]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/bio.c
Merge tag 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[mirror_ubuntu-artful-kernel.git] / fs / bio.c
CommitLineData
1da177e4 1/*
0fe23479 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
22#include <linux/slab.h>
23#include <linux/init.h>
24#include <linux/kernel.h>
630d9c47 25#include <linux/export.h>
1da177e4
LT
26#include <linux/mempool.h>
27#include <linux/workqueue.h>
f1970baf 28#include <scsi/sg.h> /* for struct sg_iovec */
1da177e4 29
55782138 30#include <trace/events/block.h>
0bfc2455 31
392ddc32
JA
32/*
33 * Test patch to inline a certain number of bi_io_vec's inside the bio
34 * itself, to shrink a bio data allocation from two mempool calls to one
35 */
36#define BIO_INLINE_VECS 4
37
6feef531 38static mempool_t *bio_split_pool __read_mostly;
1da177e4 39
1da177e4
LT
40/*
41 * if you change this list, also change bvec_alloc or things will
42 * break badly! cannot be bigger than what you can fit into an
43 * unsigned short
44 */
1da177e4 45#define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
df677140 46static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
1da177e4
LT
47 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
48};
49#undef BV
50
1da177e4
LT
51/*
52 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
53 * IO code that does not need private memory pools.
54 */
51d654e1 55struct bio_set *fs_bio_set;
1da177e4 56
bb799ca0
JA
57/*
58 * Our slab pool management
59 */
60struct bio_slab {
61 struct kmem_cache *slab;
62 unsigned int slab_ref;
63 unsigned int slab_size;
64 char name[8];
65};
66static DEFINE_MUTEX(bio_slab_lock);
67static struct bio_slab *bio_slabs;
68static unsigned int bio_slab_nr, bio_slab_max;
69
70static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
71{
72 unsigned int sz = sizeof(struct bio) + extra_size;
73 struct kmem_cache *slab = NULL;
74 struct bio_slab *bslab;
75 unsigned int i, entry = -1;
76
77 mutex_lock(&bio_slab_lock);
78
79 i = 0;
80 while (i < bio_slab_nr) {
f06f135d 81 bslab = &bio_slabs[i];
bb799ca0
JA
82
83 if (!bslab->slab && entry == -1)
84 entry = i;
85 else if (bslab->slab_size == sz) {
86 slab = bslab->slab;
87 bslab->slab_ref++;
88 break;
89 }
90 i++;
91 }
92
93 if (slab)
94 goto out_unlock;
95
96 if (bio_slab_nr == bio_slab_max && entry == -1) {
97 bio_slab_max <<= 1;
98 bio_slabs = krealloc(bio_slabs,
99 bio_slab_max * sizeof(struct bio_slab),
100 GFP_KERNEL);
101 if (!bio_slabs)
102 goto out_unlock;
103 }
104 if (entry == -1)
105 entry = bio_slab_nr++;
106
107 bslab = &bio_slabs[entry];
108
109 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
110 slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
111 if (!slab)
112 goto out_unlock;
113
80cdc6da 114 printk(KERN_INFO "bio: create slab <%s> at %d\n", bslab->name, entry);
bb799ca0
JA
115 bslab->slab = slab;
116 bslab->slab_ref = 1;
117 bslab->slab_size = sz;
118out_unlock:
119 mutex_unlock(&bio_slab_lock);
120 return slab;
121}
122
123static void bio_put_slab(struct bio_set *bs)
124{
125 struct bio_slab *bslab = NULL;
126 unsigned int i;
127
128 mutex_lock(&bio_slab_lock);
129
130 for (i = 0; i < bio_slab_nr; i++) {
131 if (bs->bio_slab == bio_slabs[i].slab) {
132 bslab = &bio_slabs[i];
133 break;
134 }
135 }
136
137 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
138 goto out;
139
140 WARN_ON(!bslab->slab_ref);
141
142 if (--bslab->slab_ref)
143 goto out;
144
145 kmem_cache_destroy(bslab->slab);
146 bslab->slab = NULL;
147
148out:
149 mutex_unlock(&bio_slab_lock);
150}
151
7ba1ba12
MP
152unsigned int bvec_nr_vecs(unsigned short idx)
153{
154 return bvec_slabs[idx].nr_vecs;
155}
156
bb799ca0
JA
157void bvec_free_bs(struct bio_set *bs, struct bio_vec *bv, unsigned int idx)
158{
159 BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
160
161 if (idx == BIOVEC_MAX_IDX)
162 mempool_free(bv, bs->bvec_pool);
163 else {
164 struct biovec_slab *bvs = bvec_slabs + idx;
165
166 kmem_cache_free(bvs->slab, bv);
167 }
168}
169
7ff9345f
JA
170struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx,
171 struct bio_set *bs)
1da177e4
LT
172{
173 struct bio_vec *bvl;
1da177e4 174
7ff9345f
JA
175 /*
176 * see comment near bvec_array define!
177 */
178 switch (nr) {
179 case 1:
180 *idx = 0;
181 break;
182 case 2 ... 4:
183 *idx = 1;
184 break;
185 case 5 ... 16:
186 *idx = 2;
187 break;
188 case 17 ... 64:
189 *idx = 3;
190 break;
191 case 65 ... 128:
192 *idx = 4;
193 break;
194 case 129 ... BIO_MAX_PAGES:
195 *idx = 5;
196 break;
197 default:
198 return NULL;
199 }
200
201 /*
202 * idx now points to the pool we want to allocate from. only the
203 * 1-vec entry pool is mempool backed.
204 */
205 if (*idx == BIOVEC_MAX_IDX) {
206fallback:
207 bvl = mempool_alloc(bs->bvec_pool, gfp_mask);
208 } else {
209 struct biovec_slab *bvs = bvec_slabs + *idx;
210 gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
211
0a0d96b0 212 /*
7ff9345f
JA
213 * Make this allocation restricted and don't dump info on
214 * allocation failures, since we'll fallback to the mempool
215 * in case of failure.
0a0d96b0 216 */
7ff9345f 217 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
1da177e4 218
0a0d96b0 219 /*
7ff9345f
JA
220 * Try a slab allocation. If this fails and __GFP_WAIT
221 * is set, retry with the 1-entry mempool
0a0d96b0 222 */
7ff9345f
JA
223 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
224 if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
225 *idx = BIOVEC_MAX_IDX;
226 goto fallback;
227 }
228 }
229
1da177e4
LT
230 return bvl;
231}
232
7ff9345f 233void bio_free(struct bio *bio, struct bio_set *bs)
1da177e4 234{
bb799ca0 235 void *p;
1da177e4 236
392ddc32 237 if (bio_has_allocated_vec(bio))
bb799ca0 238 bvec_free_bs(bs, bio->bi_io_vec, BIO_POOL_IDX(bio));
1da177e4 239
7ba1ba12 240 if (bio_integrity(bio))
7878cba9 241 bio_integrity_free(bio, bs);
7ba1ba12 242
bb799ca0
JA
243 /*
244 * If we have front padding, adjust the bio pointer before freeing
245 */
246 p = bio;
247 if (bs->front_pad)
248 p -= bs->front_pad;
249
250 mempool_free(p, bs->bio_pool);
3676347a 251}
a112a71d 252EXPORT_SYMBOL(bio_free);
3676347a 253
858119e1 254void bio_init(struct bio *bio)
1da177e4 255{
2b94de55 256 memset(bio, 0, sizeof(*bio));
1da177e4 257 bio->bi_flags = 1 << BIO_UPTODATE;
1da177e4 258 atomic_set(&bio->bi_cnt, 1);
1da177e4 259}
a112a71d 260EXPORT_SYMBOL(bio_init);
1da177e4
LT
261
262/**
263 * bio_alloc_bioset - allocate a bio for I/O
264 * @gfp_mask: the GFP_ mask given to the slab allocator
265 * @nr_iovecs: number of iovecs to pre-allocate
db18efac 266 * @bs: the bio_set to allocate from.
1da177e4
LT
267 *
268 * Description:
db18efac 269 * bio_alloc_bioset will try its own mempool to satisfy the allocation.
1da177e4 270 * If %__GFP_WAIT is set then we will block on the internal pool waiting
db18efac 271 * for a &struct bio to become free.
1da177e4 272 *
af901ca1 273 * Note that the caller must set ->bi_destructor on successful return
bb799ca0
JA
274 * of a bio, to do the appropriate freeing of the bio once the reference
275 * count drops to zero.
1da177e4 276 **/
dd0fc66f 277struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
1da177e4 278{
451a9ebf 279 unsigned long idx = BIO_POOL_NONE;
34053979 280 struct bio_vec *bvl = NULL;
451a9ebf
TH
281 struct bio *bio;
282 void *p;
283
284 p = mempool_alloc(bs->bio_pool, gfp_mask);
285 if (unlikely(!p))
286 return NULL;
287 bio = p + bs->front_pad;
1da177e4 288
34053979
IM
289 bio_init(bio);
290
291 if (unlikely(!nr_iovecs))
292 goto out_set;
293
294 if (nr_iovecs <= BIO_INLINE_VECS) {
295 bvl = bio->bi_inline_vecs;
296 nr_iovecs = BIO_INLINE_VECS;
297 } else {
298 bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs);
299 if (unlikely(!bvl))
300 goto err_free;
301
302 nr_iovecs = bvec_nr_vecs(idx);
1da177e4 303 }
451a9ebf 304out_set:
34053979
IM
305 bio->bi_flags |= idx << BIO_POOL_OFFSET;
306 bio->bi_max_vecs = nr_iovecs;
34053979 307 bio->bi_io_vec = bvl;
1da177e4 308 return bio;
34053979
IM
309
310err_free:
451a9ebf 311 mempool_free(p, bs->bio_pool);
34053979 312 return NULL;
1da177e4 313}
a112a71d 314EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 315
451a9ebf
TH
316static void bio_fs_destructor(struct bio *bio)
317{
318 bio_free(bio, fs_bio_set);
319}
320
321/**
322 * bio_alloc - allocate a new bio, memory pool backed
323 * @gfp_mask: allocation mask to use
324 * @nr_iovecs: number of iovecs
325 *
5f04eeb8
AB
326 * bio_alloc will allocate a bio and associated bio_vec array that can hold
327 * at least @nr_iovecs entries. Allocations will be done from the
328 * fs_bio_set. Also see @bio_alloc_bioset and @bio_kmalloc.
329 *
330 * If %__GFP_WAIT is set, then bio_alloc will always be able to allocate
331 * a bio. This is due to the mempool guarantees. To make this work, callers
332 * must never allocate more than 1 bio at a time from this pool. Callers
333 * that need to allocate more than 1 bio must always submit the previously
334 * allocated bio for IO before attempting to allocate a new one. Failure to
335 * do so can cause livelocks under memory pressure.
451a9ebf
TH
336 *
337 * RETURNS:
338 * Pointer to new bio on success, NULL on failure.
339 */
121f0994 340struct bio *bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
451a9ebf
TH
341{
342 struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set);
343
344 if (bio)
345 bio->bi_destructor = bio_fs_destructor;
346
347 return bio;
348}
a112a71d 349EXPORT_SYMBOL(bio_alloc);
451a9ebf
TH
350
351static void bio_kmalloc_destructor(struct bio *bio)
352{
353 if (bio_integrity(bio))
7878cba9 354 bio_integrity_free(bio, fs_bio_set);
451a9ebf
TH
355 kfree(bio);
356}
357
86c824b9 358/**
5f04eeb8 359 * bio_kmalloc - allocate a bio for I/O using kmalloc()
86c824b9
JA
360 * @gfp_mask: the GFP_ mask given to the slab allocator
361 * @nr_iovecs: number of iovecs to pre-allocate
362 *
363 * Description:
5f04eeb8
AB
364 * Allocate a new bio with @nr_iovecs bvecs. If @gfp_mask contains
365 * %__GFP_WAIT, the allocation is guaranteed to succeed.
86c824b9
JA
366 *
367 **/
121f0994 368struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned int nr_iovecs)
0a0d96b0 369{
451a9ebf 370 struct bio *bio;
0a0d96b0 371
f3f63c1c
JA
372 if (nr_iovecs > UIO_MAXIOV)
373 return NULL;
374
451a9ebf
TH
375 bio = kmalloc(sizeof(struct bio) + nr_iovecs * sizeof(struct bio_vec),
376 gfp_mask);
377 if (unlikely(!bio))
378 return NULL;
379
380 bio_init(bio);
381 bio->bi_flags |= BIO_POOL_NONE << BIO_POOL_OFFSET;
382 bio->bi_max_vecs = nr_iovecs;
383 bio->bi_io_vec = bio->bi_inline_vecs;
384 bio->bi_destructor = bio_kmalloc_destructor;
0a0d96b0
JA
385
386 return bio;
387}
a112a71d 388EXPORT_SYMBOL(bio_kmalloc);
0a0d96b0 389
1da177e4
LT
390void zero_fill_bio(struct bio *bio)
391{
392 unsigned long flags;
393 struct bio_vec *bv;
394 int i;
395
396 bio_for_each_segment(bv, bio, i) {
397 char *data = bvec_kmap_irq(bv, &flags);
398 memset(data, 0, bv->bv_len);
399 flush_dcache_page(bv->bv_page);
400 bvec_kunmap_irq(data, &flags);
401 }
402}
403EXPORT_SYMBOL(zero_fill_bio);
404
405/**
406 * bio_put - release a reference to a bio
407 * @bio: bio to release reference to
408 *
409 * Description:
410 * Put a reference to a &struct bio, either one you have gotten with
ad0bf110 411 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
1da177e4
LT
412 **/
413void bio_put(struct bio *bio)
414{
415 BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
416
417 /*
418 * last put frees it
419 */
420 if (atomic_dec_and_test(&bio->bi_cnt)) {
421 bio->bi_next = NULL;
422 bio->bi_destructor(bio);
423 }
424}
a112a71d 425EXPORT_SYMBOL(bio_put);
1da177e4 426
165125e1 427inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
1da177e4
LT
428{
429 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
430 blk_recount_segments(q, bio);
431
432 return bio->bi_phys_segments;
433}
a112a71d 434EXPORT_SYMBOL(bio_phys_segments);
1da177e4 435
1da177e4
LT
436/**
437 * __bio_clone - clone a bio
438 * @bio: destination bio
439 * @bio_src: bio to clone
440 *
441 * Clone a &bio. Caller will own the returned bio, but not
442 * the actual data it points to. Reference count of returned
443 * bio will be one.
444 */
858119e1 445void __bio_clone(struct bio *bio, struct bio *bio_src)
1da177e4 446{
e525e153
AM
447 memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
448 bio_src->bi_max_vecs * sizeof(struct bio_vec));
1da177e4 449
5d84070e
JA
450 /*
451 * most users will be overriding ->bi_bdev with a new target,
452 * so we don't set nor calculate new physical/hw segment counts here
453 */
1da177e4
LT
454 bio->bi_sector = bio_src->bi_sector;
455 bio->bi_bdev = bio_src->bi_bdev;
456 bio->bi_flags |= 1 << BIO_CLONED;
457 bio->bi_rw = bio_src->bi_rw;
1da177e4
LT
458 bio->bi_vcnt = bio_src->bi_vcnt;
459 bio->bi_size = bio_src->bi_size;
a5453be4 460 bio->bi_idx = bio_src->bi_idx;
1da177e4 461}
a112a71d 462EXPORT_SYMBOL(__bio_clone);
1da177e4
LT
463
464/**
465 * bio_clone - clone a bio
466 * @bio: bio to clone
467 * @gfp_mask: allocation priority
468 *
469 * Like __bio_clone, only also allocates the returned bio
470 */
dd0fc66f 471struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
472{
473 struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set);
474
7ba1ba12
MP
475 if (!b)
476 return NULL;
477
478 b->bi_destructor = bio_fs_destructor;
479 __bio_clone(b, bio);
480
481 if (bio_integrity(bio)) {
482 int ret;
483
7878cba9 484 ret = bio_integrity_clone(b, bio, gfp_mask, fs_bio_set);
7ba1ba12 485
059ea331
LZ
486 if (ret < 0) {
487 bio_put(b);
7ba1ba12 488 return NULL;
059ea331 489 }
3676347a 490 }
1da177e4
LT
491
492 return b;
493}
a112a71d 494EXPORT_SYMBOL(bio_clone);
1da177e4
LT
495
496/**
497 * bio_get_nr_vecs - return approx number of vecs
498 * @bdev: I/O target
499 *
500 * Return the approximate number of pages we can send to this target.
501 * There's no guarantee that you will be able to fit this number of pages
502 * into a bio, it does not account for dynamic restrictions that vary
503 * on offset.
504 */
505int bio_get_nr_vecs(struct block_device *bdev)
506{
165125e1 507 struct request_queue *q = bdev_get_queue(bdev);
f908ee94
BS
508 int nr_pages;
509
510 nr_pages = min_t(unsigned,
5abebfdd
KO
511 queue_max_segments(q),
512 queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1);
f908ee94
BS
513
514 return min_t(unsigned, nr_pages, BIO_MAX_PAGES);
515
1da177e4 516}
a112a71d 517EXPORT_SYMBOL(bio_get_nr_vecs);
1da177e4 518
165125e1 519static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
defd94b7
MC
520 *page, unsigned int len, unsigned int offset,
521 unsigned short max_sectors)
1da177e4
LT
522{
523 int retried_segments = 0;
524 struct bio_vec *bvec;
525
526 /*
527 * cloned bio must not modify vec list
528 */
529 if (unlikely(bio_flagged(bio, BIO_CLONED)))
530 return 0;
531
80cfd548 532 if (((bio->bi_size + len) >> 9) > max_sectors)
1da177e4
LT
533 return 0;
534
80cfd548
JA
535 /*
536 * For filesystems with a blocksize smaller than the pagesize
537 * we will often be called with the same page as last time and
538 * a consecutive offset. Optimize this special case.
539 */
540 if (bio->bi_vcnt > 0) {
541 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
542
543 if (page == prev->bv_page &&
544 offset == prev->bv_offset + prev->bv_len) {
1d616585 545 unsigned int prev_bv_len = prev->bv_len;
80cfd548 546 prev->bv_len += len;
cc371e66
AK
547
548 if (q->merge_bvec_fn) {
549 struct bvec_merge_data bvm = {
1d616585
DM
550 /* prev_bvec is already charged in
551 bi_size, discharge it in order to
552 simulate merging updated prev_bvec
553 as new bvec. */
cc371e66
AK
554 .bi_bdev = bio->bi_bdev,
555 .bi_sector = bio->bi_sector,
1d616585 556 .bi_size = bio->bi_size - prev_bv_len,
cc371e66
AK
557 .bi_rw = bio->bi_rw,
558 };
559
8bf8c376 560 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
cc371e66
AK
561 prev->bv_len -= len;
562 return 0;
563 }
80cfd548
JA
564 }
565
566 goto done;
567 }
568 }
569
570 if (bio->bi_vcnt >= bio->bi_max_vecs)
1da177e4
LT
571 return 0;
572
573 /*
574 * we might lose a segment or two here, but rather that than
575 * make this too complex.
576 */
577
8a78362c 578 while (bio->bi_phys_segments >= queue_max_segments(q)) {
1da177e4
LT
579
580 if (retried_segments)
581 return 0;
582
583 retried_segments = 1;
584 blk_recount_segments(q, bio);
585 }
586
587 /*
588 * setup the new entry, we might clear it again later if we
589 * cannot add the page
590 */
591 bvec = &bio->bi_io_vec[bio->bi_vcnt];
592 bvec->bv_page = page;
593 bvec->bv_len = len;
594 bvec->bv_offset = offset;
595
596 /*
597 * if queue has other restrictions (eg varying max sector size
598 * depending on offset), it can specify a merge_bvec_fn in the
599 * queue to get further control
600 */
601 if (q->merge_bvec_fn) {
cc371e66
AK
602 struct bvec_merge_data bvm = {
603 .bi_bdev = bio->bi_bdev,
604 .bi_sector = bio->bi_sector,
605 .bi_size = bio->bi_size,
606 .bi_rw = bio->bi_rw,
607 };
608
1da177e4
LT
609 /*
610 * merge_bvec_fn() returns number of bytes it can accept
611 * at this offset
612 */
8bf8c376 613 if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) {
1da177e4
LT
614 bvec->bv_page = NULL;
615 bvec->bv_len = 0;
616 bvec->bv_offset = 0;
617 return 0;
618 }
619 }
620
621 /* If we may be able to merge these biovecs, force a recount */
b8b3e16c 622 if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
1da177e4
LT
623 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
624
625 bio->bi_vcnt++;
626 bio->bi_phys_segments++;
80cfd548 627 done:
1da177e4
LT
628 bio->bi_size += len;
629 return len;
630}
631
6e68af66
MC
632/**
633 * bio_add_pc_page - attempt to add page to bio
fddfdeaf 634 * @q: the target queue
6e68af66
MC
635 * @bio: destination bio
636 * @page: page to add
637 * @len: vec entry length
638 * @offset: vec entry offset
639 *
640 * Attempt to add a page to the bio_vec maplist. This can fail for a
c6428084
AG
641 * number of reasons, such as the bio being full or target block device
642 * limitations. The target block device must allow bio's up to PAGE_SIZE,
643 * so it is always possible to add a single page to an empty bio.
644 *
645 * This should only be used by REQ_PC bios.
6e68af66 646 */
165125e1 647int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
6e68af66
MC
648 unsigned int len, unsigned int offset)
649{
ae03bf63
MP
650 return __bio_add_page(q, bio, page, len, offset,
651 queue_max_hw_sectors(q));
6e68af66 652}
a112a71d 653EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 654
1da177e4
LT
655/**
656 * bio_add_page - attempt to add page to bio
657 * @bio: destination bio
658 * @page: page to add
659 * @len: vec entry length
660 * @offset: vec entry offset
661 *
662 * Attempt to add a page to the bio_vec maplist. This can fail for a
c6428084
AG
663 * number of reasons, such as the bio being full or target block device
664 * limitations. The target block device must allow bio's up to PAGE_SIZE,
665 * so it is always possible to add a single page to an empty bio.
1da177e4
LT
666 */
667int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
668 unsigned int offset)
669{
defd94b7 670 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
ae03bf63 671 return __bio_add_page(q, bio, page, len, offset, queue_max_sectors(q));
1da177e4 672}
a112a71d 673EXPORT_SYMBOL(bio_add_page);
1da177e4
LT
674
675struct bio_map_data {
676 struct bio_vec *iovecs;
c5dec1c3 677 struct sg_iovec *sgvecs;
152e283f
FT
678 int nr_sgvecs;
679 int is_our_pages;
1da177e4
LT
680};
681
c5dec1c3 682static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
152e283f
FT
683 struct sg_iovec *iov, int iov_count,
684 int is_our_pages)
1da177e4
LT
685{
686 memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
c5dec1c3
FT
687 memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
688 bmd->nr_sgvecs = iov_count;
152e283f 689 bmd->is_our_pages = is_our_pages;
1da177e4
LT
690 bio->bi_private = bmd;
691}
692
693static void bio_free_map_data(struct bio_map_data *bmd)
694{
695 kfree(bmd->iovecs);
c5dec1c3 696 kfree(bmd->sgvecs);
1da177e4
LT
697 kfree(bmd);
698}
699
121f0994
DC
700static struct bio_map_data *bio_alloc_map_data(int nr_segs,
701 unsigned int iov_count,
76029ff3 702 gfp_t gfp_mask)
1da177e4 703{
f3f63c1c
JA
704 struct bio_map_data *bmd;
705
706 if (iov_count > UIO_MAXIOV)
707 return NULL;
1da177e4 708
f3f63c1c 709 bmd = kmalloc(sizeof(*bmd), gfp_mask);
1da177e4
LT
710 if (!bmd)
711 return NULL;
712
76029ff3 713 bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
c5dec1c3
FT
714 if (!bmd->iovecs) {
715 kfree(bmd);
716 return NULL;
717 }
718
76029ff3 719 bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
c5dec1c3 720 if (bmd->sgvecs)
1da177e4
LT
721 return bmd;
722
c5dec1c3 723 kfree(bmd->iovecs);
1da177e4
LT
724 kfree(bmd);
725 return NULL;
726}
727
aefcc28a 728static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
ecb554a8
FT
729 struct sg_iovec *iov, int iov_count,
730 int to_user, int from_user, int do_free_page)
c5dec1c3
FT
731{
732 int ret = 0, i;
733 struct bio_vec *bvec;
734 int iov_idx = 0;
735 unsigned int iov_off = 0;
c5dec1c3
FT
736
737 __bio_for_each_segment(bvec, bio, i, 0) {
738 char *bv_addr = page_address(bvec->bv_page);
aefcc28a 739 unsigned int bv_len = iovecs[i].bv_len;
c5dec1c3
FT
740
741 while (bv_len && iov_idx < iov_count) {
742 unsigned int bytes;
0e0c6212 743 char __user *iov_addr;
c5dec1c3
FT
744
745 bytes = min_t(unsigned int,
746 iov[iov_idx].iov_len - iov_off, bv_len);
747 iov_addr = iov[iov_idx].iov_base + iov_off;
748
749 if (!ret) {
ecb554a8 750 if (to_user)
c5dec1c3
FT
751 ret = copy_to_user(iov_addr, bv_addr,
752 bytes);
753
ecb554a8
FT
754 if (from_user)
755 ret = copy_from_user(bv_addr, iov_addr,
756 bytes);
757
c5dec1c3
FT
758 if (ret)
759 ret = -EFAULT;
760 }
761
762 bv_len -= bytes;
763 bv_addr += bytes;
764 iov_addr += bytes;
765 iov_off += bytes;
766
767 if (iov[iov_idx].iov_len == iov_off) {
768 iov_idx++;
769 iov_off = 0;
770 }
771 }
772
152e283f 773 if (do_free_page)
c5dec1c3
FT
774 __free_page(bvec->bv_page);
775 }
776
777 return ret;
778}
779
1da177e4
LT
780/**
781 * bio_uncopy_user - finish previously mapped bio
782 * @bio: bio being terminated
783 *
784 * Free pages allocated from bio_copy_user() and write back data
785 * to user space in case of a read.
786 */
787int bio_uncopy_user(struct bio *bio)
788{
789 struct bio_map_data *bmd = bio->bi_private;
81882766 790 int ret = 0;
1da177e4 791
81882766
FT
792 if (!bio_flagged(bio, BIO_NULL_MAPPED))
793 ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs,
ecb554a8
FT
794 bmd->nr_sgvecs, bio_data_dir(bio) == READ,
795 0, bmd->is_our_pages);
1da177e4
LT
796 bio_free_map_data(bmd);
797 bio_put(bio);
798 return ret;
799}
a112a71d 800EXPORT_SYMBOL(bio_uncopy_user);
1da177e4
LT
801
802/**
c5dec1c3 803 * bio_copy_user_iov - copy user data to bio
1da177e4 804 * @q: destination block queue
152e283f 805 * @map_data: pointer to the rq_map_data holding pages (if necessary)
c5dec1c3
FT
806 * @iov: the iovec.
807 * @iov_count: number of elements in the iovec
1da177e4 808 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 809 * @gfp_mask: memory allocation flags
1da177e4
LT
810 *
811 * Prepares and returns a bio for indirect user io, bouncing data
812 * to/from kernel pages as necessary. Must be paired with
813 * call bio_uncopy_user() on io completion.
814 */
152e283f
FT
815struct bio *bio_copy_user_iov(struct request_queue *q,
816 struct rq_map_data *map_data,
817 struct sg_iovec *iov, int iov_count,
818 int write_to_vm, gfp_t gfp_mask)
1da177e4 819{
1da177e4
LT
820 struct bio_map_data *bmd;
821 struct bio_vec *bvec;
822 struct page *page;
823 struct bio *bio;
824 int i, ret;
c5dec1c3
FT
825 int nr_pages = 0;
826 unsigned int len = 0;
56c451f4 827 unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
1da177e4 828
c5dec1c3
FT
829 for (i = 0; i < iov_count; i++) {
830 unsigned long uaddr;
831 unsigned long end;
832 unsigned long start;
833
834 uaddr = (unsigned long)iov[i].iov_base;
835 end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
836 start = uaddr >> PAGE_SHIFT;
837
cb4644ca
JA
838 /*
839 * Overflow, abort
840 */
841 if (end < start)
842 return ERR_PTR(-EINVAL);
843
c5dec1c3
FT
844 nr_pages += end - start;
845 len += iov[i].iov_len;
846 }
847
69838727
FT
848 if (offset)
849 nr_pages++;
850
a3bce90e 851 bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
1da177e4
LT
852 if (!bmd)
853 return ERR_PTR(-ENOMEM);
854
1da177e4 855 ret = -ENOMEM;
a9e9dc24 856 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
857 if (!bio)
858 goto out_bmd;
859
7b6d91da
CH
860 if (!write_to_vm)
861 bio->bi_rw |= REQ_WRITE;
1da177e4
LT
862
863 ret = 0;
56c451f4
FT
864
865 if (map_data) {
e623ddb4 866 nr_pages = 1 << map_data->page_order;
56c451f4
FT
867 i = map_data->offset / PAGE_SIZE;
868 }
1da177e4 869 while (len) {
e623ddb4 870 unsigned int bytes = PAGE_SIZE;
1da177e4 871
56c451f4
FT
872 bytes -= offset;
873
1da177e4
LT
874 if (bytes > len)
875 bytes = len;
876
152e283f 877 if (map_data) {
e623ddb4 878 if (i == map_data->nr_entries * nr_pages) {
152e283f
FT
879 ret = -ENOMEM;
880 break;
881 }
e623ddb4
FT
882
883 page = map_data->pages[i / nr_pages];
884 page += (i % nr_pages);
885
886 i++;
887 } else {
152e283f 888 page = alloc_page(q->bounce_gfp | gfp_mask);
e623ddb4
FT
889 if (!page) {
890 ret = -ENOMEM;
891 break;
892 }
1da177e4
LT
893 }
894
56c451f4 895 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1da177e4 896 break;
1da177e4
LT
897
898 len -= bytes;
56c451f4 899 offset = 0;
1da177e4
LT
900 }
901
902 if (ret)
903 goto cleanup;
904
905 /*
906 * success
907 */
ecb554a8
FT
908 if ((!write_to_vm && (!map_data || !map_data->null_mapped)) ||
909 (map_data && map_data->from_user)) {
910 ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 1, 0);
c5dec1c3
FT
911 if (ret)
912 goto cleanup;
1da177e4
LT
913 }
914
152e283f 915 bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
1da177e4
LT
916 return bio;
917cleanup:
152e283f
FT
918 if (!map_data)
919 bio_for_each_segment(bvec, bio, i)
920 __free_page(bvec->bv_page);
1da177e4
LT
921
922 bio_put(bio);
923out_bmd:
924 bio_free_map_data(bmd);
925 return ERR_PTR(ret);
926}
927
c5dec1c3
FT
928/**
929 * bio_copy_user - copy user data to bio
930 * @q: destination block queue
152e283f 931 * @map_data: pointer to the rq_map_data holding pages (if necessary)
c5dec1c3
FT
932 * @uaddr: start of user address
933 * @len: length in bytes
934 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 935 * @gfp_mask: memory allocation flags
c5dec1c3
FT
936 *
937 * Prepares and returns a bio for indirect user io, bouncing data
938 * to/from kernel pages as necessary. Must be paired with
939 * call bio_uncopy_user() on io completion.
940 */
152e283f
FT
941struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
942 unsigned long uaddr, unsigned int len,
943 int write_to_vm, gfp_t gfp_mask)
c5dec1c3
FT
944{
945 struct sg_iovec iov;
946
947 iov.iov_base = (void __user *)uaddr;
948 iov.iov_len = len;
949
152e283f 950 return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
c5dec1c3 951}
a112a71d 952EXPORT_SYMBOL(bio_copy_user);
c5dec1c3 953
165125e1 954static struct bio *__bio_map_user_iov(struct request_queue *q,
f1970baf
JB
955 struct block_device *bdev,
956 struct sg_iovec *iov, int iov_count,
a3bce90e 957 int write_to_vm, gfp_t gfp_mask)
1da177e4 958{
f1970baf
JB
959 int i, j;
960 int nr_pages = 0;
1da177e4
LT
961 struct page **pages;
962 struct bio *bio;
f1970baf
JB
963 int cur_page = 0;
964 int ret, offset;
1da177e4 965
f1970baf
JB
966 for (i = 0; i < iov_count; i++) {
967 unsigned long uaddr = (unsigned long)iov[i].iov_base;
968 unsigned long len = iov[i].iov_len;
969 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
970 unsigned long start = uaddr >> PAGE_SHIFT;
971
cb4644ca
JA
972 /*
973 * Overflow, abort
974 */
975 if (end < start)
976 return ERR_PTR(-EINVAL);
977
f1970baf
JB
978 nr_pages += end - start;
979 /*
ad2d7225 980 * buffer must be aligned to at least hardsector size for now
f1970baf 981 */
ad2d7225 982 if (uaddr & queue_dma_alignment(q))
f1970baf
JB
983 return ERR_PTR(-EINVAL);
984 }
985
986 if (!nr_pages)
1da177e4
LT
987 return ERR_PTR(-EINVAL);
988
a9e9dc24 989 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
990 if (!bio)
991 return ERR_PTR(-ENOMEM);
992
993 ret = -ENOMEM;
a3bce90e 994 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1da177e4
LT
995 if (!pages)
996 goto out;
997
f1970baf
JB
998 for (i = 0; i < iov_count; i++) {
999 unsigned long uaddr = (unsigned long)iov[i].iov_base;
1000 unsigned long len = iov[i].iov_len;
1001 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1002 unsigned long start = uaddr >> PAGE_SHIFT;
1003 const int local_nr_pages = end - start;
1004 const int page_limit = cur_page + local_nr_pages;
cb4644ca 1005
f5dd33c4
NP
1006 ret = get_user_pages_fast(uaddr, local_nr_pages,
1007 write_to_vm, &pages[cur_page]);
99172157
JA
1008 if (ret < local_nr_pages) {
1009 ret = -EFAULT;
f1970baf 1010 goto out_unmap;
99172157 1011 }
f1970baf
JB
1012
1013 offset = uaddr & ~PAGE_MASK;
1014 for (j = cur_page; j < page_limit; j++) {
1015 unsigned int bytes = PAGE_SIZE - offset;
1016
1017 if (len <= 0)
1018 break;
1019
1020 if (bytes > len)
1021 bytes = len;
1022
1023 /*
1024 * sorry...
1025 */
defd94b7
MC
1026 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1027 bytes)
f1970baf
JB
1028 break;
1029
1030 len -= bytes;
1031 offset = 0;
1032 }
1da177e4 1033
f1970baf 1034 cur_page = j;
1da177e4 1035 /*
f1970baf 1036 * release the pages we didn't map into the bio, if any
1da177e4 1037 */
f1970baf
JB
1038 while (j < page_limit)
1039 page_cache_release(pages[j++]);
1da177e4
LT
1040 }
1041
1da177e4
LT
1042 kfree(pages);
1043
1044 /*
1045 * set data direction, and check if mapped pages need bouncing
1046 */
1047 if (!write_to_vm)
7b6d91da 1048 bio->bi_rw |= REQ_WRITE;
1da177e4 1049
f1970baf 1050 bio->bi_bdev = bdev;
1da177e4
LT
1051 bio->bi_flags |= (1 << BIO_USER_MAPPED);
1052 return bio;
f1970baf
JB
1053
1054 out_unmap:
1055 for (i = 0; i < nr_pages; i++) {
1056 if(!pages[i])
1057 break;
1058 page_cache_release(pages[i]);
1059 }
1060 out:
1da177e4
LT
1061 kfree(pages);
1062 bio_put(bio);
1063 return ERR_PTR(ret);
1064}
1065
1066/**
1067 * bio_map_user - map user address into bio
165125e1 1068 * @q: the struct request_queue for the bio
1da177e4
LT
1069 * @bdev: destination block device
1070 * @uaddr: start of user address
1071 * @len: length in bytes
1072 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 1073 * @gfp_mask: memory allocation flags
1da177e4
LT
1074 *
1075 * Map the user space address into a bio suitable for io to a block
1076 * device. Returns an error pointer in case of error.
1077 */
165125e1 1078struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
a3bce90e
FT
1079 unsigned long uaddr, unsigned int len, int write_to_vm,
1080 gfp_t gfp_mask)
f1970baf
JB
1081{
1082 struct sg_iovec iov;
1083
3f70353e 1084 iov.iov_base = (void __user *)uaddr;
f1970baf
JB
1085 iov.iov_len = len;
1086
a3bce90e 1087 return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
f1970baf 1088}
a112a71d 1089EXPORT_SYMBOL(bio_map_user);
f1970baf
JB
1090
1091/**
1092 * bio_map_user_iov - map user sg_iovec table into bio
165125e1 1093 * @q: the struct request_queue for the bio
f1970baf
JB
1094 * @bdev: destination block device
1095 * @iov: the iovec.
1096 * @iov_count: number of elements in the iovec
1097 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 1098 * @gfp_mask: memory allocation flags
f1970baf
JB
1099 *
1100 * Map the user space address into a bio suitable for io to a block
1101 * device. Returns an error pointer in case of error.
1102 */
165125e1 1103struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
f1970baf 1104 struct sg_iovec *iov, int iov_count,
a3bce90e 1105 int write_to_vm, gfp_t gfp_mask)
1da177e4
LT
1106{
1107 struct bio *bio;
1108
a3bce90e
FT
1109 bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
1110 gfp_mask);
1da177e4
LT
1111 if (IS_ERR(bio))
1112 return bio;
1113
1114 /*
1115 * subtle -- if __bio_map_user() ended up bouncing a bio,
1116 * it would normally disappear when its bi_end_io is run.
1117 * however, we need it for the unmap, so grab an extra
1118 * reference to it
1119 */
1120 bio_get(bio);
1121
0e75f906 1122 return bio;
1da177e4
LT
1123}
1124
1125static void __bio_unmap_user(struct bio *bio)
1126{
1127 struct bio_vec *bvec;
1128 int i;
1129
1130 /*
1131 * make sure we dirty pages we wrote to
1132 */
1133 __bio_for_each_segment(bvec, bio, i, 0) {
1134 if (bio_data_dir(bio) == READ)
1135 set_page_dirty_lock(bvec->bv_page);
1136
1137 page_cache_release(bvec->bv_page);
1138 }
1139
1140 bio_put(bio);
1141}
1142
1143/**
1144 * bio_unmap_user - unmap a bio
1145 * @bio: the bio being unmapped
1146 *
1147 * Unmap a bio previously mapped by bio_map_user(). Must be called with
1148 * a process context.
1149 *
1150 * bio_unmap_user() may sleep.
1151 */
1152void bio_unmap_user(struct bio *bio)
1153{
1154 __bio_unmap_user(bio);
1155 bio_put(bio);
1156}
a112a71d 1157EXPORT_SYMBOL(bio_unmap_user);
1da177e4 1158
6712ecf8 1159static void bio_map_kern_endio(struct bio *bio, int err)
b823825e 1160{
b823825e 1161 bio_put(bio);
b823825e
JA
1162}
1163
165125e1 1164static struct bio *__bio_map_kern(struct request_queue *q, void *data,
27496a8c 1165 unsigned int len, gfp_t gfp_mask)
df46b9a4
MC
1166{
1167 unsigned long kaddr = (unsigned long)data;
1168 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1169 unsigned long start = kaddr >> PAGE_SHIFT;
1170 const int nr_pages = end - start;
1171 int offset, i;
1172 struct bio *bio;
1173
a9e9dc24 1174 bio = bio_kmalloc(gfp_mask, nr_pages);
df46b9a4
MC
1175 if (!bio)
1176 return ERR_PTR(-ENOMEM);
1177
1178 offset = offset_in_page(kaddr);
1179 for (i = 0; i < nr_pages; i++) {
1180 unsigned int bytes = PAGE_SIZE - offset;
1181
1182 if (len <= 0)
1183 break;
1184
1185 if (bytes > len)
1186 bytes = len;
1187
defd94b7
MC
1188 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1189 offset) < bytes)
df46b9a4
MC
1190 break;
1191
1192 data += bytes;
1193 len -= bytes;
1194 offset = 0;
1195 }
1196
b823825e 1197 bio->bi_end_io = bio_map_kern_endio;
df46b9a4
MC
1198 return bio;
1199}
1200
1201/**
1202 * bio_map_kern - map kernel address into bio
165125e1 1203 * @q: the struct request_queue for the bio
df46b9a4
MC
1204 * @data: pointer to buffer to map
1205 * @len: length in bytes
1206 * @gfp_mask: allocation flags for bio allocation
1207 *
1208 * Map the kernel address into a bio suitable for io to a block
1209 * device. Returns an error pointer in case of error.
1210 */
165125e1 1211struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
27496a8c 1212 gfp_t gfp_mask)
df46b9a4
MC
1213{
1214 struct bio *bio;
1215
1216 bio = __bio_map_kern(q, data, len, gfp_mask);
1217 if (IS_ERR(bio))
1218 return bio;
1219
1220 if (bio->bi_size == len)
1221 return bio;
1222
1223 /*
1224 * Don't support partial mappings.
1225 */
1226 bio_put(bio);
1227 return ERR_PTR(-EINVAL);
1228}
a112a71d 1229EXPORT_SYMBOL(bio_map_kern);
df46b9a4 1230
68154e90
FT
1231static void bio_copy_kern_endio(struct bio *bio, int err)
1232{
1233 struct bio_vec *bvec;
1234 const int read = bio_data_dir(bio) == READ;
76029ff3 1235 struct bio_map_data *bmd = bio->bi_private;
68154e90 1236 int i;
76029ff3 1237 char *p = bmd->sgvecs[0].iov_base;
68154e90
FT
1238
1239 __bio_for_each_segment(bvec, bio, i, 0) {
1240 char *addr = page_address(bvec->bv_page);
76029ff3 1241 int len = bmd->iovecs[i].bv_len;
68154e90 1242
4fc981ef 1243 if (read)
76029ff3 1244 memcpy(p, addr, len);
68154e90
FT
1245
1246 __free_page(bvec->bv_page);
76029ff3 1247 p += len;
68154e90
FT
1248 }
1249
76029ff3 1250 bio_free_map_data(bmd);
68154e90
FT
1251 bio_put(bio);
1252}
1253
1254/**
1255 * bio_copy_kern - copy kernel address into bio
1256 * @q: the struct request_queue for the bio
1257 * @data: pointer to buffer to copy
1258 * @len: length in bytes
1259 * @gfp_mask: allocation flags for bio and page allocation
ffee0259 1260 * @reading: data direction is READ
68154e90
FT
1261 *
1262 * copy the kernel address into a bio suitable for io to a block
1263 * device. Returns an error pointer in case of error.
1264 */
1265struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1266 gfp_t gfp_mask, int reading)
1267{
68154e90
FT
1268 struct bio *bio;
1269 struct bio_vec *bvec;
4d8ab62e 1270 int i;
68154e90 1271
4d8ab62e
FT
1272 bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
1273 if (IS_ERR(bio))
1274 return bio;
68154e90
FT
1275
1276 if (!reading) {
1277 void *p = data;
1278
1279 bio_for_each_segment(bvec, bio, i) {
1280 char *addr = page_address(bvec->bv_page);
1281
1282 memcpy(addr, p, bvec->bv_len);
1283 p += bvec->bv_len;
1284 }
1285 }
1286
68154e90 1287 bio->bi_end_io = bio_copy_kern_endio;
76029ff3 1288
68154e90 1289 return bio;
68154e90 1290}
a112a71d 1291EXPORT_SYMBOL(bio_copy_kern);
68154e90 1292
1da177e4
LT
1293/*
1294 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1295 * for performing direct-IO in BIOs.
1296 *
1297 * The problem is that we cannot run set_page_dirty() from interrupt context
1298 * because the required locks are not interrupt-safe. So what we can do is to
1299 * mark the pages dirty _before_ performing IO. And in interrupt context,
1300 * check that the pages are still dirty. If so, fine. If not, redirty them
1301 * in process context.
1302 *
1303 * We special-case compound pages here: normally this means reads into hugetlb
1304 * pages. The logic in here doesn't really work right for compound pages
1305 * because the VM does not uniformly chase down the head page in all cases.
1306 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1307 * handle them at all. So we skip compound pages here at an early stage.
1308 *
1309 * Note that this code is very hard to test under normal circumstances because
1310 * direct-io pins the pages with get_user_pages(). This makes
1311 * is_page_cache_freeable return false, and the VM will not clean the pages.
1312 * But other code (eg, pdflush) could clean the pages if they are mapped
1313 * pagecache.
1314 *
1315 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1316 * deferred bio dirtying paths.
1317 */
1318
1319/*
1320 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1321 */
1322void bio_set_pages_dirty(struct bio *bio)
1323{
1324 struct bio_vec *bvec = bio->bi_io_vec;
1325 int i;
1326
1327 for (i = 0; i < bio->bi_vcnt; i++) {
1328 struct page *page = bvec[i].bv_page;
1329
1330 if (page && !PageCompound(page))
1331 set_page_dirty_lock(page);
1332 }
1333}
1334
86b6c7a7 1335static void bio_release_pages(struct bio *bio)
1da177e4
LT
1336{
1337 struct bio_vec *bvec = bio->bi_io_vec;
1338 int i;
1339
1340 for (i = 0; i < bio->bi_vcnt; i++) {
1341 struct page *page = bvec[i].bv_page;
1342
1343 if (page)
1344 put_page(page);
1345 }
1346}
1347
1348/*
1349 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1350 * If they are, then fine. If, however, some pages are clean then they must
1351 * have been written out during the direct-IO read. So we take another ref on
1352 * the BIO and the offending pages and re-dirty the pages in process context.
1353 *
1354 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1355 * here on. It will run one page_cache_release() against each page and will
1356 * run one bio_put() against the BIO.
1357 */
1358
65f27f38 1359static void bio_dirty_fn(struct work_struct *work);
1da177e4 1360
65f27f38 1361static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1362static DEFINE_SPINLOCK(bio_dirty_lock);
1363static struct bio *bio_dirty_list;
1364
1365/*
1366 * This runs in process context
1367 */
65f27f38 1368static void bio_dirty_fn(struct work_struct *work)
1da177e4
LT
1369{
1370 unsigned long flags;
1371 struct bio *bio;
1372
1373 spin_lock_irqsave(&bio_dirty_lock, flags);
1374 bio = bio_dirty_list;
1375 bio_dirty_list = NULL;
1376 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1377
1378 while (bio) {
1379 struct bio *next = bio->bi_private;
1380
1381 bio_set_pages_dirty(bio);
1382 bio_release_pages(bio);
1383 bio_put(bio);
1384 bio = next;
1385 }
1386}
1387
1388void bio_check_pages_dirty(struct bio *bio)
1389{
1390 struct bio_vec *bvec = bio->bi_io_vec;
1391 int nr_clean_pages = 0;
1392 int i;
1393
1394 for (i = 0; i < bio->bi_vcnt; i++) {
1395 struct page *page = bvec[i].bv_page;
1396
1397 if (PageDirty(page) || PageCompound(page)) {
1398 page_cache_release(page);
1399 bvec[i].bv_page = NULL;
1400 } else {
1401 nr_clean_pages++;
1402 }
1403 }
1404
1405 if (nr_clean_pages) {
1406 unsigned long flags;
1407
1408 spin_lock_irqsave(&bio_dirty_lock, flags);
1409 bio->bi_private = bio_dirty_list;
1410 bio_dirty_list = bio;
1411 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1412 schedule_work(&bio_dirty_work);
1413 } else {
1414 bio_put(bio);
1415 }
1416}
1417
2d4dc890
IL
1418#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1419void bio_flush_dcache_pages(struct bio *bi)
1420{
1421 int i;
1422 struct bio_vec *bvec;
1423
1424 bio_for_each_segment(bvec, bi, i)
1425 flush_dcache_page(bvec->bv_page);
1426}
1427EXPORT_SYMBOL(bio_flush_dcache_pages);
1428#endif
1429
1da177e4
LT
1430/**
1431 * bio_endio - end I/O on a bio
1432 * @bio: bio
1da177e4
LT
1433 * @error: error, if any
1434 *
1435 * Description:
6712ecf8 1436 * bio_endio() will end I/O on the whole bio. bio_endio() is the
5bb23a68
N
1437 * preferred way to end I/O on a bio, it takes care of clearing
1438 * BIO_UPTODATE on error. @error is 0 on success, and and one of the
1439 * established -Exxxx (-EIO, for instance) error values in case
25985edc 1440 * something went wrong. No one should call bi_end_io() directly on a
5bb23a68
N
1441 * bio unless they own it and thus know that it has an end_io
1442 * function.
1da177e4 1443 **/
6712ecf8 1444void bio_endio(struct bio *bio, int error)
1da177e4
LT
1445{
1446 if (error)
1447 clear_bit(BIO_UPTODATE, &bio->bi_flags);
9cc54d40
N
1448 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1449 error = -EIO;
1da177e4 1450
5bb23a68 1451 if (bio->bi_end_io)
6712ecf8 1452 bio->bi_end_io(bio, error);
1da177e4 1453}
a112a71d 1454EXPORT_SYMBOL(bio_endio);
1da177e4
LT
1455
1456void bio_pair_release(struct bio_pair *bp)
1457{
1458 if (atomic_dec_and_test(&bp->cnt)) {
1459 struct bio *master = bp->bio1.bi_private;
1460
6712ecf8 1461 bio_endio(master, bp->error);
1da177e4
LT
1462 mempool_free(bp, bp->bio2.bi_private);
1463 }
1464}
a112a71d 1465EXPORT_SYMBOL(bio_pair_release);
1da177e4 1466
6712ecf8 1467static void bio_pair_end_1(struct bio *bi, int err)
1da177e4
LT
1468{
1469 struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
1470
1471 if (err)
1472 bp->error = err;
1473
1da177e4 1474 bio_pair_release(bp);
1da177e4
LT
1475}
1476
6712ecf8 1477static void bio_pair_end_2(struct bio *bi, int err)
1da177e4
LT
1478{
1479 struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
1480
1481 if (err)
1482 bp->error = err;
1483
1da177e4 1484 bio_pair_release(bp);
1da177e4
LT
1485}
1486
1487/*
c7eee1b8 1488 * split a bio - only worry about a bio with a single page in its iovec
1da177e4 1489 */
6feef531 1490struct bio_pair *bio_split(struct bio *bi, int first_sectors)
1da177e4 1491{
6feef531 1492 struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO);
1da177e4
LT
1493
1494 if (!bp)
1495 return bp;
1496
5f3ea37c 1497 trace_block_split(bdev_get_queue(bi->bi_bdev), bi,
2056a782
JA
1498 bi->bi_sector + first_sectors);
1499
1da177e4
LT
1500 BUG_ON(bi->bi_vcnt != 1);
1501 BUG_ON(bi->bi_idx != 0);
1502 atomic_set(&bp->cnt, 3);
1503 bp->error = 0;
1504 bp->bio1 = *bi;
1505 bp->bio2 = *bi;
1506 bp->bio2.bi_sector += first_sectors;
1507 bp->bio2.bi_size -= first_sectors << 9;
1508 bp->bio1.bi_size = first_sectors << 9;
1509
1510 bp->bv1 = bi->bi_io_vec[0];
1511 bp->bv2 = bi->bi_io_vec[0];
1512 bp->bv2.bv_offset += first_sectors << 9;
1513 bp->bv2.bv_len -= first_sectors << 9;
1514 bp->bv1.bv_len = first_sectors << 9;
1515
1516 bp->bio1.bi_io_vec = &bp->bv1;
1517 bp->bio2.bi_io_vec = &bp->bv2;
1518
a2eb0c10
N
1519 bp->bio1.bi_max_vecs = 1;
1520 bp->bio2.bi_max_vecs = 1;
1521
1da177e4
LT
1522 bp->bio1.bi_end_io = bio_pair_end_1;
1523 bp->bio2.bi_end_io = bio_pair_end_2;
1524
1525 bp->bio1.bi_private = bi;
6feef531 1526 bp->bio2.bi_private = bio_split_pool;
1da177e4 1527
7ba1ba12
MP
1528 if (bio_integrity(bi))
1529 bio_integrity_split(bi, bp, first_sectors);
1530
1da177e4
LT
1531 return bp;
1532}
a112a71d 1533EXPORT_SYMBOL(bio_split);
1da177e4 1534
ad3316bf
MP
1535/**
1536 * bio_sector_offset - Find hardware sector offset in bio
1537 * @bio: bio to inspect
1538 * @index: bio_vec index
1539 * @offset: offset in bv_page
1540 *
1541 * Return the number of hardware sectors between beginning of bio
1542 * and an end point indicated by a bio_vec index and an offset
1543 * within that vector's page.
1544 */
1545sector_t bio_sector_offset(struct bio *bio, unsigned short index,
1546 unsigned int offset)
1547{
e1defc4f 1548 unsigned int sector_sz;
ad3316bf
MP
1549 struct bio_vec *bv;
1550 sector_t sectors;
1551 int i;
1552
e1defc4f 1553 sector_sz = queue_logical_block_size(bio->bi_bdev->bd_disk->queue);
ad3316bf
MP
1554 sectors = 0;
1555
1556 if (index >= bio->bi_idx)
1557 index = bio->bi_vcnt - 1;
1558
1559 __bio_for_each_segment(bv, bio, i, 0) {
1560 if (i == index) {
1561 if (offset > bv->bv_offset)
1562 sectors += (offset - bv->bv_offset) / sector_sz;
1563 break;
1564 }
1565
1566 sectors += bv->bv_len / sector_sz;
1567 }
1568
1569 return sectors;
1570}
1571EXPORT_SYMBOL(bio_sector_offset);
1da177e4
LT
1572
1573/*
1574 * create memory pools for biovec's in a bio_set.
1575 * use the global biovec slabs created for general use.
1576 */
5972511b 1577static int biovec_create_pools(struct bio_set *bs, int pool_entries)
1da177e4 1578{
7ff9345f 1579 struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1da177e4 1580
7ff9345f
JA
1581 bs->bvec_pool = mempool_create_slab_pool(pool_entries, bp->slab);
1582 if (!bs->bvec_pool)
1583 return -ENOMEM;
1da177e4 1584
1da177e4
LT
1585 return 0;
1586}
1587
1588static void biovec_free_pools(struct bio_set *bs)
1589{
7ff9345f 1590 mempool_destroy(bs->bvec_pool);
1da177e4
LT
1591}
1592
1593void bioset_free(struct bio_set *bs)
1594{
1595 if (bs->bio_pool)
1596 mempool_destroy(bs->bio_pool);
1597
7878cba9 1598 bioset_integrity_free(bs);
1da177e4 1599 biovec_free_pools(bs);
bb799ca0 1600 bio_put_slab(bs);
1da177e4
LT
1601
1602 kfree(bs);
1603}
a112a71d 1604EXPORT_SYMBOL(bioset_free);
1da177e4 1605
bb799ca0
JA
1606/**
1607 * bioset_create - Create a bio_set
1608 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1609 * @front_pad: Number of bytes to allocate in front of the returned bio
1610 *
1611 * Description:
1612 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1613 * to ask for a number of bytes to be allocated in front of the bio.
1614 * Front pad allocation is useful for embedding the bio inside
1615 * another structure, to avoid allocating extra data to go with the bio.
1616 * Note that the bio must be embedded at the END of that structure always,
1617 * or things will break badly.
1618 */
1619struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1da177e4 1620{
392ddc32 1621 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1b434498 1622 struct bio_set *bs;
1da177e4 1623
1b434498 1624 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1da177e4
LT
1625 if (!bs)
1626 return NULL;
1627
bb799ca0 1628 bs->front_pad = front_pad;
1b434498 1629
392ddc32 1630 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
bb799ca0
JA
1631 if (!bs->bio_slab) {
1632 kfree(bs);
1633 return NULL;
1634 }
1635
1636 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1da177e4
LT
1637 if (!bs->bio_pool)
1638 goto bad;
1639
bb799ca0 1640 if (!biovec_create_pools(bs, pool_size))
1da177e4
LT
1641 return bs;
1642
1643bad:
1644 bioset_free(bs);
1645 return NULL;
1646}
a112a71d 1647EXPORT_SYMBOL(bioset_create);
1da177e4
LT
1648
1649static void __init biovec_init_slabs(void)
1650{
1651 int i;
1652
1653 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1654 int size;
1655 struct biovec_slab *bvs = bvec_slabs + i;
1656
a7fcd37c
JA
1657 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
1658 bvs->slab = NULL;
1659 continue;
1660 }
a7fcd37c 1661
1da177e4
LT
1662 size = bvs->nr_vecs * sizeof(struct bio_vec);
1663 bvs->slab = kmem_cache_create(bvs->name, size, 0,
20c2df83 1664 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4
LT
1665 }
1666}
1667
1668static int __init init_bio(void)
1669{
bb799ca0
JA
1670 bio_slab_max = 2;
1671 bio_slab_nr = 0;
1672 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
1673 if (!bio_slabs)
1674 panic("bio: can't allocate bios\n");
1da177e4 1675
7878cba9 1676 bio_integrity_init();
1da177e4
LT
1677 biovec_init_slabs();
1678
bb799ca0 1679 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
1da177e4
LT
1680 if (!fs_bio_set)
1681 panic("bio: can't allocate bios\n");
1682
a91a2785
MP
1683 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
1684 panic("bio: can't create integrity pool\n");
1685
0eaae62a
MD
1686 bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
1687 sizeof(struct bio_pair));
1da177e4
LT
1688 if (!bio_split_pool)
1689 panic("bio: can't create split pool\n");
1690
1691 return 0;
1692}
1da177e4 1693subsys_initcall(init_bio);