]> git.proxmox.com Git - qemu.git/blame - fpu/softfloat.h
report serial devices created with -device in the PIIX4 config space
[qemu.git] / fpu / softfloat.h
CommitLineData
8d725fac
AF
1/*
2 * QEMU float support
3 *
4 * Derived from SoftFloat.
5 */
6
158142c2
FB
7/*============================================================================
8
9This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
10Package, Release 2b.
11
12Written by John R. Hauser. This work was made possible in part by the
13International Computer Science Institute, located at Suite 600, 1947 Center
14Street, Berkeley, California 94704. Funding was partially provided by the
15National Science Foundation under grant MIP-9311980. The original version
16of this code was written as part of a project to build a fixed-point vector
17processor in collaboration with the University of California at Berkeley,
18overseen by Profs. Nelson Morgan and John Wawrzynek. More information
19is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
20arithmetic/SoftFloat.html'.
21
22THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
23been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
24RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
25AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
26COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
27EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
28INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
29OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
30
31Derivative works are acceptable, even for commercial purposes, so long as
32(1) the source code for the derivative work includes prominent notice that
33the work is derivative, and (2) the source code includes prominent notice with
34these four paragraphs for those parts of this code that are retained.
35
36=============================================================================*/
37
38#ifndef SOFTFLOAT_H
39#define SOFTFLOAT_H
40
75b5a697 41#if defined(CONFIG_SOLARIS) && defined(CONFIG_NEEDS_LIBSUNMATH)
0475a5ca
TS
42#include <sunmath.h>
43#endif
44
158142c2
FB
45#include <inttypes.h>
46#include "config.h"
47
48/*----------------------------------------------------------------------------
49| Each of the following `typedef's defines the most convenient type that holds
50| integers of at least as many bits as specified. For example, `uint8' should
51| be the most convenient type that can hold unsigned integers of as many as
52| 8 bits. The `flag' type must be able to hold either a 0 or 1. For most
53| implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
54| to the same as `int'.
55*----------------------------------------------------------------------------*/
750afe93 56typedef uint8_t flag;
158142c2
FB
57typedef uint8_t uint8;
58typedef int8_t int8;
b29fe3ed 59#ifndef _AIX
158142c2
FB
60typedef int uint16;
61typedef int int16;
b29fe3ed 62#endif
158142c2
FB
63typedef unsigned int uint32;
64typedef signed int int32;
65typedef uint64_t uint64;
66typedef int64_t int64;
67
158142c2
FB
68#define LIT64( a ) a##LL
69#define INLINE static inline
70
d2fbca94 71#if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
8559666d
CL
72#define SNAN_BIT_IS_ONE 1
73#else
74#define SNAN_BIT_IS_ONE 0
75#endif
76
158142c2
FB
77#define STATUS_PARAM , float_status *status
78#define STATUS(field) status->field
79#define STATUS_VAR , status
80
1d6bda35
FB
81/*----------------------------------------------------------------------------
82| Software IEC/IEEE floating-point ordering relations
83*----------------------------------------------------------------------------*/
84enum {
85 float_relation_less = -1,
86 float_relation_equal = 0,
87 float_relation_greater = 1,
88 float_relation_unordered = 2
89};
90
158142c2
FB
91/*----------------------------------------------------------------------------
92| Software IEC/IEEE floating-point types.
93*----------------------------------------------------------------------------*/
f090c9d4
PB
94/* Use structures for soft-float types. This prevents accidentally mixing
95 them with native int/float types. A sufficiently clever compiler and
96 sane ABI should be able to see though these structs. However
97 x86/gcc 3.x seems to struggle a bit, so leave them disabled by default. */
98//#define USE_SOFTFLOAT_STRUCT_TYPES
99#ifdef USE_SOFTFLOAT_STRUCT_TYPES
bb4d4bb3
PM
100typedef struct {
101 uint16_t v;
102} float16;
103#define float16_val(x) (((float16)(x)).v)
104#define make_float16(x) __extension__ ({ float16 f16_val = {x}; f16_val; })
d5138cf4 105#define const_float16(x) { x }
f090c9d4
PB
106typedef struct {
107 uint32_t v;
108} float32;
109/* The cast ensures an error if the wrong type is passed. */
110#define float32_val(x) (((float32)(x)).v)
111#define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; })
d5138cf4 112#define const_float32(x) { x }
f090c9d4
PB
113typedef struct {
114 uint64_t v;
115} float64;
116#define float64_val(x) (((float64)(x)).v)
117#define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; })
d5138cf4 118#define const_float64(x) { x }
f090c9d4 119#else
bb4d4bb3 120typedef uint16_t float16;
158142c2
FB
121typedef uint32_t float32;
122typedef uint64_t float64;
bb4d4bb3 123#define float16_val(x) (x)
f090c9d4
PB
124#define float32_val(x) (x)
125#define float64_val(x) (x)
bb4d4bb3 126#define make_float16(x) (x)
f090c9d4
PB
127#define make_float32(x) (x)
128#define make_float64(x) (x)
d5138cf4
PM
129#define const_float16(x) (x)
130#define const_float32(x) (x)
131#define const_float64(x) (x)
f090c9d4 132#endif
158142c2
FB
133typedef struct {
134 uint64_t low;
135 uint16_t high;
136} floatx80;
f3218a8d 137#define make_floatx80(exp, mant) ((floatx80) { mant, exp })
158142c2 138typedef struct {
e2542fe2 139#ifdef HOST_WORDS_BIGENDIAN
158142c2
FB
140 uint64_t high, low;
141#else
142 uint64_t low, high;
143#endif
144} float128;
158142c2
FB
145
146/*----------------------------------------------------------------------------
147| Software IEC/IEEE floating-point underflow tininess-detection mode.
148*----------------------------------------------------------------------------*/
149enum {
150 float_tininess_after_rounding = 0,
151 float_tininess_before_rounding = 1
152};
153
154/*----------------------------------------------------------------------------
155| Software IEC/IEEE floating-point rounding mode.
156*----------------------------------------------------------------------------*/
157enum {
158 float_round_nearest_even = 0,
159 float_round_down = 1,
160 float_round_up = 2,
161 float_round_to_zero = 3
162};
163
164/*----------------------------------------------------------------------------
165| Software IEC/IEEE floating-point exception flags.
166*----------------------------------------------------------------------------*/
167enum {
168 float_flag_invalid = 1,
169 float_flag_divbyzero = 4,
170 float_flag_overflow = 8,
171 float_flag_underflow = 16,
37d18660 172 float_flag_inexact = 32,
e6afc87f
PM
173 float_flag_input_denormal = 64,
174 float_flag_output_denormal = 128
158142c2
FB
175};
176
177typedef struct float_status {
178 signed char float_detect_tininess;
179 signed char float_rounding_mode;
180 signed char float_exception_flags;
158142c2 181 signed char floatx80_rounding_precision;
37d18660 182 /* should denormalised results go to zero and set the inexact flag? */
fe76d976 183 flag flush_to_zero;
37d18660
PM
184 /* should denormalised inputs go to zero and set the input_denormal flag? */
185 flag flush_inputs_to_zero;
5c7908ed 186 flag default_nan_mode;
158142c2
FB
187} float_status;
188
189void set_float_rounding_mode(int val STATUS_PARAM);
1d6bda35 190void set_float_exception_flags(int val STATUS_PARAM);
c29aca44
PM
191INLINE void set_float_detect_tininess(int val STATUS_PARAM)
192{
193 STATUS(float_detect_tininess) = val;
194}
fe76d976
PB
195INLINE void set_flush_to_zero(flag val STATUS_PARAM)
196{
197 STATUS(flush_to_zero) = val;
198}
37d18660
PM
199INLINE void set_flush_inputs_to_zero(flag val STATUS_PARAM)
200{
201 STATUS(flush_inputs_to_zero) = val;
202}
5c7908ed
PB
203INLINE void set_default_nan_mode(flag val STATUS_PARAM)
204{
205 STATUS(default_nan_mode) = val;
206}
1d6bda35
FB
207INLINE int get_float_exception_flags(float_status *status)
208{
209 return STATUS(float_exception_flags);
210}
158142c2 211void set_floatx80_rounding_precision(int val STATUS_PARAM);
158142c2
FB
212
213/*----------------------------------------------------------------------------
214| Routine to raise any or all of the software IEC/IEEE floating-point
215| exception flags.
216*----------------------------------------------------------------------------*/
ec530c81 217void float_raise( int8 flags STATUS_PARAM);
158142c2
FB
218
219/*----------------------------------------------------------------------------
220| Software IEC/IEEE integer-to-floating-point conversion routines.
221*----------------------------------------------------------------------------*/
87b8cc3c
AF
222float32 int32_to_float32( int32 STATUS_PARAM );
223float64 int32_to_float64( int32 STATUS_PARAM );
1d6bda35
FB
224float32 uint32_to_float32( unsigned int STATUS_PARAM );
225float64 uint32_to_float64( unsigned int STATUS_PARAM );
87b8cc3c 226floatx80 int32_to_floatx80( int32 STATUS_PARAM );
87b8cc3c 227float128 int32_to_float128( int32 STATUS_PARAM );
87b8cc3c
AF
228float32 int64_to_float32( int64 STATUS_PARAM );
229float32 uint64_to_float32( uint64 STATUS_PARAM );
230float64 int64_to_float64( int64 STATUS_PARAM );
231float64 uint64_to_float64( uint64 STATUS_PARAM );
87b8cc3c 232floatx80 int64_to_floatx80( int64 STATUS_PARAM );
87b8cc3c 233float128 int64_to_float128( int64 STATUS_PARAM );
158142c2 234
60011498
PB
235/*----------------------------------------------------------------------------
236| Software half-precision conversion routines.
237*----------------------------------------------------------------------------*/
bb4d4bb3
PM
238float16 float32_to_float16( float32, flag STATUS_PARAM );
239float32 float16_to_float32( float16, flag STATUS_PARAM );
240
241/*----------------------------------------------------------------------------
242| Software half-precision operations.
243*----------------------------------------------------------------------------*/
244int float16_is_quiet_nan( float16 );
245int float16_is_signaling_nan( float16 );
246float16 float16_maybe_silence_nan( float16 );
60011498 247
8559666d
CL
248/*----------------------------------------------------------------------------
249| The pattern for a default generated half-precision NaN.
250*----------------------------------------------------------------------------*/
251#if defined(TARGET_ARM)
252#define float16_default_nan make_float16(0x7E00)
253#elif SNAN_BIT_IS_ONE
254#define float16_default_nan make_float16(0x7DFF)
255#else
256#define float16_default_nan make_float16(0xFE00)
257#endif
258
158142c2
FB
259/*----------------------------------------------------------------------------
260| Software IEC/IEEE single-precision conversion routines.
261*----------------------------------------------------------------------------*/
87b8cc3c 262int16 float32_to_int16_round_to_zero( float32 STATUS_PARAM );
cbcef455 263unsigned int float32_to_uint16_round_to_zero( float32 STATUS_PARAM );
87b8cc3c
AF
264int32 float32_to_int32( float32 STATUS_PARAM );
265int32 float32_to_int32_round_to_zero( float32 STATUS_PARAM );
266uint32 float32_to_uint32( float32 STATUS_PARAM );
267uint32 float32_to_uint32_round_to_zero( float32 STATUS_PARAM );
268int64 float32_to_int64( float32 STATUS_PARAM );
269int64 float32_to_int64_round_to_zero( float32 STATUS_PARAM );
158142c2 270float64 float32_to_float64( float32 STATUS_PARAM );
158142c2 271floatx80 float32_to_floatx80( float32 STATUS_PARAM );
158142c2 272float128 float32_to_float128( float32 STATUS_PARAM );
158142c2
FB
273
274/*----------------------------------------------------------------------------
275| Software IEC/IEEE single-precision operations.
276*----------------------------------------------------------------------------*/
277float32 float32_round_to_int( float32 STATUS_PARAM );
278float32 float32_add( float32, float32 STATUS_PARAM );
279float32 float32_sub( float32, float32 STATUS_PARAM );
280float32 float32_mul( float32, float32 STATUS_PARAM );
281float32 float32_div( float32, float32 STATUS_PARAM );
282float32 float32_rem( float32, float32 STATUS_PARAM );
283float32 float32_sqrt( float32 STATUS_PARAM );
8229c991 284float32 float32_exp2( float32 STATUS_PARAM );
374dfc33 285float32 float32_log2( float32 STATUS_PARAM );
b689362d 286int float32_eq( float32, float32 STATUS_PARAM );
750afe93
FB
287int float32_le( float32, float32 STATUS_PARAM );
288int float32_lt( float32, float32 STATUS_PARAM );
67b7861d 289int float32_unordered( float32, float32 STATUS_PARAM );
b689362d 290int float32_eq_quiet( float32, float32 STATUS_PARAM );
750afe93
FB
291int float32_le_quiet( float32, float32 STATUS_PARAM );
292int float32_lt_quiet( float32, float32 STATUS_PARAM );
67b7861d 293int float32_unordered_quiet( float32, float32 STATUS_PARAM );
750afe93
FB
294int float32_compare( float32, float32 STATUS_PARAM );
295int float32_compare_quiet( float32, float32 STATUS_PARAM );
274f1b04
PM
296float32 float32_min(float32, float32 STATUS_PARAM);
297float32 float32_max(float32, float32 STATUS_PARAM);
18569871 298int float32_is_quiet_nan( float32 );
750afe93 299int float32_is_signaling_nan( float32 );
b408dbde 300float32 float32_maybe_silence_nan( float32 );
9ee6e8bb 301float32 float32_scalbn( float32, int STATUS_PARAM );
158142c2 302
1d6bda35
FB
303INLINE float32 float32_abs(float32 a)
304{
37d18660
PM
305 /* Note that abs does *not* handle NaN specially, nor does
306 * it flush denormal inputs to zero.
307 */
f090c9d4 308 return make_float32(float32_val(a) & 0x7fffffff);
1d6bda35
FB
309}
310
311INLINE float32 float32_chs(float32 a)
312{
37d18660
PM
313 /* Note that chs does *not* handle NaN specially, nor does
314 * it flush denormal inputs to zero.
315 */
f090c9d4 316 return make_float32(float32_val(a) ^ 0x80000000);
1d6bda35
FB
317}
318
c52ab6f5
AJ
319INLINE int float32_is_infinity(float32 a)
320{
dadd71a7 321 return (float32_val(a) & 0x7fffffff) == 0x7f800000;
c52ab6f5
AJ
322}
323
324INLINE int float32_is_neg(float32 a)
325{
326 return float32_val(a) >> 31;
327}
328
329INLINE int float32_is_zero(float32 a)
330{
331 return (float32_val(a) & 0x7fffffff) == 0;
332}
333
21d6ebde
PM
334INLINE int float32_is_any_nan(float32 a)
335{
336 return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL);
337}
338
6f3300ad
PM
339INLINE int float32_is_zero_or_denormal(float32 a)
340{
341 return (float32_val(a) & 0x7f800000) == 0;
342}
343
c30fe7df
CL
344INLINE float32 float32_set_sign(float32 a, int sign)
345{
346 return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31));
347}
348
f090c9d4 349#define float32_zero make_float32(0)
196cfc89 350#define float32_one make_float32(0x3f800000)
8229c991 351#define float32_ln2 make_float32(0x3f317218)
c4b4c77a 352#define float32_pi make_float32(0x40490fdb)
c30fe7df
CL
353#define float32_half make_float32(0x3f000000)
354#define float32_infinity make_float32(0x7f800000)
f090c9d4 355
8559666d
CL
356
357/*----------------------------------------------------------------------------
358| The pattern for a default generated single-precision NaN.
359*----------------------------------------------------------------------------*/
360#if defined(TARGET_SPARC)
361#define float32_default_nan make_float32(0x7FFFFFFF)
362#elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA)
363#define float32_default_nan make_float32(0x7FC00000)
364#elif SNAN_BIT_IS_ONE
365#define float32_default_nan make_float32(0x7FBFFFFF)
366#else
367#define float32_default_nan make_float32(0xFFC00000)
368#endif
369
158142c2
FB
370/*----------------------------------------------------------------------------
371| Software IEC/IEEE double-precision conversion routines.
372*----------------------------------------------------------------------------*/
87b8cc3c 373int16 float64_to_int16_round_to_zero( float64 STATUS_PARAM );
cbcef455 374unsigned int float64_to_uint16_round_to_zero( float64 STATUS_PARAM );
87b8cc3c
AF
375int32 float64_to_int32( float64 STATUS_PARAM );
376int32 float64_to_int32_round_to_zero( float64 STATUS_PARAM );
377uint32 float64_to_uint32( float64 STATUS_PARAM );
378uint32 float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
379int64 float64_to_int64( float64 STATUS_PARAM );
380int64 float64_to_int64_round_to_zero( float64 STATUS_PARAM );
381uint64 float64_to_uint64 (float64 a STATUS_PARAM);
382uint64 float64_to_uint64_round_to_zero (float64 a STATUS_PARAM);
158142c2 383float32 float64_to_float32( float64 STATUS_PARAM );
158142c2 384floatx80 float64_to_floatx80( float64 STATUS_PARAM );
158142c2 385float128 float64_to_float128( float64 STATUS_PARAM );
158142c2
FB
386
387/*----------------------------------------------------------------------------
388| Software IEC/IEEE double-precision operations.
389*----------------------------------------------------------------------------*/
390float64 float64_round_to_int( float64 STATUS_PARAM );
e6e5906b 391float64 float64_trunc_to_int( float64 STATUS_PARAM );
158142c2
FB
392float64 float64_add( float64, float64 STATUS_PARAM );
393float64 float64_sub( float64, float64 STATUS_PARAM );
394float64 float64_mul( float64, float64 STATUS_PARAM );
395float64 float64_div( float64, float64 STATUS_PARAM );
396float64 float64_rem( float64, float64 STATUS_PARAM );
397float64 float64_sqrt( float64 STATUS_PARAM );
374dfc33 398float64 float64_log2( float64 STATUS_PARAM );
b689362d 399int float64_eq( float64, float64 STATUS_PARAM );
750afe93
FB
400int float64_le( float64, float64 STATUS_PARAM );
401int float64_lt( float64, float64 STATUS_PARAM );
67b7861d 402int float64_unordered( float64, float64 STATUS_PARAM );
b689362d 403int float64_eq_quiet( float64, float64 STATUS_PARAM );
750afe93
FB
404int float64_le_quiet( float64, float64 STATUS_PARAM );
405int float64_lt_quiet( float64, float64 STATUS_PARAM );
67b7861d 406int float64_unordered_quiet( float64, float64 STATUS_PARAM );
750afe93
FB
407int float64_compare( float64, float64 STATUS_PARAM );
408int float64_compare_quiet( float64, float64 STATUS_PARAM );
274f1b04
PM
409float64 float64_min(float64, float64 STATUS_PARAM);
410float64 float64_max(float64, float64 STATUS_PARAM);
18569871 411int float64_is_quiet_nan( float64 a );
750afe93 412int float64_is_signaling_nan( float64 );
b408dbde 413float64 float64_maybe_silence_nan( float64 );
9ee6e8bb 414float64 float64_scalbn( float64, int STATUS_PARAM );
158142c2 415
1d6bda35
FB
416INLINE float64 float64_abs(float64 a)
417{
37d18660
PM
418 /* Note that abs does *not* handle NaN specially, nor does
419 * it flush denormal inputs to zero.
420 */
f090c9d4 421 return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
1d6bda35
FB
422}
423
424INLINE float64 float64_chs(float64 a)
425{
37d18660
PM
426 /* Note that chs does *not* handle NaN specially, nor does
427 * it flush denormal inputs to zero.
428 */
f090c9d4 429 return make_float64(float64_val(a) ^ 0x8000000000000000LL);
1d6bda35
FB
430}
431
c52ab6f5
AJ
432INLINE int float64_is_infinity(float64 a)
433{
434 return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
435}
436
437INLINE int float64_is_neg(float64 a)
438{
439 return float64_val(a) >> 63;
440}
441
442INLINE int float64_is_zero(float64 a)
443{
444 return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
445}
446
21d6ebde
PM
447INLINE int float64_is_any_nan(float64 a)
448{
449 return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL);
450}
451
587eabfa
AJ
452INLINE int float64_is_zero_or_denormal(float64 a)
453{
454 return (float64_val(a) & 0x7ff0000000000000LL) == 0;
455}
456
c30fe7df
CL
457INLINE float64 float64_set_sign(float64 a, int sign)
458{
459 return make_float64((float64_val(a) & 0x7fffffffffffffffULL)
460 | ((int64_t)sign << 63));
461}
462
f090c9d4 463#define float64_zero make_float64(0)
196cfc89 464#define float64_one make_float64(0x3ff0000000000000LL)
8229c991 465#define float64_ln2 make_float64(0x3fe62e42fefa39efLL)
c4b4c77a 466#define float64_pi make_float64(0x400921fb54442d18LL)
c30fe7df
CL
467#define float64_half make_float64(0x3fe0000000000000LL)
468#define float64_infinity make_float64(0x7ff0000000000000LL)
f090c9d4 469
8559666d
CL
470/*----------------------------------------------------------------------------
471| The pattern for a default generated double-precision NaN.
472*----------------------------------------------------------------------------*/
473#if defined(TARGET_SPARC)
474#define float64_default_nan make_float64(LIT64( 0x7FFFFFFFFFFFFFFF ))
475#elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA)
476#define float64_default_nan make_float64(LIT64( 0x7FF8000000000000 ))
477#elif SNAN_BIT_IS_ONE
478#define float64_default_nan make_float64(LIT64( 0x7FF7FFFFFFFFFFFF ))
479#else
480#define float64_default_nan make_float64(LIT64( 0xFFF8000000000000 ))
481#endif
482
158142c2
FB
483/*----------------------------------------------------------------------------
484| Software IEC/IEEE extended double-precision conversion routines.
485*----------------------------------------------------------------------------*/
87b8cc3c
AF
486int32 floatx80_to_int32( floatx80 STATUS_PARAM );
487int32 floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
488int64 floatx80_to_int64( floatx80 STATUS_PARAM );
489int64 floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM );
158142c2
FB
490float32 floatx80_to_float32( floatx80 STATUS_PARAM );
491float64 floatx80_to_float64( floatx80 STATUS_PARAM );
158142c2 492float128 floatx80_to_float128( floatx80 STATUS_PARAM );
158142c2
FB
493
494/*----------------------------------------------------------------------------
495| Software IEC/IEEE extended double-precision operations.
496*----------------------------------------------------------------------------*/
497floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
498floatx80 floatx80_add( floatx80, floatx80 STATUS_PARAM );
499floatx80 floatx80_sub( floatx80, floatx80 STATUS_PARAM );
500floatx80 floatx80_mul( floatx80, floatx80 STATUS_PARAM );
501floatx80 floatx80_div( floatx80, floatx80 STATUS_PARAM );
502floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
503floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
b689362d 504int floatx80_eq( floatx80, floatx80 STATUS_PARAM );
750afe93
FB
505int floatx80_le( floatx80, floatx80 STATUS_PARAM );
506int floatx80_lt( floatx80, floatx80 STATUS_PARAM );
67b7861d 507int floatx80_unordered( floatx80, floatx80 STATUS_PARAM );
b689362d 508int floatx80_eq_quiet( floatx80, floatx80 STATUS_PARAM );
750afe93
FB
509int floatx80_le_quiet( floatx80, floatx80 STATUS_PARAM );
510int floatx80_lt_quiet( floatx80, floatx80 STATUS_PARAM );
67b7861d 511int floatx80_unordered_quiet( floatx80, floatx80 STATUS_PARAM );
f6714d36
AJ
512int floatx80_compare( floatx80, floatx80 STATUS_PARAM );
513int floatx80_compare_quiet( floatx80, floatx80 STATUS_PARAM );
18569871 514int floatx80_is_quiet_nan( floatx80 );
750afe93 515int floatx80_is_signaling_nan( floatx80 );
f6a7d92a 516floatx80 floatx80_maybe_silence_nan( floatx80 );
9ee6e8bb 517floatx80 floatx80_scalbn( floatx80, int STATUS_PARAM );
158142c2 518
1d6bda35
FB
519INLINE floatx80 floatx80_abs(floatx80 a)
520{
521 a.high &= 0x7fff;
522 return a;
523}
524
525INLINE floatx80 floatx80_chs(floatx80 a)
526{
527 a.high ^= 0x8000;
528 return a;
529}
530
c52ab6f5
AJ
531INLINE int floatx80_is_infinity(floatx80 a)
532{
b76235e4 533 return (a.high & 0x7fff) == 0x7fff && a.low == 0x8000000000000000LL;
c52ab6f5
AJ
534}
535
536INLINE int floatx80_is_neg(floatx80 a)
537{
538 return a.high >> 15;
539}
540
541INLINE int floatx80_is_zero(floatx80 a)
542{
543 return (a.high & 0x7fff) == 0 && a.low == 0;
544}
545
587eabfa
AJ
546INLINE int floatx80_is_zero_or_denormal(floatx80 a)
547{
548 return (a.high & 0x7fff) == 0;
549}
550
2bed652f
PM
551INLINE int floatx80_is_any_nan(floatx80 a)
552{
553 return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1);
554}
555
f3218a8d
AJ
556#define floatx80_zero make_floatx80(0x0000, 0x0000000000000000LL)
557#define floatx80_one make_floatx80(0x3fff, 0x8000000000000000LL)
558#define floatx80_ln2 make_floatx80(0x3ffe, 0xb17217f7d1cf79acLL)
c4b4c77a 559#define floatx80_pi make_floatx80(0x4000, 0xc90fdaa22168c235LL)
f3218a8d
AJ
560#define floatx80_half make_floatx80(0x3ffe, 0x8000000000000000LL)
561#define floatx80_infinity make_floatx80(0x7fff, 0x8000000000000000LL)
562
8559666d
CL
563/*----------------------------------------------------------------------------
564| The pattern for a default generated extended double-precision NaN. The
565| `high' and `low' values hold the most- and least-significant bits,
566| respectively.
567*----------------------------------------------------------------------------*/
568#if SNAN_BIT_IS_ONE
569#define floatx80_default_nan_high 0x7FFF
570#define floatx80_default_nan_low LIT64( 0xBFFFFFFFFFFFFFFF )
571#else
572#define floatx80_default_nan_high 0xFFFF
573#define floatx80_default_nan_low LIT64( 0xC000000000000000 )
574#endif
575
158142c2
FB
576/*----------------------------------------------------------------------------
577| Software IEC/IEEE quadruple-precision conversion routines.
578*----------------------------------------------------------------------------*/
87b8cc3c
AF
579int32 float128_to_int32( float128 STATUS_PARAM );
580int32 float128_to_int32_round_to_zero( float128 STATUS_PARAM );
581int64 float128_to_int64( float128 STATUS_PARAM );
582int64 float128_to_int64_round_to_zero( float128 STATUS_PARAM );
158142c2
FB
583float32 float128_to_float32( float128 STATUS_PARAM );
584float64 float128_to_float64( float128 STATUS_PARAM );
158142c2 585floatx80 float128_to_floatx80( float128 STATUS_PARAM );
158142c2
FB
586
587/*----------------------------------------------------------------------------
588| Software IEC/IEEE quadruple-precision operations.
589*----------------------------------------------------------------------------*/
590float128 float128_round_to_int( float128 STATUS_PARAM );
591float128 float128_add( float128, float128 STATUS_PARAM );
592float128 float128_sub( float128, float128 STATUS_PARAM );
593float128 float128_mul( float128, float128 STATUS_PARAM );
594float128 float128_div( float128, float128 STATUS_PARAM );
595float128 float128_rem( float128, float128 STATUS_PARAM );
596float128 float128_sqrt( float128 STATUS_PARAM );
b689362d 597int float128_eq( float128, float128 STATUS_PARAM );
750afe93
FB
598int float128_le( float128, float128 STATUS_PARAM );
599int float128_lt( float128, float128 STATUS_PARAM );
67b7861d 600int float128_unordered( float128, float128 STATUS_PARAM );
b689362d 601int float128_eq_quiet( float128, float128 STATUS_PARAM );
750afe93
FB
602int float128_le_quiet( float128, float128 STATUS_PARAM );
603int float128_lt_quiet( float128, float128 STATUS_PARAM );
67b7861d 604int float128_unordered_quiet( float128, float128 STATUS_PARAM );
1f587329
BS
605int float128_compare( float128, float128 STATUS_PARAM );
606int float128_compare_quiet( float128, float128 STATUS_PARAM );
18569871 607int float128_is_quiet_nan( float128 );
750afe93 608int float128_is_signaling_nan( float128 );
f6a7d92a 609float128 float128_maybe_silence_nan( float128 );
9ee6e8bb 610float128 float128_scalbn( float128, int STATUS_PARAM );
158142c2 611
1d6bda35
FB
612INLINE float128 float128_abs(float128 a)
613{
614 a.high &= 0x7fffffffffffffffLL;
615 return a;
616}
617
618INLINE float128 float128_chs(float128 a)
619{
620 a.high ^= 0x8000000000000000LL;
621 return a;
622}
623
c52ab6f5
AJ
624INLINE int float128_is_infinity(float128 a)
625{
626 return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
627}
628
629INLINE int float128_is_neg(float128 a)
630{
631 return a.high >> 63;
632}
633
634INLINE int float128_is_zero(float128 a)
635{
636 return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
637}
638
587eabfa
AJ
639INLINE int float128_is_zero_or_denormal(float128 a)
640{
641 return (a.high & 0x7fff000000000000LL) == 0;
642}
643
2bed652f
PM
644INLINE int float128_is_any_nan(float128 a)
645{
646 return ((a.high >> 48) & 0x7fff) == 0x7fff &&
647 ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0));
648}
649
8559666d
CL
650/*----------------------------------------------------------------------------
651| The pattern for a default generated quadruple-precision NaN. The `high' and
652| `low' values hold the most- and least-significant bits, respectively.
653*----------------------------------------------------------------------------*/
654#if SNAN_BIT_IS_ONE
655#define float128_default_nan_high LIT64( 0x7FFF7FFFFFFFFFFF )
656#define float128_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
657#else
658#define float128_default_nan_high LIT64( 0xFFFF800000000000 )
659#define float128_default_nan_low LIT64( 0x0000000000000000 )
660#endif
661
158142c2 662#endif /* !SOFTFLOAT_H */