]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - fs/dcache.c
KVM: arm64: vgic-v3: Add ICV_EOIR1_EL1 handler
[mirror_ubuntu-zesty-kernel.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
630d9c47 26#include <linux/export.h>
1da177e4
LT
27#include <linux/mount.h>
28#include <linux/file.h>
7c0f6ba6 29#include <linux/uaccess.h>
1da177e4
LT
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
613afbf8 35#include <linux/hardirq.h>
ceb5bdc2
NP
36#include <linux/bit_spinlock.h>
37#include <linux/rculist_bl.h>
268bb0ce 38#include <linux/prefetch.h>
dd179946 39#include <linux/ratelimit.h>
f6041567 40#include <linux/list_lru.h>
df4c0e36
AR
41#include <linux/kasan.h>
42
07f3f05c 43#include "internal.h"
b2dba1af 44#include "mount.h"
1da177e4 45
789680d1
NP
46/*
47 * Usage:
873feea0 48 * dcache->d_inode->i_lock protects:
946e51f2 49 * - i_dentry, d_u.d_alias, d_inode of aliases
ceb5bdc2
NP
50 * dcache_hash_bucket lock protects:
51 * - the dcache hash table
52 * s_anon bl list spinlock protects:
53 * - the s_anon list (see __d_drop)
19156840 54 * dentry->d_sb->s_dentry_lru_lock protects:
23044507
NP
55 * - the dcache lru lists and counters
56 * d_lock protects:
57 * - d_flags
58 * - d_name
59 * - d_lru
b7ab39f6 60 * - d_count
da502956 61 * - d_unhashed()
2fd6b7f5
NP
62 * - d_parent and d_subdirs
63 * - childrens' d_child and d_parent
946e51f2 64 * - d_u.d_alias, d_inode
789680d1
NP
65 *
66 * Ordering:
873feea0 67 * dentry->d_inode->i_lock
b5c84bf6 68 * dentry->d_lock
19156840 69 * dentry->d_sb->s_dentry_lru_lock
ceb5bdc2
NP
70 * dcache_hash_bucket lock
71 * s_anon lock
789680d1 72 *
da502956
NP
73 * If there is an ancestor relationship:
74 * dentry->d_parent->...->d_parent->d_lock
75 * ...
76 * dentry->d_parent->d_lock
77 * dentry->d_lock
78 *
79 * If no ancestor relationship:
789680d1
NP
80 * if (dentry1 < dentry2)
81 * dentry1->d_lock
82 * dentry2->d_lock
83 */
fa3536cc 84int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
85EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
86
74c3cbe3 87__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 88
949854d0 89EXPORT_SYMBOL(rename_lock);
1da177e4 90
e18b890b 91static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 92
1da177e4
LT
93/*
94 * This is the single most critical data structure when it comes
95 * to the dcache: the hashtable for lookups. Somebody should try
96 * to make this good - I've just made it work.
97 *
98 * This hash-function tries to avoid losing too many bits of hash
99 * information, yet avoid using a prime hash-size or similar.
100 */
1da177e4 101
fa3536cc
ED
102static unsigned int d_hash_mask __read_mostly;
103static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 104
b07ad996 105static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 106
8387ff25 107static inline struct hlist_bl_head *d_hash(unsigned int hash)
ceb5bdc2 108{
703b5faf 109 return dentry_hashtable + (hash >> (32 - d_hash_shift));
ceb5bdc2
NP
110}
111
94bdd655
AV
112#define IN_LOOKUP_SHIFT 10
113static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
114
115static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
116 unsigned int hash)
117{
118 hash += (unsigned long) parent / L1_CACHE_BYTES;
119 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
120}
121
122
1da177e4
LT
123/* Statistics gathering. */
124struct dentry_stat_t dentry_stat = {
125 .age_limit = 45,
126};
127
3942c07c 128static DEFINE_PER_CPU(long, nr_dentry);
62d36c77 129static DEFINE_PER_CPU(long, nr_dentry_unused);
312d3ca8
CH
130
131#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
62d36c77
DC
132
133/*
134 * Here we resort to our own counters instead of using generic per-cpu counters
135 * for consistency with what the vfs inode code does. We are expected to harvest
136 * better code and performance by having our own specialized counters.
137 *
138 * Please note that the loop is done over all possible CPUs, not over all online
139 * CPUs. The reason for this is that we don't want to play games with CPUs going
140 * on and off. If one of them goes off, we will just keep their counters.
141 *
142 * glommer: See cffbc8a for details, and if you ever intend to change this,
143 * please update all vfs counters to match.
144 */
3942c07c 145static long get_nr_dentry(void)
3e880fb5
NP
146{
147 int i;
3942c07c 148 long sum = 0;
3e880fb5
NP
149 for_each_possible_cpu(i)
150 sum += per_cpu(nr_dentry, i);
151 return sum < 0 ? 0 : sum;
152}
153
62d36c77
DC
154static long get_nr_dentry_unused(void)
155{
156 int i;
157 long sum = 0;
158 for_each_possible_cpu(i)
159 sum += per_cpu(nr_dentry_unused, i);
160 return sum < 0 ? 0 : sum;
161}
162
1f7e0616 163int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
312d3ca8
CH
164 size_t *lenp, loff_t *ppos)
165{
3e880fb5 166 dentry_stat.nr_dentry = get_nr_dentry();
62d36c77 167 dentry_stat.nr_unused = get_nr_dentry_unused();
3942c07c 168 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
312d3ca8
CH
169}
170#endif
171
5483f18e
LT
172/*
173 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
174 * The strings are both count bytes long, and count is non-zero.
175 */
e419b4cc
LT
176#ifdef CONFIG_DCACHE_WORD_ACCESS
177
178#include <asm/word-at-a-time.h>
179/*
180 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
181 * aligned allocation for this particular component. We don't
182 * strictly need the load_unaligned_zeropad() safety, but it
183 * doesn't hurt either.
184 *
185 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
186 * need the careful unaligned handling.
187 */
94753db5 188static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
5483f18e 189{
bfcfaa77 190 unsigned long a,b,mask;
bfcfaa77
LT
191
192 for (;;) {
12f8ad4b 193 a = *(unsigned long *)cs;
e419b4cc 194 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
195 if (tcount < sizeof(unsigned long))
196 break;
197 if (unlikely(a != b))
198 return 1;
199 cs += sizeof(unsigned long);
200 ct += sizeof(unsigned long);
201 tcount -= sizeof(unsigned long);
202 if (!tcount)
203 return 0;
204 }
a5c21dce 205 mask = bytemask_from_count(tcount);
bfcfaa77 206 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
207}
208
bfcfaa77 209#else
e419b4cc 210
94753db5 211static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
e419b4cc 212{
5483f18e
LT
213 do {
214 if (*cs != *ct)
215 return 1;
216 cs++;
217 ct++;
218 tcount--;
219 } while (tcount);
220 return 0;
221}
222
e419b4cc
LT
223#endif
224
94753db5
LT
225static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
226{
94753db5
LT
227 /*
228 * Be careful about RCU walk racing with rename:
ae0a843c 229 * use 'lockless_dereference' to fetch the name pointer.
94753db5
LT
230 *
231 * NOTE! Even if a rename will mean that the length
232 * was not loaded atomically, we don't care. The
233 * RCU walk will check the sequence count eventually,
234 * and catch it. And we won't overrun the buffer,
235 * because we're reading the name pointer atomically,
236 * and a dentry name is guaranteed to be properly
237 * terminated with a NUL byte.
238 *
239 * End result: even if 'len' is wrong, we'll exit
240 * early because the data cannot match (there can
241 * be no NUL in the ct/tcount data)
242 */
ae0a843c
HK
243 const unsigned char *cs = lockless_dereference(dentry->d_name.name);
244
6326c71f 245 return dentry_string_cmp(cs, ct, tcount);
94753db5
LT
246}
247
8d85b484
AV
248struct external_name {
249 union {
250 atomic_t count;
251 struct rcu_head head;
252 } u;
253 unsigned char name[];
254};
255
256static inline struct external_name *external_name(struct dentry *dentry)
257{
258 return container_of(dentry->d_name.name, struct external_name, name[0]);
259}
260
9c82ab9c 261static void __d_free(struct rcu_head *head)
1da177e4 262{
9c82ab9c
CH
263 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
264
8d85b484
AV
265 kmem_cache_free(dentry_cache, dentry);
266}
267
268static void __d_free_external(struct rcu_head *head)
269{
270 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
8d85b484 271 kfree(external_name(dentry));
1da177e4
LT
272 kmem_cache_free(dentry_cache, dentry);
273}
274
810bb172
AV
275static inline int dname_external(const struct dentry *dentry)
276{
277 return dentry->d_name.name != dentry->d_iname;
278}
279
5e675887
AV
280void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
281{
282 spin_lock(&dentry->d_lock);
283 if (unlikely(dname_external(dentry))) {
284 struct external_name *p = external_name(dentry);
285 atomic_inc(&p->u.count);
286 spin_unlock(&dentry->d_lock);
287 name->name = p->name;
288 } else {
289 memcpy(name->inline_name, dentry->d_iname, DNAME_INLINE_LEN);
290 spin_unlock(&dentry->d_lock);
291 name->name = name->inline_name;
292 }
293}
294EXPORT_SYMBOL(take_dentry_name_snapshot);
295
296void release_dentry_name_snapshot(struct name_snapshot *name)
297{
298 if (unlikely(name->name != name->inline_name)) {
299 struct external_name *p;
300 p = container_of(name->name, struct external_name, name[0]);
301 if (unlikely(atomic_dec_and_test(&p->u.count)))
302 kfree_rcu(p, u.head);
303 }
304}
305EXPORT_SYMBOL(release_dentry_name_snapshot);
306
4bf46a27
DH
307static inline void __d_set_inode_and_type(struct dentry *dentry,
308 struct inode *inode,
309 unsigned type_flags)
310{
311 unsigned flags;
312
313 dentry->d_inode = inode;
4bf46a27
DH
314 flags = READ_ONCE(dentry->d_flags);
315 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
316 flags |= type_flags;
317 WRITE_ONCE(dentry->d_flags, flags);
318}
319
4bf46a27
DH
320static inline void __d_clear_type_and_inode(struct dentry *dentry)
321{
322 unsigned flags = READ_ONCE(dentry->d_flags);
323
324 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
325 WRITE_ONCE(dentry->d_flags, flags);
4bf46a27
DH
326 dentry->d_inode = NULL;
327}
328
b4f0354e
AV
329static void dentry_free(struct dentry *dentry)
330{
946e51f2 331 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
8d85b484
AV
332 if (unlikely(dname_external(dentry))) {
333 struct external_name *p = external_name(dentry);
334 if (likely(atomic_dec_and_test(&p->u.count))) {
335 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
336 return;
337 }
338 }
b4f0354e
AV
339 /* if dentry was never visible to RCU, immediate free is OK */
340 if (!(dentry->d_flags & DCACHE_RCUACCESS))
341 __d_free(&dentry->d_u.d_rcu);
342 else
343 call_rcu(&dentry->d_u.d_rcu, __d_free);
344}
345
1da177e4
LT
346/*
347 * Release the dentry's inode, using the filesystem
550dce01 348 * d_iput() operation if defined.
31e6b01f
NP
349 */
350static void dentry_unlink_inode(struct dentry * dentry)
351 __releases(dentry->d_lock)
873feea0 352 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
353{
354 struct inode *inode = dentry->d_inode;
550dce01 355 bool hashed = !d_unhashed(dentry);
a528aca7 356
550dce01
AV
357 if (hashed)
358 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 359 __d_clear_type_and_inode(dentry);
946e51f2 360 hlist_del_init(&dentry->d_u.d_alias);
550dce01
AV
361 if (hashed)
362 raw_write_seqcount_end(&dentry->d_seq);
31e6b01f 363 spin_unlock(&dentry->d_lock);
873feea0 364 spin_unlock(&inode->i_lock);
31e6b01f
NP
365 if (!inode->i_nlink)
366 fsnotify_inoderemove(inode);
367 if (dentry->d_op && dentry->d_op->d_iput)
368 dentry->d_op->d_iput(dentry, inode);
369 else
370 iput(inode);
371}
372
89dc77bc
LT
373/*
374 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
375 * is in use - which includes both the "real" per-superblock
376 * LRU list _and_ the DCACHE_SHRINK_LIST use.
377 *
378 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
379 * on the shrink list (ie not on the superblock LRU list).
380 *
381 * The per-cpu "nr_dentry_unused" counters are updated with
382 * the DCACHE_LRU_LIST bit.
383 *
384 * These helper functions make sure we always follow the
385 * rules. d_lock must be held by the caller.
386 */
387#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
388static void d_lru_add(struct dentry *dentry)
389{
390 D_FLAG_VERIFY(dentry, 0);
391 dentry->d_flags |= DCACHE_LRU_LIST;
392 this_cpu_inc(nr_dentry_unused);
393 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
394}
395
396static void d_lru_del(struct dentry *dentry)
397{
398 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
399 dentry->d_flags &= ~DCACHE_LRU_LIST;
400 this_cpu_dec(nr_dentry_unused);
401 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
402}
403
404static void d_shrink_del(struct dentry *dentry)
405{
406 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
407 list_del_init(&dentry->d_lru);
408 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
409 this_cpu_dec(nr_dentry_unused);
410}
411
412static void d_shrink_add(struct dentry *dentry, struct list_head *list)
413{
414 D_FLAG_VERIFY(dentry, 0);
415 list_add(&dentry->d_lru, list);
416 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
417 this_cpu_inc(nr_dentry_unused);
418}
419
420/*
421 * These can only be called under the global LRU lock, ie during the
422 * callback for freeing the LRU list. "isolate" removes it from the
423 * LRU lists entirely, while shrink_move moves it to the indicated
424 * private list.
425 */
3f97b163 426static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
89dc77bc
LT
427{
428 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
429 dentry->d_flags &= ~DCACHE_LRU_LIST;
430 this_cpu_dec(nr_dentry_unused);
3f97b163 431 list_lru_isolate(lru, &dentry->d_lru);
89dc77bc
LT
432}
433
3f97b163
VD
434static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
435 struct list_head *list)
89dc77bc
LT
436{
437 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
438 dentry->d_flags |= DCACHE_SHRINK_LIST;
3f97b163 439 list_lru_isolate_move(lru, &dentry->d_lru, list);
89dc77bc
LT
440}
441
da3bbdd4 442/*
f6041567 443 * dentry_lru_(add|del)_list) must be called with d_lock held.
da3bbdd4
KM
444 */
445static void dentry_lru_add(struct dentry *dentry)
446{
89dc77bc
LT
447 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
448 d_lru_add(dentry);
da3bbdd4
KM
449}
450
789680d1
NP
451/**
452 * d_drop - drop a dentry
453 * @dentry: dentry to drop
454 *
455 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
456 * be found through a VFS lookup any more. Note that this is different from
457 * deleting the dentry - d_delete will try to mark the dentry negative if
458 * possible, giving a successful _negative_ lookup, while d_drop will
459 * just make the cache lookup fail.
460 *
461 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
462 * reason (NFS timeouts or autofs deletes).
463 *
464 * __d_drop requires dentry->d_lock.
465 */
466void __d_drop(struct dentry *dentry)
467{
dea3667b 468 if (!d_unhashed(dentry)) {
b61625d2 469 struct hlist_bl_head *b;
7632e465
BF
470 /*
471 * Hashed dentries are normally on the dentry hashtable,
472 * with the exception of those newly allocated by
473 * d_obtain_alias, which are always IS_ROOT:
474 */
475 if (unlikely(IS_ROOT(dentry)))
b61625d2
AV
476 b = &dentry->d_sb->s_anon;
477 else
8387ff25 478 b = d_hash(dentry->d_name.hash);
b61625d2
AV
479
480 hlist_bl_lock(b);
481 __hlist_bl_del(&dentry->d_hash);
482 dentry->d_hash.pprev = NULL;
483 hlist_bl_unlock(b);
d614146d
AV
484 /* After this call, in-progress rcu-walk path lookup will fail. */
485 write_seqcount_invalidate(&dentry->d_seq);
789680d1
NP
486 }
487}
488EXPORT_SYMBOL(__d_drop);
489
490void d_drop(struct dentry *dentry)
491{
789680d1
NP
492 spin_lock(&dentry->d_lock);
493 __d_drop(dentry);
494 spin_unlock(&dentry->d_lock);
789680d1
NP
495}
496EXPORT_SYMBOL(d_drop);
497
ba65dc5e
AV
498static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
499{
500 struct dentry *next;
501 /*
502 * Inform d_walk() and shrink_dentry_list() that we are no longer
503 * attached to the dentry tree
504 */
505 dentry->d_flags |= DCACHE_DENTRY_KILLED;
506 if (unlikely(list_empty(&dentry->d_child)))
507 return;
508 __list_del_entry(&dentry->d_child);
509 /*
510 * Cursors can move around the list of children. While we'd been
511 * a normal list member, it didn't matter - ->d_child.next would've
512 * been updated. However, from now on it won't be and for the
513 * things like d_walk() it might end up with a nasty surprise.
514 * Normally d_walk() doesn't care about cursors moving around -
515 * ->d_lock on parent prevents that and since a cursor has no children
516 * of its own, we get through it without ever unlocking the parent.
517 * There is one exception, though - if we ascend from a child that
518 * gets killed as soon as we unlock it, the next sibling is found
519 * using the value left in its ->d_child.next. And if _that_
520 * pointed to a cursor, and cursor got moved (e.g. by lseek())
521 * before d_walk() regains parent->d_lock, we'll end up skipping
522 * everything the cursor had been moved past.
523 *
524 * Solution: make sure that the pointer left behind in ->d_child.next
525 * points to something that won't be moving around. I.e. skip the
526 * cursors.
527 */
528 while (dentry->d_child.next != &parent->d_subdirs) {
529 next = list_entry(dentry->d_child.next, struct dentry, d_child);
530 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
531 break;
532 dentry->d_child.next = next->d_child.next;
533 }
534}
535
e55fd011 536static void __dentry_kill(struct dentry *dentry)
77812a1e 537{
41edf278
AV
538 struct dentry *parent = NULL;
539 bool can_free = true;
41edf278 540 if (!IS_ROOT(dentry))
77812a1e 541 parent = dentry->d_parent;
31e6b01f 542
0d98439e
LT
543 /*
544 * The dentry is now unrecoverably dead to the world.
545 */
546 lockref_mark_dead(&dentry->d_lockref);
547
f0023bc6 548 /*
f0023bc6
SW
549 * inform the fs via d_prune that this dentry is about to be
550 * unhashed and destroyed.
551 */
29266201 552 if (dentry->d_flags & DCACHE_OP_PRUNE)
61572bb1
YZ
553 dentry->d_op->d_prune(dentry);
554
01b60351
AV
555 if (dentry->d_flags & DCACHE_LRU_LIST) {
556 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
557 d_lru_del(dentry);
01b60351 558 }
77812a1e
NP
559 /* if it was on the hash then remove it */
560 __d_drop(dentry);
ba65dc5e 561 dentry_unlist(dentry, parent);
03b3b889
AV
562 if (parent)
563 spin_unlock(&parent->d_lock);
550dce01
AV
564 if (dentry->d_inode)
565 dentry_unlink_inode(dentry);
566 else
567 spin_unlock(&dentry->d_lock);
03b3b889
AV
568 this_cpu_dec(nr_dentry);
569 if (dentry->d_op && dentry->d_op->d_release)
570 dentry->d_op->d_release(dentry);
571
41edf278
AV
572 spin_lock(&dentry->d_lock);
573 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
574 dentry->d_flags |= DCACHE_MAY_FREE;
575 can_free = false;
576 }
577 spin_unlock(&dentry->d_lock);
41edf278
AV
578 if (likely(can_free))
579 dentry_free(dentry);
e55fd011
AV
580}
581
582/*
583 * Finish off a dentry we've decided to kill.
584 * dentry->d_lock must be held, returns with it unlocked.
585 * If ref is non-zero, then decrement the refcount too.
586 * Returns dentry requiring refcount drop, or NULL if we're done.
587 */
8cbf74da 588static struct dentry *dentry_kill(struct dentry *dentry)
e55fd011
AV
589 __releases(dentry->d_lock)
590{
591 struct inode *inode = dentry->d_inode;
592 struct dentry *parent = NULL;
593
594 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
595 goto failed;
596
597 if (!IS_ROOT(dentry)) {
598 parent = dentry->d_parent;
599 if (unlikely(!spin_trylock(&parent->d_lock))) {
600 if (inode)
601 spin_unlock(&inode->i_lock);
602 goto failed;
603 }
604 }
605
606 __dentry_kill(dentry);
03b3b889 607 return parent;
e55fd011
AV
608
609failed:
8cbf74da 610 spin_unlock(&dentry->d_lock);
e55fd011 611 return dentry; /* try again with same dentry */
77812a1e
NP
612}
613
046b961b
AV
614static inline struct dentry *lock_parent(struct dentry *dentry)
615{
616 struct dentry *parent = dentry->d_parent;
617 if (IS_ROOT(dentry))
618 return NULL;
360f5479 619 if (unlikely(dentry->d_lockref.count < 0))
c2338f2d 620 return NULL;
046b961b
AV
621 if (likely(spin_trylock(&parent->d_lock)))
622 return parent;
046b961b 623 rcu_read_lock();
c2338f2d 624 spin_unlock(&dentry->d_lock);
046b961b
AV
625again:
626 parent = ACCESS_ONCE(dentry->d_parent);
627 spin_lock(&parent->d_lock);
628 /*
629 * We can't blindly lock dentry until we are sure
630 * that we won't violate the locking order.
631 * Any changes of dentry->d_parent must have
632 * been done with parent->d_lock held, so
633 * spin_lock() above is enough of a barrier
634 * for checking if it's still our child.
635 */
636 if (unlikely(parent != dentry->d_parent)) {
637 spin_unlock(&parent->d_lock);
638 goto again;
639 }
640 rcu_read_unlock();
641 if (parent != dentry)
9f12600f 642 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
046b961b
AV
643 else
644 parent = NULL;
645 return parent;
646}
647
360f5479
LT
648/*
649 * Try to do a lockless dput(), and return whether that was successful.
650 *
651 * If unsuccessful, we return false, having already taken the dentry lock.
652 *
653 * The caller needs to hold the RCU read lock, so that the dentry is
654 * guaranteed to stay around even if the refcount goes down to zero!
655 */
656static inline bool fast_dput(struct dentry *dentry)
657{
658 int ret;
659 unsigned int d_flags;
660
661 /*
662 * If we have a d_op->d_delete() operation, we sould not
75a6f82a 663 * let the dentry count go to zero, so use "put_or_lock".
360f5479
LT
664 */
665 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
666 return lockref_put_or_lock(&dentry->d_lockref);
667
668 /*
669 * .. otherwise, we can try to just decrement the
670 * lockref optimistically.
671 */
672 ret = lockref_put_return(&dentry->d_lockref);
673
674 /*
675 * If the lockref_put_return() failed due to the lock being held
676 * by somebody else, the fast path has failed. We will need to
677 * get the lock, and then check the count again.
678 */
679 if (unlikely(ret < 0)) {
680 spin_lock(&dentry->d_lock);
681 if (dentry->d_lockref.count > 1) {
682 dentry->d_lockref.count--;
683 spin_unlock(&dentry->d_lock);
684 return 1;
685 }
686 return 0;
687 }
688
689 /*
690 * If we weren't the last ref, we're done.
691 */
692 if (ret)
693 return 1;
694
695 /*
696 * Careful, careful. The reference count went down
697 * to zero, but we don't hold the dentry lock, so
698 * somebody else could get it again, and do another
699 * dput(), and we need to not race with that.
700 *
701 * However, there is a very special and common case
702 * where we don't care, because there is nothing to
703 * do: the dentry is still hashed, it does not have
704 * a 'delete' op, and it's referenced and already on
705 * the LRU list.
706 *
707 * NOTE! Since we aren't locked, these values are
708 * not "stable". However, it is sufficient that at
709 * some point after we dropped the reference the
710 * dentry was hashed and the flags had the proper
711 * value. Other dentry users may have re-gotten
712 * a reference to the dentry and change that, but
713 * our work is done - we can leave the dentry
714 * around with a zero refcount.
715 */
716 smp_rmb();
717 d_flags = ACCESS_ONCE(dentry->d_flags);
75a6f82a 718 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
360f5479
LT
719
720 /* Nothing to do? Dropping the reference was all we needed? */
721 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
722 return 1;
723
724 /*
725 * Not the fast normal case? Get the lock. We've already decremented
726 * the refcount, but we'll need to re-check the situation after
727 * getting the lock.
728 */
729 spin_lock(&dentry->d_lock);
730
731 /*
732 * Did somebody else grab a reference to it in the meantime, and
733 * we're no longer the last user after all? Alternatively, somebody
734 * else could have killed it and marked it dead. Either way, we
735 * don't need to do anything else.
736 */
737 if (dentry->d_lockref.count) {
738 spin_unlock(&dentry->d_lock);
739 return 1;
740 }
741
742 /*
743 * Re-get the reference we optimistically dropped. We hold the
744 * lock, and we just tested that it was zero, so we can just
745 * set it to 1.
746 */
747 dentry->d_lockref.count = 1;
748 return 0;
749}
750
751
1da177e4
LT
752/*
753 * This is dput
754 *
755 * This is complicated by the fact that we do not want to put
756 * dentries that are no longer on any hash chain on the unused
757 * list: we'd much rather just get rid of them immediately.
758 *
759 * However, that implies that we have to traverse the dentry
760 * tree upwards to the parents which might _also_ now be
761 * scheduled for deletion (it may have been only waiting for
762 * its last child to go away).
763 *
764 * This tail recursion is done by hand as we don't want to depend
765 * on the compiler to always get this right (gcc generally doesn't).
766 * Real recursion would eat up our stack space.
767 */
768
769/*
770 * dput - release a dentry
771 * @dentry: dentry to release
772 *
773 * Release a dentry. This will drop the usage count and if appropriate
774 * call the dentry unlink method as well as removing it from the queues and
775 * releasing its resources. If the parent dentries were scheduled for release
776 * they too may now get deleted.
1da177e4 777 */
1da177e4
LT
778void dput(struct dentry *dentry)
779{
8aab6a27 780 if (unlikely(!dentry))
1da177e4
LT
781 return;
782
783repeat:
47be6184
WF
784 might_sleep();
785
360f5479
LT
786 rcu_read_lock();
787 if (likely(fast_dput(dentry))) {
788 rcu_read_unlock();
1da177e4 789 return;
360f5479
LT
790 }
791
792 /* Slow case: now with the dentry lock held */
793 rcu_read_unlock();
1da177e4 794
85c7f810
AV
795 WARN_ON(d_in_lookup(dentry));
796
8aab6a27
LT
797 /* Unreachable? Get rid of it */
798 if (unlikely(d_unhashed(dentry)))
799 goto kill_it;
800
75a6f82a
AV
801 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
802 goto kill_it;
803
8aab6a27 804 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
1da177e4 805 if (dentry->d_op->d_delete(dentry))
61f3dee4 806 goto kill_it;
1da177e4 807 }
265ac902 808
358eec18
LT
809 if (!(dentry->d_flags & DCACHE_REFERENCED))
810 dentry->d_flags |= DCACHE_REFERENCED;
a4633357 811 dentry_lru_add(dentry);
265ac902 812
98474236 813 dentry->d_lockref.count--;
61f3dee4 814 spin_unlock(&dentry->d_lock);
1da177e4
LT
815 return;
816
d52b9086 817kill_it:
8cbf74da 818 dentry = dentry_kill(dentry);
47be6184
WF
819 if (dentry) {
820 cond_resched();
d52b9086 821 goto repeat;
47be6184 822 }
1da177e4 823}
ec4f8605 824EXPORT_SYMBOL(dput);
1da177e4 825
1da177e4 826
b5c84bf6 827/* This must be called with d_lock held */
dc0474be 828static inline void __dget_dlock(struct dentry *dentry)
23044507 829{
98474236 830 dentry->d_lockref.count++;
23044507
NP
831}
832
dc0474be 833static inline void __dget(struct dentry *dentry)
1da177e4 834{
98474236 835 lockref_get(&dentry->d_lockref);
1da177e4
LT
836}
837
b7ab39f6
NP
838struct dentry *dget_parent(struct dentry *dentry)
839{
df3d0bbc 840 int gotref;
b7ab39f6
NP
841 struct dentry *ret;
842
df3d0bbc
WL
843 /*
844 * Do optimistic parent lookup without any
845 * locking.
846 */
847 rcu_read_lock();
848 ret = ACCESS_ONCE(dentry->d_parent);
849 gotref = lockref_get_not_zero(&ret->d_lockref);
850 rcu_read_unlock();
851 if (likely(gotref)) {
852 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
853 return ret;
854 dput(ret);
855 }
856
b7ab39f6 857repeat:
a734eb45
NP
858 /*
859 * Don't need rcu_dereference because we re-check it was correct under
860 * the lock.
861 */
862 rcu_read_lock();
b7ab39f6 863 ret = dentry->d_parent;
a734eb45
NP
864 spin_lock(&ret->d_lock);
865 if (unlikely(ret != dentry->d_parent)) {
866 spin_unlock(&ret->d_lock);
867 rcu_read_unlock();
b7ab39f6
NP
868 goto repeat;
869 }
a734eb45 870 rcu_read_unlock();
98474236
WL
871 BUG_ON(!ret->d_lockref.count);
872 ret->d_lockref.count++;
b7ab39f6 873 spin_unlock(&ret->d_lock);
b7ab39f6
NP
874 return ret;
875}
876EXPORT_SYMBOL(dget_parent);
877
1da177e4
LT
878/**
879 * d_find_alias - grab a hashed alias of inode
880 * @inode: inode in question
1da177e4
LT
881 *
882 * If inode has a hashed alias, or is a directory and has any alias,
883 * acquire the reference to alias and return it. Otherwise return NULL.
884 * Notice that if inode is a directory there can be only one alias and
885 * it can be unhashed only if it has no children, or if it is the root
3ccb354d
EB
886 * of a filesystem, or if the directory was renamed and d_revalidate
887 * was the first vfs operation to notice.
1da177e4 888 *
21c0d8fd 889 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
52ed46f0 890 * any other hashed alias over that one.
1da177e4 891 */
52ed46f0 892static struct dentry *__d_find_alias(struct inode *inode)
1da177e4 893{
da502956 894 struct dentry *alias, *discon_alias;
1da177e4 895
da502956
NP
896again:
897 discon_alias = NULL;
946e51f2 898 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
da502956 899 spin_lock(&alias->d_lock);
1da177e4 900 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 901 if (IS_ROOT(alias) &&
da502956 902 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 903 discon_alias = alias;
52ed46f0 904 } else {
dc0474be 905 __dget_dlock(alias);
da502956
NP
906 spin_unlock(&alias->d_lock);
907 return alias;
908 }
909 }
910 spin_unlock(&alias->d_lock);
911 }
912 if (discon_alias) {
913 alias = discon_alias;
914 spin_lock(&alias->d_lock);
915 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
8d80d7da
BF
916 __dget_dlock(alias);
917 spin_unlock(&alias->d_lock);
918 return alias;
1da177e4 919 }
da502956
NP
920 spin_unlock(&alias->d_lock);
921 goto again;
1da177e4 922 }
da502956 923 return NULL;
1da177e4
LT
924}
925
da502956 926struct dentry *d_find_alias(struct inode *inode)
1da177e4 927{
214fda1f
DH
928 struct dentry *de = NULL;
929
b3d9b7a3 930 if (!hlist_empty(&inode->i_dentry)) {
873feea0 931 spin_lock(&inode->i_lock);
52ed46f0 932 de = __d_find_alias(inode);
873feea0 933 spin_unlock(&inode->i_lock);
214fda1f 934 }
1da177e4
LT
935 return de;
936}
ec4f8605 937EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
938
939/*
940 * Try to kill dentries associated with this inode.
941 * WARNING: you must own a reference to inode.
942 */
943void d_prune_aliases(struct inode *inode)
944{
0cdca3f9 945 struct dentry *dentry;
1da177e4 946restart:
873feea0 947 spin_lock(&inode->i_lock);
946e51f2 948 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1da177e4 949 spin_lock(&dentry->d_lock);
98474236 950 if (!dentry->d_lockref.count) {
29355c39
AV
951 struct dentry *parent = lock_parent(dentry);
952 if (likely(!dentry->d_lockref.count)) {
953 __dentry_kill(dentry);
4a7795d3 954 dput(parent);
29355c39
AV
955 goto restart;
956 }
957 if (parent)
958 spin_unlock(&parent->d_lock);
1da177e4
LT
959 }
960 spin_unlock(&dentry->d_lock);
961 }
873feea0 962 spin_unlock(&inode->i_lock);
1da177e4 963}
ec4f8605 964EXPORT_SYMBOL(d_prune_aliases);
1da177e4 965
3049cfe2 966static void shrink_dentry_list(struct list_head *list)
1da177e4 967{
5c47e6d0 968 struct dentry *dentry, *parent;
da3bbdd4 969
60942f2f 970 while (!list_empty(list)) {
ff2fde99 971 struct inode *inode;
60942f2f 972 dentry = list_entry(list->prev, struct dentry, d_lru);
ec33679d 973 spin_lock(&dentry->d_lock);
046b961b
AV
974 parent = lock_parent(dentry);
975
dd1f6b2e
DC
976 /*
977 * The dispose list is isolated and dentries are not accounted
978 * to the LRU here, so we can simply remove it from the list
979 * here regardless of whether it is referenced or not.
980 */
89dc77bc 981 d_shrink_del(dentry);
dd1f6b2e 982
1da177e4
LT
983 /*
984 * We found an inuse dentry which was not removed from
dd1f6b2e 985 * the LRU because of laziness during lookup. Do not free it.
1da177e4 986 */
360f5479 987 if (dentry->d_lockref.count > 0) {
da3bbdd4 988 spin_unlock(&dentry->d_lock);
046b961b
AV
989 if (parent)
990 spin_unlock(&parent->d_lock);
1da177e4
LT
991 continue;
992 }
77812a1e 993
64fd72e0
AV
994
995 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
996 bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
997 spin_unlock(&dentry->d_lock);
046b961b
AV
998 if (parent)
999 spin_unlock(&parent->d_lock);
64fd72e0
AV
1000 if (can_free)
1001 dentry_free(dentry);
1002 continue;
1003 }
1004
ff2fde99
AV
1005 inode = dentry->d_inode;
1006 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
89dc77bc 1007 d_shrink_add(dentry, list);
dd1f6b2e 1008 spin_unlock(&dentry->d_lock);
046b961b
AV
1009 if (parent)
1010 spin_unlock(&parent->d_lock);
5c47e6d0 1011 continue;
dd1f6b2e 1012 }
ff2fde99 1013
ff2fde99 1014 __dentry_kill(dentry);
046b961b 1015
5c47e6d0
AV
1016 /*
1017 * We need to prune ancestors too. This is necessary to prevent
1018 * quadratic behavior of shrink_dcache_parent(), but is also
1019 * expected to be beneficial in reducing dentry cache
1020 * fragmentation.
1021 */
1022 dentry = parent;
b2b80195
AV
1023 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
1024 parent = lock_parent(dentry);
1025 if (dentry->d_lockref.count != 1) {
1026 dentry->d_lockref.count--;
1027 spin_unlock(&dentry->d_lock);
1028 if (parent)
1029 spin_unlock(&parent->d_lock);
1030 break;
1031 }
1032 inode = dentry->d_inode; /* can't be NULL */
1033 if (unlikely(!spin_trylock(&inode->i_lock))) {
1034 spin_unlock(&dentry->d_lock);
1035 if (parent)
1036 spin_unlock(&parent->d_lock);
1037 cpu_relax();
1038 continue;
1039 }
1040 __dentry_kill(dentry);
1041 dentry = parent;
1042 }
da3bbdd4 1043 }
3049cfe2
CH
1044}
1045
3f97b163
VD
1046static enum lru_status dentry_lru_isolate(struct list_head *item,
1047 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
f6041567
DC
1048{
1049 struct list_head *freeable = arg;
1050 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1051
1052
1053 /*
1054 * we are inverting the lru lock/dentry->d_lock here,
1055 * so use a trylock. If we fail to get the lock, just skip
1056 * it
1057 */
1058 if (!spin_trylock(&dentry->d_lock))
1059 return LRU_SKIP;
1060
1061 /*
1062 * Referenced dentries are still in use. If they have active
1063 * counts, just remove them from the LRU. Otherwise give them
1064 * another pass through the LRU.
1065 */
1066 if (dentry->d_lockref.count) {
3f97b163 1067 d_lru_isolate(lru, dentry);
f6041567
DC
1068 spin_unlock(&dentry->d_lock);
1069 return LRU_REMOVED;
1070 }
1071
1072 if (dentry->d_flags & DCACHE_REFERENCED) {
1073 dentry->d_flags &= ~DCACHE_REFERENCED;
1074 spin_unlock(&dentry->d_lock);
1075
1076 /*
1077 * The list move itself will be made by the common LRU code. At
1078 * this point, we've dropped the dentry->d_lock but keep the
1079 * lru lock. This is safe to do, since every list movement is
1080 * protected by the lru lock even if both locks are held.
1081 *
1082 * This is guaranteed by the fact that all LRU management
1083 * functions are intermediated by the LRU API calls like
1084 * list_lru_add and list_lru_del. List movement in this file
1085 * only ever occur through this functions or through callbacks
1086 * like this one, that are called from the LRU API.
1087 *
1088 * The only exceptions to this are functions like
1089 * shrink_dentry_list, and code that first checks for the
1090 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1091 * operating only with stack provided lists after they are
1092 * properly isolated from the main list. It is thus, always a
1093 * local access.
1094 */
1095 return LRU_ROTATE;
1096 }
1097
3f97b163 1098 d_lru_shrink_move(lru, dentry, freeable);
f6041567
DC
1099 spin_unlock(&dentry->d_lock);
1100
1101 return LRU_REMOVED;
1102}
1103
3049cfe2 1104/**
b48f03b3
DC
1105 * prune_dcache_sb - shrink the dcache
1106 * @sb: superblock
503c358c 1107 * @sc: shrink control, passed to list_lru_shrink_walk()
b48f03b3 1108 *
503c358c
VD
1109 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1110 * is done when we need more memory and called from the superblock shrinker
b48f03b3 1111 * function.
3049cfe2 1112 *
b48f03b3
DC
1113 * This function may fail to free any resources if all the dentries are in
1114 * use.
3049cfe2 1115 */
503c358c 1116long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
3049cfe2 1117{
f6041567
DC
1118 LIST_HEAD(dispose);
1119 long freed;
3049cfe2 1120
503c358c
VD
1121 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1122 dentry_lru_isolate, &dispose);
f6041567 1123 shrink_dentry_list(&dispose);
0a234c6d 1124 return freed;
da3bbdd4 1125}
23044507 1126
4e717f5c 1127static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
3f97b163 1128 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
dd1f6b2e 1129{
4e717f5c
GC
1130 struct list_head *freeable = arg;
1131 struct dentry *dentry = container_of(item, struct dentry, d_lru);
dd1f6b2e 1132
4e717f5c
GC
1133 /*
1134 * we are inverting the lru lock/dentry->d_lock here,
1135 * so use a trylock. If we fail to get the lock, just skip
1136 * it
1137 */
1138 if (!spin_trylock(&dentry->d_lock))
1139 return LRU_SKIP;
1140
3f97b163 1141 d_lru_shrink_move(lru, dentry, freeable);
4e717f5c 1142 spin_unlock(&dentry->d_lock);
ec33679d 1143
4e717f5c 1144 return LRU_REMOVED;
da3bbdd4
KM
1145}
1146
4e717f5c 1147
1da177e4
LT
1148/**
1149 * shrink_dcache_sb - shrink dcache for a superblock
1150 * @sb: superblock
1151 *
3049cfe2
CH
1152 * Shrink the dcache for the specified super block. This is used to free
1153 * the dcache before unmounting a file system.
1da177e4 1154 */
3049cfe2 1155void shrink_dcache_sb(struct super_block *sb)
1da177e4 1156{
4e717f5c
GC
1157 long freed;
1158
1159 do {
1160 LIST_HEAD(dispose);
1161
1162 freed = list_lru_walk(&sb->s_dentry_lru,
1163 dentry_lru_isolate_shrink, &dispose, UINT_MAX);
3049cfe2 1164
4e717f5c
GC
1165 this_cpu_sub(nr_dentry_unused, freed);
1166 shrink_dentry_list(&dispose);
1167 } while (freed > 0);
1da177e4 1168}
ec4f8605 1169EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 1170
db14fc3a
MS
1171/**
1172 * enum d_walk_ret - action to talke during tree walk
1173 * @D_WALK_CONTINUE: contrinue walk
1174 * @D_WALK_QUIT: quit walk
1175 * @D_WALK_NORETRY: quit when retry is needed
1176 * @D_WALK_SKIP: skip this dentry and its children
1177 */
1178enum d_walk_ret {
1179 D_WALK_CONTINUE,
1180 D_WALK_QUIT,
1181 D_WALK_NORETRY,
1182 D_WALK_SKIP,
1183};
c826cb7d 1184
1da177e4 1185/**
db14fc3a
MS
1186 * d_walk - walk the dentry tree
1187 * @parent: start of walk
1188 * @data: data passed to @enter() and @finish()
1189 * @enter: callback when first entering the dentry
1190 * @finish: callback when successfully finished the walk
1da177e4 1191 *
db14fc3a 1192 * The @enter() and @finish() callbacks are called with d_lock held.
1da177e4 1193 */
e14748e8 1194void d_walk(struct dentry *parent, void *data,
db14fc3a
MS
1195 enum d_walk_ret (*enter)(void *, struct dentry *),
1196 void (*finish)(void *))
1da177e4 1197{
949854d0 1198 struct dentry *this_parent;
1da177e4 1199 struct list_head *next;
48f5ec21 1200 unsigned seq = 0;
db14fc3a
MS
1201 enum d_walk_ret ret;
1202 bool retry = true;
949854d0 1203
58db63d0 1204again:
48f5ec21 1205 read_seqbegin_or_lock(&rename_lock, &seq);
58db63d0 1206 this_parent = parent;
2fd6b7f5 1207 spin_lock(&this_parent->d_lock);
db14fc3a
MS
1208
1209 ret = enter(data, this_parent);
1210 switch (ret) {
1211 case D_WALK_CONTINUE:
1212 break;
1213 case D_WALK_QUIT:
1214 case D_WALK_SKIP:
1215 goto out_unlock;
1216 case D_WALK_NORETRY:
1217 retry = false;
1218 break;
1219 }
1da177e4
LT
1220repeat:
1221 next = this_parent->d_subdirs.next;
1222resume:
1223 while (next != &this_parent->d_subdirs) {
1224 struct list_head *tmp = next;
946e51f2 1225 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1da177e4 1226 next = tmp->next;
2fd6b7f5 1227
ba65dc5e
AV
1228 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1229 continue;
1230
2fd6b7f5 1231 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
db14fc3a
MS
1232
1233 ret = enter(data, dentry);
1234 switch (ret) {
1235 case D_WALK_CONTINUE:
1236 break;
1237 case D_WALK_QUIT:
2fd6b7f5 1238 spin_unlock(&dentry->d_lock);
db14fc3a
MS
1239 goto out_unlock;
1240 case D_WALK_NORETRY:
1241 retry = false;
1242 break;
1243 case D_WALK_SKIP:
1244 spin_unlock(&dentry->d_lock);
1245 continue;
2fd6b7f5 1246 }
db14fc3a 1247
1da177e4 1248 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1249 spin_unlock(&this_parent->d_lock);
1250 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1251 this_parent = dentry;
2fd6b7f5 1252 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1253 goto repeat;
1254 }
2fd6b7f5 1255 spin_unlock(&dentry->d_lock);
1da177e4
LT
1256 }
1257 /*
1258 * All done at this level ... ascend and resume the search.
1259 */
ca5358ef
AV
1260 rcu_read_lock();
1261ascend:
1da177e4 1262 if (this_parent != parent) {
c826cb7d 1263 struct dentry *child = this_parent;
31dec132
AV
1264 this_parent = child->d_parent;
1265
31dec132
AV
1266 spin_unlock(&child->d_lock);
1267 spin_lock(&this_parent->d_lock);
1268
ca5358ef
AV
1269 /* might go back up the wrong parent if we have had a rename. */
1270 if (need_seqretry(&rename_lock, seq))
949854d0 1271 goto rename_retry;
2159184e
AV
1272 /* go into the first sibling still alive */
1273 do {
1274 next = child->d_child.next;
ca5358ef
AV
1275 if (next == &this_parent->d_subdirs)
1276 goto ascend;
1277 child = list_entry(next, struct dentry, d_child);
2159184e 1278 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
31dec132 1279 rcu_read_unlock();
1da177e4
LT
1280 goto resume;
1281 }
ca5358ef 1282 if (need_seqretry(&rename_lock, seq))
949854d0 1283 goto rename_retry;
ca5358ef 1284 rcu_read_unlock();
db14fc3a
MS
1285 if (finish)
1286 finish(data);
1287
1288out_unlock:
1289 spin_unlock(&this_parent->d_lock);
48f5ec21 1290 done_seqretry(&rename_lock, seq);
db14fc3a 1291 return;
58db63d0
NP
1292
1293rename_retry:
ca5358ef
AV
1294 spin_unlock(&this_parent->d_lock);
1295 rcu_read_unlock();
1296 BUG_ON(seq & 1);
db14fc3a
MS
1297 if (!retry)
1298 return;
48f5ec21 1299 seq = 1;
58db63d0 1300 goto again;
1da177e4 1301}
e14748e8 1302EXPORT_SYMBOL_GPL(d_walk);
db14fc3a 1303
01619491
IK
1304struct check_mount {
1305 struct vfsmount *mnt;
1306 unsigned int mounted;
1307};
1308
1309static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1310{
1311 struct check_mount *info = data;
1312 struct path path = { .mnt = info->mnt, .dentry = dentry };
1313
1314 if (likely(!d_mountpoint(dentry)))
1315 return D_WALK_CONTINUE;
1316 if (__path_is_mountpoint(&path)) {
1317 info->mounted = 1;
1318 return D_WALK_QUIT;
1319 }
1320 return D_WALK_CONTINUE;
1321}
1322
1323/**
1324 * path_has_submounts - check for mounts over a dentry in the
1325 * current namespace.
1326 * @parent: path to check.
1327 *
1328 * Return true if the parent or its subdirectories contain
1329 * a mount point in the current namespace.
1330 */
1331int path_has_submounts(const struct path *parent)
1332{
1333 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1334
1335 read_seqlock_excl(&mount_lock);
1336 d_walk(parent->dentry, &data, path_check_mount, NULL);
1337 read_sequnlock_excl(&mount_lock);
1338
1339 return data.mounted;
1340}
1341EXPORT_SYMBOL(path_has_submounts);
1342
eed81007
MS
1343/*
1344 * Called by mount code to set a mountpoint and check if the mountpoint is
1345 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1346 * subtree can become unreachable).
1347 *
1ffe46d1 1348 * Only one of d_invalidate() and d_set_mounted() must succeed. For
eed81007
MS
1349 * this reason take rename_lock and d_lock on dentry and ancestors.
1350 */
1351int d_set_mounted(struct dentry *dentry)
1352{
1353 struct dentry *p;
1354 int ret = -ENOENT;
1355 write_seqlock(&rename_lock);
1356 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1ffe46d1 1357 /* Need exclusion wrt. d_invalidate() */
eed81007
MS
1358 spin_lock(&p->d_lock);
1359 if (unlikely(d_unhashed(p))) {
1360 spin_unlock(&p->d_lock);
1361 goto out;
1362 }
1363 spin_unlock(&p->d_lock);
1364 }
1365 spin_lock(&dentry->d_lock);
1366 if (!d_unlinked(dentry)) {
3895dbf8
EB
1367 ret = -EBUSY;
1368 if (!d_mountpoint(dentry)) {
1369 dentry->d_flags |= DCACHE_MOUNTED;
1370 ret = 0;
1371 }
eed81007
MS
1372 }
1373 spin_unlock(&dentry->d_lock);
1374out:
1375 write_sequnlock(&rename_lock);
1376 return ret;
1377}
1378
1da177e4 1379/*
fd517909 1380 * Search the dentry child list of the specified parent,
1da177e4
LT
1381 * and move any unused dentries to the end of the unused
1382 * list for prune_dcache(). We descend to the next level
1383 * whenever the d_subdirs list is non-empty and continue
1384 * searching.
1385 *
1386 * It returns zero iff there are no unused children,
1387 * otherwise it returns the number of children moved to
1388 * the end of the unused list. This may not be the total
1389 * number of unused children, because select_parent can
1390 * drop the lock and return early due to latency
1391 * constraints.
1392 */
1da177e4 1393
db14fc3a
MS
1394struct select_data {
1395 struct dentry *start;
1396 struct list_head dispose;
1397 int found;
1398};
23044507 1399
db14fc3a
MS
1400static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1401{
1402 struct select_data *data = _data;
1403 enum d_walk_ret ret = D_WALK_CONTINUE;
1da177e4 1404
db14fc3a
MS
1405 if (data->start == dentry)
1406 goto out;
2fd6b7f5 1407
fe91522a 1408 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
db14fc3a 1409 data->found++;
fe91522a
AV
1410 } else {
1411 if (dentry->d_flags & DCACHE_LRU_LIST)
1412 d_lru_del(dentry);
1413 if (!dentry->d_lockref.count) {
1414 d_shrink_add(dentry, &data->dispose);
1415 data->found++;
1416 }
1da177e4 1417 }
db14fc3a
MS
1418 /*
1419 * We can return to the caller if we have found some (this
1420 * ensures forward progress). We'll be coming back to find
1421 * the rest.
1422 */
fe91522a
AV
1423 if (!list_empty(&data->dispose))
1424 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1da177e4 1425out:
db14fc3a 1426 return ret;
1da177e4
LT
1427}
1428
1429/**
1430 * shrink_dcache_parent - prune dcache
1431 * @parent: parent of entries to prune
1432 *
1433 * Prune the dcache to remove unused children of the parent dentry.
1434 */
db14fc3a 1435void shrink_dcache_parent(struct dentry *parent)
1da177e4 1436{
db14fc3a
MS
1437 for (;;) {
1438 struct select_data data;
1da177e4 1439
db14fc3a
MS
1440 INIT_LIST_HEAD(&data.dispose);
1441 data.start = parent;
1442 data.found = 0;
1443
1444 d_walk(parent, &data, select_collect, NULL);
1445 if (!data.found)
1446 break;
1447
1448 shrink_dentry_list(&data.dispose);
421348f1
GT
1449 cond_resched();
1450 }
1da177e4 1451}
ec4f8605 1452EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1453
9c8c10e2 1454static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
42c32608 1455{
9c8c10e2
AV
1456 /* it has busy descendents; complain about those instead */
1457 if (!list_empty(&dentry->d_subdirs))
1458 return D_WALK_CONTINUE;
42c32608 1459
9c8c10e2
AV
1460 /* root with refcount 1 is fine */
1461 if (dentry == _data && dentry->d_lockref.count == 1)
1462 return D_WALK_CONTINUE;
1463
1464 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1465 " still in use (%d) [unmount of %s %s]\n",
42c32608
AV
1466 dentry,
1467 dentry->d_inode ?
1468 dentry->d_inode->i_ino : 0UL,
9c8c10e2 1469 dentry,
42c32608
AV
1470 dentry->d_lockref.count,
1471 dentry->d_sb->s_type->name,
1472 dentry->d_sb->s_id);
9c8c10e2
AV
1473 WARN_ON(1);
1474 return D_WALK_CONTINUE;
1475}
1476
1477static void do_one_tree(struct dentry *dentry)
1478{
1479 shrink_dcache_parent(dentry);
1480 d_walk(dentry, dentry, umount_check, NULL);
1481 d_drop(dentry);
1482 dput(dentry);
42c32608
AV
1483}
1484
1485/*
1486 * destroy the dentries attached to a superblock on unmounting
1487 */
1488void shrink_dcache_for_umount(struct super_block *sb)
1489{
1490 struct dentry *dentry;
1491
9c8c10e2 1492 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
42c32608
AV
1493
1494 dentry = sb->s_root;
1495 sb->s_root = NULL;
9c8c10e2 1496 do_one_tree(dentry);
42c32608
AV
1497
1498 while (!hlist_bl_empty(&sb->s_anon)) {
9c8c10e2
AV
1499 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1500 do_one_tree(dentry);
42c32608
AV
1501 }
1502}
1503
8ed936b5
EB
1504struct detach_data {
1505 struct select_data select;
1506 struct dentry *mountpoint;
1507};
1508static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
848ac114 1509{
8ed936b5 1510 struct detach_data *data = _data;
848ac114
MS
1511
1512 if (d_mountpoint(dentry)) {
8ed936b5
EB
1513 __dget_dlock(dentry);
1514 data->mountpoint = dentry;
848ac114
MS
1515 return D_WALK_QUIT;
1516 }
1517
8ed936b5 1518 return select_collect(&data->select, dentry);
848ac114
MS
1519}
1520
1521static void check_and_drop(void *_data)
1522{
8ed936b5 1523 struct detach_data *data = _data;
848ac114 1524
8ed936b5
EB
1525 if (!data->mountpoint && !data->select.found)
1526 __d_drop(data->select.start);
848ac114
MS
1527}
1528
1529/**
1ffe46d1
EB
1530 * d_invalidate - detach submounts, prune dcache, and drop
1531 * @dentry: dentry to invalidate (aka detach, prune and drop)
1532 *
1ffe46d1 1533 * no dcache lock.
848ac114 1534 *
8ed936b5
EB
1535 * The final d_drop is done as an atomic operation relative to
1536 * rename_lock ensuring there are no races with d_set_mounted. This
1537 * ensures there are no unhashed dentries on the path to a mountpoint.
848ac114 1538 */
5542aa2f 1539void d_invalidate(struct dentry *dentry)
848ac114 1540{
1ffe46d1
EB
1541 /*
1542 * If it's already been dropped, return OK.
1543 */
1544 spin_lock(&dentry->d_lock);
1545 if (d_unhashed(dentry)) {
1546 spin_unlock(&dentry->d_lock);
5542aa2f 1547 return;
1ffe46d1
EB
1548 }
1549 spin_unlock(&dentry->d_lock);
1550
848ac114
MS
1551 /* Negative dentries can be dropped without further checks */
1552 if (!dentry->d_inode) {
1553 d_drop(dentry);
5542aa2f 1554 return;
848ac114
MS
1555 }
1556
1557 for (;;) {
8ed936b5 1558 struct detach_data data;
848ac114 1559
8ed936b5
EB
1560 data.mountpoint = NULL;
1561 INIT_LIST_HEAD(&data.select.dispose);
1562 data.select.start = dentry;
1563 data.select.found = 0;
1564
1565 d_walk(dentry, &data, detach_and_collect, check_and_drop);
848ac114 1566
8ed936b5
EB
1567 if (data.select.found)
1568 shrink_dentry_list(&data.select.dispose);
848ac114 1569
8ed936b5
EB
1570 if (data.mountpoint) {
1571 detach_mounts(data.mountpoint);
1572 dput(data.mountpoint);
1573 }
848ac114 1574
8ed936b5 1575 if (!data.mountpoint && !data.select.found)
848ac114
MS
1576 break;
1577
1578 cond_resched();
1579 }
848ac114 1580}
1ffe46d1 1581EXPORT_SYMBOL(d_invalidate);
848ac114 1582
1da177e4 1583/**
a4464dbc
AV
1584 * __d_alloc - allocate a dcache entry
1585 * @sb: filesystem it will belong to
1da177e4
LT
1586 * @name: qstr of the name
1587 *
1588 * Allocates a dentry. It returns %NULL if there is insufficient memory
1589 * available. On a success the dentry is returned. The name passed in is
1590 * copied and the copy passed in may be reused after this call.
1591 */
1592
a4464dbc 1593struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1594{
1595 struct dentry *dentry;
1596 char *dname;
285b102d 1597 int err;
1da177e4 1598
e12ba74d 1599 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1600 if (!dentry)
1601 return NULL;
1602
6326c71f
LT
1603 /*
1604 * We guarantee that the inline name is always NUL-terminated.
1605 * This way the memcpy() done by the name switching in rename
1606 * will still always have a NUL at the end, even if we might
1607 * be overwriting an internal NUL character
1608 */
1609 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
798434bd
AV
1610 if (unlikely(!name)) {
1611 static const struct qstr anon = QSTR_INIT("/", 1);
1612 name = &anon;
1613 dname = dentry->d_iname;
1614 } else if (name->len > DNAME_INLINE_LEN-1) {
8d85b484 1615 size_t size = offsetof(struct external_name, name[1]);
5d097056
VD
1616 struct external_name *p = kmalloc(size + name->len,
1617 GFP_KERNEL_ACCOUNT);
8d85b484 1618 if (!p) {
1da177e4
LT
1619 kmem_cache_free(dentry_cache, dentry);
1620 return NULL;
1621 }
8d85b484
AV
1622 atomic_set(&p->u.count, 1);
1623 dname = p->name;
df4c0e36
AR
1624 if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS))
1625 kasan_unpoison_shadow(dname,
1626 round_up(name->len + 1, sizeof(unsigned long)));
1da177e4
LT
1627 } else {
1628 dname = dentry->d_iname;
1629 }
1da177e4
LT
1630
1631 dentry->d_name.len = name->len;
1632 dentry->d_name.hash = name->hash;
1633 memcpy(dname, name->name, name->len);
1634 dname[name->len] = 0;
1635
6326c71f
LT
1636 /* Make sure we always see the terminating NUL character */
1637 smp_wmb();
1638 dentry->d_name.name = dname;
1639
98474236 1640 dentry->d_lockref.count = 1;
dea3667b 1641 dentry->d_flags = 0;
1da177e4 1642 spin_lock_init(&dentry->d_lock);
31e6b01f 1643 seqcount_init(&dentry->d_seq);
1da177e4 1644 dentry->d_inode = NULL;
a4464dbc
AV
1645 dentry->d_parent = dentry;
1646 dentry->d_sb = sb;
1da177e4
LT
1647 dentry->d_op = NULL;
1648 dentry->d_fsdata = NULL;
ceb5bdc2 1649 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1650 INIT_LIST_HEAD(&dentry->d_lru);
1651 INIT_LIST_HEAD(&dentry->d_subdirs);
946e51f2
AV
1652 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1653 INIT_LIST_HEAD(&dentry->d_child);
a4464dbc 1654 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1655
285b102d
MS
1656 if (dentry->d_op && dentry->d_op->d_init) {
1657 err = dentry->d_op->d_init(dentry);
1658 if (err) {
1659 if (dname_external(dentry))
1660 kfree(external_name(dentry));
1661 kmem_cache_free(dentry_cache, dentry);
1662 return NULL;
1663 }
1664 }
1665
3e880fb5 1666 this_cpu_inc(nr_dentry);
312d3ca8 1667
1da177e4
LT
1668 return dentry;
1669}
a4464dbc
AV
1670
1671/**
1672 * d_alloc - allocate a dcache entry
1673 * @parent: parent of entry to allocate
1674 * @name: qstr of the name
1675 *
1676 * Allocates a dentry. It returns %NULL if there is insufficient memory
1677 * available. On a success the dentry is returned. The name passed in is
1678 * copied and the copy passed in may be reused after this call.
1679 */
1680struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1681{
1682 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1683 if (!dentry)
1684 return NULL;
3d56c25e 1685 dentry->d_flags |= DCACHE_RCUACCESS;
a4464dbc
AV
1686 spin_lock(&parent->d_lock);
1687 /*
1688 * don't need child lock because it is not subject
1689 * to concurrency here
1690 */
1691 __dget_dlock(parent);
1692 dentry->d_parent = parent;
946e51f2 1693 list_add(&dentry->d_child, &parent->d_subdirs);
a4464dbc
AV
1694 spin_unlock(&parent->d_lock);
1695
1696 return dentry;
1697}
ec4f8605 1698EXPORT_SYMBOL(d_alloc);
1da177e4 1699
ba65dc5e
AV
1700struct dentry *d_alloc_cursor(struct dentry * parent)
1701{
1702 struct dentry *dentry = __d_alloc(parent->d_sb, NULL);
1703 if (dentry) {
1704 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1705 dentry->d_parent = dget(parent);
1706 }
1707 return dentry;
1708}
1709
e1a24bb0
BF
1710/**
1711 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1712 * @sb: the superblock
1713 * @name: qstr of the name
1714 *
1715 * For a filesystem that just pins its dentries in memory and never
1716 * performs lookups at all, return an unhashed IS_ROOT dentry.
1717 */
4b936885
NP
1718struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1719{
e1a24bb0 1720 return __d_alloc(sb, name);
4b936885
NP
1721}
1722EXPORT_SYMBOL(d_alloc_pseudo);
1723
1da177e4
LT
1724struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1725{
1726 struct qstr q;
1727
1728 q.name = name;
8387ff25 1729 q.hash_len = hashlen_string(parent, name);
1da177e4
LT
1730 return d_alloc(parent, &q);
1731}
ef26ca97 1732EXPORT_SYMBOL(d_alloc_name);
1da177e4 1733
fb045adb
NP
1734void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1735{
6f7f7caa
LT
1736 WARN_ON_ONCE(dentry->d_op);
1737 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1738 DCACHE_OP_COMPARE |
1739 DCACHE_OP_REVALIDATE |
ecf3d1f1 1740 DCACHE_OP_WEAK_REVALIDATE |
4bacc9c9 1741 DCACHE_OP_DELETE |
d101a125 1742 DCACHE_OP_REAL));
fb045adb
NP
1743 dentry->d_op = op;
1744 if (!op)
1745 return;
1746 if (op->d_hash)
1747 dentry->d_flags |= DCACHE_OP_HASH;
1748 if (op->d_compare)
1749 dentry->d_flags |= DCACHE_OP_COMPARE;
1750 if (op->d_revalidate)
1751 dentry->d_flags |= DCACHE_OP_REVALIDATE;
ecf3d1f1
JL
1752 if (op->d_weak_revalidate)
1753 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
fb045adb
NP
1754 if (op->d_delete)
1755 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1756 if (op->d_prune)
1757 dentry->d_flags |= DCACHE_OP_PRUNE;
d101a125
MS
1758 if (op->d_real)
1759 dentry->d_flags |= DCACHE_OP_REAL;
fb045adb
NP
1760
1761}
1762EXPORT_SYMBOL(d_set_d_op);
1763
df1a085a
DH
1764
1765/*
1766 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1767 * @dentry - The dentry to mark
1768 *
1769 * Mark a dentry as falling through to the lower layer (as set with
1770 * d_pin_lower()). This flag may be recorded on the medium.
1771 */
1772void d_set_fallthru(struct dentry *dentry)
1773{
1774 spin_lock(&dentry->d_lock);
1775 dentry->d_flags |= DCACHE_FALLTHRU;
1776 spin_unlock(&dentry->d_lock);
1777}
1778EXPORT_SYMBOL(d_set_fallthru);
1779
b18825a7
DH
1780static unsigned d_flags_for_inode(struct inode *inode)
1781{
44bdb5e5 1782 unsigned add_flags = DCACHE_REGULAR_TYPE;
b18825a7
DH
1783
1784 if (!inode)
1785 return DCACHE_MISS_TYPE;
1786
1787 if (S_ISDIR(inode->i_mode)) {
1788 add_flags = DCACHE_DIRECTORY_TYPE;
1789 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1790 if (unlikely(!inode->i_op->lookup))
1791 add_flags = DCACHE_AUTODIR_TYPE;
1792 else
1793 inode->i_opflags |= IOP_LOOKUP;
1794 }
44bdb5e5
DH
1795 goto type_determined;
1796 }
1797
1798 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
6b255391 1799 if (unlikely(inode->i_op->get_link)) {
b18825a7 1800 add_flags = DCACHE_SYMLINK_TYPE;
44bdb5e5
DH
1801 goto type_determined;
1802 }
1803 inode->i_opflags |= IOP_NOFOLLOW;
b18825a7
DH
1804 }
1805
44bdb5e5
DH
1806 if (unlikely(!S_ISREG(inode->i_mode)))
1807 add_flags = DCACHE_SPECIAL_TYPE;
1808
1809type_determined:
b18825a7
DH
1810 if (unlikely(IS_AUTOMOUNT(inode)))
1811 add_flags |= DCACHE_NEED_AUTOMOUNT;
1812 return add_flags;
1813}
1814
360da900
OH
1815static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1816{
b18825a7 1817 unsigned add_flags = d_flags_for_inode(inode);
85c7f810 1818 WARN_ON(d_in_lookup(dentry));
b18825a7 1819
b23fb0a6 1820 spin_lock(&dentry->d_lock);
de689f5e 1821 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
a528aca7 1822 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 1823 __d_set_inode_and_type(dentry, inode, add_flags);
a528aca7 1824 raw_write_seqcount_end(&dentry->d_seq);
affda484 1825 fsnotify_update_flags(dentry);
b23fb0a6 1826 spin_unlock(&dentry->d_lock);
360da900
OH
1827}
1828
1da177e4
LT
1829/**
1830 * d_instantiate - fill in inode information for a dentry
1831 * @entry: dentry to complete
1832 * @inode: inode to attach to this dentry
1833 *
1834 * Fill in inode information in the entry.
1835 *
1836 * This turns negative dentries into productive full members
1837 * of society.
1838 *
1839 * NOTE! This assumes that the inode count has been incremented
1840 * (or otherwise set) by the caller to indicate that it is now
1841 * in use by the dcache.
1842 */
1843
1844void d_instantiate(struct dentry *entry, struct inode * inode)
1845{
946e51f2 1846 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
de689f5e 1847 if (inode) {
b9680917 1848 security_d_instantiate(entry, inode);
873feea0 1849 spin_lock(&inode->i_lock);
de689f5e 1850 __d_instantiate(entry, inode);
873feea0 1851 spin_unlock(&inode->i_lock);
de689f5e 1852 }
1da177e4 1853}
ec4f8605 1854EXPORT_SYMBOL(d_instantiate);
1da177e4 1855
b70a80e7
MS
1856/**
1857 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1858 * @entry: dentry to complete
1859 * @inode: inode to attach to this dentry
1860 *
1861 * Fill in inode information in the entry. If a directory alias is found, then
1862 * return an error (and drop inode). Together with d_materialise_unique() this
1863 * guarantees that a directory inode may never have more than one alias.
1864 */
1865int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1866{
946e51f2 1867 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
b70a80e7 1868
b9680917 1869 security_d_instantiate(entry, inode);
b70a80e7
MS
1870 spin_lock(&inode->i_lock);
1871 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1872 spin_unlock(&inode->i_lock);
1873 iput(inode);
1874 return -EBUSY;
1875 }
1876 __d_instantiate(entry, inode);
1877 spin_unlock(&inode->i_lock);
b70a80e7
MS
1878
1879 return 0;
1880}
1881EXPORT_SYMBOL(d_instantiate_no_diralias);
1882
adc0e91a
AV
1883struct dentry *d_make_root(struct inode *root_inode)
1884{
1885 struct dentry *res = NULL;
1886
1887 if (root_inode) {
798434bd 1888 res = __d_alloc(root_inode->i_sb, NULL);
adc0e91a
AV
1889 if (res)
1890 d_instantiate(res, root_inode);
1891 else
1892 iput(root_inode);
1893 }
1894 return res;
1895}
1896EXPORT_SYMBOL(d_make_root);
1897
d891eedb
BF
1898static struct dentry * __d_find_any_alias(struct inode *inode)
1899{
1900 struct dentry *alias;
1901
b3d9b7a3 1902 if (hlist_empty(&inode->i_dentry))
d891eedb 1903 return NULL;
946e51f2 1904 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
d891eedb
BF
1905 __dget(alias);
1906 return alias;
1907}
1908
46f72b34
SW
1909/**
1910 * d_find_any_alias - find any alias for a given inode
1911 * @inode: inode to find an alias for
1912 *
1913 * If any aliases exist for the given inode, take and return a
1914 * reference for one of them. If no aliases exist, return %NULL.
1915 */
1916struct dentry *d_find_any_alias(struct inode *inode)
d891eedb
BF
1917{
1918 struct dentry *de;
1919
1920 spin_lock(&inode->i_lock);
1921 de = __d_find_any_alias(inode);
1922 spin_unlock(&inode->i_lock);
1923 return de;
1924}
46f72b34 1925EXPORT_SYMBOL(d_find_any_alias);
d891eedb 1926
49c7dd28 1927static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
4ea3ada2 1928{
9308a612
CH
1929 struct dentry *tmp;
1930 struct dentry *res;
b18825a7 1931 unsigned add_flags;
4ea3ada2
CH
1932
1933 if (!inode)
44003728 1934 return ERR_PTR(-ESTALE);
4ea3ada2
CH
1935 if (IS_ERR(inode))
1936 return ERR_CAST(inode);
1937
d891eedb 1938 res = d_find_any_alias(inode);
9308a612
CH
1939 if (res)
1940 goto out_iput;
1941
798434bd 1942 tmp = __d_alloc(inode->i_sb, NULL);
9308a612
CH
1943 if (!tmp) {
1944 res = ERR_PTR(-ENOMEM);
1945 goto out_iput;
4ea3ada2 1946 }
b5c84bf6 1947
b9680917 1948 security_d_instantiate(tmp, inode);
873feea0 1949 spin_lock(&inode->i_lock);
d891eedb 1950 res = __d_find_any_alias(inode);
9308a612 1951 if (res) {
873feea0 1952 spin_unlock(&inode->i_lock);
9308a612
CH
1953 dput(tmp);
1954 goto out_iput;
1955 }
1956
1957 /* attach a disconnected dentry */
1a0a397e
BF
1958 add_flags = d_flags_for_inode(inode);
1959
1960 if (disconnected)
1961 add_flags |= DCACHE_DISCONNECTED;
b18825a7 1962
9308a612 1963 spin_lock(&tmp->d_lock);
4bf46a27 1964 __d_set_inode_and_type(tmp, inode, add_flags);
946e51f2 1965 hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
1879fd6a 1966 hlist_bl_lock(&tmp->d_sb->s_anon);
ceb5bdc2 1967 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1879fd6a 1968 hlist_bl_unlock(&tmp->d_sb->s_anon);
9308a612 1969 spin_unlock(&tmp->d_lock);
873feea0 1970 spin_unlock(&inode->i_lock);
9308a612 1971
9308a612
CH
1972 return tmp;
1973
1974 out_iput:
1975 iput(inode);
1976 return res;
4ea3ada2 1977}
1a0a397e
BF
1978
1979/**
1980 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1981 * @inode: inode to allocate the dentry for
1982 *
1983 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1984 * similar open by handle operations. The returned dentry may be anonymous,
1985 * or may have a full name (if the inode was already in the cache).
1986 *
1987 * When called on a directory inode, we must ensure that the inode only ever
1988 * has one dentry. If a dentry is found, that is returned instead of
1989 * allocating a new one.
1990 *
1991 * On successful return, the reference to the inode has been transferred
1992 * to the dentry. In case of an error the reference on the inode is released.
1993 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1994 * be passed in and the error will be propagated to the return value,
1995 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1996 */
1997struct dentry *d_obtain_alias(struct inode *inode)
1998{
1999 return __d_obtain_alias(inode, 1);
2000}
adc48720 2001EXPORT_SYMBOL(d_obtain_alias);
1da177e4 2002
1a0a397e
BF
2003/**
2004 * d_obtain_root - find or allocate a dentry for a given inode
2005 * @inode: inode to allocate the dentry for
2006 *
2007 * Obtain an IS_ROOT dentry for the root of a filesystem.
2008 *
2009 * We must ensure that directory inodes only ever have one dentry. If a
2010 * dentry is found, that is returned instead of allocating a new one.
2011 *
2012 * On successful return, the reference to the inode has been transferred
2013 * to the dentry. In case of an error the reference on the inode is
2014 * released. A %NULL or IS_ERR inode may be passed in and will be the
2015 * error will be propagate to the return value, with a %NULL @inode
2016 * replaced by ERR_PTR(-ESTALE).
2017 */
2018struct dentry *d_obtain_root(struct inode *inode)
2019{
2020 return __d_obtain_alias(inode, 0);
2021}
2022EXPORT_SYMBOL(d_obtain_root);
2023
9403540c
BN
2024/**
2025 * d_add_ci - lookup or allocate new dentry with case-exact name
2026 * @inode: the inode case-insensitive lookup has found
2027 * @dentry: the negative dentry that was passed to the parent's lookup func
2028 * @name: the case-exact name to be associated with the returned dentry
2029 *
2030 * This is to avoid filling the dcache with case-insensitive names to the
2031 * same inode, only the actual correct case is stored in the dcache for
2032 * case-insensitive filesystems.
2033 *
2034 * For a case-insensitive lookup match and if the the case-exact dentry
2035 * already exists in in the dcache, use it and return it.
2036 *
2037 * If no entry exists with the exact case name, allocate new dentry with
2038 * the exact case, and return the spliced entry.
2039 */
e45b590b 2040struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
2041 struct qstr *name)
2042{
d9171b93 2043 struct dentry *found, *res;
9403540c 2044
b6520c81
CH
2045 /*
2046 * First check if a dentry matching the name already exists,
2047 * if not go ahead and create it now.
2048 */
9403540c 2049 found = d_hash_and_lookup(dentry->d_parent, name);
d9171b93
AV
2050 if (found) {
2051 iput(inode);
2052 return found;
2053 }
2054 if (d_in_lookup(dentry)) {
2055 found = d_alloc_parallel(dentry->d_parent, name,
2056 dentry->d_wait);
2057 if (IS_ERR(found) || !d_in_lookup(found)) {
2058 iput(inode);
2059 return found;
9403540c 2060 }
d9171b93
AV
2061 } else {
2062 found = d_alloc(dentry->d_parent, name);
2063 if (!found) {
2064 iput(inode);
2065 return ERR_PTR(-ENOMEM);
2066 }
2067 }
2068 res = d_splice_alias(inode, found);
2069 if (res) {
2070 dput(found);
2071 return res;
9403540c 2072 }
4f522a24 2073 return found;
9403540c 2074}
ec4f8605 2075EXPORT_SYMBOL(d_add_ci);
1da177e4 2076
12f8ad4b 2077
d4c91a8f
AV
2078static inline bool d_same_name(const struct dentry *dentry,
2079 const struct dentry *parent,
2080 const struct qstr *name)
12f8ad4b 2081{
d4c91a8f
AV
2082 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2083 if (dentry->d_name.len != name->len)
2084 return false;
2085 return dentry_cmp(dentry, name->name, name->len) == 0;
12f8ad4b 2086 }
6fa67e70 2087 return parent->d_op->d_compare(dentry,
d4c91a8f
AV
2088 dentry->d_name.len, dentry->d_name.name,
2089 name) == 0;
12f8ad4b
LT
2090}
2091
31e6b01f
NP
2092/**
2093 * __d_lookup_rcu - search for a dentry (racy, store-free)
2094 * @parent: parent dentry
2095 * @name: qstr of name we wish to find
1f1e6e52 2096 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
2097 * Returns: dentry, or NULL
2098 *
2099 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2100 * resolution (store-free path walking) design described in
2101 * Documentation/filesystems/path-lookup.txt.
2102 *
2103 * This is not to be used outside core vfs.
2104 *
2105 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2106 * held, and rcu_read_lock held. The returned dentry must not be stored into
2107 * without taking d_lock and checking d_seq sequence count against @seq
2108 * returned here.
2109 *
15570086 2110 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
31e6b01f
NP
2111 * function.
2112 *
2113 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2114 * the returned dentry, so long as its parent's seqlock is checked after the
2115 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2116 * is formed, giving integrity down the path walk.
12f8ad4b
LT
2117 *
2118 * NOTE! The caller *has* to check the resulting dentry against the sequence
2119 * number we've returned before using any of the resulting dentry state!
31e6b01f 2120 */
8966be90
LT
2121struct dentry *__d_lookup_rcu(const struct dentry *parent,
2122 const struct qstr *name,
da53be12 2123 unsigned *seqp)
31e6b01f 2124{
26fe5750 2125 u64 hashlen = name->hash_len;
31e6b01f 2126 const unsigned char *str = name->name;
8387ff25 2127 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
ceb5bdc2 2128 struct hlist_bl_node *node;
31e6b01f
NP
2129 struct dentry *dentry;
2130
2131 /*
2132 * Note: There is significant duplication with __d_lookup_rcu which is
2133 * required to prevent single threaded performance regressions
2134 * especially on architectures where smp_rmb (in seqcounts) are costly.
2135 * Keep the two functions in sync.
2136 */
2137
2138 /*
2139 * The hash list is protected using RCU.
2140 *
2141 * Carefully use d_seq when comparing a candidate dentry, to avoid
2142 * races with d_move().
2143 *
2144 * It is possible that concurrent renames can mess up our list
2145 * walk here and result in missing our dentry, resulting in the
2146 * false-negative result. d_lookup() protects against concurrent
2147 * renames using rename_lock seqlock.
2148 *
b0a4bb83 2149 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 2150 */
b07ad996 2151 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 2152 unsigned seq;
31e6b01f 2153
31e6b01f 2154seqretry:
12f8ad4b
LT
2155 /*
2156 * The dentry sequence count protects us from concurrent
da53be12 2157 * renames, and thus protects parent and name fields.
12f8ad4b
LT
2158 *
2159 * The caller must perform a seqcount check in order
da53be12 2160 * to do anything useful with the returned dentry.
12f8ad4b
LT
2161 *
2162 * NOTE! We do a "raw" seqcount_begin here. That means that
2163 * we don't wait for the sequence count to stabilize if it
2164 * is in the middle of a sequence change. If we do the slow
2165 * dentry compare, we will do seqretries until it is stable,
2166 * and if we end up with a successful lookup, we actually
2167 * want to exit RCU lookup anyway.
d4c91a8f
AV
2168 *
2169 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2170 * we are still guaranteed NUL-termination of ->d_name.name.
12f8ad4b
LT
2171 */
2172 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
2173 if (dentry->d_parent != parent)
2174 continue;
2e321806
LT
2175 if (d_unhashed(dentry))
2176 continue;
12f8ad4b 2177
830c0f0e 2178 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
d4c91a8f
AV
2179 int tlen;
2180 const char *tname;
26fe5750
LT
2181 if (dentry->d_name.hash != hashlen_hash(hashlen))
2182 continue;
d4c91a8f
AV
2183 tlen = dentry->d_name.len;
2184 tname = dentry->d_name.name;
2185 /* we want a consistent (name,len) pair */
2186 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2187 cpu_relax();
12f8ad4b
LT
2188 goto seqretry;
2189 }
6fa67e70 2190 if (parent->d_op->d_compare(dentry,
d4c91a8f
AV
2191 tlen, tname, name) != 0)
2192 continue;
2193 } else {
2194 if (dentry->d_name.hash_len != hashlen)
2195 continue;
2196 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2197 continue;
31e6b01f 2198 }
da53be12 2199 *seqp = seq;
d4c91a8f 2200 return dentry;
31e6b01f
NP
2201 }
2202 return NULL;
2203}
2204
1da177e4
LT
2205/**
2206 * d_lookup - search for a dentry
2207 * @parent: parent dentry
2208 * @name: qstr of name we wish to find
b04f784e 2209 * Returns: dentry, or NULL
1da177e4 2210 *
b04f784e
NP
2211 * d_lookup searches the children of the parent dentry for the name in
2212 * question. If the dentry is found its reference count is incremented and the
2213 * dentry is returned. The caller must use dput to free the entry when it has
2214 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 2215 */
da2d8455 2216struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2217{
31e6b01f 2218 struct dentry *dentry;
949854d0 2219 unsigned seq;
1da177e4 2220
b8314f93
DY
2221 do {
2222 seq = read_seqbegin(&rename_lock);
2223 dentry = __d_lookup(parent, name);
2224 if (dentry)
1da177e4
LT
2225 break;
2226 } while (read_seqretry(&rename_lock, seq));
2227 return dentry;
2228}
ec4f8605 2229EXPORT_SYMBOL(d_lookup);
1da177e4 2230
31e6b01f 2231/**
b04f784e
NP
2232 * __d_lookup - search for a dentry (racy)
2233 * @parent: parent dentry
2234 * @name: qstr of name we wish to find
2235 * Returns: dentry, or NULL
2236 *
2237 * __d_lookup is like d_lookup, however it may (rarely) return a
2238 * false-negative result due to unrelated rename activity.
2239 *
2240 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2241 * however it must be used carefully, eg. with a following d_lookup in
2242 * the case of failure.
2243 *
2244 * __d_lookup callers must be commented.
2245 */
a713ca2a 2246struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2247{
1da177e4 2248 unsigned int hash = name->hash;
8387ff25 2249 struct hlist_bl_head *b = d_hash(hash);
ceb5bdc2 2250 struct hlist_bl_node *node;
31e6b01f 2251 struct dentry *found = NULL;
665a7583 2252 struct dentry *dentry;
1da177e4 2253
31e6b01f
NP
2254 /*
2255 * Note: There is significant duplication with __d_lookup_rcu which is
2256 * required to prevent single threaded performance regressions
2257 * especially on architectures where smp_rmb (in seqcounts) are costly.
2258 * Keep the two functions in sync.
2259 */
2260
b04f784e
NP
2261 /*
2262 * The hash list is protected using RCU.
2263 *
2264 * Take d_lock when comparing a candidate dentry, to avoid races
2265 * with d_move().
2266 *
2267 * It is possible that concurrent renames can mess up our list
2268 * walk here and result in missing our dentry, resulting in the
2269 * false-negative result. d_lookup() protects against concurrent
2270 * renames using rename_lock seqlock.
2271 *
b0a4bb83 2272 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 2273 */
1da177e4
LT
2274 rcu_read_lock();
2275
b07ad996 2276 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 2277
1da177e4
LT
2278 if (dentry->d_name.hash != hash)
2279 continue;
1da177e4
LT
2280
2281 spin_lock(&dentry->d_lock);
1da177e4
LT
2282 if (dentry->d_parent != parent)
2283 goto next;
d0185c08
LT
2284 if (d_unhashed(dentry))
2285 goto next;
2286
d4c91a8f
AV
2287 if (!d_same_name(dentry, parent, name))
2288 goto next;
1da177e4 2289
98474236 2290 dentry->d_lockref.count++;
d0185c08 2291 found = dentry;
1da177e4
LT
2292 spin_unlock(&dentry->d_lock);
2293 break;
2294next:
2295 spin_unlock(&dentry->d_lock);
2296 }
2297 rcu_read_unlock();
2298
2299 return found;
2300}
2301
3e7e241f
EB
2302/**
2303 * d_hash_and_lookup - hash the qstr then search for a dentry
2304 * @dir: Directory to search in
2305 * @name: qstr of name we wish to find
2306 *
4f522a24 2307 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
3e7e241f
EB
2308 */
2309struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2310{
3e7e241f
EB
2311 /*
2312 * Check for a fs-specific hash function. Note that we must
2313 * calculate the standard hash first, as the d_op->d_hash()
2314 * routine may choose to leave the hash value unchanged.
2315 */
8387ff25 2316 name->hash = full_name_hash(dir, name->name, name->len);
fb045adb 2317 if (dir->d_flags & DCACHE_OP_HASH) {
da53be12 2318 int err = dir->d_op->d_hash(dir, name);
4f522a24
AV
2319 if (unlikely(err < 0))
2320 return ERR_PTR(err);
3e7e241f 2321 }
4f522a24 2322 return d_lookup(dir, name);
3e7e241f 2323}
4f522a24 2324EXPORT_SYMBOL(d_hash_and_lookup);
3e7e241f 2325
1da177e4
LT
2326/*
2327 * When a file is deleted, we have two options:
2328 * - turn this dentry into a negative dentry
2329 * - unhash this dentry and free it.
2330 *
2331 * Usually, we want to just turn this into
2332 * a negative dentry, but if anybody else is
2333 * currently using the dentry or the inode
2334 * we can't do that and we fall back on removing
2335 * it from the hash queues and waiting for
2336 * it to be deleted later when it has no users
2337 */
2338
2339/**
2340 * d_delete - delete a dentry
2341 * @dentry: The dentry to delete
2342 *
2343 * Turn the dentry into a negative dentry if possible, otherwise
2344 * remove it from the hash queues so it can be deleted later
2345 */
2346
2347void d_delete(struct dentry * dentry)
2348{
873feea0 2349 struct inode *inode;
7a91bf7f 2350 int isdir = 0;
1da177e4
LT
2351 /*
2352 * Are we the only user?
2353 */
357f8e65 2354again:
1da177e4 2355 spin_lock(&dentry->d_lock);
873feea0
NP
2356 inode = dentry->d_inode;
2357 isdir = S_ISDIR(inode->i_mode);
98474236 2358 if (dentry->d_lockref.count == 1) {
1fe0c023 2359 if (!spin_trylock(&inode->i_lock)) {
357f8e65
NP
2360 spin_unlock(&dentry->d_lock);
2361 cpu_relax();
2362 goto again;
2363 }
13e3c5e5 2364 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2365 dentry_unlink_inode(dentry);
7a91bf7f 2366 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
2367 return;
2368 }
2369
2370 if (!d_unhashed(dentry))
2371 __d_drop(dentry);
2372
2373 spin_unlock(&dentry->d_lock);
7a91bf7f
JM
2374
2375 fsnotify_nameremove(dentry, isdir);
1da177e4 2376}
ec4f8605 2377EXPORT_SYMBOL(d_delete);
1da177e4 2378
15d3c589 2379static void __d_rehash(struct dentry *entry)
1da177e4 2380{
15d3c589 2381 struct hlist_bl_head *b = d_hash(entry->d_name.hash);
ceb5bdc2 2382 BUG_ON(!d_unhashed(entry));
1879fd6a 2383 hlist_bl_lock(b);
b07ad996 2384 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2385 hlist_bl_unlock(b);
1da177e4
LT
2386}
2387
2388/**
2389 * d_rehash - add an entry back to the hash
2390 * @entry: dentry to add to the hash
2391 *
2392 * Adds a dentry to the hash according to its name.
2393 */
2394
2395void d_rehash(struct dentry * entry)
2396{
1da177e4 2397 spin_lock(&entry->d_lock);
15d3c589 2398 __d_rehash(entry);
1da177e4 2399 spin_unlock(&entry->d_lock);
1da177e4 2400}
ec4f8605 2401EXPORT_SYMBOL(d_rehash);
1da177e4 2402
84e710da
AV
2403static inline unsigned start_dir_add(struct inode *dir)
2404{
2405
2406 for (;;) {
2407 unsigned n = dir->i_dir_seq;
2408 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2409 return n;
2410 cpu_relax();
2411 }
2412}
2413
2414static inline void end_dir_add(struct inode *dir, unsigned n)
2415{
2416 smp_store_release(&dir->i_dir_seq, n + 2);
2417}
2418
d9171b93
AV
2419static void d_wait_lookup(struct dentry *dentry)
2420{
2421 if (d_in_lookup(dentry)) {
2422 DECLARE_WAITQUEUE(wait, current);
2423 add_wait_queue(dentry->d_wait, &wait);
2424 do {
2425 set_current_state(TASK_UNINTERRUPTIBLE);
2426 spin_unlock(&dentry->d_lock);
2427 schedule();
2428 spin_lock(&dentry->d_lock);
2429 } while (d_in_lookup(dentry));
2430 }
2431}
2432
94bdd655 2433struct dentry *d_alloc_parallel(struct dentry *parent,
d9171b93
AV
2434 const struct qstr *name,
2435 wait_queue_head_t *wq)
94bdd655 2436{
94bdd655 2437 unsigned int hash = name->hash;
94bdd655
AV
2438 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2439 struct hlist_bl_node *node;
2440 struct dentry *new = d_alloc(parent, name);
2441 struct dentry *dentry;
2442 unsigned seq, r_seq, d_seq;
2443
2444 if (unlikely(!new))
2445 return ERR_PTR(-ENOMEM);
2446
2447retry:
2448 rcu_read_lock();
2449 seq = smp_load_acquire(&parent->d_inode->i_dir_seq) & ~1;
2450 r_seq = read_seqbegin(&rename_lock);
2451 dentry = __d_lookup_rcu(parent, name, &d_seq);
2452 if (unlikely(dentry)) {
2453 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2454 rcu_read_unlock();
2455 goto retry;
2456 }
2457 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2458 rcu_read_unlock();
2459 dput(dentry);
2460 goto retry;
2461 }
2462 rcu_read_unlock();
2463 dput(new);
2464 return dentry;
2465 }
2466 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2467 rcu_read_unlock();
2468 goto retry;
2469 }
2470 hlist_bl_lock(b);
2471 if (unlikely(parent->d_inode->i_dir_seq != seq)) {
2472 hlist_bl_unlock(b);
2473 rcu_read_unlock();
2474 goto retry;
2475 }
94bdd655
AV
2476 /*
2477 * No changes for the parent since the beginning of d_lookup().
2478 * Since all removals from the chain happen with hlist_bl_lock(),
2479 * any potential in-lookup matches are going to stay here until
2480 * we unlock the chain. All fields are stable in everything
2481 * we encounter.
2482 */
2483 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2484 if (dentry->d_name.hash != hash)
2485 continue;
2486 if (dentry->d_parent != parent)
2487 continue;
d4c91a8f
AV
2488 if (!d_same_name(dentry, parent, name))
2489 continue;
94bdd655 2490 hlist_bl_unlock(b);
e7d6ef97
AV
2491 /* now we can try to grab a reference */
2492 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2493 rcu_read_unlock();
2494 goto retry;
2495 }
2496
2497 rcu_read_unlock();
2498 /*
2499 * somebody is likely to be still doing lookup for it;
2500 * wait for them to finish
2501 */
d9171b93
AV
2502 spin_lock(&dentry->d_lock);
2503 d_wait_lookup(dentry);
2504 /*
2505 * it's not in-lookup anymore; in principle we should repeat
2506 * everything from dcache lookup, but it's likely to be what
2507 * d_lookup() would've found anyway. If it is, just return it;
2508 * otherwise we really have to repeat the whole thing.
2509 */
2510 if (unlikely(dentry->d_name.hash != hash))
2511 goto mismatch;
2512 if (unlikely(dentry->d_parent != parent))
2513 goto mismatch;
2514 if (unlikely(d_unhashed(dentry)))
2515 goto mismatch;
d4c91a8f
AV
2516 if (unlikely(!d_same_name(dentry, parent, name)))
2517 goto mismatch;
d9171b93
AV
2518 /* OK, it *is* a hashed match; return it */
2519 spin_unlock(&dentry->d_lock);
94bdd655
AV
2520 dput(new);
2521 return dentry;
2522 }
e7d6ef97 2523 rcu_read_unlock();
94bdd655
AV
2524 /* we can't take ->d_lock here; it's OK, though. */
2525 new->d_flags |= DCACHE_PAR_LOOKUP;
d9171b93 2526 new->d_wait = wq;
94bdd655
AV
2527 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2528 hlist_bl_unlock(b);
2529 return new;
d9171b93
AV
2530mismatch:
2531 spin_unlock(&dentry->d_lock);
2532 dput(dentry);
2533 goto retry;
94bdd655
AV
2534}
2535EXPORT_SYMBOL(d_alloc_parallel);
2536
85c7f810
AV
2537void __d_lookup_done(struct dentry *dentry)
2538{
94bdd655
AV
2539 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2540 dentry->d_name.hash);
2541 hlist_bl_lock(b);
85c7f810 2542 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
94bdd655 2543 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
d9171b93
AV
2544 wake_up_all(dentry->d_wait);
2545 dentry->d_wait = NULL;
94bdd655
AV
2546 hlist_bl_unlock(b);
2547 INIT_HLIST_NODE(&dentry->d_u.d_alias);
d9171b93 2548 INIT_LIST_HEAD(&dentry->d_lru);
85c7f810
AV
2549}
2550EXPORT_SYMBOL(__d_lookup_done);
ed782b5a
AV
2551
2552/* inode->i_lock held if inode is non-NULL */
2553
2554static inline void __d_add(struct dentry *dentry, struct inode *inode)
2555{
84e710da
AV
2556 struct inode *dir = NULL;
2557 unsigned n;
0568d705 2558 spin_lock(&dentry->d_lock);
84e710da
AV
2559 if (unlikely(d_in_lookup(dentry))) {
2560 dir = dentry->d_parent->d_inode;
2561 n = start_dir_add(dir);
85c7f810 2562 __d_lookup_done(dentry);
84e710da 2563 }
ed782b5a 2564 if (inode) {
0568d705
AV
2565 unsigned add_flags = d_flags_for_inode(inode);
2566 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2567 raw_write_seqcount_begin(&dentry->d_seq);
2568 __d_set_inode_and_type(dentry, inode, add_flags);
2569 raw_write_seqcount_end(&dentry->d_seq);
affda484 2570 fsnotify_update_flags(dentry);
ed782b5a 2571 }
15d3c589 2572 __d_rehash(dentry);
84e710da
AV
2573 if (dir)
2574 end_dir_add(dir, n);
0568d705
AV
2575 spin_unlock(&dentry->d_lock);
2576 if (inode)
2577 spin_unlock(&inode->i_lock);
ed782b5a
AV
2578}
2579
34d0d19d
AV
2580/**
2581 * d_add - add dentry to hash queues
2582 * @entry: dentry to add
2583 * @inode: The inode to attach to this dentry
2584 *
2585 * This adds the entry to the hash queues and initializes @inode.
2586 * The entry was actually filled in earlier during d_alloc().
2587 */
2588
2589void d_add(struct dentry *entry, struct inode *inode)
2590{
b9680917
AV
2591 if (inode) {
2592 security_d_instantiate(entry, inode);
ed782b5a 2593 spin_lock(&inode->i_lock);
b9680917 2594 }
ed782b5a 2595 __d_add(entry, inode);
34d0d19d
AV
2596}
2597EXPORT_SYMBOL(d_add);
2598
668d0cd5
AV
2599/**
2600 * d_exact_alias - find and hash an exact unhashed alias
2601 * @entry: dentry to add
2602 * @inode: The inode to go with this dentry
2603 *
2604 * If an unhashed dentry with the same name/parent and desired
2605 * inode already exists, hash and return it. Otherwise, return
2606 * NULL.
2607 *
2608 * Parent directory should be locked.
2609 */
2610struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2611{
2612 struct dentry *alias;
668d0cd5
AV
2613 unsigned int hash = entry->d_name.hash;
2614
2615 spin_lock(&inode->i_lock);
2616 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2617 /*
2618 * Don't need alias->d_lock here, because aliases with
2619 * d_parent == entry->d_parent are not subject to name or
2620 * parent changes, because the parent inode i_mutex is held.
2621 */
2622 if (alias->d_name.hash != hash)
2623 continue;
2624 if (alias->d_parent != entry->d_parent)
2625 continue;
d4c91a8f 2626 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
668d0cd5
AV
2627 continue;
2628 spin_lock(&alias->d_lock);
2629 if (!d_unhashed(alias)) {
2630 spin_unlock(&alias->d_lock);
2631 alias = NULL;
2632 } else {
2633 __dget_dlock(alias);
15d3c589 2634 __d_rehash(alias);
668d0cd5
AV
2635 spin_unlock(&alias->d_lock);
2636 }
2637 spin_unlock(&inode->i_lock);
2638 return alias;
2639 }
2640 spin_unlock(&inode->i_lock);
2641 return NULL;
2642}
2643EXPORT_SYMBOL(d_exact_alias);
2644
fb2d5b86
NP
2645/**
2646 * dentry_update_name_case - update case insensitive dentry with a new name
2647 * @dentry: dentry to be updated
2648 * @name: new name
2649 *
2650 * Update a case insensitive dentry with new case of name.
2651 *
2652 * dentry must have been returned by d_lookup with name @name. Old and new
2653 * name lengths must match (ie. no d_compare which allows mismatched name
2654 * lengths).
2655 *
2656 * Parent inode i_mutex must be held over d_lookup and into this call (to
2657 * keep renames and concurrent inserts, and readdir(2) away).
2658 */
9aba36de 2659void dentry_update_name_case(struct dentry *dentry, const struct qstr *name)
fb2d5b86 2660{
5955102c 2661 BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
fb2d5b86
NP
2662 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2663
fb2d5b86 2664 spin_lock(&dentry->d_lock);
31e6b01f 2665 write_seqcount_begin(&dentry->d_seq);
fb2d5b86 2666 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
31e6b01f 2667 write_seqcount_end(&dentry->d_seq);
fb2d5b86 2668 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
2669}
2670EXPORT_SYMBOL(dentry_update_name_case);
2671
8d85b484 2672static void swap_names(struct dentry *dentry, struct dentry *target)
1da177e4 2673{
8d85b484
AV
2674 if (unlikely(dname_external(target))) {
2675 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2676 /*
2677 * Both external: swap the pointers
2678 */
9a8d5bb4 2679 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2680 } else {
2681 /*
2682 * dentry:internal, target:external. Steal target's
2683 * storage and make target internal.
2684 */
321bcf92
BF
2685 memcpy(target->d_iname, dentry->d_name.name,
2686 dentry->d_name.len + 1);
1da177e4
LT
2687 dentry->d_name.name = target->d_name.name;
2688 target->d_name.name = target->d_iname;
2689 }
2690 } else {
8d85b484 2691 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2692 /*
2693 * dentry:external, target:internal. Give dentry's
2694 * storage to target and make dentry internal
2695 */
2696 memcpy(dentry->d_iname, target->d_name.name,
2697 target->d_name.len + 1);
2698 target->d_name.name = dentry->d_name.name;
2699 dentry->d_name.name = dentry->d_iname;
2700 } else {
2701 /*
da1ce067 2702 * Both are internal.
1da177e4 2703 */
da1ce067
MS
2704 unsigned int i;
2705 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
08d4f772
MP
2706 kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN);
2707 kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN);
da1ce067
MS
2708 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2709 swap(((long *) &dentry->d_iname)[i],
2710 ((long *) &target->d_iname)[i]);
2711 }
1da177e4
LT
2712 }
2713 }
a28ddb87 2714 swap(dentry->d_name.hash_len, target->d_name.hash_len);
1da177e4
LT
2715}
2716
8d85b484
AV
2717static void copy_name(struct dentry *dentry, struct dentry *target)
2718{
2719 struct external_name *old_name = NULL;
2720 if (unlikely(dname_external(dentry)))
2721 old_name = external_name(dentry);
2722 if (unlikely(dname_external(target))) {
2723 atomic_inc(&external_name(target)->u.count);
2724 dentry->d_name = target->d_name;
2725 } else {
2726 memcpy(dentry->d_iname, target->d_name.name,
2727 target->d_name.len + 1);
2728 dentry->d_name.name = dentry->d_iname;
2729 dentry->d_name.hash_len = target->d_name.hash_len;
2730 }
2731 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2732 kfree_rcu(old_name, u.head);
2733}
2734
2fd6b7f5
NP
2735static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2736{
2737 /*
2738 * XXXX: do we really need to take target->d_lock?
2739 */
2740 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2741 spin_lock(&target->d_parent->d_lock);
2742 else {
2743 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2744 spin_lock(&dentry->d_parent->d_lock);
2745 spin_lock_nested(&target->d_parent->d_lock,
2746 DENTRY_D_LOCK_NESTED);
2747 } else {
2748 spin_lock(&target->d_parent->d_lock);
2749 spin_lock_nested(&dentry->d_parent->d_lock,
2750 DENTRY_D_LOCK_NESTED);
2751 }
2752 }
2753 if (target < dentry) {
2754 spin_lock_nested(&target->d_lock, 2);
2755 spin_lock_nested(&dentry->d_lock, 3);
2756 } else {
2757 spin_lock_nested(&dentry->d_lock, 2);
2758 spin_lock_nested(&target->d_lock, 3);
2759 }
2760}
2761
986c0194 2762static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2fd6b7f5
NP
2763{
2764 if (target->d_parent != dentry->d_parent)
2765 spin_unlock(&dentry->d_parent->d_lock);
2766 if (target->d_parent != target)
2767 spin_unlock(&target->d_parent->d_lock);
986c0194
AV
2768 spin_unlock(&target->d_lock);
2769 spin_unlock(&dentry->d_lock);
2fd6b7f5
NP
2770}
2771
1da177e4 2772/*
2fd6b7f5
NP
2773 * When switching names, the actual string doesn't strictly have to
2774 * be preserved in the target - because we're dropping the target
2775 * anyway. As such, we can just do a simple memcpy() to copy over
d2fa4a84
ME
2776 * the new name before we switch, unless we are going to rehash
2777 * it. Note that if we *do* unhash the target, we are not allowed
2778 * to rehash it without giving it a new name/hash key - whether
2779 * we swap or overwrite the names here, resulting name won't match
2780 * the reality in filesystem; it's only there for d_path() purposes.
2781 * Note that all of this is happening under rename_lock, so the
2782 * any hash lookup seeing it in the middle of manipulations will
2783 * be discarded anyway. So we do not care what happens to the hash
2784 * key in that case.
1da177e4 2785 */
9eaef27b 2786/*
18367501 2787 * __d_move - move a dentry
1da177e4
LT
2788 * @dentry: entry to move
2789 * @target: new dentry
da1ce067 2790 * @exchange: exchange the two dentries
1da177e4
LT
2791 *
2792 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2793 * dcache entries should not be moved in this way. Caller must hold
2794 * rename_lock, the i_mutex of the source and target directories,
2795 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2796 */
da1ce067
MS
2797static void __d_move(struct dentry *dentry, struct dentry *target,
2798 bool exchange)
1da177e4 2799{
84e710da
AV
2800 struct inode *dir = NULL;
2801 unsigned n;
1da177e4
LT
2802 if (!dentry->d_inode)
2803 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2804
2fd6b7f5
NP
2805 BUG_ON(d_ancestor(dentry, target));
2806 BUG_ON(d_ancestor(target, dentry));
2807
2fd6b7f5 2808 dentry_lock_for_move(dentry, target);
84e710da
AV
2809 if (unlikely(d_in_lookup(target))) {
2810 dir = target->d_parent->d_inode;
2811 n = start_dir_add(dir);
85c7f810 2812 __d_lookup_done(target);
84e710da 2813 }
1da177e4 2814
31e6b01f 2815 write_seqcount_begin(&dentry->d_seq);
1ca7d67c 2816 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
31e6b01f 2817
15d3c589 2818 /* unhash both */
ceb5bdc2 2819 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
ceb5bdc2 2820 __d_drop(dentry);
1da177e4
LT
2821 __d_drop(target);
2822
1da177e4 2823 /* Switch the names.. */
8d85b484
AV
2824 if (exchange)
2825 swap_names(dentry, target);
2826 else
2827 copy_name(dentry, target);
1da177e4 2828
15d3c589
AV
2829 /* rehash in new place(s) */
2830 __d_rehash(dentry);
2831 if (exchange)
2832 __d_rehash(target);
2833
63cf427a 2834 /* ... and switch them in the tree */
1da177e4 2835 if (IS_ROOT(dentry)) {
63cf427a 2836 /* splicing a tree */
3d56c25e 2837 dentry->d_flags |= DCACHE_RCUACCESS;
1da177e4
LT
2838 dentry->d_parent = target->d_parent;
2839 target->d_parent = target;
946e51f2
AV
2840 list_del_init(&target->d_child);
2841 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
1da177e4 2842 } else {
63cf427a 2843 /* swapping two dentries */
9a8d5bb4 2844 swap(dentry->d_parent, target->d_parent);
946e51f2
AV
2845 list_move(&target->d_child, &target->d_parent->d_subdirs);
2846 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
63cf427a 2847 if (exchange)
affda484
AV
2848 fsnotify_update_flags(target);
2849 fsnotify_update_flags(dentry);
1da177e4
LT
2850 }
2851
31e6b01f
NP
2852 write_seqcount_end(&target->d_seq);
2853 write_seqcount_end(&dentry->d_seq);
2854
84e710da
AV
2855 if (dir)
2856 end_dir_add(dir, n);
986c0194 2857 dentry_unlock_for_move(dentry, target);
18367501
AV
2858}
2859
2860/*
2861 * d_move - move a dentry
2862 * @dentry: entry to move
2863 * @target: new dentry
2864 *
2865 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2866 * dcache entries should not be moved in this way. See the locking
2867 * requirements for __d_move.
18367501
AV
2868 */
2869void d_move(struct dentry *dentry, struct dentry *target)
2870{
2871 write_seqlock(&rename_lock);
da1ce067 2872 __d_move(dentry, target, false);
1da177e4 2873 write_sequnlock(&rename_lock);
9eaef27b 2874}
ec4f8605 2875EXPORT_SYMBOL(d_move);
1da177e4 2876
da1ce067
MS
2877/*
2878 * d_exchange - exchange two dentries
2879 * @dentry1: first dentry
2880 * @dentry2: second dentry
2881 */
2882void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2883{
2884 write_seqlock(&rename_lock);
2885
2886 WARN_ON(!dentry1->d_inode);
2887 WARN_ON(!dentry2->d_inode);
2888 WARN_ON(IS_ROOT(dentry1));
2889 WARN_ON(IS_ROOT(dentry2));
2890
2891 __d_move(dentry1, dentry2, true);
2892
2893 write_sequnlock(&rename_lock);
2894}
e14748e8 2895EXPORT_SYMBOL_GPL(d_exchange);
da1ce067 2896
e2761a11
OH
2897/**
2898 * d_ancestor - search for an ancestor
2899 * @p1: ancestor dentry
2900 * @p2: child dentry
2901 *
2902 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2903 * an ancestor of p2, else NULL.
9eaef27b 2904 */
e2761a11 2905struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2906{
2907 struct dentry *p;
2908
871c0067 2909 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2910 if (p->d_parent == p1)
e2761a11 2911 return p;
9eaef27b 2912 }
e2761a11 2913 return NULL;
9eaef27b
TM
2914}
2915
2916/*
2917 * This helper attempts to cope with remotely renamed directories
2918 *
2919 * It assumes that the caller is already holding
a03e283b 2920 * dentry->d_parent->d_inode->i_mutex, and rename_lock
9eaef27b
TM
2921 *
2922 * Note: If ever the locking in lock_rename() changes, then please
2923 * remember to update this too...
9eaef27b 2924 */
b5ae6b15 2925static int __d_unalias(struct inode *inode,
873feea0 2926 struct dentry *dentry, struct dentry *alias)
9eaef27b 2927{
9902af79
AV
2928 struct mutex *m1 = NULL;
2929 struct rw_semaphore *m2 = NULL;
3d330dc1 2930 int ret = -ESTALE;
9eaef27b
TM
2931
2932 /* If alias and dentry share a parent, then no extra locks required */
2933 if (alias->d_parent == dentry->d_parent)
2934 goto out_unalias;
2935
9eaef27b 2936 /* See lock_rename() */
9eaef27b
TM
2937 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2938 goto out_err;
2939 m1 = &dentry->d_sb->s_vfs_rename_mutex;
9902af79 2940 if (!inode_trylock_shared(alias->d_parent->d_inode))
9eaef27b 2941 goto out_err;
9902af79 2942 m2 = &alias->d_parent->d_inode->i_rwsem;
9eaef27b 2943out_unalias:
8ed936b5 2944 __d_move(alias, dentry, false);
b5ae6b15 2945 ret = 0;
9eaef27b 2946out_err:
9eaef27b 2947 if (m2)
9902af79 2948 up_read(m2);
9eaef27b
TM
2949 if (m1)
2950 mutex_unlock(m1);
2951 return ret;
2952}
2953
3f70bd51
BF
2954/**
2955 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2956 * @inode: the inode which may have a disconnected dentry
2957 * @dentry: a negative dentry which we want to point to the inode.
2958 *
da093a9b
BF
2959 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2960 * place of the given dentry and return it, else simply d_add the inode
2961 * to the dentry and return NULL.
3f70bd51 2962 *
908790fa
BF
2963 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2964 * we should error out: directories can't have multiple aliases.
2965 *
3f70bd51
BF
2966 * This is needed in the lookup routine of any filesystem that is exportable
2967 * (via knfsd) so that we can build dcache paths to directories effectively.
2968 *
2969 * If a dentry was found and moved, then it is returned. Otherwise NULL
2970 * is returned. This matches the expected return value of ->lookup.
2971 *
2972 * Cluster filesystems may call this function with a negative, hashed dentry.
2973 * In that case, we know that the inode will be a regular file, and also this
2974 * will only occur during atomic_open. So we need to check for the dentry
2975 * being already hashed only in the final case.
2976 */
2977struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2978{
3f70bd51
BF
2979 if (IS_ERR(inode))
2980 return ERR_CAST(inode);
2981
770bfad8
DH
2982 BUG_ON(!d_unhashed(dentry));
2983
de689f5e 2984 if (!inode)
b5ae6b15 2985 goto out;
de689f5e 2986
b9680917 2987 security_d_instantiate(dentry, inode);
873feea0 2988 spin_lock(&inode->i_lock);
9eaef27b 2989 if (S_ISDIR(inode->i_mode)) {
b5ae6b15
AV
2990 struct dentry *new = __d_find_any_alias(inode);
2991 if (unlikely(new)) {
a03e283b
EB
2992 /* The reference to new ensures it remains an alias */
2993 spin_unlock(&inode->i_lock);
18367501 2994 write_seqlock(&rename_lock);
b5ae6b15
AV
2995 if (unlikely(d_ancestor(new, dentry))) {
2996 write_sequnlock(&rename_lock);
b5ae6b15
AV
2997 dput(new);
2998 new = ERR_PTR(-ELOOP);
2999 pr_warn_ratelimited(
3000 "VFS: Lookup of '%s' in %s %s"
3001 " would have caused loop\n",
3002 dentry->d_name.name,
3003 inode->i_sb->s_type->name,
3004 inode->i_sb->s_id);
3005 } else if (!IS_ROOT(new)) {
3006 int err = __d_unalias(inode, dentry, new);
18367501 3007 write_sequnlock(&rename_lock);
b5ae6b15
AV
3008 if (err) {
3009 dput(new);
3010 new = ERR_PTR(err);
3011 }
18367501 3012 } else {
b5ae6b15
AV
3013 __d_move(new, dentry, false);
3014 write_sequnlock(&rename_lock);
dd179946 3015 }
b5ae6b15
AV
3016 iput(inode);
3017 return new;
9eaef27b 3018 }
770bfad8 3019 }
b5ae6b15 3020out:
ed782b5a 3021 __d_add(dentry, inode);
b5ae6b15 3022 return NULL;
770bfad8 3023}
b5ae6b15 3024EXPORT_SYMBOL(d_splice_alias);
770bfad8 3025
cdd16d02 3026static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
3027{
3028 *buflen -= namelen;
3029 if (*buflen < 0)
3030 return -ENAMETOOLONG;
3031 *buffer -= namelen;
3032 memcpy(*buffer, str, namelen);
3033 return 0;
3034}
3035
232d2d60
WL
3036/**
3037 * prepend_name - prepend a pathname in front of current buffer pointer
18129977
WL
3038 * @buffer: buffer pointer
3039 * @buflen: allocated length of the buffer
3040 * @name: name string and length qstr structure
232d2d60
WL
3041 *
3042 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
3043 * make sure that either the old or the new name pointer and length are
3044 * fetched. However, there may be mismatch between length and pointer.
3045 * The length cannot be trusted, we need to copy it byte-by-byte until
3046 * the length is reached or a null byte is found. It also prepends "/" at
3047 * the beginning of the name. The sequence number check at the caller will
3048 * retry it again when a d_move() does happen. So any garbage in the buffer
3049 * due to mismatched pointer and length will be discarded.
6d13f694
AV
3050 *
3051 * Data dependency barrier is needed to make sure that we see that terminating
3052 * NUL. Alpha strikes again, film at 11...
232d2d60 3053 */
9aba36de 3054static int prepend_name(char **buffer, int *buflen, const struct qstr *name)
cdd16d02 3055{
232d2d60
WL
3056 const char *dname = ACCESS_ONCE(name->name);
3057 u32 dlen = ACCESS_ONCE(name->len);
3058 char *p;
3059
6d13f694
AV
3060 smp_read_barrier_depends();
3061
232d2d60 3062 *buflen -= dlen + 1;
e825196d
AV
3063 if (*buflen < 0)
3064 return -ENAMETOOLONG;
232d2d60
WL
3065 p = *buffer -= dlen + 1;
3066 *p++ = '/';
3067 while (dlen--) {
3068 char c = *dname++;
3069 if (!c)
3070 break;
3071 *p++ = c;
3072 }
3073 return 0;
cdd16d02
MS
3074}
3075
1da177e4 3076/**
208898c1 3077 * prepend_path - Prepend path string to a buffer
9d1bc601 3078 * @path: the dentry/vfsmount to report
02125a82 3079 * @root: root vfsmnt/dentry
f2eb6575
MS
3080 * @buffer: pointer to the end of the buffer
3081 * @buflen: pointer to buffer length
552ce544 3082 *
18129977
WL
3083 * The function will first try to write out the pathname without taking any
3084 * lock other than the RCU read lock to make sure that dentries won't go away.
3085 * It only checks the sequence number of the global rename_lock as any change
3086 * in the dentry's d_seq will be preceded by changes in the rename_lock
3087 * sequence number. If the sequence number had been changed, it will restart
3088 * the whole pathname back-tracing sequence again by taking the rename_lock.
3089 * In this case, there is no need to take the RCU read lock as the recursive
3090 * parent pointer references will keep the dentry chain alive as long as no
3091 * rename operation is performed.
1da177e4 3092 */
02125a82
AV
3093static int prepend_path(const struct path *path,
3094 const struct path *root,
f2eb6575 3095 char **buffer, int *buflen)
1da177e4 3096{
ede4cebc
AV
3097 struct dentry *dentry;
3098 struct vfsmount *vfsmnt;
3099 struct mount *mnt;
f2eb6575 3100 int error = 0;
48a066e7 3101 unsigned seq, m_seq = 0;
232d2d60
WL
3102 char *bptr;
3103 int blen;
6092d048 3104
48f5ec21 3105 rcu_read_lock();
48a066e7
AV
3106restart_mnt:
3107 read_seqbegin_or_lock(&mount_lock, &m_seq);
3108 seq = 0;
4ec6c2ae 3109 rcu_read_lock();
232d2d60
WL
3110restart:
3111 bptr = *buffer;
3112 blen = *buflen;
48a066e7 3113 error = 0;
ede4cebc
AV
3114 dentry = path->dentry;
3115 vfsmnt = path->mnt;
3116 mnt = real_mount(vfsmnt);
232d2d60 3117 read_seqbegin_or_lock(&rename_lock, &seq);
f2eb6575 3118 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
3119 struct dentry * parent;
3120
1da177e4 3121 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
48a066e7 3122 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
cde93be4
EB
3123 /* Escaped? */
3124 if (dentry != vfsmnt->mnt_root) {
3125 bptr = *buffer;
3126 blen = *buflen;
3127 error = 3;
3128 break;
3129 }
552ce544 3130 /* Global root? */
48a066e7
AV
3131 if (mnt != parent) {
3132 dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
3133 mnt = parent;
232d2d60
WL
3134 vfsmnt = &mnt->mnt;
3135 continue;
3136 }
232d2d60
WL
3137 if (!error)
3138 error = is_mounted(vfsmnt) ? 1 : 2;
3139 break;
1da177e4
LT
3140 }
3141 parent = dentry->d_parent;
3142 prefetch(parent);
232d2d60 3143 error = prepend_name(&bptr, &blen, &dentry->d_name);
f2eb6575
MS
3144 if (error)
3145 break;
3146
1da177e4
LT
3147 dentry = parent;
3148 }
48f5ec21
AV
3149 if (!(seq & 1))
3150 rcu_read_unlock();
3151 if (need_seqretry(&rename_lock, seq)) {
3152 seq = 1;
232d2d60 3153 goto restart;
48f5ec21
AV
3154 }
3155 done_seqretry(&rename_lock, seq);
4ec6c2ae
LZ
3156
3157 if (!(m_seq & 1))
3158 rcu_read_unlock();
48a066e7
AV
3159 if (need_seqretry(&mount_lock, m_seq)) {
3160 m_seq = 1;
3161 goto restart_mnt;
3162 }
3163 done_seqretry(&mount_lock, m_seq);
1da177e4 3164
232d2d60
WL
3165 if (error >= 0 && bptr == *buffer) {
3166 if (--blen < 0)
3167 error = -ENAMETOOLONG;
3168 else
3169 *--bptr = '/';
3170 }
3171 *buffer = bptr;
3172 *buflen = blen;
7ea600b5 3173 return error;
f2eb6575 3174}
be285c71 3175
f2eb6575
MS
3176/**
3177 * __d_path - return the path of a dentry
3178 * @path: the dentry/vfsmount to report
02125a82 3179 * @root: root vfsmnt/dentry
cd956a1c 3180 * @buf: buffer to return value in
f2eb6575
MS
3181 * @buflen: buffer length
3182 *
ffd1f4ed 3183 * Convert a dentry into an ASCII path name.
f2eb6575
MS
3184 *
3185 * Returns a pointer into the buffer or an error code if the
3186 * path was too long.
3187 *
be148247 3188 * "buflen" should be positive.
f2eb6575 3189 *
02125a82 3190 * If the path is not reachable from the supplied root, return %NULL.
f2eb6575 3191 */
02125a82
AV
3192char *__d_path(const struct path *path,
3193 const struct path *root,
f2eb6575
MS
3194 char *buf, int buflen)
3195{
3196 char *res = buf + buflen;
3197 int error;
3198
3199 prepend(&res, &buflen, "\0", 1);
f2eb6575 3200 error = prepend_path(path, root, &res, &buflen);
be148247 3201
02125a82
AV
3202 if (error < 0)
3203 return ERR_PTR(error);
3204 if (error > 0)
3205 return NULL;
3206 return res;
3207}
3208
3209char *d_absolute_path(const struct path *path,
3210 char *buf, int buflen)
3211{
3212 struct path root = {};
3213 char *res = buf + buflen;
3214 int error;
3215
3216 prepend(&res, &buflen, "\0", 1);
02125a82 3217 error = prepend_path(path, &root, &res, &buflen);
02125a82
AV
3218
3219 if (error > 1)
3220 error = -EINVAL;
3221 if (error < 0)
f2eb6575 3222 return ERR_PTR(error);
f2eb6575 3223 return res;
1da177e4
LT
3224}
3225
ffd1f4ed
MS
3226/*
3227 * same as __d_path but appends "(deleted)" for unlinked files.
3228 */
02125a82
AV
3229static int path_with_deleted(const struct path *path,
3230 const struct path *root,
3231 char **buf, int *buflen)
ffd1f4ed
MS
3232{
3233 prepend(buf, buflen, "\0", 1);
3234 if (d_unlinked(path->dentry)) {
3235 int error = prepend(buf, buflen, " (deleted)", 10);
3236 if (error)
3237 return error;
3238 }
3239
3240 return prepend_path(path, root, buf, buflen);
3241}
3242
8df9d1a4
MS
3243static int prepend_unreachable(char **buffer, int *buflen)
3244{
3245 return prepend(buffer, buflen, "(unreachable)", 13);
3246}
3247
68f0d9d9
LT
3248static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3249{
3250 unsigned seq;
3251
3252 do {
3253 seq = read_seqcount_begin(&fs->seq);
3254 *root = fs->root;
3255 } while (read_seqcount_retry(&fs->seq, seq));
3256}
3257
a03a8a70
JB
3258/**
3259 * d_path - return the path of a dentry
cf28b486 3260 * @path: path to report
a03a8a70
JB
3261 * @buf: buffer to return value in
3262 * @buflen: buffer length
3263 *
3264 * Convert a dentry into an ASCII path name. If the entry has been deleted
3265 * the string " (deleted)" is appended. Note that this is ambiguous.
3266 *
52afeefb
AV
3267 * Returns a pointer into the buffer or an error code if the path was
3268 * too long. Note: Callers should use the returned pointer, not the passed
3269 * in buffer, to use the name! The implementation often starts at an offset
3270 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 3271 *
31f3e0b3 3272 * "buflen" should be positive.
a03a8a70 3273 */
20d4fdc1 3274char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 3275{
ffd1f4ed 3276 char *res = buf + buflen;
6ac08c39 3277 struct path root;
ffd1f4ed 3278 int error;
1da177e4 3279
c23fbb6b
ED
3280 /*
3281 * We have various synthetic filesystems that never get mounted. On
3282 * these filesystems dentries are never used for lookup purposes, and
3283 * thus don't need to be hashed. They also don't need a name until a
3284 * user wants to identify the object in /proc/pid/fd/. The little hack
3285 * below allows us to generate a name for these objects on demand:
f48cfddc
EB
3286 *
3287 * Some pseudo inodes are mountable. When they are mounted
3288 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3289 * and instead have d_path return the mounted path.
c23fbb6b 3290 */
f48cfddc
EB
3291 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3292 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
cf28b486 3293 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 3294
68f0d9d9
LT
3295 rcu_read_lock();
3296 get_fs_root_rcu(current->fs, &root);
02125a82 3297 error = path_with_deleted(path, &root, &res, &buflen);
68f0d9d9
LT
3298 rcu_read_unlock();
3299
02125a82 3300 if (error < 0)
ffd1f4ed 3301 res = ERR_PTR(error);
1da177e4
LT
3302 return res;
3303}
ec4f8605 3304EXPORT_SYMBOL(d_path);
1da177e4 3305
c23fbb6b
ED
3306/*
3307 * Helper function for dentry_operations.d_dname() members
3308 */
3309char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3310 const char *fmt, ...)
3311{
3312 va_list args;
3313 char temp[64];
3314 int sz;
3315
3316 va_start(args, fmt);
3317 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3318 va_end(args);
3319
3320 if (sz > sizeof(temp) || sz > buflen)
3321 return ERR_PTR(-ENAMETOOLONG);
3322
3323 buffer += buflen - sz;
3324 return memcpy(buffer, temp, sz);
3325}
3326
118b2302
AV
3327char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3328{
3329 char *end = buffer + buflen;
3330 /* these dentries are never renamed, so d_lock is not needed */
3331 if (prepend(&end, &buflen, " (deleted)", 11) ||
232d2d60 3332 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
118b2302
AV
3333 prepend(&end, &buflen, "/", 1))
3334 end = ERR_PTR(-ENAMETOOLONG);
232d2d60 3335 return end;
118b2302 3336}
31bbe16f 3337EXPORT_SYMBOL(simple_dname);
118b2302 3338
6092d048
RP
3339/*
3340 * Write full pathname from the root of the filesystem into the buffer.
3341 */
f6500801 3342static char *__dentry_path(struct dentry *d, char *buf, int buflen)
6092d048 3343{
f6500801 3344 struct dentry *dentry;
232d2d60
WL
3345 char *end, *retval;
3346 int len, seq = 0;
3347 int error = 0;
6092d048 3348
f6500801
AV
3349 if (buflen < 2)
3350 goto Elong;
3351
48f5ec21 3352 rcu_read_lock();
232d2d60 3353restart:
f6500801 3354 dentry = d;
232d2d60
WL
3355 end = buf + buflen;
3356 len = buflen;
3357 prepend(&end, &len, "\0", 1);
6092d048
RP
3358 /* Get '/' right */
3359 retval = end-1;
3360 *retval = '/';
232d2d60 3361 read_seqbegin_or_lock(&rename_lock, &seq);
cdd16d02
MS
3362 while (!IS_ROOT(dentry)) {
3363 struct dentry *parent = dentry->d_parent;
6092d048 3364
6092d048 3365 prefetch(parent);
232d2d60
WL
3366 error = prepend_name(&end, &len, &dentry->d_name);
3367 if (error)
3368 break;
6092d048
RP
3369
3370 retval = end;
3371 dentry = parent;
3372 }
48f5ec21
AV
3373 if (!(seq & 1))
3374 rcu_read_unlock();
3375 if (need_seqretry(&rename_lock, seq)) {
3376 seq = 1;
232d2d60 3377 goto restart;
48f5ec21
AV
3378 }
3379 done_seqretry(&rename_lock, seq);
232d2d60
WL
3380 if (error)
3381 goto Elong;
c103135c
AV
3382 return retval;
3383Elong:
3384 return ERR_PTR(-ENAMETOOLONG);
3385}
ec2447c2
NP
3386
3387char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3388{
232d2d60 3389 return __dentry_path(dentry, buf, buflen);
ec2447c2
NP
3390}
3391EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
3392
3393char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3394{
3395 char *p = NULL;
3396 char *retval;
3397
c103135c
AV
3398 if (d_unlinked(dentry)) {
3399 p = buf + buflen;
3400 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3401 goto Elong;
3402 buflen++;
3403 }
3404 retval = __dentry_path(dentry, buf, buflen);
c103135c
AV
3405 if (!IS_ERR(retval) && p)
3406 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
3407 return retval;
3408Elong:
6092d048
RP
3409 return ERR_PTR(-ENAMETOOLONG);
3410}
3411
8b19e341
LT
3412static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3413 struct path *pwd)
5762482f 3414{
8b19e341
LT
3415 unsigned seq;
3416
3417 do {
3418 seq = read_seqcount_begin(&fs->seq);
3419 *root = fs->root;
3420 *pwd = fs->pwd;
3421 } while (read_seqcount_retry(&fs->seq, seq));
5762482f
LT
3422}
3423
1da177e4
LT
3424/*
3425 * NOTE! The user-level library version returns a
3426 * character pointer. The kernel system call just
3427 * returns the length of the buffer filled (which
3428 * includes the ending '\0' character), or a negative
3429 * error value. So libc would do something like
3430 *
3431 * char *getcwd(char * buf, size_t size)
3432 * {
3433 * int retval;
3434 *
3435 * retval = sys_getcwd(buf, size);
3436 * if (retval >= 0)
3437 * return buf;
3438 * errno = -retval;
3439 * return NULL;
3440 * }
3441 */
3cdad428 3442SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 3443{
552ce544 3444 int error;
6ac08c39 3445 struct path pwd, root;
3272c544 3446 char *page = __getname();
1da177e4
LT
3447
3448 if (!page)
3449 return -ENOMEM;
3450
8b19e341
LT
3451 rcu_read_lock();
3452 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
1da177e4 3453
552ce544 3454 error = -ENOENT;
f3da392e 3455 if (!d_unlinked(pwd.dentry)) {
552ce544 3456 unsigned long len;
3272c544
LT
3457 char *cwd = page + PATH_MAX;
3458 int buflen = PATH_MAX;
1da177e4 3459
8df9d1a4 3460 prepend(&cwd, &buflen, "\0", 1);
02125a82 3461 error = prepend_path(&pwd, &root, &cwd, &buflen);
ff812d72 3462 rcu_read_unlock();
552ce544 3463
02125a82 3464 if (error < 0)
552ce544
LT
3465 goto out;
3466
8df9d1a4 3467 /* Unreachable from current root */
02125a82 3468 if (error > 0) {
8df9d1a4
MS
3469 error = prepend_unreachable(&cwd, &buflen);
3470 if (error)
3471 goto out;
3472 }
3473
552ce544 3474 error = -ERANGE;
3272c544 3475 len = PATH_MAX + page - cwd;
552ce544
LT
3476 if (len <= size) {
3477 error = len;
3478 if (copy_to_user(buf, cwd, len))
3479 error = -EFAULT;
3480 }
949854d0 3481 } else {
ff812d72 3482 rcu_read_unlock();
949854d0 3483 }
1da177e4
LT
3484
3485out:
3272c544 3486 __putname(page);
1da177e4
LT
3487 return error;
3488}
3489
3490/*
3491 * Test whether new_dentry is a subdirectory of old_dentry.
3492 *
3493 * Trivially implemented using the dcache structure
3494 */
3495
3496/**
3497 * is_subdir - is new dentry a subdirectory of old_dentry
3498 * @new_dentry: new dentry
3499 * @old_dentry: old dentry
3500 *
a6e5787f
YB
3501 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3502 * Returns false otherwise.
1da177e4
LT
3503 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3504 */
3505
a6e5787f 3506bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4 3507{
a6e5787f 3508 bool result;
949854d0 3509 unsigned seq;
1da177e4 3510
e2761a11 3511 if (new_dentry == old_dentry)
a6e5787f 3512 return true;
e2761a11 3513
e2761a11 3514 do {
1da177e4 3515 /* for restarting inner loop in case of seq retry */
1da177e4 3516 seq = read_seqbegin(&rename_lock);
949854d0
NP
3517 /*
3518 * Need rcu_readlock to protect against the d_parent trashing
3519 * due to d_move
3520 */
3521 rcu_read_lock();
e2761a11 3522 if (d_ancestor(old_dentry, new_dentry))
a6e5787f 3523 result = true;
e2761a11 3524 else
a6e5787f 3525 result = false;
949854d0 3526 rcu_read_unlock();
1da177e4 3527 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
3528
3529 return result;
3530}
3531
db14fc3a 3532static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
1da177e4 3533{
db14fc3a
MS
3534 struct dentry *root = data;
3535 if (dentry != root) {
3536 if (d_unhashed(dentry) || !dentry->d_inode)
3537 return D_WALK_SKIP;
1da177e4 3538
01ddc4ed
MS
3539 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3540 dentry->d_flags |= DCACHE_GENOCIDE;
3541 dentry->d_lockref.count--;
3542 }
1da177e4 3543 }
db14fc3a
MS
3544 return D_WALK_CONTINUE;
3545}
58db63d0 3546
db14fc3a
MS
3547void d_genocide(struct dentry *parent)
3548{
3549 d_walk(parent, parent, d_genocide_kill, NULL);
1da177e4
LT
3550}
3551
60545d0d 3552void d_tmpfile(struct dentry *dentry, struct inode *inode)
1da177e4 3553{
60545d0d
AV
3554 inode_dec_link_count(inode);
3555 BUG_ON(dentry->d_name.name != dentry->d_iname ||
946e51f2 3556 !hlist_unhashed(&dentry->d_u.d_alias) ||
60545d0d
AV
3557 !d_unlinked(dentry));
3558 spin_lock(&dentry->d_parent->d_lock);
3559 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3560 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3561 (unsigned long long)inode->i_ino);
3562 spin_unlock(&dentry->d_lock);
3563 spin_unlock(&dentry->d_parent->d_lock);
3564 d_instantiate(dentry, inode);
1da177e4 3565}
60545d0d 3566EXPORT_SYMBOL(d_tmpfile);
1da177e4
LT
3567
3568static __initdata unsigned long dhash_entries;
3569static int __init set_dhash_entries(char *str)
3570{
3571 if (!str)
3572 return 0;
3573 dhash_entries = simple_strtoul(str, &str, 0);
3574 return 1;
3575}
3576__setup("dhash_entries=", set_dhash_entries);
3577
3578static void __init dcache_init_early(void)
3579{
074b8517 3580 unsigned int loop;
1da177e4
LT
3581
3582 /* If hashes are distributed across NUMA nodes, defer
3583 * hash allocation until vmalloc space is available.
3584 */
3585 if (hashdist)
3586 return;
3587
3588 dentry_hashtable =
3589 alloc_large_system_hash("Dentry cache",
b07ad996 3590 sizeof(struct hlist_bl_head),
1da177e4
LT
3591 dhash_entries,
3592 13,
3593 HASH_EARLY,
3594 &d_hash_shift,
3595 &d_hash_mask,
31fe62b9 3596 0,
1da177e4
LT
3597 0);
3598
074b8517 3599 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3600 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3601}
3602
74bf17cf 3603static void __init dcache_init(void)
1da177e4 3604{
074b8517 3605 unsigned int loop;
1da177e4
LT
3606
3607 /*
3608 * A constructor could be added for stable state like the lists,
3609 * but it is probably not worth it because of the cache nature
3610 * of the dcache.
3611 */
0a31bd5f 3612 dentry_cache = KMEM_CACHE(dentry,
5d097056 3613 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT);
1da177e4
LT
3614
3615 /* Hash may have been set up in dcache_init_early */
3616 if (!hashdist)
3617 return;
3618
3619 dentry_hashtable =
3620 alloc_large_system_hash("Dentry cache",
b07ad996 3621 sizeof(struct hlist_bl_head),
1da177e4
LT
3622 dhash_entries,
3623 13,
3624 0,
3625 &d_hash_shift,
3626 &d_hash_mask,
31fe62b9 3627 0,
1da177e4
LT
3628 0);
3629
074b8517 3630 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3631 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3632}
3633
3634/* SLAB cache for __getname() consumers */
e18b890b 3635struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3636EXPORT_SYMBOL(names_cachep);
1da177e4 3637
1da177e4
LT
3638EXPORT_SYMBOL(d_genocide);
3639
1da177e4
LT
3640void __init vfs_caches_init_early(void)
3641{
3642 dcache_init_early();
3643 inode_init_early();
3644}
3645
4248b0da 3646void __init vfs_caches_init(void)
1da177e4 3647{
1da177e4 3648 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
20c2df83 3649 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4 3650
74bf17cf
DC
3651 dcache_init();
3652 inode_init();
4248b0da
MG
3653 files_init();
3654 files_maxfiles_init();
74bf17cf 3655 mnt_init();
1da177e4
LT
3656 bdev_cache_init();
3657 chrdev_init();
3658}