]> git.proxmox.com Git - qemu.git/blame - fpu/softfloat.h
qxl: create slots on post_load in vga state
[qemu.git] / fpu / softfloat.h
CommitLineData
8d725fac
AF
1/*
2 * QEMU float support
3 *
4 * Derived from SoftFloat.
5 */
6
158142c2
FB
7/*============================================================================
8
9This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
10Package, Release 2b.
11
12Written by John R. Hauser. This work was made possible in part by the
13International Computer Science Institute, located at Suite 600, 1947 Center
14Street, Berkeley, California 94704. Funding was partially provided by the
15National Science Foundation under grant MIP-9311980. The original version
16of this code was written as part of a project to build a fixed-point vector
17processor in collaboration with the University of California at Berkeley,
18overseen by Profs. Nelson Morgan and John Wawrzynek. More information
19is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
20arithmetic/SoftFloat.html'.
21
22THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
23been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
24RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
25AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
26COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
27EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
28INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
29OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
30
31Derivative works are acceptable, even for commercial purposes, so long as
32(1) the source code for the derivative work includes prominent notice that
33the work is derivative, and (2) the source code includes prominent notice with
34these four paragraphs for those parts of this code that are retained.
35
36=============================================================================*/
37
38#ifndef SOFTFLOAT_H
39#define SOFTFLOAT_H
40
75b5a697 41#if defined(CONFIG_SOLARIS) && defined(CONFIG_NEEDS_LIBSUNMATH)
0475a5ca
TS
42#include <sunmath.h>
43#endif
44
158142c2 45#include <inttypes.h>
789ec7ce 46#include "config-host.h"
158142c2
FB
47
48/*----------------------------------------------------------------------------
49| Each of the following `typedef's defines the most convenient type that holds
50| integers of at least as many bits as specified. For example, `uint8' should
51| be the most convenient type that can hold unsigned integers of as many as
52| 8 bits. The `flag' type must be able to hold either a 0 or 1. For most
53| implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
54| to the same as `int'.
55*----------------------------------------------------------------------------*/
750afe93 56typedef uint8_t flag;
158142c2
FB
57typedef uint8_t uint8;
58typedef int8_t int8;
b29fe3ed 59#ifndef _AIX
158142c2
FB
60typedef int uint16;
61typedef int int16;
b29fe3ed 62#endif
158142c2
FB
63typedef unsigned int uint32;
64typedef signed int int32;
65typedef uint64_t uint64;
66typedef int64_t int64;
67
158142c2
FB
68#define LIT64( a ) a##LL
69#define INLINE static inline
70
158142c2
FB
71#define STATUS_PARAM , float_status *status
72#define STATUS(field) status->field
73#define STATUS_VAR , status
74
1d6bda35
FB
75/*----------------------------------------------------------------------------
76| Software IEC/IEEE floating-point ordering relations
77*----------------------------------------------------------------------------*/
78enum {
79 float_relation_less = -1,
80 float_relation_equal = 0,
81 float_relation_greater = 1,
82 float_relation_unordered = 2
83};
84
158142c2
FB
85/*----------------------------------------------------------------------------
86| Software IEC/IEEE floating-point types.
87*----------------------------------------------------------------------------*/
f090c9d4
PB
88/* Use structures for soft-float types. This prevents accidentally mixing
89 them with native int/float types. A sufficiently clever compiler and
90 sane ABI should be able to see though these structs. However
91 x86/gcc 3.x seems to struggle a bit, so leave them disabled by default. */
92//#define USE_SOFTFLOAT_STRUCT_TYPES
93#ifdef USE_SOFTFLOAT_STRUCT_TYPES
bb4d4bb3
PM
94typedef struct {
95 uint16_t v;
96} float16;
97#define float16_val(x) (((float16)(x)).v)
98#define make_float16(x) __extension__ ({ float16 f16_val = {x}; f16_val; })
d5138cf4 99#define const_float16(x) { x }
f090c9d4
PB
100typedef struct {
101 uint32_t v;
102} float32;
103/* The cast ensures an error if the wrong type is passed. */
104#define float32_val(x) (((float32)(x)).v)
105#define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; })
d5138cf4 106#define const_float32(x) { x }
f090c9d4
PB
107typedef struct {
108 uint64_t v;
109} float64;
110#define float64_val(x) (((float64)(x)).v)
111#define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; })
d5138cf4 112#define const_float64(x) { x }
f090c9d4 113#else
bb4d4bb3 114typedef uint16_t float16;
158142c2
FB
115typedef uint32_t float32;
116typedef uint64_t float64;
bb4d4bb3 117#define float16_val(x) (x)
f090c9d4
PB
118#define float32_val(x) (x)
119#define float64_val(x) (x)
bb4d4bb3 120#define make_float16(x) (x)
f090c9d4
PB
121#define make_float32(x) (x)
122#define make_float64(x) (x)
d5138cf4
PM
123#define const_float16(x) (x)
124#define const_float32(x) (x)
125#define const_float64(x) (x)
f090c9d4 126#endif
158142c2
FB
127typedef struct {
128 uint64_t low;
129 uint16_t high;
130} floatx80;
f3218a8d 131#define make_floatx80(exp, mant) ((floatx80) { mant, exp })
158142c2 132typedef struct {
e2542fe2 133#ifdef HOST_WORDS_BIGENDIAN
158142c2
FB
134 uint64_t high, low;
135#else
136 uint64_t low, high;
137#endif
138} float128;
789ec7ce 139#define make_float128(high_, low_) ((float128) { .high = high_, .low = low_ })
158142c2
FB
140
141/*----------------------------------------------------------------------------
142| Software IEC/IEEE floating-point underflow tininess-detection mode.
143*----------------------------------------------------------------------------*/
144enum {
145 float_tininess_after_rounding = 0,
146 float_tininess_before_rounding = 1
147};
148
149/*----------------------------------------------------------------------------
150| Software IEC/IEEE floating-point rounding mode.
151*----------------------------------------------------------------------------*/
152enum {
153 float_round_nearest_even = 0,
154 float_round_down = 1,
155 float_round_up = 2,
156 float_round_to_zero = 3
157};
158
159/*----------------------------------------------------------------------------
160| Software IEC/IEEE floating-point exception flags.
161*----------------------------------------------------------------------------*/
162enum {
163 float_flag_invalid = 1,
164 float_flag_divbyzero = 4,
165 float_flag_overflow = 8,
166 float_flag_underflow = 16,
37d18660 167 float_flag_inexact = 32,
e6afc87f
PM
168 float_flag_input_denormal = 64,
169 float_flag_output_denormal = 128
158142c2
FB
170};
171
172typedef struct float_status {
173 signed char float_detect_tininess;
174 signed char float_rounding_mode;
175 signed char float_exception_flags;
158142c2 176 signed char floatx80_rounding_precision;
37d18660 177 /* should denormalised results go to zero and set the inexact flag? */
fe76d976 178 flag flush_to_zero;
37d18660
PM
179 /* should denormalised inputs go to zero and set the input_denormal flag? */
180 flag flush_inputs_to_zero;
5c7908ed 181 flag default_nan_mode;
158142c2
FB
182} float_status;
183
184void set_float_rounding_mode(int val STATUS_PARAM);
1d6bda35 185void set_float_exception_flags(int val STATUS_PARAM);
c29aca44
PM
186INLINE void set_float_detect_tininess(int val STATUS_PARAM)
187{
188 STATUS(float_detect_tininess) = val;
189}
fe76d976
PB
190INLINE void set_flush_to_zero(flag val STATUS_PARAM)
191{
192 STATUS(flush_to_zero) = val;
193}
37d18660
PM
194INLINE void set_flush_inputs_to_zero(flag val STATUS_PARAM)
195{
196 STATUS(flush_inputs_to_zero) = val;
197}
5c7908ed
PB
198INLINE void set_default_nan_mode(flag val STATUS_PARAM)
199{
200 STATUS(default_nan_mode) = val;
201}
1d6bda35
FB
202INLINE int get_float_exception_flags(float_status *status)
203{
204 return STATUS(float_exception_flags);
205}
158142c2 206void set_floatx80_rounding_precision(int val STATUS_PARAM);
158142c2
FB
207
208/*----------------------------------------------------------------------------
209| Routine to raise any or all of the software IEC/IEEE floating-point
210| exception flags.
211*----------------------------------------------------------------------------*/
ec530c81 212void float_raise( int8 flags STATUS_PARAM);
158142c2 213
369be8f6
PM
214/*----------------------------------------------------------------------------
215| Options to indicate which negations to perform in float*_muladd()
216| Using these differs from negating an input or output before calling
217| the muladd function in that this means that a NaN doesn't have its
218| sign bit inverted before it is propagated.
219*----------------------------------------------------------------------------*/
220enum {
221 float_muladd_negate_c = 1,
222 float_muladd_negate_product = 2,
223 float_muladd_negate_result = 3,
224};
225
158142c2
FB
226/*----------------------------------------------------------------------------
227| Software IEC/IEEE integer-to-floating-point conversion routines.
228*----------------------------------------------------------------------------*/
87b8cc3c
AF
229float32 int32_to_float32( int32 STATUS_PARAM );
230float64 int32_to_float64( int32 STATUS_PARAM );
9f8d2a09
AF
231float32 uint32_to_float32( uint32 STATUS_PARAM );
232float64 uint32_to_float64( uint32 STATUS_PARAM );
87b8cc3c 233floatx80 int32_to_floatx80( int32 STATUS_PARAM );
87b8cc3c 234float128 int32_to_float128( int32 STATUS_PARAM );
87b8cc3c
AF
235float32 int64_to_float32( int64 STATUS_PARAM );
236float32 uint64_to_float32( uint64 STATUS_PARAM );
237float64 int64_to_float64( int64 STATUS_PARAM );
238float64 uint64_to_float64( uint64 STATUS_PARAM );
87b8cc3c 239floatx80 int64_to_floatx80( int64 STATUS_PARAM );
87b8cc3c 240float128 int64_to_float128( int64 STATUS_PARAM );
158142c2 241
60011498
PB
242/*----------------------------------------------------------------------------
243| Software half-precision conversion routines.
244*----------------------------------------------------------------------------*/
bb4d4bb3
PM
245float16 float32_to_float16( float32, flag STATUS_PARAM );
246float32 float16_to_float32( float16, flag STATUS_PARAM );
247
248/*----------------------------------------------------------------------------
249| Software half-precision operations.
250*----------------------------------------------------------------------------*/
251int float16_is_quiet_nan( float16 );
252int float16_is_signaling_nan( float16 );
253float16 float16_maybe_silence_nan( float16 );
60011498 254
8559666d
CL
255/*----------------------------------------------------------------------------
256| The pattern for a default generated half-precision NaN.
257*----------------------------------------------------------------------------*/
789ec7ce 258extern const float16 float16_default_nan;
8559666d 259
158142c2
FB
260/*----------------------------------------------------------------------------
261| Software IEC/IEEE single-precision conversion routines.
262*----------------------------------------------------------------------------*/
87b8cc3c 263int16 float32_to_int16_round_to_zero( float32 STATUS_PARAM );
38641f8f 264uint16 float32_to_uint16_round_to_zero( float32 STATUS_PARAM );
87b8cc3c
AF
265int32 float32_to_int32( float32 STATUS_PARAM );
266int32 float32_to_int32_round_to_zero( float32 STATUS_PARAM );
267uint32 float32_to_uint32( float32 STATUS_PARAM );
268uint32 float32_to_uint32_round_to_zero( float32 STATUS_PARAM );
269int64 float32_to_int64( float32 STATUS_PARAM );
270int64 float32_to_int64_round_to_zero( float32 STATUS_PARAM );
158142c2 271float64 float32_to_float64( float32 STATUS_PARAM );
158142c2 272floatx80 float32_to_floatx80( float32 STATUS_PARAM );
158142c2 273float128 float32_to_float128( float32 STATUS_PARAM );
158142c2
FB
274
275/*----------------------------------------------------------------------------
276| Software IEC/IEEE single-precision operations.
277*----------------------------------------------------------------------------*/
278float32 float32_round_to_int( float32 STATUS_PARAM );
279float32 float32_add( float32, float32 STATUS_PARAM );
280float32 float32_sub( float32, float32 STATUS_PARAM );
281float32 float32_mul( float32, float32 STATUS_PARAM );
282float32 float32_div( float32, float32 STATUS_PARAM );
283float32 float32_rem( float32, float32 STATUS_PARAM );
369be8f6 284float32 float32_muladd(float32, float32, float32, int STATUS_PARAM);
158142c2 285float32 float32_sqrt( float32 STATUS_PARAM );
8229c991 286float32 float32_exp2( float32 STATUS_PARAM );
374dfc33 287float32 float32_log2( float32 STATUS_PARAM );
b689362d 288int float32_eq( float32, float32 STATUS_PARAM );
750afe93
FB
289int float32_le( float32, float32 STATUS_PARAM );
290int float32_lt( float32, float32 STATUS_PARAM );
67b7861d 291int float32_unordered( float32, float32 STATUS_PARAM );
b689362d 292int float32_eq_quiet( float32, float32 STATUS_PARAM );
750afe93
FB
293int float32_le_quiet( float32, float32 STATUS_PARAM );
294int float32_lt_quiet( float32, float32 STATUS_PARAM );
67b7861d 295int float32_unordered_quiet( float32, float32 STATUS_PARAM );
750afe93
FB
296int float32_compare( float32, float32 STATUS_PARAM );
297int float32_compare_quiet( float32, float32 STATUS_PARAM );
274f1b04
PM
298float32 float32_min(float32, float32 STATUS_PARAM);
299float32 float32_max(float32, float32 STATUS_PARAM);
18569871 300int float32_is_quiet_nan( float32 );
750afe93 301int float32_is_signaling_nan( float32 );
b408dbde 302float32 float32_maybe_silence_nan( float32 );
9ee6e8bb 303float32 float32_scalbn( float32, int STATUS_PARAM );
158142c2 304
1d6bda35
FB
305INLINE float32 float32_abs(float32 a)
306{
37d18660
PM
307 /* Note that abs does *not* handle NaN specially, nor does
308 * it flush denormal inputs to zero.
309 */
f090c9d4 310 return make_float32(float32_val(a) & 0x7fffffff);
1d6bda35
FB
311}
312
313INLINE float32 float32_chs(float32 a)
314{
37d18660
PM
315 /* Note that chs does *not* handle NaN specially, nor does
316 * it flush denormal inputs to zero.
317 */
f090c9d4 318 return make_float32(float32_val(a) ^ 0x80000000);
1d6bda35
FB
319}
320
c52ab6f5
AJ
321INLINE int float32_is_infinity(float32 a)
322{
dadd71a7 323 return (float32_val(a) & 0x7fffffff) == 0x7f800000;
c52ab6f5
AJ
324}
325
326INLINE int float32_is_neg(float32 a)
327{
328 return float32_val(a) >> 31;
329}
330
331INLINE int float32_is_zero(float32 a)
332{
333 return (float32_val(a) & 0x7fffffff) == 0;
334}
335
21d6ebde
PM
336INLINE int float32_is_any_nan(float32 a)
337{
338 return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL);
339}
340
6f3300ad
PM
341INLINE int float32_is_zero_or_denormal(float32 a)
342{
343 return (float32_val(a) & 0x7f800000) == 0;
344}
345
c30fe7df
CL
346INLINE float32 float32_set_sign(float32 a, int sign)
347{
348 return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31));
349}
350
f090c9d4 351#define float32_zero make_float32(0)
196cfc89 352#define float32_one make_float32(0x3f800000)
8229c991 353#define float32_ln2 make_float32(0x3f317218)
c4b4c77a 354#define float32_pi make_float32(0x40490fdb)
c30fe7df
CL
355#define float32_half make_float32(0x3f000000)
356#define float32_infinity make_float32(0x7f800000)
f090c9d4 357
8559666d
CL
358
359/*----------------------------------------------------------------------------
360| The pattern for a default generated single-precision NaN.
361*----------------------------------------------------------------------------*/
789ec7ce 362extern const float32 float32_default_nan;
8559666d 363
158142c2
FB
364/*----------------------------------------------------------------------------
365| Software IEC/IEEE double-precision conversion routines.
366*----------------------------------------------------------------------------*/
87b8cc3c 367int16 float64_to_int16_round_to_zero( float64 STATUS_PARAM );
38641f8f 368uint16 float64_to_uint16_round_to_zero( float64 STATUS_PARAM );
87b8cc3c
AF
369int32 float64_to_int32( float64 STATUS_PARAM );
370int32 float64_to_int32_round_to_zero( float64 STATUS_PARAM );
371uint32 float64_to_uint32( float64 STATUS_PARAM );
372uint32 float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
373int64 float64_to_int64( float64 STATUS_PARAM );
374int64 float64_to_int64_round_to_zero( float64 STATUS_PARAM );
375uint64 float64_to_uint64 (float64 a STATUS_PARAM);
376uint64 float64_to_uint64_round_to_zero (float64 a STATUS_PARAM);
158142c2 377float32 float64_to_float32( float64 STATUS_PARAM );
158142c2 378floatx80 float64_to_floatx80( float64 STATUS_PARAM );
158142c2 379float128 float64_to_float128( float64 STATUS_PARAM );
158142c2
FB
380
381/*----------------------------------------------------------------------------
382| Software IEC/IEEE double-precision operations.
383*----------------------------------------------------------------------------*/
384float64 float64_round_to_int( float64 STATUS_PARAM );
e6e5906b 385float64 float64_trunc_to_int( float64 STATUS_PARAM );
158142c2
FB
386float64 float64_add( float64, float64 STATUS_PARAM );
387float64 float64_sub( float64, float64 STATUS_PARAM );
388float64 float64_mul( float64, float64 STATUS_PARAM );
389float64 float64_div( float64, float64 STATUS_PARAM );
390float64 float64_rem( float64, float64 STATUS_PARAM );
369be8f6 391float64 float64_muladd(float64, float64, float64, int STATUS_PARAM);
158142c2 392float64 float64_sqrt( float64 STATUS_PARAM );
374dfc33 393float64 float64_log2( float64 STATUS_PARAM );
b689362d 394int float64_eq( float64, float64 STATUS_PARAM );
750afe93
FB
395int float64_le( float64, float64 STATUS_PARAM );
396int float64_lt( float64, float64 STATUS_PARAM );
67b7861d 397int float64_unordered( float64, float64 STATUS_PARAM );
b689362d 398int float64_eq_quiet( float64, float64 STATUS_PARAM );
750afe93
FB
399int float64_le_quiet( float64, float64 STATUS_PARAM );
400int float64_lt_quiet( float64, float64 STATUS_PARAM );
67b7861d 401int float64_unordered_quiet( float64, float64 STATUS_PARAM );
750afe93
FB
402int float64_compare( float64, float64 STATUS_PARAM );
403int float64_compare_quiet( float64, float64 STATUS_PARAM );
274f1b04
PM
404float64 float64_min(float64, float64 STATUS_PARAM);
405float64 float64_max(float64, float64 STATUS_PARAM);
18569871 406int float64_is_quiet_nan( float64 a );
750afe93 407int float64_is_signaling_nan( float64 );
b408dbde 408float64 float64_maybe_silence_nan( float64 );
9ee6e8bb 409float64 float64_scalbn( float64, int STATUS_PARAM );
158142c2 410
1d6bda35
FB
411INLINE float64 float64_abs(float64 a)
412{
37d18660
PM
413 /* Note that abs does *not* handle NaN specially, nor does
414 * it flush denormal inputs to zero.
415 */
f090c9d4 416 return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
1d6bda35
FB
417}
418
419INLINE float64 float64_chs(float64 a)
420{
37d18660
PM
421 /* Note that chs does *not* handle NaN specially, nor does
422 * it flush denormal inputs to zero.
423 */
f090c9d4 424 return make_float64(float64_val(a) ^ 0x8000000000000000LL);
1d6bda35
FB
425}
426
c52ab6f5
AJ
427INLINE int float64_is_infinity(float64 a)
428{
429 return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
430}
431
432INLINE int float64_is_neg(float64 a)
433{
434 return float64_val(a) >> 63;
435}
436
437INLINE int float64_is_zero(float64 a)
438{
439 return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
440}
441
21d6ebde
PM
442INLINE int float64_is_any_nan(float64 a)
443{
444 return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL);
445}
446
587eabfa
AJ
447INLINE int float64_is_zero_or_denormal(float64 a)
448{
449 return (float64_val(a) & 0x7ff0000000000000LL) == 0;
450}
451
c30fe7df
CL
452INLINE float64 float64_set_sign(float64 a, int sign)
453{
454 return make_float64((float64_val(a) & 0x7fffffffffffffffULL)
455 | ((int64_t)sign << 63));
456}
457
f090c9d4 458#define float64_zero make_float64(0)
196cfc89 459#define float64_one make_float64(0x3ff0000000000000LL)
8229c991 460#define float64_ln2 make_float64(0x3fe62e42fefa39efLL)
c4b4c77a 461#define float64_pi make_float64(0x400921fb54442d18LL)
c30fe7df
CL
462#define float64_half make_float64(0x3fe0000000000000LL)
463#define float64_infinity make_float64(0x7ff0000000000000LL)
f090c9d4 464
8559666d
CL
465/*----------------------------------------------------------------------------
466| The pattern for a default generated double-precision NaN.
467*----------------------------------------------------------------------------*/
789ec7ce 468extern const float64 float64_default_nan;
8559666d 469
158142c2
FB
470/*----------------------------------------------------------------------------
471| Software IEC/IEEE extended double-precision conversion routines.
472*----------------------------------------------------------------------------*/
87b8cc3c
AF
473int32 floatx80_to_int32( floatx80 STATUS_PARAM );
474int32 floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
475int64 floatx80_to_int64( floatx80 STATUS_PARAM );
476int64 floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM );
158142c2
FB
477float32 floatx80_to_float32( floatx80 STATUS_PARAM );
478float64 floatx80_to_float64( floatx80 STATUS_PARAM );
158142c2 479float128 floatx80_to_float128( floatx80 STATUS_PARAM );
158142c2
FB
480
481/*----------------------------------------------------------------------------
482| Software IEC/IEEE extended double-precision operations.
483*----------------------------------------------------------------------------*/
484floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
485floatx80 floatx80_add( floatx80, floatx80 STATUS_PARAM );
486floatx80 floatx80_sub( floatx80, floatx80 STATUS_PARAM );
487floatx80 floatx80_mul( floatx80, floatx80 STATUS_PARAM );
488floatx80 floatx80_div( floatx80, floatx80 STATUS_PARAM );
489floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
490floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
b689362d 491int floatx80_eq( floatx80, floatx80 STATUS_PARAM );
750afe93
FB
492int floatx80_le( floatx80, floatx80 STATUS_PARAM );
493int floatx80_lt( floatx80, floatx80 STATUS_PARAM );
67b7861d 494int floatx80_unordered( floatx80, floatx80 STATUS_PARAM );
b689362d 495int floatx80_eq_quiet( floatx80, floatx80 STATUS_PARAM );
750afe93
FB
496int floatx80_le_quiet( floatx80, floatx80 STATUS_PARAM );
497int floatx80_lt_quiet( floatx80, floatx80 STATUS_PARAM );
67b7861d 498int floatx80_unordered_quiet( floatx80, floatx80 STATUS_PARAM );
f6714d36
AJ
499int floatx80_compare( floatx80, floatx80 STATUS_PARAM );
500int floatx80_compare_quiet( floatx80, floatx80 STATUS_PARAM );
18569871 501int floatx80_is_quiet_nan( floatx80 );
750afe93 502int floatx80_is_signaling_nan( floatx80 );
f6a7d92a 503floatx80 floatx80_maybe_silence_nan( floatx80 );
9ee6e8bb 504floatx80 floatx80_scalbn( floatx80, int STATUS_PARAM );
158142c2 505
1d6bda35
FB
506INLINE floatx80 floatx80_abs(floatx80 a)
507{
508 a.high &= 0x7fff;
509 return a;
510}
511
512INLINE floatx80 floatx80_chs(floatx80 a)
513{
514 a.high ^= 0x8000;
515 return a;
516}
517
c52ab6f5
AJ
518INLINE int floatx80_is_infinity(floatx80 a)
519{
b76235e4 520 return (a.high & 0x7fff) == 0x7fff && a.low == 0x8000000000000000LL;
c52ab6f5
AJ
521}
522
523INLINE int floatx80_is_neg(floatx80 a)
524{
525 return a.high >> 15;
526}
527
528INLINE int floatx80_is_zero(floatx80 a)
529{
530 return (a.high & 0x7fff) == 0 && a.low == 0;
531}
532
587eabfa
AJ
533INLINE int floatx80_is_zero_or_denormal(floatx80 a)
534{
535 return (a.high & 0x7fff) == 0;
536}
537
2bed652f
PM
538INLINE int floatx80_is_any_nan(floatx80 a)
539{
540 return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1);
541}
542
f3218a8d
AJ
543#define floatx80_zero make_floatx80(0x0000, 0x0000000000000000LL)
544#define floatx80_one make_floatx80(0x3fff, 0x8000000000000000LL)
545#define floatx80_ln2 make_floatx80(0x3ffe, 0xb17217f7d1cf79acLL)
c4b4c77a 546#define floatx80_pi make_floatx80(0x4000, 0xc90fdaa22168c235LL)
f3218a8d
AJ
547#define floatx80_half make_floatx80(0x3ffe, 0x8000000000000000LL)
548#define floatx80_infinity make_floatx80(0x7fff, 0x8000000000000000LL)
549
8559666d 550/*----------------------------------------------------------------------------
789ec7ce 551| The pattern for a default generated extended double-precision NaN.
8559666d 552*----------------------------------------------------------------------------*/
789ec7ce 553extern const floatx80 floatx80_default_nan;
8559666d 554
158142c2
FB
555/*----------------------------------------------------------------------------
556| Software IEC/IEEE quadruple-precision conversion routines.
557*----------------------------------------------------------------------------*/
87b8cc3c
AF
558int32 float128_to_int32( float128 STATUS_PARAM );
559int32 float128_to_int32_round_to_zero( float128 STATUS_PARAM );
560int64 float128_to_int64( float128 STATUS_PARAM );
561int64 float128_to_int64_round_to_zero( float128 STATUS_PARAM );
158142c2
FB
562float32 float128_to_float32( float128 STATUS_PARAM );
563float64 float128_to_float64( float128 STATUS_PARAM );
158142c2 564floatx80 float128_to_floatx80( float128 STATUS_PARAM );
158142c2
FB
565
566/*----------------------------------------------------------------------------
567| Software IEC/IEEE quadruple-precision operations.
568*----------------------------------------------------------------------------*/
569float128 float128_round_to_int( float128 STATUS_PARAM );
570float128 float128_add( float128, float128 STATUS_PARAM );
571float128 float128_sub( float128, float128 STATUS_PARAM );
572float128 float128_mul( float128, float128 STATUS_PARAM );
573float128 float128_div( float128, float128 STATUS_PARAM );
574float128 float128_rem( float128, float128 STATUS_PARAM );
575float128 float128_sqrt( float128 STATUS_PARAM );
b689362d 576int float128_eq( float128, float128 STATUS_PARAM );
750afe93
FB
577int float128_le( float128, float128 STATUS_PARAM );
578int float128_lt( float128, float128 STATUS_PARAM );
67b7861d 579int float128_unordered( float128, float128 STATUS_PARAM );
b689362d 580int float128_eq_quiet( float128, float128 STATUS_PARAM );
750afe93
FB
581int float128_le_quiet( float128, float128 STATUS_PARAM );
582int float128_lt_quiet( float128, float128 STATUS_PARAM );
67b7861d 583int float128_unordered_quiet( float128, float128 STATUS_PARAM );
1f587329
BS
584int float128_compare( float128, float128 STATUS_PARAM );
585int float128_compare_quiet( float128, float128 STATUS_PARAM );
18569871 586int float128_is_quiet_nan( float128 );
750afe93 587int float128_is_signaling_nan( float128 );
f6a7d92a 588float128 float128_maybe_silence_nan( float128 );
9ee6e8bb 589float128 float128_scalbn( float128, int STATUS_PARAM );
158142c2 590
1d6bda35
FB
591INLINE float128 float128_abs(float128 a)
592{
593 a.high &= 0x7fffffffffffffffLL;
594 return a;
595}
596
597INLINE float128 float128_chs(float128 a)
598{
599 a.high ^= 0x8000000000000000LL;
600 return a;
601}
602
c52ab6f5
AJ
603INLINE int float128_is_infinity(float128 a)
604{
605 return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
606}
607
608INLINE int float128_is_neg(float128 a)
609{
610 return a.high >> 63;
611}
612
613INLINE int float128_is_zero(float128 a)
614{
615 return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
616}
617
587eabfa
AJ
618INLINE int float128_is_zero_or_denormal(float128 a)
619{
620 return (a.high & 0x7fff000000000000LL) == 0;
621}
622
2bed652f
PM
623INLINE int float128_is_any_nan(float128 a)
624{
625 return ((a.high >> 48) & 0x7fff) == 0x7fff &&
626 ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0));
627}
628
8559666d 629/*----------------------------------------------------------------------------
789ec7ce 630| The pattern for a default generated quadruple-precision NaN.
8559666d 631*----------------------------------------------------------------------------*/
789ec7ce 632extern const float128 float128_default_nan;
8559666d 633
158142c2 634#endif /* !SOFTFLOAT_H */