]> git.proxmox.com Git - qemu.git/blame - fpu/softfloat-native.c
Fix OpenSolaris gcc4 warnings: iovec type mismatches, missing 'static'
[qemu.git] / fpu / softfloat-native.c
CommitLineData
158142c2
FB
1/* Native implementation of soft float functions. Only a single status
2 context is supported */
3#include "softfloat.h"
4#include <math.h>
14d483ec
BS
5#if defined(HOST_SOLARIS)
6#include <fenv.h>
7#endif
158142c2
FB
8
9void set_float_rounding_mode(int val STATUS_PARAM)
10{
11 STATUS(float_rounding_mode) = val;
179a2c19
BS
12#if defined(HOST_BSD) && !defined(__APPLE__) || \
13 (defined(HOST_SOLARIS) && HOST_SOLARIS < 10)
158142c2
FB
14 fpsetround(val);
15#elif defined(__arm__)
16 /* nothing to do */
17#else
18 fesetround(val);
19#endif
20}
21
22#ifdef FLOATX80
23void set_floatx80_rounding_precision(int val STATUS_PARAM)
24{
25 STATUS(floatx80_rounding_precision) = val;
26}
27#endif
28
179a2c19 29#if defined(HOST_BSD) || (defined(HOST_SOLARIS) && HOST_SOLARIS < 10)
fdbb4691
FB
30#define lrint(d) ((int32_t)rint(d))
31#define llrint(d) ((int64_t)rint(d))
32#define lrintf(f) ((int32_t)rint(f))
33#define llrintf(f) ((int64_t)rint(f))
34#define sqrtf(f) ((float)sqrt(f))
35#define remainderf(fa, fb) ((float)remainder(fa, fb))
36#define rintf(f) ((float)rint(f))
fc81ba53 37#if !defined(__sparc__) && defined(HOST_SOLARIS) && HOST_SOLARIS < 10
0475a5ca
TS
38extern long double rintl(long double);
39extern long double scalbnl(long double, int);
40
41long long
42llrintl(long double x) {
43 return ((long long) rintl(x));
44}
45
46long
47lrintl(long double x) {
48 return ((long) rintl(x));
49}
50
51long double
52ldexpl(long double x, int n) {
53 return (scalbnl(x, n));
54}
55#endif
158142c2
FB
56#endif
57
e58ffeb3 58#if defined(_ARCH_PPC)
158142c2
FB
59
60/* correct (but slow) PowerPC rint() (glibc version is incorrect) */
947f5fcb 61static double qemu_rint(double x)
158142c2
FB
62{
63 double y = 4503599627370496.0;
64 if (fabs(x) >= y)
65 return x;
5fafdf24 66 if (x < 0)
158142c2
FB
67 y = -y;
68 y = (x + y) - y;
69 if (y == 0.0)
70 y = copysign(y, x);
71 return y;
72}
73
74#define rint qemu_rint
75#endif
76
77/*----------------------------------------------------------------------------
78| Software IEC/IEEE integer-to-floating-point conversion routines.
79*----------------------------------------------------------------------------*/
80float32 int32_to_float32(int v STATUS_PARAM)
81{
82 return (float32)v;
83}
84
75d62a58
JM
85float32 uint32_to_float32(unsigned int v STATUS_PARAM)
86{
87 return (float32)v;
88}
89
158142c2
FB
90float64 int32_to_float64(int v STATUS_PARAM)
91{
92 return (float64)v;
93}
94
75d62a58
JM
95float64 uint32_to_float64(unsigned int v STATUS_PARAM)
96{
97 return (float64)v;
98}
99
158142c2
FB
100#ifdef FLOATX80
101floatx80 int32_to_floatx80(int v STATUS_PARAM)
102{
103 return (floatx80)v;
104}
105#endif
106float32 int64_to_float32( int64_t v STATUS_PARAM)
107{
108 return (float32)v;
109}
75d62a58
JM
110float32 uint64_to_float32( uint64_t v STATUS_PARAM)
111{
112 return (float32)v;
113}
158142c2
FB
114float64 int64_to_float64( int64_t v STATUS_PARAM)
115{
116 return (float64)v;
117}
75d62a58
JM
118float64 uint64_to_float64( uint64_t v STATUS_PARAM)
119{
120 return (float64)v;
121}
158142c2
FB
122#ifdef FLOATX80
123floatx80 int64_to_floatx80( int64_t v STATUS_PARAM)
124{
125 return (floatx80)v;
126}
127#endif
128
1b2b0af5
FB
129/* XXX: this code implements the x86 behaviour, not the IEEE one. */
130#if HOST_LONG_BITS == 32
131static inline int long_to_int32(long a)
132{
133 return a;
134}
135#else
136static inline int long_to_int32(long a)
137{
5fafdf24 138 if (a != (int32_t)a)
1b2b0af5
FB
139 a = 0x80000000;
140 return a;
141}
142#endif
143
158142c2
FB
144/*----------------------------------------------------------------------------
145| Software IEC/IEEE single-precision conversion routines.
146*----------------------------------------------------------------------------*/
147int float32_to_int32( float32 a STATUS_PARAM)
148{
1b2b0af5 149 return long_to_int32(lrintf(a));
158142c2
FB
150}
151int float32_to_int32_round_to_zero( float32 a STATUS_PARAM)
152{
153 return (int)a;
154}
155int64_t float32_to_int64( float32 a STATUS_PARAM)
156{
157 return llrintf(a);
158}
159
160int64_t float32_to_int64_round_to_zero( float32 a STATUS_PARAM)
161{
162 return (int64_t)a;
163}
164
165float64 float32_to_float64( float32 a STATUS_PARAM)
166{
167 return a;
168}
169#ifdef FLOATX80
170floatx80 float32_to_floatx80( float32 a STATUS_PARAM)
171{
172 return a;
173}
174#endif
175
75d62a58
JM
176unsigned int float32_to_uint32( float32 a STATUS_PARAM)
177{
178 int64_t v;
179 unsigned int res;
180
181 v = llrintf(a);
182 if (v < 0) {
183 res = 0;
184 } else if (v > 0xffffffff) {
185 res = 0xffffffff;
186 } else {
187 res = v;
188 }
189 return res;
190}
191unsigned int float32_to_uint32_round_to_zero( float32 a STATUS_PARAM)
192{
193 int64_t v;
194 unsigned int res;
195
196 v = (int64_t)a;
197 if (v < 0) {
198 res = 0;
199 } else if (v > 0xffffffff) {
200 res = 0xffffffff;
201 } else {
202 res = v;
203 }
204 return res;
205}
206
158142c2
FB
207/*----------------------------------------------------------------------------
208| Software IEC/IEEE single-precision operations.
209*----------------------------------------------------------------------------*/
210float32 float32_round_to_int( float32 a STATUS_PARAM)
211{
212 return rintf(a);
213}
214
b109f9f8
FB
215float32 float32_rem( float32 a, float32 b STATUS_PARAM)
216{
217 return remainderf(a, b);
218}
219
158142c2
FB
220float32 float32_sqrt( float32 a STATUS_PARAM)
221{
222 return sqrtf(a);
223}
750afe93 224int float32_compare( float32 a, float32 b STATUS_PARAM )
b109f9f8
FB
225{
226 if (a < b) {
30e7a22e 227 return float_relation_less;
b109f9f8 228 } else if (a == b) {
30e7a22e 229 return float_relation_equal;
b109f9f8 230 } else if (a > b) {
30e7a22e 231 return float_relation_greater;
b109f9f8 232 } else {
30e7a22e 233 return float_relation_unordered;
b109f9f8
FB
234 }
235}
750afe93 236int float32_compare_quiet( float32 a, float32 b STATUS_PARAM )
b109f9f8
FB
237{
238 if (isless(a, b)) {
30e7a22e 239 return float_relation_less;
b109f9f8 240 } else if (a == b) {
30e7a22e 241 return float_relation_equal;
b109f9f8 242 } else if (isgreater(a, b)) {
30e7a22e 243 return float_relation_greater;
b109f9f8 244 } else {
30e7a22e 245 return float_relation_unordered;
b109f9f8
FB
246 }
247}
750afe93 248int float32_is_signaling_nan( float32 a1)
158142c2
FB
249{
250 float32u u;
251 uint32_t a;
252 u.f = a1;
253 a = u.i;
254 return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
255}
256
629bd74a
AJ
257int float32_is_nan( float32 a1 )
258{
259 float32u u;
260 uint64_t a;
261 u.f = a1;
262 a = u.i;
263 return ( 0xFF800000 < ( a<<1 ) );
264}
265
158142c2
FB
266/*----------------------------------------------------------------------------
267| Software IEC/IEEE double-precision conversion routines.
268*----------------------------------------------------------------------------*/
269int float64_to_int32( float64 a STATUS_PARAM)
270{
1b2b0af5 271 return long_to_int32(lrint(a));
158142c2
FB
272}
273int float64_to_int32_round_to_zero( float64 a STATUS_PARAM)
274{
275 return (int)a;
276}
277int64_t float64_to_int64( float64 a STATUS_PARAM)
278{
279 return llrint(a);
280}
281int64_t float64_to_int64_round_to_zero( float64 a STATUS_PARAM)
282{
283 return (int64_t)a;
284}
285float32 float64_to_float32( float64 a STATUS_PARAM)
286{
287 return a;
288}
289#ifdef FLOATX80
290floatx80 float64_to_floatx80( float64 a STATUS_PARAM)
291{
292 return a;
293}
294#endif
295#ifdef FLOAT128
296float128 float64_to_float128( float64 a STATUS_PARAM)
297{
298 return a;
299}
300#endif
301
75d62a58
JM
302unsigned int float64_to_uint32( float64 a STATUS_PARAM)
303{
304 int64_t v;
305 unsigned int res;
306
307 v = llrint(a);
308 if (v < 0) {
309 res = 0;
310 } else if (v > 0xffffffff) {
311 res = 0xffffffff;
312 } else {
313 res = v;
314 }
315 return res;
316}
317unsigned int float64_to_uint32_round_to_zero( float64 a STATUS_PARAM)
318{
319 int64_t v;
320 unsigned int res;
321
322 v = (int64_t)a;
323 if (v < 0) {
324 res = 0;
325 } else if (v > 0xffffffff) {
326 res = 0xffffffff;
327 } else {
328 res = v;
329 }
330 return res;
331}
332uint64_t float64_to_uint64 (float64 a STATUS_PARAM)
333{
334 int64_t v;
335
336 v = llrint(a + (float64)INT64_MIN);
337
338 return v - INT64_MIN;
339}
340uint64_t float64_to_uint64_round_to_zero (float64 a STATUS_PARAM)
341{
342 int64_t v;
343
344 v = (int64_t)(a + (float64)INT64_MIN);
345
346 return v - INT64_MIN;
347}
348
158142c2
FB
349/*----------------------------------------------------------------------------
350| Software IEC/IEEE double-precision operations.
351*----------------------------------------------------------------------------*/
fc81ba53 352#if defined(__sun__) && defined(HOST_SOLARIS) && HOST_SOLARIS < 10
63a654bb
TS
353static inline float64 trunc(float64 x)
354{
355 return x < 0 ? -floor(-x) : floor(x);
356}
357#endif
e6e5906b
PB
358float64 float64_trunc_to_int( float64 a STATUS_PARAM )
359{
360 return trunc(a);
361}
362
158142c2
FB
363float64 float64_round_to_int( float64 a STATUS_PARAM )
364{
365#if defined(__arm__)
366 switch(STATUS(float_rounding_mode)) {
367 default:
368 case float_round_nearest_even:
369 asm("rndd %0, %1" : "=f" (a) : "f"(a));
370 break;
371 case float_round_down:
372 asm("rnddm %0, %1" : "=f" (a) : "f"(a));
373 break;
374 case float_round_up:
375 asm("rnddp %0, %1" : "=f" (a) : "f"(a));
376 break;
377 case float_round_to_zero:
378 asm("rnddz %0, %1" : "=f" (a) : "f"(a));
379 break;
380 }
381#else
382 return rint(a);
383#endif
384}
385
b109f9f8
FB
386float64 float64_rem( float64 a, float64 b STATUS_PARAM)
387{
388 return remainder(a, b);
389}
390
158142c2
FB
391float64 float64_sqrt( float64 a STATUS_PARAM)
392{
393 return sqrt(a);
394}
750afe93 395int float64_compare( float64 a, float64 b STATUS_PARAM )
b109f9f8
FB
396{
397 if (a < b) {
30e7a22e 398 return float_relation_less;
b109f9f8 399 } else if (a == b) {
30e7a22e 400 return float_relation_equal;
b109f9f8 401 } else if (a > b) {
30e7a22e 402 return float_relation_greater;
b109f9f8 403 } else {
30e7a22e 404 return float_relation_unordered;
b109f9f8
FB
405 }
406}
750afe93 407int float64_compare_quiet( float64 a, float64 b STATUS_PARAM )
b109f9f8
FB
408{
409 if (isless(a, b)) {
30e7a22e 410 return float_relation_less;
b109f9f8 411 } else if (a == b) {
30e7a22e 412 return float_relation_equal;
b109f9f8 413 } else if (isgreater(a, b)) {
30e7a22e 414 return float_relation_greater;
b109f9f8 415 } else {
30e7a22e 416 return float_relation_unordered;
b109f9f8
FB
417 }
418}
750afe93 419int float64_is_signaling_nan( float64 a1)
158142c2
FB
420{
421 float64u u;
422 uint64_t a;
423 u.f = a1;
424 a = u.i;
425 return
426 ( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
427 && ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
428
429}
430
750afe93 431int float64_is_nan( float64 a1 )
e6e5906b
PB
432{
433 float64u u;
434 uint64_t a;
435 u.f = a1;
436 a = u.i;
437
1b2ad2ec 438 return ( LIT64( 0xFFF0000000000000 ) < (bits64) ( a<<1 ) );
e6e5906b
PB
439
440}
441
158142c2
FB
442#ifdef FLOATX80
443
444/*----------------------------------------------------------------------------
445| Software IEC/IEEE extended double-precision conversion routines.
446*----------------------------------------------------------------------------*/
447int floatx80_to_int32( floatx80 a STATUS_PARAM)
448{
1b2b0af5 449 return long_to_int32(lrintl(a));
158142c2
FB
450}
451int floatx80_to_int32_round_to_zero( floatx80 a STATUS_PARAM)
452{
453 return (int)a;
454}
455int64_t floatx80_to_int64( floatx80 a STATUS_PARAM)
456{
457 return llrintl(a);
458}
459int64_t floatx80_to_int64_round_to_zero( floatx80 a STATUS_PARAM)
460{
461 return (int64_t)a;
462}
463float32 floatx80_to_float32( floatx80 a STATUS_PARAM)
464{
465 return a;
466}
467float64 floatx80_to_float64( floatx80 a STATUS_PARAM)
468{
469 return a;
470}
471
472/*----------------------------------------------------------------------------
473| Software IEC/IEEE extended double-precision operations.
474*----------------------------------------------------------------------------*/
475floatx80 floatx80_round_to_int( floatx80 a STATUS_PARAM)
476{
477 return rintl(a);
478}
b109f9f8
FB
479floatx80 floatx80_rem( floatx80 a, floatx80 b STATUS_PARAM)
480{
481 return remainderl(a, b);
482}
158142c2
FB
483floatx80 floatx80_sqrt( floatx80 a STATUS_PARAM)
484{
485 return sqrtl(a);
486}
750afe93 487int floatx80_compare( floatx80 a, floatx80 b STATUS_PARAM )
b109f9f8
FB
488{
489 if (a < b) {
30e7a22e 490 return float_relation_less;
b109f9f8 491 } else if (a == b) {
30e7a22e 492 return float_relation_equal;
b109f9f8 493 } else if (a > b) {
30e7a22e 494 return float_relation_greater;
b109f9f8 495 } else {
30e7a22e 496 return float_relation_unordered;
b109f9f8
FB
497 }
498}
750afe93 499int floatx80_compare_quiet( floatx80 a, floatx80 b STATUS_PARAM )
b109f9f8
FB
500{
501 if (isless(a, b)) {
30e7a22e 502 return float_relation_less;
b109f9f8 503 } else if (a == b) {
30e7a22e 504 return float_relation_equal;
b109f9f8 505 } else if (isgreater(a, b)) {
30e7a22e 506 return float_relation_greater;
b109f9f8 507 } else {
30e7a22e 508 return float_relation_unordered;
b109f9f8
FB
509 }
510}
750afe93 511int floatx80_is_signaling_nan( floatx80 a1)
1b2ad2ec
AJ
512{
513 floatx80u u;
514 uint64_t aLow;
515 u.f = a1;
516
517 aLow = u.i.low & ~ LIT64( 0x4000000000000000 );
518 return
519 ( ( u.i.high & 0x7FFF ) == 0x7FFF )
520 && (bits64) ( aLow<<1 )
521 && ( u.i.low == aLow );
522}
523
524int floatx80_is_nan( floatx80 a1 )
158142c2
FB
525{
526 floatx80u u;
527 u.f = a1;
528 return ( ( u.i.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( u.i.low<<1 );
529}
530
531#endif