]> git.proxmox.com Git - qemu.git/blame - fpu/softfloat-specialize.h
Merge branch 'arm-devs.for-upstream' of git://git.linaro.org/people/pmaydell/qemu-arm
[qemu.git] / fpu / softfloat-specialize.h
CommitLineData
8d725fac
AF
1/*
2 * QEMU float support
3 *
4 * Derived from SoftFloat.
5 */
158142c2
FB
6
7/*============================================================================
8
9This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
10Arithmetic Package, Release 2b.
11
12Written by John R. Hauser. This work was made possible in part by the
13International Computer Science Institute, located at Suite 600, 1947 Center
14Street, Berkeley, California 94704. Funding was partially provided by the
15National Science Foundation under grant MIP-9311980. The original version
16of this code was written as part of a project to build a fixed-point vector
17processor in collaboration with the University of California at Berkeley,
18overseen by Profs. Nelson Morgan and John Wawrzynek. More information
19is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
20arithmetic/SoftFloat.html'.
21
22THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
23been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
24RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
25AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
26COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
27EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
28INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
29OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
30
31Derivative works are acceptable, even for commercial purposes, so long as
32(1) the source code for the derivative work includes prominent notice that
33the work is derivative, and (2) the source code includes prominent notice with
34these four paragraphs for those parts of this code that are retained.
35
36=============================================================================*/
37
789ec7ce
PB
38#if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
39#define SNAN_BIT_IS_ONE 1
40#else
41#define SNAN_BIT_IS_ONE 0
42#endif
43
44/*----------------------------------------------------------------------------
45| The pattern for a default generated half-precision NaN.
46*----------------------------------------------------------------------------*/
47#if defined(TARGET_ARM)
48const float16 float16_default_nan = const_float16(0x7E00);
49#elif SNAN_BIT_IS_ONE
50const float16 float16_default_nan = const_float16(0x7DFF);
51#else
52const float16 float16_default_nan = const_float16(0xFE00);
53#endif
54
55/*----------------------------------------------------------------------------
56| The pattern for a default generated single-precision NaN.
57*----------------------------------------------------------------------------*/
58#if defined(TARGET_SPARC)
59const float32 float32_default_nan = const_float32(0x7FFFFFFF);
60#elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA)
61const float32 float32_default_nan = const_float32(0x7FC00000);
62#elif SNAN_BIT_IS_ONE
63const float32 float32_default_nan = const_float32(0x7FBFFFFF);
64#else
65const float32 float32_default_nan = const_float32(0xFFC00000);
66#endif
67
68/*----------------------------------------------------------------------------
69| The pattern for a default generated double-precision NaN.
70*----------------------------------------------------------------------------*/
71#if defined(TARGET_SPARC)
72const float64 float64_default_nan = const_float64(LIT64( 0x7FFFFFFFFFFFFFFF ));
73#elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA)
74const float64 float64_default_nan = const_float64(LIT64( 0x7FF8000000000000 ));
75#elif SNAN_BIT_IS_ONE
76const float64 float64_default_nan = const_float64(LIT64( 0x7FF7FFFFFFFFFFFF ));
77#else
78const float64 float64_default_nan = const_float64(LIT64( 0xFFF8000000000000 ));
79#endif
80
81/*----------------------------------------------------------------------------
82| The pattern for a default generated extended double-precision NaN.
83*----------------------------------------------------------------------------*/
84#if SNAN_BIT_IS_ONE
85#define floatx80_default_nan_high 0x7FFF
86#define floatx80_default_nan_low LIT64( 0xBFFFFFFFFFFFFFFF )
87#else
88#define floatx80_default_nan_high 0xFFFF
89#define floatx80_default_nan_low LIT64( 0xC000000000000000 )
90#endif
91
3bf7e40a
AK
92const floatx80 floatx80_default_nan
93 = make_floatx80_init(floatx80_default_nan_high, floatx80_default_nan_low);
789ec7ce
PB
94
95/*----------------------------------------------------------------------------
96| The pattern for a default generated quadruple-precision NaN. The `high' and
97| `low' values hold the most- and least-significant bits, respectively.
98*----------------------------------------------------------------------------*/
99#if SNAN_BIT_IS_ONE
100#define float128_default_nan_high LIT64( 0x7FFF7FFFFFFFFFFF )
101#define float128_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
102#else
103#define float128_default_nan_high LIT64( 0xFFFF800000000000 )
104#define float128_default_nan_low LIT64( 0x0000000000000000 )
105#endif
106
3bf7e40a
AK
107const float128 float128_default_nan
108 = make_float128_init(float128_default_nan_high, float128_default_nan_low);
789ec7ce 109
158142c2
FB
110/*----------------------------------------------------------------------------
111| Raises the exceptions specified by `flags'. Floating-point traps can be
112| defined here if desired. It is currently not possible for such a trap
113| to substitute a result value. If traps are not implemented, this routine
114| should be simply `float_exception_flags |= flags;'.
115*----------------------------------------------------------------------------*/
116
117void float_raise( int8 flags STATUS_PARAM )
118{
158142c2 119 STATUS(float_exception_flags) |= flags;
158142c2
FB
120}
121
122/*----------------------------------------------------------------------------
123| Internal canonical NaN format.
124*----------------------------------------------------------------------------*/
125typedef struct {
126 flag sign;
bb98fe42 127 uint64_t high, low;
158142c2
FB
128} commonNaNT;
129
bb4d4bb3
PM
130/*----------------------------------------------------------------------------
131| Returns 1 if the half-precision floating-point value `a' is a quiet
132| NaN; otherwise returns 0.
133*----------------------------------------------------------------------------*/
134
135int float16_is_quiet_nan(float16 a_)
136{
137 uint16_t a = float16_val(a_);
138#if SNAN_BIT_IS_ONE
139 return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
140#else
141 return ((a & ~0x8000) >= 0x7c80);
142#endif
143}
144
145/*----------------------------------------------------------------------------
146| Returns 1 if the half-precision floating-point value `a' is a signaling
147| NaN; otherwise returns 0.
148*----------------------------------------------------------------------------*/
149
150int float16_is_signaling_nan(float16 a_)
151{
152 uint16_t a = float16_val(a_);
153#if SNAN_BIT_IS_ONE
154 return ((a & ~0x8000) >= 0x7c80);
155#else
156 return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
157#endif
158}
159
160/*----------------------------------------------------------------------------
161| Returns a quiet NaN if the half-precision floating point value `a' is a
162| signaling NaN; otherwise returns `a'.
163*----------------------------------------------------------------------------*/
164float16 float16_maybe_silence_nan(float16 a_)
165{
166 if (float16_is_signaling_nan(a_)) {
167#if SNAN_BIT_IS_ONE
d2fbca94 168# if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
bb4d4bb3
PM
169 return float16_default_nan;
170# else
171# error Rules for silencing a signaling NaN are target-specific
172# endif
173#else
174 uint16_t a = float16_val(a_);
175 a |= (1 << 9);
176 return make_float16(a);
177#endif
178 }
179 return a_;
180}
181
f591e1be
PM
182/*----------------------------------------------------------------------------
183| Returns the result of converting the half-precision floating-point NaN
184| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
185| exception is raised.
186*----------------------------------------------------------------------------*/
187
188static commonNaNT float16ToCommonNaN( float16 a STATUS_PARAM )
189{
190 commonNaNT z;
191
192 if ( float16_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR );
193 z.sign = float16_val(a) >> 15;
194 z.low = 0;
bb98fe42 195 z.high = ((uint64_t) float16_val(a))<<54;
f591e1be
PM
196 return z;
197}
198
600e30d2
PM
199/*----------------------------------------------------------------------------
200| Returns the result of converting the canonical NaN `a' to the half-
201| precision floating-point format.
202*----------------------------------------------------------------------------*/
203
204static float16 commonNaNToFloat16(commonNaNT a STATUS_PARAM)
205{
206 uint16_t mantissa = a.high>>54;
207
208 if (STATUS(default_nan_mode)) {
209 return float16_default_nan;
210 }
211
212 if (mantissa) {
213 return make_float16(((((uint16_t) a.sign) << 15)
214 | (0x1F << 10) | mantissa));
215 } else {
216 return float16_default_nan;
217 }
218}
219
158142c2 220/*----------------------------------------------------------------------------
5a6932d5
TS
221| Returns 1 if the single-precision floating-point value `a' is a quiet
222| NaN; otherwise returns 0.
158142c2
FB
223*----------------------------------------------------------------------------*/
224
18569871 225int float32_is_quiet_nan( float32 a_ )
158142c2 226{
f090c9d4 227 uint32_t a = float32_val(a_);
5a6932d5 228#if SNAN_BIT_IS_ONE
b645bb48
TS
229 return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
230#else
bb98fe42 231 return ( 0xFF800000 <= (uint32_t) ( a<<1 ) );
b645bb48 232#endif
158142c2
FB
233}
234
235/*----------------------------------------------------------------------------
236| Returns 1 if the single-precision floating-point value `a' is a signaling
237| NaN; otherwise returns 0.
238*----------------------------------------------------------------------------*/
239
f090c9d4 240int float32_is_signaling_nan( float32 a_ )
158142c2 241{
f090c9d4 242 uint32_t a = float32_val(a_);
5a6932d5 243#if SNAN_BIT_IS_ONE
bb98fe42 244 return ( 0xFF800000 <= (uint32_t) ( a<<1 ) );
b645bb48 245#else
158142c2 246 return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
b645bb48 247#endif
158142c2
FB
248}
249
b408dbde
PM
250/*----------------------------------------------------------------------------
251| Returns a quiet NaN if the single-precision floating point value `a' is a
252| signaling NaN; otherwise returns `a'.
253*----------------------------------------------------------------------------*/
254
255float32 float32_maybe_silence_nan( float32 a_ )
256{
257 if (float32_is_signaling_nan(a_)) {
b408dbde 258#if SNAN_BIT_IS_ONE
d2fbca94 259# if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
93ae1c6f
AJ
260 return float32_default_nan;
261# else
262# error Rules for silencing a signaling NaN are target-specific
263# endif
b408dbde 264#else
bb98fe42 265 uint32_t a = float32_val(a_);
b408dbde 266 a |= (1 << 22);
b408dbde 267 return make_float32(a);
93ae1c6f 268#endif
b408dbde
PM
269 }
270 return a_;
271}
272
158142c2
FB
273/*----------------------------------------------------------------------------
274| Returns the result of converting the single-precision floating-point NaN
275| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
276| exception is raised.
277*----------------------------------------------------------------------------*/
278
279static commonNaNT float32ToCommonNaN( float32 a STATUS_PARAM )
280{
281 commonNaNT z;
282
283 if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR );
f090c9d4 284 z.sign = float32_val(a)>>31;
158142c2 285 z.low = 0;
bb98fe42 286 z.high = ( (uint64_t) float32_val(a) )<<41;
158142c2 287 return z;
158142c2
FB
288}
289
290/*----------------------------------------------------------------------------
291| Returns the result of converting the canonical NaN `a' to the single-
292| precision floating-point format.
293*----------------------------------------------------------------------------*/
294
bcd4d9af 295static float32 commonNaNToFloat32( commonNaNT a STATUS_PARAM)
158142c2 296{
bb98fe42 297 uint32_t mantissa = a.high>>41;
bcd4d9af
CL
298
299 if ( STATUS(default_nan_mode) ) {
300 return float32_default_nan;
301 }
302
85016c98
TS
303 if ( mantissa )
304 return make_float32(
bb98fe42 305 ( ( (uint32_t) a.sign )<<31 ) | 0x7F800000 | ( a.high>>41 ) );
85016c98
TS
306 else
307 return float32_default_nan;
158142c2
FB
308}
309
354f211b
PM
310/*----------------------------------------------------------------------------
311| Select which NaN to propagate for a two-input operation.
312| IEEE754 doesn't specify all the details of this, so the
313| algorithm is target-specific.
314| The routine is passed various bits of information about the
315| two NaNs and should return 0 to select NaN a and 1 for NaN b.
316| Note that signalling NaNs are always squashed to quiet NaNs
1f398e08
AJ
317| by the caller, by calling floatXX_maybe_silence_nan() before
318| returning them.
354f211b
PM
319|
320| aIsLargerSignificand is only valid if both a and b are NaNs
321| of some kind, and is true if a has the larger significand,
322| or if both a and b have the same significand but a is
323| positive but b is negative. It is only needed for the x87
324| tie-break rule.
325*----------------------------------------------------------------------------*/
326
011da610
PM
327#if defined(TARGET_ARM)
328static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
329 flag aIsLargerSignificand)
330{
331 /* ARM mandated NaN propagation rules: take the first of:
332 * 1. A if it is signaling
333 * 2. B if it is signaling
334 * 3. A (quiet)
335 * 4. B (quiet)
336 * A signaling NaN is always quietened before returning it.
337 */
338 if (aIsSNaN) {
339 return 0;
340 } else if (bIsSNaN) {
341 return 1;
342 } else if (aIsQNaN) {
343 return 0;
344 } else {
345 return 1;
346 }
347}
084d19ba
AJ
348#elif defined(TARGET_MIPS)
349static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
350 flag aIsLargerSignificand)
351{
352 /* According to MIPS specifications, if one of the two operands is
353 * a sNaN, a new qNaN has to be generated. This is done in
354 * floatXX_maybe_silence_nan(). For qNaN inputs the specifications
355 * says: "When possible, this QNaN result is one of the operand QNaN
356 * values." In practice it seems that most implementations choose
357 * the first operand if both operands are qNaN. In short this gives
358 * the following rules:
359 * 1. A if it is signaling
360 * 2. B if it is signaling
361 * 3. A (quiet)
362 * 4. B (quiet)
363 * A signaling NaN is always silenced before returning it.
364 */
365 if (aIsSNaN) {
366 return 0;
367 } else if (bIsSNaN) {
368 return 1;
369 } else if (aIsQNaN) {
370 return 0;
371 } else {
372 return 1;
373 }
374}
e024e881
AJ
375#elif defined(TARGET_PPC)
376static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
377 flag aIsLargerSignificand)
378{
379 /* PowerPC propagation rules:
380 * 1. A if it sNaN or qNaN
381 * 2. B if it sNaN or qNaN
382 * A signaling NaN is always silenced before returning it.
383 */
384 if (aIsSNaN || aIsQNaN) {
385 return 0;
386 } else {
387 return 1;
388 }
389}
011da610 390#else
354f211b
PM
391static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
392 flag aIsLargerSignificand)
393{
394 /* This implements x87 NaN propagation rules:
395 * SNaN + QNaN => return the QNaN
396 * two SNaNs => return the one with the larger significand, silenced
397 * two QNaNs => return the one with the larger significand
398 * SNaN and a non-NaN => return the SNaN, silenced
399 * QNaN and a non-NaN => return the QNaN
400 *
401 * If we get down to comparing significands and they are the same,
402 * return the NaN with the positive sign bit (if any).
403 */
404 if (aIsSNaN) {
405 if (bIsSNaN) {
406 return aIsLargerSignificand ? 0 : 1;
407 }
408 return bIsQNaN ? 1 : 0;
409 }
410 else if (aIsQNaN) {
411 if (bIsSNaN || !bIsQNaN)
412 return 0;
413 else {
414 return aIsLargerSignificand ? 0 : 1;
415 }
416 } else {
417 return 1;
418 }
419}
011da610 420#endif
354f211b 421
369be8f6
PM
422/*----------------------------------------------------------------------------
423| Select which NaN to propagate for a three-input operation.
424| For the moment we assume that no CPU needs the 'larger significand'
425| information.
426| Return values : 0 : a; 1 : b; 2 : c; 3 : default-NaN
427*----------------------------------------------------------------------------*/
428#if defined(TARGET_ARM)
429static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
430 flag cIsQNaN, flag cIsSNaN, flag infzero STATUS_PARAM)
431{
432 /* For ARM, the (inf,zero,qnan) case sets InvalidOp and returns
433 * the default NaN
434 */
435 if (infzero && cIsQNaN) {
436 float_raise(float_flag_invalid STATUS_VAR);
437 return 3;
438 }
439
440 /* This looks different from the ARM ARM pseudocode, because the ARM ARM
441 * puts the operands to a fused mac operation (a*b)+c in the order c,a,b.
442 */
443 if (cIsSNaN) {
444 return 2;
445 } else if (aIsSNaN) {
446 return 0;
447 } else if (bIsSNaN) {
448 return 1;
449 } else if (cIsQNaN) {
450 return 2;
451 } else if (aIsQNaN) {
452 return 0;
453 } else {
454 return 1;
455 }
456}
457#elif defined(TARGET_PPC)
458static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
459 flag cIsQNaN, flag cIsSNaN, flag infzero STATUS_PARAM)
460{
461 /* For PPC, the (inf,zero,qnan) case sets InvalidOp, but we prefer
462 * to return an input NaN if we have one (ie c) rather than generating
463 * a default NaN
464 */
465 if (infzero) {
466 float_raise(float_flag_invalid STATUS_VAR);
467 return 2;
468 }
469
470 /* If fRA is a NaN return it; otherwise if fRB is a NaN return it;
471 * otherwise return fRC. Note that muladd on PPC is (fRA * fRC) + frB
472 */
473 if (aIsSNaN || aIsQNaN) {
474 return 0;
475 } else if (cIsSNaN || cIsQNaN) {
476 return 2;
477 } else {
478 return 1;
479 }
480}
481#else
482/* A default implementation: prefer a to b to c.
483 * This is unlikely to actually match any real implementation.
484 */
485static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
486 flag cIsQNaN, flag cIsSNaN, flag infzero STATUS_PARAM)
487{
488 if (aIsSNaN || aIsQNaN) {
489 return 0;
490 } else if (bIsSNaN || bIsQNaN) {
491 return 1;
492 } else {
493 return 2;
494 }
495}
496#endif
497
158142c2
FB
498/*----------------------------------------------------------------------------
499| Takes two single-precision floating-point values `a' and `b', one of which
500| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
501| signaling NaN, the invalid exception is raised.
502*----------------------------------------------------------------------------*/
503
504static float32 propagateFloat32NaN( float32 a, float32 b STATUS_PARAM)
505{
d735d695
AJ
506 flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
507 flag aIsLargerSignificand;
bb98fe42 508 uint32_t av, bv;
158142c2 509
d735d695 510 aIsQuietNaN = float32_is_quiet_nan( a );
158142c2 511 aIsSignalingNaN = float32_is_signaling_nan( a );
d735d695 512 bIsQuietNaN = float32_is_quiet_nan( b );
158142c2 513 bIsSignalingNaN = float32_is_signaling_nan( b );
f090c9d4
PB
514 av = float32_val(a);
515 bv = float32_val(b);
1f398e08 516
158142c2 517 if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR);
354f211b 518
10201602
AJ
519 if ( STATUS(default_nan_mode) )
520 return float32_default_nan;
521
bb98fe42 522 if ((uint32_t)(av<<1) < (uint32_t)(bv<<1)) {
354f211b 523 aIsLargerSignificand = 0;
bb98fe42 524 } else if ((uint32_t)(bv<<1) < (uint32_t)(av<<1)) {
354f211b
PM
525 aIsLargerSignificand = 1;
526 } else {
527 aIsLargerSignificand = (av < bv) ? 1 : 0;
158142c2 528 }
354f211b 529
d735d695 530 if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
354f211b 531 aIsLargerSignificand)) {
1f398e08 532 return float32_maybe_silence_nan(b);
354f211b 533 } else {
1f398e08 534 return float32_maybe_silence_nan(a);
158142c2 535 }
158142c2
FB
536}
537
369be8f6
PM
538/*----------------------------------------------------------------------------
539| Takes three single-precision floating-point values `a', `b' and `c', one of
540| which is a NaN, and returns the appropriate NaN result. If any of `a',
541| `b' or `c' is a signaling NaN, the invalid exception is raised.
542| The input infzero indicates whether a*b was 0*inf or inf*0 (in which case
543| obviously c is a NaN, and whether to propagate c or some other NaN is
544| implementation defined).
545*----------------------------------------------------------------------------*/
546
547static float32 propagateFloat32MulAddNaN(float32 a, float32 b,
548 float32 c, flag infzero STATUS_PARAM)
549{
550 flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
551 cIsQuietNaN, cIsSignalingNaN;
552 int which;
553
554 aIsQuietNaN = float32_is_quiet_nan(a);
555 aIsSignalingNaN = float32_is_signaling_nan(a);
556 bIsQuietNaN = float32_is_quiet_nan(b);
557 bIsSignalingNaN = float32_is_signaling_nan(b);
558 cIsQuietNaN = float32_is_quiet_nan(c);
559 cIsSignalingNaN = float32_is_signaling_nan(c);
560
561 if (aIsSignalingNaN | bIsSignalingNaN | cIsSignalingNaN) {
562 float_raise(float_flag_invalid STATUS_VAR);
563 }
564
565 which = pickNaNMulAdd(aIsQuietNaN, aIsSignalingNaN,
566 bIsQuietNaN, bIsSignalingNaN,
567 cIsQuietNaN, cIsSignalingNaN, infzero STATUS_VAR);
568
569 if (STATUS(default_nan_mode)) {
570 /* Note that this check is after pickNaNMulAdd so that function
571 * has an opportunity to set the Invalid flag.
572 */
573 return float32_default_nan;
574 }
575
576 switch (which) {
577 case 0:
578 return float32_maybe_silence_nan(a);
579 case 1:
580 return float32_maybe_silence_nan(b);
581 case 2:
582 return float32_maybe_silence_nan(c);
583 case 3:
584 default:
585 return float32_default_nan;
586 }
587}
588
158142c2 589/*----------------------------------------------------------------------------
5a6932d5
TS
590| Returns 1 if the double-precision floating-point value `a' is a quiet
591| NaN; otherwise returns 0.
158142c2
FB
592*----------------------------------------------------------------------------*/
593
18569871 594int float64_is_quiet_nan( float64 a_ )
158142c2 595{
bb98fe42 596 uint64_t a = float64_val(a_);
5a6932d5 597#if SNAN_BIT_IS_ONE
b645bb48
TS
598 return
599 ( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
600 && ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
601#else
bb98fe42 602 return ( LIT64( 0xFFF0000000000000 ) <= (uint64_t) ( a<<1 ) );
b645bb48 603#endif
158142c2
FB
604}
605
606/*----------------------------------------------------------------------------
607| Returns 1 if the double-precision floating-point value `a' is a signaling
608| NaN; otherwise returns 0.
609*----------------------------------------------------------------------------*/
610
f090c9d4 611int float64_is_signaling_nan( float64 a_ )
158142c2 612{
bb98fe42 613 uint64_t a = float64_val(a_);
5a6932d5 614#if SNAN_BIT_IS_ONE
bb98fe42 615 return ( LIT64( 0xFFF0000000000000 ) <= (uint64_t) ( a<<1 ) );
b645bb48 616#else
158142c2
FB
617 return
618 ( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
619 && ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
b645bb48 620#endif
158142c2
FB
621}
622
b408dbde
PM
623/*----------------------------------------------------------------------------
624| Returns a quiet NaN if the double-precision floating point value `a' is a
625| signaling NaN; otherwise returns `a'.
626*----------------------------------------------------------------------------*/
627
628float64 float64_maybe_silence_nan( float64 a_ )
629{
630 if (float64_is_signaling_nan(a_)) {
b408dbde 631#if SNAN_BIT_IS_ONE
d2fbca94 632# if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
93ae1c6f
AJ
633 return float64_default_nan;
634# else
635# error Rules for silencing a signaling NaN are target-specific
636# endif
b408dbde 637#else
bb98fe42 638 uint64_t a = float64_val(a_);
b408dbde 639 a |= LIT64( 0x0008000000000000 );
b408dbde 640 return make_float64(a);
93ae1c6f 641#endif
b408dbde
PM
642 }
643 return a_;
644}
645
158142c2
FB
646/*----------------------------------------------------------------------------
647| Returns the result of converting the double-precision floating-point NaN
648| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
649| exception is raised.
650*----------------------------------------------------------------------------*/
651
652static commonNaNT float64ToCommonNaN( float64 a STATUS_PARAM)
653{
654 commonNaNT z;
655
656 if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR);
f090c9d4 657 z.sign = float64_val(a)>>63;
158142c2 658 z.low = 0;
f090c9d4 659 z.high = float64_val(a)<<12;
158142c2 660 return z;
158142c2
FB
661}
662
663/*----------------------------------------------------------------------------
664| Returns the result of converting the canonical NaN `a' to the double-
665| precision floating-point format.
666*----------------------------------------------------------------------------*/
667
bcd4d9af 668static float64 commonNaNToFloat64( commonNaNT a STATUS_PARAM)
158142c2 669{
bb98fe42 670 uint64_t mantissa = a.high>>12;
85016c98 671
bcd4d9af
CL
672 if ( STATUS(default_nan_mode) ) {
673 return float64_default_nan;
674 }
675
85016c98
TS
676 if ( mantissa )
677 return make_float64(
bb98fe42 678 ( ( (uint64_t) a.sign )<<63 )
85016c98
TS
679 | LIT64( 0x7FF0000000000000 )
680 | ( a.high>>12 ));
681 else
682 return float64_default_nan;
158142c2
FB
683}
684
685/*----------------------------------------------------------------------------
686| Takes two double-precision floating-point values `a' and `b', one of which
687| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
688| signaling NaN, the invalid exception is raised.
689*----------------------------------------------------------------------------*/
690
691static float64 propagateFloat64NaN( float64 a, float64 b STATUS_PARAM)
692{
d735d695
AJ
693 flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
694 flag aIsLargerSignificand;
bb98fe42 695 uint64_t av, bv;
158142c2 696
d735d695 697 aIsQuietNaN = float64_is_quiet_nan( a );
158142c2 698 aIsSignalingNaN = float64_is_signaling_nan( a );
d735d695 699 bIsQuietNaN = float64_is_quiet_nan( b );
158142c2 700 bIsSignalingNaN = float64_is_signaling_nan( b );
f090c9d4
PB
701 av = float64_val(a);
702 bv = float64_val(b);
1f398e08 703
158142c2 704 if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR);
354f211b 705
10201602
AJ
706 if ( STATUS(default_nan_mode) )
707 return float64_default_nan;
708
bb98fe42 709 if ((uint64_t)(av<<1) < (uint64_t)(bv<<1)) {
354f211b 710 aIsLargerSignificand = 0;
bb98fe42 711 } else if ((uint64_t)(bv<<1) < (uint64_t)(av<<1)) {
354f211b
PM
712 aIsLargerSignificand = 1;
713 } else {
714 aIsLargerSignificand = (av < bv) ? 1 : 0;
158142c2 715 }
354f211b 716
d735d695 717 if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
354f211b 718 aIsLargerSignificand)) {
1f398e08 719 return float64_maybe_silence_nan(b);
354f211b 720 } else {
1f398e08 721 return float64_maybe_silence_nan(a);
158142c2 722 }
158142c2
FB
723}
724
369be8f6
PM
725/*----------------------------------------------------------------------------
726| Takes three double-precision floating-point values `a', `b' and `c', one of
727| which is a NaN, and returns the appropriate NaN result. If any of `a',
728| `b' or `c' is a signaling NaN, the invalid exception is raised.
729| The input infzero indicates whether a*b was 0*inf or inf*0 (in which case
730| obviously c is a NaN, and whether to propagate c or some other NaN is
731| implementation defined).
732*----------------------------------------------------------------------------*/
733
734static float64 propagateFloat64MulAddNaN(float64 a, float64 b,
735 float64 c, flag infzero STATUS_PARAM)
736{
737 flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
738 cIsQuietNaN, cIsSignalingNaN;
739 int which;
740
741 aIsQuietNaN = float64_is_quiet_nan(a);
742 aIsSignalingNaN = float64_is_signaling_nan(a);
743 bIsQuietNaN = float64_is_quiet_nan(b);
744 bIsSignalingNaN = float64_is_signaling_nan(b);
745 cIsQuietNaN = float64_is_quiet_nan(c);
746 cIsSignalingNaN = float64_is_signaling_nan(c);
747
748 if (aIsSignalingNaN | bIsSignalingNaN | cIsSignalingNaN) {
749 float_raise(float_flag_invalid STATUS_VAR);
750 }
751
752 which = pickNaNMulAdd(aIsQuietNaN, aIsSignalingNaN,
753 bIsQuietNaN, bIsSignalingNaN,
754 cIsQuietNaN, cIsSignalingNaN, infzero STATUS_VAR);
755
756 if (STATUS(default_nan_mode)) {
757 /* Note that this check is after pickNaNMulAdd so that function
758 * has an opportunity to set the Invalid flag.
759 */
760 return float64_default_nan;
761 }
762
763 switch (which) {
764 case 0:
765 return float64_maybe_silence_nan(a);
766 case 1:
767 return float64_maybe_silence_nan(b);
768 case 2:
769 return float64_maybe_silence_nan(c);
770 case 3:
771 default:
772 return float64_default_nan;
773 }
774}
775
158142c2
FB
776/*----------------------------------------------------------------------------
777| Returns 1 if the extended double-precision floating-point value `a' is a
de4af5f7
AJ
778| quiet NaN; otherwise returns 0. This slightly differs from the same
779| function for other types as floatx80 has an explicit bit.
158142c2
FB
780*----------------------------------------------------------------------------*/
781
18569871 782int floatx80_is_quiet_nan( floatx80 a )
158142c2 783{
5a6932d5 784#if SNAN_BIT_IS_ONE
bb98fe42 785 uint64_t aLow;
158142c2 786
5a6932d5
TS
787 aLow = a.low & ~ LIT64( 0x4000000000000000 );
788 return
789 ( ( a.high & 0x7FFF ) == 0x7FFF )
bb98fe42 790 && (uint64_t) ( aLow<<1 )
5a6932d5
TS
791 && ( a.low == aLow );
792#else
de4af5f7 793 return ( ( a.high & 0x7FFF ) == 0x7FFF )
bb98fe42 794 && (LIT64( 0x8000000000000000 ) <= ((uint64_t) ( a.low<<1 )));
5a6932d5 795#endif
158142c2
FB
796}
797
798/*----------------------------------------------------------------------------
799| Returns 1 if the extended double-precision floating-point value `a' is a
de4af5f7
AJ
800| signaling NaN; otherwise returns 0. This slightly differs from the same
801| function for other types as floatx80 has an explicit bit.
158142c2
FB
802*----------------------------------------------------------------------------*/
803
750afe93 804int floatx80_is_signaling_nan( floatx80 a )
158142c2 805{
5a6932d5 806#if SNAN_BIT_IS_ONE
de4af5f7 807 return ( ( a.high & 0x7FFF ) == 0x7FFF )
bb98fe42 808 && (LIT64( 0x8000000000000000 ) <= ((uint64_t) ( a.low<<1 )));
5a6932d5 809#else
bb98fe42 810 uint64_t aLow;
158142c2
FB
811
812 aLow = a.low & ~ LIT64( 0x4000000000000000 );
813 return
814 ( ( a.high & 0x7FFF ) == 0x7FFF )
bb98fe42 815 && (uint64_t) ( aLow<<1 )
158142c2 816 && ( a.low == aLow );
5a6932d5 817#endif
158142c2
FB
818}
819
f6a7d92a
AJ
820/*----------------------------------------------------------------------------
821| Returns a quiet NaN if the extended double-precision floating point value
822| `a' is a signaling NaN; otherwise returns `a'.
823*----------------------------------------------------------------------------*/
824
825floatx80 floatx80_maybe_silence_nan( floatx80 a )
826{
827 if (floatx80_is_signaling_nan(a)) {
828#if SNAN_BIT_IS_ONE
d2fbca94 829# if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
f6a7d92a
AJ
830 a.low = floatx80_default_nan_low;
831 a.high = floatx80_default_nan_high;
832# else
833# error Rules for silencing a signaling NaN are target-specific
834# endif
835#else
836 a.low |= LIT64( 0xC000000000000000 );
837 return a;
838#endif
839 }
840 return a;
841}
842
158142c2
FB
843/*----------------------------------------------------------------------------
844| Returns the result of converting the extended double-precision floating-
845| point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the
846| invalid exception is raised.
847*----------------------------------------------------------------------------*/
848
849static commonNaNT floatx80ToCommonNaN( floatx80 a STATUS_PARAM)
850{
851 commonNaNT z;
852
853 if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR);
e2f42204
AJ
854 if ( a.low >> 63 ) {
855 z.sign = a.high >> 15;
856 z.low = 0;
857 z.high = a.low << 1;
858 } else {
859 z.sign = floatx80_default_nan_high >> 15;
860 z.low = 0;
861 z.high = floatx80_default_nan_low << 1;
862 }
158142c2 863 return z;
158142c2
FB
864}
865
866/*----------------------------------------------------------------------------
867| Returns the result of converting the canonical NaN `a' to the extended
868| double-precision floating-point format.
869*----------------------------------------------------------------------------*/
870
bcd4d9af 871static floatx80 commonNaNToFloatx80( commonNaNT a STATUS_PARAM)
158142c2
FB
872{
873 floatx80 z;
874
bcd4d9af
CL
875 if ( STATUS(default_nan_mode) ) {
876 z.low = floatx80_default_nan_low;
877 z.high = floatx80_default_nan_high;
878 return z;
879 }
880
e2f42204
AJ
881 if (a.high >> 1) {
882 z.low = LIT64( 0x8000000000000000 ) | a.high >> 1;
883 z.high = ( ( (uint16_t) a.sign )<<15 ) | 0x7FFF;
884 } else {
85016c98 885 z.low = floatx80_default_nan_low;
e2f42204
AJ
886 z.high = floatx80_default_nan_high;
887 }
888
158142c2 889 return z;
158142c2
FB
890}
891
892/*----------------------------------------------------------------------------
893| Takes two extended double-precision floating-point values `a' and `b', one
894| of which is a NaN, and returns the appropriate NaN result. If either `a' or
895| `b' is a signaling NaN, the invalid exception is raised.
896*----------------------------------------------------------------------------*/
897
898static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b STATUS_PARAM)
899{
d735d695
AJ
900 flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
901 flag aIsLargerSignificand;
158142c2 902
d735d695 903 aIsQuietNaN = floatx80_is_quiet_nan( a );
158142c2 904 aIsSignalingNaN = floatx80_is_signaling_nan( a );
d735d695 905 bIsQuietNaN = floatx80_is_quiet_nan( b );
158142c2 906 bIsSignalingNaN = floatx80_is_signaling_nan( b );
1f398e08 907
158142c2 908 if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR);
354f211b 909
10201602
AJ
910 if ( STATUS(default_nan_mode) ) {
911 a.low = floatx80_default_nan_low;
912 a.high = floatx80_default_nan_high;
913 return a;
914 }
915
354f211b
PM
916 if (a.low < b.low) {
917 aIsLargerSignificand = 0;
918 } else if (b.low < a.low) {
919 aIsLargerSignificand = 1;
920 } else {
921 aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
158142c2 922 }
354f211b 923
d735d695 924 if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
354f211b 925 aIsLargerSignificand)) {
1f398e08 926 return floatx80_maybe_silence_nan(b);
354f211b 927 } else {
1f398e08 928 return floatx80_maybe_silence_nan(a);
158142c2 929 }
158142c2
FB
930}
931
158142c2 932/*----------------------------------------------------------------------------
5a6932d5
TS
933| Returns 1 if the quadruple-precision floating-point value `a' is a quiet
934| NaN; otherwise returns 0.
158142c2
FB
935*----------------------------------------------------------------------------*/
936
18569871 937int float128_is_quiet_nan( float128 a )
158142c2 938{
5a6932d5
TS
939#if SNAN_BIT_IS_ONE
940 return
941 ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
942 && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
943#else
158142c2 944 return
bb98fe42 945 ( LIT64( 0xFFFE000000000000 ) <= (uint64_t) ( a.high<<1 ) )
158142c2 946 && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
5a6932d5 947#endif
158142c2
FB
948}
949
950/*----------------------------------------------------------------------------
951| Returns 1 if the quadruple-precision floating-point value `a' is a
952| signaling NaN; otherwise returns 0.
953*----------------------------------------------------------------------------*/
954
750afe93 955int float128_is_signaling_nan( float128 a )
158142c2 956{
5a6932d5
TS
957#if SNAN_BIT_IS_ONE
958 return
bb98fe42 959 ( LIT64( 0xFFFE000000000000 ) <= (uint64_t) ( a.high<<1 ) )
5a6932d5
TS
960 && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
961#else
158142c2
FB
962 return
963 ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
964 && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
5a6932d5 965#endif
158142c2
FB
966}
967
f6a7d92a
AJ
968/*----------------------------------------------------------------------------
969| Returns a quiet NaN if the quadruple-precision floating point value `a' is
970| a signaling NaN; otherwise returns `a'.
971*----------------------------------------------------------------------------*/
972
973float128 float128_maybe_silence_nan( float128 a )
974{
975 if (float128_is_signaling_nan(a)) {
976#if SNAN_BIT_IS_ONE
d2fbca94 977# if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
f6a7d92a
AJ
978 a.low = float128_default_nan_low;
979 a.high = float128_default_nan_high;
980# else
981# error Rules for silencing a signaling NaN are target-specific
982# endif
983#else
984 a.high |= LIT64( 0x0000800000000000 );
985 return a;
986#endif
987 }
988 return a;
989}
990
158142c2
FB
991/*----------------------------------------------------------------------------
992| Returns the result of converting the quadruple-precision floating-point NaN
993| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
994| exception is raised.
995*----------------------------------------------------------------------------*/
996
997static commonNaNT float128ToCommonNaN( float128 a STATUS_PARAM)
998{
999 commonNaNT z;
1000
1001 if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR);
1002 z.sign = a.high>>63;
1003 shortShift128Left( a.high, a.low, 16, &z.high, &z.low );
1004 return z;
158142c2
FB
1005}
1006
1007/*----------------------------------------------------------------------------
1008| Returns the result of converting the canonical NaN `a' to the quadruple-
1009| precision floating-point format.
1010*----------------------------------------------------------------------------*/
1011
bcd4d9af 1012static float128 commonNaNToFloat128( commonNaNT a STATUS_PARAM)
158142c2
FB
1013{
1014 float128 z;
1015
bcd4d9af
CL
1016 if ( STATUS(default_nan_mode) ) {
1017 z.low = float128_default_nan_low;
1018 z.high = float128_default_nan_high;
1019 return z;
1020 }
1021
158142c2 1022 shift128Right( a.high, a.low, 16, &z.high, &z.low );
bb98fe42 1023 z.high |= ( ( (uint64_t) a.sign )<<63 ) | LIT64( 0x7FFF000000000000 );
158142c2 1024 return z;
158142c2
FB
1025}
1026
1027/*----------------------------------------------------------------------------
1028| Takes two quadruple-precision floating-point values `a' and `b', one of
1029| which is a NaN, and returns the appropriate NaN result. If either `a' or
1030| `b' is a signaling NaN, the invalid exception is raised.
1031*----------------------------------------------------------------------------*/
1032
1033static float128 propagateFloat128NaN( float128 a, float128 b STATUS_PARAM)
1034{
d735d695
AJ
1035 flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
1036 flag aIsLargerSignificand;
158142c2 1037
d735d695 1038 aIsQuietNaN = float128_is_quiet_nan( a );
158142c2 1039 aIsSignalingNaN = float128_is_signaling_nan( a );
d735d695 1040 bIsQuietNaN = float128_is_quiet_nan( b );
158142c2 1041 bIsSignalingNaN = float128_is_signaling_nan( b );
1f398e08 1042
158142c2 1043 if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR);
354f211b 1044
10201602
AJ
1045 if ( STATUS(default_nan_mode) ) {
1046 a.low = float128_default_nan_low;
1047 a.high = float128_default_nan_high;
1048 return a;
1049 }
1050
354f211b
PM
1051 if (lt128(a.high<<1, a.low, b.high<<1, b.low)) {
1052 aIsLargerSignificand = 0;
1053 } else if (lt128(b.high<<1, b.low, a.high<<1, a.low)) {
1054 aIsLargerSignificand = 1;
1055 } else {
1056 aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
158142c2 1057 }
354f211b 1058
d735d695 1059 if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
354f211b 1060 aIsLargerSignificand)) {
1f398e08 1061 return float128_maybe_silence_nan(b);
354f211b 1062 } else {
1f398e08 1063 return float128_maybe_silence_nan(a);
158142c2 1064 }
158142c2
FB
1065}
1066