]> git.proxmox.com Git - qemu.git/blame - fpu/softfloat.h
softfloat: Add float*_min() and float*_max() functions
[qemu.git] / fpu / softfloat.h
CommitLineData
8d725fac
AF
1/*
2 * QEMU float support
3 *
4 * Derived from SoftFloat.
5 */
6
158142c2
FB
7/*============================================================================
8
9This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
10Package, Release 2b.
11
12Written by John R. Hauser. This work was made possible in part by the
13International Computer Science Institute, located at Suite 600, 1947 Center
14Street, Berkeley, California 94704. Funding was partially provided by the
15National Science Foundation under grant MIP-9311980. The original version
16of this code was written as part of a project to build a fixed-point vector
17processor in collaboration with the University of California at Berkeley,
18overseen by Profs. Nelson Morgan and John Wawrzynek. More information
19is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
20arithmetic/SoftFloat.html'.
21
22THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
23been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
24RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
25AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
26COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
27EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
28INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
29OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
30
31Derivative works are acceptable, even for commercial purposes, so long as
32(1) the source code for the derivative work includes prominent notice that
33the work is derivative, and (2) the source code includes prominent notice with
34these four paragraphs for those parts of this code that are retained.
35
36=============================================================================*/
37
38#ifndef SOFTFLOAT_H
39#define SOFTFLOAT_H
40
75b5a697 41#if defined(CONFIG_SOLARIS) && defined(CONFIG_NEEDS_LIBSUNMATH)
0475a5ca
TS
42#include <sunmath.h>
43#endif
44
158142c2
FB
45#include <inttypes.h>
46#include "config.h"
47
48/*----------------------------------------------------------------------------
49| Each of the following `typedef's defines the most convenient type that holds
50| integers of at least as many bits as specified. For example, `uint8' should
51| be the most convenient type that can hold unsigned integers of as many as
52| 8 bits. The `flag' type must be able to hold either a 0 or 1. For most
53| implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
54| to the same as `int'.
55*----------------------------------------------------------------------------*/
750afe93 56typedef uint8_t flag;
158142c2
FB
57typedef uint8_t uint8;
58typedef int8_t int8;
b29fe3ed 59#ifndef _AIX
158142c2
FB
60typedef int uint16;
61typedef int int16;
b29fe3ed 62#endif
158142c2
FB
63typedef unsigned int uint32;
64typedef signed int int32;
65typedef uint64_t uint64;
66typedef int64_t int64;
67
158142c2
FB
68#define LIT64( a ) a##LL
69#define INLINE static inline
70
8559666d
CL
71#if defined(TARGET_MIPS) || defined(TARGET_SH4)
72#define SNAN_BIT_IS_ONE 1
73#else
74#define SNAN_BIT_IS_ONE 0
75#endif
76
158142c2
FB
77/*----------------------------------------------------------------------------
78| The macro `FLOATX80' must be defined to enable the extended double-precision
79| floating-point format `floatx80'. If this macro is not defined, the
80| `floatx80' type will not be defined, and none of the functions that either
81| input or output the `floatx80' type will be defined. The same applies to
82| the `FLOAT128' macro and the quadruple-precision format `float128'.
83*----------------------------------------------------------------------------*/
84#ifdef CONFIG_SOFTFLOAT
85/* bit exact soft float support */
86#define FLOATX80
87#define FLOAT128
88#else
89/* native float support */
71e72a19 90#if (defined(__i386__) || defined(__x86_64__)) && !defined(CONFIG_BSD)
158142c2
FB
91#define FLOATX80
92#endif
93#endif /* !CONFIG_SOFTFLOAT */
94
95#define STATUS_PARAM , float_status *status
96#define STATUS(field) status->field
97#define STATUS_VAR , status
98
1d6bda35
FB
99/*----------------------------------------------------------------------------
100| Software IEC/IEEE floating-point ordering relations
101*----------------------------------------------------------------------------*/
102enum {
103 float_relation_less = -1,
104 float_relation_equal = 0,
105 float_relation_greater = 1,
106 float_relation_unordered = 2
107};
108
158142c2
FB
109#ifdef CONFIG_SOFTFLOAT
110/*----------------------------------------------------------------------------
111| Software IEC/IEEE floating-point types.
112*----------------------------------------------------------------------------*/
f090c9d4
PB
113/* Use structures for soft-float types. This prevents accidentally mixing
114 them with native int/float types. A sufficiently clever compiler and
115 sane ABI should be able to see though these structs. However
116 x86/gcc 3.x seems to struggle a bit, so leave them disabled by default. */
117//#define USE_SOFTFLOAT_STRUCT_TYPES
118#ifdef USE_SOFTFLOAT_STRUCT_TYPES
bb4d4bb3
PM
119typedef struct {
120 uint16_t v;
121} float16;
122#define float16_val(x) (((float16)(x)).v)
123#define make_float16(x) __extension__ ({ float16 f16_val = {x}; f16_val; })
d5138cf4 124#define const_float16(x) { x }
f090c9d4
PB
125typedef struct {
126 uint32_t v;
127} float32;
128/* The cast ensures an error if the wrong type is passed. */
129#define float32_val(x) (((float32)(x)).v)
130#define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; })
d5138cf4 131#define const_float32(x) { x }
f090c9d4
PB
132typedef struct {
133 uint64_t v;
134} float64;
135#define float64_val(x) (((float64)(x)).v)
136#define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; })
d5138cf4 137#define const_float64(x) { x }
f090c9d4 138#else
bb4d4bb3 139typedef uint16_t float16;
158142c2
FB
140typedef uint32_t float32;
141typedef uint64_t float64;
bb4d4bb3 142#define float16_val(x) (x)
f090c9d4
PB
143#define float32_val(x) (x)
144#define float64_val(x) (x)
bb4d4bb3 145#define make_float16(x) (x)
f090c9d4
PB
146#define make_float32(x) (x)
147#define make_float64(x) (x)
d5138cf4
PM
148#define const_float16(x) (x)
149#define const_float32(x) (x)
150#define const_float64(x) (x)
f090c9d4 151#endif
158142c2
FB
152#ifdef FLOATX80
153typedef struct {
154 uint64_t low;
155 uint16_t high;
156} floatx80;
157#endif
158#ifdef FLOAT128
159typedef struct {
e2542fe2 160#ifdef HOST_WORDS_BIGENDIAN
158142c2
FB
161 uint64_t high, low;
162#else
163 uint64_t low, high;
164#endif
165} float128;
166#endif
167
168/*----------------------------------------------------------------------------
169| Software IEC/IEEE floating-point underflow tininess-detection mode.
170*----------------------------------------------------------------------------*/
171enum {
172 float_tininess_after_rounding = 0,
173 float_tininess_before_rounding = 1
174};
175
176/*----------------------------------------------------------------------------
177| Software IEC/IEEE floating-point rounding mode.
178*----------------------------------------------------------------------------*/
179enum {
180 float_round_nearest_even = 0,
181 float_round_down = 1,
182 float_round_up = 2,
183 float_round_to_zero = 3
184};
185
186/*----------------------------------------------------------------------------
187| Software IEC/IEEE floating-point exception flags.
188*----------------------------------------------------------------------------*/
189enum {
190 float_flag_invalid = 1,
191 float_flag_divbyzero = 4,
192 float_flag_overflow = 8,
193 float_flag_underflow = 16,
37d18660
PM
194 float_flag_inexact = 32,
195 float_flag_input_denormal = 64
158142c2
FB
196};
197
198typedef struct float_status {
199 signed char float_detect_tininess;
200 signed char float_rounding_mode;
201 signed char float_exception_flags;
202#ifdef FLOATX80
203 signed char floatx80_rounding_precision;
204#endif
37d18660 205 /* should denormalised results go to zero and set the inexact flag? */
fe76d976 206 flag flush_to_zero;
37d18660
PM
207 /* should denormalised inputs go to zero and set the input_denormal flag? */
208 flag flush_inputs_to_zero;
5c7908ed 209 flag default_nan_mode;
158142c2
FB
210} float_status;
211
212void set_float_rounding_mode(int val STATUS_PARAM);
1d6bda35 213void set_float_exception_flags(int val STATUS_PARAM);
fe76d976
PB
214INLINE void set_flush_to_zero(flag val STATUS_PARAM)
215{
216 STATUS(flush_to_zero) = val;
217}
37d18660
PM
218INLINE void set_flush_inputs_to_zero(flag val STATUS_PARAM)
219{
220 STATUS(flush_inputs_to_zero) = val;
221}
5c7908ed
PB
222INLINE void set_default_nan_mode(flag val STATUS_PARAM)
223{
224 STATUS(default_nan_mode) = val;
225}
1d6bda35
FB
226INLINE int get_float_exception_flags(float_status *status)
227{
228 return STATUS(float_exception_flags);
229}
158142c2
FB
230#ifdef FLOATX80
231void set_floatx80_rounding_precision(int val STATUS_PARAM);
232#endif
233
234/*----------------------------------------------------------------------------
235| Routine to raise any or all of the software IEC/IEEE floating-point
236| exception flags.
237*----------------------------------------------------------------------------*/
ec530c81 238void float_raise( int8 flags STATUS_PARAM);
158142c2
FB
239
240/*----------------------------------------------------------------------------
241| Software IEC/IEEE integer-to-floating-point conversion routines.
242*----------------------------------------------------------------------------*/
87b8cc3c
AF
243float32 int32_to_float32( int32 STATUS_PARAM );
244float64 int32_to_float64( int32 STATUS_PARAM );
1d6bda35
FB
245float32 uint32_to_float32( unsigned int STATUS_PARAM );
246float64 uint32_to_float64( unsigned int STATUS_PARAM );
158142c2 247#ifdef FLOATX80
87b8cc3c 248floatx80 int32_to_floatx80( int32 STATUS_PARAM );
158142c2
FB
249#endif
250#ifdef FLOAT128
87b8cc3c 251float128 int32_to_float128( int32 STATUS_PARAM );
158142c2 252#endif
87b8cc3c
AF
253float32 int64_to_float32( int64 STATUS_PARAM );
254float32 uint64_to_float32( uint64 STATUS_PARAM );
255float64 int64_to_float64( int64 STATUS_PARAM );
256float64 uint64_to_float64( uint64 STATUS_PARAM );
158142c2 257#ifdef FLOATX80
87b8cc3c 258floatx80 int64_to_floatx80( int64 STATUS_PARAM );
158142c2
FB
259#endif
260#ifdef FLOAT128
87b8cc3c 261float128 int64_to_float128( int64 STATUS_PARAM );
158142c2
FB
262#endif
263
60011498
PB
264/*----------------------------------------------------------------------------
265| Software half-precision conversion routines.
266*----------------------------------------------------------------------------*/
bb4d4bb3
PM
267float16 float32_to_float16( float32, flag STATUS_PARAM );
268float32 float16_to_float32( float16, flag STATUS_PARAM );
269
270/*----------------------------------------------------------------------------
271| Software half-precision operations.
272*----------------------------------------------------------------------------*/
273int float16_is_quiet_nan( float16 );
274int float16_is_signaling_nan( float16 );
275float16 float16_maybe_silence_nan( float16 );
60011498 276
8559666d
CL
277/*----------------------------------------------------------------------------
278| The pattern for a default generated half-precision NaN.
279*----------------------------------------------------------------------------*/
280#if defined(TARGET_ARM)
281#define float16_default_nan make_float16(0x7E00)
282#elif SNAN_BIT_IS_ONE
283#define float16_default_nan make_float16(0x7DFF)
284#else
285#define float16_default_nan make_float16(0xFE00)
286#endif
287
158142c2
FB
288/*----------------------------------------------------------------------------
289| Software IEC/IEEE single-precision conversion routines.
290*----------------------------------------------------------------------------*/
87b8cc3c 291int16 float32_to_int16_round_to_zero( float32 STATUS_PARAM );
cbcef455 292unsigned int float32_to_uint16_round_to_zero( float32 STATUS_PARAM );
87b8cc3c
AF
293int32 float32_to_int32( float32 STATUS_PARAM );
294int32 float32_to_int32_round_to_zero( float32 STATUS_PARAM );
295uint32 float32_to_uint32( float32 STATUS_PARAM );
296uint32 float32_to_uint32_round_to_zero( float32 STATUS_PARAM );
297int64 float32_to_int64( float32 STATUS_PARAM );
298int64 float32_to_int64_round_to_zero( float32 STATUS_PARAM );
158142c2
FB
299float64 float32_to_float64( float32 STATUS_PARAM );
300#ifdef FLOATX80
301floatx80 float32_to_floatx80( float32 STATUS_PARAM );
302#endif
303#ifdef FLOAT128
304float128 float32_to_float128( float32 STATUS_PARAM );
305#endif
306
307/*----------------------------------------------------------------------------
308| Software IEC/IEEE single-precision operations.
309*----------------------------------------------------------------------------*/
310float32 float32_round_to_int( float32 STATUS_PARAM );
311float32 float32_add( float32, float32 STATUS_PARAM );
312float32 float32_sub( float32, float32 STATUS_PARAM );
313float32 float32_mul( float32, float32 STATUS_PARAM );
314float32 float32_div( float32, float32 STATUS_PARAM );
315float32 float32_rem( float32, float32 STATUS_PARAM );
316float32 float32_sqrt( float32 STATUS_PARAM );
8229c991 317float32 float32_exp2( float32 STATUS_PARAM );
374dfc33 318float32 float32_log2( float32 STATUS_PARAM );
750afe93
FB
319int float32_eq( float32, float32 STATUS_PARAM );
320int float32_le( float32, float32 STATUS_PARAM );
321int float32_lt( float32, float32 STATUS_PARAM );
322int float32_eq_signaling( float32, float32 STATUS_PARAM );
323int float32_le_quiet( float32, float32 STATUS_PARAM );
324int float32_lt_quiet( float32, float32 STATUS_PARAM );
325int float32_compare( float32, float32 STATUS_PARAM );
326int float32_compare_quiet( float32, float32 STATUS_PARAM );
274f1b04
PM
327float32 float32_min(float32, float32 STATUS_PARAM);
328float32 float32_max(float32, float32 STATUS_PARAM);
18569871 329int float32_is_quiet_nan( float32 );
750afe93 330int float32_is_signaling_nan( float32 );
b408dbde 331float32 float32_maybe_silence_nan( float32 );
9ee6e8bb 332float32 float32_scalbn( float32, int STATUS_PARAM );
158142c2 333
1d6bda35
FB
334INLINE float32 float32_abs(float32 a)
335{
37d18660
PM
336 /* Note that abs does *not* handle NaN specially, nor does
337 * it flush denormal inputs to zero.
338 */
f090c9d4 339 return make_float32(float32_val(a) & 0x7fffffff);
1d6bda35
FB
340}
341
342INLINE float32 float32_chs(float32 a)
343{
37d18660
PM
344 /* Note that chs does *not* handle NaN specially, nor does
345 * it flush denormal inputs to zero.
346 */
f090c9d4 347 return make_float32(float32_val(a) ^ 0x80000000);
1d6bda35
FB
348}
349
c52ab6f5
AJ
350INLINE int float32_is_infinity(float32 a)
351{
dadd71a7 352 return (float32_val(a) & 0x7fffffff) == 0x7f800000;
c52ab6f5
AJ
353}
354
355INLINE int float32_is_neg(float32 a)
356{
357 return float32_val(a) >> 31;
358}
359
360INLINE int float32_is_zero(float32 a)
361{
362 return (float32_val(a) & 0x7fffffff) == 0;
363}
364
21d6ebde
PM
365INLINE int float32_is_any_nan(float32 a)
366{
367 return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL);
368}
369
6f3300ad
PM
370INLINE int float32_is_zero_or_denormal(float32 a)
371{
372 return (float32_val(a) & 0x7f800000) == 0;
373}
374
c30fe7df
CL
375INLINE float32 float32_set_sign(float32 a, int sign)
376{
377 return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31));
378}
379
f090c9d4 380#define float32_zero make_float32(0)
196cfc89 381#define float32_one make_float32(0x3f800000)
8229c991 382#define float32_ln2 make_float32(0x3f317218)
c30fe7df
CL
383#define float32_half make_float32(0x3f000000)
384#define float32_infinity make_float32(0x7f800000)
f090c9d4 385
8559666d
CL
386
387/*----------------------------------------------------------------------------
388| The pattern for a default generated single-precision NaN.
389*----------------------------------------------------------------------------*/
390#if defined(TARGET_SPARC)
391#define float32_default_nan make_float32(0x7FFFFFFF)
392#elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA)
393#define float32_default_nan make_float32(0x7FC00000)
394#elif SNAN_BIT_IS_ONE
395#define float32_default_nan make_float32(0x7FBFFFFF)
396#else
397#define float32_default_nan make_float32(0xFFC00000)
398#endif
399
158142c2
FB
400/*----------------------------------------------------------------------------
401| Software IEC/IEEE double-precision conversion routines.
402*----------------------------------------------------------------------------*/
87b8cc3c 403int16 float64_to_int16_round_to_zero( float64 STATUS_PARAM );
cbcef455 404unsigned int float64_to_uint16_round_to_zero( float64 STATUS_PARAM );
87b8cc3c
AF
405int32 float64_to_int32( float64 STATUS_PARAM );
406int32 float64_to_int32_round_to_zero( float64 STATUS_PARAM );
407uint32 float64_to_uint32( float64 STATUS_PARAM );
408uint32 float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
409int64 float64_to_int64( float64 STATUS_PARAM );
410int64 float64_to_int64_round_to_zero( float64 STATUS_PARAM );
411uint64 float64_to_uint64 (float64 a STATUS_PARAM);
412uint64 float64_to_uint64_round_to_zero (float64 a STATUS_PARAM);
158142c2
FB
413float32 float64_to_float32( float64 STATUS_PARAM );
414#ifdef FLOATX80
415floatx80 float64_to_floatx80( float64 STATUS_PARAM );
416#endif
417#ifdef FLOAT128
418float128 float64_to_float128( float64 STATUS_PARAM );
419#endif
420
421/*----------------------------------------------------------------------------
422| Software IEC/IEEE double-precision operations.
423*----------------------------------------------------------------------------*/
424float64 float64_round_to_int( float64 STATUS_PARAM );
e6e5906b 425float64 float64_trunc_to_int( float64 STATUS_PARAM );
158142c2
FB
426float64 float64_add( float64, float64 STATUS_PARAM );
427float64 float64_sub( float64, float64 STATUS_PARAM );
428float64 float64_mul( float64, float64 STATUS_PARAM );
429float64 float64_div( float64, float64 STATUS_PARAM );
430float64 float64_rem( float64, float64 STATUS_PARAM );
431float64 float64_sqrt( float64 STATUS_PARAM );
374dfc33 432float64 float64_log2( float64 STATUS_PARAM );
750afe93
FB
433int float64_eq( float64, float64 STATUS_PARAM );
434int float64_le( float64, float64 STATUS_PARAM );
435int float64_lt( float64, float64 STATUS_PARAM );
436int float64_eq_signaling( float64, float64 STATUS_PARAM );
437int float64_le_quiet( float64, float64 STATUS_PARAM );
438int float64_lt_quiet( float64, float64 STATUS_PARAM );
439int float64_compare( float64, float64 STATUS_PARAM );
440int float64_compare_quiet( float64, float64 STATUS_PARAM );
274f1b04
PM
441float64 float64_min(float64, float64 STATUS_PARAM);
442float64 float64_max(float64, float64 STATUS_PARAM);
18569871 443int float64_is_quiet_nan( float64 a );
750afe93 444int float64_is_signaling_nan( float64 );
b408dbde 445float64 float64_maybe_silence_nan( float64 );
9ee6e8bb 446float64 float64_scalbn( float64, int STATUS_PARAM );
158142c2 447
1d6bda35
FB
448INLINE float64 float64_abs(float64 a)
449{
37d18660
PM
450 /* Note that abs does *not* handle NaN specially, nor does
451 * it flush denormal inputs to zero.
452 */
f090c9d4 453 return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
1d6bda35
FB
454}
455
456INLINE float64 float64_chs(float64 a)
457{
37d18660
PM
458 /* Note that chs does *not* handle NaN specially, nor does
459 * it flush denormal inputs to zero.
460 */
f090c9d4 461 return make_float64(float64_val(a) ^ 0x8000000000000000LL);
1d6bda35
FB
462}
463
c52ab6f5
AJ
464INLINE int float64_is_infinity(float64 a)
465{
466 return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
467}
468
469INLINE int float64_is_neg(float64 a)
470{
471 return float64_val(a) >> 63;
472}
473
474INLINE int float64_is_zero(float64 a)
475{
476 return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
477}
478
21d6ebde
PM
479INLINE int float64_is_any_nan(float64 a)
480{
481 return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL);
482}
483
c30fe7df
CL
484INLINE float64 float64_set_sign(float64 a, int sign)
485{
486 return make_float64((float64_val(a) & 0x7fffffffffffffffULL)
487 | ((int64_t)sign << 63));
488}
489
f090c9d4 490#define float64_zero make_float64(0)
196cfc89 491#define float64_one make_float64(0x3ff0000000000000LL)
8229c991 492#define float64_ln2 make_float64(0x3fe62e42fefa39efLL)
c30fe7df
CL
493#define float64_half make_float64(0x3fe0000000000000LL)
494#define float64_infinity make_float64(0x7ff0000000000000LL)
f090c9d4 495
8559666d
CL
496/*----------------------------------------------------------------------------
497| The pattern for a default generated double-precision NaN.
498*----------------------------------------------------------------------------*/
499#if defined(TARGET_SPARC)
500#define float64_default_nan make_float64(LIT64( 0x7FFFFFFFFFFFFFFF ))
501#elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA)
502#define float64_default_nan make_float64(LIT64( 0x7FF8000000000000 ))
503#elif SNAN_BIT_IS_ONE
504#define float64_default_nan make_float64(LIT64( 0x7FF7FFFFFFFFFFFF ))
505#else
506#define float64_default_nan make_float64(LIT64( 0xFFF8000000000000 ))
507#endif
508
158142c2
FB
509#ifdef FLOATX80
510
511/*----------------------------------------------------------------------------
512| Software IEC/IEEE extended double-precision conversion routines.
513*----------------------------------------------------------------------------*/
87b8cc3c
AF
514int32 floatx80_to_int32( floatx80 STATUS_PARAM );
515int32 floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
516int64 floatx80_to_int64( floatx80 STATUS_PARAM );
517int64 floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM );
158142c2
FB
518float32 floatx80_to_float32( floatx80 STATUS_PARAM );
519float64 floatx80_to_float64( floatx80 STATUS_PARAM );
520#ifdef FLOAT128
521float128 floatx80_to_float128( floatx80 STATUS_PARAM );
522#endif
523
524/*----------------------------------------------------------------------------
525| Software IEC/IEEE extended double-precision operations.
526*----------------------------------------------------------------------------*/
527floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
528floatx80 floatx80_add( floatx80, floatx80 STATUS_PARAM );
529floatx80 floatx80_sub( floatx80, floatx80 STATUS_PARAM );
530floatx80 floatx80_mul( floatx80, floatx80 STATUS_PARAM );
531floatx80 floatx80_div( floatx80, floatx80 STATUS_PARAM );
532floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
533floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
750afe93
FB
534int floatx80_eq( floatx80, floatx80 STATUS_PARAM );
535int floatx80_le( floatx80, floatx80 STATUS_PARAM );
536int floatx80_lt( floatx80, floatx80 STATUS_PARAM );
537int floatx80_eq_signaling( floatx80, floatx80 STATUS_PARAM );
538int floatx80_le_quiet( floatx80, floatx80 STATUS_PARAM );
539int floatx80_lt_quiet( floatx80, floatx80 STATUS_PARAM );
18569871 540int floatx80_is_quiet_nan( floatx80 );
750afe93 541int floatx80_is_signaling_nan( floatx80 );
f6a7d92a 542floatx80 floatx80_maybe_silence_nan( floatx80 );
9ee6e8bb 543floatx80 floatx80_scalbn( floatx80, int STATUS_PARAM );
158142c2 544
1d6bda35
FB
545INLINE floatx80 floatx80_abs(floatx80 a)
546{
547 a.high &= 0x7fff;
548 return a;
549}
550
551INLINE floatx80 floatx80_chs(floatx80 a)
552{
553 a.high ^= 0x8000;
554 return a;
555}
556
c52ab6f5
AJ
557INLINE int floatx80_is_infinity(floatx80 a)
558{
559 return (a.high & 0x7fff) == 0x7fff && a.low == 0;
560}
561
562INLINE int floatx80_is_neg(floatx80 a)
563{
564 return a.high >> 15;
565}
566
567INLINE int floatx80_is_zero(floatx80 a)
568{
569 return (a.high & 0x7fff) == 0 && a.low == 0;
570}
571
2bed652f
PM
572INLINE int floatx80_is_any_nan(floatx80 a)
573{
574 return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1);
575}
576
8559666d
CL
577/*----------------------------------------------------------------------------
578| The pattern for a default generated extended double-precision NaN. The
579| `high' and `low' values hold the most- and least-significant bits,
580| respectively.
581*----------------------------------------------------------------------------*/
582#if SNAN_BIT_IS_ONE
583#define floatx80_default_nan_high 0x7FFF
584#define floatx80_default_nan_low LIT64( 0xBFFFFFFFFFFFFFFF )
585#else
586#define floatx80_default_nan_high 0xFFFF
587#define floatx80_default_nan_low LIT64( 0xC000000000000000 )
588#endif
589
158142c2
FB
590#endif
591
592#ifdef FLOAT128
593
594/*----------------------------------------------------------------------------
595| Software IEC/IEEE quadruple-precision conversion routines.
596*----------------------------------------------------------------------------*/
87b8cc3c
AF
597int32 float128_to_int32( float128 STATUS_PARAM );
598int32 float128_to_int32_round_to_zero( float128 STATUS_PARAM );
599int64 float128_to_int64( float128 STATUS_PARAM );
600int64 float128_to_int64_round_to_zero( float128 STATUS_PARAM );
158142c2
FB
601float32 float128_to_float32( float128 STATUS_PARAM );
602float64 float128_to_float64( float128 STATUS_PARAM );
603#ifdef FLOATX80
604floatx80 float128_to_floatx80( float128 STATUS_PARAM );
605#endif
606
607/*----------------------------------------------------------------------------
608| Software IEC/IEEE quadruple-precision operations.
609*----------------------------------------------------------------------------*/
610float128 float128_round_to_int( float128 STATUS_PARAM );
611float128 float128_add( float128, float128 STATUS_PARAM );
612float128 float128_sub( float128, float128 STATUS_PARAM );
613float128 float128_mul( float128, float128 STATUS_PARAM );
614float128 float128_div( float128, float128 STATUS_PARAM );
615float128 float128_rem( float128, float128 STATUS_PARAM );
616float128 float128_sqrt( float128 STATUS_PARAM );
750afe93
FB
617int float128_eq( float128, float128 STATUS_PARAM );
618int float128_le( float128, float128 STATUS_PARAM );
619int float128_lt( float128, float128 STATUS_PARAM );
620int float128_eq_signaling( float128, float128 STATUS_PARAM );
621int float128_le_quiet( float128, float128 STATUS_PARAM );
622int float128_lt_quiet( float128, float128 STATUS_PARAM );
1f587329
BS
623int float128_compare( float128, float128 STATUS_PARAM );
624int float128_compare_quiet( float128, float128 STATUS_PARAM );
18569871 625int float128_is_quiet_nan( float128 );
750afe93 626int float128_is_signaling_nan( float128 );
f6a7d92a 627float128 float128_maybe_silence_nan( float128 );
9ee6e8bb 628float128 float128_scalbn( float128, int STATUS_PARAM );
158142c2 629
1d6bda35
FB
630INLINE float128 float128_abs(float128 a)
631{
632 a.high &= 0x7fffffffffffffffLL;
633 return a;
634}
635
636INLINE float128 float128_chs(float128 a)
637{
638 a.high ^= 0x8000000000000000LL;
639 return a;
640}
641
c52ab6f5
AJ
642INLINE int float128_is_infinity(float128 a)
643{
644 return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
645}
646
647INLINE int float128_is_neg(float128 a)
648{
649 return a.high >> 63;
650}
651
652INLINE int float128_is_zero(float128 a)
653{
654 return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
655}
656
2bed652f
PM
657INLINE int float128_is_any_nan(float128 a)
658{
659 return ((a.high >> 48) & 0x7fff) == 0x7fff &&
660 ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0));
661}
662
8559666d
CL
663/*----------------------------------------------------------------------------
664| The pattern for a default generated quadruple-precision NaN. The `high' and
665| `low' values hold the most- and least-significant bits, respectively.
666*----------------------------------------------------------------------------*/
667#if SNAN_BIT_IS_ONE
668#define float128_default_nan_high LIT64( 0x7FFF7FFFFFFFFFFF )
669#define float128_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
670#else
671#define float128_default_nan_high LIT64( 0xFFFF800000000000 )
672#define float128_default_nan_low LIT64( 0x0000000000000000 )
673#endif
674
158142c2
FB
675#endif
676
677#else /* CONFIG_SOFTFLOAT */
678
679#include "softfloat-native.h"
680
681#endif /* !CONFIG_SOFTFLOAT */
682
683#endif /* !SOFTFLOAT_H */