]> git.proxmox.com Git - qemu.git/blame - fpu/softfloat-native.c
Add static qualifier to local functions
[qemu.git] / fpu / softfloat-native.c
CommitLineData
158142c2
FB
1/* Native implementation of soft float functions. Only a single status
2 context is supported */
3#include "softfloat.h"
4#include <math.h>
5
6void set_float_rounding_mode(int val STATUS_PARAM)
7{
8 STATUS(float_rounding_mode) = val;
fdbb4691 9#if defined(_BSD) && !defined(__APPLE__) || (defined(HOST_SOLARIS) && HOST_SOLARIS < 10)
158142c2
FB
10 fpsetround(val);
11#elif defined(__arm__)
12 /* nothing to do */
13#else
14 fesetround(val);
15#endif
16}
17
18#ifdef FLOATX80
19void set_floatx80_rounding_precision(int val STATUS_PARAM)
20{
21 STATUS(floatx80_rounding_precision) = val;
22}
23#endif
24
fdbb4691
FB
25#if defined(_BSD) || (defined(HOST_SOLARIS) && HOST_SOLARIS < 10)
26#define lrint(d) ((int32_t)rint(d))
27#define llrint(d) ((int64_t)rint(d))
28#define lrintf(f) ((int32_t)rint(f))
29#define llrintf(f) ((int64_t)rint(f))
30#define sqrtf(f) ((float)sqrt(f))
31#define remainderf(fa, fb) ((float)remainder(fa, fb))
32#define rintf(f) ((float)rint(f))
fc81ba53 33#if !defined(__sparc__) && defined(HOST_SOLARIS) && HOST_SOLARIS < 10
0475a5ca
TS
34extern long double rintl(long double);
35extern long double scalbnl(long double, int);
36
37long long
38llrintl(long double x) {
39 return ((long long) rintl(x));
40}
41
42long
43lrintl(long double x) {
44 return ((long) rintl(x));
45}
46
47long double
48ldexpl(long double x, int n) {
49 return (scalbnl(x, n));
50}
51#endif
158142c2
FB
52#endif
53
e58ffeb3 54#if defined(_ARCH_PPC)
158142c2
FB
55
56/* correct (but slow) PowerPC rint() (glibc version is incorrect) */
947f5fcb 57static double qemu_rint(double x)
158142c2
FB
58{
59 double y = 4503599627370496.0;
60 if (fabs(x) >= y)
61 return x;
5fafdf24 62 if (x < 0)
158142c2
FB
63 y = -y;
64 y = (x + y) - y;
65 if (y == 0.0)
66 y = copysign(y, x);
67 return y;
68}
69
70#define rint qemu_rint
71#endif
72
73/*----------------------------------------------------------------------------
74| Software IEC/IEEE integer-to-floating-point conversion routines.
75*----------------------------------------------------------------------------*/
76float32 int32_to_float32(int v STATUS_PARAM)
77{
78 return (float32)v;
79}
80
75d62a58
JM
81float32 uint32_to_float32(unsigned int v STATUS_PARAM)
82{
83 return (float32)v;
84}
85
158142c2
FB
86float64 int32_to_float64(int v STATUS_PARAM)
87{
88 return (float64)v;
89}
90
75d62a58
JM
91float64 uint32_to_float64(unsigned int v STATUS_PARAM)
92{
93 return (float64)v;
94}
95
158142c2
FB
96#ifdef FLOATX80
97floatx80 int32_to_floatx80(int v STATUS_PARAM)
98{
99 return (floatx80)v;
100}
101#endif
102float32 int64_to_float32( int64_t v STATUS_PARAM)
103{
104 return (float32)v;
105}
75d62a58
JM
106float32 uint64_to_float32( uint64_t v STATUS_PARAM)
107{
108 return (float32)v;
109}
158142c2
FB
110float64 int64_to_float64( int64_t v STATUS_PARAM)
111{
112 return (float64)v;
113}
75d62a58
JM
114float64 uint64_to_float64( uint64_t v STATUS_PARAM)
115{
116 return (float64)v;
117}
158142c2
FB
118#ifdef FLOATX80
119floatx80 int64_to_floatx80( int64_t v STATUS_PARAM)
120{
121 return (floatx80)v;
122}
123#endif
124
1b2b0af5
FB
125/* XXX: this code implements the x86 behaviour, not the IEEE one. */
126#if HOST_LONG_BITS == 32
127static inline int long_to_int32(long a)
128{
129 return a;
130}
131#else
132static inline int long_to_int32(long a)
133{
5fafdf24 134 if (a != (int32_t)a)
1b2b0af5
FB
135 a = 0x80000000;
136 return a;
137}
138#endif
139
158142c2
FB
140/*----------------------------------------------------------------------------
141| Software IEC/IEEE single-precision conversion routines.
142*----------------------------------------------------------------------------*/
143int float32_to_int32( float32 a STATUS_PARAM)
144{
1b2b0af5 145 return long_to_int32(lrintf(a));
158142c2
FB
146}
147int float32_to_int32_round_to_zero( float32 a STATUS_PARAM)
148{
149 return (int)a;
150}
151int64_t float32_to_int64( float32 a STATUS_PARAM)
152{
153 return llrintf(a);
154}
155
156int64_t float32_to_int64_round_to_zero( float32 a STATUS_PARAM)
157{
158 return (int64_t)a;
159}
160
161float64 float32_to_float64( float32 a STATUS_PARAM)
162{
163 return a;
164}
165#ifdef FLOATX80
166floatx80 float32_to_floatx80( float32 a STATUS_PARAM)
167{
168 return a;
169}
170#endif
171
75d62a58
JM
172unsigned int float32_to_uint32( float32 a STATUS_PARAM)
173{
174 int64_t v;
175 unsigned int res;
176
177 v = llrintf(a);
178 if (v < 0) {
179 res = 0;
180 } else if (v > 0xffffffff) {
181 res = 0xffffffff;
182 } else {
183 res = v;
184 }
185 return res;
186}
187unsigned int float32_to_uint32_round_to_zero( float32 a STATUS_PARAM)
188{
189 int64_t v;
190 unsigned int res;
191
192 v = (int64_t)a;
193 if (v < 0) {
194 res = 0;
195 } else if (v > 0xffffffff) {
196 res = 0xffffffff;
197 } else {
198 res = v;
199 }
200 return res;
201}
202
158142c2
FB
203/*----------------------------------------------------------------------------
204| Software IEC/IEEE single-precision operations.
205*----------------------------------------------------------------------------*/
206float32 float32_round_to_int( float32 a STATUS_PARAM)
207{
208 return rintf(a);
209}
210
b109f9f8
FB
211float32 float32_rem( float32 a, float32 b STATUS_PARAM)
212{
213 return remainderf(a, b);
214}
215
158142c2
FB
216float32 float32_sqrt( float32 a STATUS_PARAM)
217{
218 return sqrtf(a);
219}
750afe93 220int float32_compare( float32 a, float32 b STATUS_PARAM )
b109f9f8
FB
221{
222 if (a < b) {
30e7a22e 223 return float_relation_less;
b109f9f8 224 } else if (a == b) {
30e7a22e 225 return float_relation_equal;
b109f9f8 226 } else if (a > b) {
30e7a22e 227 return float_relation_greater;
b109f9f8 228 } else {
30e7a22e 229 return float_relation_unordered;
b109f9f8
FB
230 }
231}
750afe93 232int float32_compare_quiet( float32 a, float32 b STATUS_PARAM )
b109f9f8
FB
233{
234 if (isless(a, b)) {
30e7a22e 235 return float_relation_less;
b109f9f8 236 } else if (a == b) {
30e7a22e 237 return float_relation_equal;
b109f9f8 238 } else if (isgreater(a, b)) {
30e7a22e 239 return float_relation_greater;
b109f9f8 240 } else {
30e7a22e 241 return float_relation_unordered;
b109f9f8
FB
242 }
243}
750afe93 244int float32_is_signaling_nan( float32 a1)
158142c2
FB
245{
246 float32u u;
247 uint32_t a;
248 u.f = a1;
249 a = u.i;
250 return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
251}
252
629bd74a
AJ
253int float32_is_nan( float32 a1 )
254{
255 float32u u;
256 uint64_t a;
257 u.f = a1;
258 a = u.i;
259 return ( 0xFF800000 < ( a<<1 ) );
260}
261
158142c2
FB
262/*----------------------------------------------------------------------------
263| Software IEC/IEEE double-precision conversion routines.
264*----------------------------------------------------------------------------*/
265int float64_to_int32( float64 a STATUS_PARAM)
266{
1b2b0af5 267 return long_to_int32(lrint(a));
158142c2
FB
268}
269int float64_to_int32_round_to_zero( float64 a STATUS_PARAM)
270{
271 return (int)a;
272}
273int64_t float64_to_int64( float64 a STATUS_PARAM)
274{
275 return llrint(a);
276}
277int64_t float64_to_int64_round_to_zero( float64 a STATUS_PARAM)
278{
279 return (int64_t)a;
280}
281float32 float64_to_float32( float64 a STATUS_PARAM)
282{
283 return a;
284}
285#ifdef FLOATX80
286floatx80 float64_to_floatx80( float64 a STATUS_PARAM)
287{
288 return a;
289}
290#endif
291#ifdef FLOAT128
292float128 float64_to_float128( float64 a STATUS_PARAM)
293{
294 return a;
295}
296#endif
297
75d62a58
JM
298unsigned int float64_to_uint32( float64 a STATUS_PARAM)
299{
300 int64_t v;
301 unsigned int res;
302
303 v = llrint(a);
304 if (v < 0) {
305 res = 0;
306 } else if (v > 0xffffffff) {
307 res = 0xffffffff;
308 } else {
309 res = v;
310 }
311 return res;
312}
313unsigned int float64_to_uint32_round_to_zero( float64 a STATUS_PARAM)
314{
315 int64_t v;
316 unsigned int res;
317
318 v = (int64_t)a;
319 if (v < 0) {
320 res = 0;
321 } else if (v > 0xffffffff) {
322 res = 0xffffffff;
323 } else {
324 res = v;
325 }
326 return res;
327}
328uint64_t float64_to_uint64 (float64 a STATUS_PARAM)
329{
330 int64_t v;
331
332 v = llrint(a + (float64)INT64_MIN);
333
334 return v - INT64_MIN;
335}
336uint64_t float64_to_uint64_round_to_zero (float64 a STATUS_PARAM)
337{
338 int64_t v;
339
340 v = (int64_t)(a + (float64)INT64_MIN);
341
342 return v - INT64_MIN;
343}
344
158142c2
FB
345/*----------------------------------------------------------------------------
346| Software IEC/IEEE double-precision operations.
347*----------------------------------------------------------------------------*/
fc81ba53 348#if defined(__sun__) && defined(HOST_SOLARIS) && HOST_SOLARIS < 10
63a654bb
TS
349static inline float64 trunc(float64 x)
350{
351 return x < 0 ? -floor(-x) : floor(x);
352}
353#endif
e6e5906b
PB
354float64 float64_trunc_to_int( float64 a STATUS_PARAM )
355{
356 return trunc(a);
357}
358
158142c2
FB
359float64 float64_round_to_int( float64 a STATUS_PARAM )
360{
361#if defined(__arm__)
362 switch(STATUS(float_rounding_mode)) {
363 default:
364 case float_round_nearest_even:
365 asm("rndd %0, %1" : "=f" (a) : "f"(a));
366 break;
367 case float_round_down:
368 asm("rnddm %0, %1" : "=f" (a) : "f"(a));
369 break;
370 case float_round_up:
371 asm("rnddp %0, %1" : "=f" (a) : "f"(a));
372 break;
373 case float_round_to_zero:
374 asm("rnddz %0, %1" : "=f" (a) : "f"(a));
375 break;
376 }
377#else
378 return rint(a);
379#endif
380}
381
b109f9f8
FB
382float64 float64_rem( float64 a, float64 b STATUS_PARAM)
383{
384 return remainder(a, b);
385}
386
158142c2
FB
387float64 float64_sqrt( float64 a STATUS_PARAM)
388{
389 return sqrt(a);
390}
750afe93 391int float64_compare( float64 a, float64 b STATUS_PARAM )
b109f9f8
FB
392{
393 if (a < b) {
30e7a22e 394 return float_relation_less;
b109f9f8 395 } else if (a == b) {
30e7a22e 396 return float_relation_equal;
b109f9f8 397 } else if (a > b) {
30e7a22e 398 return float_relation_greater;
b109f9f8 399 } else {
30e7a22e 400 return float_relation_unordered;
b109f9f8
FB
401 }
402}
750afe93 403int float64_compare_quiet( float64 a, float64 b STATUS_PARAM )
b109f9f8
FB
404{
405 if (isless(a, b)) {
30e7a22e 406 return float_relation_less;
b109f9f8 407 } else if (a == b) {
30e7a22e 408 return float_relation_equal;
b109f9f8 409 } else if (isgreater(a, b)) {
30e7a22e 410 return float_relation_greater;
b109f9f8 411 } else {
30e7a22e 412 return float_relation_unordered;
b109f9f8
FB
413 }
414}
750afe93 415int float64_is_signaling_nan( float64 a1)
158142c2
FB
416{
417 float64u u;
418 uint64_t a;
419 u.f = a1;
420 a = u.i;
421 return
422 ( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
423 && ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
424
425}
426
750afe93 427int float64_is_nan( float64 a1 )
e6e5906b
PB
428{
429 float64u u;
430 uint64_t a;
431 u.f = a1;
432 a = u.i;
433
1b2ad2ec 434 return ( LIT64( 0xFFF0000000000000 ) < (bits64) ( a<<1 ) );
e6e5906b
PB
435
436}
437
158142c2
FB
438#ifdef FLOATX80
439
440/*----------------------------------------------------------------------------
441| Software IEC/IEEE extended double-precision conversion routines.
442*----------------------------------------------------------------------------*/
443int floatx80_to_int32( floatx80 a STATUS_PARAM)
444{
1b2b0af5 445 return long_to_int32(lrintl(a));
158142c2
FB
446}
447int floatx80_to_int32_round_to_zero( floatx80 a STATUS_PARAM)
448{
449 return (int)a;
450}
451int64_t floatx80_to_int64( floatx80 a STATUS_PARAM)
452{
453 return llrintl(a);
454}
455int64_t floatx80_to_int64_round_to_zero( floatx80 a STATUS_PARAM)
456{
457 return (int64_t)a;
458}
459float32 floatx80_to_float32( floatx80 a STATUS_PARAM)
460{
461 return a;
462}
463float64 floatx80_to_float64( floatx80 a STATUS_PARAM)
464{
465 return a;
466}
467
468/*----------------------------------------------------------------------------
469| Software IEC/IEEE extended double-precision operations.
470*----------------------------------------------------------------------------*/
471floatx80 floatx80_round_to_int( floatx80 a STATUS_PARAM)
472{
473 return rintl(a);
474}
b109f9f8
FB
475floatx80 floatx80_rem( floatx80 a, floatx80 b STATUS_PARAM)
476{
477 return remainderl(a, b);
478}
158142c2
FB
479floatx80 floatx80_sqrt( floatx80 a STATUS_PARAM)
480{
481 return sqrtl(a);
482}
750afe93 483int floatx80_compare( floatx80 a, floatx80 b STATUS_PARAM )
b109f9f8
FB
484{
485 if (a < b) {
30e7a22e 486 return float_relation_less;
b109f9f8 487 } else if (a == b) {
30e7a22e 488 return float_relation_equal;
b109f9f8 489 } else if (a > b) {
30e7a22e 490 return float_relation_greater;
b109f9f8 491 } else {
30e7a22e 492 return float_relation_unordered;
b109f9f8
FB
493 }
494}
750afe93 495int floatx80_compare_quiet( floatx80 a, floatx80 b STATUS_PARAM )
b109f9f8
FB
496{
497 if (isless(a, b)) {
30e7a22e 498 return float_relation_less;
b109f9f8 499 } else if (a == b) {
30e7a22e 500 return float_relation_equal;
b109f9f8 501 } else if (isgreater(a, b)) {
30e7a22e 502 return float_relation_greater;
b109f9f8 503 } else {
30e7a22e 504 return float_relation_unordered;
b109f9f8
FB
505 }
506}
750afe93 507int floatx80_is_signaling_nan( floatx80 a1)
1b2ad2ec
AJ
508{
509 floatx80u u;
510 uint64_t aLow;
511 u.f = a1;
512
513 aLow = u.i.low & ~ LIT64( 0x4000000000000000 );
514 return
515 ( ( u.i.high & 0x7FFF ) == 0x7FFF )
516 && (bits64) ( aLow<<1 )
517 && ( u.i.low == aLow );
518}
519
520int floatx80_is_nan( floatx80 a1 )
158142c2
FB
521{
522 floatx80u u;
523 u.f = a1;
524 return ( ( u.i.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( u.i.low<<1 );
525}
526
527#endif