]> git.proxmox.com Git - qemu.git/blame - fpu/softfloat.h
Merge remote branch 'mst/for_anthony' into staging
[qemu.git] / fpu / softfloat.h
CommitLineData
158142c2
FB
1/*============================================================================
2
3This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
4Package, Release 2b.
5
6Written by John R. Hauser. This work was made possible in part by the
7International Computer Science Institute, located at Suite 600, 1947 Center
8Street, Berkeley, California 94704. Funding was partially provided by the
9National Science Foundation under grant MIP-9311980. The original version
10of this code was written as part of a project to build a fixed-point vector
11processor in collaboration with the University of California at Berkeley,
12overseen by Profs. Nelson Morgan and John Wawrzynek. More information
13is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
14arithmetic/SoftFloat.html'.
15
16THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
17been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
18RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
19AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
20COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
21EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
22INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
23OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
24
25Derivative works are acceptable, even for commercial purposes, so long as
26(1) the source code for the derivative work includes prominent notice that
27the work is derivative, and (2) the source code includes prominent notice with
28these four paragraphs for those parts of this code that are retained.
29
30=============================================================================*/
31
32#ifndef SOFTFLOAT_H
33#define SOFTFLOAT_H
34
75b5a697 35#if defined(CONFIG_SOLARIS) && defined(CONFIG_NEEDS_LIBSUNMATH)
0475a5ca
TS
36#include <sunmath.h>
37#endif
38
158142c2
FB
39#include <inttypes.h>
40#include "config.h"
41
42/*----------------------------------------------------------------------------
43| Each of the following `typedef's defines the most convenient type that holds
44| integers of at least as many bits as specified. For example, `uint8' should
45| be the most convenient type that can hold unsigned integers of as many as
46| 8 bits. The `flag' type must be able to hold either a 0 or 1. For most
47| implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
48| to the same as `int'.
49*----------------------------------------------------------------------------*/
750afe93 50typedef uint8_t flag;
158142c2
FB
51typedef uint8_t uint8;
52typedef int8_t int8;
b29fe3ed 53#ifndef _AIX
158142c2
FB
54typedef int uint16;
55typedef int int16;
b29fe3ed 56#endif
158142c2
FB
57typedef unsigned int uint32;
58typedef signed int int32;
59typedef uint64_t uint64;
60typedef int64_t int64;
61
62/*----------------------------------------------------------------------------
63| Each of the following `typedef's defines a type that holds integers
64| of _exactly_ the number of bits specified. For instance, for most
65| implementation of C, `bits16' and `sbits16' should be `typedef'ed to
66| `unsigned short int' and `signed short int' (or `short int'), respectively.
67*----------------------------------------------------------------------------*/
68typedef uint8_t bits8;
69typedef int8_t sbits8;
70typedef uint16_t bits16;
71typedef int16_t sbits16;
72typedef uint32_t bits32;
73typedef int32_t sbits32;
74typedef uint64_t bits64;
75typedef int64_t sbits64;
76
77#define LIT64( a ) a##LL
78#define INLINE static inline
79
80/*----------------------------------------------------------------------------
81| The macro `FLOATX80' must be defined to enable the extended double-precision
82| floating-point format `floatx80'. If this macro is not defined, the
83| `floatx80' type will not be defined, and none of the functions that either
84| input or output the `floatx80' type will be defined. The same applies to
85| the `FLOAT128' macro and the quadruple-precision format `float128'.
86*----------------------------------------------------------------------------*/
87#ifdef CONFIG_SOFTFLOAT
88/* bit exact soft float support */
89#define FLOATX80
90#define FLOAT128
91#else
92/* native float support */
71e72a19 93#if (defined(__i386__) || defined(__x86_64__)) && !defined(CONFIG_BSD)
158142c2
FB
94#define FLOATX80
95#endif
96#endif /* !CONFIG_SOFTFLOAT */
97
98#define STATUS_PARAM , float_status *status
99#define STATUS(field) status->field
100#define STATUS_VAR , status
101
1d6bda35
FB
102/*----------------------------------------------------------------------------
103| Software IEC/IEEE floating-point ordering relations
104*----------------------------------------------------------------------------*/
105enum {
106 float_relation_less = -1,
107 float_relation_equal = 0,
108 float_relation_greater = 1,
109 float_relation_unordered = 2
110};
111
158142c2
FB
112#ifdef CONFIG_SOFTFLOAT
113/*----------------------------------------------------------------------------
114| Software IEC/IEEE floating-point types.
115*----------------------------------------------------------------------------*/
f090c9d4
PB
116/* Use structures for soft-float types. This prevents accidentally mixing
117 them with native int/float types. A sufficiently clever compiler and
118 sane ABI should be able to see though these structs. However
119 x86/gcc 3.x seems to struggle a bit, so leave them disabled by default. */
120//#define USE_SOFTFLOAT_STRUCT_TYPES
121#ifdef USE_SOFTFLOAT_STRUCT_TYPES
122typedef struct {
123 uint32_t v;
124} float32;
125/* The cast ensures an error if the wrong type is passed. */
126#define float32_val(x) (((float32)(x)).v)
127#define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; })
128typedef struct {
129 uint64_t v;
130} float64;
131#define float64_val(x) (((float64)(x)).v)
132#define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; })
133#else
158142c2
FB
134typedef uint32_t float32;
135typedef uint64_t float64;
f090c9d4
PB
136#define float32_val(x) (x)
137#define float64_val(x) (x)
138#define make_float32(x) (x)
139#define make_float64(x) (x)
140#endif
158142c2
FB
141#ifdef FLOATX80
142typedef struct {
143 uint64_t low;
144 uint16_t high;
145} floatx80;
146#endif
147#ifdef FLOAT128
148typedef struct {
e2542fe2 149#ifdef HOST_WORDS_BIGENDIAN
158142c2
FB
150 uint64_t high, low;
151#else
152 uint64_t low, high;
153#endif
154} float128;
155#endif
156
157/*----------------------------------------------------------------------------
158| Software IEC/IEEE floating-point underflow tininess-detection mode.
159*----------------------------------------------------------------------------*/
160enum {
161 float_tininess_after_rounding = 0,
162 float_tininess_before_rounding = 1
163};
164
165/*----------------------------------------------------------------------------
166| Software IEC/IEEE floating-point rounding mode.
167*----------------------------------------------------------------------------*/
168enum {
169 float_round_nearest_even = 0,
170 float_round_down = 1,
171 float_round_up = 2,
172 float_round_to_zero = 3
173};
174
175/*----------------------------------------------------------------------------
176| Software IEC/IEEE floating-point exception flags.
177*----------------------------------------------------------------------------*/
178enum {
179 float_flag_invalid = 1,
180 float_flag_divbyzero = 4,
181 float_flag_overflow = 8,
182 float_flag_underflow = 16,
37d18660
PM
183 float_flag_inexact = 32,
184 float_flag_input_denormal = 64
158142c2
FB
185};
186
187typedef struct float_status {
188 signed char float_detect_tininess;
189 signed char float_rounding_mode;
190 signed char float_exception_flags;
191#ifdef FLOATX80
192 signed char floatx80_rounding_precision;
193#endif
37d18660 194 /* should denormalised results go to zero and set the inexact flag? */
fe76d976 195 flag flush_to_zero;
37d18660
PM
196 /* should denormalised inputs go to zero and set the input_denormal flag? */
197 flag flush_inputs_to_zero;
5c7908ed 198 flag default_nan_mode;
158142c2
FB
199} float_status;
200
201void set_float_rounding_mode(int val STATUS_PARAM);
1d6bda35 202void set_float_exception_flags(int val STATUS_PARAM);
fe76d976
PB
203INLINE void set_flush_to_zero(flag val STATUS_PARAM)
204{
205 STATUS(flush_to_zero) = val;
206}
37d18660
PM
207INLINE void set_flush_inputs_to_zero(flag val STATUS_PARAM)
208{
209 STATUS(flush_inputs_to_zero) = val;
210}
5c7908ed
PB
211INLINE void set_default_nan_mode(flag val STATUS_PARAM)
212{
213 STATUS(default_nan_mode) = val;
214}
1d6bda35
FB
215INLINE int get_float_exception_flags(float_status *status)
216{
217 return STATUS(float_exception_flags);
218}
158142c2
FB
219#ifdef FLOATX80
220void set_floatx80_rounding_precision(int val STATUS_PARAM);
221#endif
222
223/*----------------------------------------------------------------------------
224| Routine to raise any or all of the software IEC/IEEE floating-point
225| exception flags.
226*----------------------------------------------------------------------------*/
ec530c81 227void float_raise( int8 flags STATUS_PARAM);
158142c2
FB
228
229/*----------------------------------------------------------------------------
230| Software IEC/IEEE integer-to-floating-point conversion routines.
231*----------------------------------------------------------------------------*/
232float32 int32_to_float32( int STATUS_PARAM );
233float64 int32_to_float64( int STATUS_PARAM );
1d6bda35
FB
234float32 uint32_to_float32( unsigned int STATUS_PARAM );
235float64 uint32_to_float64( unsigned int STATUS_PARAM );
158142c2
FB
236#ifdef FLOATX80
237floatx80 int32_to_floatx80( int STATUS_PARAM );
238#endif
239#ifdef FLOAT128
240float128 int32_to_float128( int STATUS_PARAM );
241#endif
242float32 int64_to_float32( int64_t STATUS_PARAM );
75d62a58 243float32 uint64_to_float32( uint64_t STATUS_PARAM );
158142c2 244float64 int64_to_float64( int64_t STATUS_PARAM );
75d62a58 245float64 uint64_to_float64( uint64_t STATUS_PARAM );
158142c2
FB
246#ifdef FLOATX80
247floatx80 int64_to_floatx80( int64_t STATUS_PARAM );
248#endif
249#ifdef FLOAT128
250float128 int64_to_float128( int64_t STATUS_PARAM );
251#endif
252
60011498
PB
253/*----------------------------------------------------------------------------
254| Software half-precision conversion routines.
255*----------------------------------------------------------------------------*/
256bits16 float32_to_float16( float32, flag STATUS_PARAM );
257float32 float16_to_float32( bits16, flag STATUS_PARAM );
258
158142c2
FB
259/*----------------------------------------------------------------------------
260| Software IEC/IEEE single-precision conversion routines.
261*----------------------------------------------------------------------------*/
cbcef455
PM
262int float32_to_int16_round_to_zero( float32 STATUS_PARAM );
263unsigned int float32_to_uint16_round_to_zero( float32 STATUS_PARAM );
158142c2
FB
264int float32_to_int32( float32 STATUS_PARAM );
265int float32_to_int32_round_to_zero( float32 STATUS_PARAM );
1d6bda35
FB
266unsigned int float32_to_uint32( float32 STATUS_PARAM );
267unsigned int float32_to_uint32_round_to_zero( float32 STATUS_PARAM );
158142c2
FB
268int64_t float32_to_int64( float32 STATUS_PARAM );
269int64_t float32_to_int64_round_to_zero( float32 STATUS_PARAM );
270float64 float32_to_float64( float32 STATUS_PARAM );
271#ifdef FLOATX80
272floatx80 float32_to_floatx80( float32 STATUS_PARAM );
273#endif
274#ifdef FLOAT128
275float128 float32_to_float128( float32 STATUS_PARAM );
276#endif
277
278/*----------------------------------------------------------------------------
279| Software IEC/IEEE single-precision operations.
280*----------------------------------------------------------------------------*/
281float32 float32_round_to_int( float32 STATUS_PARAM );
282float32 float32_add( float32, float32 STATUS_PARAM );
283float32 float32_sub( float32, float32 STATUS_PARAM );
284float32 float32_mul( float32, float32 STATUS_PARAM );
285float32 float32_div( float32, float32 STATUS_PARAM );
286float32 float32_rem( float32, float32 STATUS_PARAM );
287float32 float32_sqrt( float32 STATUS_PARAM );
8229c991 288float32 float32_exp2( float32 STATUS_PARAM );
374dfc33 289float32 float32_log2( float32 STATUS_PARAM );
750afe93
FB
290int float32_eq( float32, float32 STATUS_PARAM );
291int float32_le( float32, float32 STATUS_PARAM );
292int float32_lt( float32, float32 STATUS_PARAM );
293int float32_eq_signaling( float32, float32 STATUS_PARAM );
294int float32_le_quiet( float32, float32 STATUS_PARAM );
295int float32_lt_quiet( float32, float32 STATUS_PARAM );
296int float32_compare( float32, float32 STATUS_PARAM );
297int float32_compare_quiet( float32, float32 STATUS_PARAM );
18569871 298int float32_is_quiet_nan( float32 );
750afe93 299int float32_is_signaling_nan( float32 );
b408dbde 300float32 float32_maybe_silence_nan( float32 );
9ee6e8bb 301float32 float32_scalbn( float32, int STATUS_PARAM );
158142c2 302
1d6bda35
FB
303INLINE float32 float32_abs(float32 a)
304{
37d18660
PM
305 /* Note that abs does *not* handle NaN specially, nor does
306 * it flush denormal inputs to zero.
307 */
f090c9d4 308 return make_float32(float32_val(a) & 0x7fffffff);
1d6bda35
FB
309}
310
311INLINE float32 float32_chs(float32 a)
312{
37d18660
PM
313 /* Note that chs does *not* handle NaN specially, nor does
314 * it flush denormal inputs to zero.
315 */
f090c9d4 316 return make_float32(float32_val(a) ^ 0x80000000);
1d6bda35
FB
317}
318
c52ab6f5
AJ
319INLINE int float32_is_infinity(float32 a)
320{
dadd71a7 321 return (float32_val(a) & 0x7fffffff) == 0x7f800000;
c52ab6f5
AJ
322}
323
324INLINE int float32_is_neg(float32 a)
325{
326 return float32_val(a) >> 31;
327}
328
329INLINE int float32_is_zero(float32 a)
330{
331 return (float32_val(a) & 0x7fffffff) == 0;
332}
333
21d6ebde
PM
334INLINE int float32_is_any_nan(float32 a)
335{
336 return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL);
337}
338
6f3300ad
PM
339INLINE int float32_is_zero_or_denormal(float32 a)
340{
341 return (float32_val(a) & 0x7f800000) == 0;
342}
343
f090c9d4 344#define float32_zero make_float32(0)
196cfc89 345#define float32_one make_float32(0x3f800000)
8229c991 346#define float32_ln2 make_float32(0x3f317218)
f090c9d4 347
158142c2
FB
348/*----------------------------------------------------------------------------
349| Software IEC/IEEE double-precision conversion routines.
350*----------------------------------------------------------------------------*/
cbcef455
PM
351int float64_to_int16_round_to_zero( float64 STATUS_PARAM );
352unsigned int float64_to_uint16_round_to_zero( float64 STATUS_PARAM );
158142c2
FB
353int float64_to_int32( float64 STATUS_PARAM );
354int float64_to_int32_round_to_zero( float64 STATUS_PARAM );
1d6bda35
FB
355unsigned int float64_to_uint32( float64 STATUS_PARAM );
356unsigned int float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
158142c2
FB
357int64_t float64_to_int64( float64 STATUS_PARAM );
358int64_t float64_to_int64_round_to_zero( float64 STATUS_PARAM );
75d62a58
JM
359uint64_t float64_to_uint64 (float64 a STATUS_PARAM);
360uint64_t float64_to_uint64_round_to_zero (float64 a STATUS_PARAM);
158142c2
FB
361float32 float64_to_float32( float64 STATUS_PARAM );
362#ifdef FLOATX80
363floatx80 float64_to_floatx80( float64 STATUS_PARAM );
364#endif
365#ifdef FLOAT128
366float128 float64_to_float128( float64 STATUS_PARAM );
367#endif
368
369/*----------------------------------------------------------------------------
370| Software IEC/IEEE double-precision operations.
371*----------------------------------------------------------------------------*/
372float64 float64_round_to_int( float64 STATUS_PARAM );
e6e5906b 373float64 float64_trunc_to_int( float64 STATUS_PARAM );
158142c2
FB
374float64 float64_add( float64, float64 STATUS_PARAM );
375float64 float64_sub( float64, float64 STATUS_PARAM );
376float64 float64_mul( float64, float64 STATUS_PARAM );
377float64 float64_div( float64, float64 STATUS_PARAM );
378float64 float64_rem( float64, float64 STATUS_PARAM );
379float64 float64_sqrt( float64 STATUS_PARAM );
374dfc33 380float64 float64_log2( float64 STATUS_PARAM );
750afe93
FB
381int float64_eq( float64, float64 STATUS_PARAM );
382int float64_le( float64, float64 STATUS_PARAM );
383int float64_lt( float64, float64 STATUS_PARAM );
384int float64_eq_signaling( float64, float64 STATUS_PARAM );
385int float64_le_quiet( float64, float64 STATUS_PARAM );
386int float64_lt_quiet( float64, float64 STATUS_PARAM );
387int float64_compare( float64, float64 STATUS_PARAM );
388int float64_compare_quiet( float64, float64 STATUS_PARAM );
18569871 389int float64_is_quiet_nan( float64 a );
750afe93 390int float64_is_signaling_nan( float64 );
b408dbde 391float64 float64_maybe_silence_nan( float64 );
9ee6e8bb 392float64 float64_scalbn( float64, int STATUS_PARAM );
158142c2 393
1d6bda35
FB
394INLINE float64 float64_abs(float64 a)
395{
37d18660
PM
396 /* Note that abs does *not* handle NaN specially, nor does
397 * it flush denormal inputs to zero.
398 */
f090c9d4 399 return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
1d6bda35
FB
400}
401
402INLINE float64 float64_chs(float64 a)
403{
37d18660
PM
404 /* Note that chs does *not* handle NaN specially, nor does
405 * it flush denormal inputs to zero.
406 */
f090c9d4 407 return make_float64(float64_val(a) ^ 0x8000000000000000LL);
1d6bda35
FB
408}
409
c52ab6f5
AJ
410INLINE int float64_is_infinity(float64 a)
411{
412 return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
413}
414
415INLINE int float64_is_neg(float64 a)
416{
417 return float64_val(a) >> 63;
418}
419
420INLINE int float64_is_zero(float64 a)
421{
422 return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
423}
424
21d6ebde
PM
425INLINE int float64_is_any_nan(float64 a)
426{
427 return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL);
428}
429
f090c9d4 430#define float64_zero make_float64(0)
196cfc89 431#define float64_one make_float64(0x3ff0000000000000LL)
8229c991 432#define float64_ln2 make_float64(0x3fe62e42fefa39efLL)
f090c9d4 433
158142c2
FB
434#ifdef FLOATX80
435
436/*----------------------------------------------------------------------------
437| Software IEC/IEEE extended double-precision conversion routines.
438*----------------------------------------------------------------------------*/
439int floatx80_to_int32( floatx80 STATUS_PARAM );
440int floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
441int64_t floatx80_to_int64( floatx80 STATUS_PARAM );
442int64_t floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM );
443float32 floatx80_to_float32( floatx80 STATUS_PARAM );
444float64 floatx80_to_float64( floatx80 STATUS_PARAM );
445#ifdef FLOAT128
446float128 floatx80_to_float128( floatx80 STATUS_PARAM );
447#endif
448
449/*----------------------------------------------------------------------------
450| Software IEC/IEEE extended double-precision operations.
451*----------------------------------------------------------------------------*/
452floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
453floatx80 floatx80_add( floatx80, floatx80 STATUS_PARAM );
454floatx80 floatx80_sub( floatx80, floatx80 STATUS_PARAM );
455floatx80 floatx80_mul( floatx80, floatx80 STATUS_PARAM );
456floatx80 floatx80_div( floatx80, floatx80 STATUS_PARAM );
457floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
458floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
750afe93
FB
459int floatx80_eq( floatx80, floatx80 STATUS_PARAM );
460int floatx80_le( floatx80, floatx80 STATUS_PARAM );
461int floatx80_lt( floatx80, floatx80 STATUS_PARAM );
462int floatx80_eq_signaling( floatx80, floatx80 STATUS_PARAM );
463int floatx80_le_quiet( floatx80, floatx80 STATUS_PARAM );
464int floatx80_lt_quiet( floatx80, floatx80 STATUS_PARAM );
18569871 465int floatx80_is_quiet_nan( floatx80 );
750afe93 466int floatx80_is_signaling_nan( floatx80 );
f6a7d92a 467floatx80 floatx80_maybe_silence_nan( floatx80 );
9ee6e8bb 468floatx80 floatx80_scalbn( floatx80, int STATUS_PARAM );
158142c2 469
1d6bda35
FB
470INLINE floatx80 floatx80_abs(floatx80 a)
471{
472 a.high &= 0x7fff;
473 return a;
474}
475
476INLINE floatx80 floatx80_chs(floatx80 a)
477{
478 a.high ^= 0x8000;
479 return a;
480}
481
c52ab6f5
AJ
482INLINE int floatx80_is_infinity(floatx80 a)
483{
484 return (a.high & 0x7fff) == 0x7fff && a.low == 0;
485}
486
487INLINE int floatx80_is_neg(floatx80 a)
488{
489 return a.high >> 15;
490}
491
492INLINE int floatx80_is_zero(floatx80 a)
493{
494 return (a.high & 0x7fff) == 0 && a.low == 0;
495}
496
2bed652f
PM
497INLINE int floatx80_is_any_nan(floatx80 a)
498{
499 return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1);
500}
501
158142c2
FB
502#endif
503
504#ifdef FLOAT128
505
506/*----------------------------------------------------------------------------
507| Software IEC/IEEE quadruple-precision conversion routines.
508*----------------------------------------------------------------------------*/
509int float128_to_int32( float128 STATUS_PARAM );
510int float128_to_int32_round_to_zero( float128 STATUS_PARAM );
511int64_t float128_to_int64( float128 STATUS_PARAM );
512int64_t float128_to_int64_round_to_zero( float128 STATUS_PARAM );
513float32 float128_to_float32( float128 STATUS_PARAM );
514float64 float128_to_float64( float128 STATUS_PARAM );
515#ifdef FLOATX80
516floatx80 float128_to_floatx80( float128 STATUS_PARAM );
517#endif
518
519/*----------------------------------------------------------------------------
520| Software IEC/IEEE quadruple-precision operations.
521*----------------------------------------------------------------------------*/
522float128 float128_round_to_int( float128 STATUS_PARAM );
523float128 float128_add( float128, float128 STATUS_PARAM );
524float128 float128_sub( float128, float128 STATUS_PARAM );
525float128 float128_mul( float128, float128 STATUS_PARAM );
526float128 float128_div( float128, float128 STATUS_PARAM );
527float128 float128_rem( float128, float128 STATUS_PARAM );
528float128 float128_sqrt( float128 STATUS_PARAM );
750afe93
FB
529int float128_eq( float128, float128 STATUS_PARAM );
530int float128_le( float128, float128 STATUS_PARAM );
531int float128_lt( float128, float128 STATUS_PARAM );
532int float128_eq_signaling( float128, float128 STATUS_PARAM );
533int float128_le_quiet( float128, float128 STATUS_PARAM );
534int float128_lt_quiet( float128, float128 STATUS_PARAM );
1f587329
BS
535int float128_compare( float128, float128 STATUS_PARAM );
536int float128_compare_quiet( float128, float128 STATUS_PARAM );
18569871 537int float128_is_quiet_nan( float128 );
750afe93 538int float128_is_signaling_nan( float128 );
f6a7d92a 539float128 float128_maybe_silence_nan( float128 );
9ee6e8bb 540float128 float128_scalbn( float128, int STATUS_PARAM );
158142c2 541
1d6bda35
FB
542INLINE float128 float128_abs(float128 a)
543{
544 a.high &= 0x7fffffffffffffffLL;
545 return a;
546}
547
548INLINE float128 float128_chs(float128 a)
549{
550 a.high ^= 0x8000000000000000LL;
551 return a;
552}
553
c52ab6f5
AJ
554INLINE int float128_is_infinity(float128 a)
555{
556 return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
557}
558
559INLINE int float128_is_neg(float128 a)
560{
561 return a.high >> 63;
562}
563
564INLINE int float128_is_zero(float128 a)
565{
566 return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
567}
568
2bed652f
PM
569INLINE int float128_is_any_nan(float128 a)
570{
571 return ((a.high >> 48) & 0x7fff) == 0x7fff &&
572 ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0));
573}
574
158142c2
FB
575#endif
576
577#else /* CONFIG_SOFTFLOAT */
578
579#include "softfloat-native.h"
580
581#endif /* !CONFIG_SOFTFLOAT */
582
583#endif /* !SOFTFLOAT_H */