]> git.proxmox.com Git - qemu.git/blame - fpu/softfloat.h
usb-linux: use usb_generic_handle_packet()
[qemu.git] / fpu / softfloat.h
CommitLineData
8d725fac
AF
1/*
2 * QEMU float support
3 *
4 * Derived from SoftFloat.
5 */
6
158142c2
FB
7/*============================================================================
8
9This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
10Package, Release 2b.
11
12Written by John R. Hauser. This work was made possible in part by the
13International Computer Science Institute, located at Suite 600, 1947 Center
14Street, Berkeley, California 94704. Funding was partially provided by the
15National Science Foundation under grant MIP-9311980. The original version
16of this code was written as part of a project to build a fixed-point vector
17processor in collaboration with the University of California at Berkeley,
18overseen by Profs. Nelson Morgan and John Wawrzynek. More information
19is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
20arithmetic/SoftFloat.html'.
21
22THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
23been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
24RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
25AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
26COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
27EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
28INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
29OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
30
31Derivative works are acceptable, even for commercial purposes, so long as
32(1) the source code for the derivative work includes prominent notice that
33the work is derivative, and (2) the source code includes prominent notice with
34these four paragraphs for those parts of this code that are retained.
35
36=============================================================================*/
37
38#ifndef SOFTFLOAT_H
39#define SOFTFLOAT_H
40
75b5a697 41#if defined(CONFIG_SOLARIS) && defined(CONFIG_NEEDS_LIBSUNMATH)
0475a5ca
TS
42#include <sunmath.h>
43#endif
44
158142c2
FB
45#include <inttypes.h>
46#include "config.h"
47
48/*----------------------------------------------------------------------------
49| Each of the following `typedef's defines the most convenient type that holds
50| integers of at least as many bits as specified. For example, `uint8' should
51| be the most convenient type that can hold unsigned integers of as many as
52| 8 bits. The `flag' type must be able to hold either a 0 or 1. For most
53| implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
54| to the same as `int'.
55*----------------------------------------------------------------------------*/
750afe93 56typedef uint8_t flag;
158142c2
FB
57typedef uint8_t uint8;
58typedef int8_t int8;
b29fe3ed 59#ifndef _AIX
158142c2
FB
60typedef int uint16;
61typedef int int16;
b29fe3ed 62#endif
158142c2
FB
63typedef unsigned int uint32;
64typedef signed int int32;
65typedef uint64_t uint64;
66typedef int64_t int64;
67
158142c2
FB
68#define LIT64( a ) a##LL
69#define INLINE static inline
70
d2fbca94 71#if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
8559666d
CL
72#define SNAN_BIT_IS_ONE 1
73#else
74#define SNAN_BIT_IS_ONE 0
75#endif
76
158142c2
FB
77/*----------------------------------------------------------------------------
78| The macro `FLOATX80' must be defined to enable the extended double-precision
79| floating-point format `floatx80'. If this macro is not defined, the
80| `floatx80' type will not be defined, and none of the functions that either
81| input or output the `floatx80' type will be defined. The same applies to
82| the `FLOAT128' macro and the quadruple-precision format `float128'.
83*----------------------------------------------------------------------------*/
84#ifdef CONFIG_SOFTFLOAT
85/* bit exact soft float support */
86#define FLOATX80
87#define FLOAT128
88#else
89/* native float support */
71e72a19 90#if (defined(__i386__) || defined(__x86_64__)) && !defined(CONFIG_BSD)
158142c2
FB
91#define FLOATX80
92#endif
93#endif /* !CONFIG_SOFTFLOAT */
94
95#define STATUS_PARAM , float_status *status
96#define STATUS(field) status->field
97#define STATUS_VAR , status
98
1d6bda35
FB
99/*----------------------------------------------------------------------------
100| Software IEC/IEEE floating-point ordering relations
101*----------------------------------------------------------------------------*/
102enum {
103 float_relation_less = -1,
104 float_relation_equal = 0,
105 float_relation_greater = 1,
106 float_relation_unordered = 2
107};
108
158142c2
FB
109#ifdef CONFIG_SOFTFLOAT
110/*----------------------------------------------------------------------------
111| Software IEC/IEEE floating-point types.
112*----------------------------------------------------------------------------*/
f090c9d4
PB
113/* Use structures for soft-float types. This prevents accidentally mixing
114 them with native int/float types. A sufficiently clever compiler and
115 sane ABI should be able to see though these structs. However
116 x86/gcc 3.x seems to struggle a bit, so leave them disabled by default. */
117//#define USE_SOFTFLOAT_STRUCT_TYPES
118#ifdef USE_SOFTFLOAT_STRUCT_TYPES
bb4d4bb3
PM
119typedef struct {
120 uint16_t v;
121} float16;
122#define float16_val(x) (((float16)(x)).v)
123#define make_float16(x) __extension__ ({ float16 f16_val = {x}; f16_val; })
d5138cf4 124#define const_float16(x) { x }
f090c9d4
PB
125typedef struct {
126 uint32_t v;
127} float32;
128/* The cast ensures an error if the wrong type is passed. */
129#define float32_val(x) (((float32)(x)).v)
130#define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; })
d5138cf4 131#define const_float32(x) { x }
f090c9d4
PB
132typedef struct {
133 uint64_t v;
134} float64;
135#define float64_val(x) (((float64)(x)).v)
136#define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; })
d5138cf4 137#define const_float64(x) { x }
f090c9d4 138#else
bb4d4bb3 139typedef uint16_t float16;
158142c2
FB
140typedef uint32_t float32;
141typedef uint64_t float64;
bb4d4bb3 142#define float16_val(x) (x)
f090c9d4
PB
143#define float32_val(x) (x)
144#define float64_val(x) (x)
bb4d4bb3 145#define make_float16(x) (x)
f090c9d4
PB
146#define make_float32(x) (x)
147#define make_float64(x) (x)
d5138cf4
PM
148#define const_float16(x) (x)
149#define const_float32(x) (x)
150#define const_float64(x) (x)
f090c9d4 151#endif
158142c2
FB
152#ifdef FLOATX80
153typedef struct {
154 uint64_t low;
155 uint16_t high;
156} floatx80;
f3218a8d 157#define make_floatx80(exp, mant) ((floatx80) { mant, exp })
158142c2
FB
158#endif
159#ifdef FLOAT128
160typedef struct {
e2542fe2 161#ifdef HOST_WORDS_BIGENDIAN
158142c2
FB
162 uint64_t high, low;
163#else
164 uint64_t low, high;
165#endif
166} float128;
167#endif
168
169/*----------------------------------------------------------------------------
170| Software IEC/IEEE floating-point underflow tininess-detection mode.
171*----------------------------------------------------------------------------*/
172enum {
173 float_tininess_after_rounding = 0,
174 float_tininess_before_rounding = 1
175};
176
177/*----------------------------------------------------------------------------
178| Software IEC/IEEE floating-point rounding mode.
179*----------------------------------------------------------------------------*/
180enum {
181 float_round_nearest_even = 0,
182 float_round_down = 1,
183 float_round_up = 2,
184 float_round_to_zero = 3
185};
186
187/*----------------------------------------------------------------------------
188| Software IEC/IEEE floating-point exception flags.
189*----------------------------------------------------------------------------*/
190enum {
191 float_flag_invalid = 1,
192 float_flag_divbyzero = 4,
193 float_flag_overflow = 8,
194 float_flag_underflow = 16,
37d18660 195 float_flag_inexact = 32,
e6afc87f
PM
196 float_flag_input_denormal = 64,
197 float_flag_output_denormal = 128
158142c2
FB
198};
199
200typedef struct float_status {
201 signed char float_detect_tininess;
202 signed char float_rounding_mode;
203 signed char float_exception_flags;
204#ifdef FLOATX80
205 signed char floatx80_rounding_precision;
206#endif
37d18660 207 /* should denormalised results go to zero and set the inexact flag? */
fe76d976 208 flag flush_to_zero;
37d18660
PM
209 /* should denormalised inputs go to zero and set the input_denormal flag? */
210 flag flush_inputs_to_zero;
5c7908ed 211 flag default_nan_mode;
158142c2
FB
212} float_status;
213
214void set_float_rounding_mode(int val STATUS_PARAM);
1d6bda35 215void set_float_exception_flags(int val STATUS_PARAM);
c29aca44
PM
216INLINE void set_float_detect_tininess(int val STATUS_PARAM)
217{
218 STATUS(float_detect_tininess) = val;
219}
fe76d976
PB
220INLINE void set_flush_to_zero(flag val STATUS_PARAM)
221{
222 STATUS(flush_to_zero) = val;
223}
37d18660
PM
224INLINE void set_flush_inputs_to_zero(flag val STATUS_PARAM)
225{
226 STATUS(flush_inputs_to_zero) = val;
227}
5c7908ed
PB
228INLINE void set_default_nan_mode(flag val STATUS_PARAM)
229{
230 STATUS(default_nan_mode) = val;
231}
1d6bda35
FB
232INLINE int get_float_exception_flags(float_status *status)
233{
234 return STATUS(float_exception_flags);
235}
158142c2
FB
236#ifdef FLOATX80
237void set_floatx80_rounding_precision(int val STATUS_PARAM);
238#endif
239
240/*----------------------------------------------------------------------------
241| Routine to raise any or all of the software IEC/IEEE floating-point
242| exception flags.
243*----------------------------------------------------------------------------*/
ec530c81 244void float_raise( int8 flags STATUS_PARAM);
158142c2
FB
245
246/*----------------------------------------------------------------------------
247| Software IEC/IEEE integer-to-floating-point conversion routines.
248*----------------------------------------------------------------------------*/
87b8cc3c
AF
249float32 int32_to_float32( int32 STATUS_PARAM );
250float64 int32_to_float64( int32 STATUS_PARAM );
1d6bda35
FB
251float32 uint32_to_float32( unsigned int STATUS_PARAM );
252float64 uint32_to_float64( unsigned int STATUS_PARAM );
158142c2 253#ifdef FLOATX80
87b8cc3c 254floatx80 int32_to_floatx80( int32 STATUS_PARAM );
158142c2
FB
255#endif
256#ifdef FLOAT128
87b8cc3c 257float128 int32_to_float128( int32 STATUS_PARAM );
158142c2 258#endif
87b8cc3c
AF
259float32 int64_to_float32( int64 STATUS_PARAM );
260float32 uint64_to_float32( uint64 STATUS_PARAM );
261float64 int64_to_float64( int64 STATUS_PARAM );
262float64 uint64_to_float64( uint64 STATUS_PARAM );
158142c2 263#ifdef FLOATX80
87b8cc3c 264floatx80 int64_to_floatx80( int64 STATUS_PARAM );
158142c2
FB
265#endif
266#ifdef FLOAT128
87b8cc3c 267float128 int64_to_float128( int64 STATUS_PARAM );
158142c2
FB
268#endif
269
60011498
PB
270/*----------------------------------------------------------------------------
271| Software half-precision conversion routines.
272*----------------------------------------------------------------------------*/
bb4d4bb3
PM
273float16 float32_to_float16( float32, flag STATUS_PARAM );
274float32 float16_to_float32( float16, flag STATUS_PARAM );
275
276/*----------------------------------------------------------------------------
277| Software half-precision operations.
278*----------------------------------------------------------------------------*/
279int float16_is_quiet_nan( float16 );
280int float16_is_signaling_nan( float16 );
281float16 float16_maybe_silence_nan( float16 );
60011498 282
8559666d
CL
283/*----------------------------------------------------------------------------
284| The pattern for a default generated half-precision NaN.
285*----------------------------------------------------------------------------*/
286#if defined(TARGET_ARM)
287#define float16_default_nan make_float16(0x7E00)
288#elif SNAN_BIT_IS_ONE
289#define float16_default_nan make_float16(0x7DFF)
290#else
291#define float16_default_nan make_float16(0xFE00)
292#endif
293
158142c2
FB
294/*----------------------------------------------------------------------------
295| Software IEC/IEEE single-precision conversion routines.
296*----------------------------------------------------------------------------*/
87b8cc3c 297int16 float32_to_int16_round_to_zero( float32 STATUS_PARAM );
cbcef455 298unsigned int float32_to_uint16_round_to_zero( float32 STATUS_PARAM );
87b8cc3c
AF
299int32 float32_to_int32( float32 STATUS_PARAM );
300int32 float32_to_int32_round_to_zero( float32 STATUS_PARAM );
301uint32 float32_to_uint32( float32 STATUS_PARAM );
302uint32 float32_to_uint32_round_to_zero( float32 STATUS_PARAM );
303int64 float32_to_int64( float32 STATUS_PARAM );
304int64 float32_to_int64_round_to_zero( float32 STATUS_PARAM );
158142c2
FB
305float64 float32_to_float64( float32 STATUS_PARAM );
306#ifdef FLOATX80
307floatx80 float32_to_floatx80( float32 STATUS_PARAM );
308#endif
309#ifdef FLOAT128
310float128 float32_to_float128( float32 STATUS_PARAM );
311#endif
312
313/*----------------------------------------------------------------------------
314| Software IEC/IEEE single-precision operations.
315*----------------------------------------------------------------------------*/
316float32 float32_round_to_int( float32 STATUS_PARAM );
317float32 float32_add( float32, float32 STATUS_PARAM );
318float32 float32_sub( float32, float32 STATUS_PARAM );
319float32 float32_mul( float32, float32 STATUS_PARAM );
320float32 float32_div( float32, float32 STATUS_PARAM );
321float32 float32_rem( float32, float32 STATUS_PARAM );
322float32 float32_sqrt( float32 STATUS_PARAM );
8229c991 323float32 float32_exp2( float32 STATUS_PARAM );
374dfc33 324float32 float32_log2( float32 STATUS_PARAM );
b689362d 325int float32_eq( float32, float32 STATUS_PARAM );
750afe93
FB
326int float32_le( float32, float32 STATUS_PARAM );
327int float32_lt( float32, float32 STATUS_PARAM );
67b7861d 328int float32_unordered( float32, float32 STATUS_PARAM );
b689362d 329int float32_eq_quiet( float32, float32 STATUS_PARAM );
750afe93
FB
330int float32_le_quiet( float32, float32 STATUS_PARAM );
331int float32_lt_quiet( float32, float32 STATUS_PARAM );
67b7861d 332int float32_unordered_quiet( float32, float32 STATUS_PARAM );
750afe93
FB
333int float32_compare( float32, float32 STATUS_PARAM );
334int float32_compare_quiet( float32, float32 STATUS_PARAM );
274f1b04
PM
335float32 float32_min(float32, float32 STATUS_PARAM);
336float32 float32_max(float32, float32 STATUS_PARAM);
18569871 337int float32_is_quiet_nan( float32 );
750afe93 338int float32_is_signaling_nan( float32 );
b408dbde 339float32 float32_maybe_silence_nan( float32 );
9ee6e8bb 340float32 float32_scalbn( float32, int STATUS_PARAM );
158142c2 341
1d6bda35
FB
342INLINE float32 float32_abs(float32 a)
343{
37d18660
PM
344 /* Note that abs does *not* handle NaN specially, nor does
345 * it flush denormal inputs to zero.
346 */
f090c9d4 347 return make_float32(float32_val(a) & 0x7fffffff);
1d6bda35
FB
348}
349
350INLINE float32 float32_chs(float32 a)
351{
37d18660
PM
352 /* Note that chs does *not* handle NaN specially, nor does
353 * it flush denormal inputs to zero.
354 */
f090c9d4 355 return make_float32(float32_val(a) ^ 0x80000000);
1d6bda35
FB
356}
357
c52ab6f5
AJ
358INLINE int float32_is_infinity(float32 a)
359{
dadd71a7 360 return (float32_val(a) & 0x7fffffff) == 0x7f800000;
c52ab6f5
AJ
361}
362
363INLINE int float32_is_neg(float32 a)
364{
365 return float32_val(a) >> 31;
366}
367
368INLINE int float32_is_zero(float32 a)
369{
370 return (float32_val(a) & 0x7fffffff) == 0;
371}
372
21d6ebde
PM
373INLINE int float32_is_any_nan(float32 a)
374{
375 return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL);
376}
377
6f3300ad
PM
378INLINE int float32_is_zero_or_denormal(float32 a)
379{
380 return (float32_val(a) & 0x7f800000) == 0;
381}
382
c30fe7df
CL
383INLINE float32 float32_set_sign(float32 a, int sign)
384{
385 return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31));
386}
387
f090c9d4 388#define float32_zero make_float32(0)
196cfc89 389#define float32_one make_float32(0x3f800000)
8229c991 390#define float32_ln2 make_float32(0x3f317218)
c4b4c77a 391#define float32_pi make_float32(0x40490fdb)
c30fe7df
CL
392#define float32_half make_float32(0x3f000000)
393#define float32_infinity make_float32(0x7f800000)
f090c9d4 394
8559666d
CL
395
396/*----------------------------------------------------------------------------
397| The pattern for a default generated single-precision NaN.
398*----------------------------------------------------------------------------*/
399#if defined(TARGET_SPARC)
400#define float32_default_nan make_float32(0x7FFFFFFF)
401#elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA)
402#define float32_default_nan make_float32(0x7FC00000)
403#elif SNAN_BIT_IS_ONE
404#define float32_default_nan make_float32(0x7FBFFFFF)
405#else
406#define float32_default_nan make_float32(0xFFC00000)
407#endif
408
158142c2
FB
409/*----------------------------------------------------------------------------
410| Software IEC/IEEE double-precision conversion routines.
411*----------------------------------------------------------------------------*/
87b8cc3c 412int16 float64_to_int16_round_to_zero( float64 STATUS_PARAM );
cbcef455 413unsigned int float64_to_uint16_round_to_zero( float64 STATUS_PARAM );
87b8cc3c
AF
414int32 float64_to_int32( float64 STATUS_PARAM );
415int32 float64_to_int32_round_to_zero( float64 STATUS_PARAM );
416uint32 float64_to_uint32( float64 STATUS_PARAM );
417uint32 float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
418int64 float64_to_int64( float64 STATUS_PARAM );
419int64 float64_to_int64_round_to_zero( float64 STATUS_PARAM );
420uint64 float64_to_uint64 (float64 a STATUS_PARAM);
421uint64 float64_to_uint64_round_to_zero (float64 a STATUS_PARAM);
158142c2
FB
422float32 float64_to_float32( float64 STATUS_PARAM );
423#ifdef FLOATX80
424floatx80 float64_to_floatx80( float64 STATUS_PARAM );
425#endif
426#ifdef FLOAT128
427float128 float64_to_float128( float64 STATUS_PARAM );
428#endif
429
430/*----------------------------------------------------------------------------
431| Software IEC/IEEE double-precision operations.
432*----------------------------------------------------------------------------*/
433float64 float64_round_to_int( float64 STATUS_PARAM );
e6e5906b 434float64 float64_trunc_to_int( float64 STATUS_PARAM );
158142c2
FB
435float64 float64_add( float64, float64 STATUS_PARAM );
436float64 float64_sub( float64, float64 STATUS_PARAM );
437float64 float64_mul( float64, float64 STATUS_PARAM );
438float64 float64_div( float64, float64 STATUS_PARAM );
439float64 float64_rem( float64, float64 STATUS_PARAM );
440float64 float64_sqrt( float64 STATUS_PARAM );
374dfc33 441float64 float64_log2( float64 STATUS_PARAM );
b689362d 442int float64_eq( float64, float64 STATUS_PARAM );
750afe93
FB
443int float64_le( float64, float64 STATUS_PARAM );
444int float64_lt( float64, float64 STATUS_PARAM );
67b7861d 445int float64_unordered( float64, float64 STATUS_PARAM );
b689362d 446int float64_eq_quiet( float64, float64 STATUS_PARAM );
750afe93
FB
447int float64_le_quiet( float64, float64 STATUS_PARAM );
448int float64_lt_quiet( float64, float64 STATUS_PARAM );
67b7861d 449int float64_unordered_quiet( float64, float64 STATUS_PARAM );
750afe93
FB
450int float64_compare( float64, float64 STATUS_PARAM );
451int float64_compare_quiet( float64, float64 STATUS_PARAM );
274f1b04
PM
452float64 float64_min(float64, float64 STATUS_PARAM);
453float64 float64_max(float64, float64 STATUS_PARAM);
18569871 454int float64_is_quiet_nan( float64 a );
750afe93 455int float64_is_signaling_nan( float64 );
b408dbde 456float64 float64_maybe_silence_nan( float64 );
9ee6e8bb 457float64 float64_scalbn( float64, int STATUS_PARAM );
158142c2 458
1d6bda35
FB
459INLINE float64 float64_abs(float64 a)
460{
37d18660
PM
461 /* Note that abs does *not* handle NaN specially, nor does
462 * it flush denormal inputs to zero.
463 */
f090c9d4 464 return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
1d6bda35
FB
465}
466
467INLINE float64 float64_chs(float64 a)
468{
37d18660
PM
469 /* Note that chs does *not* handle NaN specially, nor does
470 * it flush denormal inputs to zero.
471 */
f090c9d4 472 return make_float64(float64_val(a) ^ 0x8000000000000000LL);
1d6bda35
FB
473}
474
c52ab6f5
AJ
475INLINE int float64_is_infinity(float64 a)
476{
477 return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
478}
479
480INLINE int float64_is_neg(float64 a)
481{
482 return float64_val(a) >> 63;
483}
484
485INLINE int float64_is_zero(float64 a)
486{
487 return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
488}
489
21d6ebde
PM
490INLINE int float64_is_any_nan(float64 a)
491{
492 return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL);
493}
494
c30fe7df
CL
495INLINE float64 float64_set_sign(float64 a, int sign)
496{
497 return make_float64((float64_val(a) & 0x7fffffffffffffffULL)
498 | ((int64_t)sign << 63));
499}
500
f090c9d4 501#define float64_zero make_float64(0)
196cfc89 502#define float64_one make_float64(0x3ff0000000000000LL)
8229c991 503#define float64_ln2 make_float64(0x3fe62e42fefa39efLL)
c4b4c77a 504#define float64_pi make_float64(0x400921fb54442d18LL)
c30fe7df
CL
505#define float64_half make_float64(0x3fe0000000000000LL)
506#define float64_infinity make_float64(0x7ff0000000000000LL)
f090c9d4 507
8559666d
CL
508/*----------------------------------------------------------------------------
509| The pattern for a default generated double-precision NaN.
510*----------------------------------------------------------------------------*/
511#if defined(TARGET_SPARC)
512#define float64_default_nan make_float64(LIT64( 0x7FFFFFFFFFFFFFFF ))
513#elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA)
514#define float64_default_nan make_float64(LIT64( 0x7FF8000000000000 ))
515#elif SNAN_BIT_IS_ONE
516#define float64_default_nan make_float64(LIT64( 0x7FF7FFFFFFFFFFFF ))
517#else
518#define float64_default_nan make_float64(LIT64( 0xFFF8000000000000 ))
519#endif
520
158142c2
FB
521#ifdef FLOATX80
522
523/*----------------------------------------------------------------------------
524| Software IEC/IEEE extended double-precision conversion routines.
525*----------------------------------------------------------------------------*/
87b8cc3c
AF
526int32 floatx80_to_int32( floatx80 STATUS_PARAM );
527int32 floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
528int64 floatx80_to_int64( floatx80 STATUS_PARAM );
529int64 floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM );
158142c2
FB
530float32 floatx80_to_float32( floatx80 STATUS_PARAM );
531float64 floatx80_to_float64( floatx80 STATUS_PARAM );
532#ifdef FLOAT128
533float128 floatx80_to_float128( floatx80 STATUS_PARAM );
534#endif
535
536/*----------------------------------------------------------------------------
537| Software IEC/IEEE extended double-precision operations.
538*----------------------------------------------------------------------------*/
539floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
540floatx80 floatx80_add( floatx80, floatx80 STATUS_PARAM );
541floatx80 floatx80_sub( floatx80, floatx80 STATUS_PARAM );
542floatx80 floatx80_mul( floatx80, floatx80 STATUS_PARAM );
543floatx80 floatx80_div( floatx80, floatx80 STATUS_PARAM );
544floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
545floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
b689362d 546int floatx80_eq( floatx80, floatx80 STATUS_PARAM );
750afe93
FB
547int floatx80_le( floatx80, floatx80 STATUS_PARAM );
548int floatx80_lt( floatx80, floatx80 STATUS_PARAM );
67b7861d 549int floatx80_unordered( floatx80, floatx80 STATUS_PARAM );
b689362d 550int floatx80_eq_quiet( floatx80, floatx80 STATUS_PARAM );
750afe93
FB
551int floatx80_le_quiet( floatx80, floatx80 STATUS_PARAM );
552int floatx80_lt_quiet( floatx80, floatx80 STATUS_PARAM );
67b7861d 553int floatx80_unordered_quiet( floatx80, floatx80 STATUS_PARAM );
f6714d36
AJ
554int floatx80_compare( floatx80, floatx80 STATUS_PARAM );
555int floatx80_compare_quiet( floatx80, floatx80 STATUS_PARAM );
18569871 556int floatx80_is_quiet_nan( floatx80 );
750afe93 557int floatx80_is_signaling_nan( floatx80 );
f6a7d92a 558floatx80 floatx80_maybe_silence_nan( floatx80 );
9ee6e8bb 559floatx80 floatx80_scalbn( floatx80, int STATUS_PARAM );
158142c2 560
1d6bda35
FB
561INLINE floatx80 floatx80_abs(floatx80 a)
562{
563 a.high &= 0x7fff;
564 return a;
565}
566
567INLINE floatx80 floatx80_chs(floatx80 a)
568{
569 a.high ^= 0x8000;
570 return a;
571}
572
c52ab6f5
AJ
573INLINE int floatx80_is_infinity(floatx80 a)
574{
b76235e4 575 return (a.high & 0x7fff) == 0x7fff && a.low == 0x8000000000000000LL;
c52ab6f5
AJ
576}
577
578INLINE int floatx80_is_neg(floatx80 a)
579{
580 return a.high >> 15;
581}
582
583INLINE int floatx80_is_zero(floatx80 a)
584{
585 return (a.high & 0x7fff) == 0 && a.low == 0;
586}
587
2bed652f
PM
588INLINE int floatx80_is_any_nan(floatx80 a)
589{
590 return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1);
591}
592
f3218a8d
AJ
593#define floatx80_zero make_floatx80(0x0000, 0x0000000000000000LL)
594#define floatx80_one make_floatx80(0x3fff, 0x8000000000000000LL)
595#define floatx80_ln2 make_floatx80(0x3ffe, 0xb17217f7d1cf79acLL)
c4b4c77a 596#define floatx80_pi make_floatx80(0x4000, 0xc90fdaa22168c235LL)
f3218a8d
AJ
597#define floatx80_half make_floatx80(0x3ffe, 0x8000000000000000LL)
598#define floatx80_infinity make_floatx80(0x7fff, 0x8000000000000000LL)
599
8559666d
CL
600/*----------------------------------------------------------------------------
601| The pattern for a default generated extended double-precision NaN. The
602| `high' and `low' values hold the most- and least-significant bits,
603| respectively.
604*----------------------------------------------------------------------------*/
605#if SNAN_BIT_IS_ONE
606#define floatx80_default_nan_high 0x7FFF
607#define floatx80_default_nan_low LIT64( 0xBFFFFFFFFFFFFFFF )
608#else
609#define floatx80_default_nan_high 0xFFFF
610#define floatx80_default_nan_low LIT64( 0xC000000000000000 )
611#endif
612
158142c2
FB
613#endif
614
615#ifdef FLOAT128
616
617/*----------------------------------------------------------------------------
618| Software IEC/IEEE quadruple-precision conversion routines.
619*----------------------------------------------------------------------------*/
87b8cc3c
AF
620int32 float128_to_int32( float128 STATUS_PARAM );
621int32 float128_to_int32_round_to_zero( float128 STATUS_PARAM );
622int64 float128_to_int64( float128 STATUS_PARAM );
623int64 float128_to_int64_round_to_zero( float128 STATUS_PARAM );
158142c2
FB
624float32 float128_to_float32( float128 STATUS_PARAM );
625float64 float128_to_float64( float128 STATUS_PARAM );
626#ifdef FLOATX80
627floatx80 float128_to_floatx80( float128 STATUS_PARAM );
628#endif
629
630/*----------------------------------------------------------------------------
631| Software IEC/IEEE quadruple-precision operations.
632*----------------------------------------------------------------------------*/
633float128 float128_round_to_int( float128 STATUS_PARAM );
634float128 float128_add( float128, float128 STATUS_PARAM );
635float128 float128_sub( float128, float128 STATUS_PARAM );
636float128 float128_mul( float128, float128 STATUS_PARAM );
637float128 float128_div( float128, float128 STATUS_PARAM );
638float128 float128_rem( float128, float128 STATUS_PARAM );
639float128 float128_sqrt( float128 STATUS_PARAM );
b689362d 640int float128_eq( float128, float128 STATUS_PARAM );
750afe93
FB
641int float128_le( float128, float128 STATUS_PARAM );
642int float128_lt( float128, float128 STATUS_PARAM );
67b7861d 643int float128_unordered( float128, float128 STATUS_PARAM );
b689362d 644int float128_eq_quiet( float128, float128 STATUS_PARAM );
750afe93
FB
645int float128_le_quiet( float128, float128 STATUS_PARAM );
646int float128_lt_quiet( float128, float128 STATUS_PARAM );
67b7861d 647int float128_unordered_quiet( float128, float128 STATUS_PARAM );
1f587329
BS
648int float128_compare( float128, float128 STATUS_PARAM );
649int float128_compare_quiet( float128, float128 STATUS_PARAM );
18569871 650int float128_is_quiet_nan( float128 );
750afe93 651int float128_is_signaling_nan( float128 );
f6a7d92a 652float128 float128_maybe_silence_nan( float128 );
9ee6e8bb 653float128 float128_scalbn( float128, int STATUS_PARAM );
158142c2 654
1d6bda35
FB
655INLINE float128 float128_abs(float128 a)
656{
657 a.high &= 0x7fffffffffffffffLL;
658 return a;
659}
660
661INLINE float128 float128_chs(float128 a)
662{
663 a.high ^= 0x8000000000000000LL;
664 return a;
665}
666
c52ab6f5
AJ
667INLINE int float128_is_infinity(float128 a)
668{
669 return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
670}
671
672INLINE int float128_is_neg(float128 a)
673{
674 return a.high >> 63;
675}
676
677INLINE int float128_is_zero(float128 a)
678{
679 return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
680}
681
2bed652f
PM
682INLINE int float128_is_any_nan(float128 a)
683{
684 return ((a.high >> 48) & 0x7fff) == 0x7fff &&
685 ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0));
686}
687
8559666d
CL
688/*----------------------------------------------------------------------------
689| The pattern for a default generated quadruple-precision NaN. The `high' and
690| `low' values hold the most- and least-significant bits, respectively.
691*----------------------------------------------------------------------------*/
692#if SNAN_BIT_IS_ONE
693#define float128_default_nan_high LIT64( 0x7FFF7FFFFFFFFFFF )
694#define float128_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
695#else
696#define float128_default_nan_high LIT64( 0xFFFF800000000000 )
697#define float128_default_nan_low LIT64( 0x0000000000000000 )
698#endif
699
158142c2
FB
700#endif
701
702#else /* CONFIG_SOFTFLOAT */
703
704#include "softfloat-native.h"
705
706#endif /* !CONFIG_SOFTFLOAT */
707
708#endif /* !SOFTFLOAT_H */