]> git.proxmox.com Git - qemu.git/blame - fpu/softfloat-native.c
Rename _BSD to HOST_BSD so that it's more obvious that it's defined by configure
[qemu.git] / fpu / softfloat-native.c
CommitLineData
158142c2
FB
1/* Native implementation of soft float functions. Only a single status
2 context is supported */
3#include "softfloat.h"
4#include <math.h>
5
6void set_float_rounding_mode(int val STATUS_PARAM)
7{
8 STATUS(float_rounding_mode) = val;
179a2c19
BS
9#if defined(HOST_BSD) && !defined(__APPLE__) || \
10 (defined(HOST_SOLARIS) && HOST_SOLARIS < 10)
158142c2
FB
11 fpsetround(val);
12#elif defined(__arm__)
13 /* nothing to do */
14#else
15 fesetround(val);
16#endif
17}
18
19#ifdef FLOATX80
20void set_floatx80_rounding_precision(int val STATUS_PARAM)
21{
22 STATUS(floatx80_rounding_precision) = val;
23}
24#endif
25
179a2c19 26#if defined(HOST_BSD) || (defined(HOST_SOLARIS) && HOST_SOLARIS < 10)
fdbb4691
FB
27#define lrint(d) ((int32_t)rint(d))
28#define llrint(d) ((int64_t)rint(d))
29#define lrintf(f) ((int32_t)rint(f))
30#define llrintf(f) ((int64_t)rint(f))
31#define sqrtf(f) ((float)sqrt(f))
32#define remainderf(fa, fb) ((float)remainder(fa, fb))
33#define rintf(f) ((float)rint(f))
fc81ba53 34#if !defined(__sparc__) && defined(HOST_SOLARIS) && HOST_SOLARIS < 10
0475a5ca
TS
35extern long double rintl(long double);
36extern long double scalbnl(long double, int);
37
38long long
39llrintl(long double x) {
40 return ((long long) rintl(x));
41}
42
43long
44lrintl(long double x) {
45 return ((long) rintl(x));
46}
47
48long double
49ldexpl(long double x, int n) {
50 return (scalbnl(x, n));
51}
52#endif
158142c2
FB
53#endif
54
e58ffeb3 55#if defined(_ARCH_PPC)
158142c2
FB
56
57/* correct (but slow) PowerPC rint() (glibc version is incorrect) */
947f5fcb 58static double qemu_rint(double x)
158142c2
FB
59{
60 double y = 4503599627370496.0;
61 if (fabs(x) >= y)
62 return x;
5fafdf24 63 if (x < 0)
158142c2
FB
64 y = -y;
65 y = (x + y) - y;
66 if (y == 0.0)
67 y = copysign(y, x);
68 return y;
69}
70
71#define rint qemu_rint
72#endif
73
74/*----------------------------------------------------------------------------
75| Software IEC/IEEE integer-to-floating-point conversion routines.
76*----------------------------------------------------------------------------*/
77float32 int32_to_float32(int v STATUS_PARAM)
78{
79 return (float32)v;
80}
81
75d62a58
JM
82float32 uint32_to_float32(unsigned int v STATUS_PARAM)
83{
84 return (float32)v;
85}
86
158142c2
FB
87float64 int32_to_float64(int v STATUS_PARAM)
88{
89 return (float64)v;
90}
91
75d62a58
JM
92float64 uint32_to_float64(unsigned int v STATUS_PARAM)
93{
94 return (float64)v;
95}
96
158142c2
FB
97#ifdef FLOATX80
98floatx80 int32_to_floatx80(int v STATUS_PARAM)
99{
100 return (floatx80)v;
101}
102#endif
103float32 int64_to_float32( int64_t v STATUS_PARAM)
104{
105 return (float32)v;
106}
75d62a58
JM
107float32 uint64_to_float32( uint64_t v STATUS_PARAM)
108{
109 return (float32)v;
110}
158142c2
FB
111float64 int64_to_float64( int64_t v STATUS_PARAM)
112{
113 return (float64)v;
114}
75d62a58
JM
115float64 uint64_to_float64( uint64_t v STATUS_PARAM)
116{
117 return (float64)v;
118}
158142c2
FB
119#ifdef FLOATX80
120floatx80 int64_to_floatx80( int64_t v STATUS_PARAM)
121{
122 return (floatx80)v;
123}
124#endif
125
1b2b0af5
FB
126/* XXX: this code implements the x86 behaviour, not the IEEE one. */
127#if HOST_LONG_BITS == 32
128static inline int long_to_int32(long a)
129{
130 return a;
131}
132#else
133static inline int long_to_int32(long a)
134{
5fafdf24 135 if (a != (int32_t)a)
1b2b0af5
FB
136 a = 0x80000000;
137 return a;
138}
139#endif
140
158142c2
FB
141/*----------------------------------------------------------------------------
142| Software IEC/IEEE single-precision conversion routines.
143*----------------------------------------------------------------------------*/
144int float32_to_int32( float32 a STATUS_PARAM)
145{
1b2b0af5 146 return long_to_int32(lrintf(a));
158142c2
FB
147}
148int float32_to_int32_round_to_zero( float32 a STATUS_PARAM)
149{
150 return (int)a;
151}
152int64_t float32_to_int64( float32 a STATUS_PARAM)
153{
154 return llrintf(a);
155}
156
157int64_t float32_to_int64_round_to_zero( float32 a STATUS_PARAM)
158{
159 return (int64_t)a;
160}
161
162float64 float32_to_float64( float32 a STATUS_PARAM)
163{
164 return a;
165}
166#ifdef FLOATX80
167floatx80 float32_to_floatx80( float32 a STATUS_PARAM)
168{
169 return a;
170}
171#endif
172
75d62a58
JM
173unsigned int float32_to_uint32( float32 a STATUS_PARAM)
174{
175 int64_t v;
176 unsigned int res;
177
178 v = llrintf(a);
179 if (v < 0) {
180 res = 0;
181 } else if (v > 0xffffffff) {
182 res = 0xffffffff;
183 } else {
184 res = v;
185 }
186 return res;
187}
188unsigned int float32_to_uint32_round_to_zero( float32 a STATUS_PARAM)
189{
190 int64_t v;
191 unsigned int res;
192
193 v = (int64_t)a;
194 if (v < 0) {
195 res = 0;
196 } else if (v > 0xffffffff) {
197 res = 0xffffffff;
198 } else {
199 res = v;
200 }
201 return res;
202}
203
158142c2
FB
204/*----------------------------------------------------------------------------
205| Software IEC/IEEE single-precision operations.
206*----------------------------------------------------------------------------*/
207float32 float32_round_to_int( float32 a STATUS_PARAM)
208{
209 return rintf(a);
210}
211
b109f9f8
FB
212float32 float32_rem( float32 a, float32 b STATUS_PARAM)
213{
214 return remainderf(a, b);
215}
216
158142c2
FB
217float32 float32_sqrt( float32 a STATUS_PARAM)
218{
219 return sqrtf(a);
220}
750afe93 221int float32_compare( float32 a, float32 b STATUS_PARAM )
b109f9f8
FB
222{
223 if (a < b) {
30e7a22e 224 return float_relation_less;
b109f9f8 225 } else if (a == b) {
30e7a22e 226 return float_relation_equal;
b109f9f8 227 } else if (a > b) {
30e7a22e 228 return float_relation_greater;
b109f9f8 229 } else {
30e7a22e 230 return float_relation_unordered;
b109f9f8
FB
231 }
232}
750afe93 233int float32_compare_quiet( float32 a, float32 b STATUS_PARAM )
b109f9f8
FB
234{
235 if (isless(a, b)) {
30e7a22e 236 return float_relation_less;
b109f9f8 237 } else if (a == b) {
30e7a22e 238 return float_relation_equal;
b109f9f8 239 } else if (isgreater(a, b)) {
30e7a22e 240 return float_relation_greater;
b109f9f8 241 } else {
30e7a22e 242 return float_relation_unordered;
b109f9f8
FB
243 }
244}
750afe93 245int float32_is_signaling_nan( float32 a1)
158142c2
FB
246{
247 float32u u;
248 uint32_t a;
249 u.f = a1;
250 a = u.i;
251 return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
252}
253
629bd74a
AJ
254int float32_is_nan( float32 a1 )
255{
256 float32u u;
257 uint64_t a;
258 u.f = a1;
259 a = u.i;
260 return ( 0xFF800000 < ( a<<1 ) );
261}
262
158142c2
FB
263/*----------------------------------------------------------------------------
264| Software IEC/IEEE double-precision conversion routines.
265*----------------------------------------------------------------------------*/
266int float64_to_int32( float64 a STATUS_PARAM)
267{
1b2b0af5 268 return long_to_int32(lrint(a));
158142c2
FB
269}
270int float64_to_int32_round_to_zero( float64 a STATUS_PARAM)
271{
272 return (int)a;
273}
274int64_t float64_to_int64( float64 a STATUS_PARAM)
275{
276 return llrint(a);
277}
278int64_t float64_to_int64_round_to_zero( float64 a STATUS_PARAM)
279{
280 return (int64_t)a;
281}
282float32 float64_to_float32( float64 a STATUS_PARAM)
283{
284 return a;
285}
286#ifdef FLOATX80
287floatx80 float64_to_floatx80( float64 a STATUS_PARAM)
288{
289 return a;
290}
291#endif
292#ifdef FLOAT128
293float128 float64_to_float128( float64 a STATUS_PARAM)
294{
295 return a;
296}
297#endif
298
75d62a58
JM
299unsigned int float64_to_uint32( float64 a STATUS_PARAM)
300{
301 int64_t v;
302 unsigned int res;
303
304 v = llrint(a);
305 if (v < 0) {
306 res = 0;
307 } else if (v > 0xffffffff) {
308 res = 0xffffffff;
309 } else {
310 res = v;
311 }
312 return res;
313}
314unsigned int float64_to_uint32_round_to_zero( float64 a STATUS_PARAM)
315{
316 int64_t v;
317 unsigned int res;
318
319 v = (int64_t)a;
320 if (v < 0) {
321 res = 0;
322 } else if (v > 0xffffffff) {
323 res = 0xffffffff;
324 } else {
325 res = v;
326 }
327 return res;
328}
329uint64_t float64_to_uint64 (float64 a STATUS_PARAM)
330{
331 int64_t v;
332
333 v = llrint(a + (float64)INT64_MIN);
334
335 return v - INT64_MIN;
336}
337uint64_t float64_to_uint64_round_to_zero (float64 a STATUS_PARAM)
338{
339 int64_t v;
340
341 v = (int64_t)(a + (float64)INT64_MIN);
342
343 return v - INT64_MIN;
344}
345
158142c2
FB
346/*----------------------------------------------------------------------------
347| Software IEC/IEEE double-precision operations.
348*----------------------------------------------------------------------------*/
fc81ba53 349#if defined(__sun__) && defined(HOST_SOLARIS) && HOST_SOLARIS < 10
63a654bb
TS
350static inline float64 trunc(float64 x)
351{
352 return x < 0 ? -floor(-x) : floor(x);
353}
354#endif
e6e5906b
PB
355float64 float64_trunc_to_int( float64 a STATUS_PARAM )
356{
357 return trunc(a);
358}
359
158142c2
FB
360float64 float64_round_to_int( float64 a STATUS_PARAM )
361{
362#if defined(__arm__)
363 switch(STATUS(float_rounding_mode)) {
364 default:
365 case float_round_nearest_even:
366 asm("rndd %0, %1" : "=f" (a) : "f"(a));
367 break;
368 case float_round_down:
369 asm("rnddm %0, %1" : "=f" (a) : "f"(a));
370 break;
371 case float_round_up:
372 asm("rnddp %0, %1" : "=f" (a) : "f"(a));
373 break;
374 case float_round_to_zero:
375 asm("rnddz %0, %1" : "=f" (a) : "f"(a));
376 break;
377 }
378#else
379 return rint(a);
380#endif
381}
382
b109f9f8
FB
383float64 float64_rem( float64 a, float64 b STATUS_PARAM)
384{
385 return remainder(a, b);
386}
387
158142c2
FB
388float64 float64_sqrt( float64 a STATUS_PARAM)
389{
390 return sqrt(a);
391}
750afe93 392int float64_compare( float64 a, float64 b STATUS_PARAM )
b109f9f8
FB
393{
394 if (a < b) {
30e7a22e 395 return float_relation_less;
b109f9f8 396 } else if (a == b) {
30e7a22e 397 return float_relation_equal;
b109f9f8 398 } else if (a > b) {
30e7a22e 399 return float_relation_greater;
b109f9f8 400 } else {
30e7a22e 401 return float_relation_unordered;
b109f9f8
FB
402 }
403}
750afe93 404int float64_compare_quiet( float64 a, float64 b STATUS_PARAM )
b109f9f8
FB
405{
406 if (isless(a, b)) {
30e7a22e 407 return float_relation_less;
b109f9f8 408 } else if (a == b) {
30e7a22e 409 return float_relation_equal;
b109f9f8 410 } else if (isgreater(a, b)) {
30e7a22e 411 return float_relation_greater;
b109f9f8 412 } else {
30e7a22e 413 return float_relation_unordered;
b109f9f8
FB
414 }
415}
750afe93 416int float64_is_signaling_nan( float64 a1)
158142c2
FB
417{
418 float64u u;
419 uint64_t a;
420 u.f = a1;
421 a = u.i;
422 return
423 ( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
424 && ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
425
426}
427
750afe93 428int float64_is_nan( float64 a1 )
e6e5906b
PB
429{
430 float64u u;
431 uint64_t a;
432 u.f = a1;
433 a = u.i;
434
1b2ad2ec 435 return ( LIT64( 0xFFF0000000000000 ) < (bits64) ( a<<1 ) );
e6e5906b
PB
436
437}
438
158142c2
FB
439#ifdef FLOATX80
440
441/*----------------------------------------------------------------------------
442| Software IEC/IEEE extended double-precision conversion routines.
443*----------------------------------------------------------------------------*/
444int floatx80_to_int32( floatx80 a STATUS_PARAM)
445{
1b2b0af5 446 return long_to_int32(lrintl(a));
158142c2
FB
447}
448int floatx80_to_int32_round_to_zero( floatx80 a STATUS_PARAM)
449{
450 return (int)a;
451}
452int64_t floatx80_to_int64( floatx80 a STATUS_PARAM)
453{
454 return llrintl(a);
455}
456int64_t floatx80_to_int64_round_to_zero( floatx80 a STATUS_PARAM)
457{
458 return (int64_t)a;
459}
460float32 floatx80_to_float32( floatx80 a STATUS_PARAM)
461{
462 return a;
463}
464float64 floatx80_to_float64( floatx80 a STATUS_PARAM)
465{
466 return a;
467}
468
469/*----------------------------------------------------------------------------
470| Software IEC/IEEE extended double-precision operations.
471*----------------------------------------------------------------------------*/
472floatx80 floatx80_round_to_int( floatx80 a STATUS_PARAM)
473{
474 return rintl(a);
475}
b109f9f8
FB
476floatx80 floatx80_rem( floatx80 a, floatx80 b STATUS_PARAM)
477{
478 return remainderl(a, b);
479}
158142c2
FB
480floatx80 floatx80_sqrt( floatx80 a STATUS_PARAM)
481{
482 return sqrtl(a);
483}
750afe93 484int floatx80_compare( floatx80 a, floatx80 b STATUS_PARAM )
b109f9f8
FB
485{
486 if (a < b) {
30e7a22e 487 return float_relation_less;
b109f9f8 488 } else if (a == b) {
30e7a22e 489 return float_relation_equal;
b109f9f8 490 } else if (a > b) {
30e7a22e 491 return float_relation_greater;
b109f9f8 492 } else {
30e7a22e 493 return float_relation_unordered;
b109f9f8
FB
494 }
495}
750afe93 496int floatx80_compare_quiet( floatx80 a, floatx80 b STATUS_PARAM )
b109f9f8
FB
497{
498 if (isless(a, b)) {
30e7a22e 499 return float_relation_less;
b109f9f8 500 } else if (a == b) {
30e7a22e 501 return float_relation_equal;
b109f9f8 502 } else if (isgreater(a, b)) {
30e7a22e 503 return float_relation_greater;
b109f9f8 504 } else {
30e7a22e 505 return float_relation_unordered;
b109f9f8
FB
506 }
507}
750afe93 508int floatx80_is_signaling_nan( floatx80 a1)
1b2ad2ec
AJ
509{
510 floatx80u u;
511 uint64_t aLow;
512 u.f = a1;
513
514 aLow = u.i.low & ~ LIT64( 0x4000000000000000 );
515 return
516 ( ( u.i.high & 0x7FFF ) == 0x7FFF )
517 && (bits64) ( aLow<<1 )
518 && ( u.i.low == aLow );
519}
520
521int floatx80_is_nan( floatx80 a1 )
158142c2
FB
522{
523 floatx80u u;
524 u.f = a1;
525 return ( ( u.i.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( u.i.low<<1 );
526}
527
528#endif