]> git.proxmox.com Git - qemu.git/blame - exec.c
Add debug exception hook (Jan Kiszka)
[qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
67b915a5 20#include "config.h"
d5a8f07c 21#ifdef _WIN32
4fddf62a 22#define WIN32_LEAN_AND_MEAN
d5a8f07c
FB
23#include <windows.h>
24#else
a98d49b1 25#include <sys/types.h>
d5a8f07c
FB
26#include <sys/mman.h>
27#endif
54936004
FB
28#include <stdlib.h>
29#include <stdio.h>
30#include <stdarg.h>
31#include <string.h>
32#include <errno.h>
33#include <unistd.h>
34#include <inttypes.h>
35
6180a181
FB
36#include "cpu.h"
37#include "exec-all.h"
ca10f867 38#include "qemu-common.h"
b67d9a52 39#include "tcg.h"
b3c7724c 40#include "hw/hw.h"
74576198 41#include "osdep.h"
7ba1e619 42#include "kvm.h"
53a5960a
PB
43#if defined(CONFIG_USER_ONLY)
44#include <qemu.h>
45#endif
54936004 46
fd6ce8f6 47//#define DEBUG_TB_INVALIDATE
66e85a21 48//#define DEBUG_FLUSH
9fa3e853 49//#define DEBUG_TLB
67d3b957 50//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
51
52/* make various TB consistency checks */
5fafdf24
TS
53//#define DEBUG_TB_CHECK
54//#define DEBUG_TLB_CHECK
fd6ce8f6 55
1196be37 56//#define DEBUG_IOPORT
db7b5426 57//#define DEBUG_SUBPAGE
1196be37 58
99773bd4
PB
59#if !defined(CONFIG_USER_ONLY)
60/* TB consistency checks only implemented for usermode emulation. */
61#undef DEBUG_TB_CHECK
62#endif
63
9fa3e853
FB
64#define SMC_BITMAP_USE_THRESHOLD 10
65
66#define MMAP_AREA_START 0x00000000
67#define MMAP_AREA_END 0xa8000000
fd6ce8f6 68
108c49b8
FB
69#if defined(TARGET_SPARC64)
70#define TARGET_PHYS_ADDR_SPACE_BITS 41
5dcb6b91
BS
71#elif defined(TARGET_SPARC)
72#define TARGET_PHYS_ADDR_SPACE_BITS 36
bedb69ea
JM
73#elif defined(TARGET_ALPHA)
74#define TARGET_PHYS_ADDR_SPACE_BITS 42
75#define TARGET_VIRT_ADDR_SPACE_BITS 42
108c49b8
FB
76#elif defined(TARGET_PPC64)
77#define TARGET_PHYS_ADDR_SPACE_BITS 42
00f82b8a
AJ
78#elif defined(TARGET_X86_64) && !defined(USE_KQEMU)
79#define TARGET_PHYS_ADDR_SPACE_BITS 42
80#elif defined(TARGET_I386) && !defined(USE_KQEMU)
81#define TARGET_PHYS_ADDR_SPACE_BITS 36
108c49b8
FB
82#else
83/* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
84#define TARGET_PHYS_ADDR_SPACE_BITS 32
85#endif
86
bdaf78e0 87static TranslationBlock *tbs;
26a5f13b 88int code_gen_max_blocks;
9fa3e853 89TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 90static int nb_tbs;
eb51d102
FB
91/* any access to the tbs or the page table must use this lock */
92spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 93
141ac468
BS
94#if defined(__arm__) || defined(__sparc_v9__)
95/* The prologue must be reachable with a direct jump. ARM and Sparc64
96 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
97 section close to code segment. */
98#define code_gen_section \
99 __attribute__((__section__(".gen_code"))) \
100 __attribute__((aligned (32)))
101#else
102#define code_gen_section \
103 __attribute__((aligned (32)))
104#endif
105
106uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
107static uint8_t *code_gen_buffer;
108static unsigned long code_gen_buffer_size;
26a5f13b 109/* threshold to flush the translated code buffer */
bdaf78e0 110static unsigned long code_gen_buffer_max_size;
fd6ce8f6
FB
111uint8_t *code_gen_ptr;
112
e2eef170 113#if !defined(CONFIG_USER_ONLY)
00f82b8a 114ram_addr_t phys_ram_size;
9fa3e853
FB
115int phys_ram_fd;
116uint8_t *phys_ram_base;
1ccde1cb 117uint8_t *phys_ram_dirty;
74576198 118static int in_migration;
e9a1ab19 119static ram_addr_t phys_ram_alloc_offset = 0;
e2eef170 120#endif
9fa3e853 121
6a00d601
FB
122CPUState *first_cpu;
123/* current CPU in the current thread. It is only valid inside
124 cpu_exec() */
5fafdf24 125CPUState *cpu_single_env;
2e70f6ef 126/* 0 = Do not count executed instructions.
bf20dc07 127 1 = Precise instruction counting.
2e70f6ef
PB
128 2 = Adaptive rate instruction counting. */
129int use_icount = 0;
130/* Current instruction counter. While executing translated code this may
131 include some instructions that have not yet been executed. */
132int64_t qemu_icount;
6a00d601 133
54936004 134typedef struct PageDesc {
92e873b9 135 /* list of TBs intersecting this ram page */
fd6ce8f6 136 TranslationBlock *first_tb;
9fa3e853
FB
137 /* in order to optimize self modifying code, we count the number
138 of lookups we do to a given page to use a bitmap */
139 unsigned int code_write_count;
140 uint8_t *code_bitmap;
141#if defined(CONFIG_USER_ONLY)
142 unsigned long flags;
143#endif
54936004
FB
144} PageDesc;
145
92e873b9 146typedef struct PhysPageDesc {
0f459d16 147 /* offset in host memory of the page + io_index in the low bits */
00f82b8a 148 ram_addr_t phys_offset;
92e873b9
FB
149} PhysPageDesc;
150
54936004 151#define L2_BITS 10
bedb69ea
JM
152#if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
153/* XXX: this is a temporary hack for alpha target.
154 * In the future, this is to be replaced by a multi-level table
155 * to actually be able to handle the complete 64 bits address space.
156 */
157#define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
158#else
03875444 159#define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
bedb69ea 160#endif
54936004
FB
161
162#define L1_SIZE (1 << L1_BITS)
163#define L2_SIZE (1 << L2_BITS)
164
83fb7adf
FB
165unsigned long qemu_real_host_page_size;
166unsigned long qemu_host_page_bits;
167unsigned long qemu_host_page_size;
168unsigned long qemu_host_page_mask;
54936004 169
92e873b9 170/* XXX: for system emulation, it could just be an array */
54936004 171static PageDesc *l1_map[L1_SIZE];
bdaf78e0 172static PhysPageDesc **l1_phys_map;
54936004 173
e2eef170
PB
174#if !defined(CONFIG_USER_ONLY)
175static void io_mem_init(void);
176
33417e70 177/* io memory support */
33417e70
FB
178CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
179CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 180void *io_mem_opaque[IO_MEM_NB_ENTRIES];
33417e70 181static int io_mem_nb;
6658ffb8
PB
182static int io_mem_watch;
183#endif
33417e70 184
34865134 185/* log support */
d9b630fd 186static const char *logfilename = "/tmp/qemu.log";
34865134
FB
187FILE *logfile;
188int loglevel;
e735b91c 189static int log_append = 0;
34865134 190
e3db7226
FB
191/* statistics */
192static int tlb_flush_count;
193static int tb_flush_count;
194static int tb_phys_invalidate_count;
195
db7b5426
BS
196#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
197typedef struct subpage_t {
198 target_phys_addr_t base;
3ee89922
BS
199 CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4];
200 CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4];
201 void *opaque[TARGET_PAGE_SIZE][2][4];
db7b5426
BS
202} subpage_t;
203
7cb69cae
FB
204#ifdef _WIN32
205static void map_exec(void *addr, long size)
206{
207 DWORD old_protect;
208 VirtualProtect(addr, size,
209 PAGE_EXECUTE_READWRITE, &old_protect);
210
211}
212#else
213static void map_exec(void *addr, long size)
214{
4369415f 215 unsigned long start, end, page_size;
7cb69cae 216
4369415f 217 page_size = getpagesize();
7cb69cae 218 start = (unsigned long)addr;
4369415f 219 start &= ~(page_size - 1);
7cb69cae
FB
220
221 end = (unsigned long)addr + size;
4369415f
FB
222 end += page_size - 1;
223 end &= ~(page_size - 1);
7cb69cae
FB
224
225 mprotect((void *)start, end - start,
226 PROT_READ | PROT_WRITE | PROT_EXEC);
227}
228#endif
229
b346ff46 230static void page_init(void)
54936004 231{
83fb7adf 232 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 233 TARGET_PAGE_SIZE */
c2b48b69
AL
234#ifdef _WIN32
235 {
236 SYSTEM_INFO system_info;
237
238 GetSystemInfo(&system_info);
239 qemu_real_host_page_size = system_info.dwPageSize;
240 }
241#else
242 qemu_real_host_page_size = getpagesize();
243#endif
83fb7adf
FB
244 if (qemu_host_page_size == 0)
245 qemu_host_page_size = qemu_real_host_page_size;
246 if (qemu_host_page_size < TARGET_PAGE_SIZE)
247 qemu_host_page_size = TARGET_PAGE_SIZE;
248 qemu_host_page_bits = 0;
249 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
250 qemu_host_page_bits++;
251 qemu_host_page_mask = ~(qemu_host_page_size - 1);
108c49b8
FB
252 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
253 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
50a9569b
AZ
254
255#if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
256 {
257 long long startaddr, endaddr;
258 FILE *f;
259 int n;
260
c8a706fe 261 mmap_lock();
0776590d 262 last_brk = (unsigned long)sbrk(0);
50a9569b
AZ
263 f = fopen("/proc/self/maps", "r");
264 if (f) {
265 do {
266 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
267 if (n == 2) {
e0b8d65a
BS
268 startaddr = MIN(startaddr,
269 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
270 endaddr = MIN(endaddr,
271 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
b5fc909e 272 page_set_flags(startaddr & TARGET_PAGE_MASK,
50a9569b
AZ
273 TARGET_PAGE_ALIGN(endaddr),
274 PAGE_RESERVED);
275 }
276 } while (!feof(f));
277 fclose(f);
278 }
c8a706fe 279 mmap_unlock();
50a9569b
AZ
280 }
281#endif
54936004
FB
282}
283
434929bf 284static inline PageDesc **page_l1_map(target_ulong index)
54936004 285{
17e2377a
PB
286#if TARGET_LONG_BITS > 32
287 /* Host memory outside guest VM. For 32-bit targets we have already
288 excluded high addresses. */
d8173e0f 289 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
17e2377a
PB
290 return NULL;
291#endif
434929bf
AL
292 return &l1_map[index >> L2_BITS];
293}
294
295static inline PageDesc *page_find_alloc(target_ulong index)
296{
297 PageDesc **lp, *p;
298 lp = page_l1_map(index);
299 if (!lp)
300 return NULL;
301
54936004
FB
302 p = *lp;
303 if (!p) {
304 /* allocate if not found */
17e2377a
PB
305#if defined(CONFIG_USER_ONLY)
306 unsigned long addr;
307 size_t len = sizeof(PageDesc) * L2_SIZE;
308 /* Don't use qemu_malloc because it may recurse. */
309 p = mmap(0, len, PROT_READ | PROT_WRITE,
310 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
54936004 311 *lp = p;
17e2377a
PB
312 addr = h2g(p);
313 if (addr == (target_ulong)addr) {
314 page_set_flags(addr & TARGET_PAGE_MASK,
315 TARGET_PAGE_ALIGN(addr + len),
316 PAGE_RESERVED);
317 }
318#else
319 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
320 *lp = p;
321#endif
54936004
FB
322 }
323 return p + (index & (L2_SIZE - 1));
324}
325
00f82b8a 326static inline PageDesc *page_find(target_ulong index)
54936004 327{
434929bf
AL
328 PageDesc **lp, *p;
329 lp = page_l1_map(index);
330 if (!lp)
331 return NULL;
54936004 332
434929bf 333 p = *lp;
54936004
FB
334 if (!p)
335 return 0;
fd6ce8f6
FB
336 return p + (index & (L2_SIZE - 1));
337}
338
108c49b8 339static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 340{
108c49b8 341 void **lp, **p;
e3f4e2a4 342 PhysPageDesc *pd;
92e873b9 343
108c49b8
FB
344 p = (void **)l1_phys_map;
345#if TARGET_PHYS_ADDR_SPACE_BITS > 32
346
347#if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
348#error unsupported TARGET_PHYS_ADDR_SPACE_BITS
349#endif
350 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
92e873b9
FB
351 p = *lp;
352 if (!p) {
353 /* allocate if not found */
108c49b8
FB
354 if (!alloc)
355 return NULL;
356 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
357 memset(p, 0, sizeof(void *) * L1_SIZE);
358 *lp = p;
359 }
360#endif
361 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
e3f4e2a4
PB
362 pd = *lp;
363 if (!pd) {
364 int i;
108c49b8
FB
365 /* allocate if not found */
366 if (!alloc)
367 return NULL;
e3f4e2a4
PB
368 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
369 *lp = pd;
370 for (i = 0; i < L2_SIZE; i++)
371 pd[i].phys_offset = IO_MEM_UNASSIGNED;
92e873b9 372 }
e3f4e2a4 373 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
92e873b9
FB
374}
375
108c49b8 376static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 377{
108c49b8 378 return phys_page_find_alloc(index, 0);
92e873b9
FB
379}
380
9fa3e853 381#if !defined(CONFIG_USER_ONLY)
6a00d601 382static void tlb_protect_code(ram_addr_t ram_addr);
5fafdf24 383static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 384 target_ulong vaddr);
c8a706fe
PB
385#define mmap_lock() do { } while(0)
386#define mmap_unlock() do { } while(0)
9fa3e853 387#endif
fd6ce8f6 388
4369415f
FB
389#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
390
391#if defined(CONFIG_USER_ONLY)
392/* Currently it is not recommanded to allocate big chunks of data in
393 user mode. It will change when a dedicated libc will be used */
394#define USE_STATIC_CODE_GEN_BUFFER
395#endif
396
397#ifdef USE_STATIC_CODE_GEN_BUFFER
398static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
399#endif
400
8fcd3692 401static void code_gen_alloc(unsigned long tb_size)
26a5f13b 402{
4369415f
FB
403#ifdef USE_STATIC_CODE_GEN_BUFFER
404 code_gen_buffer = static_code_gen_buffer;
405 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
406 map_exec(code_gen_buffer, code_gen_buffer_size);
407#else
26a5f13b
FB
408 code_gen_buffer_size = tb_size;
409 if (code_gen_buffer_size == 0) {
4369415f
FB
410#if defined(CONFIG_USER_ONLY)
411 /* in user mode, phys_ram_size is not meaningful */
412 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
413#else
26a5f13b 414 /* XXX: needs ajustments */
174a9a1f 415 code_gen_buffer_size = (unsigned long)(phys_ram_size / 4);
4369415f 416#endif
26a5f13b
FB
417 }
418 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
419 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
420 /* The code gen buffer location may have constraints depending on
421 the host cpu and OS */
422#if defined(__linux__)
423 {
424 int flags;
141ac468
BS
425 void *start = NULL;
426
26a5f13b
FB
427 flags = MAP_PRIVATE | MAP_ANONYMOUS;
428#if defined(__x86_64__)
429 flags |= MAP_32BIT;
430 /* Cannot map more than that */
431 if (code_gen_buffer_size > (800 * 1024 * 1024))
432 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
433#elif defined(__sparc_v9__)
434 // Map the buffer below 2G, so we can use direct calls and branches
435 flags |= MAP_FIXED;
436 start = (void *) 0x60000000UL;
437 if (code_gen_buffer_size > (512 * 1024 * 1024))
438 code_gen_buffer_size = (512 * 1024 * 1024);
26a5f13b 439#endif
141ac468
BS
440 code_gen_buffer = mmap(start, code_gen_buffer_size,
441 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
442 flags, -1, 0);
443 if (code_gen_buffer == MAP_FAILED) {
444 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
445 exit(1);
446 }
447 }
06e67a82
AL
448#elif defined(__FreeBSD__)
449 {
450 int flags;
451 void *addr = NULL;
452 flags = MAP_PRIVATE | MAP_ANONYMOUS;
453#if defined(__x86_64__)
454 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
455 * 0x40000000 is free */
456 flags |= MAP_FIXED;
457 addr = (void *)0x40000000;
458 /* Cannot map more than that */
459 if (code_gen_buffer_size > (800 * 1024 * 1024))
460 code_gen_buffer_size = (800 * 1024 * 1024);
461#endif
462 code_gen_buffer = mmap(addr, code_gen_buffer_size,
463 PROT_WRITE | PROT_READ | PROT_EXEC,
464 flags, -1, 0);
465 if (code_gen_buffer == MAP_FAILED) {
466 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
467 exit(1);
468 }
469 }
26a5f13b
FB
470#else
471 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
472 if (!code_gen_buffer) {
473 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
474 exit(1);
475 }
476 map_exec(code_gen_buffer, code_gen_buffer_size);
477#endif
4369415f 478#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b
FB
479 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
480 code_gen_buffer_max_size = code_gen_buffer_size -
481 code_gen_max_block_size();
482 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
483 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
484}
485
486/* Must be called before using the QEMU cpus. 'tb_size' is the size
487 (in bytes) allocated to the translation buffer. Zero means default
488 size. */
489void cpu_exec_init_all(unsigned long tb_size)
490{
26a5f13b
FB
491 cpu_gen_init();
492 code_gen_alloc(tb_size);
493 code_gen_ptr = code_gen_buffer;
4369415f 494 page_init();
e2eef170 495#if !defined(CONFIG_USER_ONLY)
26a5f13b 496 io_mem_init();
e2eef170 497#endif
26a5f13b
FB
498}
499
9656f324
PB
500#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
501
502#define CPU_COMMON_SAVE_VERSION 1
503
504static void cpu_common_save(QEMUFile *f, void *opaque)
505{
506 CPUState *env = opaque;
507
508 qemu_put_be32s(f, &env->halted);
509 qemu_put_be32s(f, &env->interrupt_request);
510}
511
512static int cpu_common_load(QEMUFile *f, void *opaque, int version_id)
513{
514 CPUState *env = opaque;
515
516 if (version_id != CPU_COMMON_SAVE_VERSION)
517 return -EINVAL;
518
519 qemu_get_be32s(f, &env->halted);
75f482ae 520 qemu_get_be32s(f, &env->interrupt_request);
9656f324
PB
521 tlb_flush(env, 1);
522
523 return 0;
524}
525#endif
526
6a00d601 527void cpu_exec_init(CPUState *env)
fd6ce8f6 528{
6a00d601
FB
529 CPUState **penv;
530 int cpu_index;
531
6a00d601
FB
532 env->next_cpu = NULL;
533 penv = &first_cpu;
534 cpu_index = 0;
535 while (*penv != NULL) {
536 penv = (CPUState **)&(*penv)->next_cpu;
537 cpu_index++;
538 }
539 env->cpu_index = cpu_index;
540 *penv = env;
b3c7724c 541#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
9656f324
PB
542 register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION,
543 cpu_common_save, cpu_common_load, env);
b3c7724c
PB
544 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
545 cpu_save, cpu_load, env);
546#endif
fd6ce8f6
FB
547}
548
9fa3e853
FB
549static inline void invalidate_page_bitmap(PageDesc *p)
550{
551 if (p->code_bitmap) {
59817ccb 552 qemu_free(p->code_bitmap);
9fa3e853
FB
553 p->code_bitmap = NULL;
554 }
555 p->code_write_count = 0;
556}
557
fd6ce8f6
FB
558/* set to NULL all the 'first_tb' fields in all PageDescs */
559static void page_flush_tb(void)
560{
561 int i, j;
562 PageDesc *p;
563
564 for(i = 0; i < L1_SIZE; i++) {
565 p = l1_map[i];
566 if (p) {
9fa3e853
FB
567 for(j = 0; j < L2_SIZE; j++) {
568 p->first_tb = NULL;
569 invalidate_page_bitmap(p);
570 p++;
571 }
fd6ce8f6
FB
572 }
573 }
574}
575
576/* flush all the translation blocks */
d4e8164f 577/* XXX: tb_flush is currently not thread safe */
6a00d601 578void tb_flush(CPUState *env1)
fd6ce8f6 579{
6a00d601 580 CPUState *env;
0124311e 581#if defined(DEBUG_FLUSH)
ab3d1727
BS
582 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
583 (unsigned long)(code_gen_ptr - code_gen_buffer),
584 nb_tbs, nb_tbs > 0 ?
585 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 586#endif
26a5f13b 587 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
588 cpu_abort(env1, "Internal error: code buffer overflow\n");
589
fd6ce8f6 590 nb_tbs = 0;
3b46e624 591
6a00d601
FB
592 for(env = first_cpu; env != NULL; env = env->next_cpu) {
593 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
594 }
9fa3e853 595
8a8a608f 596 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 597 page_flush_tb();
9fa3e853 598
fd6ce8f6 599 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
600 /* XXX: flush processor icache at this point if cache flush is
601 expensive */
e3db7226 602 tb_flush_count++;
fd6ce8f6
FB
603}
604
605#ifdef DEBUG_TB_CHECK
606
bc98a7ef 607static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
608{
609 TranslationBlock *tb;
610 int i;
611 address &= TARGET_PAGE_MASK;
99773bd4
PB
612 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
613 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
614 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
615 address >= tb->pc + tb->size)) {
616 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
99773bd4 617 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
618 }
619 }
620 }
621}
622
623/* verify that all the pages have correct rights for code */
624static void tb_page_check(void)
625{
626 TranslationBlock *tb;
627 int i, flags1, flags2;
3b46e624 628
99773bd4
PB
629 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
630 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
631 flags1 = page_get_flags(tb->pc);
632 flags2 = page_get_flags(tb->pc + tb->size - 1);
633 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
634 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 635 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
636 }
637 }
638 }
639}
640
bdaf78e0 641static void tb_jmp_check(TranslationBlock *tb)
d4e8164f
FB
642{
643 TranslationBlock *tb1;
644 unsigned int n1;
645
646 /* suppress any remaining jumps to this TB */
647 tb1 = tb->jmp_first;
648 for(;;) {
649 n1 = (long)tb1 & 3;
650 tb1 = (TranslationBlock *)((long)tb1 & ~3);
651 if (n1 == 2)
652 break;
653 tb1 = tb1->jmp_next[n1];
654 }
655 /* check end of list */
656 if (tb1 != tb) {
657 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
658 }
659}
660
fd6ce8f6
FB
661#endif
662
663/* invalidate one TB */
664static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
665 int next_offset)
666{
667 TranslationBlock *tb1;
668 for(;;) {
669 tb1 = *ptb;
670 if (tb1 == tb) {
671 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
672 break;
673 }
674 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
675 }
676}
677
9fa3e853
FB
678static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
679{
680 TranslationBlock *tb1;
681 unsigned int n1;
682
683 for(;;) {
684 tb1 = *ptb;
685 n1 = (long)tb1 & 3;
686 tb1 = (TranslationBlock *)((long)tb1 & ~3);
687 if (tb1 == tb) {
688 *ptb = tb1->page_next[n1];
689 break;
690 }
691 ptb = &tb1->page_next[n1];
692 }
693}
694
d4e8164f
FB
695static inline void tb_jmp_remove(TranslationBlock *tb, int n)
696{
697 TranslationBlock *tb1, **ptb;
698 unsigned int n1;
699
700 ptb = &tb->jmp_next[n];
701 tb1 = *ptb;
702 if (tb1) {
703 /* find tb(n) in circular list */
704 for(;;) {
705 tb1 = *ptb;
706 n1 = (long)tb1 & 3;
707 tb1 = (TranslationBlock *)((long)tb1 & ~3);
708 if (n1 == n && tb1 == tb)
709 break;
710 if (n1 == 2) {
711 ptb = &tb1->jmp_first;
712 } else {
713 ptb = &tb1->jmp_next[n1];
714 }
715 }
716 /* now we can suppress tb(n) from the list */
717 *ptb = tb->jmp_next[n];
718
719 tb->jmp_next[n] = NULL;
720 }
721}
722
723/* reset the jump entry 'n' of a TB so that it is not chained to
724 another TB */
725static inline void tb_reset_jump(TranslationBlock *tb, int n)
726{
727 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
728}
729
2e70f6ef 730void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
fd6ce8f6 731{
6a00d601 732 CPUState *env;
8a40a180 733 PageDesc *p;
d4e8164f 734 unsigned int h, n1;
00f82b8a 735 target_phys_addr_t phys_pc;
8a40a180 736 TranslationBlock *tb1, *tb2;
3b46e624 737
8a40a180
FB
738 /* remove the TB from the hash list */
739 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
740 h = tb_phys_hash_func(phys_pc);
5fafdf24 741 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
742 offsetof(TranslationBlock, phys_hash_next));
743
744 /* remove the TB from the page list */
745 if (tb->page_addr[0] != page_addr) {
746 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
747 tb_page_remove(&p->first_tb, tb);
748 invalidate_page_bitmap(p);
749 }
750 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
751 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
752 tb_page_remove(&p->first_tb, tb);
753 invalidate_page_bitmap(p);
754 }
755
36bdbe54 756 tb_invalidated_flag = 1;
59817ccb 757
fd6ce8f6 758 /* remove the TB from the hash list */
8a40a180 759 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
760 for(env = first_cpu; env != NULL; env = env->next_cpu) {
761 if (env->tb_jmp_cache[h] == tb)
762 env->tb_jmp_cache[h] = NULL;
763 }
d4e8164f
FB
764
765 /* suppress this TB from the two jump lists */
766 tb_jmp_remove(tb, 0);
767 tb_jmp_remove(tb, 1);
768
769 /* suppress any remaining jumps to this TB */
770 tb1 = tb->jmp_first;
771 for(;;) {
772 n1 = (long)tb1 & 3;
773 if (n1 == 2)
774 break;
775 tb1 = (TranslationBlock *)((long)tb1 & ~3);
776 tb2 = tb1->jmp_next[n1];
777 tb_reset_jump(tb1, n1);
778 tb1->jmp_next[n1] = NULL;
779 tb1 = tb2;
780 }
781 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 782
e3db7226 783 tb_phys_invalidate_count++;
9fa3e853
FB
784}
785
786static inline void set_bits(uint8_t *tab, int start, int len)
787{
788 int end, mask, end1;
789
790 end = start + len;
791 tab += start >> 3;
792 mask = 0xff << (start & 7);
793 if ((start & ~7) == (end & ~7)) {
794 if (start < end) {
795 mask &= ~(0xff << (end & 7));
796 *tab |= mask;
797 }
798 } else {
799 *tab++ |= mask;
800 start = (start + 8) & ~7;
801 end1 = end & ~7;
802 while (start < end1) {
803 *tab++ = 0xff;
804 start += 8;
805 }
806 if (start < end) {
807 mask = ~(0xff << (end & 7));
808 *tab |= mask;
809 }
810 }
811}
812
813static void build_page_bitmap(PageDesc *p)
814{
815 int n, tb_start, tb_end;
816 TranslationBlock *tb;
3b46e624 817
b2a7081a 818 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
819 if (!p->code_bitmap)
820 return;
9fa3e853
FB
821
822 tb = p->first_tb;
823 while (tb != NULL) {
824 n = (long)tb & 3;
825 tb = (TranslationBlock *)((long)tb & ~3);
826 /* NOTE: this is subtle as a TB may span two physical pages */
827 if (n == 0) {
828 /* NOTE: tb_end may be after the end of the page, but
829 it is not a problem */
830 tb_start = tb->pc & ~TARGET_PAGE_MASK;
831 tb_end = tb_start + tb->size;
832 if (tb_end > TARGET_PAGE_SIZE)
833 tb_end = TARGET_PAGE_SIZE;
834 } else {
835 tb_start = 0;
836 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
837 }
838 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
839 tb = tb->page_next[n];
840 }
841}
842
2e70f6ef
PB
843TranslationBlock *tb_gen_code(CPUState *env,
844 target_ulong pc, target_ulong cs_base,
845 int flags, int cflags)
d720b93d
FB
846{
847 TranslationBlock *tb;
848 uint8_t *tc_ptr;
849 target_ulong phys_pc, phys_page2, virt_page2;
850 int code_gen_size;
851
c27004ec
FB
852 phys_pc = get_phys_addr_code(env, pc);
853 tb = tb_alloc(pc);
d720b93d
FB
854 if (!tb) {
855 /* flush must be done */
856 tb_flush(env);
857 /* cannot fail at this point */
c27004ec 858 tb = tb_alloc(pc);
2e70f6ef
PB
859 /* Don't forget to invalidate previous TB info. */
860 tb_invalidated_flag = 1;
d720b93d
FB
861 }
862 tc_ptr = code_gen_ptr;
863 tb->tc_ptr = tc_ptr;
864 tb->cs_base = cs_base;
865 tb->flags = flags;
866 tb->cflags = cflags;
d07bde88 867 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 868 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 869
d720b93d 870 /* check next page if needed */
c27004ec 871 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 872 phys_page2 = -1;
c27004ec 873 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
d720b93d
FB
874 phys_page2 = get_phys_addr_code(env, virt_page2);
875 }
876 tb_link_phys(tb, phys_pc, phys_page2);
2e70f6ef 877 return tb;
d720b93d 878}
3b46e624 879
9fa3e853
FB
880/* invalidate all TBs which intersect with the target physical page
881 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
882 the same physical page. 'is_cpu_write_access' should be true if called
883 from a real cpu write access: the virtual CPU will exit the current
884 TB if code is modified inside this TB. */
00f82b8a 885void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
d720b93d
FB
886 int is_cpu_write_access)
887{
6b917547 888 TranslationBlock *tb, *tb_next, *saved_tb;
d720b93d 889 CPUState *env = cpu_single_env;
9fa3e853 890 target_ulong tb_start, tb_end;
6b917547
AL
891 PageDesc *p;
892 int n;
893#ifdef TARGET_HAS_PRECISE_SMC
894 int current_tb_not_found = is_cpu_write_access;
895 TranslationBlock *current_tb = NULL;
896 int current_tb_modified = 0;
897 target_ulong current_pc = 0;
898 target_ulong current_cs_base = 0;
899 int current_flags = 0;
900#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
901
902 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 903 if (!p)
9fa3e853 904 return;
5fafdf24 905 if (!p->code_bitmap &&
d720b93d
FB
906 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
907 is_cpu_write_access) {
9fa3e853
FB
908 /* build code bitmap */
909 build_page_bitmap(p);
910 }
911
912 /* we remove all the TBs in the range [start, end[ */
913 /* XXX: see if in some cases it could be faster to invalidate all the code */
914 tb = p->first_tb;
915 while (tb != NULL) {
916 n = (long)tb & 3;
917 tb = (TranslationBlock *)((long)tb & ~3);
918 tb_next = tb->page_next[n];
919 /* NOTE: this is subtle as a TB may span two physical pages */
920 if (n == 0) {
921 /* NOTE: tb_end may be after the end of the page, but
922 it is not a problem */
923 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
924 tb_end = tb_start + tb->size;
925 } else {
926 tb_start = tb->page_addr[1];
927 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
928 }
929 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
930#ifdef TARGET_HAS_PRECISE_SMC
931 if (current_tb_not_found) {
932 current_tb_not_found = 0;
933 current_tb = NULL;
2e70f6ef 934 if (env->mem_io_pc) {
d720b93d 935 /* now we have a real cpu fault */
2e70f6ef 936 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
937 }
938 }
939 if (current_tb == tb &&
2e70f6ef 940 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
941 /* If we are modifying the current TB, we must stop
942 its execution. We could be more precise by checking
943 that the modification is after the current PC, but it
944 would require a specialized function to partially
945 restore the CPU state */
3b46e624 946
d720b93d 947 current_tb_modified = 1;
5fafdf24 948 cpu_restore_state(current_tb, env,
2e70f6ef 949 env->mem_io_pc, NULL);
6b917547
AL
950 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
951 &current_flags);
d720b93d
FB
952 }
953#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
954 /* we need to do that to handle the case where a signal
955 occurs while doing tb_phys_invalidate() */
956 saved_tb = NULL;
957 if (env) {
958 saved_tb = env->current_tb;
959 env->current_tb = NULL;
960 }
9fa3e853 961 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
962 if (env) {
963 env->current_tb = saved_tb;
964 if (env->interrupt_request && env->current_tb)
965 cpu_interrupt(env, env->interrupt_request);
966 }
9fa3e853
FB
967 }
968 tb = tb_next;
969 }
970#if !defined(CONFIG_USER_ONLY)
971 /* if no code remaining, no need to continue to use slow writes */
972 if (!p->first_tb) {
973 invalidate_page_bitmap(p);
d720b93d 974 if (is_cpu_write_access) {
2e70f6ef 975 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
976 }
977 }
978#endif
979#ifdef TARGET_HAS_PRECISE_SMC
980 if (current_tb_modified) {
981 /* we generate a block containing just the instruction
982 modifying the memory. It will ensure that it cannot modify
983 itself */
ea1c1802 984 env->current_tb = NULL;
2e70f6ef 985 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 986 cpu_resume_from_signal(env, NULL);
9fa3e853 987 }
fd6ce8f6 988#endif
9fa3e853 989}
fd6ce8f6 990
9fa3e853 991/* len must be <= 8 and start must be a multiple of len */
00f82b8a 992static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
9fa3e853
FB
993{
994 PageDesc *p;
995 int offset, b;
59817ccb 996#if 0
a4193c8a
FB
997 if (1) {
998 if (loglevel) {
5fafdf24 999 fprintf(logfile, "modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
2e70f6ef 1000 cpu_single_env->mem_io_vaddr, len,
5fafdf24 1001 cpu_single_env->eip,
a4193c8a
FB
1002 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1003 }
59817ccb
FB
1004 }
1005#endif
9fa3e853 1006 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1007 if (!p)
9fa3e853
FB
1008 return;
1009 if (p->code_bitmap) {
1010 offset = start & ~TARGET_PAGE_MASK;
1011 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1012 if (b & ((1 << len) - 1))
1013 goto do_invalidate;
1014 } else {
1015 do_invalidate:
d720b93d 1016 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1017 }
1018}
1019
9fa3e853 1020#if !defined(CONFIG_SOFTMMU)
00f82b8a 1021static void tb_invalidate_phys_page(target_phys_addr_t addr,
d720b93d 1022 unsigned long pc, void *puc)
9fa3e853 1023{
6b917547 1024 TranslationBlock *tb;
9fa3e853 1025 PageDesc *p;
6b917547 1026 int n;
d720b93d 1027#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1028 TranslationBlock *current_tb = NULL;
d720b93d 1029 CPUState *env = cpu_single_env;
6b917547
AL
1030 int current_tb_modified = 0;
1031 target_ulong current_pc = 0;
1032 target_ulong current_cs_base = 0;
1033 int current_flags = 0;
d720b93d 1034#endif
9fa3e853
FB
1035
1036 addr &= TARGET_PAGE_MASK;
1037 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1038 if (!p)
9fa3e853
FB
1039 return;
1040 tb = p->first_tb;
d720b93d
FB
1041#ifdef TARGET_HAS_PRECISE_SMC
1042 if (tb && pc != 0) {
1043 current_tb = tb_find_pc(pc);
1044 }
1045#endif
9fa3e853
FB
1046 while (tb != NULL) {
1047 n = (long)tb & 3;
1048 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1049#ifdef TARGET_HAS_PRECISE_SMC
1050 if (current_tb == tb &&
2e70f6ef 1051 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1052 /* If we are modifying the current TB, we must stop
1053 its execution. We could be more precise by checking
1054 that the modification is after the current PC, but it
1055 would require a specialized function to partially
1056 restore the CPU state */
3b46e624 1057
d720b93d
FB
1058 current_tb_modified = 1;
1059 cpu_restore_state(current_tb, env, pc, puc);
6b917547
AL
1060 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1061 &current_flags);
d720b93d
FB
1062 }
1063#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1064 tb_phys_invalidate(tb, addr);
1065 tb = tb->page_next[n];
1066 }
fd6ce8f6 1067 p->first_tb = NULL;
d720b93d
FB
1068#ifdef TARGET_HAS_PRECISE_SMC
1069 if (current_tb_modified) {
1070 /* we generate a block containing just the instruction
1071 modifying the memory. It will ensure that it cannot modify
1072 itself */
ea1c1802 1073 env->current_tb = NULL;
2e70f6ef 1074 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1075 cpu_resume_from_signal(env, puc);
1076 }
1077#endif
fd6ce8f6 1078}
9fa3e853 1079#endif
fd6ce8f6
FB
1080
1081/* add the tb in the target page and protect it if necessary */
5fafdf24 1082static inline void tb_alloc_page(TranslationBlock *tb,
53a5960a 1083 unsigned int n, target_ulong page_addr)
fd6ce8f6
FB
1084{
1085 PageDesc *p;
9fa3e853
FB
1086 TranslationBlock *last_first_tb;
1087
1088 tb->page_addr[n] = page_addr;
3a7d929e 1089 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
9fa3e853
FB
1090 tb->page_next[n] = p->first_tb;
1091 last_first_tb = p->first_tb;
1092 p->first_tb = (TranslationBlock *)((long)tb | n);
1093 invalidate_page_bitmap(p);
fd6ce8f6 1094
107db443 1095#if defined(TARGET_HAS_SMC) || 1
d720b93d 1096
9fa3e853 1097#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1098 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1099 target_ulong addr;
1100 PageDesc *p2;
9fa3e853
FB
1101 int prot;
1102
fd6ce8f6
FB
1103 /* force the host page as non writable (writes will have a
1104 page fault + mprotect overhead) */
53a5960a 1105 page_addr &= qemu_host_page_mask;
fd6ce8f6 1106 prot = 0;
53a5960a
PB
1107 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1108 addr += TARGET_PAGE_SIZE) {
1109
1110 p2 = page_find (addr >> TARGET_PAGE_BITS);
1111 if (!p2)
1112 continue;
1113 prot |= p2->flags;
1114 p2->flags &= ~PAGE_WRITE;
1115 page_get_flags(addr);
1116 }
5fafdf24 1117 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1118 (prot & PAGE_BITS) & ~PAGE_WRITE);
1119#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1120 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1121 page_addr);
fd6ce8f6 1122#endif
fd6ce8f6 1123 }
9fa3e853
FB
1124#else
1125 /* if some code is already present, then the pages are already
1126 protected. So we handle the case where only the first TB is
1127 allocated in a physical page */
1128 if (!last_first_tb) {
6a00d601 1129 tlb_protect_code(page_addr);
9fa3e853
FB
1130 }
1131#endif
d720b93d
FB
1132
1133#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1134}
1135
1136/* Allocate a new translation block. Flush the translation buffer if
1137 too many translation blocks or too much generated code. */
c27004ec 1138TranslationBlock *tb_alloc(target_ulong pc)
fd6ce8f6
FB
1139{
1140 TranslationBlock *tb;
fd6ce8f6 1141
26a5f13b
FB
1142 if (nb_tbs >= code_gen_max_blocks ||
1143 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
d4e8164f 1144 return NULL;
fd6ce8f6
FB
1145 tb = &tbs[nb_tbs++];
1146 tb->pc = pc;
b448f2f3 1147 tb->cflags = 0;
d4e8164f
FB
1148 return tb;
1149}
1150
2e70f6ef
PB
1151void tb_free(TranslationBlock *tb)
1152{
bf20dc07 1153 /* In practice this is mostly used for single use temporary TB
2e70f6ef
PB
1154 Ignore the hard cases and just back up if this TB happens to
1155 be the last one generated. */
1156 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1157 code_gen_ptr = tb->tc_ptr;
1158 nb_tbs--;
1159 }
1160}
1161
9fa3e853
FB
1162/* add a new TB and link it to the physical page tables. phys_page2 is
1163 (-1) to indicate that only one page contains the TB. */
5fafdf24 1164void tb_link_phys(TranslationBlock *tb,
9fa3e853 1165 target_ulong phys_pc, target_ulong phys_page2)
d4e8164f 1166{
9fa3e853
FB
1167 unsigned int h;
1168 TranslationBlock **ptb;
1169
c8a706fe
PB
1170 /* Grab the mmap lock to stop another thread invalidating this TB
1171 before we are done. */
1172 mmap_lock();
9fa3e853
FB
1173 /* add in the physical hash table */
1174 h = tb_phys_hash_func(phys_pc);
1175 ptb = &tb_phys_hash[h];
1176 tb->phys_hash_next = *ptb;
1177 *ptb = tb;
fd6ce8f6
FB
1178
1179 /* add in the page list */
9fa3e853
FB
1180 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1181 if (phys_page2 != -1)
1182 tb_alloc_page(tb, 1, phys_page2);
1183 else
1184 tb->page_addr[1] = -1;
9fa3e853 1185
d4e8164f
FB
1186 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1187 tb->jmp_next[0] = NULL;
1188 tb->jmp_next[1] = NULL;
1189
1190 /* init original jump addresses */
1191 if (tb->tb_next_offset[0] != 0xffff)
1192 tb_reset_jump(tb, 0);
1193 if (tb->tb_next_offset[1] != 0xffff)
1194 tb_reset_jump(tb, 1);
8a40a180
FB
1195
1196#ifdef DEBUG_TB_CHECK
1197 tb_page_check();
1198#endif
c8a706fe 1199 mmap_unlock();
fd6ce8f6
FB
1200}
1201
9fa3e853
FB
1202/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1203 tb[1].tc_ptr. Return NULL if not found */
1204TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1205{
9fa3e853
FB
1206 int m_min, m_max, m;
1207 unsigned long v;
1208 TranslationBlock *tb;
a513fe19
FB
1209
1210 if (nb_tbs <= 0)
1211 return NULL;
1212 if (tc_ptr < (unsigned long)code_gen_buffer ||
1213 tc_ptr >= (unsigned long)code_gen_ptr)
1214 return NULL;
1215 /* binary search (cf Knuth) */
1216 m_min = 0;
1217 m_max = nb_tbs - 1;
1218 while (m_min <= m_max) {
1219 m = (m_min + m_max) >> 1;
1220 tb = &tbs[m];
1221 v = (unsigned long)tb->tc_ptr;
1222 if (v == tc_ptr)
1223 return tb;
1224 else if (tc_ptr < v) {
1225 m_max = m - 1;
1226 } else {
1227 m_min = m + 1;
1228 }
5fafdf24 1229 }
a513fe19
FB
1230 return &tbs[m_max];
1231}
7501267e 1232
ea041c0e
FB
1233static void tb_reset_jump_recursive(TranslationBlock *tb);
1234
1235static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1236{
1237 TranslationBlock *tb1, *tb_next, **ptb;
1238 unsigned int n1;
1239
1240 tb1 = tb->jmp_next[n];
1241 if (tb1 != NULL) {
1242 /* find head of list */
1243 for(;;) {
1244 n1 = (long)tb1 & 3;
1245 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1246 if (n1 == 2)
1247 break;
1248 tb1 = tb1->jmp_next[n1];
1249 }
1250 /* we are now sure now that tb jumps to tb1 */
1251 tb_next = tb1;
1252
1253 /* remove tb from the jmp_first list */
1254 ptb = &tb_next->jmp_first;
1255 for(;;) {
1256 tb1 = *ptb;
1257 n1 = (long)tb1 & 3;
1258 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1259 if (n1 == n && tb1 == tb)
1260 break;
1261 ptb = &tb1->jmp_next[n1];
1262 }
1263 *ptb = tb->jmp_next[n];
1264 tb->jmp_next[n] = NULL;
3b46e624 1265
ea041c0e
FB
1266 /* suppress the jump to next tb in generated code */
1267 tb_reset_jump(tb, n);
1268
0124311e 1269 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1270 tb_reset_jump_recursive(tb_next);
1271 }
1272}
1273
1274static void tb_reset_jump_recursive(TranslationBlock *tb)
1275{
1276 tb_reset_jump_recursive2(tb, 0);
1277 tb_reset_jump_recursive2(tb, 1);
1278}
1279
1fddef4b 1280#if defined(TARGET_HAS_ICE)
d720b93d
FB
1281static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1282{
9b3c35e0
JM
1283 target_phys_addr_t addr;
1284 target_ulong pd;
c2f07f81
PB
1285 ram_addr_t ram_addr;
1286 PhysPageDesc *p;
d720b93d 1287
c2f07f81
PB
1288 addr = cpu_get_phys_page_debug(env, pc);
1289 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1290 if (!p) {
1291 pd = IO_MEM_UNASSIGNED;
1292 } else {
1293 pd = p->phys_offset;
1294 }
1295 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1296 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1297}
c27004ec 1298#endif
d720b93d 1299
6658ffb8 1300/* Add a watchpoint. */
a1d1bb31
AL
1301int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1302 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1303{
b4051334 1304 target_ulong len_mask = ~(len - 1);
a1d1bb31 1305 CPUWatchpoint *wp;
6658ffb8 1306
b4051334
AL
1307 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1308 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1309 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1310 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1311 return -EINVAL;
1312 }
a1d1bb31
AL
1313 wp = qemu_malloc(sizeof(*wp));
1314 if (!wp)
1315 return -ENOBUFS;
1316
1317 wp->vaddr = addr;
b4051334 1318 wp->len_mask = len_mask;
a1d1bb31
AL
1319 wp->flags = flags;
1320
1321 wp->next = env->watchpoints;
1322 wp->prev = NULL;
1323 if (wp->next)
1324 wp->next->prev = wp;
1325 env->watchpoints = wp;
6658ffb8 1326
6658ffb8 1327 tlb_flush_page(env, addr);
a1d1bb31
AL
1328
1329 if (watchpoint)
1330 *watchpoint = wp;
1331 return 0;
6658ffb8
PB
1332}
1333
a1d1bb31
AL
1334/* Remove a specific watchpoint. */
1335int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1336 int flags)
6658ffb8 1337{
b4051334 1338 target_ulong len_mask = ~(len - 1);
a1d1bb31 1339 CPUWatchpoint *wp;
6658ffb8 1340
a1d1bb31 1341 for (wp = env->watchpoints; wp != NULL; wp = wp->next) {
b4051334 1342 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1343 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1344 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1345 return 0;
1346 }
1347 }
a1d1bb31 1348 return -ENOENT;
6658ffb8
PB
1349}
1350
a1d1bb31
AL
1351/* Remove a specific watchpoint by reference. */
1352void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1353{
1354 if (watchpoint->next)
1355 watchpoint->next->prev = watchpoint->prev;
1356 if (watchpoint->prev)
1357 watchpoint->prev->next = watchpoint->next;
1358 else
1359 env->watchpoints = watchpoint->next;
7d03f82f 1360
a1d1bb31
AL
1361 tlb_flush_page(env, watchpoint->vaddr);
1362
1363 qemu_free(watchpoint);
1364}
1365
1366/* Remove all matching watchpoints. */
1367void cpu_watchpoint_remove_all(CPUState *env, int mask)
1368{
1369 CPUWatchpoint *wp;
1370
1371 for (wp = env->watchpoints; wp != NULL; wp = wp->next)
1372 if (wp->flags & mask)
1373 cpu_watchpoint_remove_by_ref(env, wp);
7d03f82f
EI
1374}
1375
a1d1bb31
AL
1376/* Add a breakpoint. */
1377int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1378 CPUBreakpoint **breakpoint)
4c3a88a2 1379{
1fddef4b 1380#if defined(TARGET_HAS_ICE)
a1d1bb31 1381 CPUBreakpoint *bp;
3b46e624 1382
a1d1bb31
AL
1383 bp = qemu_malloc(sizeof(*bp));
1384 if (!bp)
1385 return -ENOBUFS;
4c3a88a2 1386
a1d1bb31
AL
1387 bp->pc = pc;
1388 bp->flags = flags;
1389
1390 bp->next = env->breakpoints;
1391 bp->prev = NULL;
1392 if (bp->next)
1393 bp->next->prev = bp;
1394 env->breakpoints = bp;
3b46e624 1395
d720b93d 1396 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1397
1398 if (breakpoint)
1399 *breakpoint = bp;
4c3a88a2
FB
1400 return 0;
1401#else
a1d1bb31 1402 return -ENOSYS;
4c3a88a2
FB
1403#endif
1404}
1405
a1d1bb31
AL
1406/* Remove a specific breakpoint. */
1407int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1408{
7d03f82f 1409#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1410 CPUBreakpoint *bp;
1411
1412 for (bp = env->breakpoints; bp != NULL; bp = bp->next) {
1413 if (bp->pc == pc && bp->flags == flags) {
1414 cpu_breakpoint_remove_by_ref(env, bp);
1415 return 0;
1416 }
7d03f82f 1417 }
a1d1bb31
AL
1418 return -ENOENT;
1419#else
1420 return -ENOSYS;
7d03f82f
EI
1421#endif
1422}
1423
a1d1bb31
AL
1424/* Remove a specific breakpoint by reference. */
1425void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1426{
1fddef4b 1427#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1428 if (breakpoint->next)
1429 breakpoint->next->prev = breakpoint->prev;
1430 if (breakpoint->prev)
1431 breakpoint->prev->next = breakpoint->next;
1432 else
1433 env->breakpoints = breakpoint->next;
d720b93d 1434
a1d1bb31
AL
1435 breakpoint_invalidate(env, breakpoint->pc);
1436
1437 qemu_free(breakpoint);
1438#endif
1439}
1440
1441/* Remove all matching breakpoints. */
1442void cpu_breakpoint_remove_all(CPUState *env, int mask)
1443{
1444#if defined(TARGET_HAS_ICE)
1445 CPUBreakpoint *bp;
1446
1447 for (bp = env->breakpoints; bp != NULL; bp = bp->next)
1448 if (bp->flags & mask)
1449 cpu_breakpoint_remove_by_ref(env, bp);
4c3a88a2
FB
1450#endif
1451}
1452
c33a346e
FB
1453/* enable or disable single step mode. EXCP_DEBUG is returned by the
1454 CPU loop after each instruction */
1455void cpu_single_step(CPUState *env, int enabled)
1456{
1fddef4b 1457#if defined(TARGET_HAS_ICE)
c33a346e
FB
1458 if (env->singlestep_enabled != enabled) {
1459 env->singlestep_enabled = enabled;
1460 /* must flush all the translated code to avoid inconsistancies */
9fa3e853 1461 /* XXX: only flush what is necessary */
0124311e 1462 tb_flush(env);
c33a346e
FB
1463 }
1464#endif
1465}
1466
34865134
FB
1467/* enable or disable low levels log */
1468void cpu_set_log(int log_flags)
1469{
1470 loglevel = log_flags;
1471 if (loglevel && !logfile) {
11fcfab4 1472 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1473 if (!logfile) {
1474 perror(logfilename);
1475 _exit(1);
1476 }
9fa3e853
FB
1477#if !defined(CONFIG_SOFTMMU)
1478 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1479 {
b55266b5 1480 static char logfile_buf[4096];
9fa3e853
FB
1481 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1482 }
1483#else
34865134 1484 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1485#endif
e735b91c
PB
1486 log_append = 1;
1487 }
1488 if (!loglevel && logfile) {
1489 fclose(logfile);
1490 logfile = NULL;
34865134
FB
1491 }
1492}
1493
1494void cpu_set_log_filename(const char *filename)
1495{
1496 logfilename = strdup(filename);
e735b91c
PB
1497 if (logfile) {
1498 fclose(logfile);
1499 logfile = NULL;
1500 }
1501 cpu_set_log(loglevel);
34865134 1502}
c33a346e 1503
0124311e 1504/* mask must never be zero, except for A20 change call */
68a79315 1505void cpu_interrupt(CPUState *env, int mask)
ea041c0e 1506{
d5975363 1507#if !defined(USE_NPTL)
ea041c0e 1508 TranslationBlock *tb;
15a51156 1509 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
d5975363 1510#endif
2e70f6ef 1511 int old_mask;
59817ccb 1512
2e70f6ef 1513 old_mask = env->interrupt_request;
d5975363 1514 /* FIXME: This is probably not threadsafe. A different thread could
bf20dc07 1515 be in the middle of a read-modify-write operation. */
68a79315 1516 env->interrupt_request |= mask;
d5975363
PB
1517#if defined(USE_NPTL)
1518 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1519 problem and hope the cpu will stop of its own accord. For userspace
1520 emulation this often isn't actually as bad as it sounds. Often
1521 signals are used primarily to interrupt blocking syscalls. */
1522#else
2e70f6ef 1523 if (use_icount) {
266910c4 1524 env->icount_decr.u16.high = 0xffff;
2e70f6ef
PB
1525#ifndef CONFIG_USER_ONLY
1526 /* CPU_INTERRUPT_EXIT isn't a real interrupt. It just means
1527 an async event happened and we need to process it. */
1528 if (!can_do_io(env)
1529 && (mask & ~(old_mask | CPU_INTERRUPT_EXIT)) != 0) {
1530 cpu_abort(env, "Raised interrupt while not in I/O function");
1531 }
1532#endif
1533 } else {
1534 tb = env->current_tb;
1535 /* if the cpu is currently executing code, we must unlink it and
1536 all the potentially executing TB */
1537 if (tb && !testandset(&interrupt_lock)) {
1538 env->current_tb = NULL;
1539 tb_reset_jump_recursive(tb);
1540 resetlock(&interrupt_lock);
1541 }
ea041c0e 1542 }
d5975363 1543#endif
ea041c0e
FB
1544}
1545
b54ad049
FB
1546void cpu_reset_interrupt(CPUState *env, int mask)
1547{
1548 env->interrupt_request &= ~mask;
1549}
1550
c7cd6a37 1551const CPULogItem cpu_log_items[] = {
5fafdf24 1552 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1553 "show generated host assembly code for each compiled TB" },
1554 { CPU_LOG_TB_IN_ASM, "in_asm",
1555 "show target assembly code for each compiled TB" },
5fafdf24 1556 { CPU_LOG_TB_OP, "op",
57fec1fe 1557 "show micro ops for each compiled TB" },
f193c797 1558 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1559 "show micro ops "
1560#ifdef TARGET_I386
1561 "before eflags optimization and "
f193c797 1562#endif
e01a1157 1563 "after liveness analysis" },
f193c797
FB
1564 { CPU_LOG_INT, "int",
1565 "show interrupts/exceptions in short format" },
1566 { CPU_LOG_EXEC, "exec",
1567 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1568 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1569 "show CPU state before block translation" },
f193c797
FB
1570#ifdef TARGET_I386
1571 { CPU_LOG_PCALL, "pcall",
1572 "show protected mode far calls/returns/exceptions" },
1573#endif
8e3a9fd2 1574#ifdef DEBUG_IOPORT
fd872598
FB
1575 { CPU_LOG_IOPORT, "ioport",
1576 "show all i/o ports accesses" },
8e3a9fd2 1577#endif
f193c797
FB
1578 { 0, NULL, NULL },
1579};
1580
1581static int cmp1(const char *s1, int n, const char *s2)
1582{
1583 if (strlen(s2) != n)
1584 return 0;
1585 return memcmp(s1, s2, n) == 0;
1586}
3b46e624 1587
f193c797
FB
1588/* takes a comma separated list of log masks. Return 0 if error. */
1589int cpu_str_to_log_mask(const char *str)
1590{
c7cd6a37 1591 const CPULogItem *item;
f193c797
FB
1592 int mask;
1593 const char *p, *p1;
1594
1595 p = str;
1596 mask = 0;
1597 for(;;) {
1598 p1 = strchr(p, ',');
1599 if (!p1)
1600 p1 = p + strlen(p);
8e3a9fd2
FB
1601 if(cmp1(p,p1-p,"all")) {
1602 for(item = cpu_log_items; item->mask != 0; item++) {
1603 mask |= item->mask;
1604 }
1605 } else {
f193c797
FB
1606 for(item = cpu_log_items; item->mask != 0; item++) {
1607 if (cmp1(p, p1 - p, item->name))
1608 goto found;
1609 }
1610 return 0;
8e3a9fd2 1611 }
f193c797
FB
1612 found:
1613 mask |= item->mask;
1614 if (*p1 != ',')
1615 break;
1616 p = p1 + 1;
1617 }
1618 return mask;
1619}
ea041c0e 1620
7501267e
FB
1621void cpu_abort(CPUState *env, const char *fmt, ...)
1622{
1623 va_list ap;
493ae1f0 1624 va_list ap2;
7501267e
FB
1625
1626 va_start(ap, fmt);
493ae1f0 1627 va_copy(ap2, ap);
7501267e
FB
1628 fprintf(stderr, "qemu: fatal: ");
1629 vfprintf(stderr, fmt, ap);
1630 fprintf(stderr, "\n");
1631#ifdef TARGET_I386
7fe48483
FB
1632 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1633#else
1634 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1635#endif
924edcae 1636 if (logfile) {
f9373291 1637 fprintf(logfile, "qemu: fatal: ");
493ae1f0 1638 vfprintf(logfile, fmt, ap2);
f9373291
JM
1639 fprintf(logfile, "\n");
1640#ifdef TARGET_I386
1641 cpu_dump_state(env, logfile, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1642#else
1643 cpu_dump_state(env, logfile, fprintf, 0);
1644#endif
924edcae
AZ
1645 fflush(logfile);
1646 fclose(logfile);
1647 }
493ae1f0 1648 va_end(ap2);
f9373291 1649 va_end(ap);
7501267e
FB
1650 abort();
1651}
1652
c5be9f08
TS
1653CPUState *cpu_copy(CPUState *env)
1654{
01ba9816 1655 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1656 /* preserve chaining and index */
1657 CPUState *next_cpu = new_env->next_cpu;
1658 int cpu_index = new_env->cpu_index;
1659 memcpy(new_env, env, sizeof(CPUState));
1660 new_env->next_cpu = next_cpu;
1661 new_env->cpu_index = cpu_index;
1662 return new_env;
1663}
1664
0124311e
FB
1665#if !defined(CONFIG_USER_ONLY)
1666
5c751e99
EI
1667static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1668{
1669 unsigned int i;
1670
1671 /* Discard jump cache entries for any tb which might potentially
1672 overlap the flushed page. */
1673 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1674 memset (&env->tb_jmp_cache[i], 0,
1675 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1676
1677 i = tb_jmp_cache_hash_page(addr);
1678 memset (&env->tb_jmp_cache[i], 0,
1679 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1680}
1681
ee8b7021
FB
1682/* NOTE: if flush_global is true, also flush global entries (not
1683 implemented yet) */
1684void tlb_flush(CPUState *env, int flush_global)
33417e70 1685{
33417e70 1686 int i;
0124311e 1687
9fa3e853
FB
1688#if defined(DEBUG_TLB)
1689 printf("tlb_flush:\n");
1690#endif
0124311e
FB
1691 /* must reset current TB so that interrupts cannot modify the
1692 links while we are modifying them */
1693 env->current_tb = NULL;
1694
33417e70 1695 for(i = 0; i < CPU_TLB_SIZE; i++) {
84b7b8e7
FB
1696 env->tlb_table[0][i].addr_read = -1;
1697 env->tlb_table[0][i].addr_write = -1;
1698 env->tlb_table[0][i].addr_code = -1;
1699 env->tlb_table[1][i].addr_read = -1;
1700 env->tlb_table[1][i].addr_write = -1;
1701 env->tlb_table[1][i].addr_code = -1;
6fa4cea9
JM
1702#if (NB_MMU_MODES >= 3)
1703 env->tlb_table[2][i].addr_read = -1;
1704 env->tlb_table[2][i].addr_write = -1;
1705 env->tlb_table[2][i].addr_code = -1;
1706#if (NB_MMU_MODES == 4)
1707 env->tlb_table[3][i].addr_read = -1;
1708 env->tlb_table[3][i].addr_write = -1;
1709 env->tlb_table[3][i].addr_code = -1;
1710#endif
1711#endif
33417e70 1712 }
9fa3e853 1713
8a40a180 1714 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 1715
0a962c02
FB
1716#ifdef USE_KQEMU
1717 if (env->kqemu_enabled) {
1718 kqemu_flush(env, flush_global);
1719 }
9fa3e853 1720#endif
e3db7226 1721 tlb_flush_count++;
33417e70
FB
1722}
1723
274da6b2 1724static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1725{
5fafdf24 1726 if (addr == (tlb_entry->addr_read &
84b7b8e7 1727 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1728 addr == (tlb_entry->addr_write &
84b7b8e7 1729 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1730 addr == (tlb_entry->addr_code &
84b7b8e7
FB
1731 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1732 tlb_entry->addr_read = -1;
1733 tlb_entry->addr_write = -1;
1734 tlb_entry->addr_code = -1;
1735 }
61382a50
FB
1736}
1737
2e12669a 1738void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 1739{
8a40a180 1740 int i;
0124311e 1741
9fa3e853 1742#if defined(DEBUG_TLB)
108c49b8 1743 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 1744#endif
0124311e
FB
1745 /* must reset current TB so that interrupts cannot modify the
1746 links while we are modifying them */
1747 env->current_tb = NULL;
61382a50
FB
1748
1749 addr &= TARGET_PAGE_MASK;
1750 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
84b7b8e7
FB
1751 tlb_flush_entry(&env->tlb_table[0][i], addr);
1752 tlb_flush_entry(&env->tlb_table[1][i], addr);
6fa4cea9
JM
1753#if (NB_MMU_MODES >= 3)
1754 tlb_flush_entry(&env->tlb_table[2][i], addr);
1755#if (NB_MMU_MODES == 4)
1756 tlb_flush_entry(&env->tlb_table[3][i], addr);
1757#endif
1758#endif
0124311e 1759
5c751e99 1760 tlb_flush_jmp_cache(env, addr);
9fa3e853 1761
0a962c02
FB
1762#ifdef USE_KQEMU
1763 if (env->kqemu_enabled) {
1764 kqemu_flush_page(env, addr);
1765 }
1766#endif
9fa3e853
FB
1767}
1768
9fa3e853
FB
1769/* update the TLBs so that writes to code in the virtual page 'addr'
1770 can be detected */
6a00d601 1771static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 1772{
5fafdf24 1773 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
1774 ram_addr + TARGET_PAGE_SIZE,
1775 CODE_DIRTY_FLAG);
9fa3e853
FB
1776}
1777
9fa3e853 1778/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 1779 tested for self modifying code */
5fafdf24 1780static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 1781 target_ulong vaddr)
9fa3e853 1782{
3a7d929e 1783 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1ccde1cb
FB
1784}
1785
5fafdf24 1786static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
1787 unsigned long start, unsigned long length)
1788{
1789 unsigned long addr;
84b7b8e7
FB
1790 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1791 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 1792 if ((addr - start) < length) {
0f459d16 1793 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
1794 }
1795 }
1796}
1797
3a7d929e 1798void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 1799 int dirty_flags)
1ccde1cb
FB
1800{
1801 CPUState *env;
4f2ac237 1802 unsigned long length, start1;
0a962c02
FB
1803 int i, mask, len;
1804 uint8_t *p;
1ccde1cb
FB
1805
1806 start &= TARGET_PAGE_MASK;
1807 end = TARGET_PAGE_ALIGN(end);
1808
1809 length = end - start;
1810 if (length == 0)
1811 return;
0a962c02 1812 len = length >> TARGET_PAGE_BITS;
3a7d929e 1813#ifdef USE_KQEMU
6a00d601
FB
1814 /* XXX: should not depend on cpu context */
1815 env = first_cpu;
3a7d929e 1816 if (env->kqemu_enabled) {
f23db169
FB
1817 ram_addr_t addr;
1818 addr = start;
1819 for(i = 0; i < len; i++) {
1820 kqemu_set_notdirty(env, addr);
1821 addr += TARGET_PAGE_SIZE;
1822 }
3a7d929e
FB
1823 }
1824#endif
f23db169
FB
1825 mask = ~dirty_flags;
1826 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1827 for(i = 0; i < len; i++)
1828 p[i] &= mask;
1829
1ccde1cb
FB
1830 /* we modify the TLB cache so that the dirty bit will be set again
1831 when accessing the range */
59817ccb 1832 start1 = start + (unsigned long)phys_ram_base;
6a00d601
FB
1833 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1834 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1835 tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length);
6a00d601 1836 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1837 tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length);
6fa4cea9
JM
1838#if (NB_MMU_MODES >= 3)
1839 for(i = 0; i < CPU_TLB_SIZE; i++)
1840 tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length);
1841#if (NB_MMU_MODES == 4)
1842 for(i = 0; i < CPU_TLB_SIZE; i++)
1843 tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length);
1844#endif
1845#endif
6a00d601 1846 }
1ccde1cb
FB
1847}
1848
74576198
AL
1849int cpu_physical_memory_set_dirty_tracking(int enable)
1850{
1851 in_migration = enable;
1852 return 0;
1853}
1854
1855int cpu_physical_memory_get_dirty_tracking(void)
1856{
1857 return in_migration;
1858}
1859
3a7d929e
FB
1860static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1861{
1862 ram_addr_t ram_addr;
1863
84b7b8e7 1864 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5fafdf24 1865 ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) +
3a7d929e
FB
1866 tlb_entry->addend - (unsigned long)phys_ram_base;
1867 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 1868 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
1869 }
1870 }
1871}
1872
1873/* update the TLB according to the current state of the dirty bits */
1874void cpu_tlb_update_dirty(CPUState *env)
1875{
1876 int i;
1877 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1878 tlb_update_dirty(&env->tlb_table[0][i]);
3a7d929e 1879 for(i = 0; i < CPU_TLB_SIZE; i++)
84b7b8e7 1880 tlb_update_dirty(&env->tlb_table[1][i]);
6fa4cea9
JM
1881#if (NB_MMU_MODES >= 3)
1882 for(i = 0; i < CPU_TLB_SIZE; i++)
1883 tlb_update_dirty(&env->tlb_table[2][i]);
1884#if (NB_MMU_MODES == 4)
1885 for(i = 0; i < CPU_TLB_SIZE; i++)
1886 tlb_update_dirty(&env->tlb_table[3][i]);
1887#endif
1888#endif
3a7d929e
FB
1889}
1890
0f459d16 1891static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 1892{
0f459d16
PB
1893 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
1894 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
1895}
1896
0f459d16
PB
1897/* update the TLB corresponding to virtual page vaddr
1898 so that it is no longer dirty */
1899static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 1900{
1ccde1cb
FB
1901 int i;
1902
0f459d16 1903 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 1904 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
0f459d16
PB
1905 tlb_set_dirty1(&env->tlb_table[0][i], vaddr);
1906 tlb_set_dirty1(&env->tlb_table[1][i], vaddr);
6fa4cea9 1907#if (NB_MMU_MODES >= 3)
0f459d16 1908 tlb_set_dirty1(&env->tlb_table[2][i], vaddr);
6fa4cea9 1909#if (NB_MMU_MODES == 4)
0f459d16 1910 tlb_set_dirty1(&env->tlb_table[3][i], vaddr);
6fa4cea9
JM
1911#endif
1912#endif
9fa3e853
FB
1913}
1914
59817ccb
FB
1915/* add a new TLB entry. At most one entry for a given virtual address
1916 is permitted. Return 0 if OK or 2 if the page could not be mapped
1917 (can only happen in non SOFTMMU mode for I/O pages or pages
1918 conflicting with the host address space). */
5fafdf24
TS
1919int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1920 target_phys_addr_t paddr, int prot,
6ebbf390 1921 int mmu_idx, int is_softmmu)
9fa3e853 1922{
92e873b9 1923 PhysPageDesc *p;
4f2ac237 1924 unsigned long pd;
9fa3e853 1925 unsigned int index;
4f2ac237 1926 target_ulong address;
0f459d16 1927 target_ulong code_address;
108c49b8 1928 target_phys_addr_t addend;
9fa3e853 1929 int ret;
84b7b8e7 1930 CPUTLBEntry *te;
a1d1bb31 1931 CPUWatchpoint *wp;
0f459d16 1932 target_phys_addr_t iotlb;
9fa3e853 1933
92e873b9 1934 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
1935 if (!p) {
1936 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
1937 } else {
1938 pd = p->phys_offset;
9fa3e853
FB
1939 }
1940#if defined(DEBUG_TLB)
6ebbf390
JM
1941 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1942 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
9fa3e853
FB
1943#endif
1944
1945 ret = 0;
0f459d16
PB
1946 address = vaddr;
1947 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
1948 /* IO memory case (romd handled later) */
1949 address |= TLB_MMIO;
1950 }
1951 addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK);
1952 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
1953 /* Normal RAM. */
1954 iotlb = pd & TARGET_PAGE_MASK;
1955 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
1956 iotlb |= IO_MEM_NOTDIRTY;
1957 else
1958 iotlb |= IO_MEM_ROM;
1959 } else {
1960 /* IO handlers are currently passed a phsical address.
1961 It would be nice to pass an offset from the base address
1962 of that region. This would avoid having to special case RAM,
1963 and avoid full address decoding in every device.
1964 We can't use the high bits of pd for this because
1965 IO_MEM_ROMD uses these as a ram address. */
1966 iotlb = (pd & ~TARGET_PAGE_MASK) + paddr;
1967 }
1968
1969 code_address = address;
1970 /* Make accesses to pages with watchpoints go via the
1971 watchpoint trap routines. */
a1d1bb31
AL
1972 for (wp = env->watchpoints; wp != NULL; wp = wp->next) {
1973 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
0f459d16
PB
1974 iotlb = io_mem_watch + paddr;
1975 /* TODO: The memory case can be optimized by not trapping
1976 reads of pages with a write breakpoint. */
1977 address |= TLB_MMIO;
6658ffb8 1978 }
0f459d16 1979 }
d79acba4 1980
0f459d16
PB
1981 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1982 env->iotlb[mmu_idx][index] = iotlb - vaddr;
1983 te = &env->tlb_table[mmu_idx][index];
1984 te->addend = addend - vaddr;
1985 if (prot & PAGE_READ) {
1986 te->addr_read = address;
1987 } else {
1988 te->addr_read = -1;
1989 }
5c751e99 1990
0f459d16
PB
1991 if (prot & PAGE_EXEC) {
1992 te->addr_code = code_address;
1993 } else {
1994 te->addr_code = -1;
1995 }
1996 if (prot & PAGE_WRITE) {
1997 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
1998 (pd & IO_MEM_ROMD)) {
1999 /* Write access calls the I/O callback. */
2000 te->addr_write = address | TLB_MMIO;
2001 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2002 !cpu_physical_memory_is_dirty(pd)) {
2003 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 2004 } else {
0f459d16 2005 te->addr_write = address;
9fa3e853 2006 }
0f459d16
PB
2007 } else {
2008 te->addr_write = -1;
9fa3e853 2009 }
9fa3e853
FB
2010 return ret;
2011}
2012
0124311e
FB
2013#else
2014
ee8b7021 2015void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
2016{
2017}
2018
2e12669a 2019void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
2020{
2021}
2022
5fafdf24
TS
2023int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2024 target_phys_addr_t paddr, int prot,
6ebbf390 2025 int mmu_idx, int is_softmmu)
9fa3e853
FB
2026{
2027 return 0;
2028}
0124311e 2029
9fa3e853
FB
2030/* dump memory mappings */
2031void page_dump(FILE *f)
33417e70 2032{
9fa3e853
FB
2033 unsigned long start, end;
2034 int i, j, prot, prot1;
2035 PageDesc *p;
33417e70 2036
9fa3e853
FB
2037 fprintf(f, "%-8s %-8s %-8s %s\n",
2038 "start", "end", "size", "prot");
2039 start = -1;
2040 end = -1;
2041 prot = 0;
2042 for(i = 0; i <= L1_SIZE; i++) {
2043 if (i < L1_SIZE)
2044 p = l1_map[i];
2045 else
2046 p = NULL;
2047 for(j = 0;j < L2_SIZE; j++) {
2048 if (!p)
2049 prot1 = 0;
2050 else
2051 prot1 = p[j].flags;
2052 if (prot1 != prot) {
2053 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2054 if (start != -1) {
2055 fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
5fafdf24 2056 start, end, end - start,
9fa3e853
FB
2057 prot & PAGE_READ ? 'r' : '-',
2058 prot & PAGE_WRITE ? 'w' : '-',
2059 prot & PAGE_EXEC ? 'x' : '-');
2060 }
2061 if (prot1 != 0)
2062 start = end;
2063 else
2064 start = -1;
2065 prot = prot1;
2066 }
2067 if (!p)
2068 break;
2069 }
33417e70 2070 }
33417e70
FB
2071}
2072
53a5960a 2073int page_get_flags(target_ulong address)
33417e70 2074{
9fa3e853
FB
2075 PageDesc *p;
2076
2077 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2078 if (!p)
9fa3e853
FB
2079 return 0;
2080 return p->flags;
2081}
2082
2083/* modify the flags of a page and invalidate the code if
2084 necessary. The flag PAGE_WRITE_ORG is positionned automatically
2085 depending on PAGE_WRITE */
53a5960a 2086void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853
FB
2087{
2088 PageDesc *p;
53a5960a 2089 target_ulong addr;
9fa3e853 2090
c8a706fe 2091 /* mmap_lock should already be held. */
9fa3e853
FB
2092 start = start & TARGET_PAGE_MASK;
2093 end = TARGET_PAGE_ALIGN(end);
2094 if (flags & PAGE_WRITE)
2095 flags |= PAGE_WRITE_ORG;
9fa3e853
FB
2096 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2097 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
17e2377a
PB
2098 /* We may be called for host regions that are outside guest
2099 address space. */
2100 if (!p)
2101 return;
9fa3e853
FB
2102 /* if the write protection is set, then we invalidate the code
2103 inside */
5fafdf24 2104 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2105 (flags & PAGE_WRITE) &&
2106 p->first_tb) {
d720b93d 2107 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2108 }
2109 p->flags = flags;
2110 }
33417e70
FB
2111}
2112
3d97b40b
TS
2113int page_check_range(target_ulong start, target_ulong len, int flags)
2114{
2115 PageDesc *p;
2116 target_ulong end;
2117 target_ulong addr;
2118
55f280c9
AZ
2119 if (start + len < start)
2120 /* we've wrapped around */
2121 return -1;
2122
3d97b40b
TS
2123 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2124 start = start & TARGET_PAGE_MASK;
2125
3d97b40b
TS
2126 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2127 p = page_find(addr >> TARGET_PAGE_BITS);
2128 if( !p )
2129 return -1;
2130 if( !(p->flags & PAGE_VALID) )
2131 return -1;
2132
dae3270c 2133 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2134 return -1;
dae3270c
FB
2135 if (flags & PAGE_WRITE) {
2136 if (!(p->flags & PAGE_WRITE_ORG))
2137 return -1;
2138 /* unprotect the page if it was put read-only because it
2139 contains translated code */
2140 if (!(p->flags & PAGE_WRITE)) {
2141 if (!page_unprotect(addr, 0, NULL))
2142 return -1;
2143 }
2144 return 0;
2145 }
3d97b40b
TS
2146 }
2147 return 0;
2148}
2149
9fa3e853
FB
2150/* called from signal handler: invalidate the code and unprotect the
2151 page. Return TRUE if the fault was succesfully handled. */
53a5960a 2152int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853
FB
2153{
2154 unsigned int page_index, prot, pindex;
2155 PageDesc *p, *p1;
53a5960a 2156 target_ulong host_start, host_end, addr;
9fa3e853 2157
c8a706fe
PB
2158 /* Technically this isn't safe inside a signal handler. However we
2159 know this only ever happens in a synchronous SEGV handler, so in
2160 practice it seems to be ok. */
2161 mmap_lock();
2162
83fb7adf 2163 host_start = address & qemu_host_page_mask;
9fa3e853
FB
2164 page_index = host_start >> TARGET_PAGE_BITS;
2165 p1 = page_find(page_index);
c8a706fe
PB
2166 if (!p1) {
2167 mmap_unlock();
9fa3e853 2168 return 0;
c8a706fe 2169 }
83fb7adf 2170 host_end = host_start + qemu_host_page_size;
9fa3e853
FB
2171 p = p1;
2172 prot = 0;
2173 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2174 prot |= p->flags;
2175 p++;
2176 }
2177 /* if the page was really writable, then we change its
2178 protection back to writable */
2179 if (prot & PAGE_WRITE_ORG) {
2180 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2181 if (!(p1[pindex].flags & PAGE_WRITE)) {
5fafdf24 2182 mprotect((void *)g2h(host_start), qemu_host_page_size,
9fa3e853
FB
2183 (prot & PAGE_BITS) | PAGE_WRITE);
2184 p1[pindex].flags |= PAGE_WRITE;
2185 /* and since the content will be modified, we must invalidate
2186 the corresponding translated code. */
d720b93d 2187 tb_invalidate_phys_page(address, pc, puc);
9fa3e853
FB
2188#ifdef DEBUG_TB_CHECK
2189 tb_invalidate_check(address);
2190#endif
c8a706fe 2191 mmap_unlock();
9fa3e853
FB
2192 return 1;
2193 }
2194 }
c8a706fe 2195 mmap_unlock();
9fa3e853
FB
2196 return 0;
2197}
2198
6a00d601
FB
2199static inline void tlb_set_dirty(CPUState *env,
2200 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2201{
2202}
9fa3e853
FB
2203#endif /* defined(CONFIG_USER_ONLY) */
2204
e2eef170 2205#if !defined(CONFIG_USER_ONLY)
db7b5426 2206static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
00f82b8a
AJ
2207 ram_addr_t memory);
2208static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2209 ram_addr_t orig_memory);
db7b5426
BS
2210#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2211 need_subpage) \
2212 do { \
2213 if (addr > start_addr) \
2214 start_addr2 = 0; \
2215 else { \
2216 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2217 if (start_addr2 > 0) \
2218 need_subpage = 1; \
2219 } \
2220 \
49e9fba2 2221 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2222 end_addr2 = TARGET_PAGE_SIZE - 1; \
2223 else { \
2224 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2225 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2226 need_subpage = 1; \
2227 } \
2228 } while (0)
2229
33417e70
FB
2230/* register physical memory. 'size' must be a multiple of the target
2231 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2232 io memory page */
5fafdf24 2233void cpu_register_physical_memory(target_phys_addr_t start_addr,
00f82b8a
AJ
2234 ram_addr_t size,
2235 ram_addr_t phys_offset)
33417e70 2236{
108c49b8 2237 target_phys_addr_t addr, end_addr;
92e873b9 2238 PhysPageDesc *p;
9d42037b 2239 CPUState *env;
00f82b8a 2240 ram_addr_t orig_size = size;
db7b5426 2241 void *subpage;
33417e70 2242
da260249
FB
2243#ifdef USE_KQEMU
2244 /* XXX: should not depend on cpu context */
2245 env = first_cpu;
2246 if (env->kqemu_enabled) {
2247 kqemu_set_phys_mem(start_addr, size, phys_offset);
2248 }
2249#endif
7ba1e619
AL
2250 if (kvm_enabled())
2251 kvm_set_phys_mem(start_addr, size, phys_offset);
2252
5fd386f6 2253 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
49e9fba2
BS
2254 end_addr = start_addr + (target_phys_addr_t)size;
2255 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
db7b5426
BS
2256 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2257 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
00f82b8a 2258 ram_addr_t orig_memory = p->phys_offset;
db7b5426
BS
2259 target_phys_addr_t start_addr2, end_addr2;
2260 int need_subpage = 0;
2261
2262 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2263 need_subpage);
4254fab8 2264 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426
BS
2265 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2266 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2267 &p->phys_offset, orig_memory);
2268 } else {
2269 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2270 >> IO_MEM_SHIFT];
2271 }
2272 subpage_register(subpage, start_addr2, end_addr2, phys_offset);
2273 } else {
2274 p->phys_offset = phys_offset;
2275 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2276 (phys_offset & IO_MEM_ROMD))
2277 phys_offset += TARGET_PAGE_SIZE;
2278 }
2279 } else {
2280 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2281 p->phys_offset = phys_offset;
2282 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2283 (phys_offset & IO_MEM_ROMD))
2284 phys_offset += TARGET_PAGE_SIZE;
2285 else {
2286 target_phys_addr_t start_addr2, end_addr2;
2287 int need_subpage = 0;
2288
2289 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2290 end_addr2, need_subpage);
2291
4254fab8 2292 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426
BS
2293 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2294 &p->phys_offset, IO_MEM_UNASSIGNED);
2295 subpage_register(subpage, start_addr2, end_addr2,
2296 phys_offset);
2297 }
2298 }
2299 }
33417e70 2300 }
3b46e624 2301
9d42037b
FB
2302 /* since each CPU stores ram addresses in its TLB cache, we must
2303 reset the modified entries */
2304 /* XXX: slow ! */
2305 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2306 tlb_flush(env, 1);
2307 }
33417e70
FB
2308}
2309
ba863458 2310/* XXX: temporary until new memory mapping API */
00f82b8a 2311ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
ba863458
FB
2312{
2313 PhysPageDesc *p;
2314
2315 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2316 if (!p)
2317 return IO_MEM_UNASSIGNED;
2318 return p->phys_offset;
2319}
2320
e9a1ab19 2321/* XXX: better than nothing */
00f82b8a 2322ram_addr_t qemu_ram_alloc(ram_addr_t size)
e9a1ab19
FB
2323{
2324 ram_addr_t addr;
7fb4fdcf 2325 if ((phys_ram_alloc_offset + size) > phys_ram_size) {
012a7045 2326 fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 ")\n",
ed441467 2327 (uint64_t)size, (uint64_t)phys_ram_size);
e9a1ab19
FB
2328 abort();
2329 }
2330 addr = phys_ram_alloc_offset;
2331 phys_ram_alloc_offset = TARGET_PAGE_ALIGN(phys_ram_alloc_offset + size);
2332 return addr;
2333}
2334
2335void qemu_ram_free(ram_addr_t addr)
2336{
2337}
2338
a4193c8a 2339static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 2340{
67d3b957 2341#ifdef DEBUG_UNASSIGNED
ab3d1727 2342 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316 2343#endif
e18231a3
BS
2344#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2345 do_unassigned_access(addr, 0, 0, 0, 1);
2346#endif
2347 return 0;
2348}
2349
2350static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2351{
2352#ifdef DEBUG_UNASSIGNED
2353 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2354#endif
2355#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2356 do_unassigned_access(addr, 0, 0, 0, 2);
2357#endif
2358 return 0;
2359}
2360
2361static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2362{
2363#ifdef DEBUG_UNASSIGNED
2364 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2365#endif
2366#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2367 do_unassigned_access(addr, 0, 0, 0, 4);
67d3b957 2368#endif
33417e70
FB
2369 return 0;
2370}
2371
a4193c8a 2372static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 2373{
67d3b957 2374#ifdef DEBUG_UNASSIGNED
ab3d1727 2375 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 2376#endif
e18231a3
BS
2377#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2378 do_unassigned_access(addr, 1, 0, 0, 1);
2379#endif
2380}
2381
2382static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2383{
2384#ifdef DEBUG_UNASSIGNED
2385 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2386#endif
2387#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2388 do_unassigned_access(addr, 1, 0, 0, 2);
2389#endif
2390}
2391
2392static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2393{
2394#ifdef DEBUG_UNASSIGNED
2395 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2396#endif
2397#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2398 do_unassigned_access(addr, 1, 0, 0, 4);
b4f0a316 2399#endif
33417e70
FB
2400}
2401
2402static CPUReadMemoryFunc *unassigned_mem_read[3] = {
2403 unassigned_mem_readb,
e18231a3
BS
2404 unassigned_mem_readw,
2405 unassigned_mem_readl,
33417e70
FB
2406};
2407
2408static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
2409 unassigned_mem_writeb,
e18231a3
BS
2410 unassigned_mem_writew,
2411 unassigned_mem_writel,
33417e70
FB
2412};
2413
0f459d16
PB
2414static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2415 uint32_t val)
9fa3e853 2416{
3a7d929e 2417 int dirty_flags;
3a7d929e
FB
2418 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2419 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2420#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2421 tb_invalidate_phys_page_fast(ram_addr, 1);
2422 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2423#endif
3a7d929e 2424 }
0f459d16 2425 stb_p(phys_ram_base + ram_addr, val);
f32fc648
FB
2426#ifdef USE_KQEMU
2427 if (cpu_single_env->kqemu_enabled &&
2428 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2429 kqemu_modify_page(cpu_single_env, ram_addr);
2430#endif
f23db169
FB
2431 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2432 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2433 /* we remove the notdirty callback only if the code has been
2434 flushed */
2435 if (dirty_flags == 0xff)
2e70f6ef 2436 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2437}
2438
0f459d16
PB
2439static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2440 uint32_t val)
9fa3e853 2441{
3a7d929e 2442 int dirty_flags;
3a7d929e
FB
2443 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2444 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2445#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2446 tb_invalidate_phys_page_fast(ram_addr, 2);
2447 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2448#endif
3a7d929e 2449 }
0f459d16 2450 stw_p(phys_ram_base + ram_addr, val);
f32fc648
FB
2451#ifdef USE_KQEMU
2452 if (cpu_single_env->kqemu_enabled &&
2453 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2454 kqemu_modify_page(cpu_single_env, ram_addr);
2455#endif
f23db169
FB
2456 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2457 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2458 /* we remove the notdirty callback only if the code has been
2459 flushed */
2460 if (dirty_flags == 0xff)
2e70f6ef 2461 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2462}
2463
0f459d16
PB
2464static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2465 uint32_t val)
9fa3e853 2466{
3a7d929e 2467 int dirty_flags;
3a7d929e
FB
2468 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2469 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2470#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2471 tb_invalidate_phys_page_fast(ram_addr, 4);
2472 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2473#endif
3a7d929e 2474 }
0f459d16 2475 stl_p(phys_ram_base + ram_addr, val);
f32fc648
FB
2476#ifdef USE_KQEMU
2477 if (cpu_single_env->kqemu_enabled &&
2478 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2479 kqemu_modify_page(cpu_single_env, ram_addr);
2480#endif
f23db169
FB
2481 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2482 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2483 /* we remove the notdirty callback only if the code has been
2484 flushed */
2485 if (dirty_flags == 0xff)
2e70f6ef 2486 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2487}
2488
3a7d929e 2489static CPUReadMemoryFunc *error_mem_read[3] = {
9fa3e853
FB
2490 NULL, /* never used */
2491 NULL, /* never used */
2492 NULL, /* never used */
2493};
2494
1ccde1cb
FB
2495static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
2496 notdirty_mem_writeb,
2497 notdirty_mem_writew,
2498 notdirty_mem_writel,
2499};
2500
0f459d16 2501/* Generate a debug exception if a watchpoint has been hit. */
b4051334 2502static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16
PB
2503{
2504 CPUState *env = cpu_single_env;
06d55cc1
AL
2505 target_ulong pc, cs_base;
2506 TranslationBlock *tb;
0f459d16 2507 target_ulong vaddr;
a1d1bb31 2508 CPUWatchpoint *wp;
06d55cc1 2509 int cpu_flags;
0f459d16 2510
06d55cc1
AL
2511 if (env->watchpoint_hit) {
2512 /* We re-entered the check after replacing the TB. Now raise
2513 * the debug interrupt so that is will trigger after the
2514 * current instruction. */
2515 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2516 return;
2517 }
2e70f6ef 2518 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
a1d1bb31 2519 for (wp = env->watchpoints; wp != NULL; wp = wp->next) {
b4051334
AL
2520 if ((vaddr == (wp->vaddr & len_mask) ||
2521 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
2522 wp->flags |= BP_WATCHPOINT_HIT;
2523 if (!env->watchpoint_hit) {
2524 env->watchpoint_hit = wp;
2525 tb = tb_find_pc(env->mem_io_pc);
2526 if (!tb) {
2527 cpu_abort(env, "check_watchpoint: could not find TB for "
2528 "pc=%p", (void *)env->mem_io_pc);
2529 }
2530 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
2531 tb_phys_invalidate(tb, -1);
2532 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2533 env->exception_index = EXCP_DEBUG;
2534 } else {
2535 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2536 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2537 }
2538 cpu_resume_from_signal(env, NULL);
06d55cc1 2539 }
6e140f28
AL
2540 } else {
2541 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2542 }
2543 }
2544}
2545
6658ffb8
PB
2546/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2547 so these check for a hit then pass through to the normal out-of-line
2548 phys routines. */
2549static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2550{
b4051334 2551 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
6658ffb8
PB
2552 return ldub_phys(addr);
2553}
2554
2555static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2556{
b4051334 2557 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
6658ffb8
PB
2558 return lduw_phys(addr);
2559}
2560
2561static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2562{
b4051334 2563 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
6658ffb8
PB
2564 return ldl_phys(addr);
2565}
2566
6658ffb8
PB
2567static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2568 uint32_t val)
2569{
b4051334 2570 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
6658ffb8
PB
2571 stb_phys(addr, val);
2572}
2573
2574static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2575 uint32_t val)
2576{
b4051334 2577 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
6658ffb8
PB
2578 stw_phys(addr, val);
2579}
2580
2581static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2582 uint32_t val)
2583{
b4051334 2584 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
6658ffb8
PB
2585 stl_phys(addr, val);
2586}
2587
2588static CPUReadMemoryFunc *watch_mem_read[3] = {
2589 watch_mem_readb,
2590 watch_mem_readw,
2591 watch_mem_readl,
2592};
2593
2594static CPUWriteMemoryFunc *watch_mem_write[3] = {
2595 watch_mem_writeb,
2596 watch_mem_writew,
2597 watch_mem_writel,
2598};
6658ffb8 2599
db7b5426
BS
2600static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2601 unsigned int len)
2602{
db7b5426
BS
2603 uint32_t ret;
2604 unsigned int idx;
2605
2606 idx = SUBPAGE_IDX(addr - mmio->base);
2607#if defined(DEBUG_SUBPAGE)
2608 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2609 mmio, len, addr, idx);
2610#endif
3ee89922 2611 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len], addr);
db7b5426
BS
2612
2613 return ret;
2614}
2615
2616static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2617 uint32_t value, unsigned int len)
2618{
db7b5426
BS
2619 unsigned int idx;
2620
2621 idx = SUBPAGE_IDX(addr - mmio->base);
2622#if defined(DEBUG_SUBPAGE)
2623 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2624 mmio, len, addr, idx, value);
2625#endif
3ee89922 2626 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len], addr, value);
db7b5426
BS
2627}
2628
2629static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2630{
2631#if defined(DEBUG_SUBPAGE)
2632 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2633#endif
2634
2635 return subpage_readlen(opaque, addr, 0);
2636}
2637
2638static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2639 uint32_t value)
2640{
2641#if defined(DEBUG_SUBPAGE)
2642 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2643#endif
2644 subpage_writelen(opaque, addr, value, 0);
2645}
2646
2647static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2648{
2649#if defined(DEBUG_SUBPAGE)
2650 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2651#endif
2652
2653 return subpage_readlen(opaque, addr, 1);
2654}
2655
2656static void subpage_writew (void *opaque, target_phys_addr_t addr,
2657 uint32_t value)
2658{
2659#if defined(DEBUG_SUBPAGE)
2660 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2661#endif
2662 subpage_writelen(opaque, addr, value, 1);
2663}
2664
2665static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2666{
2667#if defined(DEBUG_SUBPAGE)
2668 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2669#endif
2670
2671 return subpage_readlen(opaque, addr, 2);
2672}
2673
2674static void subpage_writel (void *opaque,
2675 target_phys_addr_t addr, uint32_t value)
2676{
2677#if defined(DEBUG_SUBPAGE)
2678 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2679#endif
2680 subpage_writelen(opaque, addr, value, 2);
2681}
2682
2683static CPUReadMemoryFunc *subpage_read[] = {
2684 &subpage_readb,
2685 &subpage_readw,
2686 &subpage_readl,
2687};
2688
2689static CPUWriteMemoryFunc *subpage_write[] = {
2690 &subpage_writeb,
2691 &subpage_writew,
2692 &subpage_writel,
2693};
2694
2695static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
00f82b8a 2696 ram_addr_t memory)
db7b5426
BS
2697{
2698 int idx, eidx;
4254fab8 2699 unsigned int i;
db7b5426
BS
2700
2701 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2702 return -1;
2703 idx = SUBPAGE_IDX(start);
2704 eidx = SUBPAGE_IDX(end);
2705#if defined(DEBUG_SUBPAGE)
2706 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__,
2707 mmio, start, end, idx, eidx, memory);
2708#endif
2709 memory >>= IO_MEM_SHIFT;
2710 for (; idx <= eidx; idx++) {
4254fab8 2711 for (i = 0; i < 4; i++) {
3ee89922
BS
2712 if (io_mem_read[memory][i]) {
2713 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2714 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
2715 }
2716 if (io_mem_write[memory][i]) {
2717 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2718 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
2719 }
4254fab8 2720 }
db7b5426
BS
2721 }
2722
2723 return 0;
2724}
2725
00f82b8a
AJ
2726static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2727 ram_addr_t orig_memory)
db7b5426
BS
2728{
2729 subpage_t *mmio;
2730 int subpage_memory;
2731
2732 mmio = qemu_mallocz(sizeof(subpage_t));
2733 if (mmio != NULL) {
2734 mmio->base = base;
2735 subpage_memory = cpu_register_io_memory(0, subpage_read, subpage_write, mmio);
2736#if defined(DEBUG_SUBPAGE)
2737 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2738 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
2739#endif
2740 *phys = subpage_memory | IO_MEM_SUBPAGE;
2741 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory);
2742 }
2743
2744 return mmio;
2745}
2746
33417e70
FB
2747static void io_mem_init(void)
2748{
3a7d929e 2749 cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL);
a4193c8a 2750 cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL);
3a7d929e 2751 cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL);
1ccde1cb
FB
2752 io_mem_nb = 5;
2753
0f459d16 2754 io_mem_watch = cpu_register_io_memory(0, watch_mem_read,
6658ffb8 2755 watch_mem_write, NULL);
1ccde1cb 2756 /* alloc dirty bits array */
0a962c02 2757 phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS);
3a7d929e 2758 memset(phys_ram_dirty, 0xff, phys_ram_size >> TARGET_PAGE_BITS);
33417e70
FB
2759}
2760
2761/* mem_read and mem_write are arrays of functions containing the
2762 function to access byte (index 0), word (index 1) and dword (index
3ee89922
BS
2763 2). Functions can be omitted with a NULL function pointer. The
2764 registered functions may be modified dynamically later.
2765 If io_index is non zero, the corresponding io zone is
4254fab8
BS
2766 modified. If it is zero, a new io zone is allocated. The return
2767 value can be used with cpu_register_physical_memory(). (-1) is
2768 returned if error. */
33417e70
FB
2769int cpu_register_io_memory(int io_index,
2770 CPUReadMemoryFunc **mem_read,
a4193c8a
FB
2771 CPUWriteMemoryFunc **mem_write,
2772 void *opaque)
33417e70 2773{
4254fab8 2774 int i, subwidth = 0;
33417e70
FB
2775
2776 if (io_index <= 0) {
b5ff1b31 2777 if (io_mem_nb >= IO_MEM_NB_ENTRIES)
33417e70
FB
2778 return -1;
2779 io_index = io_mem_nb++;
2780 } else {
2781 if (io_index >= IO_MEM_NB_ENTRIES)
2782 return -1;
2783 }
b5ff1b31 2784
33417e70 2785 for(i = 0;i < 3; i++) {
4254fab8
BS
2786 if (!mem_read[i] || !mem_write[i])
2787 subwidth = IO_MEM_SUBWIDTH;
33417e70
FB
2788 io_mem_read[io_index][i] = mem_read[i];
2789 io_mem_write[io_index][i] = mem_write[i];
2790 }
a4193c8a 2791 io_mem_opaque[io_index] = opaque;
4254fab8 2792 return (io_index << IO_MEM_SHIFT) | subwidth;
33417e70 2793}
61382a50 2794
8926b517
FB
2795CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index)
2796{
2797 return io_mem_write[io_index >> IO_MEM_SHIFT];
2798}
2799
2800CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index)
2801{
2802 return io_mem_read[io_index >> IO_MEM_SHIFT];
2803}
2804
e2eef170
PB
2805#endif /* !defined(CONFIG_USER_ONLY) */
2806
13eb76e0
FB
2807/* physical memory access (slow version, mainly for debug) */
2808#if defined(CONFIG_USER_ONLY)
5fafdf24 2809void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
2810 int len, int is_write)
2811{
2812 int l, flags;
2813 target_ulong page;
53a5960a 2814 void * p;
13eb76e0
FB
2815
2816 while (len > 0) {
2817 page = addr & TARGET_PAGE_MASK;
2818 l = (page + TARGET_PAGE_SIZE) - addr;
2819 if (l > len)
2820 l = len;
2821 flags = page_get_flags(page);
2822 if (!(flags & PAGE_VALID))
2823 return;
2824 if (is_write) {
2825 if (!(flags & PAGE_WRITE))
2826 return;
579a97f7 2827 /* XXX: this code should not depend on lock_user */
72fb7daa 2828 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
579a97f7
FB
2829 /* FIXME - should this return an error rather than just fail? */
2830 return;
72fb7daa
AJ
2831 memcpy(p, buf, l);
2832 unlock_user(p, addr, l);
13eb76e0
FB
2833 } else {
2834 if (!(flags & PAGE_READ))
2835 return;
579a97f7 2836 /* XXX: this code should not depend on lock_user */
72fb7daa 2837 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
579a97f7
FB
2838 /* FIXME - should this return an error rather than just fail? */
2839 return;
72fb7daa 2840 memcpy(buf, p, l);
5b257578 2841 unlock_user(p, addr, 0);
13eb76e0
FB
2842 }
2843 len -= l;
2844 buf += l;
2845 addr += l;
2846 }
2847}
8df1cd07 2848
13eb76e0 2849#else
5fafdf24 2850void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
2851 int len, int is_write)
2852{
2853 int l, io_index;
2854 uint8_t *ptr;
2855 uint32_t val;
2e12669a
FB
2856 target_phys_addr_t page;
2857 unsigned long pd;
92e873b9 2858 PhysPageDesc *p;
3b46e624 2859
13eb76e0
FB
2860 while (len > 0) {
2861 page = addr & TARGET_PAGE_MASK;
2862 l = (page + TARGET_PAGE_SIZE) - addr;
2863 if (l > len)
2864 l = len;
92e873b9 2865 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
2866 if (!p) {
2867 pd = IO_MEM_UNASSIGNED;
2868 } else {
2869 pd = p->phys_offset;
2870 }
3b46e624 2871
13eb76e0 2872 if (is_write) {
3a7d929e 2873 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
13eb76e0 2874 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
6a00d601
FB
2875 /* XXX: could force cpu_single_env to NULL to avoid
2876 potential bugs */
13eb76e0 2877 if (l >= 4 && ((addr & 3) == 0)) {
1c213d19 2878 /* 32 bit write access */
c27004ec 2879 val = ldl_p(buf);
a4193c8a 2880 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
13eb76e0
FB
2881 l = 4;
2882 } else if (l >= 2 && ((addr & 1) == 0)) {
1c213d19 2883 /* 16 bit write access */
c27004ec 2884 val = lduw_p(buf);
a4193c8a 2885 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
13eb76e0
FB
2886 l = 2;
2887 } else {
1c213d19 2888 /* 8 bit write access */
c27004ec 2889 val = ldub_p(buf);
a4193c8a 2890 io_mem_write[io_index][0](io_mem_opaque[io_index], addr, val);
13eb76e0
FB
2891 l = 1;
2892 }
2893 } else {
b448f2f3
FB
2894 unsigned long addr1;
2895 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 2896 /* RAM case */
b448f2f3 2897 ptr = phys_ram_base + addr1;
13eb76e0 2898 memcpy(ptr, buf, l);
3a7d929e
FB
2899 if (!cpu_physical_memory_is_dirty(addr1)) {
2900 /* invalidate code */
2901 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
2902 /* set dirty bit */
5fafdf24 2903 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
f23db169 2904 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 2905 }
13eb76e0
FB
2906 }
2907 } else {
5fafdf24 2908 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 2909 !(pd & IO_MEM_ROMD)) {
13eb76e0
FB
2910 /* I/O case */
2911 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2912 if (l >= 4 && ((addr & 3) == 0)) {
2913 /* 32 bit read access */
a4193c8a 2914 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
c27004ec 2915 stl_p(buf, val);
13eb76e0
FB
2916 l = 4;
2917 } else if (l >= 2 && ((addr & 1) == 0)) {
2918 /* 16 bit read access */
a4193c8a 2919 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
c27004ec 2920 stw_p(buf, val);
13eb76e0
FB
2921 l = 2;
2922 } else {
1c213d19 2923 /* 8 bit read access */
a4193c8a 2924 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr);
c27004ec 2925 stb_p(buf, val);
13eb76e0
FB
2926 l = 1;
2927 }
2928 } else {
2929 /* RAM case */
5fafdf24 2930 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
13eb76e0
FB
2931 (addr & ~TARGET_PAGE_MASK);
2932 memcpy(buf, ptr, l);
2933 }
2934 }
2935 len -= l;
2936 buf += l;
2937 addr += l;
2938 }
2939}
8df1cd07 2940
d0ecd2aa 2941/* used for ROM loading : can write in RAM and ROM */
5fafdf24 2942void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
2943 const uint8_t *buf, int len)
2944{
2945 int l;
2946 uint8_t *ptr;
2947 target_phys_addr_t page;
2948 unsigned long pd;
2949 PhysPageDesc *p;
3b46e624 2950
d0ecd2aa
FB
2951 while (len > 0) {
2952 page = addr & TARGET_PAGE_MASK;
2953 l = (page + TARGET_PAGE_SIZE) - addr;
2954 if (l > len)
2955 l = len;
2956 p = phys_page_find(page >> TARGET_PAGE_BITS);
2957 if (!p) {
2958 pd = IO_MEM_UNASSIGNED;
2959 } else {
2960 pd = p->phys_offset;
2961 }
3b46e624 2962
d0ecd2aa 2963 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
2964 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
2965 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
2966 /* do nothing */
2967 } else {
2968 unsigned long addr1;
2969 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2970 /* ROM/RAM case */
2971 ptr = phys_ram_base + addr1;
2972 memcpy(ptr, buf, l);
2973 }
2974 len -= l;
2975 buf += l;
2976 addr += l;
2977 }
2978}
2979
2980
8df1cd07
FB
2981/* warning: addr must be aligned */
2982uint32_t ldl_phys(target_phys_addr_t addr)
2983{
2984 int io_index;
2985 uint8_t *ptr;
2986 uint32_t val;
2987 unsigned long pd;
2988 PhysPageDesc *p;
2989
2990 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2991 if (!p) {
2992 pd = IO_MEM_UNASSIGNED;
2993 } else {
2994 pd = p->phys_offset;
2995 }
3b46e624 2996
5fafdf24 2997 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 2998 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
2999 /* I/O case */
3000 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3001 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3002 } else {
3003 /* RAM case */
5fafdf24 3004 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
8df1cd07
FB
3005 (addr & ~TARGET_PAGE_MASK);
3006 val = ldl_p(ptr);
3007 }
3008 return val;
3009}
3010
84b7b8e7
FB
3011/* warning: addr must be aligned */
3012uint64_t ldq_phys(target_phys_addr_t addr)
3013{
3014 int io_index;
3015 uint8_t *ptr;
3016 uint64_t val;
3017 unsigned long pd;
3018 PhysPageDesc *p;
3019
3020 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3021 if (!p) {
3022 pd = IO_MEM_UNASSIGNED;
3023 } else {
3024 pd = p->phys_offset;
3025 }
3b46e624 3026
2a4188a3
FB
3027 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3028 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
3029 /* I/O case */
3030 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3031#ifdef TARGET_WORDS_BIGENDIAN
3032 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3033 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3034#else
3035 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3036 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3037#endif
3038 } else {
3039 /* RAM case */
5fafdf24 3040 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
84b7b8e7
FB
3041 (addr & ~TARGET_PAGE_MASK);
3042 val = ldq_p(ptr);
3043 }
3044 return val;
3045}
3046
aab33094
FB
3047/* XXX: optimize */
3048uint32_t ldub_phys(target_phys_addr_t addr)
3049{
3050 uint8_t val;
3051 cpu_physical_memory_read(addr, &val, 1);
3052 return val;
3053}
3054
3055/* XXX: optimize */
3056uint32_t lduw_phys(target_phys_addr_t addr)
3057{
3058 uint16_t val;
3059 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3060 return tswap16(val);
3061}
3062
8df1cd07
FB
3063/* warning: addr must be aligned. The ram page is not masked as dirty
3064 and the code inside is not invalidated. It is useful if the dirty
3065 bits are used to track modified PTEs */
3066void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3067{
3068 int io_index;
3069 uint8_t *ptr;
3070 unsigned long pd;
3071 PhysPageDesc *p;
3072
3073 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3074 if (!p) {
3075 pd = IO_MEM_UNASSIGNED;
3076 } else {
3077 pd = p->phys_offset;
3078 }
3b46e624 3079
3a7d929e 3080 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07
FB
3081 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3082 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3083 } else {
74576198
AL
3084 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3085 ptr = phys_ram_base + addr1;
8df1cd07 3086 stl_p(ptr, val);
74576198
AL
3087
3088 if (unlikely(in_migration)) {
3089 if (!cpu_physical_memory_is_dirty(addr1)) {
3090 /* invalidate code */
3091 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3092 /* set dirty bit */
3093 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3094 (0xff & ~CODE_DIRTY_FLAG);
3095 }
3096 }
8df1cd07
FB
3097 }
3098}
3099
bc98a7ef
JM
3100void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3101{
3102 int io_index;
3103 uint8_t *ptr;
3104 unsigned long pd;
3105 PhysPageDesc *p;
3106
3107 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3108 if (!p) {
3109 pd = IO_MEM_UNASSIGNED;
3110 } else {
3111 pd = p->phys_offset;
3112 }
3b46e624 3113
bc98a7ef
JM
3114 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3115 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3116#ifdef TARGET_WORDS_BIGENDIAN
3117 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3118 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3119#else
3120 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3121 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3122#endif
3123 } else {
5fafdf24 3124 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
3125 (addr & ~TARGET_PAGE_MASK);
3126 stq_p(ptr, val);
3127 }
3128}
3129
8df1cd07 3130/* warning: addr must be aligned */
8df1cd07
FB
3131void stl_phys(target_phys_addr_t addr, uint32_t val)
3132{
3133 int io_index;
3134 uint8_t *ptr;
3135 unsigned long pd;
3136 PhysPageDesc *p;
3137
3138 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3139 if (!p) {
3140 pd = IO_MEM_UNASSIGNED;
3141 } else {
3142 pd = p->phys_offset;
3143 }
3b46e624 3144
3a7d929e 3145 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07
FB
3146 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3147 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3148 } else {
3149 unsigned long addr1;
3150 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3151 /* RAM case */
3152 ptr = phys_ram_base + addr1;
3153 stl_p(ptr, val);
3a7d929e
FB
3154 if (!cpu_physical_memory_is_dirty(addr1)) {
3155 /* invalidate code */
3156 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3157 /* set dirty bit */
f23db169
FB
3158 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3159 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3160 }
8df1cd07
FB
3161 }
3162}
3163
aab33094
FB
3164/* XXX: optimize */
3165void stb_phys(target_phys_addr_t addr, uint32_t val)
3166{
3167 uint8_t v = val;
3168 cpu_physical_memory_write(addr, &v, 1);
3169}
3170
3171/* XXX: optimize */
3172void stw_phys(target_phys_addr_t addr, uint32_t val)
3173{
3174 uint16_t v = tswap16(val);
3175 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3176}
3177
3178/* XXX: optimize */
3179void stq_phys(target_phys_addr_t addr, uint64_t val)
3180{
3181 val = tswap64(val);
3182 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3183}
3184
13eb76e0
FB
3185#endif
3186
3187/* virtual memory access for debug */
5fafdf24 3188int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 3189 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3190{
3191 int l;
9b3c35e0
JM
3192 target_phys_addr_t phys_addr;
3193 target_ulong page;
13eb76e0
FB
3194
3195 while (len > 0) {
3196 page = addr & TARGET_PAGE_MASK;
3197 phys_addr = cpu_get_phys_page_debug(env, page);
3198 /* if no physical page mapped, return an error */
3199 if (phys_addr == -1)
3200 return -1;
3201 l = (page + TARGET_PAGE_SIZE) - addr;
3202 if (l > len)
3203 l = len;
5fafdf24 3204 cpu_physical_memory_rw(phys_addr + (addr & ~TARGET_PAGE_MASK),
b448f2f3 3205 buf, l, is_write);
13eb76e0
FB
3206 len -= l;
3207 buf += l;
3208 addr += l;
3209 }
3210 return 0;
3211}
3212
2e70f6ef
PB
3213/* in deterministic execution mode, instructions doing device I/Os
3214 must be at the end of the TB */
3215void cpu_io_recompile(CPUState *env, void *retaddr)
3216{
3217 TranslationBlock *tb;
3218 uint32_t n, cflags;
3219 target_ulong pc, cs_base;
3220 uint64_t flags;
3221
3222 tb = tb_find_pc((unsigned long)retaddr);
3223 if (!tb) {
3224 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3225 retaddr);
3226 }
3227 n = env->icount_decr.u16.low + tb->icount;
3228 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3229 /* Calculate how many instructions had been executed before the fault
bf20dc07 3230 occurred. */
2e70f6ef
PB
3231 n = n - env->icount_decr.u16.low;
3232 /* Generate a new TB ending on the I/O insn. */
3233 n++;
3234 /* On MIPS and SH, delay slot instructions can only be restarted if
3235 they were already the first instruction in the TB. If this is not
bf20dc07 3236 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
3237 branch. */
3238#if defined(TARGET_MIPS)
3239 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3240 env->active_tc.PC -= 4;
3241 env->icount_decr.u16.low++;
3242 env->hflags &= ~MIPS_HFLAG_BMASK;
3243 }
3244#elif defined(TARGET_SH4)
3245 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3246 && n > 1) {
3247 env->pc -= 2;
3248 env->icount_decr.u16.low++;
3249 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3250 }
3251#endif
3252 /* This should never happen. */
3253 if (n > CF_COUNT_MASK)
3254 cpu_abort(env, "TB too big during recompile");
3255
3256 cflags = n | CF_LAST_IO;
3257 pc = tb->pc;
3258 cs_base = tb->cs_base;
3259 flags = tb->flags;
3260 tb_phys_invalidate(tb, -1);
3261 /* FIXME: In theory this could raise an exception. In practice
3262 we have already translated the block once so it's probably ok. */
3263 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 3264 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
3265 the first in the TB) then we end up generating a whole new TB and
3266 repeating the fault, which is horribly inefficient.
3267 Better would be to execute just this insn uncached, or generate a
3268 second new TB. */
3269 cpu_resume_from_signal(env, NULL);
3270}
3271
e3db7226
FB
3272void dump_exec_info(FILE *f,
3273 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3274{
3275 int i, target_code_size, max_target_code_size;
3276 int direct_jmp_count, direct_jmp2_count, cross_page;
3277 TranslationBlock *tb;
3b46e624 3278
e3db7226
FB
3279 target_code_size = 0;
3280 max_target_code_size = 0;
3281 cross_page = 0;
3282 direct_jmp_count = 0;
3283 direct_jmp2_count = 0;
3284 for(i = 0; i < nb_tbs; i++) {
3285 tb = &tbs[i];
3286 target_code_size += tb->size;
3287 if (tb->size > max_target_code_size)
3288 max_target_code_size = tb->size;
3289 if (tb->page_addr[1] != -1)
3290 cross_page++;
3291 if (tb->tb_next_offset[0] != 0xffff) {
3292 direct_jmp_count++;
3293 if (tb->tb_next_offset[1] != 0xffff) {
3294 direct_jmp2_count++;
3295 }
3296 }
3297 }
3298 /* XXX: avoid using doubles ? */
57fec1fe 3299 cpu_fprintf(f, "Translation buffer state:\n");
26a5f13b
FB
3300 cpu_fprintf(f, "gen code size %ld/%ld\n",
3301 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3302 cpu_fprintf(f, "TB count %d/%d\n",
3303 nb_tbs, code_gen_max_blocks);
5fafdf24 3304 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
3305 nb_tbs ? target_code_size / nb_tbs : 0,
3306 max_target_code_size);
5fafdf24 3307 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
3308 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3309 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
3310 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3311 cross_page,
e3db7226
FB
3312 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3313 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 3314 direct_jmp_count,
e3db7226
FB
3315 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3316 direct_jmp2_count,
3317 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 3318 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
3319 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3320 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3321 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 3322 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
3323}
3324
5fafdf24 3325#if !defined(CONFIG_USER_ONLY)
61382a50
FB
3326
3327#define MMUSUFFIX _cmmu
3328#define GETPC() NULL
3329#define env cpu_single_env
b769d8fe 3330#define SOFTMMU_CODE_ACCESS
61382a50
FB
3331
3332#define SHIFT 0
3333#include "softmmu_template.h"
3334
3335#define SHIFT 1
3336#include "softmmu_template.h"
3337
3338#define SHIFT 2
3339#include "softmmu_template.h"
3340
3341#define SHIFT 3
3342#include "softmmu_template.h"
3343
3344#undef env
3345
3346#endif