]> git.proxmox.com Git - qemu.git/blame - exec.c
fixed self modifying code in case of asynchronous interrupt
[qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
54936004
FB
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
67b915a5 20#include "config.h"
54936004
FB
21#include <stdlib.h>
22#include <stdio.h>
23#include <stdarg.h>
24#include <string.h>
25#include <errno.h>
26#include <unistd.h>
27#include <inttypes.h>
67b915a5 28#if !defined(CONFIG_SOFTMMU)
fd6ce8f6 29#include <sys/mman.h>
67b915a5 30#endif
54936004 31
6180a181
FB
32#include "cpu.h"
33#include "exec-all.h"
54936004 34
fd6ce8f6 35//#define DEBUG_TB_INVALIDATE
66e85a21 36//#define DEBUG_FLUSH
9fa3e853 37//#define DEBUG_TLB
fd6ce8f6
FB
38
39/* make various TB consistency checks */
40//#define DEBUG_TB_CHECK
98857888 41//#define DEBUG_TLB_CHECK
fd6ce8f6
FB
42
43/* threshold to flush the translated code buffer */
44#define CODE_GEN_BUFFER_MAX_SIZE (CODE_GEN_BUFFER_SIZE - CODE_GEN_MAX_SIZE)
45
9fa3e853
FB
46#define SMC_BITMAP_USE_THRESHOLD 10
47
48#define MMAP_AREA_START 0x00000000
49#define MMAP_AREA_END 0xa8000000
fd6ce8f6
FB
50
51TranslationBlock tbs[CODE_GEN_MAX_BLOCKS];
52TranslationBlock *tb_hash[CODE_GEN_HASH_SIZE];
9fa3e853 53TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
fd6ce8f6 54int nb_tbs;
eb51d102
FB
55/* any access to the tbs or the page table must use this lock */
56spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6
FB
57
58uint8_t code_gen_buffer[CODE_GEN_BUFFER_SIZE];
59uint8_t *code_gen_ptr;
60
9fa3e853
FB
61int phys_ram_size;
62int phys_ram_fd;
63uint8_t *phys_ram_base;
1ccde1cb 64uint8_t *phys_ram_dirty;
9fa3e853 65
54936004 66typedef struct PageDesc {
92e873b9 67 /* list of TBs intersecting this ram page */
fd6ce8f6 68 TranslationBlock *first_tb;
9fa3e853
FB
69 /* in order to optimize self modifying code, we count the number
70 of lookups we do to a given page to use a bitmap */
71 unsigned int code_write_count;
72 uint8_t *code_bitmap;
73#if defined(CONFIG_USER_ONLY)
74 unsigned long flags;
75#endif
54936004
FB
76} PageDesc;
77
92e873b9
FB
78typedef struct PhysPageDesc {
79 /* offset in host memory of the page + io_index in the low 12 bits */
80 unsigned long phys_offset;
81} PhysPageDesc;
82
9fa3e853
FB
83typedef struct VirtPageDesc {
84 /* physical address of code page. It is valid only if 'valid_tag'
85 matches 'virt_valid_tag' */
86 target_ulong phys_addr;
87 unsigned int valid_tag;
88#if !defined(CONFIG_SOFTMMU)
89 /* original page access rights. It is valid only if 'valid_tag'
90 matches 'virt_valid_tag' */
91 unsigned int prot;
92#endif
93} VirtPageDesc;
94
54936004
FB
95#define L2_BITS 10
96#define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
97
98#define L1_SIZE (1 << L1_BITS)
99#define L2_SIZE (1 << L2_BITS)
100
33417e70 101static void io_mem_init(void);
fd6ce8f6 102
54936004
FB
103unsigned long real_host_page_size;
104unsigned long host_page_bits;
105unsigned long host_page_size;
106unsigned long host_page_mask;
107
92e873b9 108/* XXX: for system emulation, it could just be an array */
54936004 109static PageDesc *l1_map[L1_SIZE];
92e873b9 110static PhysPageDesc *l1_phys_map[L1_SIZE];
54936004 111
9fa3e853
FB
112#if !defined(CONFIG_USER_ONLY)
113static VirtPageDesc *l1_virt_map[L1_SIZE];
114static unsigned int virt_valid_tag;
115#endif
116
33417e70 117/* io memory support */
33417e70
FB
118CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
119CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 120void *io_mem_opaque[IO_MEM_NB_ENTRIES];
33417e70
FB
121static int io_mem_nb;
122
34865134
FB
123/* log support */
124char *logfilename = "/tmp/qemu.log";
125FILE *logfile;
126int loglevel;
127
b346ff46 128static void page_init(void)
54936004
FB
129{
130 /* NOTE: we can always suppose that host_page_size >=
131 TARGET_PAGE_SIZE */
67b915a5
FB
132#ifdef _WIN32
133 real_host_page_size = 4096;
134#else
54936004 135 real_host_page_size = getpagesize();
67b915a5 136#endif
54936004
FB
137 if (host_page_size == 0)
138 host_page_size = real_host_page_size;
139 if (host_page_size < TARGET_PAGE_SIZE)
140 host_page_size = TARGET_PAGE_SIZE;
141 host_page_bits = 0;
142 while ((1 << host_page_bits) < host_page_size)
143 host_page_bits++;
144 host_page_mask = ~(host_page_size - 1);
9fa3e853
FB
145#if !defined(CONFIG_USER_ONLY)
146 virt_valid_tag = 1;
147#endif
54936004
FB
148}
149
fd6ce8f6 150static inline PageDesc *page_find_alloc(unsigned int index)
54936004 151{
54936004
FB
152 PageDesc **lp, *p;
153
54936004
FB
154 lp = &l1_map[index >> L2_BITS];
155 p = *lp;
156 if (!p) {
157 /* allocate if not found */
59817ccb 158 p = qemu_malloc(sizeof(PageDesc) * L2_SIZE);
fd6ce8f6 159 memset(p, 0, sizeof(PageDesc) * L2_SIZE);
54936004
FB
160 *lp = p;
161 }
162 return p + (index & (L2_SIZE - 1));
163}
164
fd6ce8f6 165static inline PageDesc *page_find(unsigned int index)
54936004 166{
54936004
FB
167 PageDesc *p;
168
54936004
FB
169 p = l1_map[index >> L2_BITS];
170 if (!p)
171 return 0;
fd6ce8f6
FB
172 return p + (index & (L2_SIZE - 1));
173}
174
92e873b9
FB
175static inline PhysPageDesc *phys_page_find_alloc(unsigned int index)
176{
177 PhysPageDesc **lp, *p;
178
179 lp = &l1_phys_map[index >> L2_BITS];
180 p = *lp;
181 if (!p) {
182 /* allocate if not found */
183 p = qemu_malloc(sizeof(PhysPageDesc) * L2_SIZE);
184 memset(p, 0, sizeof(PhysPageDesc) * L2_SIZE);
185 *lp = p;
186 }
187 return p + (index & (L2_SIZE - 1));
188}
189
190static inline PhysPageDesc *phys_page_find(unsigned int index)
191{
192 PhysPageDesc *p;
193
194 p = l1_phys_map[index >> L2_BITS];
195 if (!p)
196 return 0;
197 return p + (index & (L2_SIZE - 1));
198}
199
9fa3e853 200#if !defined(CONFIG_USER_ONLY)
4f2ac237
FB
201static void tlb_protect_code(CPUState *env, target_ulong addr);
202static void tlb_unprotect_code_phys(CPUState *env, unsigned long phys_addr, target_ulong vaddr);
9fa3e853
FB
203
204static inline VirtPageDesc *virt_page_find_alloc(unsigned int index)
fd6ce8f6 205{
9fa3e853 206 VirtPageDesc **lp, *p;
fd6ce8f6 207
9fa3e853
FB
208 lp = &l1_virt_map[index >> L2_BITS];
209 p = *lp;
210 if (!p) {
211 /* allocate if not found */
59817ccb 212 p = qemu_malloc(sizeof(VirtPageDesc) * L2_SIZE);
9fa3e853
FB
213 memset(p, 0, sizeof(VirtPageDesc) * L2_SIZE);
214 *lp = p;
215 }
216 return p + (index & (L2_SIZE - 1));
217}
218
219static inline VirtPageDesc *virt_page_find(unsigned int index)
220{
221 VirtPageDesc *p;
222
223 p = l1_virt_map[index >> L2_BITS];
fd6ce8f6
FB
224 if (!p)
225 return 0;
9fa3e853 226 return p + (index & (L2_SIZE - 1));
54936004
FB
227}
228
9fa3e853 229static void virt_page_flush(void)
54936004 230{
9fa3e853
FB
231 int i, j;
232 VirtPageDesc *p;
233
234 virt_valid_tag++;
235
236 if (virt_valid_tag == 0) {
237 virt_valid_tag = 1;
238 for(i = 0; i < L1_SIZE; i++) {
239 p = l1_virt_map[i];
240 if (p) {
241 for(j = 0; j < L2_SIZE; j++)
242 p[j].valid_tag = 0;
243 }
fd6ce8f6 244 }
54936004
FB
245 }
246}
9fa3e853
FB
247#else
248static void virt_page_flush(void)
249{
250}
251#endif
fd6ce8f6 252
b346ff46 253void cpu_exec_init(void)
fd6ce8f6
FB
254{
255 if (!code_gen_ptr) {
256 code_gen_ptr = code_gen_buffer;
b346ff46 257 page_init();
33417e70 258 io_mem_init();
fd6ce8f6
FB
259 }
260}
261
9fa3e853
FB
262static inline void invalidate_page_bitmap(PageDesc *p)
263{
264 if (p->code_bitmap) {
59817ccb 265 qemu_free(p->code_bitmap);
9fa3e853
FB
266 p->code_bitmap = NULL;
267 }
268 p->code_write_count = 0;
269}
270
fd6ce8f6
FB
271/* set to NULL all the 'first_tb' fields in all PageDescs */
272static void page_flush_tb(void)
273{
274 int i, j;
275 PageDesc *p;
276
277 for(i = 0; i < L1_SIZE; i++) {
278 p = l1_map[i];
279 if (p) {
9fa3e853
FB
280 for(j = 0; j < L2_SIZE; j++) {
281 p->first_tb = NULL;
282 invalidate_page_bitmap(p);
283 p++;
284 }
fd6ce8f6
FB
285 }
286 }
287}
288
289/* flush all the translation blocks */
d4e8164f 290/* XXX: tb_flush is currently not thread safe */
0124311e 291void tb_flush(CPUState *env)
fd6ce8f6
FB
292{
293 int i;
0124311e 294#if defined(DEBUG_FLUSH)
fd6ce8f6
FB
295 printf("qemu: flush code_size=%d nb_tbs=%d avg_tb_size=%d\n",
296 code_gen_ptr - code_gen_buffer,
297 nb_tbs,
0124311e 298 nb_tbs > 0 ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0);
fd6ce8f6
FB
299#endif
300 nb_tbs = 0;
301 for(i = 0;i < CODE_GEN_HASH_SIZE; i++)
302 tb_hash[i] = NULL;
9fa3e853
FB
303 virt_page_flush();
304
305 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++)
306 tb_phys_hash[i] = NULL;
fd6ce8f6 307 page_flush_tb();
9fa3e853 308
fd6ce8f6 309 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
310 /* XXX: flush processor icache at this point if cache flush is
311 expensive */
fd6ce8f6
FB
312}
313
314#ifdef DEBUG_TB_CHECK
315
316static void tb_invalidate_check(unsigned long address)
317{
318 TranslationBlock *tb;
319 int i;
320 address &= TARGET_PAGE_MASK;
321 for(i = 0;i < CODE_GEN_HASH_SIZE; i++) {
322 for(tb = tb_hash[i]; tb != NULL; tb = tb->hash_next) {
323 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
324 address >= tb->pc + tb->size)) {
325 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
326 address, tb->pc, tb->size);
327 }
328 }
329 }
330}
331
332/* verify that all the pages have correct rights for code */
333static void tb_page_check(void)
334{
335 TranslationBlock *tb;
336 int i, flags1, flags2;
337
338 for(i = 0;i < CODE_GEN_HASH_SIZE; i++) {
339 for(tb = tb_hash[i]; tb != NULL; tb = tb->hash_next) {
340 flags1 = page_get_flags(tb->pc);
341 flags2 = page_get_flags(tb->pc + tb->size - 1);
342 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
343 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
344 tb->pc, tb->size, flags1, flags2);
345 }
346 }
347 }
348}
349
d4e8164f
FB
350void tb_jmp_check(TranslationBlock *tb)
351{
352 TranslationBlock *tb1;
353 unsigned int n1;
354
355 /* suppress any remaining jumps to this TB */
356 tb1 = tb->jmp_first;
357 for(;;) {
358 n1 = (long)tb1 & 3;
359 tb1 = (TranslationBlock *)((long)tb1 & ~3);
360 if (n1 == 2)
361 break;
362 tb1 = tb1->jmp_next[n1];
363 }
364 /* check end of list */
365 if (tb1 != tb) {
366 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
367 }
368}
369
fd6ce8f6
FB
370#endif
371
372/* invalidate one TB */
373static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
374 int next_offset)
375{
376 TranslationBlock *tb1;
377 for(;;) {
378 tb1 = *ptb;
379 if (tb1 == tb) {
380 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
381 break;
382 }
383 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
384 }
385}
386
9fa3e853
FB
387static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
388{
389 TranslationBlock *tb1;
390 unsigned int n1;
391
392 for(;;) {
393 tb1 = *ptb;
394 n1 = (long)tb1 & 3;
395 tb1 = (TranslationBlock *)((long)tb1 & ~3);
396 if (tb1 == tb) {
397 *ptb = tb1->page_next[n1];
398 break;
399 }
400 ptb = &tb1->page_next[n1];
401 }
402}
403
d4e8164f
FB
404static inline void tb_jmp_remove(TranslationBlock *tb, int n)
405{
406 TranslationBlock *tb1, **ptb;
407 unsigned int n1;
408
409 ptb = &tb->jmp_next[n];
410 tb1 = *ptb;
411 if (tb1) {
412 /* find tb(n) in circular list */
413 for(;;) {
414 tb1 = *ptb;
415 n1 = (long)tb1 & 3;
416 tb1 = (TranslationBlock *)((long)tb1 & ~3);
417 if (n1 == n && tb1 == tb)
418 break;
419 if (n1 == 2) {
420 ptb = &tb1->jmp_first;
421 } else {
422 ptb = &tb1->jmp_next[n1];
423 }
424 }
425 /* now we can suppress tb(n) from the list */
426 *ptb = tb->jmp_next[n];
427
428 tb->jmp_next[n] = NULL;
429 }
430}
431
432/* reset the jump entry 'n' of a TB so that it is not chained to
433 another TB */
434static inline void tb_reset_jump(TranslationBlock *tb, int n)
435{
436 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
437}
438
9fa3e853 439static inline void tb_invalidate(TranslationBlock *tb)
fd6ce8f6 440{
d4e8164f 441 unsigned int h, n1;
9fa3e853 442 TranslationBlock *tb1, *tb2, **ptb;
d4e8164f 443
36bdbe54 444 tb_invalidated_flag = 1;
59817ccb 445
fd6ce8f6
FB
446 /* remove the TB from the hash list */
447 h = tb_hash_func(tb->pc);
9fa3e853
FB
448 ptb = &tb_hash[h];
449 for(;;) {
450 tb1 = *ptb;
451 /* NOTE: the TB is not necessarily linked in the hash. It
452 indicates that it is not currently used */
453 if (tb1 == NULL)
454 return;
455 if (tb1 == tb) {
456 *ptb = tb1->hash_next;
457 break;
458 }
459 ptb = &tb1->hash_next;
fd6ce8f6 460 }
d4e8164f
FB
461
462 /* suppress this TB from the two jump lists */
463 tb_jmp_remove(tb, 0);
464 tb_jmp_remove(tb, 1);
465
466 /* suppress any remaining jumps to this TB */
467 tb1 = tb->jmp_first;
468 for(;;) {
469 n1 = (long)tb1 & 3;
470 if (n1 == 2)
471 break;
472 tb1 = (TranslationBlock *)((long)tb1 & ~3);
473 tb2 = tb1->jmp_next[n1];
474 tb_reset_jump(tb1, n1);
475 tb1->jmp_next[n1] = NULL;
476 tb1 = tb2;
477 }
478 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
fd6ce8f6
FB
479}
480
9fa3e853 481static inline void tb_phys_invalidate(TranslationBlock *tb, unsigned int page_addr)
fd6ce8f6 482{
fd6ce8f6 483 PageDesc *p;
9fa3e853
FB
484 unsigned int h;
485 target_ulong phys_pc;
486
487 /* remove the TB from the hash list */
488 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
489 h = tb_phys_hash_func(phys_pc);
490 tb_remove(&tb_phys_hash[h], tb,
491 offsetof(TranslationBlock, phys_hash_next));
492
493 /* remove the TB from the page list */
494 if (tb->page_addr[0] != page_addr) {
495 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
496 tb_page_remove(&p->first_tb, tb);
497 invalidate_page_bitmap(p);
498 }
499 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
500 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
501 tb_page_remove(&p->first_tb, tb);
502 invalidate_page_bitmap(p);
503 }
504
505 tb_invalidate(tb);
506}
507
508static inline void set_bits(uint8_t *tab, int start, int len)
509{
510 int end, mask, end1;
511
512 end = start + len;
513 tab += start >> 3;
514 mask = 0xff << (start & 7);
515 if ((start & ~7) == (end & ~7)) {
516 if (start < end) {
517 mask &= ~(0xff << (end & 7));
518 *tab |= mask;
519 }
520 } else {
521 *tab++ |= mask;
522 start = (start + 8) & ~7;
523 end1 = end & ~7;
524 while (start < end1) {
525 *tab++ = 0xff;
526 start += 8;
527 }
528 if (start < end) {
529 mask = ~(0xff << (end & 7));
530 *tab |= mask;
531 }
532 }
533}
534
535static void build_page_bitmap(PageDesc *p)
536{
537 int n, tb_start, tb_end;
538 TranslationBlock *tb;
539
59817ccb 540 p->code_bitmap = qemu_malloc(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
541 if (!p->code_bitmap)
542 return;
543 memset(p->code_bitmap, 0, TARGET_PAGE_SIZE / 8);
544
545 tb = p->first_tb;
546 while (tb != NULL) {
547 n = (long)tb & 3;
548 tb = (TranslationBlock *)((long)tb & ~3);
549 /* NOTE: this is subtle as a TB may span two physical pages */
550 if (n == 0) {
551 /* NOTE: tb_end may be after the end of the page, but
552 it is not a problem */
553 tb_start = tb->pc & ~TARGET_PAGE_MASK;
554 tb_end = tb_start + tb->size;
555 if (tb_end > TARGET_PAGE_SIZE)
556 tb_end = TARGET_PAGE_SIZE;
557 } else {
558 tb_start = 0;
559 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
560 }
561 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
562 tb = tb->page_next[n];
563 }
564}
565
d720b93d
FB
566#ifdef TARGET_HAS_PRECISE_SMC
567
568static void tb_gen_code(CPUState *env,
569 target_ulong pc, target_ulong cs_base, int flags,
570 int cflags)
571{
572 TranslationBlock *tb;
573 uint8_t *tc_ptr;
574 target_ulong phys_pc, phys_page2, virt_page2;
575 int code_gen_size;
576
577 phys_pc = get_phys_addr_code(env, (unsigned long)pc);
578 tb = tb_alloc((unsigned long)pc);
579 if (!tb) {
580 /* flush must be done */
581 tb_flush(env);
582 /* cannot fail at this point */
583 tb = tb_alloc((unsigned long)pc);
584 }
585 tc_ptr = code_gen_ptr;
586 tb->tc_ptr = tc_ptr;
587 tb->cs_base = cs_base;
588 tb->flags = flags;
589 tb->cflags = cflags;
590 cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
591 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
592
593 /* check next page if needed */
594 virt_page2 = ((unsigned long)pc + tb->size - 1) & TARGET_PAGE_MASK;
595 phys_page2 = -1;
596 if (((unsigned long)pc & TARGET_PAGE_MASK) != virt_page2) {
597 phys_page2 = get_phys_addr_code(env, virt_page2);
598 }
599 tb_link_phys(tb, phys_pc, phys_page2);
600}
601#endif
602
9fa3e853
FB
603/* invalidate all TBs which intersect with the target physical page
604 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
605 the same physical page. 'is_cpu_write_access' should be true if called
606 from a real cpu write access: the virtual CPU will exit the current
607 TB if code is modified inside this TB. */
608void tb_invalidate_phys_page_range(target_ulong start, target_ulong end,
609 int is_cpu_write_access)
610{
611 int n, current_tb_modified, current_tb_not_found, current_flags;
612#if defined(TARGET_HAS_PRECISE_SMC) || !defined(CONFIG_USER_ONLY)
613 CPUState *env = cpu_single_env;
614#endif
9fa3e853 615 PageDesc *p;
ea1c1802 616 TranslationBlock *tb, *tb_next, *current_tb, *saved_tb;
9fa3e853 617 target_ulong tb_start, tb_end;
d720b93d 618 target_ulong current_pc, current_cs_base;
9fa3e853
FB
619
620 p = page_find(start >> TARGET_PAGE_BITS);
621 if (!p)
622 return;
623 if (!p->code_bitmap &&
d720b93d
FB
624 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
625 is_cpu_write_access) {
9fa3e853
FB
626 /* build code bitmap */
627 build_page_bitmap(p);
628 }
629
630 /* we remove all the TBs in the range [start, end[ */
631 /* XXX: see if in some cases it could be faster to invalidate all the code */
d720b93d
FB
632 current_tb_not_found = is_cpu_write_access;
633 current_tb_modified = 0;
634 current_tb = NULL; /* avoid warning */
635 current_pc = 0; /* avoid warning */
636 current_cs_base = 0; /* avoid warning */
637 current_flags = 0; /* avoid warning */
9fa3e853
FB
638 tb = p->first_tb;
639 while (tb != NULL) {
640 n = (long)tb & 3;
641 tb = (TranslationBlock *)((long)tb & ~3);
642 tb_next = tb->page_next[n];
643 /* NOTE: this is subtle as a TB may span two physical pages */
644 if (n == 0) {
645 /* NOTE: tb_end may be after the end of the page, but
646 it is not a problem */
647 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
648 tb_end = tb_start + tb->size;
649 } else {
650 tb_start = tb->page_addr[1];
651 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
652 }
653 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
654#ifdef TARGET_HAS_PRECISE_SMC
655 if (current_tb_not_found) {
656 current_tb_not_found = 0;
657 current_tb = NULL;
658 if (env->mem_write_pc) {
659 /* now we have a real cpu fault */
660 current_tb = tb_find_pc(env->mem_write_pc);
661 }
662 }
663 if (current_tb == tb &&
664 !(current_tb->cflags & CF_SINGLE_INSN)) {
665 /* If we are modifying the current TB, we must stop
666 its execution. We could be more precise by checking
667 that the modification is after the current PC, but it
668 would require a specialized function to partially
669 restore the CPU state */
670
671 current_tb_modified = 1;
672 cpu_restore_state(current_tb, env,
673 env->mem_write_pc, NULL);
674#if defined(TARGET_I386)
675 current_flags = env->hflags;
676 current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
677 current_cs_base = (target_ulong)env->segs[R_CS].base;
678 current_pc = current_cs_base + env->eip;
679#else
680#error unsupported CPU
681#endif
682 }
683#endif /* TARGET_HAS_PRECISE_SMC */
ea1c1802
FB
684 saved_tb = env->current_tb;
685 env->current_tb = NULL;
9fa3e853 686 tb_phys_invalidate(tb, -1);
ea1c1802
FB
687 env->current_tb = saved_tb;
688 if (env->interrupt_request && env->current_tb)
689 cpu_interrupt(env, env->interrupt_request);
9fa3e853
FB
690 }
691 tb = tb_next;
692 }
693#if !defined(CONFIG_USER_ONLY)
694 /* if no code remaining, no need to continue to use slow writes */
695 if (!p->first_tb) {
696 invalidate_page_bitmap(p);
d720b93d
FB
697 if (is_cpu_write_access) {
698 tlb_unprotect_code_phys(env, start, env->mem_write_vaddr);
699 }
700 }
701#endif
702#ifdef TARGET_HAS_PRECISE_SMC
703 if (current_tb_modified) {
704 /* we generate a block containing just the instruction
705 modifying the memory. It will ensure that it cannot modify
706 itself */
ea1c1802 707 env->current_tb = NULL;
d720b93d
FB
708 tb_gen_code(env, current_pc, current_cs_base, current_flags,
709 CF_SINGLE_INSN);
710 cpu_resume_from_signal(env, NULL);
9fa3e853 711 }
fd6ce8f6 712#endif
9fa3e853 713}
fd6ce8f6 714
9fa3e853 715/* len must be <= 8 and start must be a multiple of len */
d720b93d 716static inline void tb_invalidate_phys_page_fast(target_ulong start, int len)
9fa3e853
FB
717{
718 PageDesc *p;
719 int offset, b;
59817ccb 720#if 0
a4193c8a
FB
721 if (1) {
722 if (loglevel) {
723 fprintf(logfile, "modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
724 cpu_single_env->mem_write_vaddr, len,
725 cpu_single_env->eip,
726 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
727 }
59817ccb
FB
728 }
729#endif
9fa3e853
FB
730 p = page_find(start >> TARGET_PAGE_BITS);
731 if (!p)
732 return;
733 if (p->code_bitmap) {
734 offset = start & ~TARGET_PAGE_MASK;
735 b = p->code_bitmap[offset >> 3] >> (offset & 7);
736 if (b & ((1 << len) - 1))
737 goto do_invalidate;
738 } else {
739 do_invalidate:
d720b93d 740 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
741 }
742}
743
9fa3e853 744#if !defined(CONFIG_SOFTMMU)
d720b93d
FB
745static void tb_invalidate_phys_page(target_ulong addr,
746 unsigned long pc, void *puc)
9fa3e853 747{
d720b93d
FB
748 int n, current_flags, current_tb_modified;
749 target_ulong current_pc, current_cs_base;
9fa3e853 750 PageDesc *p;
d720b93d
FB
751 TranslationBlock *tb, *current_tb;
752#ifdef TARGET_HAS_PRECISE_SMC
753 CPUState *env = cpu_single_env;
754#endif
9fa3e853
FB
755
756 addr &= TARGET_PAGE_MASK;
757 p = page_find(addr >> TARGET_PAGE_BITS);
758 if (!p)
759 return;
760 tb = p->first_tb;
d720b93d
FB
761 current_tb_modified = 0;
762 current_tb = NULL;
763 current_pc = 0; /* avoid warning */
764 current_cs_base = 0; /* avoid warning */
765 current_flags = 0; /* avoid warning */
766#ifdef TARGET_HAS_PRECISE_SMC
767 if (tb && pc != 0) {
768 current_tb = tb_find_pc(pc);
769 }
770#endif
9fa3e853
FB
771 while (tb != NULL) {
772 n = (long)tb & 3;
773 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
774#ifdef TARGET_HAS_PRECISE_SMC
775 if (current_tb == tb &&
776 !(current_tb->cflags & CF_SINGLE_INSN)) {
777 /* If we are modifying the current TB, we must stop
778 its execution. We could be more precise by checking
779 that the modification is after the current PC, but it
780 would require a specialized function to partially
781 restore the CPU state */
782
783 current_tb_modified = 1;
784 cpu_restore_state(current_tb, env, pc, puc);
785#if defined(TARGET_I386)
786 current_flags = env->hflags;
787 current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
788 current_cs_base = (target_ulong)env->segs[R_CS].base;
789 current_pc = current_cs_base + env->eip;
790#else
791#error unsupported CPU
792#endif
793 }
794#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
795 tb_phys_invalidate(tb, addr);
796 tb = tb->page_next[n];
797 }
fd6ce8f6 798 p->first_tb = NULL;
d720b93d
FB
799#ifdef TARGET_HAS_PRECISE_SMC
800 if (current_tb_modified) {
801 /* we generate a block containing just the instruction
802 modifying the memory. It will ensure that it cannot modify
803 itself */
ea1c1802 804 env->current_tb = NULL;
d720b93d
FB
805 tb_gen_code(env, current_pc, current_cs_base, current_flags,
806 CF_SINGLE_INSN);
807 cpu_resume_from_signal(env, puc);
808 }
809#endif
fd6ce8f6 810}
9fa3e853 811#endif
fd6ce8f6
FB
812
813/* add the tb in the target page and protect it if necessary */
9fa3e853
FB
814static inline void tb_alloc_page(TranslationBlock *tb,
815 unsigned int n, unsigned int page_addr)
fd6ce8f6
FB
816{
817 PageDesc *p;
9fa3e853
FB
818 TranslationBlock *last_first_tb;
819
820 tb->page_addr[n] = page_addr;
821 p = page_find(page_addr >> TARGET_PAGE_BITS);
822 tb->page_next[n] = p->first_tb;
823 last_first_tb = p->first_tb;
824 p->first_tb = (TranslationBlock *)((long)tb | n);
825 invalidate_page_bitmap(p);
fd6ce8f6 826
d720b93d
FB
827#ifdef TARGET_HAS_SMC
828
9fa3e853 829#if defined(CONFIG_USER_ONLY)
fd6ce8f6 830 if (p->flags & PAGE_WRITE) {
9fa3e853
FB
831 unsigned long host_start, host_end, addr;
832 int prot;
833
fd6ce8f6
FB
834 /* force the host page as non writable (writes will have a
835 page fault + mprotect overhead) */
fd6ce8f6
FB
836 host_start = page_addr & host_page_mask;
837 host_end = host_start + host_page_size;
838 prot = 0;
839 for(addr = host_start; addr < host_end; addr += TARGET_PAGE_SIZE)
840 prot |= page_get_flags(addr);
841 mprotect((void *)host_start, host_page_size,
842 (prot & PAGE_BITS) & ~PAGE_WRITE);
843#ifdef DEBUG_TB_INVALIDATE
844 printf("protecting code page: 0x%08lx\n",
845 host_start);
846#endif
847 p->flags &= ~PAGE_WRITE;
fd6ce8f6 848 }
9fa3e853
FB
849#else
850 /* if some code is already present, then the pages are already
851 protected. So we handle the case where only the first TB is
852 allocated in a physical page */
853 if (!last_first_tb) {
854 target_ulong virt_addr;
855
856 virt_addr = (tb->pc & TARGET_PAGE_MASK) + (n << TARGET_PAGE_BITS);
857 tlb_protect_code(cpu_single_env, virt_addr);
858 }
859#endif
d720b93d
FB
860
861#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
862}
863
864/* Allocate a new translation block. Flush the translation buffer if
865 too many translation blocks or too much generated code. */
d4e8164f 866TranslationBlock *tb_alloc(unsigned long pc)
fd6ce8f6
FB
867{
868 TranslationBlock *tb;
fd6ce8f6
FB
869
870 if (nb_tbs >= CODE_GEN_MAX_BLOCKS ||
871 (code_gen_ptr - code_gen_buffer) >= CODE_GEN_BUFFER_MAX_SIZE)
d4e8164f 872 return NULL;
fd6ce8f6
FB
873 tb = &tbs[nb_tbs++];
874 tb->pc = pc;
b448f2f3 875 tb->cflags = 0;
d4e8164f
FB
876 return tb;
877}
878
9fa3e853
FB
879/* add a new TB and link it to the physical page tables. phys_page2 is
880 (-1) to indicate that only one page contains the TB. */
881void tb_link_phys(TranslationBlock *tb,
882 target_ulong phys_pc, target_ulong phys_page2)
d4e8164f 883{
9fa3e853
FB
884 unsigned int h;
885 TranslationBlock **ptb;
886
887 /* add in the physical hash table */
888 h = tb_phys_hash_func(phys_pc);
889 ptb = &tb_phys_hash[h];
890 tb->phys_hash_next = *ptb;
891 *ptb = tb;
fd6ce8f6
FB
892
893 /* add in the page list */
9fa3e853
FB
894 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
895 if (phys_page2 != -1)
896 tb_alloc_page(tb, 1, phys_page2);
897 else
898 tb->page_addr[1] = -1;
61382a50
FB
899#ifdef DEBUG_TB_CHECK
900 tb_page_check();
901#endif
9fa3e853
FB
902}
903
904/* link the tb with the other TBs */
905void tb_link(TranslationBlock *tb)
906{
907#if !defined(CONFIG_USER_ONLY)
908 {
909 VirtPageDesc *vp;
910 target_ulong addr;
911
912 /* save the code memory mappings (needed to invalidate the code) */
913 addr = tb->pc & TARGET_PAGE_MASK;
914 vp = virt_page_find_alloc(addr >> TARGET_PAGE_BITS);
98857888
FB
915#ifdef DEBUG_TLB_CHECK
916 if (vp->valid_tag == virt_valid_tag &&
917 vp->phys_addr != tb->page_addr[0]) {
918 printf("Error tb addr=0x%x phys=0x%x vp->phys_addr=0x%x\n",
919 addr, tb->page_addr[0], vp->phys_addr);
920 }
921#endif
9fa3e853 922 vp->phys_addr = tb->page_addr[0];
59817ccb
FB
923 if (vp->valid_tag != virt_valid_tag) {
924 vp->valid_tag = virt_valid_tag;
925#if !defined(CONFIG_SOFTMMU)
926 vp->prot = 0;
927#endif
928 }
9fa3e853
FB
929
930 if (tb->page_addr[1] != -1) {
931 addr += TARGET_PAGE_SIZE;
932 vp = virt_page_find_alloc(addr >> TARGET_PAGE_BITS);
98857888
FB
933#ifdef DEBUG_TLB_CHECK
934 if (vp->valid_tag == virt_valid_tag &&
935 vp->phys_addr != tb->page_addr[1]) {
936 printf("Error tb addr=0x%x phys=0x%x vp->phys_addr=0x%x\n",
937 addr, tb->page_addr[1], vp->phys_addr);
938 }
939#endif
9fa3e853 940 vp->phys_addr = tb->page_addr[1];
59817ccb
FB
941 if (vp->valid_tag != virt_valid_tag) {
942 vp->valid_tag = virt_valid_tag;
943#if !defined(CONFIG_SOFTMMU)
944 vp->prot = 0;
945#endif
946 }
9fa3e853
FB
947 }
948 }
949#endif
950
d4e8164f
FB
951 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
952 tb->jmp_next[0] = NULL;
953 tb->jmp_next[1] = NULL;
b448f2f3
FB
954#ifdef USE_CODE_COPY
955 tb->cflags &= ~CF_FP_USED;
956 if (tb->cflags & CF_TB_FP_USED)
957 tb->cflags |= CF_FP_USED;
958#endif
d4e8164f
FB
959
960 /* init original jump addresses */
961 if (tb->tb_next_offset[0] != 0xffff)
962 tb_reset_jump(tb, 0);
963 if (tb->tb_next_offset[1] != 0xffff)
964 tb_reset_jump(tb, 1);
fd6ce8f6
FB
965}
966
9fa3e853
FB
967/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
968 tb[1].tc_ptr. Return NULL if not found */
969TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 970{
9fa3e853
FB
971 int m_min, m_max, m;
972 unsigned long v;
973 TranslationBlock *tb;
a513fe19
FB
974
975 if (nb_tbs <= 0)
976 return NULL;
977 if (tc_ptr < (unsigned long)code_gen_buffer ||
978 tc_ptr >= (unsigned long)code_gen_ptr)
979 return NULL;
980 /* binary search (cf Knuth) */
981 m_min = 0;
982 m_max = nb_tbs - 1;
983 while (m_min <= m_max) {
984 m = (m_min + m_max) >> 1;
985 tb = &tbs[m];
986 v = (unsigned long)tb->tc_ptr;
987 if (v == tc_ptr)
988 return tb;
989 else if (tc_ptr < v) {
990 m_max = m - 1;
991 } else {
992 m_min = m + 1;
993 }
994 }
995 return &tbs[m_max];
996}
7501267e 997
ea041c0e
FB
998static void tb_reset_jump_recursive(TranslationBlock *tb);
999
1000static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1001{
1002 TranslationBlock *tb1, *tb_next, **ptb;
1003 unsigned int n1;
1004
1005 tb1 = tb->jmp_next[n];
1006 if (tb1 != NULL) {
1007 /* find head of list */
1008 for(;;) {
1009 n1 = (long)tb1 & 3;
1010 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1011 if (n1 == 2)
1012 break;
1013 tb1 = tb1->jmp_next[n1];
1014 }
1015 /* we are now sure now that tb jumps to tb1 */
1016 tb_next = tb1;
1017
1018 /* remove tb from the jmp_first list */
1019 ptb = &tb_next->jmp_first;
1020 for(;;) {
1021 tb1 = *ptb;
1022 n1 = (long)tb1 & 3;
1023 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1024 if (n1 == n && tb1 == tb)
1025 break;
1026 ptb = &tb1->jmp_next[n1];
1027 }
1028 *ptb = tb->jmp_next[n];
1029 tb->jmp_next[n] = NULL;
1030
1031 /* suppress the jump to next tb in generated code */
1032 tb_reset_jump(tb, n);
1033
0124311e 1034 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1035 tb_reset_jump_recursive(tb_next);
1036 }
1037}
1038
1039static void tb_reset_jump_recursive(TranslationBlock *tb)
1040{
1041 tb_reset_jump_recursive2(tb, 0);
1042 tb_reset_jump_recursive2(tb, 1);
1043}
1044
d720b93d
FB
1045static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1046{
1047 target_ulong phys_addr;
1048
1049 phys_addr = cpu_get_phys_page_debug(env, pc);
1050 tb_invalidate_phys_page_range(phys_addr, phys_addr + 1, 0);
1051}
1052
c33a346e
FB
1053/* add a breakpoint. EXCP_DEBUG is returned by the CPU loop if a
1054 breakpoint is reached */
2e12669a 1055int cpu_breakpoint_insert(CPUState *env, target_ulong pc)
4c3a88a2 1056{
a541f297 1057#if defined(TARGET_I386) || defined(TARGET_PPC)
4c3a88a2 1058 int i;
d720b93d 1059
4c3a88a2
FB
1060 for(i = 0; i < env->nb_breakpoints; i++) {
1061 if (env->breakpoints[i] == pc)
1062 return 0;
1063 }
1064
1065 if (env->nb_breakpoints >= MAX_BREAKPOINTS)
1066 return -1;
1067 env->breakpoints[env->nb_breakpoints++] = pc;
d720b93d
FB
1068
1069 breakpoint_invalidate(env, pc);
4c3a88a2
FB
1070 return 0;
1071#else
1072 return -1;
1073#endif
1074}
1075
1076/* remove a breakpoint */
2e12669a 1077int cpu_breakpoint_remove(CPUState *env, target_ulong pc)
4c3a88a2 1078{
a541f297 1079#if defined(TARGET_I386) || defined(TARGET_PPC)
4c3a88a2
FB
1080 int i;
1081 for(i = 0; i < env->nb_breakpoints; i++) {
1082 if (env->breakpoints[i] == pc)
1083 goto found;
1084 }
1085 return -1;
1086 found:
1087 memmove(&env->breakpoints[i], &env->breakpoints[i + 1],
1088 (env->nb_breakpoints - (i + 1)) * sizeof(env->breakpoints[0]));
1089 env->nb_breakpoints--;
d720b93d
FB
1090
1091 breakpoint_invalidate(env, pc);
4c3a88a2
FB
1092 return 0;
1093#else
1094 return -1;
1095#endif
1096}
1097
c33a346e
FB
1098/* enable or disable single step mode. EXCP_DEBUG is returned by the
1099 CPU loop after each instruction */
1100void cpu_single_step(CPUState *env, int enabled)
1101{
a541f297 1102#if defined(TARGET_I386) || defined(TARGET_PPC)
c33a346e
FB
1103 if (env->singlestep_enabled != enabled) {
1104 env->singlestep_enabled = enabled;
1105 /* must flush all the translated code to avoid inconsistancies */
9fa3e853 1106 /* XXX: only flush what is necessary */
0124311e 1107 tb_flush(env);
c33a346e
FB
1108 }
1109#endif
1110}
1111
34865134
FB
1112/* enable or disable low levels log */
1113void cpu_set_log(int log_flags)
1114{
1115 loglevel = log_flags;
1116 if (loglevel && !logfile) {
1117 logfile = fopen(logfilename, "w");
1118 if (!logfile) {
1119 perror(logfilename);
1120 _exit(1);
1121 }
9fa3e853
FB
1122#if !defined(CONFIG_SOFTMMU)
1123 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1124 {
1125 static uint8_t logfile_buf[4096];
1126 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1127 }
1128#else
34865134 1129 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1130#endif
34865134
FB
1131 }
1132}
1133
1134void cpu_set_log_filename(const char *filename)
1135{
1136 logfilename = strdup(filename);
1137}
c33a346e 1138
0124311e 1139/* mask must never be zero, except for A20 change call */
68a79315 1140void cpu_interrupt(CPUState *env, int mask)
ea041c0e
FB
1141{
1142 TranslationBlock *tb;
ee8b7021 1143 static int interrupt_lock;
59817ccb 1144
68a79315 1145 env->interrupt_request |= mask;
ea041c0e
FB
1146 /* if the cpu is currently executing code, we must unlink it and
1147 all the potentially executing TB */
1148 tb = env->current_tb;
ee8b7021
FB
1149 if (tb && !testandset(&interrupt_lock)) {
1150 env->current_tb = NULL;
ea041c0e 1151 tb_reset_jump_recursive(tb);
ee8b7021 1152 interrupt_lock = 0;
ea041c0e
FB
1153 }
1154}
1155
b54ad049
FB
1156void cpu_reset_interrupt(CPUState *env, int mask)
1157{
1158 env->interrupt_request &= ~mask;
1159}
1160
f193c797
FB
1161CPULogItem cpu_log_items[] = {
1162 { CPU_LOG_TB_OUT_ASM, "out_asm",
1163 "show generated host assembly code for each compiled TB" },
1164 { CPU_LOG_TB_IN_ASM, "in_asm",
1165 "show target assembly code for each compiled TB" },
1166 { CPU_LOG_TB_OP, "op",
1167 "show micro ops for each compiled TB (only usable if 'in_asm' used)" },
1168#ifdef TARGET_I386
1169 { CPU_LOG_TB_OP_OPT, "op_opt",
1170 "show micro ops after optimization for each compiled TB" },
1171#endif
1172 { CPU_LOG_INT, "int",
1173 "show interrupts/exceptions in short format" },
1174 { CPU_LOG_EXEC, "exec",
1175 "show trace before each executed TB (lots of logs)" },
9fddaa0c
FB
1176 { CPU_LOG_TB_CPU, "cpu",
1177 "show CPU state before bloc translation" },
f193c797
FB
1178#ifdef TARGET_I386
1179 { CPU_LOG_PCALL, "pcall",
1180 "show protected mode far calls/returns/exceptions" },
1181#endif
fd872598
FB
1182 { CPU_LOG_IOPORT, "ioport",
1183 "show all i/o ports accesses" },
f193c797
FB
1184 { 0, NULL, NULL },
1185};
1186
1187static int cmp1(const char *s1, int n, const char *s2)
1188{
1189 if (strlen(s2) != n)
1190 return 0;
1191 return memcmp(s1, s2, n) == 0;
1192}
1193
1194/* takes a comma separated list of log masks. Return 0 if error. */
1195int cpu_str_to_log_mask(const char *str)
1196{
1197 CPULogItem *item;
1198 int mask;
1199 const char *p, *p1;
1200
1201 p = str;
1202 mask = 0;
1203 for(;;) {
1204 p1 = strchr(p, ',');
1205 if (!p1)
1206 p1 = p + strlen(p);
1207 for(item = cpu_log_items; item->mask != 0; item++) {
1208 if (cmp1(p, p1 - p, item->name))
1209 goto found;
1210 }
1211 return 0;
1212 found:
1213 mask |= item->mask;
1214 if (*p1 != ',')
1215 break;
1216 p = p1 + 1;
1217 }
1218 return mask;
1219}
ea041c0e 1220
7501267e
FB
1221void cpu_abort(CPUState *env, const char *fmt, ...)
1222{
1223 va_list ap;
1224
1225 va_start(ap, fmt);
1226 fprintf(stderr, "qemu: fatal: ");
1227 vfprintf(stderr, fmt, ap);
1228 fprintf(stderr, "\n");
1229#ifdef TARGET_I386
1230 cpu_x86_dump_state(env, stderr, X86_DUMP_FPU | X86_DUMP_CCOP);
1231#endif
1232 va_end(ap);
1233 abort();
1234}
1235
0124311e
FB
1236#if !defined(CONFIG_USER_ONLY)
1237
ee8b7021
FB
1238/* NOTE: if flush_global is true, also flush global entries (not
1239 implemented yet) */
1240void tlb_flush(CPUState *env, int flush_global)
33417e70 1241{
33417e70 1242 int i;
0124311e 1243
9fa3e853
FB
1244#if defined(DEBUG_TLB)
1245 printf("tlb_flush:\n");
1246#endif
0124311e
FB
1247 /* must reset current TB so that interrupts cannot modify the
1248 links while we are modifying them */
1249 env->current_tb = NULL;
1250
33417e70
FB
1251 for(i = 0; i < CPU_TLB_SIZE; i++) {
1252 env->tlb_read[0][i].address = -1;
1253 env->tlb_write[0][i].address = -1;
1254 env->tlb_read[1][i].address = -1;
1255 env->tlb_write[1][i].address = -1;
1256 }
9fa3e853
FB
1257
1258 virt_page_flush();
1259 for(i = 0;i < CODE_GEN_HASH_SIZE; i++)
1260 tb_hash[i] = NULL;
1261
1262#if !defined(CONFIG_SOFTMMU)
1263 munmap((void *)MMAP_AREA_START, MMAP_AREA_END - MMAP_AREA_START);
1264#endif
33417e70
FB
1265}
1266
274da6b2 1267static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50
FB
1268{
1269 if (addr == (tlb_entry->address &
1270 (TARGET_PAGE_MASK | TLB_INVALID_MASK)))
1271 tlb_entry->address = -1;
1272}
1273
2e12669a 1274void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 1275{
9fa3e853
FB
1276 int i, n;
1277 VirtPageDesc *vp;
1278 PageDesc *p;
1279 TranslationBlock *tb;
0124311e 1280
9fa3e853
FB
1281#if defined(DEBUG_TLB)
1282 printf("tlb_flush_page: 0x%08x\n", addr);
1283#endif
0124311e
FB
1284 /* must reset current TB so that interrupts cannot modify the
1285 links while we are modifying them */
1286 env->current_tb = NULL;
61382a50
FB
1287
1288 addr &= TARGET_PAGE_MASK;
1289 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1290 tlb_flush_entry(&env->tlb_read[0][i], addr);
1291 tlb_flush_entry(&env->tlb_write[0][i], addr);
1292 tlb_flush_entry(&env->tlb_read[1][i], addr);
1293 tlb_flush_entry(&env->tlb_write[1][i], addr);
0124311e 1294
9fa3e853
FB
1295 /* remove from the virtual pc hash table all the TB at this
1296 virtual address */
1297
1298 vp = virt_page_find(addr >> TARGET_PAGE_BITS);
1299 if (vp && vp->valid_tag == virt_valid_tag) {
1300 p = page_find(vp->phys_addr >> TARGET_PAGE_BITS);
1301 if (p) {
1302 /* we remove all the links to the TBs in this virtual page */
1303 tb = p->first_tb;
1304 while (tb != NULL) {
1305 n = (long)tb & 3;
1306 tb = (TranslationBlock *)((long)tb & ~3);
1307 if ((tb->pc & TARGET_PAGE_MASK) == addr ||
1308 ((tb->pc + tb->size - 1) & TARGET_PAGE_MASK) == addr) {
1309 tb_invalidate(tb);
1310 }
1311 tb = tb->page_next[n];
1312 }
1313 }
98857888 1314 vp->valid_tag = 0;
9fa3e853
FB
1315 }
1316
0124311e 1317#if !defined(CONFIG_SOFTMMU)
9fa3e853 1318 if (addr < MMAP_AREA_END)
0124311e 1319 munmap((void *)addr, TARGET_PAGE_SIZE);
61382a50 1320#endif
9fa3e853
FB
1321}
1322
4f2ac237 1323static inline void tlb_protect_code1(CPUTLBEntry *tlb_entry, target_ulong addr)
9fa3e853
FB
1324{
1325 if (addr == (tlb_entry->address &
1326 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) &&
98857888
FB
1327 (tlb_entry->address & ~TARGET_PAGE_MASK) != IO_MEM_CODE &&
1328 (tlb_entry->address & ~TARGET_PAGE_MASK) != IO_MEM_ROM) {
1ccde1cb 1329 tlb_entry->address = (tlb_entry->address & TARGET_PAGE_MASK) | IO_MEM_CODE;
9fa3e853
FB
1330 }
1331}
1332
1333/* update the TLBs so that writes to code in the virtual page 'addr'
1334 can be detected */
4f2ac237 1335static void tlb_protect_code(CPUState *env, target_ulong addr)
9fa3e853
FB
1336{
1337 int i;
1338
1339 addr &= TARGET_PAGE_MASK;
1340 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1341 tlb_protect_code1(&env->tlb_write[0][i], addr);
1342 tlb_protect_code1(&env->tlb_write[1][i], addr);
1343#if !defined(CONFIG_SOFTMMU)
1344 /* NOTE: as we generated the code for this page, it is already at
1345 least readable */
1346 if (addr < MMAP_AREA_END)
1347 mprotect((void *)addr, TARGET_PAGE_SIZE, PROT_READ);
1348#endif
1349}
1350
9fa3e853 1351static inline void tlb_unprotect_code2(CPUTLBEntry *tlb_entry,
4f2ac237 1352 unsigned long phys_addr)
9fa3e853
FB
1353{
1354 if ((tlb_entry->address & ~TARGET_PAGE_MASK) == IO_MEM_CODE &&
1355 ((tlb_entry->address & TARGET_PAGE_MASK) + tlb_entry->addend) == phys_addr) {
1ccde1cb 1356 tlb_entry->address = (tlb_entry->address & TARGET_PAGE_MASK) | IO_MEM_NOTDIRTY;
9fa3e853
FB
1357 }
1358}
1359
1360/* update the TLB so that writes in physical page 'phys_addr' are no longer
1361 tested self modifying code */
4f2ac237 1362static void tlb_unprotect_code_phys(CPUState *env, unsigned long phys_addr, target_ulong vaddr)
9fa3e853
FB
1363{
1364 int i;
1365
1366 phys_addr &= TARGET_PAGE_MASK;
1ccde1cb
FB
1367 phys_addr += (long)phys_ram_base;
1368 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1369 tlb_unprotect_code2(&env->tlb_write[0][i], phys_addr);
1370 tlb_unprotect_code2(&env->tlb_write[1][i], phys_addr);
1371}
1372
1373static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1374 unsigned long start, unsigned long length)
1375{
1376 unsigned long addr;
1377 if ((tlb_entry->address & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1378 addr = (tlb_entry->address & TARGET_PAGE_MASK) + tlb_entry->addend;
1379 if ((addr - start) < length) {
1380 tlb_entry->address = (tlb_entry->address & TARGET_PAGE_MASK) | IO_MEM_NOTDIRTY;
1381 }
1382 }
1383}
1384
1385void cpu_physical_memory_reset_dirty(target_ulong start, target_ulong end)
1386{
1387 CPUState *env;
4f2ac237 1388 unsigned long length, start1;
1ccde1cb
FB
1389 int i;
1390
1391 start &= TARGET_PAGE_MASK;
1392 end = TARGET_PAGE_ALIGN(end);
1393
1394 length = end - start;
1395 if (length == 0)
1396 return;
1397 memset(phys_ram_dirty + (start >> TARGET_PAGE_BITS), 0, length >> TARGET_PAGE_BITS);
1398
1399 env = cpu_single_env;
1400 /* we modify the TLB cache so that the dirty bit will be set again
1401 when accessing the range */
59817ccb 1402 start1 = start + (unsigned long)phys_ram_base;
9fa3e853 1403 for(i = 0; i < CPU_TLB_SIZE; i++)
59817ccb 1404 tlb_reset_dirty_range(&env->tlb_write[0][i], start1, length);
9fa3e853 1405 for(i = 0; i < CPU_TLB_SIZE; i++)
59817ccb
FB
1406 tlb_reset_dirty_range(&env->tlb_write[1][i], start1, length);
1407
1408#if !defined(CONFIG_SOFTMMU)
1409 /* XXX: this is expensive */
1410 {
1411 VirtPageDesc *p;
1412 int j;
1413 target_ulong addr;
1414
1415 for(i = 0; i < L1_SIZE; i++) {
1416 p = l1_virt_map[i];
1417 if (p) {
1418 addr = i << (TARGET_PAGE_BITS + L2_BITS);
1419 for(j = 0; j < L2_SIZE; j++) {
1420 if (p->valid_tag == virt_valid_tag &&
1421 p->phys_addr >= start && p->phys_addr < end &&
1422 (p->prot & PROT_WRITE)) {
1423 if (addr < MMAP_AREA_END) {
1424 mprotect((void *)addr, TARGET_PAGE_SIZE,
1425 p->prot & ~PROT_WRITE);
1426 }
1427 }
1428 addr += TARGET_PAGE_SIZE;
1429 p++;
1430 }
1431 }
1432 }
1433 }
1434#endif
1ccde1cb
FB
1435}
1436
1437static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry,
1438 unsigned long start)
1439{
1440 unsigned long addr;
1441 if ((tlb_entry->address & ~TARGET_PAGE_MASK) == IO_MEM_NOTDIRTY) {
1442 addr = (tlb_entry->address & TARGET_PAGE_MASK) + tlb_entry->addend;
1443 if (addr == start) {
1444 tlb_entry->address = (tlb_entry->address & TARGET_PAGE_MASK) | IO_MEM_RAM;
1445 }
1446 }
1447}
1448
1449/* update the TLB corresponding to virtual page vaddr and phys addr
1450 addr so that it is no longer dirty */
1451static inline void tlb_set_dirty(unsigned long addr, target_ulong vaddr)
1452{
1453 CPUState *env = cpu_single_env;
1454 int i;
1455
1456 phys_ram_dirty[(addr - (unsigned long)phys_ram_base) >> TARGET_PAGE_BITS] = 1;
1457
1458 addr &= TARGET_PAGE_MASK;
1459 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1460 tlb_set_dirty1(&env->tlb_write[0][i], addr);
1461 tlb_set_dirty1(&env->tlb_write[1][i], addr);
9fa3e853
FB
1462}
1463
59817ccb
FB
1464/* add a new TLB entry. At most one entry for a given virtual address
1465 is permitted. Return 0 if OK or 2 if the page could not be mapped
1466 (can only happen in non SOFTMMU mode for I/O pages or pages
1467 conflicting with the host address space). */
2e12669a
FB
1468int tlb_set_page(CPUState *env, target_ulong vaddr,
1469 target_phys_addr_t paddr, int prot,
9fa3e853
FB
1470 int is_user, int is_softmmu)
1471{
92e873b9 1472 PhysPageDesc *p;
4f2ac237 1473 unsigned long pd;
9fa3e853
FB
1474 TranslationBlock *first_tb;
1475 unsigned int index;
4f2ac237
FB
1476 target_ulong address;
1477 unsigned long addend;
9fa3e853
FB
1478 int ret;
1479
92e873b9
FB
1480 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
1481 first_tb = NULL;
9fa3e853
FB
1482 if (!p) {
1483 pd = IO_MEM_UNASSIGNED;
9fa3e853 1484 } else {
92e873b9 1485 PageDesc *p1;
9fa3e853 1486 pd = p->phys_offset;
92e873b9
FB
1487 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
1488 /* NOTE: we also allocate the page at this stage */
1489 p1 = page_find_alloc(pd >> TARGET_PAGE_BITS);
1490 first_tb = p1->first_tb;
1491 }
9fa3e853
FB
1492 }
1493#if defined(DEBUG_TLB)
1494 printf("tlb_set_page: vaddr=0x%08x paddr=0x%08x prot=%x u=%d c=%d smmu=%d pd=0x%08x\n",
1495 vaddr, paddr, prot, is_user, (first_tb != NULL), is_softmmu, pd);
1496#endif
1497
1498 ret = 0;
1499#if !defined(CONFIG_SOFTMMU)
1500 if (is_softmmu)
1501#endif
1502 {
1503 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM) {
1504 /* IO memory case */
1505 address = vaddr | pd;
1506 addend = paddr;
1507 } else {
1508 /* standard memory */
1509 address = vaddr;
1510 addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK);
1511 }
1512
1513 index = (vaddr >> 12) & (CPU_TLB_SIZE - 1);
1514 addend -= vaddr;
67b915a5 1515 if (prot & PAGE_READ) {
9fa3e853
FB
1516 env->tlb_read[is_user][index].address = address;
1517 env->tlb_read[is_user][index].addend = addend;
1518 } else {
1519 env->tlb_read[is_user][index].address = -1;
1520 env->tlb_read[is_user][index].addend = -1;
1521 }
67b915a5 1522 if (prot & PAGE_WRITE) {
9fa3e853
FB
1523 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM) {
1524 /* ROM: access is ignored (same as unassigned) */
1525 env->tlb_write[is_user][index].address = vaddr | IO_MEM_ROM;
1ccde1cb 1526 env->tlb_write[is_user][index].addend = addend;
d720b93d
FB
1527 } else
1528 /* XXX: the PowerPC code seems not ready to handle
1529 self modifying code with DCBI */
1530#if defined(TARGET_HAS_SMC) || 1
1531 if (first_tb) {
9fa3e853
FB
1532 /* if code is present, we use a specific memory
1533 handler. It works only for physical memory access */
1534 env->tlb_write[is_user][index].address = vaddr | IO_MEM_CODE;
1ccde1cb 1535 env->tlb_write[is_user][index].addend = addend;
d720b93d
FB
1536 } else
1537#endif
1538 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
1ccde1cb
FB
1539 !cpu_physical_memory_is_dirty(pd)) {
1540 env->tlb_write[is_user][index].address = vaddr | IO_MEM_NOTDIRTY;
1541 env->tlb_write[is_user][index].addend = addend;
9fa3e853
FB
1542 } else {
1543 env->tlb_write[is_user][index].address = address;
1544 env->tlb_write[is_user][index].addend = addend;
1545 }
1546 } else {
1547 env->tlb_write[is_user][index].address = -1;
1548 env->tlb_write[is_user][index].addend = -1;
1549 }
1550 }
1551#if !defined(CONFIG_SOFTMMU)
1552 else {
1553 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM) {
1554 /* IO access: no mapping is done as it will be handled by the
1555 soft MMU */
1556 if (!(env->hflags & HF_SOFTMMU_MASK))
1557 ret = 2;
1558 } else {
1559 void *map_addr;
59817ccb
FB
1560
1561 if (vaddr >= MMAP_AREA_END) {
1562 ret = 2;
1563 } else {
1564 if (prot & PROT_WRITE) {
1565 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
d720b93d 1566#if defined(TARGET_HAS_SMC) || 1
59817ccb 1567 first_tb ||
d720b93d 1568#endif
59817ccb
FB
1569 ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
1570 !cpu_physical_memory_is_dirty(pd))) {
1571 /* ROM: we do as if code was inside */
1572 /* if code is present, we only map as read only and save the
1573 original mapping */
1574 VirtPageDesc *vp;
1575
1576 vp = virt_page_find_alloc(vaddr >> TARGET_PAGE_BITS);
1577 vp->phys_addr = pd;
1578 vp->prot = prot;
1579 vp->valid_tag = virt_valid_tag;
1580 prot &= ~PAGE_WRITE;
1581 }
1582 }
1583 map_addr = mmap((void *)vaddr, TARGET_PAGE_SIZE, prot,
1584 MAP_SHARED | MAP_FIXED, phys_ram_fd, (pd & TARGET_PAGE_MASK));
1585 if (map_addr == MAP_FAILED) {
1586 cpu_abort(env, "mmap failed when mapped physical address 0x%08x to virtual address 0x%08x\n",
1587 paddr, vaddr);
9fa3e853 1588 }
9fa3e853
FB
1589 }
1590 }
1591 }
1592#endif
1593 return ret;
1594}
1595
1596/* called from signal handler: invalidate the code and unprotect the
1597 page. Return TRUE if the fault was succesfully handled. */
d720b93d 1598int page_unprotect(unsigned long addr, unsigned long pc, void *puc)
9fa3e853
FB
1599{
1600#if !defined(CONFIG_SOFTMMU)
1601 VirtPageDesc *vp;
1602
1603#if defined(DEBUG_TLB)
1604 printf("page_unprotect: addr=0x%08x\n", addr);
1605#endif
1606 addr &= TARGET_PAGE_MASK;
59817ccb
FB
1607
1608 /* if it is not mapped, no need to worry here */
1609 if (addr >= MMAP_AREA_END)
1610 return 0;
9fa3e853
FB
1611 vp = virt_page_find(addr >> TARGET_PAGE_BITS);
1612 if (!vp)
1613 return 0;
1614 /* NOTE: in this case, validate_tag is _not_ tested as it
1615 validates only the code TLB */
1616 if (vp->valid_tag != virt_valid_tag)
1617 return 0;
1618 if (!(vp->prot & PAGE_WRITE))
1619 return 0;
1620#if defined(DEBUG_TLB)
1621 printf("page_unprotect: addr=0x%08x phys_addr=0x%08x prot=%x\n",
1622 addr, vp->phys_addr, vp->prot);
1623#endif
59817ccb
FB
1624 if (mprotect((void *)addr, TARGET_PAGE_SIZE, vp->prot) < 0)
1625 cpu_abort(cpu_single_env, "error mprotect addr=0x%lx prot=%d\n",
1626 (unsigned long)addr, vp->prot);
d720b93d
FB
1627 /* set the dirty bit */
1628 phys_ram_dirty[vp->phys_addr >> TARGET_PAGE_BITS] = 1;
1629 /* flush the code inside */
1630 tb_invalidate_phys_page(vp->phys_addr, pc, puc);
9fa3e853
FB
1631 return 1;
1632#else
1633 return 0;
1634#endif
33417e70
FB
1635}
1636
0124311e
FB
1637#else
1638
ee8b7021 1639void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
1640{
1641}
1642
2e12669a 1643void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
1644{
1645}
1646
2e12669a
FB
1647int tlb_set_page(CPUState *env, target_ulong vaddr,
1648 target_phys_addr_t paddr, int prot,
9fa3e853
FB
1649 int is_user, int is_softmmu)
1650{
1651 return 0;
1652}
0124311e 1653
9fa3e853
FB
1654/* dump memory mappings */
1655void page_dump(FILE *f)
33417e70 1656{
9fa3e853
FB
1657 unsigned long start, end;
1658 int i, j, prot, prot1;
1659 PageDesc *p;
33417e70 1660
9fa3e853
FB
1661 fprintf(f, "%-8s %-8s %-8s %s\n",
1662 "start", "end", "size", "prot");
1663 start = -1;
1664 end = -1;
1665 prot = 0;
1666 for(i = 0; i <= L1_SIZE; i++) {
1667 if (i < L1_SIZE)
1668 p = l1_map[i];
1669 else
1670 p = NULL;
1671 for(j = 0;j < L2_SIZE; j++) {
1672 if (!p)
1673 prot1 = 0;
1674 else
1675 prot1 = p[j].flags;
1676 if (prot1 != prot) {
1677 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
1678 if (start != -1) {
1679 fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
1680 start, end, end - start,
1681 prot & PAGE_READ ? 'r' : '-',
1682 prot & PAGE_WRITE ? 'w' : '-',
1683 prot & PAGE_EXEC ? 'x' : '-');
1684 }
1685 if (prot1 != 0)
1686 start = end;
1687 else
1688 start = -1;
1689 prot = prot1;
1690 }
1691 if (!p)
1692 break;
1693 }
33417e70 1694 }
33417e70
FB
1695}
1696
9fa3e853 1697int page_get_flags(unsigned long address)
33417e70 1698{
9fa3e853
FB
1699 PageDesc *p;
1700
1701 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 1702 if (!p)
9fa3e853
FB
1703 return 0;
1704 return p->flags;
1705}
1706
1707/* modify the flags of a page and invalidate the code if
1708 necessary. The flag PAGE_WRITE_ORG is positionned automatically
1709 depending on PAGE_WRITE */
1710void page_set_flags(unsigned long start, unsigned long end, int flags)
1711{
1712 PageDesc *p;
1713 unsigned long addr;
1714
1715 start = start & TARGET_PAGE_MASK;
1716 end = TARGET_PAGE_ALIGN(end);
1717 if (flags & PAGE_WRITE)
1718 flags |= PAGE_WRITE_ORG;
1719 spin_lock(&tb_lock);
1720 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
1721 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
1722 /* if the write protection is set, then we invalidate the code
1723 inside */
1724 if (!(p->flags & PAGE_WRITE) &&
1725 (flags & PAGE_WRITE) &&
1726 p->first_tb) {
d720b93d 1727 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
1728 }
1729 p->flags = flags;
1730 }
1731 spin_unlock(&tb_lock);
33417e70
FB
1732}
1733
9fa3e853
FB
1734/* called from signal handler: invalidate the code and unprotect the
1735 page. Return TRUE if the fault was succesfully handled. */
d720b93d 1736int page_unprotect(unsigned long address, unsigned long pc, void *puc)
9fa3e853
FB
1737{
1738 unsigned int page_index, prot, pindex;
1739 PageDesc *p, *p1;
1740 unsigned long host_start, host_end, addr;
1741
1742 host_start = address & host_page_mask;
1743 page_index = host_start >> TARGET_PAGE_BITS;
1744 p1 = page_find(page_index);
1745 if (!p1)
1746 return 0;
1747 host_end = host_start + host_page_size;
1748 p = p1;
1749 prot = 0;
1750 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
1751 prot |= p->flags;
1752 p++;
1753 }
1754 /* if the page was really writable, then we change its
1755 protection back to writable */
1756 if (prot & PAGE_WRITE_ORG) {
1757 pindex = (address - host_start) >> TARGET_PAGE_BITS;
1758 if (!(p1[pindex].flags & PAGE_WRITE)) {
1759 mprotect((void *)host_start, host_page_size,
1760 (prot & PAGE_BITS) | PAGE_WRITE);
1761 p1[pindex].flags |= PAGE_WRITE;
1762 /* and since the content will be modified, we must invalidate
1763 the corresponding translated code. */
d720b93d 1764 tb_invalidate_phys_page(address, pc, puc);
9fa3e853
FB
1765#ifdef DEBUG_TB_CHECK
1766 tb_invalidate_check(address);
1767#endif
1768 return 1;
1769 }
1770 }
1771 return 0;
1772}
1773
1774/* call this function when system calls directly modify a memory area */
1775void page_unprotect_range(uint8_t *data, unsigned long data_size)
1776{
1777 unsigned long start, end, addr;
1778
1779 start = (unsigned long)data;
1780 end = start + data_size;
1781 start &= TARGET_PAGE_MASK;
1782 end = TARGET_PAGE_ALIGN(end);
1783 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
d720b93d 1784 page_unprotect(addr, 0, NULL);
9fa3e853
FB
1785 }
1786}
1787
1ccde1cb
FB
1788static inline void tlb_set_dirty(unsigned long addr, target_ulong vaddr)
1789{
1790}
9fa3e853
FB
1791#endif /* defined(CONFIG_USER_ONLY) */
1792
33417e70
FB
1793/* register physical memory. 'size' must be a multiple of the target
1794 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
1795 io memory page */
2e12669a
FB
1796void cpu_register_physical_memory(target_phys_addr_t start_addr,
1797 unsigned long size,
1798 unsigned long phys_offset)
33417e70
FB
1799{
1800 unsigned long addr, end_addr;
92e873b9 1801 PhysPageDesc *p;
33417e70 1802
5fd386f6 1803 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
33417e70 1804 end_addr = start_addr + size;
5fd386f6 1805 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
92e873b9 1806 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS);
9fa3e853
FB
1807 p->phys_offset = phys_offset;
1808 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM)
33417e70
FB
1809 phys_offset += TARGET_PAGE_SIZE;
1810 }
1811}
1812
a4193c8a 1813static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70
FB
1814{
1815 return 0;
1816}
1817
a4193c8a 1818static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70
FB
1819{
1820}
1821
1822static CPUReadMemoryFunc *unassigned_mem_read[3] = {
1823 unassigned_mem_readb,
1824 unassigned_mem_readb,
1825 unassigned_mem_readb,
1826};
1827
1828static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
1829 unassigned_mem_writeb,
1830 unassigned_mem_writeb,
1831 unassigned_mem_writeb,
1832};
1833
9fa3e853
FB
1834/* self modifying code support in soft mmu mode : writing to a page
1835 containing code comes to these functions */
1836
a4193c8a 1837static void code_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
9fa3e853 1838{
1ccde1cb
FB
1839 unsigned long phys_addr;
1840
274da6b2 1841 phys_addr = addr - (unsigned long)phys_ram_base;
9fa3e853 1842#if !defined(CONFIG_USER_ONLY)
d720b93d 1843 tb_invalidate_phys_page_fast(phys_addr, 1);
9fa3e853 1844#endif
1ccde1cb
FB
1845 stb_raw((uint8_t *)addr, val);
1846 phys_ram_dirty[phys_addr >> TARGET_PAGE_BITS] = 1;
9fa3e853
FB
1847}
1848
a4193c8a 1849static void code_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
9fa3e853 1850{
1ccde1cb
FB
1851 unsigned long phys_addr;
1852
274da6b2 1853 phys_addr = addr - (unsigned long)phys_ram_base;
9fa3e853 1854#if !defined(CONFIG_USER_ONLY)
d720b93d 1855 tb_invalidate_phys_page_fast(phys_addr, 2);
9fa3e853 1856#endif
1ccde1cb
FB
1857 stw_raw((uint8_t *)addr, val);
1858 phys_ram_dirty[phys_addr >> TARGET_PAGE_BITS] = 1;
9fa3e853
FB
1859}
1860
a4193c8a 1861static void code_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
9fa3e853 1862{
1ccde1cb
FB
1863 unsigned long phys_addr;
1864
274da6b2 1865 phys_addr = addr - (unsigned long)phys_ram_base;
9fa3e853 1866#if !defined(CONFIG_USER_ONLY)
d720b93d 1867 tb_invalidate_phys_page_fast(phys_addr, 4);
9fa3e853 1868#endif
1ccde1cb
FB
1869 stl_raw((uint8_t *)addr, val);
1870 phys_ram_dirty[phys_addr >> TARGET_PAGE_BITS] = 1;
9fa3e853
FB
1871}
1872
1873static CPUReadMemoryFunc *code_mem_read[3] = {
1874 NULL, /* never used */
1875 NULL, /* never used */
1876 NULL, /* never used */
1877};
1878
1879static CPUWriteMemoryFunc *code_mem_write[3] = {
1880 code_mem_writeb,
1881 code_mem_writew,
1882 code_mem_writel,
1883};
33417e70 1884
a4193c8a 1885static void notdirty_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1ccde1cb
FB
1886{
1887 stb_raw((uint8_t *)addr, val);
d720b93d 1888 tlb_set_dirty(addr, cpu_single_env->mem_write_vaddr);
1ccde1cb
FB
1889}
1890
a4193c8a 1891static void notdirty_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1ccde1cb
FB
1892{
1893 stw_raw((uint8_t *)addr, val);
d720b93d 1894 tlb_set_dirty(addr, cpu_single_env->mem_write_vaddr);
1ccde1cb
FB
1895}
1896
a4193c8a 1897static void notdirty_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1ccde1cb
FB
1898{
1899 stl_raw((uint8_t *)addr, val);
d720b93d 1900 tlb_set_dirty(addr, cpu_single_env->mem_write_vaddr);
1ccde1cb
FB
1901}
1902
1903static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
1904 notdirty_mem_writeb,
1905 notdirty_mem_writew,
1906 notdirty_mem_writel,
1907};
1908
33417e70
FB
1909static void io_mem_init(void)
1910{
a4193c8a
FB
1911 cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, code_mem_read, unassigned_mem_write, NULL);
1912 cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL);
1913 cpu_register_io_memory(IO_MEM_CODE >> IO_MEM_SHIFT, code_mem_read, code_mem_write, NULL);
1914 cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, code_mem_read, notdirty_mem_write, NULL);
1ccde1cb
FB
1915 io_mem_nb = 5;
1916
1917 /* alloc dirty bits array */
59817ccb 1918 phys_ram_dirty = qemu_malloc(phys_ram_size >> TARGET_PAGE_BITS);
33417e70
FB
1919}
1920
1921/* mem_read and mem_write are arrays of functions containing the
1922 function to access byte (index 0), word (index 1) and dword (index
1923 2). All functions must be supplied. If io_index is non zero, the
1924 corresponding io zone is modified. If it is zero, a new io zone is
1925 allocated. The return value can be used with
1926 cpu_register_physical_memory(). (-1) is returned if error. */
1927int cpu_register_io_memory(int io_index,
1928 CPUReadMemoryFunc **mem_read,
a4193c8a
FB
1929 CPUWriteMemoryFunc **mem_write,
1930 void *opaque)
33417e70
FB
1931{
1932 int i;
1933
1934 if (io_index <= 0) {
1935 if (io_index >= IO_MEM_NB_ENTRIES)
1936 return -1;
1937 io_index = io_mem_nb++;
1938 } else {
1939 if (io_index >= IO_MEM_NB_ENTRIES)
1940 return -1;
1941 }
1942
1943 for(i = 0;i < 3; i++) {
1944 io_mem_read[io_index][i] = mem_read[i];
1945 io_mem_write[io_index][i] = mem_write[i];
1946 }
a4193c8a 1947 io_mem_opaque[io_index] = opaque;
33417e70
FB
1948 return io_index << IO_MEM_SHIFT;
1949}
61382a50 1950
13eb76e0
FB
1951/* physical memory access (slow version, mainly for debug) */
1952#if defined(CONFIG_USER_ONLY)
2e12669a 1953void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
1954 int len, int is_write)
1955{
1956 int l, flags;
1957 target_ulong page;
1958
1959 while (len > 0) {
1960 page = addr & TARGET_PAGE_MASK;
1961 l = (page + TARGET_PAGE_SIZE) - addr;
1962 if (l > len)
1963 l = len;
1964 flags = page_get_flags(page);
1965 if (!(flags & PAGE_VALID))
1966 return;
1967 if (is_write) {
1968 if (!(flags & PAGE_WRITE))
1969 return;
1970 memcpy((uint8_t *)addr, buf, len);
1971 } else {
1972 if (!(flags & PAGE_READ))
1973 return;
1974 memcpy(buf, (uint8_t *)addr, len);
1975 }
1976 len -= l;
1977 buf += l;
1978 addr += l;
1979 }
1980}
1981#else
2e12669a 1982void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
1983 int len, int is_write)
1984{
1985 int l, io_index;
1986 uint8_t *ptr;
1987 uint32_t val;
2e12669a
FB
1988 target_phys_addr_t page;
1989 unsigned long pd;
92e873b9 1990 PhysPageDesc *p;
13eb76e0
FB
1991
1992 while (len > 0) {
1993 page = addr & TARGET_PAGE_MASK;
1994 l = (page + TARGET_PAGE_SIZE) - addr;
1995 if (l > len)
1996 l = len;
92e873b9 1997 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
1998 if (!p) {
1999 pd = IO_MEM_UNASSIGNED;
2000 } else {
2001 pd = p->phys_offset;
2002 }
2003
2004 if (is_write) {
2005 if ((pd & ~TARGET_PAGE_MASK) != 0) {
2006 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2007 if (l >= 4 && ((addr & 3) == 0)) {
2008 /* 32 bit read access */
2009 val = ldl_raw(buf);
a4193c8a 2010 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
13eb76e0
FB
2011 l = 4;
2012 } else if (l >= 2 && ((addr & 1) == 0)) {
2013 /* 16 bit read access */
2014 val = lduw_raw(buf);
a4193c8a 2015 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
13eb76e0
FB
2016 l = 2;
2017 } else {
2018 /* 8 bit access */
2019 val = ldub_raw(buf);
a4193c8a 2020 io_mem_write[io_index][0](io_mem_opaque[io_index], addr, val);
13eb76e0
FB
2021 l = 1;
2022 }
2023 } else {
b448f2f3
FB
2024 unsigned long addr1;
2025 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 2026 /* RAM case */
b448f2f3 2027 ptr = phys_ram_base + addr1;
13eb76e0 2028 memcpy(ptr, buf, l);
b448f2f3
FB
2029 /* invalidate code */
2030 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
2031 /* set dirty bit */
2032 phys_ram_dirty[page >> TARGET_PAGE_BITS] = 1;
13eb76e0
FB
2033 }
2034 } else {
2035 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2036 (pd & ~TARGET_PAGE_MASK) != IO_MEM_CODE) {
2037 /* I/O case */
2038 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2039 if (l >= 4 && ((addr & 3) == 0)) {
2040 /* 32 bit read access */
a4193c8a 2041 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
13eb76e0
FB
2042 stl_raw(buf, val);
2043 l = 4;
2044 } else if (l >= 2 && ((addr & 1) == 0)) {
2045 /* 16 bit read access */
a4193c8a 2046 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
13eb76e0
FB
2047 stw_raw(buf, val);
2048 l = 2;
2049 } else {
2050 /* 8 bit access */
a4193c8a 2051 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr);
13eb76e0
FB
2052 stb_raw(buf, val);
2053 l = 1;
2054 }
2055 } else {
2056 /* RAM case */
2057 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2058 (addr & ~TARGET_PAGE_MASK);
2059 memcpy(buf, ptr, l);
2060 }
2061 }
2062 len -= l;
2063 buf += l;
2064 addr += l;
2065 }
2066}
2067#endif
2068
2069/* virtual memory access for debug */
b448f2f3
FB
2070int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
2071 uint8_t *buf, int len, int is_write)
13eb76e0
FB
2072{
2073 int l;
2074 target_ulong page, phys_addr;
2075
2076 while (len > 0) {
2077 page = addr & TARGET_PAGE_MASK;
2078 phys_addr = cpu_get_phys_page_debug(env, page);
2079 /* if no physical page mapped, return an error */
2080 if (phys_addr == -1)
2081 return -1;
2082 l = (page + TARGET_PAGE_SIZE) - addr;
2083 if (l > len)
2084 l = len;
b448f2f3
FB
2085 cpu_physical_memory_rw(phys_addr + (addr & ~TARGET_PAGE_MASK),
2086 buf, l, is_write);
13eb76e0
FB
2087 len -= l;
2088 buf += l;
2089 addr += l;
2090 }
2091 return 0;
2092}
2093
61382a50
FB
2094#if !defined(CONFIG_USER_ONLY)
2095
2096#define MMUSUFFIX _cmmu
2097#define GETPC() NULL
2098#define env cpu_single_env
2099
2100#define SHIFT 0
2101#include "softmmu_template.h"
2102
2103#define SHIFT 1
2104#include "softmmu_template.h"
2105
2106#define SHIFT 2
2107#include "softmmu_template.h"
2108
2109#define SHIFT 3
2110#include "softmmu_template.h"
2111
2112#undef env
2113
2114#endif