]> git.proxmox.com Git - qemu.git/blame - fpu/softfloat.h
softfloat: add float32_exp2()
[qemu.git] / fpu / softfloat.h
CommitLineData
158142c2
FB
1/*============================================================================
2
3This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
4Package, Release 2b.
5
6Written by John R. Hauser. This work was made possible in part by the
7International Computer Science Institute, located at Suite 600, 1947 Center
8Street, Berkeley, California 94704. Funding was partially provided by the
9National Science Foundation under grant MIP-9311980. The original version
10of this code was written as part of a project to build a fixed-point vector
11processor in collaboration with the University of California at Berkeley,
12overseen by Profs. Nelson Morgan and John Wawrzynek. More information
13is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
14arithmetic/SoftFloat.html'.
15
16THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
17been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
18RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
19AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
20COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
21EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
22INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
23OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
24
25Derivative works are acceptable, even for commercial purposes, so long as
26(1) the source code for the derivative work includes prominent notice that
27the work is derivative, and (2) the source code includes prominent notice with
28these four paragraphs for those parts of this code that are retained.
29
30=============================================================================*/
31
32#ifndef SOFTFLOAT_H
33#define SOFTFLOAT_H
34
75b5a697 35#if defined(CONFIG_SOLARIS) && defined(CONFIG_NEEDS_LIBSUNMATH)
0475a5ca
TS
36#include <sunmath.h>
37#endif
38
158142c2
FB
39#include <inttypes.h>
40#include "config.h"
41
42/*----------------------------------------------------------------------------
43| Each of the following `typedef's defines the most convenient type that holds
44| integers of at least as many bits as specified. For example, `uint8' should
45| be the most convenient type that can hold unsigned integers of as many as
46| 8 bits. The `flag' type must be able to hold either a 0 or 1. For most
47| implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
48| to the same as `int'.
49*----------------------------------------------------------------------------*/
750afe93 50typedef uint8_t flag;
158142c2
FB
51typedef uint8_t uint8;
52typedef int8_t int8;
b29fe3ed 53#ifndef _AIX
158142c2
FB
54typedef int uint16;
55typedef int int16;
b29fe3ed 56#endif
158142c2
FB
57typedef unsigned int uint32;
58typedef signed int int32;
59typedef uint64_t uint64;
60typedef int64_t int64;
61
62/*----------------------------------------------------------------------------
63| Each of the following `typedef's defines a type that holds integers
64| of _exactly_ the number of bits specified. For instance, for most
65| implementation of C, `bits16' and `sbits16' should be `typedef'ed to
66| `unsigned short int' and `signed short int' (or `short int'), respectively.
67*----------------------------------------------------------------------------*/
68typedef uint8_t bits8;
69typedef int8_t sbits8;
70typedef uint16_t bits16;
71typedef int16_t sbits16;
72typedef uint32_t bits32;
73typedef int32_t sbits32;
74typedef uint64_t bits64;
75typedef int64_t sbits64;
76
77#define LIT64( a ) a##LL
78#define INLINE static inline
79
80/*----------------------------------------------------------------------------
81| The macro `FLOATX80' must be defined to enable the extended double-precision
82| floating-point format `floatx80'. If this macro is not defined, the
83| `floatx80' type will not be defined, and none of the functions that either
84| input or output the `floatx80' type will be defined. The same applies to
85| the `FLOAT128' macro and the quadruple-precision format `float128'.
86*----------------------------------------------------------------------------*/
87#ifdef CONFIG_SOFTFLOAT
88/* bit exact soft float support */
89#define FLOATX80
90#define FLOAT128
91#else
92/* native float support */
71e72a19 93#if (defined(__i386__) || defined(__x86_64__)) && !defined(CONFIG_BSD)
158142c2
FB
94#define FLOATX80
95#endif
96#endif /* !CONFIG_SOFTFLOAT */
97
98#define STATUS_PARAM , float_status *status
99#define STATUS(field) status->field
100#define STATUS_VAR , status
101
1d6bda35
FB
102/*----------------------------------------------------------------------------
103| Software IEC/IEEE floating-point ordering relations
104*----------------------------------------------------------------------------*/
105enum {
106 float_relation_less = -1,
107 float_relation_equal = 0,
108 float_relation_greater = 1,
109 float_relation_unordered = 2
110};
111
158142c2
FB
112#ifdef CONFIG_SOFTFLOAT
113/*----------------------------------------------------------------------------
114| Software IEC/IEEE floating-point types.
115*----------------------------------------------------------------------------*/
f090c9d4
PB
116/* Use structures for soft-float types. This prevents accidentally mixing
117 them with native int/float types. A sufficiently clever compiler and
118 sane ABI should be able to see though these structs. However
119 x86/gcc 3.x seems to struggle a bit, so leave them disabled by default. */
120//#define USE_SOFTFLOAT_STRUCT_TYPES
121#ifdef USE_SOFTFLOAT_STRUCT_TYPES
122typedef struct {
123 uint32_t v;
124} float32;
125/* The cast ensures an error if the wrong type is passed. */
126#define float32_val(x) (((float32)(x)).v)
127#define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; })
128typedef struct {
129 uint64_t v;
130} float64;
131#define float64_val(x) (((float64)(x)).v)
132#define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; })
133#else
158142c2
FB
134typedef uint32_t float32;
135typedef uint64_t float64;
f090c9d4
PB
136#define float32_val(x) (x)
137#define float64_val(x) (x)
138#define make_float32(x) (x)
139#define make_float64(x) (x)
140#endif
158142c2
FB
141#ifdef FLOATX80
142typedef struct {
143 uint64_t low;
144 uint16_t high;
145} floatx80;
146#endif
147#ifdef FLOAT128
148typedef struct {
e2542fe2 149#ifdef HOST_WORDS_BIGENDIAN
158142c2
FB
150 uint64_t high, low;
151#else
152 uint64_t low, high;
153#endif
154} float128;
155#endif
156
157/*----------------------------------------------------------------------------
158| Software IEC/IEEE floating-point underflow tininess-detection mode.
159*----------------------------------------------------------------------------*/
160enum {
161 float_tininess_after_rounding = 0,
162 float_tininess_before_rounding = 1
163};
164
165/*----------------------------------------------------------------------------
166| Software IEC/IEEE floating-point rounding mode.
167*----------------------------------------------------------------------------*/
168enum {
169 float_round_nearest_even = 0,
170 float_round_down = 1,
171 float_round_up = 2,
172 float_round_to_zero = 3
173};
174
175/*----------------------------------------------------------------------------
176| Software IEC/IEEE floating-point exception flags.
177*----------------------------------------------------------------------------*/
178enum {
179 float_flag_invalid = 1,
180 float_flag_divbyzero = 4,
181 float_flag_overflow = 8,
182 float_flag_underflow = 16,
183 float_flag_inexact = 32
184};
185
186typedef struct float_status {
187 signed char float_detect_tininess;
188 signed char float_rounding_mode;
189 signed char float_exception_flags;
190#ifdef FLOATX80
191 signed char floatx80_rounding_precision;
192#endif
fe76d976 193 flag flush_to_zero;
5c7908ed 194 flag default_nan_mode;
158142c2
FB
195} float_status;
196
197void set_float_rounding_mode(int val STATUS_PARAM);
1d6bda35 198void set_float_exception_flags(int val STATUS_PARAM);
fe76d976
PB
199INLINE void set_flush_to_zero(flag val STATUS_PARAM)
200{
201 STATUS(flush_to_zero) = val;
202}
5c7908ed
PB
203INLINE void set_default_nan_mode(flag val STATUS_PARAM)
204{
205 STATUS(default_nan_mode) = val;
206}
1d6bda35
FB
207INLINE int get_float_exception_flags(float_status *status)
208{
209 return STATUS(float_exception_flags);
210}
158142c2
FB
211#ifdef FLOATX80
212void set_floatx80_rounding_precision(int val STATUS_PARAM);
213#endif
214
215/*----------------------------------------------------------------------------
216| Routine to raise any or all of the software IEC/IEEE floating-point
217| exception flags.
218*----------------------------------------------------------------------------*/
ec530c81 219void float_raise( int8 flags STATUS_PARAM);
158142c2
FB
220
221/*----------------------------------------------------------------------------
222| Software IEC/IEEE integer-to-floating-point conversion routines.
223*----------------------------------------------------------------------------*/
224float32 int32_to_float32( int STATUS_PARAM );
225float64 int32_to_float64( int STATUS_PARAM );
1d6bda35
FB
226float32 uint32_to_float32( unsigned int STATUS_PARAM );
227float64 uint32_to_float64( unsigned int STATUS_PARAM );
158142c2
FB
228#ifdef FLOATX80
229floatx80 int32_to_floatx80( int STATUS_PARAM );
230#endif
231#ifdef FLOAT128
232float128 int32_to_float128( int STATUS_PARAM );
233#endif
234float32 int64_to_float32( int64_t STATUS_PARAM );
75d62a58 235float32 uint64_to_float32( uint64_t STATUS_PARAM );
158142c2 236float64 int64_to_float64( int64_t STATUS_PARAM );
75d62a58 237float64 uint64_to_float64( uint64_t STATUS_PARAM );
158142c2
FB
238#ifdef FLOATX80
239floatx80 int64_to_floatx80( int64_t STATUS_PARAM );
240#endif
241#ifdef FLOAT128
242float128 int64_to_float128( int64_t STATUS_PARAM );
243#endif
244
60011498
PB
245/*----------------------------------------------------------------------------
246| Software half-precision conversion routines.
247*----------------------------------------------------------------------------*/
248bits16 float32_to_float16( float32, flag STATUS_PARAM );
249float32 float16_to_float32( bits16, flag STATUS_PARAM );
250
158142c2
FB
251/*----------------------------------------------------------------------------
252| Software IEC/IEEE single-precision conversion routines.
253*----------------------------------------------------------------------------*/
254int float32_to_int32( float32 STATUS_PARAM );
255int float32_to_int32_round_to_zero( float32 STATUS_PARAM );
1d6bda35
FB
256unsigned int float32_to_uint32( float32 STATUS_PARAM );
257unsigned int float32_to_uint32_round_to_zero( float32 STATUS_PARAM );
158142c2
FB
258int64_t float32_to_int64( float32 STATUS_PARAM );
259int64_t float32_to_int64_round_to_zero( float32 STATUS_PARAM );
260float64 float32_to_float64( float32 STATUS_PARAM );
261#ifdef FLOATX80
262floatx80 float32_to_floatx80( float32 STATUS_PARAM );
263#endif
264#ifdef FLOAT128
265float128 float32_to_float128( float32 STATUS_PARAM );
266#endif
267
268/*----------------------------------------------------------------------------
269| Software IEC/IEEE single-precision operations.
270*----------------------------------------------------------------------------*/
271float32 float32_round_to_int( float32 STATUS_PARAM );
272float32 float32_add( float32, float32 STATUS_PARAM );
273float32 float32_sub( float32, float32 STATUS_PARAM );
274float32 float32_mul( float32, float32 STATUS_PARAM );
275float32 float32_div( float32, float32 STATUS_PARAM );
276float32 float32_rem( float32, float32 STATUS_PARAM );
277float32 float32_sqrt( float32 STATUS_PARAM );
8229c991 278float32 float32_exp2( float32 STATUS_PARAM );
374dfc33 279float32 float32_log2( float32 STATUS_PARAM );
750afe93
FB
280int float32_eq( float32, float32 STATUS_PARAM );
281int float32_le( float32, float32 STATUS_PARAM );
282int float32_lt( float32, float32 STATUS_PARAM );
283int float32_eq_signaling( float32, float32 STATUS_PARAM );
284int float32_le_quiet( float32, float32 STATUS_PARAM );
285int float32_lt_quiet( float32, float32 STATUS_PARAM );
286int float32_compare( float32, float32 STATUS_PARAM );
287int float32_compare_quiet( float32, float32 STATUS_PARAM );
924b2c07 288int float32_is_nan( float32 );
750afe93 289int float32_is_signaling_nan( float32 );
9ee6e8bb 290float32 float32_scalbn( float32, int STATUS_PARAM );
158142c2 291
1d6bda35
FB
292INLINE float32 float32_abs(float32 a)
293{
f090c9d4 294 return make_float32(float32_val(a) & 0x7fffffff);
1d6bda35
FB
295}
296
297INLINE float32 float32_chs(float32 a)
298{
f090c9d4 299 return make_float32(float32_val(a) ^ 0x80000000);
1d6bda35
FB
300}
301
c52ab6f5
AJ
302INLINE int float32_is_infinity(float32 a)
303{
dadd71a7 304 return (float32_val(a) & 0x7fffffff) == 0x7f800000;
c52ab6f5
AJ
305}
306
307INLINE int float32_is_neg(float32 a)
308{
309 return float32_val(a) >> 31;
310}
311
312INLINE int float32_is_zero(float32 a)
313{
314 return (float32_val(a) & 0x7fffffff) == 0;
315}
316
f090c9d4 317#define float32_zero make_float32(0)
196cfc89 318#define float32_one make_float32(0x3f800000)
8229c991 319#define float32_ln2 make_float32(0x3f317218)
f090c9d4 320
158142c2
FB
321/*----------------------------------------------------------------------------
322| Software IEC/IEEE double-precision conversion routines.
323*----------------------------------------------------------------------------*/
324int float64_to_int32( float64 STATUS_PARAM );
325int float64_to_int32_round_to_zero( float64 STATUS_PARAM );
1d6bda35
FB
326unsigned int float64_to_uint32( float64 STATUS_PARAM );
327unsigned int float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
158142c2
FB
328int64_t float64_to_int64( float64 STATUS_PARAM );
329int64_t float64_to_int64_round_to_zero( float64 STATUS_PARAM );
75d62a58
JM
330uint64_t float64_to_uint64 (float64 a STATUS_PARAM);
331uint64_t float64_to_uint64_round_to_zero (float64 a STATUS_PARAM);
158142c2
FB
332float32 float64_to_float32( float64 STATUS_PARAM );
333#ifdef FLOATX80
334floatx80 float64_to_floatx80( float64 STATUS_PARAM );
335#endif
336#ifdef FLOAT128
337float128 float64_to_float128( float64 STATUS_PARAM );
338#endif
339
340/*----------------------------------------------------------------------------
341| Software IEC/IEEE double-precision operations.
342*----------------------------------------------------------------------------*/
343float64 float64_round_to_int( float64 STATUS_PARAM );
e6e5906b 344float64 float64_trunc_to_int( float64 STATUS_PARAM );
158142c2
FB
345float64 float64_add( float64, float64 STATUS_PARAM );
346float64 float64_sub( float64, float64 STATUS_PARAM );
347float64 float64_mul( float64, float64 STATUS_PARAM );
348float64 float64_div( float64, float64 STATUS_PARAM );
349float64 float64_rem( float64, float64 STATUS_PARAM );
350float64 float64_sqrt( float64 STATUS_PARAM );
374dfc33 351float64 float64_log2( float64 STATUS_PARAM );
750afe93
FB
352int float64_eq( float64, float64 STATUS_PARAM );
353int float64_le( float64, float64 STATUS_PARAM );
354int float64_lt( float64, float64 STATUS_PARAM );
355int float64_eq_signaling( float64, float64 STATUS_PARAM );
356int float64_le_quiet( float64, float64 STATUS_PARAM );
357int float64_lt_quiet( float64, float64 STATUS_PARAM );
358int float64_compare( float64, float64 STATUS_PARAM );
359int float64_compare_quiet( float64, float64 STATUS_PARAM );
924b2c07 360int float64_is_nan( float64 a );
750afe93 361int float64_is_signaling_nan( float64 );
9ee6e8bb 362float64 float64_scalbn( float64, int STATUS_PARAM );
158142c2 363
1d6bda35
FB
364INLINE float64 float64_abs(float64 a)
365{
f090c9d4 366 return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
1d6bda35
FB
367}
368
369INLINE float64 float64_chs(float64 a)
370{
f090c9d4 371 return make_float64(float64_val(a) ^ 0x8000000000000000LL);
1d6bda35
FB
372}
373
c52ab6f5
AJ
374INLINE int float64_is_infinity(float64 a)
375{
376 return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
377}
378
379INLINE int float64_is_neg(float64 a)
380{
381 return float64_val(a) >> 63;
382}
383
384INLINE int float64_is_zero(float64 a)
385{
386 return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
387}
388
f090c9d4 389#define float64_zero make_float64(0)
196cfc89 390#define float64_one make_float64(0x3ff0000000000000LL)
8229c991 391#define float64_ln2 make_float64(0x3fe62e42fefa39efLL)
f090c9d4 392
158142c2
FB
393#ifdef FLOATX80
394
395/*----------------------------------------------------------------------------
396| Software IEC/IEEE extended double-precision conversion routines.
397*----------------------------------------------------------------------------*/
398int floatx80_to_int32( floatx80 STATUS_PARAM );
399int floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
400int64_t floatx80_to_int64( floatx80 STATUS_PARAM );
401int64_t floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM );
402float32 floatx80_to_float32( floatx80 STATUS_PARAM );
403float64 floatx80_to_float64( floatx80 STATUS_PARAM );
404#ifdef FLOAT128
405float128 floatx80_to_float128( floatx80 STATUS_PARAM );
406#endif
407
408/*----------------------------------------------------------------------------
409| Software IEC/IEEE extended double-precision operations.
410*----------------------------------------------------------------------------*/
411floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
412floatx80 floatx80_add( floatx80, floatx80 STATUS_PARAM );
413floatx80 floatx80_sub( floatx80, floatx80 STATUS_PARAM );
414floatx80 floatx80_mul( floatx80, floatx80 STATUS_PARAM );
415floatx80 floatx80_div( floatx80, floatx80 STATUS_PARAM );
416floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
417floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
750afe93
FB
418int floatx80_eq( floatx80, floatx80 STATUS_PARAM );
419int floatx80_le( floatx80, floatx80 STATUS_PARAM );
420int floatx80_lt( floatx80, floatx80 STATUS_PARAM );
421int floatx80_eq_signaling( floatx80, floatx80 STATUS_PARAM );
422int floatx80_le_quiet( floatx80, floatx80 STATUS_PARAM );
423int floatx80_lt_quiet( floatx80, floatx80 STATUS_PARAM );
924b2c07 424int floatx80_is_nan( floatx80 );
750afe93 425int floatx80_is_signaling_nan( floatx80 );
9ee6e8bb 426floatx80 floatx80_scalbn( floatx80, int STATUS_PARAM );
158142c2 427
1d6bda35
FB
428INLINE floatx80 floatx80_abs(floatx80 a)
429{
430 a.high &= 0x7fff;
431 return a;
432}
433
434INLINE floatx80 floatx80_chs(floatx80 a)
435{
436 a.high ^= 0x8000;
437 return a;
438}
439
c52ab6f5
AJ
440INLINE int floatx80_is_infinity(floatx80 a)
441{
442 return (a.high & 0x7fff) == 0x7fff && a.low == 0;
443}
444
445INLINE int floatx80_is_neg(floatx80 a)
446{
447 return a.high >> 15;
448}
449
450INLINE int floatx80_is_zero(floatx80 a)
451{
452 return (a.high & 0x7fff) == 0 && a.low == 0;
453}
454
158142c2
FB
455#endif
456
457#ifdef FLOAT128
458
459/*----------------------------------------------------------------------------
460| Software IEC/IEEE quadruple-precision conversion routines.
461*----------------------------------------------------------------------------*/
462int float128_to_int32( float128 STATUS_PARAM );
463int float128_to_int32_round_to_zero( float128 STATUS_PARAM );
464int64_t float128_to_int64( float128 STATUS_PARAM );
465int64_t float128_to_int64_round_to_zero( float128 STATUS_PARAM );
466float32 float128_to_float32( float128 STATUS_PARAM );
467float64 float128_to_float64( float128 STATUS_PARAM );
468#ifdef FLOATX80
469floatx80 float128_to_floatx80( float128 STATUS_PARAM );
470#endif
471
472/*----------------------------------------------------------------------------
473| Software IEC/IEEE quadruple-precision operations.
474*----------------------------------------------------------------------------*/
475float128 float128_round_to_int( float128 STATUS_PARAM );
476float128 float128_add( float128, float128 STATUS_PARAM );
477float128 float128_sub( float128, float128 STATUS_PARAM );
478float128 float128_mul( float128, float128 STATUS_PARAM );
479float128 float128_div( float128, float128 STATUS_PARAM );
480float128 float128_rem( float128, float128 STATUS_PARAM );
481float128 float128_sqrt( float128 STATUS_PARAM );
750afe93
FB
482int float128_eq( float128, float128 STATUS_PARAM );
483int float128_le( float128, float128 STATUS_PARAM );
484int float128_lt( float128, float128 STATUS_PARAM );
485int float128_eq_signaling( float128, float128 STATUS_PARAM );
486int float128_le_quiet( float128, float128 STATUS_PARAM );
487int float128_lt_quiet( float128, float128 STATUS_PARAM );
1f587329
BS
488int float128_compare( float128, float128 STATUS_PARAM );
489int float128_compare_quiet( float128, float128 STATUS_PARAM );
924b2c07 490int float128_is_nan( float128 );
750afe93 491int float128_is_signaling_nan( float128 );
9ee6e8bb 492float128 float128_scalbn( float128, int STATUS_PARAM );
158142c2 493
1d6bda35
FB
494INLINE float128 float128_abs(float128 a)
495{
496 a.high &= 0x7fffffffffffffffLL;
497 return a;
498}
499
500INLINE float128 float128_chs(float128 a)
501{
502 a.high ^= 0x8000000000000000LL;
503 return a;
504}
505
c52ab6f5
AJ
506INLINE int float128_is_infinity(float128 a)
507{
508 return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
509}
510
511INLINE int float128_is_neg(float128 a)
512{
513 return a.high >> 63;
514}
515
516INLINE int float128_is_zero(float128 a)
517{
518 return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
519}
520
158142c2
FB
521#endif
522
523#else /* CONFIG_SOFTFLOAT */
524
525#include "softfloat-native.h"
526
527#endif /* !CONFIG_SOFTFLOAT */
528
529#endif /* !SOFTFLOAT_H */