) {
1408 if (bp->pc == pc && bp->flags == flags) {
1409 cpu_breakpoint_remove_by_ref(env, bp);
1410 return 0;
1411 }
7d03f82f 1412 }
a1d1bb31
AL
1413 return -ENOENT;
1414#else
1415 return -ENOSYS;
7d03f82f
EI
1416#endif
1417}
1418
a1d1bb31
AL
1419/* Remove a specific breakpoint by reference. */
1420void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1421{
1fddef4b 1422#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1423 if (breakpoint->next)
1424 breakpoint->next->prev = breakpoint->prev;
1425 if (breakpoint->prev)
1426 breakpoint->prev->next = breakpoint->next;
1427 else
1428 env->breakpoints = breakpoint->next;
d720b93d 1429
a1d1bb31
AL
1430 breakpoint_invalidate(env, breakpoint->pc);
1431
1432 qemu_free(breakpoint);
1433#endif
1434}
1435
1436/* Remove all matching breakpoints. */
1437void cpu_breakpoint_remove_all(CPUState *env, int mask)
1438{
1439#if defined(TARGET_HAS_ICE)
1440 CPUBreakpoint *bp;
1441
1442 for (bp = env->breakpoints; bp != NULL; bp = bp->next)
1443 if (bp->flags & mask)
1444 cpu_breakpoint_remove_by_ref(env, bp);
4c3a88a2
FB
1445#endif
1446}
1447
c33a346e
FB
1448/* enable or disable single step mode. EXCP_DEBUG is returned by the
1449 CPU loop after each instruction */
1450void cpu_single_step(CPUState *env, int enabled)
1451{
1fddef4b 1452#if defined(TARGET_HAS_ICE)
c33a346e
FB
1453 if (env->singlestep_enabled != enabled) {
1454 env->singlestep_enabled = enabled;
1455 /* must flush all the translated code to avoid inconsistancies */
9fa3e853 1456 /* XXX: only flush what is necessary */
0124311e 1457 tb_flush(env);
c33a346e
FB
1458 }
1459#endif
1460}
1461
34865134
FB
1462/* enable or disable low levels log */
1463void cpu_set_log(int log_flags)
1464{
1465 loglevel = log_flags;
1466 if (loglevel && !logfile) {
11fcfab4 1467 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1468 if (!logfile) {
1469 perror(logfilename);
1470 _exit(1);
1471 }
9fa3e853
FB
1472#if !defined(CONFIG_SOFTMMU)
1473 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1474 {
b55266b5 1475 static char logfile_buf[4096];
9fa3e853
FB
1476 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1477 }
1478#else
34865134 1479 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1480#endif
e735b91c
PB
1481 log_append = 1;
1482 }
1483 if (!loglevel && logfile) {
1484 fclose(logfile);
1485 logfile = NULL;
34865134
FB
1486 }
1487}
1488
1489void cpu_set_log_filename(const char *filename)
1490{
1491 logfilename = strdup(filename);
e735b91c
PB
1492 if (logfile) {
1493 fclose(logfile);
1494 logfile = NULL;
1495 }
1496 cpu_set_log(loglevel);
34865134 1497}
c33a346e 1498
0124311e 1499/* mask must never be zero, except for A20 change call */
68a79315 1500void cpu_interrupt(CPUState *env, int mask)
ea041c0e 1501{
d5975363 1502#if !defined(USE_NPTL)
ea041c0e 1503 TranslationBlock *tb;
15a51156 1504 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
d5975363 1505#endif
2e70f6ef 1506 int old_mask;
59817ccb 1507
2e70f6ef 1508 old_mask = env->interrupt_request;
d5975363 1509 /* FIXME: This is probably not threadsafe. A different thread could
bf20dc07 1510 be in the middle of a read-modify-write operation. */
68a79315 1511 env->interrupt_request |= mask;
d5975363
PB
1512#if defined(USE_NPTL)
1513 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1514 problem and hope the cpu will stop of its own accord. For userspace
1515 emulation this often isn't actually as bad as it sounds. Often
1516 signals are used primarily to interrupt blocking syscalls. */
1517#else
2e70f6ef 1518 if (use_icount) {
266910c4 1519 env->icount_decr.u16.high = 0xffff;
2e70f6ef
PB
1520#ifndef CONFIG_USER_ONLY
1521 /* CPU_INTERRUPT_EXIT isn't a real interrupt. It just means
1522 an async event happened and we need to process it. */
1523 if (!can_do_io(env)
1524 && (mask & ~(old_mask | CPU_INTERRUPT_EXIT)) != 0) {
1525 cpu_abort(env, "Raised interrupt while not in I/O function");
1526 }
1527#endif
1528 } else {
1529 tb = env->current_tb;
1530 /* if the cpu is currently executing code, we must unlink it and
1531 all the potentially executing TB */
1532 if (tb && !testandset(&interrupt_lock)) {
1533 env->current_tb = NULL;
1534 tb_reset_jump_recursive(tb);
1535 resetlock(&interrupt_lock);
1536 }
ea041c0e 1537 }
d5975363 1538#endif
ea041c0e
FB
1539}
1540
b54ad049
FB
1541void cpu_reset_interrupt(CPUState *env, int mask)
1542{
1543 env->interrupt_request &= ~mask;
1544}
1545
c7cd6a37 1546const CPULogItem cpu_log_items[] = {
5fafdf24 1547 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1548 "show generated host assembly code for each compiled TB" },
1549 { CPU_LOG_TB_IN_ASM, "in_asm",
1550 "show target assembly code for each compiled TB" },
5fafdf24 1551 { CPU_LOG_TB_OP, "op",
57fec1fe 1552 "show micro ops for each compiled TB" },
f193c797 1553 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1554 "show micro ops "
1555#ifdef TARGET_I386
1556 "before eflags optimization and "
f193c797 1557#endif
e01a1157 1558 "after liveness analysis" },
f193c797
FB
1559 { CPU_LOG_INT, "int",
1560 "show interrupts/exceptions in short format" },
1561 { CPU_LOG_EXEC, "exec",
1562 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1563 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1564 "show CPU state before block translation" },
f193c797
FB
1565#ifdef TARGET_I386
1566 { CPU_LOG_PCALL, "pcall",
1567 "show protected mode far calls/returns/exceptions" },
1568#endif
8e3a9fd2 1569#ifdef DEBUG_IOPORT
fd872598
FB
1570 { CPU_LOG_IOPORT, "ioport",
1571 "show all i/o ports accesses" },
8e3a9fd2 1572#endif
f193c797
FB
1573 { 0, NULL, NULL },
1574};
1575
1576static int cmp1(const char *s1, int n, const char *s2)
1577{
1578 if (strlen(s2) != n)
1579 return 0;
1580 return memcmp(s1, s2, n) == 0;
1581}
3b46e624 1582
f193c797
FB
1583/* takes a comma separated list of log masks. Return 0 if error. */
1584int cpu_str_to_log_mask(const char *str)
1585{
c7cd6a37 1586 const CPULogItem *item;
f193c797
FB
1587 int mask;
1588 const char *p, *p1;
1589
1590 p = str;
1591 mask = 0;
1592 for(;;) {
1593 p1 = strchr(p, ',');
1594 if (!p1)
1595 p1 = p + strlen(p);
8e3a9fd2
FB
1596 if(cmp1(p,p1-p,"all")) {
1597 for(item = cpu_log_items; item->mask != 0; item++) {
1598 mask |= item->mask;
1599 }
1600 } else {
f193c797
FB
1601 for(item = cpu_log_items; item->mask != 0; item++) {
1602 if (cmp1(p, p1 - p, item->name))
1603 goto found;
1604 }
1605 return 0;
8e3a9fd2 1606 }
f193c797
FB
1607 found:
1608 mask |= item->mask;
1609 if (*p1 != ',')
1610 break;
1611 p = p1 + 1;
1612 }
1613 return mask;
1614}
ea041c0e 1615
7501267e
FB
1616void cpu_abort(CPUState *env, const char *fmt, ...)
1617{
1618 va_list ap;
493ae1f0 1619 va_list ap2;
7501267e
FB
1620
1621 va_start(ap, fmt);
493ae1f0 1622 va_copy(ap2, ap);
7501267e
FB
1623 fprintf(stderr, "qemu: fatal: ");
1624 vfprintf(stderr, fmt, ap);
1625 fprintf(stderr, "\n");
1626#ifdef TARGET_I386
7fe48483
FB
1627 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1628#else
1629 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1630#endif
924edcae 1631 if (logfile) {
f9373291 1632 fprintf(logfile, "qemu: fatal: ");
493ae1f0 1633 vfprintf(logfile, fmt, ap2);
f9373291
JM
1634 fprintf(logfile, "\n");
1635#ifdef TARGET_I386
1636 cpu_dump_state(env, logfile, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1637#else
1638 cpu_dump_state(env, logfile, fprintf, 0);
1639#endif
924edcae
AZ
1640 fflush(logfile);
1641 fclose(logfile);
1642 }
493ae1f0 1643 va_end(ap2);
f9373291 1644 va_end(ap);
7501267e
FB
1645 abort();
1646}
1647
c5be9f08
TS
1648CPUState *cpu_copy(CPUState *env)
1649{
01ba9816 1650 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1651 /* preserve chaining and index */
1652 CPUState *next_cpu = new_env->next_cpu;
1653 int cpu_index = new_env->cpu_index;
1654 memcpy(new_env, env, sizeof(CPUState));
1655 new_env->next_cpu = next_cpu;
1656 new_env->cpu_index = cpu_index;
1657 return new_env;
1658}
1659
0124311e
FB
1660#if !defined(CONFIG_USER_ONLY)
1661
5c751e99
EI
1662static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1663{
1664 unsigned int i;
1665
1666 /* Discard jump cache entries for any tb which might potentially
1667 overlap the flushed page. */
1668 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1669 memset (&env->tb_jmp_cache[i], 0,
1670 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1671
1672 i = tb_jmp_cache_hash_page(addr);
1673 memset (&env->tb_jmp_cache[i], 0,
1674 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1675}
1676
ee8b7021
FB
1677/* NOTE: if flush_global is true, also flush global entries (not
1678 implemented yet) */
1679void tlb_flush(CPUState *env, int flush_global)
33417e70 1680{
33417e70 1681 int i;
0124311e 1682
9fa3e853
FB
1683#if defined(DEBUG_TLB)
1684 printf("tlb_flush:\n");
1685#endif
0124311e
FB
1686 /* must reset current TB so that interrupts cannot modify the
1687 links while we are modifying them */
1688 env->current_tb = NULL;
1689
33417e70 1690 for(i = 0; i < CPU_TLB_SIZE; i++) {
84b7b8e7
FB
1691 env->tlb_table[0][i].addr_read = -1;
1692 env->tlb_table[0][i].addr_write = -1;
1693 env->tlb_table[0][i].addr_code = -1;
1694 env->tlb_table[1][i].addr_read = -1;
1695 env->tlb_table[1][i].addr_write = -1;
1696 env->tlb_table[1][i].addr_code = -1;
6fa4cea9
JM
1697#if (NB_MMU_MODES >= 3)
1698 env->tlb_table[2][i].addr_read = -1;
1699 env->tlb_table[2][i].addr_write = -1;
1700 env->tlb_table[2][i].addr_code = -1;
1701#if (NB_MMU_MODES == 4)
1702 env->tlb_table[3][i].addr_read = -1;
1703 env->tlb_table[3][i].addr_write = -1;
1704 env->tlb_table[3][i].addr_code = -1;
1705#endif
1706#endif
33417e70 1707 }
9fa3e853 1708
8a40a180 1709 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 1710
0a962c02
FB
1711#ifdef USE_KQEMU
1712 if (env->kqemu_enabled) {
1713 kqemu_flush(env, flush_global);
1714 }
9fa3e853 1715#endif
e3db7226 1716 tlb_flush_count++;
33417e70
FB
1717}
1718
274da6b2 1719static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1720{
5fafdf24 1721 if (addr == (tlb_entry->addr_read &
84b7b8e7 1722 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1723 addr == (tlb_entry->addr_write &
84b7b8e7 1724 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1725 addr == (tlb_entry->addr_code &
84b7b8e7
FB
1726 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1727 tlb_entry->addr_read = -1;
1728 tlb_entry->addr_write = -1;
1729 tlb_entry->addr_code = -1;
1730 }
61382a50
FB
1731}
1732
2e12669a 1733void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 1734{
8a40a180 1735 int i;
0124311e 1736
9fa3e853 1737#if defined(DEBUG_TLB)
108c49b8 1738 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 1739#endif
0124311e
FB
1740 /* must reset current TB so that interrupts cannot modify the
1741 links while we are modifying them */
1742 env->current_tb = NULL;
61382a50
FB
1743
1744 addr &= TARGET_PAGE_MASK;
1745 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
84b7b8e7
FB
1746 tlb_flush_entry(&env->tlb_table[0][i], addr);
1747 tlb_flush_entry(&env->tlb_table[1][i], addr);
6fa4cea9
JM
1748#if (NB_MMU_MODES >= 3)
1749 tlb_flush_entry(&env->tlb_table[2][i], addr);
1750#if (NB_MMU_MODES == 4)
1751 tlb_flush_entry(&env->tlb_table[3][i], addr);
1752#endif
1753#endif
0124311e 1754
5c751e99 1755 tlb_flush_jmp_cache(env, addr);
9fa3e853 1756
0a962c02
FB
1757#ifdef USE_KQEMU
1758 if (env->kqemu_enabled) {
1759 kqemu_flush_page(env, addr);
1760 }
1761#endif
9fa3e853
FB
1762}
1763
9fa3e853
FB
1764/* update the TLBs so that writes to code in the virtual page 'addr'
1765 can be detected */
6a00d601 1766static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 1767{
5fafdf24 1768 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
1769 ram_addr + TARGET_PAGE_SIZE,
1770 CODE_DIRTY_FLAG);
9fa3e853
FB
1771}
1772
9fa3e853 1773/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 1774 tested for self modifying code */
5fafdf24 1775static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 1776 target_ulong vaddr)
9fa3e853 1777{
3a7d929e 1778 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1ccde1cb
FB
1779}
1780
5fafdf24 1781static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
1782 unsigned long start, unsigned long length)
1783{
1784 unsigned long addr;
84b7b8e7
FB
1785 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1786 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 1787 if ((addr - start) < length) {
0f459d16 1788 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
1789 }
1790 }
1791}
1792
3a7d929e 1793void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 1794 int dirty_flags)
1ccde1cb
FB
1795{
1796 CPUState *env;
4f2ac237 1797 unsigned long length, start1;
0a962c02
FB
1798 int i, mask, len;
1799 uint8_t *p;
1ccde1cb
FB
1800
1801 start &= TARGET_PAGE_MASK;
1802 end = TARGET_PAGE_ALIGN(end);
1803
1804 length = end - start;
1805 if (length == 0)
1806 return;
0a962c02 1807 len = length >> TARGET_PAGE_BITS;
3a7d929e 1808#ifdef USE_KQEMU
6a00d601
FB
1809 /* XXX: should not depend on cpu context */
1810 env = first_cpu;
3a7d929e 1811 if (env->kqemu_enabled) {
f23db169
FB
1812 ram_addr_t addr;
1813 addr = start;
1814 for(i = 0; i < len; i++) {
1815 kqemu_set_notdirty(env, addr);
1816 addr += TARGET_PAGE_SIZE;
1817 }
3a7d929e
FB
1818 }
1819#endif
f23db169
FB
1820 mask = ~dirty_flags;
1821 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1822 for(i = 0; i < len; i++)
1823 p[i] &= mask;
1824
1ccde1cb
FB
1825 /* we modify the TLB cache so that the dirty bit will be set again
1826 when accessing the range */
59817ccb 1827 start1 = start + (unsigned long)phys_ram_base;
6a00d601
FB
1828 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1829 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1830 tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length);
6a00d601 1831 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1832 tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length);
6fa4cea9
JM
1833#if (NB_MMU_MODES >= 3)
1834 for(i = 0; i < CPU_TLB_SIZE; i++)
1835 tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length);
1836#if (NB_MMU_MODES == 4)
1837 for(i = 0; i < CPU_TLB_SIZE; i++)
1838 tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length);
1839#endif
1840#endif
6a00d601 1841 }
1ccde1cb
FB
1842}
1843
74576198
AL
1844int cpu_physical_memory_set_dirty_tracking(int enable)
1845{
1846 in_migration = enable;
1847 return 0;
1848}
1849
1850int cpu_physical_memory_get_dirty_tracking(void)
1851{
1852 return in_migration;
1853}
1854
3a7d929e
FB
1855static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1856{
1857 ram_addr_t ram_addr;
1858
84b7b8e7 1859 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5fafdf24 1860 ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) +
3a7d929e
FB
1861 tlb_entry->addend - (unsigned long)phys_ram_base;
1862 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 1863 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
1864 }
1865 }
1866}
1867
1868/* update the TLB according to the current state of the dirty bits */
1869void cpu_tlb_update_dirty(CPUState *env)
1870{
1871 int i;
1872 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1873 tlb_update_dirty(&env->tlb_table[0][i]);
3a7d929e 1874 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1875 tlb_update_dirty(&env->tlb_table[1][i]);
6fa4cea9
JM
1876#if (NB_MMU_MODES >= 3)
1877 for(i = 0; i < CPU_TLB_SIZE; i++)
1878 tlb_update_dirty(&env->tlb_table[2][i]);
1879#if (NB_MMU_MODES == 4)
1880 for(i = 0; i < CPU_TLB_SIZE; i++)
1881 tlb_update_dirty(&env->tlb_table[3][i]);
1882#endif
1883#endif
3a7d929e
FB
1884}
1885
0f459d16 1886static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 1887{
0f459d16
PB
1888 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
1889 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
1890}
1891
0f459d16
PB
1892/* update the TLB corresponding to virtual page vaddr
1893 so that it is no longer dirty */
1894static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 1895{
1ccde1cb
FB
1896 int i;
1897
0f459d16 1898 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 1899 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
0f459d16
PB
1900 tlb_set_dirty1(&env->tlb_table[0][i], vaddr);
1901 tlb_set_dirty1(&env->tlb_table[1][i], vaddr);
6fa4cea9 1902#if (NB_MMU_MODES >= 3)
0f459d16 1903 tlb_set_dirty1(&env->tlb_table[2][i], vaddr);
6fa4cea9 1904#if (NB_MMU_MODES == 4)
0f459d16 1905 tlb_set_dirty1(&env->tlb_table[3][i], vaddr);
6fa4cea9
JM
1906#endif
1907#endif
9fa3e853
FB
1908}
1909
59817ccb
FB
1910/* add a new TLB entry. At most one entry for a given virtual address
1911 is permitted. Return 0 if OK or 2 if the page could not be mapped
1912 (can only happen in non SOFTMMU mode for I/O pages or pages
1913 conflicting with the host address space). */
5fafdf24
TS
1914int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1915 target_phys_addr_t paddr, int prot,
6ebbf390 1916 int mmu_idx, int is_softmmu)
9fa3e853 1917{
92e873b9 1918 PhysPageDesc *p;
4f2ac237 1919 unsigned long pd;
9fa3e853 1920 unsigned int index;
4f2ac237 1921 target_ulong address;
0f459d16 1922 target_ulong code_address;
108c49b8 1923 target_phys_addr_t addend;
9fa3e853 1924 int ret;
84b7b8e7 1925 CPUTLBEntry *te;
a1d1bb31 1926 CPUWatchpoint *wp;
0f459d16 1927 target_phys_addr_t iotlb;
9fa3e853 1928
92e873b9 1929 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
1930 if (!p) {
1931 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
1932 } else {
1933 pd = p->phys_offset;
9fa3e853
FB
1934 }
1935#if defined(DEBUG_TLB)
6ebbf390
JM
1936 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1937 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
9fa3e853
FB
1938#endif
1939
1940 ret = 0;
0f459d16
PB
1941 address = vaddr;
1942 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
1943 /* IO memory case (romd handled later) */
1944 address |= TLB_MMIO;
1945 }
1946 addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK);
1947 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
1948 /* Normal RAM. */
1949 iotlb = pd & TARGET_PAGE_MASK;
1950 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
1951 iotlb |= IO_MEM_NOTDIRTY;
1952 else
1953 iotlb |= IO_MEM_ROM;
1954 } else {
1955 /* IO handlers are currently passed a phsical address.
1956 It would be nice to pass an offset from the base address
1957 of that region. This would avoid having to special case RAM,
1958 and avoid full address decoding in every device.
1959 We can't use the high bits of pd for this because
1960 IO_MEM_ROMD uses these as a ram address. */
1961 iotlb = (pd & ~TARGET_PAGE_MASK) + paddr;
1962 }
1963
1964 code_address = address;
1965 /* Make accesses to pages with watchpoints go via the
1966 watchpoint trap routines. */
a1d1bb31
AL
1967 for (wp = env->watchpoints; wp != NULL; wp = wp->next) {
1968 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
0f459d16
PB
1969 iotlb = io_mem_watch + paddr;
1970 /* TODO: The memory case can be optimized by not trapping
1971 reads of pages with a write breakpoint. */
1972 address |= TLB_MMIO;
6658ffb8 1973 }
0f459d16 1974 }
d79acba4 1975
0f459d16
PB
1976 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1977 env->iotlb[mmu_idx][index] = iotlb - vaddr;
1978 te = &env->tlb_table[mmu_idx][index];
1979 te->addend = addend - vaddr;
1980 if (prot & PAGE_READ) {
1981 te->addr_read = address;
1982 } else {
1983 te->addr_read = -1;
1984 }
5c751e99 1985
0f459d16
PB
1986 if (prot & PAGE_EXEC) {
1987 te->addr_code = code_address;
1988 } else {
1989 te->addr_code = -1;
1990 }
1991 if (prot & PAGE_WRITE) {
1992 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
1993 (pd & IO_MEM_ROMD)) {
1994 /* Write access calls the I/O callback. */
1995 te->addr_write = address | TLB_MMIO;
1996 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
1997 !cpu_physical_memory_is_dirty(pd)) {
1998 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 1999 } else {
0f459d16 2000 te->addr_write = address;
9fa3e853 2001 }
0f459d16
PB
2002 } else {
2003 te->addr_write = -1;
9fa3e853 2004 }
9fa3e853
FB
2005 return ret;
2006}
2007
0124311e
FB
2008#else
2009
ee8b7021 2010void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
2011{
2012}
2013
2e12669a 2014void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
2015{
2016}
2017
5fafdf24
TS
2018int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2019 target_phys_addr_t paddr, int prot,
6ebbf390 2020 int mmu_idx, int is_softmmu)
9fa3e853
FB
2021{
2022 return 0;
2023}
0124311e 2024
9fa3e853
FB
2025/* dump memory mappings */
2026void page_dump(FILE *f)
33417e70 2027{
9fa3e853
FB
2028 unsigned long start, end;
2029 int i, j, prot, prot1;
2030 PageDesc *p;
33417e70 2031
9fa3e853
FB
2032 fprintf(f, "%-8s %-8s %-8s %s\n",
2033 "start", "end", "size", "prot");
2034 start = -1;
2035 end = -1;
2036 prot = 0;
2037 for(i = 0; i <= L1_SIZE; i++) {
2038 if (i < L1_SIZE)
2039 p = l1_map[i];
2040 else
2041 p = NULL;
2042 for(j = 0;j < L2_SIZE; j++) {
2043 if (!p)
2044 prot1 = 0;
2045 else
2046 prot1 = p[j].flags;
2047 if (prot1 != prot) {
2048 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2049 if (start != -1) {
2050 fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
5fafdf24 2051 start, end, end - start,
9fa3e853
FB
2052 prot & PAGE_READ ? 'r' : '-',
2053 prot & PAGE_WRITE ? 'w' : '-',
2054 prot & PAGE_EXEC ? 'x' : '-');
2055 }
2056 if (prot1 != 0)
2057 start = end;
2058 else
2059 start = -1;
2060 prot = prot1;
2061 }
2062 if (!p)
2063 break;
2064 }
33417e70 2065 }
33417e70
FB
2066}
2067
53a5960a 2068int page_get_flags(target_ulong address)
33417e70 2069{
9fa3e853
FB
2070 PageDesc *p;
2071
2072 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2073 if (!p)
9fa3e853
FB
2074 return 0;
2075 return p->flags;
2076}
2077
2078/* modify the flags of a page and invalidate the code if
2079 necessary. The flag PAGE_WRITE_ORG is positionned automatically
2080 depending on PAGE_WRITE */
53a5960a 2081void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853
FB
2082{
2083 PageDesc *p;
53a5960a 2084 target_ulong addr;
9fa3e853 2085
c8a706fe 2086 /* mmap_lock should already be held. */
9fa3e853
FB
2087 start = start & TARGET_PAGE_MASK;
2088 end = TARGET_PAGE_ALIGN(end);
2089 if (flags & PAGE_WRITE)
2090 flags |= PAGE_WRITE_ORG;
9fa3e853
FB
2091 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2092 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
17e2377a
PB
2093 /* We may be called for host regions that are outside guest
2094 address space. */
2095 if (!p)
2096 return;
9fa3e853
FB
2097 /* if the write protection is set, then we invalidate the code
2098 inside */
5fafdf24 2099 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2100 (flags & PAGE_WRITE) &&
2101 p->first_tb) {
d720b93d 2102 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2103 }
2104 p->flags = flags;
2105 }
33417e70
FB
2106}
2107
3d97b40b
TS
2108int page_check_range(target_ulong start, target_ulong len, int flags)
2109{
2110 PageDesc *p;
2111 target_ulong end;
2112 target_ulong addr;
2113
55f280c9
AZ
2114 if (start + len < start)
2115 /* we've wrapped around */
2116 return -1;
2117
3d97b40b
TS
2118 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2119 start = start & TARGET_PAGE_MASK;
2120
3d97b40b
TS
2121 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2122 p = page_find(addr >> TARGET_PAGE_BITS);
2123 if( !p )
2124 return -1;
2125 if( !(p->flags & PAGE_VALID) )
2126 return -1;
2127
dae3270c 2128 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2129 return -1;
dae3270c
FB
2130 if (flags & PAGE_WRITE) {
2131 if (!(p->flags & PAGE_WRITE_ORG))
2132 return -1;
2133 /* unprotect the page if it was put read-only because it
2134 contains translated code */
2135 if (!(p->flags & PAGE_WRITE)) {
2136 if (!page_unprotect(addr, 0, NULL))
2137 return -1;
2138 }
2139 return 0;
2140 }
3d97b40b
TS
2141 }
2142 return 0;
2143}
2144
9fa3e853
FB
2145/* called from signal handler: invalidate the code and unprotect the
2146 page. Return TRUE if the fault was succesfully handled. */
53a5960a 2147int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853
FB
2148{
2149 unsigned int page_index, prot, pindex;
2150 PageDesc *p, *p1;
53a5960a 2151 target_ulong host_start, host_end, addr;
9fa3e853 2152
c8a706fe
PB
2153 /* Technically this isn't safe inside a signal handler. However we
2154 know this only ever happens in a synchronous SEGV handler, so in
2155 practice it seems to be ok. */
2156 mmap_lock();
2157
83fb7adf 2158 host_start = address & qemu_host_page_mask;
9fa3e853
FB
2159 page_index = host_start >> TARGET_PAGE_BITS;
2160 p1 = page_find(page_index);
c8a706fe
PB
2161 if (!p1) {
2162 mmap_unlock();
9fa3e853 2163 return 0;
c8a706fe 2164 }
83fb7adf 2165 host_end = host_start + qemu_host_page_size;
9fa3e853
FB
2166 p = p1;
2167 prot = 0;
2168 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2169 prot |= p->flags;
2170 p++;
2171 }
2172 /* if the page was really writable, then we change its
2173 protection back to writable */
2174 if (prot & PAGE_WRITE_ORG) {
2175 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2176 if (!(p1[pindex].flags & PAGE_WRITE)) {
5fafdf24 2177 mprotect((void *)g2h(host_start), qemu_host_page_size,
9fa3e853
FB
2178 (prot & PAGE_BITS) | PAGE_WRITE);
2179 p1[pindex].flags |= PAGE_WRITE;
2180 /* and since the content will be modified, we must invalidate
2181 the corresponding translated code. */
d720b93d 2182 tb_invalidate_phys_page(address, pc, puc);
9fa3e853
FB
2183#ifdef DEBUG_TB_CHECK
2184 tb_invalidate_check(address);
2185#endif
c8a706fe 2186 mmap_unlock();
9fa3e853
FB
2187 return 1;
2188 }
2189 }
c8a706fe 2190 mmap_unlock();
9fa3e853
FB
2191 return 0;
2192}
2193
6a00d601
FB
2194static inline void tlb_set_dirty(CPUState *env,
2195 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2196{
2197}
9fa3e853
FB
2198#endif /* defined(CONFIG_USER_ONLY) */
2199
e2eef170 2200#if !defined(CONFIG_USER_ONLY)
db7b5426 2201static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
00f82b8a
AJ
2202 ram_addr_t memory);
2203static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2204 ram_addr_t orig_memory);
db7b5426
BS
2205#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2206 need_subpage) \
2207 do { \
2208 if (addr > start_addr) \
2209 start_addr2 = 0; \
2210 else { \
2211 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2212 if (start_addr2 > 0) \
2213 need_subpage = 1; \
2214 } \
2215 \
49e9fba2 2216 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2217 end_addr2 = TARGET_PAGE_SIZE - 1; \
2218 else { \
2219 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2220 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2221 need_subpage = 1; \
2222 } \
2223 } while (0)
2224
33417e70
FB
2225/* register physical memory. 'size' must be a multiple of the target
2226 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2227 io memory page */
5fafdf24 2228void cpu_register_physical_memory(target_phys_addr_t start_addr,
00f82b8a
AJ
2229 ram_addr_t size,
2230 ram_addr_t phys_offset)
33417e70 2231{
108c49b8 2232 target_phys_addr_t addr, end_addr;
92e873b9 2233 PhysPageDesc *p;
9d42037b 2234 CPUState *env;
00f82b8a 2235 ram_addr_t orig_size = size;
db7b5426 2236 void *subpage;
33417e70 2237
da260249
FB
2238#ifdef USE_KQEMU
2239 /* XXX: should not depend on cpu context */
2240 env = first_cpu;
2241 if (env->kqemu_enabled) {
2242 kqemu_set_phys_mem(start_addr, size, phys_offset);
2243 }
2244#endif
7ba1e619
AL
2245 if (kvm_enabled())
2246 kvm_set_phys_mem(start_addr, size, phys_offset);
2247
5fd386f6 2248 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
49e9fba2
BS
2249 end_addr = start_addr + (target_phys_addr_t)size;
2250 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
db7b5426
BS
2251 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2252 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
00f82b8a 2253 ram_addr_t orig_memory = p->phys_offset;
db7b5426
BS
2254 target_phys_addr_t start_addr2, end_addr2;
2255 int need_subpage = 0;
2256
2257 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2258 need_subpage);
4254fab8 2259 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426
BS
2260 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2261 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2262 &p->phys_offset, orig_memory);
2263 } else {
2264 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2265 >> IO_MEM_SHIFT];
2266 }
2267 subpage_register(subpage, start_addr2, end_addr2, phys_offset);
2268 } else {
2269 p->phys_offset = phys_offset;
2270 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2271 (phys_offset & IO_MEM_ROMD))
2272 phys_offset += TARGET_PAGE_SIZE;
2273 }
2274 } else {
2275 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2276 p->phys_offset = phys_offset;
2277 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2278 (phys_offset & IO_MEM_ROMD))
2279 phys_offset += TARGET_PAGE_SIZE;
2280 else {
2281 target_phys_addr_t start_addr2, end_addr2;
2282 int need_subpage = 0;
2283
2284 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2285 end_addr2, need_subpage);
2286
4254fab8 2287 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426
BS
2288 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2289 &p->phys_offset, IO_MEM_UNASSIGNED);
2290 subpage_register(subpage, start_addr2, end_addr2,
2291 phys_offset);
2292 }
2293 }
2294 }
33417e70 2295 }
3b46e624 2296
9d42037b
FB
2297 /* since each CPU stores ram addresses in its TLB cache, we must
2298 reset the modified entries */
2299 /* XXX: slow ! */
2300 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2301 tlb_flush(env, 1);
2302 }
33417e70
FB
2303}
2304
ba863458 2305/* XXX: temporary until new memory mapping API */
00f82b8a 2306ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
ba863458
FB
2307{
2308 PhysPageDesc *p;
2309
2310 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2311 if (!p)
2312 return IO_MEM_UNASSIGNED;
2313 return p->phys_offset;
2314}
2315
e9a1ab19 2316/* XXX: better than nothing */
00f82b8a 2317ram_addr_t qemu_ram_alloc(ram_addr_t size)
e9a1ab19
FB
2318{
2319 ram_addr_t addr;
7fb4fdcf 2320 if ((phys_ram_alloc_offset + size) > phys_ram_size) {
012a7045 2321 fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 ")\n",
ed441467 2322 (uint64_t)size, (uint64_t)phys_ram_size);
e9a1ab19
FB
2323 abort();
2324 }
2325 addr = phys_ram_alloc_offset;
2326 phys_ram_alloc_offset = TARGET_PAGE_ALIGN(phys_ram_alloc_offset + size);
2327 return addr;
2328}
2329
2330void qemu_ram_free(ram_addr_t addr)
2331{
2332}
2333
a4193c8a 2334static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 2335{
67d3b957 2336#ifdef DEBUG_UNASSIGNED
ab3d1727 2337 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316 2338#endif
e18231a3
BS
2339#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2340 do_unassigned_access(addr, 0, 0, 0, 1);
2341#endif
2342 return 0;
2343}
2344
2345static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2346{
2347#ifdef DEBUG_UNASSIGNED
2348 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2349#endif
2350#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2351 do_unassigned_access(addr, 0, 0, 0, 2);
2352#endif
2353 return 0;
2354}
2355
2356static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2357{
2358#ifdef DEBUG_UNASSIGNED
2359 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2360#endif
2361#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2362 do_unassigned_access(addr, 0, 0, 0, 4);
67d3b957 2363#endif
33417e70
FB
2364 return 0;
2365}
2366
a4193c8a 2367static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 2368{
67d3b957 2369#ifdef DEBUG_UNASSIGNED
ab3d1727 2370 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 2371#endif
e18231a3
BS
2372#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2373 do_unassigned_access(addr, 1, 0, 0, 1);
2374#endif
2375}
2376
2377static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2378{
2379#ifdef DEBUG_UNASSIGNED
2380 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2381#endif
2382#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2383 do_unassigned_access(addr, 1, 0, 0, 2);
2384#endif
2385}
2386
2387static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2388{
2389#ifdef DEBUG_UNASSIGNED
2390 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2391#endif
2392#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2393 do_unassigned_access(addr, 1, 0, 0, 4);
b4f0a316 2394#endif
33417e70
FB
2395}
2396
2397static CPUReadMemoryFunc *unassigned_mem_read[3] = {
2398 unassigned_mem_readb,
e18231a3
BS
2399 unassigned_mem_readw,
2400 unassigned_mem_readl,
33417e70
FB
2401};
2402
2403static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
2404 unassigned_mem_writeb,
e18231a3
BS
2405 unassigned_mem_writew,
2406 unassigned_mem_writel,
33417e70
FB
2407};
2408
0f459d16
PB
2409static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2410 uint32_t val)
9fa3e853 2411{
3a7d929e 2412 int dirty_flags;
3a7d929e
FB
2413 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2414 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2415#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2416 tb_invalidate_phys_page_fast(ram_addr, 1);
2417 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2418#endif
3a7d929e 2419 }
0f459d16 2420 stb_p(phys_ram_base + ram_addr, val);
f32fc648
FB
2421#ifdef USE_KQEMU
2422 if (cpu_single_env->kqemu_enabled &&
2423 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2424 kqemu_modify_page(cpu_single_env, ram_addr);
2425#endif
f23db169
FB
2426 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2427 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2428 /* we remove the notdirty callback only if the code has been
2429 flushed */
2430 if (dirty_flags == 0xff)
2e70f6ef 2431 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2432}
2433
0f459d16
PB
2434static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2435 uint32_t val)
9fa3e853 2436{
3a7d929e 2437 int dirty_flags;
3a7d929e
FB
2438 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2439 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2440#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2441 tb_invalidate_phys_page_fast(ram_addr, 2);
2442 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2443#endif
3a7d929e 2444 }
0f459d16 2445 stw_p(phys_ram_base + ram_addr, val);
f32fc648
FB
2446#ifdef USE_KQEMU
2447 if (cpu_single_env->kqemu_enabled &&
2448 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2449 kqemu_modify_page(cpu_single_env, ram_addr);
2450#endif
f23db169
FB
2451 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2452 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2453 /* we remove the notdirty callback only if the code has been
2454 flushed */
2455 if (dirty_flags == 0xff)
2e70f6ef 2456 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2457}
2458
0f459d16
PB
2459static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2460 uint32_t val)
9fa3e853 2461{
3a7d929e 2462 int dirty_flags;
3a7d929e
FB
2463 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2464 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2465#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2466 tb_invalidate_phys_page_fast(ram_addr, 4);
2467 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2468#endif
3a7d929e 2469 }
0f459d16 2470 stl_p(phys_ram_base + ram_addr, val);
f32fc648
FB
2471#ifdef USE_KQEMU
2472 if (cpu_single_env->kqemu_enabled &&
2473 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2474 kqemu_modify_page(cpu_single_env, ram_addr);
2475#endif
f23db169
FB
2476 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2477 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2478 /* we remove the notdirty callback only if the code has been
2479 flushed */
2480 if (dirty_flags == 0xff)
2e70f6ef 2481 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2482}
2483
3a7d929e 2484static CPUReadMemoryFunc *error_mem_read[3] = {
9fa3e853
FB
2485 NULL, /* never used */
2486 NULL, /* never used */
2487 NULL, /* never used */
2488};
2489
1ccde1cb
FB
2490static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
2491 notdirty_mem_writeb,
2492 notdirty_mem_writew,
2493 notdirty_mem_writel,
2494};
2495
0f459d16
PB
2496/* Generate a debug exception if a watchpoint has been hit. */
2497static void check_watchpoint(int offset, int flags)
2498{
2499 CPUState *env = cpu_single_env;
2500 target_ulong vaddr;
a1d1bb31 2501 CPUWatchpoint *wp;
0f459d16 2502
2e70f6ef 2503 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
a1d1bb31
AL
2504 for (wp = env->watchpoints; wp != NULL; wp = wp->next) {
2505 if (vaddr == wp->vaddr && (wp->flags & flags)) {
2506 env->watchpoint_hit = wp;
0f459d16
PB
2507 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2508 break;
2509 }
2510 }
2511}
2512
6658ffb8
PB
2513/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2514 so these check for a hit then pass through to the normal out-of-line
2515 phys routines. */
2516static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2517{
a1d1bb31 2518 check_watchpoint(addr & ~TARGET_PAGE_MASK, BP_MEM_READ);
6658ffb8
PB
2519 return ldub_phys(addr);
2520}
2521
2522static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2523{
a1d1bb31 2524 check_watchpoint(addr & ~TARGET_PAGE_MASK, BP_MEM_READ);
6658ffb8
PB
2525 return lduw_phys(addr);
2526}
2527
2528static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2529{
a1d1bb31 2530 check_watchpoint(addr & ~TARGET_PAGE_MASK, BP_MEM_READ);
6658ffb8
PB
2531 return ldl_phys(addr);
2532}
2533
6658ffb8
PB
2534static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2535 uint32_t val)
2536{
a1d1bb31 2537 check_watchpoint(addr & ~TARGET_PAGE_MASK, BP_MEM_WRITE);
6658ffb8
PB
2538 stb_phys(addr, val);
2539}
2540
2541static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2542 uint32_t val)
2543{
a1d1bb31 2544 check_watchpoint(addr & ~TARGET_PAGE_MASK, BP_MEM_WRITE);
6658ffb8
PB
2545 stw_phys(addr, val);
2546}
2547
2548static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2549 uint32_t val)
2550{
a1d1bb31 2551 check_watchpoint(addr & ~TARGET_PAGE_MASK, BP_MEM_WRITE);
6658ffb8
PB
2552 stl_phys(addr, val);
2553}
2554
2555static CPUReadMemoryFunc *watch_mem_read[3] = {
2556 watch_mem_readb,
2557 watch_mem_readw,
2558 watch_mem_readl,
2559};
2560
2561static CPUWriteMemoryFunc *watch_mem_write[3] = {
2562 watch_mem_writeb,
2563 watch_mem_writew,
2564 watch_mem_writel,
2565};
6658ffb8 2566
db7b5426
BS
2567static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2568 unsigned int len)
2569{
db7b5426
BS
2570 uint32_t ret;
2571 unsigned int idx;
2572
2573 idx = SUBPAGE_IDX(addr - mmio->base);
2574#if defined(DEBUG_SUBPAGE)
2575 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2576 mmio, len, addr, idx);
2577#endif
3ee89922 2578 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len], addr);
db7b5426
BS
2579
2580 return ret;
2581}
2582
2583static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2584 uint32_t value, unsigned int len)
2585{
db7b5426
BS
2586 unsigned int idx;
2587
2588 idx = SUBPAGE_IDX(addr - mmio->base);
2589#if defined(DEBUG_SUBPAGE)
2590 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2591 mmio, len, addr, idx, value);
2592#endif
3ee89922 2593 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len], addr, value);
db7b5426
BS
2594}
2595
2596static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2597{
2598#if defined(DEBUG_SUBPAGE)
2599 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2600#endif
2601
2602 return subpage_readlen(opaque, addr, 0);
2603}
2604
2605static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2606 uint32_t value)
2607{
2608#if defined(DEBUG_SUBPAGE)
2609 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2610#endif
2611 subpage_writelen(opaque, addr, value, 0);
2612}
2613
2614static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2615{
2616#if defined(DEBUG_SUBPAGE)
2617 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2618#endif
2619
2620 return subpage_readlen(opaque, addr, 1);
2621}
2622
2623static void subpage_writew (void *opaque, target_phys_addr_t addr,
2624 uint32_t value)
2625{
2626#if defined(DEBUG_SUBPAGE)
2627 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2628#endif
2629 subpage_writelen(opaque, addr, value, 1);
2630}
2631
2632static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2633{
2634#if defined(DEBUG_SUBPAGE)
2635 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2636#endif
2637
2638 return subpage_readlen(opaque, addr, 2);
2639}
2640
2641static void subpage_writel (void *opaque,
2642 target_phys_addr_t addr, uint32_t value)
2643{
2644#if defined(DEBUG_SUBPAGE)
2645 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2646#endif
2647 subpage_writelen(opaque, addr, value, 2);
2648}
2649
2650static CPUReadMemoryFunc *subpage_read[] = {
2651 &subpage_readb,
2652 &subpage_readw,
2653 &subpage_readl,
2654};
2655
2656static CPUWriteMemoryFunc *subpage_write[] = {
2657 &subpage_writeb,
2658 &subpage_writew,
2659 &subpage_writel,
2660};
2661
2662static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
00f82b8a 2663 ram_addr_t memory)
db7b5426
BS
2664{
2665 int idx, eidx;
4254fab8 2666 unsigned int i;
db7b5426
BS
2667
2668 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2669 return -1;
2670 idx = SUBPAGE_IDX(start);
2671 eidx = SUBPAGE_IDX(end);
2672#if defined(DEBUG_SUBPAGE)
2673 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__,
2674 mmio, start, end, idx, eidx, memory);
2675#endif
2676 memory >>= IO_MEM_SHIFT;
2677 for (; idx <= eidx; idx++) {
4254fab8 2678 for (i = 0; i < 4; i++) {
3ee89922
BS
2679 if (io_mem_read[memory][i]) {
2680 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2681 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
2682 }
2683 if (io_mem_write[memory][i]) {
2684 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2685 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
2686 }
4254fab8 2687 }
db7b5426
BS
2688 }
2689
2690 return 0;
2691}
2692
00f82b8a
AJ
2693static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2694 ram_addr_t orig_memory)
db7b5426
BS
2695{
2696 subpage_t *mmio;
2697 int subpage_memory;
2698
2699 mmio = qemu_mallocz(sizeof(subpage_t));
2700 if (mmio != NULL) {
2701 mmio->base = base;
2702 subpage_memory = cpu_register_io_memory(0, subpage_read, subpage_write, mmio);
2703#if defined(DEBUG_SUBPAGE)
2704 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2705 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
2706#endif
2707 *phys = subpage_memory | IO_MEM_SUBPAGE;
2708 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory);
2709 }
2710
2711 return mmio;
2712}
2713
33417e70
FB
2714static void io_mem_init(void)
2715{
3a7d929e 2716 cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL);
a4193c8a 2717 cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL);
3a7d929e 2718 cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL);
1ccde1cb
FB
2719 io_mem_nb = 5;
2720
0f459d16 2721 io_mem_watch = cpu_register_io_memory(0, watch_mem_read,
6658ffb8 2722 watch_mem_write, NULL);
1ccde1cb 2723 /* alloc dirty bits array */
0a962c02 2724 phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS);
3a7d929e 2725 memset(phys_ram_dirty, 0xff, phys_ram_size >> TARGET_PAGE_BITS);
33417e70
FB
2726}
2727
2728/* mem_read and mem_write are arrays of functions containing the
2729 function to access byte (index 0), word (index 1) and dword (index
3ee89922
BS
2730 2). Functions can be omitted with a NULL function pointer. The
2731 registered functions may be modified dynamically later.
2732 If io_index is non zero, the corresponding io zone is
4254fab8
BS
2733 modified. If it is zero, a new io zone is allocated. The return
2734 value can be used with cpu_register_physical_memory(). (-1) is
2735 returned if error. */
33417e70
FB
2736int cpu_register_io_memory(int io_index,
2737 CPUReadMemoryFunc **mem_read,
a4193c8a
FB
2738 CPUWriteMemoryFunc **mem_write,
2739 void *opaque)
33417e70 2740{
4254fab8 2741 int i, subwidth = 0;
33417e70
FB
2742
2743 if (io_index <= 0) {
b5ff1b31 2744 if (io_mem_nb >= IO_MEM_NB_ENTRIES)
33417e70
FB
2745 return -1;
2746 io_index = io_mem_nb++;
2747 } else {
2748 if (io_index >= IO_MEM_NB_ENTRIES)
2749 return -1;
2750 }
b5ff1b31 2751
33417e70 2752 for(i = 0;i < 3; i++) {
4254fab8
BS
2753 if (!mem_read[i] || !mem_write[i])
2754 subwidth = IO_MEM_SUBWIDTH;
33417e70
FB
2755 io_mem_read[io_index][i] = mem_read[i];
2756 io_mem_write[io_index][i] = mem_write[i];
2757 }
a4193c8a 2758 io_mem_opaque[io_index] = opaque;
4254fab8 2759 return (io_index << IO_MEM_SHIFT) | subwidth;
33417e70 2760}
61382a50 2761
8926b517
FB
2762CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index)
2763{
2764 return io_mem_write[io_index >> IO_MEM_SHIFT];
2765}
2766
2767CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index)
2768{
2769 return io_mem_read[io_index >> IO_MEM_SHIFT];
2770}
2771
e2eef170
PB
2772#endif /* !defined(CONFIG_USER_ONLY) */
2773
13eb76e0
FB
2774/* physical memory access (slow version, mainly for debug) */
2775#if defined(CONFIG_USER_ONLY)
5fafdf24 2776void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
2777 int len, int is_write)
2778{
2779 int l, flags;
2780 target_ulong page;
53a5960a 2781 void * p;
13eb76e0
FB
2782
2783 while (len > 0) {
2784 page = addr & TARGET_PAGE_MASK;
2785 l = (page + TARGET_PAGE_SIZE) - addr;
2786 if (l > len)
2787 l = len;
2788 flags = page_get_flags(page);
2789 if (!(flags & PAGE_VALID))
2790 return;
2791 if (is_write) {
2792 if (!(flags & PAGE_WRITE))
2793 return;
579a97f7 2794 /* XXX: this code should not depend on lock_user */
72fb7daa 2795 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
579a97f7
FB
2796 /* FIXME - should this return an error rather than just fail? */
2797 return;
72fb7daa
AJ
2798 memcpy(p, buf, l);
2799 unlock_user(p, addr, l);
13eb76e0
FB
2800 } else {
2801 if (!(flags & PAGE_READ))
2802 return;
579a97f7 2803 /* XXX: this code should not depend on lock_user */
72fb7daa 2804 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
579a97f7
FB
2805 /* FIXME - should this return an error rather than just fail? */
2806 return;
72fb7daa 2807 memcpy(buf, p, l);
5b257578 2808 unlock_user(p, addr, 0);
13eb76e0
FB
2809 }
2810 len -= l;
2811 buf += l;
2812 addr += l;
2813 }
2814}
8df1cd07 2815
13eb76e0 2816#else
5fafdf24 2817void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
2818 int len, int is_write)
2819{
2820 int l, io_index;
2821 uint8_t *ptr;
2822 uint32_t val;
2e12669a
FB
2823 target_phys_addr_t page;
2824 unsigned long pd;
92e873b9 2825 PhysPageDesc *p;
3b46e624 2826
13eb76e0
FB
2827 while (len > 0) {
2828 page = addr & TARGET_PAGE_MASK;
2829 l = (page + TARGET_PAGE_SIZE) - addr;
2830 if (l > len)
2831 l = len;
92e873b9 2832 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
2833 if (!p) {
2834 pd = IO_MEM_UNASSIGNED;
2835 } else {
2836 pd = p->phys_offset;
2837 }
3b46e624 2838
13eb76e0 2839 if (is_write) {
3a7d929e 2840 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
13eb76e0 2841 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
6a00d601
FB
2842 /* XXX: could force cpu_single_env to NULL to avoid
2843 potential bugs */
13eb76e0 2844 if (l >= 4 && ((addr & 3) == 0)) {
1c213d19 2845 /* 32 bit write access */
c27004ec 2846 val = ldl_p(buf);
a4193c8a 2847 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
13eb76e0
FB
2848 l = 4;
2849 } else if (l >= 2 && ((addr & 1) == 0)) {
1c213d19 2850 /* 16 bit write access */
c27004ec 2851 val = lduw_p(buf);
a4193c8a 2852 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
13eb76e0
FB
2853 l = 2;
2854 } else {
1c213d19 2855 /* 8 bit write access */
c27004ec 2856 val = ldub_p(buf);
a4193c8a 2857 io_mem_write[io_index][0](io_mem_opaque[io_index], addr, val);
13eb76e0
FB
2858 l = 1;
2859 }
2860 } else {
b448f2f3
FB
2861 unsigned long addr1;
2862 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 2863 /* RAM case */
b448f2f3 2864 ptr = phys_ram_base + addr1;
13eb76e0 2865 memcpy(ptr, buf, l);
3a7d929e
FB
2866 if (!cpu_physical_memory_is_dirty(addr1)) {
2867 /* invalidate code */
2868 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
2869 /* set dirty bit */
5fafdf24 2870 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
f23db169 2871 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 2872 }
13eb76e0
FB
2873 }
2874 } else {
5fafdf24 2875 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 2876 !(pd & IO_MEM_ROMD)) {
13eb76e0
FB
2877 /* I/O case */
2878 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2879 if (l >= 4 && ((addr & 3) == 0)) {
2880 /* 32 bit read access */
a4193c8a 2881 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
c27004ec 2882 stl_p(buf, val);
13eb76e0
FB
2883 l = 4;
2884 } else if (l >= 2 && ((addr & 1) == 0)) {
2885 /* 16 bit read access */
a4193c8a 2886 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
c27004ec 2887 stw_p(buf, val);
13eb76e0
FB
2888 l = 2;
2889 } else {
1c213d19 2890 /* 8 bit read access */
a4193c8a 2891 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr);
c27004ec 2892 stb_p(buf, val);
13eb76e0
FB
2893 l = 1;
2894 }
2895 } else {
2896 /* RAM case */
5fafdf24 2897 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
13eb76e0
FB
2898 (addr & ~TARGET_PAGE_MASK);
2899 memcpy(buf, ptr, l);
2900 }
2901 }
2902 len -= l;
2903 buf += l;
2904 addr += l;
2905 }
2906}
8df1cd07 2907
d0ecd2aa 2908/* used for ROM loading : can write in RAM and ROM */
5fafdf24 2909void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
2910 const uint8_t *buf, int len)
2911{
2912 int l;
2913 uint8_t *ptr;
2914 target_phys_addr_t page;
2915 unsigned long pd;
2916 PhysPageDesc *p;
3b46e624 2917
d0ecd2aa
FB
2918 while (len > 0) {
2919 page = addr & TARGET_PAGE_MASK;
2920 l = (page + TARGET_PAGE_SIZE) - addr;
2921 if (l > len)
2922 l = len;
2923 p = phys_page_find(page >> TARGET_PAGE_BITS);
2924 if (!p) {
2925 pd = IO_MEM_UNASSIGNED;
2926 } else {
2927 pd = p->phys_offset;
2928 }
3b46e624 2929
d0ecd2aa 2930 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
2931 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
2932 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
2933 /* do nothing */
2934 } else {
2935 unsigned long addr1;
2936 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2937 /* ROM/RAM case */
2938 ptr = phys_ram_base + addr1;
2939 memcpy(ptr, buf, l);
2940 }
2941 len -= l;
2942 buf += l;
2943 addr += l;
2944 }
2945}
2946
2947
8df1cd07
FB
2948/* warning: addr must be aligned */
2949uint32_t ldl_phys(target_phys_addr_t addr)
2950{
2951 int io_index;
2952 uint8_t *ptr;
2953 uint32_t val;
2954 unsigned long pd;
2955 PhysPageDesc *p;
2956
2957 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2958 if (!p) {
2959 pd = IO_MEM_UNASSIGNED;
2960 } else {
2961 pd = p->phys_offset;
2962 }
3b46e624 2963
5fafdf24 2964 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 2965 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
2966 /* I/O case */
2967 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2968 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2969 } else {
2970 /* RAM case */
5fafdf24 2971 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
8df1cd07
FB
2972 (addr & ~TARGET_PAGE_MASK);
2973 val = ldl_p(ptr);
2974 }
2975 return val;
2976}
2977
84b7b8e7
FB
2978/* warning: addr must be aligned */
2979uint64_t ldq_phys(target_phys_addr_t addr)
2980{
2981 int io_index;
2982 uint8_t *ptr;
2983 uint64_t val;
2984 unsigned long pd;
2985 PhysPageDesc *p;
2986
2987 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2988 if (!p) {
2989 pd = IO_MEM_UNASSIGNED;
2990 } else {
2991 pd = p->phys_offset;
2992 }
3b46e624 2993
2a4188a3
FB
2994 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2995 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
2996 /* I/O case */
2997 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2998#ifdef TARGET_WORDS_BIGENDIAN
2999 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3000 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3001#else
3002 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3003 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3004#endif
3005 } else {
3006 /* RAM case */
5fafdf24 3007 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
84b7b8e7
FB
3008 (addr & ~TARGET_PAGE_MASK);
3009 val = ldq_p(ptr);
3010 }
3011 return val;
3012}
3013
aab33094
FB
3014/* XXX: optimize */
3015uint32_t ldub_phys(target_phys_addr_t addr)
3016{
3017 uint8_t val;
3018 cpu_physical_memory_read(addr, &val, 1);
3019 return val;
3020}
3021
3022/* XXX: optimize */
3023uint32_t lduw_phys(target_phys_addr_t addr)
3024{
3025 uint16_t val;
3026 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3027 return tswap16(val);
3028}
3029
8df1cd07
FB
3030/* warning: addr must be aligned. The ram page is not masked as dirty
3031 and the code inside is not invalidated. It is useful if the dirty
3032 bits are used to track modified PTEs */
3033void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3034{
3035 int io_index;
3036 uint8_t *ptr;
3037 unsigned long pd;
3038 PhysPageDesc *p;
3039
3040 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3041 if (!p) {
3042 pd = IO_MEM_UNASSIGNED;
3043 } else {
3044 pd = p->phys_offset;
3045 }
3b46e624 3046
3a7d929e 3047 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07
FB
3048 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3049 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3050 } else {
74576198
AL
3051 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3052 ptr = phys_ram_base + addr1;
8df1cd07 3053 stl_p(ptr, val);
74576198
AL
3054
3055 if (unlikely(in_migration)) {
3056 if (!cpu_physical_memory_is_dirty(addr1)) {
3057 /* invalidate code */
3058 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3059 /* set dirty bit */
3060 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3061 (0xff & ~CODE_DIRTY_FLAG);
3062 }
3063 }
8df1cd07
FB
3064 }
3065}
3066
bc98a7ef
JM
3067void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3068{
3069 int io_index;
3070 uint8_t *ptr;
3071 unsigned long pd;
3072 PhysPageDesc *p;
3073
3074 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3075 if (!p) {
3076 pd = IO_MEM_UNASSIGNED;
3077 } else {
3078 pd = p->phys_offset;
3079 }
3b46e624 3080
bc98a7ef
JM
3081 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3082 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3083#ifdef TARGET_WORDS_BIGENDIAN
3084 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3085 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3086#else
3087 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3088 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3089#endif
3090 } else {
5fafdf24 3091 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
3092 (addr & ~TARGET_PAGE_MASK);
3093 stq_p(ptr, val);
3094 }
3095}
3096
8df1cd07 3097/* warning: addr must be aligned */
8df1cd07
FB
3098void stl_phys(target_phys_addr_t addr, uint32_t val)
3099{
3100 int io_index;
3101 uint8_t *ptr;
3102 unsigned long pd;
3103 PhysPageDesc *p;
3104
3105 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3106 if (!p) {
3107 pd = IO_MEM_UNASSIGNED;
3108 } else {
3109 pd = p->phys_offset;
3110 }
3b46e624 3111
3a7d929e 3112 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07
FB
3113 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3114 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3115 } else {
3116 unsigned long addr1;
3117 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3118 /* RAM case */
3119 ptr = phys_ram_base + addr1;
3120 stl_p(ptr, val);
3a7d929e
FB
3121 if (!cpu_physical_memory_is_dirty(addr1)) {
3122 /* invalidate code */
3123 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3124 /* set dirty bit */
f23db169
FB
3125 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3126 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3127 }
8df1cd07
FB
3128 }
3129}
3130
aab33094
FB
3131/* XXX: optimize */
3132void stb_phys(target_phys_addr_t addr, uint32_t val)
3133{
3134 uint8_t v = val;
3135 cpu_physical_memory_write(addr, &v, 1);
3136}
3137
3138/* XXX: optimize */
3139void stw_phys(target_phys_addr_t addr, uint32_t val)
3140{
3141 uint16_t v = tswap16(val);
3142 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3143}
3144
3145/* XXX: optimize */
3146void stq_phys(target_phys_addr_t addr, uint64_t val)
3147{
3148 val = tswap64(val);
3149 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3150}
3151
13eb76e0
FB
3152#endif
3153
3154/* virtual memory access for debug */
5fafdf24 3155int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 3156 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3157{
3158 int l;
9b3c35e0
JM
3159 target_phys_addr_t phys_addr;
3160 target_ulong page;
13eb76e0
FB
3161
3162 while (len > 0) {
3163 page = addr & TARGET_PAGE_MASK;
3164 phys_addr = cpu_get_phys_page_debug(env, page);
3165 /* if no physical page mapped, return an error */
3166 if (phys_addr == -1)
3167 return -1;
3168 l = (page + TARGET_PAGE_SIZE) - addr;
3169 if (l > len)
3170 l = len;
5fafdf24 3171 cpu_physical_memory_rw(phys_addr + (addr & ~TARGET_PAGE_MASK),
b448f2f3 3172 buf, l, is_write);
13eb76e0
FB
3173 len -= l;
3174 buf += l;
3175 addr += l;
3176 }
3177 return 0;
3178}
3179
2e70f6ef
PB
3180/* in deterministic execution mode, instructions doing device I/Os
3181 must be at the end of the TB */
3182void cpu_io_recompile(CPUState *env, void *retaddr)
3183{
3184 TranslationBlock *tb;
3185 uint32_t n, cflags;
3186 target_ulong pc, cs_base;
3187 uint64_t flags;
3188
3189 tb = tb_find_pc((unsigned long)retaddr);
3190 if (!tb) {
3191 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3192 retaddr);
3193 }
3194 n = env->icount_decr.u16.low + tb->icount;
3195 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3196 /* Calculate how many instructions had been executed before the fault
bf20dc07 3197 occurred. */
2e70f6ef
PB
3198 n = n - env->icount_decr.u16.low;
3199 /* Generate a new TB ending on the I/O insn. */
3200 n++;
3201 /* On MIPS and SH, delay slot instructions can only be restarted if
3202 they were already the first instruction in the TB. If this is not
bf20dc07 3203 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
3204 branch. */
3205#if defined(TARGET_MIPS)
3206 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3207 env->active_tc.PC -= 4;
3208 env->icount_decr.u16.low++;
3209 env->hflags &= ~MIPS_HFLAG_BMASK;
3210 }
3211#elif defined(TARGET_SH4)
3212 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3213 && n > 1) {
3214 env->pc -= 2;
3215 env->icount_decr.u16.low++;
3216 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3217 }
3218#endif
3219 /* This should never happen. */
3220 if (n > CF_COUNT_MASK)
3221 cpu_abort(env, "TB too big during recompile");
3222
3223 cflags = n | CF_LAST_IO;
3224 pc = tb->pc;
3225 cs_base = tb->cs_base;
3226 flags = tb->flags;
3227 tb_phys_invalidate(tb, -1);
3228 /* FIXME: In theory this could raise an exception. In practice
3229 we have already translated the block once so it's probably ok. */
3230 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 3231 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
3232 the first in the TB) then we end up generating a whole new TB and
3233 repeating the fault, which is horribly inefficient.
3234 Better would be to execute just this insn uncached, or generate a
3235 second new TB. */
3236 cpu_resume_from_signal(env, NULL);
3237}
3238
e3db7226
FB
3239void dump_exec_info(FILE *f,
3240 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3241{
3242 int i, target_code_size, max_target_code_size;
3243 int direct_jmp_count, direct_jmp2_count, cross_page;
3244 TranslationBlock *tb;
3b46e624 3245
e3db7226
FB
3246 target_code_size = 0;
3247 max_target_code_size = 0;
3248 cross_page = 0;
3249 direct_jmp_count = 0;
3250 direct_jmp2_count = 0;
3251 for(i = 0; i < nb_tbs; i++) {
3252 tb = &tbs[i];
3253 target_code_size += tb->size;
3254 if (tb->size > max_target_code_size)
3255 max_target_code_size = tb->size;
3256 if (tb->page_addr[1] != -1)
3257 cross_page++;
3258 if (tb->tb_next_offset[0] != 0xffff) {
3259 direct_jmp_count++;
3260 if (tb->tb_next_offset[1] != 0xffff) {
3261 direct_jmp2_count++;
3262 }
3263 }
3264 }
3265 /* XXX: avoid using doubles ? */
57fec1fe 3266 cpu_fprintf(f, "Translation buffer state:\n");
26a5f13b
FB
3267 cpu_fprintf(f, "gen code size %ld/%ld\n",
3268 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3269 cpu_fprintf(f, "TB count %d/%d\n",
3270 nb_tbs, code_gen_max_blocks);
5fafdf24 3271 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
3272 nb_tbs ? target_code_size / nb_tbs : 0,
3273 max_target_code_size);
5fafdf24 3274 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
3275 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3276 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
3277 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3278 cross_page,
e3db7226
FB
3279 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3280 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 3281 direct_jmp_count,
e3db7226
FB
3282 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3283 direct_jmp2_count,
3284 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 3285 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
3286 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3287 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3288 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 3289 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
3290}
3291
5fafdf24 3292#if !defined(CONFIG_USER_ONLY)
61382a50
FB
3293
3294#define MMUSUFFIX _cmmu
3295#define GETPC() NULL
3296#define env cpu_single_env
b769d8fe 3297#define SOFTMMU_CODE_ACCESS
61382a50
FB
3298
3299#define SHIFT 0
3300#include "softmmu_template.h"
3301
3302#define SHIFT 1
3303#include "softmmu_template.h"
3304
3305#define SHIFT 2
3306#include "softmmu_template.h"
3307
3308#define SHIFT 3
3309#include "softmmu_template.h"
3310
3311#undef env
3312
3313#endif