]> git.proxmox.com Git - qemu.git/blame - fpu/softfloat.h
softfloat: rename float*_eq_signaling() into float*_eq()
[qemu.git] / fpu / softfloat.h
CommitLineData
8d725fac
AF
1/*
2 * QEMU float support
3 *
4 * Derived from SoftFloat.
5 */
6
158142c2
FB
7/*============================================================================
8
9This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
10Package, Release 2b.
11
12Written by John R. Hauser. This work was made possible in part by the
13International Computer Science Institute, located at Suite 600, 1947 Center
14Street, Berkeley, California 94704. Funding was partially provided by the
15National Science Foundation under grant MIP-9311980. The original version
16of this code was written as part of a project to build a fixed-point vector
17processor in collaboration with the University of California at Berkeley,
18overseen by Profs. Nelson Morgan and John Wawrzynek. More information
19is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
20arithmetic/SoftFloat.html'.
21
22THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
23been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
24RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
25AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
26COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
27EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
28INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
29OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
30
31Derivative works are acceptable, even for commercial purposes, so long as
32(1) the source code for the derivative work includes prominent notice that
33the work is derivative, and (2) the source code includes prominent notice with
34these four paragraphs for those parts of this code that are retained.
35
36=============================================================================*/
37
38#ifndef SOFTFLOAT_H
39#define SOFTFLOAT_H
40
75b5a697 41#if defined(CONFIG_SOLARIS) && defined(CONFIG_NEEDS_LIBSUNMATH)
0475a5ca
TS
42#include <sunmath.h>
43#endif
44
158142c2
FB
45#include <inttypes.h>
46#include "config.h"
47
48/*----------------------------------------------------------------------------
49| Each of the following `typedef's defines the most convenient type that holds
50| integers of at least as many bits as specified. For example, `uint8' should
51| be the most convenient type that can hold unsigned integers of as many as
52| 8 bits. The `flag' type must be able to hold either a 0 or 1. For most
53| implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
54| to the same as `int'.
55*----------------------------------------------------------------------------*/
750afe93 56typedef uint8_t flag;
158142c2
FB
57typedef uint8_t uint8;
58typedef int8_t int8;
b29fe3ed 59#ifndef _AIX
158142c2
FB
60typedef int uint16;
61typedef int int16;
b29fe3ed 62#endif
158142c2
FB
63typedef unsigned int uint32;
64typedef signed int int32;
65typedef uint64_t uint64;
66typedef int64_t int64;
67
158142c2
FB
68#define LIT64( a ) a##LL
69#define INLINE static inline
70
d2fbca94 71#if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
8559666d
CL
72#define SNAN_BIT_IS_ONE 1
73#else
74#define SNAN_BIT_IS_ONE 0
75#endif
76
158142c2
FB
77/*----------------------------------------------------------------------------
78| The macro `FLOATX80' must be defined to enable the extended double-precision
79| floating-point format `floatx80'. If this macro is not defined, the
80| `floatx80' type will not be defined, and none of the functions that either
81| input or output the `floatx80' type will be defined. The same applies to
82| the `FLOAT128' macro and the quadruple-precision format `float128'.
83*----------------------------------------------------------------------------*/
84#ifdef CONFIG_SOFTFLOAT
85/* bit exact soft float support */
86#define FLOATX80
87#define FLOAT128
88#else
89/* native float support */
71e72a19 90#if (defined(__i386__) || defined(__x86_64__)) && !defined(CONFIG_BSD)
158142c2
FB
91#define FLOATX80
92#endif
93#endif /* !CONFIG_SOFTFLOAT */
94
95#define STATUS_PARAM , float_status *status
96#define STATUS(field) status->field
97#define STATUS_VAR , status
98
1d6bda35
FB
99/*----------------------------------------------------------------------------
100| Software IEC/IEEE floating-point ordering relations
101*----------------------------------------------------------------------------*/
102enum {
103 float_relation_less = -1,
104 float_relation_equal = 0,
105 float_relation_greater = 1,
106 float_relation_unordered = 2
107};
108
158142c2
FB
109#ifdef CONFIG_SOFTFLOAT
110/*----------------------------------------------------------------------------
111| Software IEC/IEEE floating-point types.
112*----------------------------------------------------------------------------*/
f090c9d4
PB
113/* Use structures for soft-float types. This prevents accidentally mixing
114 them with native int/float types. A sufficiently clever compiler and
115 sane ABI should be able to see though these structs. However
116 x86/gcc 3.x seems to struggle a bit, so leave them disabled by default. */
117//#define USE_SOFTFLOAT_STRUCT_TYPES
118#ifdef USE_SOFTFLOAT_STRUCT_TYPES
bb4d4bb3
PM
119typedef struct {
120 uint16_t v;
121} float16;
122#define float16_val(x) (((float16)(x)).v)
123#define make_float16(x) __extension__ ({ float16 f16_val = {x}; f16_val; })
d5138cf4 124#define const_float16(x) { x }
f090c9d4
PB
125typedef struct {
126 uint32_t v;
127} float32;
128/* The cast ensures an error if the wrong type is passed. */
129#define float32_val(x) (((float32)(x)).v)
130#define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; })
d5138cf4 131#define const_float32(x) { x }
f090c9d4
PB
132typedef struct {
133 uint64_t v;
134} float64;
135#define float64_val(x) (((float64)(x)).v)
136#define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; })
d5138cf4 137#define const_float64(x) { x }
f090c9d4 138#else
bb4d4bb3 139typedef uint16_t float16;
158142c2
FB
140typedef uint32_t float32;
141typedef uint64_t float64;
bb4d4bb3 142#define float16_val(x) (x)
f090c9d4
PB
143#define float32_val(x) (x)
144#define float64_val(x) (x)
bb4d4bb3 145#define make_float16(x) (x)
f090c9d4
PB
146#define make_float32(x) (x)
147#define make_float64(x) (x)
d5138cf4
PM
148#define const_float16(x) (x)
149#define const_float32(x) (x)
150#define const_float64(x) (x)
f090c9d4 151#endif
158142c2
FB
152#ifdef FLOATX80
153typedef struct {
154 uint64_t low;
155 uint16_t high;
156} floatx80;
157#endif
158#ifdef FLOAT128
159typedef struct {
e2542fe2 160#ifdef HOST_WORDS_BIGENDIAN
158142c2
FB
161 uint64_t high, low;
162#else
163 uint64_t low, high;
164#endif
165} float128;
166#endif
167
168/*----------------------------------------------------------------------------
169| Software IEC/IEEE floating-point underflow tininess-detection mode.
170*----------------------------------------------------------------------------*/
171enum {
172 float_tininess_after_rounding = 0,
173 float_tininess_before_rounding = 1
174};
175
176/*----------------------------------------------------------------------------
177| Software IEC/IEEE floating-point rounding mode.
178*----------------------------------------------------------------------------*/
179enum {
180 float_round_nearest_even = 0,
181 float_round_down = 1,
182 float_round_up = 2,
183 float_round_to_zero = 3
184};
185
186/*----------------------------------------------------------------------------
187| Software IEC/IEEE floating-point exception flags.
188*----------------------------------------------------------------------------*/
189enum {
190 float_flag_invalid = 1,
191 float_flag_divbyzero = 4,
192 float_flag_overflow = 8,
193 float_flag_underflow = 16,
37d18660
PM
194 float_flag_inexact = 32,
195 float_flag_input_denormal = 64
158142c2
FB
196};
197
198typedef struct float_status {
199 signed char float_detect_tininess;
200 signed char float_rounding_mode;
201 signed char float_exception_flags;
202#ifdef FLOATX80
203 signed char floatx80_rounding_precision;
204#endif
37d18660 205 /* should denormalised results go to zero and set the inexact flag? */
fe76d976 206 flag flush_to_zero;
37d18660
PM
207 /* should denormalised inputs go to zero and set the input_denormal flag? */
208 flag flush_inputs_to_zero;
5c7908ed 209 flag default_nan_mode;
158142c2
FB
210} float_status;
211
212void set_float_rounding_mode(int val STATUS_PARAM);
1d6bda35 213void set_float_exception_flags(int val STATUS_PARAM);
c29aca44
PM
214INLINE void set_float_detect_tininess(int val STATUS_PARAM)
215{
216 STATUS(float_detect_tininess) = val;
217}
fe76d976
PB
218INLINE void set_flush_to_zero(flag val STATUS_PARAM)
219{
220 STATUS(flush_to_zero) = val;
221}
37d18660
PM
222INLINE void set_flush_inputs_to_zero(flag val STATUS_PARAM)
223{
224 STATUS(flush_inputs_to_zero) = val;
225}
5c7908ed
PB
226INLINE void set_default_nan_mode(flag val STATUS_PARAM)
227{
228 STATUS(default_nan_mode) = val;
229}
1d6bda35
FB
230INLINE int get_float_exception_flags(float_status *status)
231{
232 return STATUS(float_exception_flags);
233}
158142c2
FB
234#ifdef FLOATX80
235void set_floatx80_rounding_precision(int val STATUS_PARAM);
236#endif
237
238/*----------------------------------------------------------------------------
239| Routine to raise any or all of the software IEC/IEEE floating-point
240| exception flags.
241*----------------------------------------------------------------------------*/
ec530c81 242void float_raise( int8 flags STATUS_PARAM);
158142c2
FB
243
244/*----------------------------------------------------------------------------
245| Software IEC/IEEE integer-to-floating-point conversion routines.
246*----------------------------------------------------------------------------*/
87b8cc3c
AF
247float32 int32_to_float32( int32 STATUS_PARAM );
248float64 int32_to_float64( int32 STATUS_PARAM );
1d6bda35
FB
249float32 uint32_to_float32( unsigned int STATUS_PARAM );
250float64 uint32_to_float64( unsigned int STATUS_PARAM );
158142c2 251#ifdef FLOATX80
87b8cc3c 252floatx80 int32_to_floatx80( int32 STATUS_PARAM );
158142c2
FB
253#endif
254#ifdef FLOAT128
87b8cc3c 255float128 int32_to_float128( int32 STATUS_PARAM );
158142c2 256#endif
87b8cc3c
AF
257float32 int64_to_float32( int64 STATUS_PARAM );
258float32 uint64_to_float32( uint64 STATUS_PARAM );
259float64 int64_to_float64( int64 STATUS_PARAM );
260float64 uint64_to_float64( uint64 STATUS_PARAM );
158142c2 261#ifdef FLOATX80
87b8cc3c 262floatx80 int64_to_floatx80( int64 STATUS_PARAM );
158142c2
FB
263#endif
264#ifdef FLOAT128
87b8cc3c 265float128 int64_to_float128( int64 STATUS_PARAM );
158142c2
FB
266#endif
267
60011498
PB
268/*----------------------------------------------------------------------------
269| Software half-precision conversion routines.
270*----------------------------------------------------------------------------*/
bb4d4bb3
PM
271float16 float32_to_float16( float32, flag STATUS_PARAM );
272float32 float16_to_float32( float16, flag STATUS_PARAM );
273
274/*----------------------------------------------------------------------------
275| Software half-precision operations.
276*----------------------------------------------------------------------------*/
277int float16_is_quiet_nan( float16 );
278int float16_is_signaling_nan( float16 );
279float16 float16_maybe_silence_nan( float16 );
60011498 280
8559666d
CL
281/*----------------------------------------------------------------------------
282| The pattern for a default generated half-precision NaN.
283*----------------------------------------------------------------------------*/
284#if defined(TARGET_ARM)
285#define float16_default_nan make_float16(0x7E00)
286#elif SNAN_BIT_IS_ONE
287#define float16_default_nan make_float16(0x7DFF)
288#else
289#define float16_default_nan make_float16(0xFE00)
290#endif
291
158142c2
FB
292/*----------------------------------------------------------------------------
293| Software IEC/IEEE single-precision conversion routines.
294*----------------------------------------------------------------------------*/
87b8cc3c 295int16 float32_to_int16_round_to_zero( float32 STATUS_PARAM );
cbcef455 296unsigned int float32_to_uint16_round_to_zero( float32 STATUS_PARAM );
87b8cc3c
AF
297int32 float32_to_int32( float32 STATUS_PARAM );
298int32 float32_to_int32_round_to_zero( float32 STATUS_PARAM );
299uint32 float32_to_uint32( float32 STATUS_PARAM );
300uint32 float32_to_uint32_round_to_zero( float32 STATUS_PARAM );
301int64 float32_to_int64( float32 STATUS_PARAM );
302int64 float32_to_int64_round_to_zero( float32 STATUS_PARAM );
158142c2
FB
303float64 float32_to_float64( float32 STATUS_PARAM );
304#ifdef FLOATX80
305floatx80 float32_to_floatx80( float32 STATUS_PARAM );
306#endif
307#ifdef FLOAT128
308float128 float32_to_float128( float32 STATUS_PARAM );
309#endif
310
311/*----------------------------------------------------------------------------
312| Software IEC/IEEE single-precision operations.
313*----------------------------------------------------------------------------*/
314float32 float32_round_to_int( float32 STATUS_PARAM );
315float32 float32_add( float32, float32 STATUS_PARAM );
316float32 float32_sub( float32, float32 STATUS_PARAM );
317float32 float32_mul( float32, float32 STATUS_PARAM );
318float32 float32_div( float32, float32 STATUS_PARAM );
319float32 float32_rem( float32, float32 STATUS_PARAM );
320float32 float32_sqrt( float32 STATUS_PARAM );
8229c991 321float32 float32_exp2( float32 STATUS_PARAM );
374dfc33 322float32 float32_log2( float32 STATUS_PARAM );
211315fb 323int float32_eq_quiet( float32, float32 STATUS_PARAM );
750afe93
FB
324int float32_le( float32, float32 STATUS_PARAM );
325int float32_lt( float32, float32 STATUS_PARAM );
67b7861d 326int float32_unordered( float32, float32 STATUS_PARAM );
2657d0ff 327int float32_eq( float32, float32 STATUS_PARAM );
750afe93
FB
328int float32_le_quiet( float32, float32 STATUS_PARAM );
329int float32_lt_quiet( float32, float32 STATUS_PARAM );
67b7861d 330int float32_unordered_quiet( float32, float32 STATUS_PARAM );
750afe93
FB
331int float32_compare( float32, float32 STATUS_PARAM );
332int float32_compare_quiet( float32, float32 STATUS_PARAM );
274f1b04
PM
333float32 float32_min(float32, float32 STATUS_PARAM);
334float32 float32_max(float32, float32 STATUS_PARAM);
18569871 335int float32_is_quiet_nan( float32 );
750afe93 336int float32_is_signaling_nan( float32 );
b408dbde 337float32 float32_maybe_silence_nan( float32 );
9ee6e8bb 338float32 float32_scalbn( float32, int STATUS_PARAM );
158142c2 339
1d6bda35
FB
340INLINE float32 float32_abs(float32 a)
341{
37d18660
PM
342 /* Note that abs does *not* handle NaN specially, nor does
343 * it flush denormal inputs to zero.
344 */
f090c9d4 345 return make_float32(float32_val(a) & 0x7fffffff);
1d6bda35
FB
346}
347
348INLINE float32 float32_chs(float32 a)
349{
37d18660
PM
350 /* Note that chs does *not* handle NaN specially, nor does
351 * it flush denormal inputs to zero.
352 */
f090c9d4 353 return make_float32(float32_val(a) ^ 0x80000000);
1d6bda35
FB
354}
355
c52ab6f5
AJ
356INLINE int float32_is_infinity(float32 a)
357{
dadd71a7 358 return (float32_val(a) & 0x7fffffff) == 0x7f800000;
c52ab6f5
AJ
359}
360
361INLINE int float32_is_neg(float32 a)
362{
363 return float32_val(a) >> 31;
364}
365
366INLINE int float32_is_zero(float32 a)
367{
368 return (float32_val(a) & 0x7fffffff) == 0;
369}
370
21d6ebde
PM
371INLINE int float32_is_any_nan(float32 a)
372{
373 return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL);
374}
375
6f3300ad
PM
376INLINE int float32_is_zero_or_denormal(float32 a)
377{
378 return (float32_val(a) & 0x7f800000) == 0;
379}
380
c30fe7df
CL
381INLINE float32 float32_set_sign(float32 a, int sign)
382{
383 return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31));
384}
385
f090c9d4 386#define float32_zero make_float32(0)
196cfc89 387#define float32_one make_float32(0x3f800000)
8229c991 388#define float32_ln2 make_float32(0x3f317218)
c30fe7df
CL
389#define float32_half make_float32(0x3f000000)
390#define float32_infinity make_float32(0x7f800000)
f090c9d4 391
8559666d
CL
392
393/*----------------------------------------------------------------------------
394| The pattern for a default generated single-precision NaN.
395*----------------------------------------------------------------------------*/
396#if defined(TARGET_SPARC)
397#define float32_default_nan make_float32(0x7FFFFFFF)
398#elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA)
399#define float32_default_nan make_float32(0x7FC00000)
400#elif SNAN_BIT_IS_ONE
401#define float32_default_nan make_float32(0x7FBFFFFF)
402#else
403#define float32_default_nan make_float32(0xFFC00000)
404#endif
405
158142c2
FB
406/*----------------------------------------------------------------------------
407| Software IEC/IEEE double-precision conversion routines.
408*----------------------------------------------------------------------------*/
87b8cc3c 409int16 float64_to_int16_round_to_zero( float64 STATUS_PARAM );
cbcef455 410unsigned int float64_to_uint16_round_to_zero( float64 STATUS_PARAM );
87b8cc3c
AF
411int32 float64_to_int32( float64 STATUS_PARAM );
412int32 float64_to_int32_round_to_zero( float64 STATUS_PARAM );
413uint32 float64_to_uint32( float64 STATUS_PARAM );
414uint32 float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
415int64 float64_to_int64( float64 STATUS_PARAM );
416int64 float64_to_int64_round_to_zero( float64 STATUS_PARAM );
417uint64 float64_to_uint64 (float64 a STATUS_PARAM);
418uint64 float64_to_uint64_round_to_zero (float64 a STATUS_PARAM);
158142c2
FB
419float32 float64_to_float32( float64 STATUS_PARAM );
420#ifdef FLOATX80
421floatx80 float64_to_floatx80( float64 STATUS_PARAM );
422#endif
423#ifdef FLOAT128
424float128 float64_to_float128( float64 STATUS_PARAM );
425#endif
426
427/*----------------------------------------------------------------------------
428| Software IEC/IEEE double-precision operations.
429*----------------------------------------------------------------------------*/
430float64 float64_round_to_int( float64 STATUS_PARAM );
e6e5906b 431float64 float64_trunc_to_int( float64 STATUS_PARAM );
158142c2
FB
432float64 float64_add( float64, float64 STATUS_PARAM );
433float64 float64_sub( float64, float64 STATUS_PARAM );
434float64 float64_mul( float64, float64 STATUS_PARAM );
435float64 float64_div( float64, float64 STATUS_PARAM );
436float64 float64_rem( float64, float64 STATUS_PARAM );
437float64 float64_sqrt( float64 STATUS_PARAM );
374dfc33 438float64 float64_log2( float64 STATUS_PARAM );
211315fb 439int float64_eq_quiet( float64, float64 STATUS_PARAM );
750afe93
FB
440int float64_le( float64, float64 STATUS_PARAM );
441int float64_lt( float64, float64 STATUS_PARAM );
67b7861d 442int float64_unordered( float64, float64 STATUS_PARAM );
2657d0ff 443int float64_eq( float64, float64 STATUS_PARAM );
750afe93
FB
444int float64_le_quiet( float64, float64 STATUS_PARAM );
445int float64_lt_quiet( float64, float64 STATUS_PARAM );
67b7861d 446int float64_unordered_quiet( float64, float64 STATUS_PARAM );
750afe93
FB
447int float64_compare( float64, float64 STATUS_PARAM );
448int float64_compare_quiet( float64, float64 STATUS_PARAM );
274f1b04
PM
449float64 float64_min(float64, float64 STATUS_PARAM);
450float64 float64_max(float64, float64 STATUS_PARAM);
18569871 451int float64_is_quiet_nan( float64 a );
750afe93 452int float64_is_signaling_nan( float64 );
b408dbde 453float64 float64_maybe_silence_nan( float64 );
9ee6e8bb 454float64 float64_scalbn( float64, int STATUS_PARAM );
158142c2 455
1d6bda35
FB
456INLINE float64 float64_abs(float64 a)
457{
37d18660
PM
458 /* Note that abs does *not* handle NaN specially, nor does
459 * it flush denormal inputs to zero.
460 */
f090c9d4 461 return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
1d6bda35
FB
462}
463
464INLINE float64 float64_chs(float64 a)
465{
37d18660
PM
466 /* Note that chs does *not* handle NaN specially, nor does
467 * it flush denormal inputs to zero.
468 */
f090c9d4 469 return make_float64(float64_val(a) ^ 0x8000000000000000LL);
1d6bda35
FB
470}
471
c52ab6f5
AJ
472INLINE int float64_is_infinity(float64 a)
473{
474 return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
475}
476
477INLINE int float64_is_neg(float64 a)
478{
479 return float64_val(a) >> 63;
480}
481
482INLINE int float64_is_zero(float64 a)
483{
484 return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
485}
486
21d6ebde
PM
487INLINE int float64_is_any_nan(float64 a)
488{
489 return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL);
490}
491
c30fe7df
CL
492INLINE float64 float64_set_sign(float64 a, int sign)
493{
494 return make_float64((float64_val(a) & 0x7fffffffffffffffULL)
495 | ((int64_t)sign << 63));
496}
497
f090c9d4 498#define float64_zero make_float64(0)
196cfc89 499#define float64_one make_float64(0x3ff0000000000000LL)
8229c991 500#define float64_ln2 make_float64(0x3fe62e42fefa39efLL)
c30fe7df
CL
501#define float64_half make_float64(0x3fe0000000000000LL)
502#define float64_infinity make_float64(0x7ff0000000000000LL)
f090c9d4 503
8559666d
CL
504/*----------------------------------------------------------------------------
505| The pattern for a default generated double-precision NaN.
506*----------------------------------------------------------------------------*/
507#if defined(TARGET_SPARC)
508#define float64_default_nan make_float64(LIT64( 0x7FFFFFFFFFFFFFFF ))
509#elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA)
510#define float64_default_nan make_float64(LIT64( 0x7FF8000000000000 ))
511#elif SNAN_BIT_IS_ONE
512#define float64_default_nan make_float64(LIT64( 0x7FF7FFFFFFFFFFFF ))
513#else
514#define float64_default_nan make_float64(LIT64( 0xFFF8000000000000 ))
515#endif
516
158142c2
FB
517#ifdef FLOATX80
518
519/*----------------------------------------------------------------------------
520| Software IEC/IEEE extended double-precision conversion routines.
521*----------------------------------------------------------------------------*/
87b8cc3c
AF
522int32 floatx80_to_int32( floatx80 STATUS_PARAM );
523int32 floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
524int64 floatx80_to_int64( floatx80 STATUS_PARAM );
525int64 floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM );
158142c2
FB
526float32 floatx80_to_float32( floatx80 STATUS_PARAM );
527float64 floatx80_to_float64( floatx80 STATUS_PARAM );
528#ifdef FLOAT128
529float128 floatx80_to_float128( floatx80 STATUS_PARAM );
530#endif
531
532/*----------------------------------------------------------------------------
533| Software IEC/IEEE extended double-precision operations.
534*----------------------------------------------------------------------------*/
535floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
536floatx80 floatx80_add( floatx80, floatx80 STATUS_PARAM );
537floatx80 floatx80_sub( floatx80, floatx80 STATUS_PARAM );
538floatx80 floatx80_mul( floatx80, floatx80 STATUS_PARAM );
539floatx80 floatx80_div( floatx80, floatx80 STATUS_PARAM );
540floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
541floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
211315fb 542int floatx80_eq_quiet( floatx80, floatx80 STATUS_PARAM );
750afe93
FB
543int floatx80_le( floatx80, floatx80 STATUS_PARAM );
544int floatx80_lt( floatx80, floatx80 STATUS_PARAM );
67b7861d 545int floatx80_unordered( floatx80, floatx80 STATUS_PARAM );
2657d0ff 546int floatx80_eq( floatx80, floatx80 STATUS_PARAM );
750afe93
FB
547int floatx80_le_quiet( floatx80, floatx80 STATUS_PARAM );
548int floatx80_lt_quiet( floatx80, floatx80 STATUS_PARAM );
67b7861d 549int floatx80_unordered_quiet( floatx80, floatx80 STATUS_PARAM );
18569871 550int floatx80_is_quiet_nan( floatx80 );
750afe93 551int floatx80_is_signaling_nan( floatx80 );
f6a7d92a 552floatx80 floatx80_maybe_silence_nan( floatx80 );
9ee6e8bb 553floatx80 floatx80_scalbn( floatx80, int STATUS_PARAM );
158142c2 554
1d6bda35
FB
555INLINE floatx80 floatx80_abs(floatx80 a)
556{
557 a.high &= 0x7fff;
558 return a;
559}
560
561INLINE floatx80 floatx80_chs(floatx80 a)
562{
563 a.high ^= 0x8000;
564 return a;
565}
566
c52ab6f5
AJ
567INLINE int floatx80_is_infinity(floatx80 a)
568{
569 return (a.high & 0x7fff) == 0x7fff && a.low == 0;
570}
571
572INLINE int floatx80_is_neg(floatx80 a)
573{
574 return a.high >> 15;
575}
576
577INLINE int floatx80_is_zero(floatx80 a)
578{
579 return (a.high & 0x7fff) == 0 && a.low == 0;
580}
581
2bed652f
PM
582INLINE int floatx80_is_any_nan(floatx80 a)
583{
584 return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1);
585}
586
8559666d
CL
587/*----------------------------------------------------------------------------
588| The pattern for a default generated extended double-precision NaN. The
589| `high' and `low' values hold the most- and least-significant bits,
590| respectively.
591*----------------------------------------------------------------------------*/
592#if SNAN_BIT_IS_ONE
593#define floatx80_default_nan_high 0x7FFF
594#define floatx80_default_nan_low LIT64( 0xBFFFFFFFFFFFFFFF )
595#else
596#define floatx80_default_nan_high 0xFFFF
597#define floatx80_default_nan_low LIT64( 0xC000000000000000 )
598#endif
599
158142c2
FB
600#endif
601
602#ifdef FLOAT128
603
604/*----------------------------------------------------------------------------
605| Software IEC/IEEE quadruple-precision conversion routines.
606*----------------------------------------------------------------------------*/
87b8cc3c
AF
607int32 float128_to_int32( float128 STATUS_PARAM );
608int32 float128_to_int32_round_to_zero( float128 STATUS_PARAM );
609int64 float128_to_int64( float128 STATUS_PARAM );
610int64 float128_to_int64_round_to_zero( float128 STATUS_PARAM );
158142c2
FB
611float32 float128_to_float32( float128 STATUS_PARAM );
612float64 float128_to_float64( float128 STATUS_PARAM );
613#ifdef FLOATX80
614floatx80 float128_to_floatx80( float128 STATUS_PARAM );
615#endif
616
617/*----------------------------------------------------------------------------
618| Software IEC/IEEE quadruple-precision operations.
619*----------------------------------------------------------------------------*/
620float128 float128_round_to_int( float128 STATUS_PARAM );
621float128 float128_add( float128, float128 STATUS_PARAM );
622float128 float128_sub( float128, float128 STATUS_PARAM );
623float128 float128_mul( float128, float128 STATUS_PARAM );
624float128 float128_div( float128, float128 STATUS_PARAM );
625float128 float128_rem( float128, float128 STATUS_PARAM );
626float128 float128_sqrt( float128 STATUS_PARAM );
211315fb 627int float128_eq_quiet( float128, float128 STATUS_PARAM );
750afe93
FB
628int float128_le( float128, float128 STATUS_PARAM );
629int float128_lt( float128, float128 STATUS_PARAM );
67b7861d 630int float128_unordered( float128, float128 STATUS_PARAM );
2657d0ff 631int float128_eq( float128, float128 STATUS_PARAM );
750afe93
FB
632int float128_le_quiet( float128, float128 STATUS_PARAM );
633int float128_lt_quiet( float128, float128 STATUS_PARAM );
67b7861d 634int float128_unordered_quiet( float128, float128 STATUS_PARAM );
1f587329
BS
635int float128_compare( float128, float128 STATUS_PARAM );
636int float128_compare_quiet( float128, float128 STATUS_PARAM );
18569871 637int float128_is_quiet_nan( float128 );
750afe93 638int float128_is_signaling_nan( float128 );
f6a7d92a 639float128 float128_maybe_silence_nan( float128 );
9ee6e8bb 640float128 float128_scalbn( float128, int STATUS_PARAM );
158142c2 641
1d6bda35
FB
642INLINE float128 float128_abs(float128 a)
643{
644 a.high &= 0x7fffffffffffffffLL;
645 return a;
646}
647
648INLINE float128 float128_chs(float128 a)
649{
650 a.high ^= 0x8000000000000000LL;
651 return a;
652}
653
c52ab6f5
AJ
654INLINE int float128_is_infinity(float128 a)
655{
656 return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
657}
658
659INLINE int float128_is_neg(float128 a)
660{
661 return a.high >> 63;
662}
663
664INLINE int float128_is_zero(float128 a)
665{
666 return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
667}
668
2bed652f
PM
669INLINE int float128_is_any_nan(float128 a)
670{
671 return ((a.high >> 48) & 0x7fff) == 0x7fff &&
672 ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0));
673}
674
8559666d
CL
675/*----------------------------------------------------------------------------
676| The pattern for a default generated quadruple-precision NaN. The `high' and
677| `low' values hold the most- and least-significant bits, respectively.
678*----------------------------------------------------------------------------*/
679#if SNAN_BIT_IS_ONE
680#define float128_default_nan_high LIT64( 0x7FFF7FFFFFFFFFFF )
681#define float128_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
682#else
683#define float128_default_nan_high LIT64( 0xFFFF800000000000 )
684#define float128_default_nan_low LIT64( 0x0000000000000000 )
685#endif
686
158142c2
FB
687#endif
688
689#else /* CONFIG_SOFTFLOAT */
690
691#include "softfloat-native.h"
692
693#endif /* !CONFIG_SOFTFLOAT */
694
695#endif /* !SOFTFLOAT_H */