]> git.proxmox.com Git - qemu.git/blame - fpu/softfloat.h
Merge remote-tracking branch 'mst/for_anthony' into staging
[qemu.git] / fpu / softfloat.h
CommitLineData
8d725fac
AF
1/*
2 * QEMU float support
3 *
4 * Derived from SoftFloat.
5 */
6
158142c2
FB
7/*============================================================================
8
9This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
10Package, Release 2b.
11
12Written by John R. Hauser. This work was made possible in part by the
13International Computer Science Institute, located at Suite 600, 1947 Center
14Street, Berkeley, California 94704. Funding was partially provided by the
15National Science Foundation under grant MIP-9311980. The original version
16of this code was written as part of a project to build a fixed-point vector
17processor in collaboration with the University of California at Berkeley,
18overseen by Profs. Nelson Morgan and John Wawrzynek. More information
19is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
20arithmetic/SoftFloat.html'.
21
22THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
23been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
24RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
25AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
26COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
27EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
28INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
29OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
30
31Derivative works are acceptable, even for commercial purposes, so long as
32(1) the source code for the derivative work includes prominent notice that
33the work is derivative, and (2) the source code includes prominent notice with
34these four paragraphs for those parts of this code that are retained.
35
36=============================================================================*/
37
38#ifndef SOFTFLOAT_H
39#define SOFTFLOAT_H
40
75b5a697 41#if defined(CONFIG_SOLARIS) && defined(CONFIG_NEEDS_LIBSUNMATH)
0475a5ca
TS
42#include <sunmath.h>
43#endif
44
158142c2 45#include <inttypes.h>
789ec7ce 46#include "config-host.h"
158142c2
FB
47
48/*----------------------------------------------------------------------------
49| Each of the following `typedef's defines the most convenient type that holds
50| integers of at least as many bits as specified. For example, `uint8' should
51| be the most convenient type that can hold unsigned integers of as many as
52| 8 bits. The `flag' type must be able to hold either a 0 or 1. For most
53| implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
54| to the same as `int'.
55*----------------------------------------------------------------------------*/
750afe93 56typedef uint8_t flag;
158142c2
FB
57typedef uint8_t uint8;
58typedef int8_t int8;
b29fe3ed 59#ifndef _AIX
158142c2
FB
60typedef int uint16;
61typedef int int16;
b29fe3ed 62#endif
158142c2
FB
63typedef unsigned int uint32;
64typedef signed int int32;
65typedef uint64_t uint64;
66typedef int64_t int64;
67
158142c2
FB
68#define LIT64( a ) a##LL
69#define INLINE static inline
70
158142c2
FB
71#define STATUS_PARAM , float_status *status
72#define STATUS(field) status->field
73#define STATUS_VAR , status
74
1d6bda35
FB
75/*----------------------------------------------------------------------------
76| Software IEC/IEEE floating-point ordering relations
77*----------------------------------------------------------------------------*/
78enum {
79 float_relation_less = -1,
80 float_relation_equal = 0,
81 float_relation_greater = 1,
82 float_relation_unordered = 2
83};
84
158142c2
FB
85/*----------------------------------------------------------------------------
86| Software IEC/IEEE floating-point types.
87*----------------------------------------------------------------------------*/
f090c9d4
PB
88/* Use structures for soft-float types. This prevents accidentally mixing
89 them with native int/float types. A sufficiently clever compiler and
90 sane ABI should be able to see though these structs. However
91 x86/gcc 3.x seems to struggle a bit, so leave them disabled by default. */
92//#define USE_SOFTFLOAT_STRUCT_TYPES
93#ifdef USE_SOFTFLOAT_STRUCT_TYPES
bb4d4bb3
PM
94typedef struct {
95 uint16_t v;
96} float16;
97#define float16_val(x) (((float16)(x)).v)
98#define make_float16(x) __extension__ ({ float16 f16_val = {x}; f16_val; })
d5138cf4 99#define const_float16(x) { x }
f090c9d4
PB
100typedef struct {
101 uint32_t v;
102} float32;
103/* The cast ensures an error if the wrong type is passed. */
104#define float32_val(x) (((float32)(x)).v)
105#define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; })
d5138cf4 106#define const_float32(x) { x }
f090c9d4
PB
107typedef struct {
108 uint64_t v;
109} float64;
110#define float64_val(x) (((float64)(x)).v)
111#define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; })
d5138cf4 112#define const_float64(x) { x }
f090c9d4 113#else
bb4d4bb3 114typedef uint16_t float16;
158142c2
FB
115typedef uint32_t float32;
116typedef uint64_t float64;
bb4d4bb3 117#define float16_val(x) (x)
f090c9d4
PB
118#define float32_val(x) (x)
119#define float64_val(x) (x)
bb4d4bb3 120#define make_float16(x) (x)
f090c9d4
PB
121#define make_float32(x) (x)
122#define make_float64(x) (x)
d5138cf4
PM
123#define const_float16(x) (x)
124#define const_float32(x) (x)
125#define const_float64(x) (x)
f090c9d4 126#endif
158142c2
FB
127typedef struct {
128 uint64_t low;
129 uint16_t high;
130} floatx80;
f3218a8d 131#define make_floatx80(exp, mant) ((floatx80) { mant, exp })
158142c2 132typedef struct {
e2542fe2 133#ifdef HOST_WORDS_BIGENDIAN
158142c2
FB
134 uint64_t high, low;
135#else
136 uint64_t low, high;
137#endif
138} float128;
789ec7ce 139#define make_float128(high_, low_) ((float128) { .high = high_, .low = low_ })
158142c2
FB
140
141/*----------------------------------------------------------------------------
142| Software IEC/IEEE floating-point underflow tininess-detection mode.
143*----------------------------------------------------------------------------*/
144enum {
145 float_tininess_after_rounding = 0,
146 float_tininess_before_rounding = 1
147};
148
149/*----------------------------------------------------------------------------
150| Software IEC/IEEE floating-point rounding mode.
151*----------------------------------------------------------------------------*/
152enum {
153 float_round_nearest_even = 0,
154 float_round_down = 1,
155 float_round_up = 2,
156 float_round_to_zero = 3
157};
158
159/*----------------------------------------------------------------------------
160| Software IEC/IEEE floating-point exception flags.
161*----------------------------------------------------------------------------*/
162enum {
163 float_flag_invalid = 1,
164 float_flag_divbyzero = 4,
165 float_flag_overflow = 8,
166 float_flag_underflow = 16,
37d18660 167 float_flag_inexact = 32,
e6afc87f
PM
168 float_flag_input_denormal = 64,
169 float_flag_output_denormal = 128
158142c2
FB
170};
171
172typedef struct float_status {
173 signed char float_detect_tininess;
174 signed char float_rounding_mode;
175 signed char float_exception_flags;
158142c2 176 signed char floatx80_rounding_precision;
37d18660 177 /* should denormalised results go to zero and set the inexact flag? */
fe76d976 178 flag flush_to_zero;
37d18660
PM
179 /* should denormalised inputs go to zero and set the input_denormal flag? */
180 flag flush_inputs_to_zero;
5c7908ed 181 flag default_nan_mode;
158142c2
FB
182} float_status;
183
184void set_float_rounding_mode(int val STATUS_PARAM);
1d6bda35 185void set_float_exception_flags(int val STATUS_PARAM);
c29aca44
PM
186INLINE void set_float_detect_tininess(int val STATUS_PARAM)
187{
188 STATUS(float_detect_tininess) = val;
189}
fe76d976
PB
190INLINE void set_flush_to_zero(flag val STATUS_PARAM)
191{
192 STATUS(flush_to_zero) = val;
193}
37d18660
PM
194INLINE void set_flush_inputs_to_zero(flag val STATUS_PARAM)
195{
196 STATUS(flush_inputs_to_zero) = val;
197}
5c7908ed
PB
198INLINE void set_default_nan_mode(flag val STATUS_PARAM)
199{
200 STATUS(default_nan_mode) = val;
201}
1d6bda35
FB
202INLINE int get_float_exception_flags(float_status *status)
203{
204 return STATUS(float_exception_flags);
205}
158142c2 206void set_floatx80_rounding_precision(int val STATUS_PARAM);
158142c2
FB
207
208/*----------------------------------------------------------------------------
209| Routine to raise any or all of the software IEC/IEEE floating-point
210| exception flags.
211*----------------------------------------------------------------------------*/
ec530c81 212void float_raise( int8 flags STATUS_PARAM);
158142c2
FB
213
214/*----------------------------------------------------------------------------
215| Software IEC/IEEE integer-to-floating-point conversion routines.
216*----------------------------------------------------------------------------*/
87b8cc3c
AF
217float32 int32_to_float32( int32 STATUS_PARAM );
218float64 int32_to_float64( int32 STATUS_PARAM );
1d6bda35
FB
219float32 uint32_to_float32( unsigned int STATUS_PARAM );
220float64 uint32_to_float64( unsigned int STATUS_PARAM );
87b8cc3c 221floatx80 int32_to_floatx80( int32 STATUS_PARAM );
87b8cc3c 222float128 int32_to_float128( int32 STATUS_PARAM );
87b8cc3c
AF
223float32 int64_to_float32( int64 STATUS_PARAM );
224float32 uint64_to_float32( uint64 STATUS_PARAM );
225float64 int64_to_float64( int64 STATUS_PARAM );
226float64 uint64_to_float64( uint64 STATUS_PARAM );
87b8cc3c 227floatx80 int64_to_floatx80( int64 STATUS_PARAM );
87b8cc3c 228float128 int64_to_float128( int64 STATUS_PARAM );
158142c2 229
60011498
PB
230/*----------------------------------------------------------------------------
231| Software half-precision conversion routines.
232*----------------------------------------------------------------------------*/
bb4d4bb3
PM
233float16 float32_to_float16( float32, flag STATUS_PARAM );
234float32 float16_to_float32( float16, flag STATUS_PARAM );
235
236/*----------------------------------------------------------------------------
237| Software half-precision operations.
238*----------------------------------------------------------------------------*/
239int float16_is_quiet_nan( float16 );
240int float16_is_signaling_nan( float16 );
241float16 float16_maybe_silence_nan( float16 );
60011498 242
8559666d
CL
243/*----------------------------------------------------------------------------
244| The pattern for a default generated half-precision NaN.
245*----------------------------------------------------------------------------*/
789ec7ce 246extern const float16 float16_default_nan;
8559666d 247
158142c2
FB
248/*----------------------------------------------------------------------------
249| Software IEC/IEEE single-precision conversion routines.
250*----------------------------------------------------------------------------*/
87b8cc3c 251int16 float32_to_int16_round_to_zero( float32 STATUS_PARAM );
cbcef455 252unsigned int float32_to_uint16_round_to_zero( float32 STATUS_PARAM );
87b8cc3c
AF
253int32 float32_to_int32( float32 STATUS_PARAM );
254int32 float32_to_int32_round_to_zero( float32 STATUS_PARAM );
255uint32 float32_to_uint32( float32 STATUS_PARAM );
256uint32 float32_to_uint32_round_to_zero( float32 STATUS_PARAM );
257int64 float32_to_int64( float32 STATUS_PARAM );
258int64 float32_to_int64_round_to_zero( float32 STATUS_PARAM );
158142c2 259float64 float32_to_float64( float32 STATUS_PARAM );
158142c2 260floatx80 float32_to_floatx80( float32 STATUS_PARAM );
158142c2 261float128 float32_to_float128( float32 STATUS_PARAM );
158142c2
FB
262
263/*----------------------------------------------------------------------------
264| Software IEC/IEEE single-precision operations.
265*----------------------------------------------------------------------------*/
266float32 float32_round_to_int( float32 STATUS_PARAM );
267float32 float32_add( float32, float32 STATUS_PARAM );
268float32 float32_sub( float32, float32 STATUS_PARAM );
269float32 float32_mul( float32, float32 STATUS_PARAM );
270float32 float32_div( float32, float32 STATUS_PARAM );
271float32 float32_rem( float32, float32 STATUS_PARAM );
272float32 float32_sqrt( float32 STATUS_PARAM );
8229c991 273float32 float32_exp2( float32 STATUS_PARAM );
374dfc33 274float32 float32_log2( float32 STATUS_PARAM );
b689362d 275int float32_eq( float32, float32 STATUS_PARAM );
750afe93
FB
276int float32_le( float32, float32 STATUS_PARAM );
277int float32_lt( float32, float32 STATUS_PARAM );
67b7861d 278int float32_unordered( float32, float32 STATUS_PARAM );
b689362d 279int float32_eq_quiet( float32, float32 STATUS_PARAM );
750afe93
FB
280int float32_le_quiet( float32, float32 STATUS_PARAM );
281int float32_lt_quiet( float32, float32 STATUS_PARAM );
67b7861d 282int float32_unordered_quiet( float32, float32 STATUS_PARAM );
750afe93
FB
283int float32_compare( float32, float32 STATUS_PARAM );
284int float32_compare_quiet( float32, float32 STATUS_PARAM );
274f1b04
PM
285float32 float32_min(float32, float32 STATUS_PARAM);
286float32 float32_max(float32, float32 STATUS_PARAM);
18569871 287int float32_is_quiet_nan( float32 );
750afe93 288int float32_is_signaling_nan( float32 );
b408dbde 289float32 float32_maybe_silence_nan( float32 );
9ee6e8bb 290float32 float32_scalbn( float32, int STATUS_PARAM );
158142c2 291
1d6bda35
FB
292INLINE float32 float32_abs(float32 a)
293{
37d18660
PM
294 /* Note that abs does *not* handle NaN specially, nor does
295 * it flush denormal inputs to zero.
296 */
f090c9d4 297 return make_float32(float32_val(a) & 0x7fffffff);
1d6bda35
FB
298}
299
300INLINE float32 float32_chs(float32 a)
301{
37d18660
PM
302 /* Note that chs does *not* handle NaN specially, nor does
303 * it flush denormal inputs to zero.
304 */
f090c9d4 305 return make_float32(float32_val(a) ^ 0x80000000);
1d6bda35
FB
306}
307
c52ab6f5
AJ
308INLINE int float32_is_infinity(float32 a)
309{
dadd71a7 310 return (float32_val(a) & 0x7fffffff) == 0x7f800000;
c52ab6f5
AJ
311}
312
313INLINE int float32_is_neg(float32 a)
314{
315 return float32_val(a) >> 31;
316}
317
318INLINE int float32_is_zero(float32 a)
319{
320 return (float32_val(a) & 0x7fffffff) == 0;
321}
322
21d6ebde
PM
323INLINE int float32_is_any_nan(float32 a)
324{
325 return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL);
326}
327
6f3300ad
PM
328INLINE int float32_is_zero_or_denormal(float32 a)
329{
330 return (float32_val(a) & 0x7f800000) == 0;
331}
332
c30fe7df
CL
333INLINE float32 float32_set_sign(float32 a, int sign)
334{
335 return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31));
336}
337
f090c9d4 338#define float32_zero make_float32(0)
196cfc89 339#define float32_one make_float32(0x3f800000)
8229c991 340#define float32_ln2 make_float32(0x3f317218)
c4b4c77a 341#define float32_pi make_float32(0x40490fdb)
c30fe7df
CL
342#define float32_half make_float32(0x3f000000)
343#define float32_infinity make_float32(0x7f800000)
f090c9d4 344
8559666d
CL
345
346/*----------------------------------------------------------------------------
347| The pattern for a default generated single-precision NaN.
348*----------------------------------------------------------------------------*/
789ec7ce 349extern const float32 float32_default_nan;
8559666d 350
158142c2
FB
351/*----------------------------------------------------------------------------
352| Software IEC/IEEE double-precision conversion routines.
353*----------------------------------------------------------------------------*/
87b8cc3c 354int16 float64_to_int16_round_to_zero( float64 STATUS_PARAM );
cbcef455 355unsigned int float64_to_uint16_round_to_zero( float64 STATUS_PARAM );
87b8cc3c
AF
356int32 float64_to_int32( float64 STATUS_PARAM );
357int32 float64_to_int32_round_to_zero( float64 STATUS_PARAM );
358uint32 float64_to_uint32( float64 STATUS_PARAM );
359uint32 float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
360int64 float64_to_int64( float64 STATUS_PARAM );
361int64 float64_to_int64_round_to_zero( float64 STATUS_PARAM );
362uint64 float64_to_uint64 (float64 a STATUS_PARAM);
363uint64 float64_to_uint64_round_to_zero (float64 a STATUS_PARAM);
158142c2 364float32 float64_to_float32( float64 STATUS_PARAM );
158142c2 365floatx80 float64_to_floatx80( float64 STATUS_PARAM );
158142c2 366float128 float64_to_float128( float64 STATUS_PARAM );
158142c2
FB
367
368/*----------------------------------------------------------------------------
369| Software IEC/IEEE double-precision operations.
370*----------------------------------------------------------------------------*/
371float64 float64_round_to_int( float64 STATUS_PARAM );
e6e5906b 372float64 float64_trunc_to_int( float64 STATUS_PARAM );
158142c2
FB
373float64 float64_add( float64, float64 STATUS_PARAM );
374float64 float64_sub( float64, float64 STATUS_PARAM );
375float64 float64_mul( float64, float64 STATUS_PARAM );
376float64 float64_div( float64, float64 STATUS_PARAM );
377float64 float64_rem( float64, float64 STATUS_PARAM );
378float64 float64_sqrt( float64 STATUS_PARAM );
374dfc33 379float64 float64_log2( float64 STATUS_PARAM );
b689362d 380int float64_eq( float64, float64 STATUS_PARAM );
750afe93
FB
381int float64_le( float64, float64 STATUS_PARAM );
382int float64_lt( float64, float64 STATUS_PARAM );
67b7861d 383int float64_unordered( float64, float64 STATUS_PARAM );
b689362d 384int float64_eq_quiet( float64, float64 STATUS_PARAM );
750afe93
FB
385int float64_le_quiet( float64, float64 STATUS_PARAM );
386int float64_lt_quiet( float64, float64 STATUS_PARAM );
67b7861d 387int float64_unordered_quiet( float64, float64 STATUS_PARAM );
750afe93
FB
388int float64_compare( float64, float64 STATUS_PARAM );
389int float64_compare_quiet( float64, float64 STATUS_PARAM );
274f1b04
PM
390float64 float64_min(float64, float64 STATUS_PARAM);
391float64 float64_max(float64, float64 STATUS_PARAM);
18569871 392int float64_is_quiet_nan( float64 a );
750afe93 393int float64_is_signaling_nan( float64 );
b408dbde 394float64 float64_maybe_silence_nan( float64 );
9ee6e8bb 395float64 float64_scalbn( float64, int STATUS_PARAM );
158142c2 396
1d6bda35
FB
397INLINE float64 float64_abs(float64 a)
398{
37d18660
PM
399 /* Note that abs does *not* handle NaN specially, nor does
400 * it flush denormal inputs to zero.
401 */
f090c9d4 402 return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
1d6bda35
FB
403}
404
405INLINE float64 float64_chs(float64 a)
406{
37d18660
PM
407 /* Note that chs does *not* handle NaN specially, nor does
408 * it flush denormal inputs to zero.
409 */
f090c9d4 410 return make_float64(float64_val(a) ^ 0x8000000000000000LL);
1d6bda35
FB
411}
412
c52ab6f5
AJ
413INLINE int float64_is_infinity(float64 a)
414{
415 return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
416}
417
418INLINE int float64_is_neg(float64 a)
419{
420 return float64_val(a) >> 63;
421}
422
423INLINE int float64_is_zero(float64 a)
424{
425 return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
426}
427
21d6ebde
PM
428INLINE int float64_is_any_nan(float64 a)
429{
430 return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL);
431}
432
587eabfa
AJ
433INLINE int float64_is_zero_or_denormal(float64 a)
434{
435 return (float64_val(a) & 0x7ff0000000000000LL) == 0;
436}
437
c30fe7df
CL
438INLINE float64 float64_set_sign(float64 a, int sign)
439{
440 return make_float64((float64_val(a) & 0x7fffffffffffffffULL)
441 | ((int64_t)sign << 63));
442}
443
f090c9d4 444#define float64_zero make_float64(0)
196cfc89 445#define float64_one make_float64(0x3ff0000000000000LL)
8229c991 446#define float64_ln2 make_float64(0x3fe62e42fefa39efLL)
c4b4c77a 447#define float64_pi make_float64(0x400921fb54442d18LL)
c30fe7df
CL
448#define float64_half make_float64(0x3fe0000000000000LL)
449#define float64_infinity make_float64(0x7ff0000000000000LL)
f090c9d4 450
8559666d
CL
451/*----------------------------------------------------------------------------
452| The pattern for a default generated double-precision NaN.
453*----------------------------------------------------------------------------*/
789ec7ce 454extern const float64 float64_default_nan;
8559666d 455
158142c2
FB
456/*----------------------------------------------------------------------------
457| Software IEC/IEEE extended double-precision conversion routines.
458*----------------------------------------------------------------------------*/
87b8cc3c
AF
459int32 floatx80_to_int32( floatx80 STATUS_PARAM );
460int32 floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
461int64 floatx80_to_int64( floatx80 STATUS_PARAM );
462int64 floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM );
158142c2
FB
463float32 floatx80_to_float32( floatx80 STATUS_PARAM );
464float64 floatx80_to_float64( floatx80 STATUS_PARAM );
158142c2 465float128 floatx80_to_float128( floatx80 STATUS_PARAM );
158142c2
FB
466
467/*----------------------------------------------------------------------------
468| Software IEC/IEEE extended double-precision operations.
469*----------------------------------------------------------------------------*/
470floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
471floatx80 floatx80_add( floatx80, floatx80 STATUS_PARAM );
472floatx80 floatx80_sub( floatx80, floatx80 STATUS_PARAM );
473floatx80 floatx80_mul( floatx80, floatx80 STATUS_PARAM );
474floatx80 floatx80_div( floatx80, floatx80 STATUS_PARAM );
475floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
476floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
b689362d 477int floatx80_eq( floatx80, floatx80 STATUS_PARAM );
750afe93
FB
478int floatx80_le( floatx80, floatx80 STATUS_PARAM );
479int floatx80_lt( floatx80, floatx80 STATUS_PARAM );
67b7861d 480int floatx80_unordered( floatx80, floatx80 STATUS_PARAM );
b689362d 481int floatx80_eq_quiet( floatx80, floatx80 STATUS_PARAM );
750afe93
FB
482int floatx80_le_quiet( floatx80, floatx80 STATUS_PARAM );
483int floatx80_lt_quiet( floatx80, floatx80 STATUS_PARAM );
67b7861d 484int floatx80_unordered_quiet( floatx80, floatx80 STATUS_PARAM );
f6714d36
AJ
485int floatx80_compare( floatx80, floatx80 STATUS_PARAM );
486int floatx80_compare_quiet( floatx80, floatx80 STATUS_PARAM );
18569871 487int floatx80_is_quiet_nan( floatx80 );
750afe93 488int floatx80_is_signaling_nan( floatx80 );
f6a7d92a 489floatx80 floatx80_maybe_silence_nan( floatx80 );
9ee6e8bb 490floatx80 floatx80_scalbn( floatx80, int STATUS_PARAM );
158142c2 491
1d6bda35
FB
492INLINE floatx80 floatx80_abs(floatx80 a)
493{
494 a.high &= 0x7fff;
495 return a;
496}
497
498INLINE floatx80 floatx80_chs(floatx80 a)
499{
500 a.high ^= 0x8000;
501 return a;
502}
503
c52ab6f5
AJ
504INLINE int floatx80_is_infinity(floatx80 a)
505{
b76235e4 506 return (a.high & 0x7fff) == 0x7fff && a.low == 0x8000000000000000LL;
c52ab6f5
AJ
507}
508
509INLINE int floatx80_is_neg(floatx80 a)
510{
511 return a.high >> 15;
512}
513
514INLINE int floatx80_is_zero(floatx80 a)
515{
516 return (a.high & 0x7fff) == 0 && a.low == 0;
517}
518
587eabfa
AJ
519INLINE int floatx80_is_zero_or_denormal(floatx80 a)
520{
521 return (a.high & 0x7fff) == 0;
522}
523
2bed652f
PM
524INLINE int floatx80_is_any_nan(floatx80 a)
525{
526 return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1);
527}
528
f3218a8d
AJ
529#define floatx80_zero make_floatx80(0x0000, 0x0000000000000000LL)
530#define floatx80_one make_floatx80(0x3fff, 0x8000000000000000LL)
531#define floatx80_ln2 make_floatx80(0x3ffe, 0xb17217f7d1cf79acLL)
c4b4c77a 532#define floatx80_pi make_floatx80(0x4000, 0xc90fdaa22168c235LL)
f3218a8d
AJ
533#define floatx80_half make_floatx80(0x3ffe, 0x8000000000000000LL)
534#define floatx80_infinity make_floatx80(0x7fff, 0x8000000000000000LL)
535
8559666d 536/*----------------------------------------------------------------------------
789ec7ce 537| The pattern for a default generated extended double-precision NaN.
8559666d 538*----------------------------------------------------------------------------*/
789ec7ce 539extern const floatx80 floatx80_default_nan;
8559666d 540
158142c2
FB
541/*----------------------------------------------------------------------------
542| Software IEC/IEEE quadruple-precision conversion routines.
543*----------------------------------------------------------------------------*/
87b8cc3c
AF
544int32 float128_to_int32( float128 STATUS_PARAM );
545int32 float128_to_int32_round_to_zero( float128 STATUS_PARAM );
546int64 float128_to_int64( float128 STATUS_PARAM );
547int64 float128_to_int64_round_to_zero( float128 STATUS_PARAM );
158142c2
FB
548float32 float128_to_float32( float128 STATUS_PARAM );
549float64 float128_to_float64( float128 STATUS_PARAM );
158142c2 550floatx80 float128_to_floatx80( float128 STATUS_PARAM );
158142c2
FB
551
552/*----------------------------------------------------------------------------
553| Software IEC/IEEE quadruple-precision operations.
554*----------------------------------------------------------------------------*/
555float128 float128_round_to_int( float128 STATUS_PARAM );
556float128 float128_add( float128, float128 STATUS_PARAM );
557float128 float128_sub( float128, float128 STATUS_PARAM );
558float128 float128_mul( float128, float128 STATUS_PARAM );
559float128 float128_div( float128, float128 STATUS_PARAM );
560float128 float128_rem( float128, float128 STATUS_PARAM );
561float128 float128_sqrt( float128 STATUS_PARAM );
b689362d 562int float128_eq( float128, float128 STATUS_PARAM );
750afe93
FB
563int float128_le( float128, float128 STATUS_PARAM );
564int float128_lt( float128, float128 STATUS_PARAM );
67b7861d 565int float128_unordered( float128, float128 STATUS_PARAM );
b689362d 566int float128_eq_quiet( float128, float128 STATUS_PARAM );
750afe93
FB
567int float128_le_quiet( float128, float128 STATUS_PARAM );
568int float128_lt_quiet( float128, float128 STATUS_PARAM );
67b7861d 569int float128_unordered_quiet( float128, float128 STATUS_PARAM );
1f587329
BS
570int float128_compare( float128, float128 STATUS_PARAM );
571int float128_compare_quiet( float128, float128 STATUS_PARAM );
18569871 572int float128_is_quiet_nan( float128 );
750afe93 573int float128_is_signaling_nan( float128 );
f6a7d92a 574float128 float128_maybe_silence_nan( float128 );
9ee6e8bb 575float128 float128_scalbn( float128, int STATUS_PARAM );
158142c2 576
1d6bda35
FB
577INLINE float128 float128_abs(float128 a)
578{
579 a.high &= 0x7fffffffffffffffLL;
580 return a;
581}
582
583INLINE float128 float128_chs(float128 a)
584{
585 a.high ^= 0x8000000000000000LL;
586 return a;
587}
588
c52ab6f5
AJ
589INLINE int float128_is_infinity(float128 a)
590{
591 return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
592}
593
594INLINE int float128_is_neg(float128 a)
595{
596 return a.high >> 63;
597}
598
599INLINE int float128_is_zero(float128 a)
600{
601 return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
602}
603
587eabfa
AJ
604INLINE int float128_is_zero_or_denormal(float128 a)
605{
606 return (a.high & 0x7fff000000000000LL) == 0;
607}
608
2bed652f
PM
609INLINE int float128_is_any_nan(float128 a)
610{
611 return ((a.high >> 48) & 0x7fff) == 0x7fff &&
612 ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0));
613}
614
8559666d 615/*----------------------------------------------------------------------------
789ec7ce 616| The pattern for a default generated quadruple-precision NaN.
8559666d 617*----------------------------------------------------------------------------*/
789ec7ce 618extern const float128 float128_default_nan;
8559666d 619
158142c2 620#endif /* !SOFTFLOAT_H */