]> git.proxmox.com Git - qemu.git/blame - fpu/softfloat.h
Avoid asprintf() which is not available on mingw
[qemu.git] / fpu / softfloat.h
CommitLineData
8d725fac
AF
1/*
2 * QEMU float support
3 *
4 * Derived from SoftFloat.
5 */
6
158142c2
FB
7/*============================================================================
8
9This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
10Package, Release 2b.
11
12Written by John R. Hauser. This work was made possible in part by the
13International Computer Science Institute, located at Suite 600, 1947 Center
14Street, Berkeley, California 94704. Funding was partially provided by the
15National Science Foundation under grant MIP-9311980. The original version
16of this code was written as part of a project to build a fixed-point vector
17processor in collaboration with the University of California at Berkeley,
18overseen by Profs. Nelson Morgan and John Wawrzynek. More information
19is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
20arithmetic/SoftFloat.html'.
21
22THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
23been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
24RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
25AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
26COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
27EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
28INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
29OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
30
31Derivative works are acceptable, even for commercial purposes, so long as
32(1) the source code for the derivative work includes prominent notice that
33the work is derivative, and (2) the source code includes prominent notice with
34these four paragraphs for those parts of this code that are retained.
35
36=============================================================================*/
37
38#ifndef SOFTFLOAT_H
39#define SOFTFLOAT_H
40
75b5a697 41#if defined(CONFIG_SOLARIS) && defined(CONFIG_NEEDS_LIBSUNMATH)
0475a5ca
TS
42#include <sunmath.h>
43#endif
44
158142c2 45#include <inttypes.h>
789ec7ce 46#include "config-host.h"
5aea4c58 47#include "osdep.h"
158142c2
FB
48
49/*----------------------------------------------------------------------------
50| Each of the following `typedef's defines the most convenient type that holds
51| integers of at least as many bits as specified. For example, `uint8' should
52| be the most convenient type that can hold unsigned integers of as many as
53| 8 bits. The `flag' type must be able to hold either a 0 or 1. For most
54| implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
55| to the same as `int'.
56*----------------------------------------------------------------------------*/
750afe93 57typedef uint8_t flag;
158142c2
FB
58typedef uint8_t uint8;
59typedef int8_t int8;
158142c2
FB
60typedef unsigned int uint32;
61typedef signed int int32;
62typedef uint64_t uint64;
63typedef int64_t int64;
64
158142c2
FB
65#define LIT64( a ) a##LL
66#define INLINE static inline
67
158142c2
FB
68#define STATUS_PARAM , float_status *status
69#define STATUS(field) status->field
70#define STATUS_VAR , status
71
1d6bda35
FB
72/*----------------------------------------------------------------------------
73| Software IEC/IEEE floating-point ordering relations
74*----------------------------------------------------------------------------*/
75enum {
76 float_relation_less = -1,
77 float_relation_equal = 0,
78 float_relation_greater = 1,
79 float_relation_unordered = 2
80};
81
158142c2
FB
82/*----------------------------------------------------------------------------
83| Software IEC/IEEE floating-point types.
84*----------------------------------------------------------------------------*/
f090c9d4
PB
85/* Use structures for soft-float types. This prevents accidentally mixing
86 them with native int/float types. A sufficiently clever compiler and
87 sane ABI should be able to see though these structs. However
88 x86/gcc 3.x seems to struggle a bit, so leave them disabled by default. */
89//#define USE_SOFTFLOAT_STRUCT_TYPES
90#ifdef USE_SOFTFLOAT_STRUCT_TYPES
bb4d4bb3
PM
91typedef struct {
92 uint16_t v;
93} float16;
94#define float16_val(x) (((float16)(x)).v)
95#define make_float16(x) __extension__ ({ float16 f16_val = {x}; f16_val; })
d5138cf4 96#define const_float16(x) { x }
f090c9d4
PB
97typedef struct {
98 uint32_t v;
99} float32;
100/* The cast ensures an error if the wrong type is passed. */
101#define float32_val(x) (((float32)(x)).v)
102#define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; })
d5138cf4 103#define const_float32(x) { x }
f090c9d4
PB
104typedef struct {
105 uint64_t v;
106} float64;
107#define float64_val(x) (((float64)(x)).v)
108#define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; })
d5138cf4 109#define const_float64(x) { x }
f090c9d4 110#else
bb4d4bb3 111typedef uint16_t float16;
158142c2
FB
112typedef uint32_t float32;
113typedef uint64_t float64;
bb4d4bb3 114#define float16_val(x) (x)
f090c9d4
PB
115#define float32_val(x) (x)
116#define float64_val(x) (x)
bb4d4bb3 117#define make_float16(x) (x)
f090c9d4
PB
118#define make_float32(x) (x)
119#define make_float64(x) (x)
d5138cf4
PM
120#define const_float16(x) (x)
121#define const_float32(x) (x)
122#define const_float64(x) (x)
f090c9d4 123#endif
158142c2
FB
124typedef struct {
125 uint64_t low;
126 uint16_t high;
127} floatx80;
f3218a8d 128#define make_floatx80(exp, mant) ((floatx80) { mant, exp })
3bf7e40a 129#define make_floatx80_init(exp, mant) { .low = mant, .high = exp }
158142c2 130typedef struct {
e2542fe2 131#ifdef HOST_WORDS_BIGENDIAN
158142c2
FB
132 uint64_t high, low;
133#else
134 uint64_t low, high;
135#endif
136} float128;
789ec7ce 137#define make_float128(high_, low_) ((float128) { .high = high_, .low = low_ })
3bf7e40a 138#define make_float128_init(high_, low_) { .high = high_, .low = low_ }
158142c2
FB
139
140/*----------------------------------------------------------------------------
141| Software IEC/IEEE floating-point underflow tininess-detection mode.
142*----------------------------------------------------------------------------*/
143enum {
144 float_tininess_after_rounding = 0,
145 float_tininess_before_rounding = 1
146};
147
148/*----------------------------------------------------------------------------
149| Software IEC/IEEE floating-point rounding mode.
150*----------------------------------------------------------------------------*/
151enum {
152 float_round_nearest_even = 0,
153 float_round_down = 1,
154 float_round_up = 2,
155 float_round_to_zero = 3
156};
157
158/*----------------------------------------------------------------------------
159| Software IEC/IEEE floating-point exception flags.
160*----------------------------------------------------------------------------*/
161enum {
162 float_flag_invalid = 1,
163 float_flag_divbyzero = 4,
164 float_flag_overflow = 8,
165 float_flag_underflow = 16,
37d18660 166 float_flag_inexact = 32,
e6afc87f
PM
167 float_flag_input_denormal = 64,
168 float_flag_output_denormal = 128
158142c2
FB
169};
170
171typedef struct float_status {
172 signed char float_detect_tininess;
173 signed char float_rounding_mode;
174 signed char float_exception_flags;
158142c2 175 signed char floatx80_rounding_precision;
37d18660 176 /* should denormalised results go to zero and set the inexact flag? */
fe76d976 177 flag flush_to_zero;
37d18660
PM
178 /* should denormalised inputs go to zero and set the input_denormal flag? */
179 flag flush_inputs_to_zero;
5c7908ed 180 flag default_nan_mode;
158142c2
FB
181} float_status;
182
183void set_float_rounding_mode(int val STATUS_PARAM);
1d6bda35 184void set_float_exception_flags(int val STATUS_PARAM);
c29aca44
PM
185INLINE void set_float_detect_tininess(int val STATUS_PARAM)
186{
187 STATUS(float_detect_tininess) = val;
188}
fe76d976
PB
189INLINE void set_flush_to_zero(flag val STATUS_PARAM)
190{
191 STATUS(flush_to_zero) = val;
192}
37d18660
PM
193INLINE void set_flush_inputs_to_zero(flag val STATUS_PARAM)
194{
195 STATUS(flush_inputs_to_zero) = val;
196}
5c7908ed
PB
197INLINE void set_default_nan_mode(flag val STATUS_PARAM)
198{
199 STATUS(default_nan_mode) = val;
200}
1d6bda35
FB
201INLINE int get_float_exception_flags(float_status *status)
202{
203 return STATUS(float_exception_flags);
204}
158142c2 205void set_floatx80_rounding_precision(int val STATUS_PARAM);
158142c2
FB
206
207/*----------------------------------------------------------------------------
208| Routine to raise any or all of the software IEC/IEEE floating-point
209| exception flags.
210*----------------------------------------------------------------------------*/
ec530c81 211void float_raise( int8 flags STATUS_PARAM);
158142c2 212
369be8f6
PM
213/*----------------------------------------------------------------------------
214| Options to indicate which negations to perform in float*_muladd()
215| Using these differs from negating an input or output before calling
216| the muladd function in that this means that a NaN doesn't have its
217| sign bit inverted before it is propagated.
218*----------------------------------------------------------------------------*/
219enum {
220 float_muladd_negate_c = 1,
221 float_muladd_negate_product = 2,
222 float_muladd_negate_result = 3,
223};
224
158142c2
FB
225/*----------------------------------------------------------------------------
226| Software IEC/IEEE integer-to-floating-point conversion routines.
227*----------------------------------------------------------------------------*/
87b8cc3c
AF
228float32 int32_to_float32( int32 STATUS_PARAM );
229float64 int32_to_float64( int32 STATUS_PARAM );
9f8d2a09
AF
230float32 uint32_to_float32( uint32 STATUS_PARAM );
231float64 uint32_to_float64( uint32 STATUS_PARAM );
87b8cc3c 232floatx80 int32_to_floatx80( int32 STATUS_PARAM );
87b8cc3c 233float128 int32_to_float128( int32 STATUS_PARAM );
87b8cc3c
AF
234float32 int64_to_float32( int64 STATUS_PARAM );
235float32 uint64_to_float32( uint64 STATUS_PARAM );
236float64 int64_to_float64( int64 STATUS_PARAM );
237float64 uint64_to_float64( uint64 STATUS_PARAM );
87b8cc3c 238floatx80 int64_to_floatx80( int64 STATUS_PARAM );
87b8cc3c 239float128 int64_to_float128( int64 STATUS_PARAM );
158142c2 240
60011498
PB
241/*----------------------------------------------------------------------------
242| Software half-precision conversion routines.
243*----------------------------------------------------------------------------*/
bb4d4bb3
PM
244float16 float32_to_float16( float32, flag STATUS_PARAM );
245float32 float16_to_float32( float16, flag STATUS_PARAM );
246
247/*----------------------------------------------------------------------------
248| Software half-precision operations.
249*----------------------------------------------------------------------------*/
250int float16_is_quiet_nan( float16 );
251int float16_is_signaling_nan( float16 );
252float16 float16_maybe_silence_nan( float16 );
60011498 253
8559666d
CL
254/*----------------------------------------------------------------------------
255| The pattern for a default generated half-precision NaN.
256*----------------------------------------------------------------------------*/
789ec7ce 257extern const float16 float16_default_nan;
8559666d 258
158142c2
FB
259/*----------------------------------------------------------------------------
260| Software IEC/IEEE single-precision conversion routines.
261*----------------------------------------------------------------------------*/
94a49d86 262int_fast16_t float32_to_int16_round_to_zero(float32 STATUS_PARAM);
5aea4c58 263uint_fast16_t float32_to_uint16_round_to_zero(float32 STATUS_PARAM);
87b8cc3c
AF
264int32 float32_to_int32( float32 STATUS_PARAM );
265int32 float32_to_int32_round_to_zero( float32 STATUS_PARAM );
266uint32 float32_to_uint32( float32 STATUS_PARAM );
267uint32 float32_to_uint32_round_to_zero( float32 STATUS_PARAM );
268int64 float32_to_int64( float32 STATUS_PARAM );
269int64 float32_to_int64_round_to_zero( float32 STATUS_PARAM );
158142c2 270float64 float32_to_float64( float32 STATUS_PARAM );
158142c2 271floatx80 float32_to_floatx80( float32 STATUS_PARAM );
158142c2 272float128 float32_to_float128( float32 STATUS_PARAM );
158142c2
FB
273
274/*----------------------------------------------------------------------------
275| Software IEC/IEEE single-precision operations.
276*----------------------------------------------------------------------------*/
277float32 float32_round_to_int( float32 STATUS_PARAM );
278float32 float32_add( float32, float32 STATUS_PARAM );
279float32 float32_sub( float32, float32 STATUS_PARAM );
280float32 float32_mul( float32, float32 STATUS_PARAM );
281float32 float32_div( float32, float32 STATUS_PARAM );
282float32 float32_rem( float32, float32 STATUS_PARAM );
369be8f6 283float32 float32_muladd(float32, float32, float32, int STATUS_PARAM);
158142c2 284float32 float32_sqrt( float32 STATUS_PARAM );
8229c991 285float32 float32_exp2( float32 STATUS_PARAM );
374dfc33 286float32 float32_log2( float32 STATUS_PARAM );
b689362d 287int float32_eq( float32, float32 STATUS_PARAM );
750afe93
FB
288int float32_le( float32, float32 STATUS_PARAM );
289int float32_lt( float32, float32 STATUS_PARAM );
67b7861d 290int float32_unordered( float32, float32 STATUS_PARAM );
b689362d 291int float32_eq_quiet( float32, float32 STATUS_PARAM );
750afe93
FB
292int float32_le_quiet( float32, float32 STATUS_PARAM );
293int float32_lt_quiet( float32, float32 STATUS_PARAM );
67b7861d 294int float32_unordered_quiet( float32, float32 STATUS_PARAM );
750afe93
FB
295int float32_compare( float32, float32 STATUS_PARAM );
296int float32_compare_quiet( float32, float32 STATUS_PARAM );
274f1b04
PM
297float32 float32_min(float32, float32 STATUS_PARAM);
298float32 float32_max(float32, float32 STATUS_PARAM);
18569871 299int float32_is_quiet_nan( float32 );
750afe93 300int float32_is_signaling_nan( float32 );
b408dbde 301float32 float32_maybe_silence_nan( float32 );
9ee6e8bb 302float32 float32_scalbn( float32, int STATUS_PARAM );
158142c2 303
1d6bda35
FB
304INLINE float32 float32_abs(float32 a)
305{
37d18660
PM
306 /* Note that abs does *not* handle NaN specially, nor does
307 * it flush denormal inputs to zero.
308 */
f090c9d4 309 return make_float32(float32_val(a) & 0x7fffffff);
1d6bda35
FB
310}
311
312INLINE float32 float32_chs(float32 a)
313{
37d18660
PM
314 /* Note that chs does *not* handle NaN specially, nor does
315 * it flush denormal inputs to zero.
316 */
f090c9d4 317 return make_float32(float32_val(a) ^ 0x80000000);
1d6bda35
FB
318}
319
c52ab6f5
AJ
320INLINE int float32_is_infinity(float32 a)
321{
dadd71a7 322 return (float32_val(a) & 0x7fffffff) == 0x7f800000;
c52ab6f5
AJ
323}
324
325INLINE int float32_is_neg(float32 a)
326{
327 return float32_val(a) >> 31;
328}
329
330INLINE int float32_is_zero(float32 a)
331{
332 return (float32_val(a) & 0x7fffffff) == 0;
333}
334
21d6ebde
PM
335INLINE int float32_is_any_nan(float32 a)
336{
337 return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL);
338}
339
6f3300ad
PM
340INLINE int float32_is_zero_or_denormal(float32 a)
341{
342 return (float32_val(a) & 0x7f800000) == 0;
343}
344
c30fe7df
CL
345INLINE float32 float32_set_sign(float32 a, int sign)
346{
347 return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31));
348}
349
f090c9d4 350#define float32_zero make_float32(0)
196cfc89 351#define float32_one make_float32(0x3f800000)
8229c991 352#define float32_ln2 make_float32(0x3f317218)
c4b4c77a 353#define float32_pi make_float32(0x40490fdb)
c30fe7df
CL
354#define float32_half make_float32(0x3f000000)
355#define float32_infinity make_float32(0x7f800000)
f090c9d4 356
8559666d
CL
357
358/*----------------------------------------------------------------------------
359| The pattern for a default generated single-precision NaN.
360*----------------------------------------------------------------------------*/
789ec7ce 361extern const float32 float32_default_nan;
8559666d 362
158142c2
FB
363/*----------------------------------------------------------------------------
364| Software IEC/IEEE double-precision conversion routines.
365*----------------------------------------------------------------------------*/
94a49d86 366int_fast16_t float64_to_int16_round_to_zero(float64 STATUS_PARAM);
5aea4c58 367uint_fast16_t float64_to_uint16_round_to_zero(float64 STATUS_PARAM);
87b8cc3c
AF
368int32 float64_to_int32( float64 STATUS_PARAM );
369int32 float64_to_int32_round_to_zero( float64 STATUS_PARAM );
370uint32 float64_to_uint32( float64 STATUS_PARAM );
371uint32 float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
372int64 float64_to_int64( float64 STATUS_PARAM );
373int64 float64_to_int64_round_to_zero( float64 STATUS_PARAM );
374uint64 float64_to_uint64 (float64 a STATUS_PARAM);
375uint64 float64_to_uint64_round_to_zero (float64 a STATUS_PARAM);
158142c2 376float32 float64_to_float32( float64 STATUS_PARAM );
158142c2 377floatx80 float64_to_floatx80( float64 STATUS_PARAM );
158142c2 378float128 float64_to_float128( float64 STATUS_PARAM );
158142c2
FB
379
380/*----------------------------------------------------------------------------
381| Software IEC/IEEE double-precision operations.
382*----------------------------------------------------------------------------*/
383float64 float64_round_to_int( float64 STATUS_PARAM );
e6e5906b 384float64 float64_trunc_to_int( float64 STATUS_PARAM );
158142c2
FB
385float64 float64_add( float64, float64 STATUS_PARAM );
386float64 float64_sub( float64, float64 STATUS_PARAM );
387float64 float64_mul( float64, float64 STATUS_PARAM );
388float64 float64_div( float64, float64 STATUS_PARAM );
389float64 float64_rem( float64, float64 STATUS_PARAM );
369be8f6 390float64 float64_muladd(float64, float64, float64, int STATUS_PARAM);
158142c2 391float64 float64_sqrt( float64 STATUS_PARAM );
374dfc33 392float64 float64_log2( float64 STATUS_PARAM );
b689362d 393int float64_eq( float64, float64 STATUS_PARAM );
750afe93
FB
394int float64_le( float64, float64 STATUS_PARAM );
395int float64_lt( float64, float64 STATUS_PARAM );
67b7861d 396int float64_unordered( float64, float64 STATUS_PARAM );
b689362d 397int float64_eq_quiet( float64, float64 STATUS_PARAM );
750afe93
FB
398int float64_le_quiet( float64, float64 STATUS_PARAM );
399int float64_lt_quiet( float64, float64 STATUS_PARAM );
67b7861d 400int float64_unordered_quiet( float64, float64 STATUS_PARAM );
750afe93
FB
401int float64_compare( float64, float64 STATUS_PARAM );
402int float64_compare_quiet( float64, float64 STATUS_PARAM );
274f1b04
PM
403float64 float64_min(float64, float64 STATUS_PARAM);
404float64 float64_max(float64, float64 STATUS_PARAM);
18569871 405int float64_is_quiet_nan( float64 a );
750afe93 406int float64_is_signaling_nan( float64 );
b408dbde 407float64 float64_maybe_silence_nan( float64 );
9ee6e8bb 408float64 float64_scalbn( float64, int STATUS_PARAM );
158142c2 409
1d6bda35
FB
410INLINE float64 float64_abs(float64 a)
411{
37d18660
PM
412 /* Note that abs does *not* handle NaN specially, nor does
413 * it flush denormal inputs to zero.
414 */
f090c9d4 415 return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
1d6bda35
FB
416}
417
418INLINE float64 float64_chs(float64 a)
419{
37d18660
PM
420 /* Note that chs does *not* handle NaN specially, nor does
421 * it flush denormal inputs to zero.
422 */
f090c9d4 423 return make_float64(float64_val(a) ^ 0x8000000000000000LL);
1d6bda35
FB
424}
425
c52ab6f5
AJ
426INLINE int float64_is_infinity(float64 a)
427{
428 return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
429}
430
431INLINE int float64_is_neg(float64 a)
432{
433 return float64_val(a) >> 63;
434}
435
436INLINE int float64_is_zero(float64 a)
437{
438 return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
439}
440
21d6ebde
PM
441INLINE int float64_is_any_nan(float64 a)
442{
443 return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL);
444}
445
587eabfa
AJ
446INLINE int float64_is_zero_or_denormal(float64 a)
447{
448 return (float64_val(a) & 0x7ff0000000000000LL) == 0;
449}
450
c30fe7df
CL
451INLINE float64 float64_set_sign(float64 a, int sign)
452{
453 return make_float64((float64_val(a) & 0x7fffffffffffffffULL)
454 | ((int64_t)sign << 63));
455}
456
f090c9d4 457#define float64_zero make_float64(0)
196cfc89 458#define float64_one make_float64(0x3ff0000000000000LL)
8229c991 459#define float64_ln2 make_float64(0x3fe62e42fefa39efLL)
c4b4c77a 460#define float64_pi make_float64(0x400921fb54442d18LL)
c30fe7df
CL
461#define float64_half make_float64(0x3fe0000000000000LL)
462#define float64_infinity make_float64(0x7ff0000000000000LL)
f090c9d4 463
8559666d
CL
464/*----------------------------------------------------------------------------
465| The pattern for a default generated double-precision NaN.
466*----------------------------------------------------------------------------*/
789ec7ce 467extern const float64 float64_default_nan;
8559666d 468
158142c2
FB
469/*----------------------------------------------------------------------------
470| Software IEC/IEEE extended double-precision conversion routines.
471*----------------------------------------------------------------------------*/
87b8cc3c
AF
472int32 floatx80_to_int32( floatx80 STATUS_PARAM );
473int32 floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
474int64 floatx80_to_int64( floatx80 STATUS_PARAM );
475int64 floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM );
158142c2
FB
476float32 floatx80_to_float32( floatx80 STATUS_PARAM );
477float64 floatx80_to_float64( floatx80 STATUS_PARAM );
158142c2 478float128 floatx80_to_float128( floatx80 STATUS_PARAM );
158142c2
FB
479
480/*----------------------------------------------------------------------------
481| Software IEC/IEEE extended double-precision operations.
482*----------------------------------------------------------------------------*/
483floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
484floatx80 floatx80_add( floatx80, floatx80 STATUS_PARAM );
485floatx80 floatx80_sub( floatx80, floatx80 STATUS_PARAM );
486floatx80 floatx80_mul( floatx80, floatx80 STATUS_PARAM );
487floatx80 floatx80_div( floatx80, floatx80 STATUS_PARAM );
488floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
489floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
b689362d 490int floatx80_eq( floatx80, floatx80 STATUS_PARAM );
750afe93
FB
491int floatx80_le( floatx80, floatx80 STATUS_PARAM );
492int floatx80_lt( floatx80, floatx80 STATUS_PARAM );
67b7861d 493int floatx80_unordered( floatx80, floatx80 STATUS_PARAM );
b689362d 494int floatx80_eq_quiet( floatx80, floatx80 STATUS_PARAM );
750afe93
FB
495int floatx80_le_quiet( floatx80, floatx80 STATUS_PARAM );
496int floatx80_lt_quiet( floatx80, floatx80 STATUS_PARAM );
67b7861d 497int floatx80_unordered_quiet( floatx80, floatx80 STATUS_PARAM );
f6714d36
AJ
498int floatx80_compare( floatx80, floatx80 STATUS_PARAM );
499int floatx80_compare_quiet( floatx80, floatx80 STATUS_PARAM );
18569871 500int floatx80_is_quiet_nan( floatx80 );
750afe93 501int floatx80_is_signaling_nan( floatx80 );
f6a7d92a 502floatx80 floatx80_maybe_silence_nan( floatx80 );
9ee6e8bb 503floatx80 floatx80_scalbn( floatx80, int STATUS_PARAM );
158142c2 504
1d6bda35
FB
505INLINE floatx80 floatx80_abs(floatx80 a)
506{
507 a.high &= 0x7fff;
508 return a;
509}
510
511INLINE floatx80 floatx80_chs(floatx80 a)
512{
513 a.high ^= 0x8000;
514 return a;
515}
516
c52ab6f5
AJ
517INLINE int floatx80_is_infinity(floatx80 a)
518{
b76235e4 519 return (a.high & 0x7fff) == 0x7fff && a.low == 0x8000000000000000LL;
c52ab6f5
AJ
520}
521
522INLINE int floatx80_is_neg(floatx80 a)
523{
524 return a.high >> 15;
525}
526
527INLINE int floatx80_is_zero(floatx80 a)
528{
529 return (a.high & 0x7fff) == 0 && a.low == 0;
530}
531
587eabfa
AJ
532INLINE int floatx80_is_zero_or_denormal(floatx80 a)
533{
534 return (a.high & 0x7fff) == 0;
535}
536
2bed652f
PM
537INLINE int floatx80_is_any_nan(floatx80 a)
538{
539 return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1);
540}
541
f3218a8d
AJ
542#define floatx80_zero make_floatx80(0x0000, 0x0000000000000000LL)
543#define floatx80_one make_floatx80(0x3fff, 0x8000000000000000LL)
544#define floatx80_ln2 make_floatx80(0x3ffe, 0xb17217f7d1cf79acLL)
c4b4c77a 545#define floatx80_pi make_floatx80(0x4000, 0xc90fdaa22168c235LL)
f3218a8d
AJ
546#define floatx80_half make_floatx80(0x3ffe, 0x8000000000000000LL)
547#define floatx80_infinity make_floatx80(0x7fff, 0x8000000000000000LL)
548
8559666d 549/*----------------------------------------------------------------------------
789ec7ce 550| The pattern for a default generated extended double-precision NaN.
8559666d 551*----------------------------------------------------------------------------*/
789ec7ce 552extern const floatx80 floatx80_default_nan;
8559666d 553
158142c2
FB
554/*----------------------------------------------------------------------------
555| Software IEC/IEEE quadruple-precision conversion routines.
556*----------------------------------------------------------------------------*/
87b8cc3c
AF
557int32 float128_to_int32( float128 STATUS_PARAM );
558int32 float128_to_int32_round_to_zero( float128 STATUS_PARAM );
559int64 float128_to_int64( float128 STATUS_PARAM );
560int64 float128_to_int64_round_to_zero( float128 STATUS_PARAM );
158142c2
FB
561float32 float128_to_float32( float128 STATUS_PARAM );
562float64 float128_to_float64( float128 STATUS_PARAM );
158142c2 563floatx80 float128_to_floatx80( float128 STATUS_PARAM );
158142c2
FB
564
565/*----------------------------------------------------------------------------
566| Software IEC/IEEE quadruple-precision operations.
567*----------------------------------------------------------------------------*/
568float128 float128_round_to_int( float128 STATUS_PARAM );
569float128 float128_add( float128, float128 STATUS_PARAM );
570float128 float128_sub( float128, float128 STATUS_PARAM );
571float128 float128_mul( float128, float128 STATUS_PARAM );
572float128 float128_div( float128, float128 STATUS_PARAM );
573float128 float128_rem( float128, float128 STATUS_PARAM );
574float128 float128_sqrt( float128 STATUS_PARAM );
b689362d 575int float128_eq( float128, float128 STATUS_PARAM );
750afe93
FB
576int float128_le( float128, float128 STATUS_PARAM );
577int float128_lt( float128, float128 STATUS_PARAM );
67b7861d 578int float128_unordered( float128, float128 STATUS_PARAM );
b689362d 579int float128_eq_quiet( float128, float128 STATUS_PARAM );
750afe93
FB
580int float128_le_quiet( float128, float128 STATUS_PARAM );
581int float128_lt_quiet( float128, float128 STATUS_PARAM );
67b7861d 582int float128_unordered_quiet( float128, float128 STATUS_PARAM );
1f587329
BS
583int float128_compare( float128, float128 STATUS_PARAM );
584int float128_compare_quiet( float128, float128 STATUS_PARAM );
18569871 585int float128_is_quiet_nan( float128 );
750afe93 586int float128_is_signaling_nan( float128 );
f6a7d92a 587float128 float128_maybe_silence_nan( float128 );
9ee6e8bb 588float128 float128_scalbn( float128, int STATUS_PARAM );
158142c2 589
1d6bda35
FB
590INLINE float128 float128_abs(float128 a)
591{
592 a.high &= 0x7fffffffffffffffLL;
593 return a;
594}
595
596INLINE float128 float128_chs(float128 a)
597{
598 a.high ^= 0x8000000000000000LL;
599 return a;
600}
601
c52ab6f5
AJ
602INLINE int float128_is_infinity(float128 a)
603{
604 return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
605}
606
607INLINE int float128_is_neg(float128 a)
608{
609 return a.high >> 63;
610}
611
612INLINE int float128_is_zero(float128 a)
613{
614 return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
615}
616
587eabfa
AJ
617INLINE int float128_is_zero_or_denormal(float128 a)
618{
619 return (a.high & 0x7fff000000000000LL) == 0;
620}
621
2bed652f
PM
622INLINE int float128_is_any_nan(float128 a)
623{
624 return ((a.high >> 48) & 0x7fff) == 0x7fff &&
625 ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0));
626}
627
8559666d 628/*----------------------------------------------------------------------------
789ec7ce 629| The pattern for a default generated quadruple-precision NaN.
8559666d 630*----------------------------------------------------------------------------*/
789ec7ce 631extern const float128 float128_default_nan;
8559666d 632
158142c2 633#endif /* !SOFTFLOAT_H */