]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/dcache.c
vfs: export symbol d_find_any_alias()
[mirror_ubuntu-artful-kernel.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
26#include <linux/module.h>
27#include <linux/mount.h>
28#include <linux/file.h>
29#include <asm/uaccess.h>
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
613afbf8 35#include <linux/hardirq.h>
ceb5bdc2
NP
36#include <linux/bit_spinlock.h>
37#include <linux/rculist_bl.h>
268bb0ce 38#include <linux/prefetch.h>
dd179946 39#include <linux/ratelimit.h>
07f3f05c 40#include "internal.h"
1da177e4 41
789680d1
NP
42/*
43 * Usage:
873feea0
NP
44 * dcache->d_inode->i_lock protects:
45 * - i_dentry, d_alias, d_inode of aliases
ceb5bdc2
NP
46 * dcache_hash_bucket lock protects:
47 * - the dcache hash table
48 * s_anon bl list spinlock protects:
49 * - the s_anon list (see __d_drop)
23044507
NP
50 * dcache_lru_lock protects:
51 * - the dcache lru lists and counters
52 * d_lock protects:
53 * - d_flags
54 * - d_name
55 * - d_lru
b7ab39f6 56 * - d_count
da502956 57 * - d_unhashed()
2fd6b7f5
NP
58 * - d_parent and d_subdirs
59 * - childrens' d_child and d_parent
b23fb0a6 60 * - d_alias, d_inode
789680d1
NP
61 *
62 * Ordering:
873feea0 63 * dentry->d_inode->i_lock
b5c84bf6
NP
64 * dentry->d_lock
65 * dcache_lru_lock
ceb5bdc2
NP
66 * dcache_hash_bucket lock
67 * s_anon lock
789680d1 68 *
da502956
NP
69 * If there is an ancestor relationship:
70 * dentry->d_parent->...->d_parent->d_lock
71 * ...
72 * dentry->d_parent->d_lock
73 * dentry->d_lock
74 *
75 * If no ancestor relationship:
789680d1
NP
76 * if (dentry1 < dentry2)
77 * dentry1->d_lock
78 * dentry2->d_lock
79 */
fa3536cc 80int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
81EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
82
23044507 83static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
74c3cbe3 84__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 85
949854d0 86EXPORT_SYMBOL(rename_lock);
1da177e4 87
e18b890b 88static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 89
1da177e4
LT
90/*
91 * This is the single most critical data structure when it comes
92 * to the dcache: the hashtable for lookups. Somebody should try
93 * to make this good - I've just made it work.
94 *
95 * This hash-function tries to avoid losing too many bits of hash
96 * information, yet avoid using a prime hash-size or similar.
97 */
98#define D_HASHBITS d_hash_shift
99#define D_HASHMASK d_hash_mask
100
fa3536cc
ED
101static unsigned int d_hash_mask __read_mostly;
102static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 103
b07ad996 104static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 105
b07ad996 106static inline struct hlist_bl_head *d_hash(struct dentry *parent,
ceb5bdc2
NP
107 unsigned long hash)
108{
109 hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
110 hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
111 return dentry_hashtable + (hash & D_HASHMASK);
112}
113
1da177e4
LT
114/* Statistics gathering. */
115struct dentry_stat_t dentry_stat = {
116 .age_limit = 45,
117};
118
3e880fb5 119static DEFINE_PER_CPU(unsigned int, nr_dentry);
312d3ca8
CH
120
121#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
3e880fb5
NP
122static int get_nr_dentry(void)
123{
124 int i;
125 int sum = 0;
126 for_each_possible_cpu(i)
127 sum += per_cpu(nr_dentry, i);
128 return sum < 0 ? 0 : sum;
129}
130
312d3ca8
CH
131int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
132 size_t *lenp, loff_t *ppos)
133{
3e880fb5 134 dentry_stat.nr_dentry = get_nr_dentry();
312d3ca8
CH
135 return proc_dointvec(table, write, buffer, lenp, ppos);
136}
137#endif
138
9c82ab9c 139static void __d_free(struct rcu_head *head)
1da177e4 140{
9c82ab9c
CH
141 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
142
fd217f4d 143 WARN_ON(!list_empty(&dentry->d_alias));
1da177e4
LT
144 if (dname_external(dentry))
145 kfree(dentry->d_name.name);
146 kmem_cache_free(dentry_cache, dentry);
147}
148
149/*
b5c84bf6 150 * no locks, please.
1da177e4
LT
151 */
152static void d_free(struct dentry *dentry)
153{
b7ab39f6 154 BUG_ON(dentry->d_count);
3e880fb5 155 this_cpu_dec(nr_dentry);
1da177e4
LT
156 if (dentry->d_op && dentry->d_op->d_release)
157 dentry->d_op->d_release(dentry);
312d3ca8 158
dea3667b
LT
159 /* if dentry was never visible to RCU, immediate free is OK */
160 if (!(dentry->d_flags & DCACHE_RCUACCESS))
9c82ab9c 161 __d_free(&dentry->d_u.d_rcu);
b3423415 162 else
9c82ab9c 163 call_rcu(&dentry->d_u.d_rcu, __d_free);
1da177e4
LT
164}
165
31e6b01f
NP
166/**
167 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
ff5fdb61 168 * @dentry: the target dentry
31e6b01f
NP
169 * After this call, in-progress rcu-walk path lookup will fail. This
170 * should be called after unhashing, and after changing d_inode (if
171 * the dentry has not already been unhashed).
172 */
173static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
174{
175 assert_spin_locked(&dentry->d_lock);
176 /* Go through a barrier */
177 write_seqcount_barrier(&dentry->d_seq);
178}
179
1da177e4
LT
180/*
181 * Release the dentry's inode, using the filesystem
31e6b01f
NP
182 * d_iput() operation if defined. Dentry has no refcount
183 * and is unhashed.
1da177e4 184 */
858119e1 185static void dentry_iput(struct dentry * dentry)
31f3e0b3 186 __releases(dentry->d_lock)
873feea0 187 __releases(dentry->d_inode->i_lock)
1da177e4
LT
188{
189 struct inode *inode = dentry->d_inode;
190 if (inode) {
191 dentry->d_inode = NULL;
192 list_del_init(&dentry->d_alias);
193 spin_unlock(&dentry->d_lock);
873feea0 194 spin_unlock(&inode->i_lock);
f805fbda
LT
195 if (!inode->i_nlink)
196 fsnotify_inoderemove(inode);
1da177e4
LT
197 if (dentry->d_op && dentry->d_op->d_iput)
198 dentry->d_op->d_iput(dentry, inode);
199 else
200 iput(inode);
201 } else {
202 spin_unlock(&dentry->d_lock);
1da177e4
LT
203 }
204}
205
31e6b01f
NP
206/*
207 * Release the dentry's inode, using the filesystem
208 * d_iput() operation if defined. dentry remains in-use.
209 */
210static void dentry_unlink_inode(struct dentry * dentry)
211 __releases(dentry->d_lock)
873feea0 212 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
213{
214 struct inode *inode = dentry->d_inode;
215 dentry->d_inode = NULL;
216 list_del_init(&dentry->d_alias);
217 dentry_rcuwalk_barrier(dentry);
218 spin_unlock(&dentry->d_lock);
873feea0 219 spin_unlock(&inode->i_lock);
31e6b01f
NP
220 if (!inode->i_nlink)
221 fsnotify_inoderemove(inode);
222 if (dentry->d_op && dentry->d_op->d_iput)
223 dentry->d_op->d_iput(dentry, inode);
224 else
225 iput(inode);
226}
227
da3bbdd4 228/*
f0023bc6 229 * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
da3bbdd4
KM
230 */
231static void dentry_lru_add(struct dentry *dentry)
232{
a4633357 233 if (list_empty(&dentry->d_lru)) {
23044507 234 spin_lock(&dcache_lru_lock);
a4633357
CH
235 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
236 dentry->d_sb->s_nr_dentry_unused++;
86c8749e 237 dentry_stat.nr_unused++;
23044507 238 spin_unlock(&dcache_lru_lock);
a4633357 239 }
da3bbdd4
KM
240}
241
23044507
NP
242static void __dentry_lru_del(struct dentry *dentry)
243{
244 list_del_init(&dentry->d_lru);
245 dentry->d_sb->s_nr_dentry_unused--;
246 dentry_stat.nr_unused--;
247}
248
f0023bc6
SW
249/*
250 * Remove a dentry with references from the LRU.
251 */
da3bbdd4
KM
252static void dentry_lru_del(struct dentry *dentry)
253{
254 if (!list_empty(&dentry->d_lru)) {
23044507
NP
255 spin_lock(&dcache_lru_lock);
256 __dentry_lru_del(dentry);
257 spin_unlock(&dcache_lru_lock);
da3bbdd4
KM
258 }
259}
260
f0023bc6
SW
261/*
262 * Remove a dentry that is unreferenced and about to be pruned
263 * (unhashed and destroyed) from the LRU, and inform the file system.
264 * This wrapper should be called _prior_ to unhashing a victim dentry.
265 */
266static void dentry_lru_prune(struct dentry *dentry)
267{
268 if (!list_empty(&dentry->d_lru)) {
269 if (dentry->d_flags & DCACHE_OP_PRUNE)
270 dentry->d_op->d_prune(dentry);
271
272 spin_lock(&dcache_lru_lock);
273 __dentry_lru_del(dentry);
274 spin_unlock(&dcache_lru_lock);
275 }
276}
277
a4633357 278static void dentry_lru_move_tail(struct dentry *dentry)
da3bbdd4 279{
23044507 280 spin_lock(&dcache_lru_lock);
a4633357
CH
281 if (list_empty(&dentry->d_lru)) {
282 list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
283 dentry->d_sb->s_nr_dentry_unused++;
86c8749e 284 dentry_stat.nr_unused++;
a4633357
CH
285 } else {
286 list_move_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
da3bbdd4 287 }
23044507 288 spin_unlock(&dcache_lru_lock);
da3bbdd4
KM
289}
290
d52b9086
MS
291/**
292 * d_kill - kill dentry and return parent
293 * @dentry: dentry to kill
ff5fdb61 294 * @parent: parent dentry
d52b9086 295 *
31f3e0b3 296 * The dentry must already be unhashed and removed from the LRU.
d52b9086
MS
297 *
298 * If this is the root of the dentry tree, return NULL.
23044507 299 *
b5c84bf6
NP
300 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
301 * d_kill.
d52b9086 302 */
2fd6b7f5 303static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
31f3e0b3 304 __releases(dentry->d_lock)
2fd6b7f5 305 __releases(parent->d_lock)
873feea0 306 __releases(dentry->d_inode->i_lock)
d52b9086 307{
d52b9086 308 list_del(&dentry->d_u.d_child);
c83ce989
TM
309 /*
310 * Inform try_to_ascend() that we are no longer attached to the
311 * dentry tree
312 */
313 dentry->d_flags |= DCACHE_DISCONNECTED;
2fd6b7f5
NP
314 if (parent)
315 spin_unlock(&parent->d_lock);
d52b9086 316 dentry_iput(dentry);
b7ab39f6
NP
317 /*
318 * dentry_iput drops the locks, at which point nobody (except
319 * transient RCU lookups) can reach this dentry.
320 */
d52b9086 321 d_free(dentry);
871c0067 322 return parent;
d52b9086
MS
323}
324
c6627c60
DH
325/*
326 * Unhash a dentry without inserting an RCU walk barrier or checking that
327 * dentry->d_lock is locked. The caller must take care of that, if
328 * appropriate.
329 */
330static void __d_shrink(struct dentry *dentry)
331{
332 if (!d_unhashed(dentry)) {
333 struct hlist_bl_head *b;
334 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
335 b = &dentry->d_sb->s_anon;
336 else
337 b = d_hash(dentry->d_parent, dentry->d_name.hash);
338
339 hlist_bl_lock(b);
340 __hlist_bl_del(&dentry->d_hash);
341 dentry->d_hash.pprev = NULL;
342 hlist_bl_unlock(b);
343 }
344}
345
789680d1
NP
346/**
347 * d_drop - drop a dentry
348 * @dentry: dentry to drop
349 *
350 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
351 * be found through a VFS lookup any more. Note that this is different from
352 * deleting the dentry - d_delete will try to mark the dentry negative if
353 * possible, giving a successful _negative_ lookup, while d_drop will
354 * just make the cache lookup fail.
355 *
356 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
357 * reason (NFS timeouts or autofs deletes).
358 *
359 * __d_drop requires dentry->d_lock.
360 */
361void __d_drop(struct dentry *dentry)
362{
dea3667b 363 if (!d_unhashed(dentry)) {
c6627c60 364 __d_shrink(dentry);
dea3667b 365 dentry_rcuwalk_barrier(dentry);
789680d1
NP
366 }
367}
368EXPORT_SYMBOL(__d_drop);
369
370void d_drop(struct dentry *dentry)
371{
789680d1
NP
372 spin_lock(&dentry->d_lock);
373 __d_drop(dentry);
374 spin_unlock(&dentry->d_lock);
789680d1
NP
375}
376EXPORT_SYMBOL(d_drop);
377
44396f4b
JB
378/*
379 * d_clear_need_lookup - drop a dentry from cache and clear the need lookup flag
380 * @dentry: dentry to drop
381 *
382 * This is called when we do a lookup on a placeholder dentry that needed to be
383 * looked up. The dentry should have been hashed in order for it to be found by
384 * the lookup code, but now needs to be unhashed while we do the actual lookup
385 * and clear the DCACHE_NEED_LOOKUP flag.
386 */
387void d_clear_need_lookup(struct dentry *dentry)
388{
389 spin_lock(&dentry->d_lock);
390 __d_drop(dentry);
391 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
392 spin_unlock(&dentry->d_lock);
393}
394EXPORT_SYMBOL(d_clear_need_lookup);
395
77812a1e
NP
396/*
397 * Finish off a dentry we've decided to kill.
398 * dentry->d_lock must be held, returns with it unlocked.
399 * If ref is non-zero, then decrement the refcount too.
400 * Returns dentry requiring refcount drop, or NULL if we're done.
401 */
402static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
403 __releases(dentry->d_lock)
404{
873feea0 405 struct inode *inode;
77812a1e
NP
406 struct dentry *parent;
407
873feea0
NP
408 inode = dentry->d_inode;
409 if (inode && !spin_trylock(&inode->i_lock)) {
77812a1e
NP
410relock:
411 spin_unlock(&dentry->d_lock);
412 cpu_relax();
413 return dentry; /* try again with same dentry */
414 }
415 if (IS_ROOT(dentry))
416 parent = NULL;
417 else
418 parent = dentry->d_parent;
419 if (parent && !spin_trylock(&parent->d_lock)) {
873feea0
NP
420 if (inode)
421 spin_unlock(&inode->i_lock);
77812a1e
NP
422 goto relock;
423 }
31e6b01f 424
77812a1e
NP
425 if (ref)
426 dentry->d_count--;
f0023bc6
SW
427 /*
428 * if dentry was on the d_lru list delete it from there.
429 * inform the fs via d_prune that this dentry is about to be
430 * unhashed and destroyed.
431 */
432 dentry_lru_prune(dentry);
77812a1e
NP
433 /* if it was on the hash then remove it */
434 __d_drop(dentry);
435 return d_kill(dentry, parent);
436}
437
1da177e4
LT
438/*
439 * This is dput
440 *
441 * This is complicated by the fact that we do not want to put
442 * dentries that are no longer on any hash chain on the unused
443 * list: we'd much rather just get rid of them immediately.
444 *
445 * However, that implies that we have to traverse the dentry
446 * tree upwards to the parents which might _also_ now be
447 * scheduled for deletion (it may have been only waiting for
448 * its last child to go away).
449 *
450 * This tail recursion is done by hand as we don't want to depend
451 * on the compiler to always get this right (gcc generally doesn't).
452 * Real recursion would eat up our stack space.
453 */
454
455/*
456 * dput - release a dentry
457 * @dentry: dentry to release
458 *
459 * Release a dentry. This will drop the usage count and if appropriate
460 * call the dentry unlink method as well as removing it from the queues and
461 * releasing its resources. If the parent dentries were scheduled for release
462 * they too may now get deleted.
1da177e4 463 */
1da177e4
LT
464void dput(struct dentry *dentry)
465{
466 if (!dentry)
467 return;
468
469repeat:
b7ab39f6 470 if (dentry->d_count == 1)
1da177e4 471 might_sleep();
1da177e4 472 spin_lock(&dentry->d_lock);
61f3dee4
NP
473 BUG_ON(!dentry->d_count);
474 if (dentry->d_count > 1) {
475 dentry->d_count--;
1da177e4 476 spin_unlock(&dentry->d_lock);
1da177e4
LT
477 return;
478 }
479
fb045adb 480 if (dentry->d_flags & DCACHE_OP_DELETE) {
1da177e4 481 if (dentry->d_op->d_delete(dentry))
61f3dee4 482 goto kill_it;
1da177e4 483 }
265ac902 484
1da177e4
LT
485 /* Unreachable? Get rid of it */
486 if (d_unhashed(dentry))
487 goto kill_it;
265ac902 488
44396f4b
JB
489 /*
490 * If this dentry needs lookup, don't set the referenced flag so that it
491 * is more likely to be cleaned up by the dcache shrinker in case of
492 * memory pressure.
493 */
494 if (!d_need_lookup(dentry))
495 dentry->d_flags |= DCACHE_REFERENCED;
a4633357 496 dentry_lru_add(dentry);
265ac902 497
61f3dee4
NP
498 dentry->d_count--;
499 spin_unlock(&dentry->d_lock);
1da177e4
LT
500 return;
501
d52b9086 502kill_it:
77812a1e 503 dentry = dentry_kill(dentry, 1);
d52b9086
MS
504 if (dentry)
505 goto repeat;
1da177e4 506}
ec4f8605 507EXPORT_SYMBOL(dput);
1da177e4
LT
508
509/**
510 * d_invalidate - invalidate a dentry
511 * @dentry: dentry to invalidate
512 *
513 * Try to invalidate the dentry if it turns out to be
514 * possible. If there are other dentries that can be
515 * reached through this one we can't delete it and we
516 * return -EBUSY. On success we return 0.
517 *
518 * no dcache lock.
519 */
520
521int d_invalidate(struct dentry * dentry)
522{
523 /*
524 * If it's already been dropped, return OK.
525 */
da502956 526 spin_lock(&dentry->d_lock);
1da177e4 527 if (d_unhashed(dentry)) {
da502956 528 spin_unlock(&dentry->d_lock);
1da177e4
LT
529 return 0;
530 }
531 /*
532 * Check whether to do a partial shrink_dcache
533 * to get rid of unused child entries.
534 */
535 if (!list_empty(&dentry->d_subdirs)) {
da502956 536 spin_unlock(&dentry->d_lock);
1da177e4 537 shrink_dcache_parent(dentry);
da502956 538 spin_lock(&dentry->d_lock);
1da177e4
LT
539 }
540
541 /*
542 * Somebody else still using it?
543 *
544 * If it's a directory, we can't drop it
545 * for fear of somebody re-populating it
546 * with children (even though dropping it
547 * would make it unreachable from the root,
548 * we might still populate it if it was a
549 * working directory or similar).
50e69630
AV
550 * We also need to leave mountpoints alone,
551 * directory or not.
1da177e4 552 */
50e69630
AV
553 if (dentry->d_count > 1 && dentry->d_inode) {
554 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
1da177e4 555 spin_unlock(&dentry->d_lock);
1da177e4
LT
556 return -EBUSY;
557 }
558 }
559
560 __d_drop(dentry);
561 spin_unlock(&dentry->d_lock);
1da177e4
LT
562 return 0;
563}
ec4f8605 564EXPORT_SYMBOL(d_invalidate);
1da177e4 565
b5c84bf6 566/* This must be called with d_lock held */
dc0474be 567static inline void __dget_dlock(struct dentry *dentry)
23044507 568{
b7ab39f6 569 dentry->d_count++;
23044507
NP
570}
571
dc0474be 572static inline void __dget(struct dentry *dentry)
1da177e4 573{
23044507 574 spin_lock(&dentry->d_lock);
dc0474be 575 __dget_dlock(dentry);
23044507 576 spin_unlock(&dentry->d_lock);
1da177e4
LT
577}
578
b7ab39f6
NP
579struct dentry *dget_parent(struct dentry *dentry)
580{
581 struct dentry *ret;
582
583repeat:
a734eb45
NP
584 /*
585 * Don't need rcu_dereference because we re-check it was correct under
586 * the lock.
587 */
588 rcu_read_lock();
b7ab39f6 589 ret = dentry->d_parent;
a734eb45
NP
590 spin_lock(&ret->d_lock);
591 if (unlikely(ret != dentry->d_parent)) {
592 spin_unlock(&ret->d_lock);
593 rcu_read_unlock();
b7ab39f6
NP
594 goto repeat;
595 }
a734eb45 596 rcu_read_unlock();
b7ab39f6
NP
597 BUG_ON(!ret->d_count);
598 ret->d_count++;
599 spin_unlock(&ret->d_lock);
b7ab39f6
NP
600 return ret;
601}
602EXPORT_SYMBOL(dget_parent);
603
1da177e4
LT
604/**
605 * d_find_alias - grab a hashed alias of inode
606 * @inode: inode in question
607 * @want_discon: flag, used by d_splice_alias, to request
608 * that only a DISCONNECTED alias be returned.
609 *
610 * If inode has a hashed alias, or is a directory and has any alias,
611 * acquire the reference to alias and return it. Otherwise return NULL.
612 * Notice that if inode is a directory there can be only one alias and
613 * it can be unhashed only if it has no children, or if it is the root
614 * of a filesystem.
615 *
21c0d8fd 616 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1da177e4 617 * any other hashed alias over that one unless @want_discon is set,
21c0d8fd 618 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
1da177e4 619 */
da502956 620static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
1da177e4 621{
da502956 622 struct dentry *alias, *discon_alias;
1da177e4 623
da502956
NP
624again:
625 discon_alias = NULL;
626 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
627 spin_lock(&alias->d_lock);
1da177e4 628 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 629 if (IS_ROOT(alias) &&
da502956 630 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 631 discon_alias = alias;
da502956 632 } else if (!want_discon) {
dc0474be 633 __dget_dlock(alias);
da502956
NP
634 spin_unlock(&alias->d_lock);
635 return alias;
636 }
637 }
638 spin_unlock(&alias->d_lock);
639 }
640 if (discon_alias) {
641 alias = discon_alias;
642 spin_lock(&alias->d_lock);
643 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
644 if (IS_ROOT(alias) &&
645 (alias->d_flags & DCACHE_DISCONNECTED)) {
dc0474be 646 __dget_dlock(alias);
da502956 647 spin_unlock(&alias->d_lock);
1da177e4
LT
648 return alias;
649 }
650 }
da502956
NP
651 spin_unlock(&alias->d_lock);
652 goto again;
1da177e4 653 }
da502956 654 return NULL;
1da177e4
LT
655}
656
da502956 657struct dentry *d_find_alias(struct inode *inode)
1da177e4 658{
214fda1f
DH
659 struct dentry *de = NULL;
660
661 if (!list_empty(&inode->i_dentry)) {
873feea0 662 spin_lock(&inode->i_lock);
214fda1f 663 de = __d_find_alias(inode, 0);
873feea0 664 spin_unlock(&inode->i_lock);
214fda1f 665 }
1da177e4
LT
666 return de;
667}
ec4f8605 668EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
669
670/*
671 * Try to kill dentries associated with this inode.
672 * WARNING: you must own a reference to inode.
673 */
674void d_prune_aliases(struct inode *inode)
675{
0cdca3f9 676 struct dentry *dentry;
1da177e4 677restart:
873feea0 678 spin_lock(&inode->i_lock);
0cdca3f9 679 list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
1da177e4 680 spin_lock(&dentry->d_lock);
b7ab39f6 681 if (!dentry->d_count) {
dc0474be 682 __dget_dlock(dentry);
1da177e4
LT
683 __d_drop(dentry);
684 spin_unlock(&dentry->d_lock);
873feea0 685 spin_unlock(&inode->i_lock);
1da177e4
LT
686 dput(dentry);
687 goto restart;
688 }
689 spin_unlock(&dentry->d_lock);
690 }
873feea0 691 spin_unlock(&inode->i_lock);
1da177e4 692}
ec4f8605 693EXPORT_SYMBOL(d_prune_aliases);
1da177e4
LT
694
695/*
77812a1e
NP
696 * Try to throw away a dentry - free the inode, dput the parent.
697 * Requires dentry->d_lock is held, and dentry->d_count == 0.
698 * Releases dentry->d_lock.
d702ccb3 699 *
77812a1e 700 * This may fail if locks cannot be acquired no problem, just try again.
1da177e4 701 */
77812a1e 702static void try_prune_one_dentry(struct dentry *dentry)
31f3e0b3 703 __releases(dentry->d_lock)
1da177e4 704{
77812a1e 705 struct dentry *parent;
d52b9086 706
77812a1e 707 parent = dentry_kill(dentry, 0);
d52b9086 708 /*
77812a1e
NP
709 * If dentry_kill returns NULL, we have nothing more to do.
710 * if it returns the same dentry, trylocks failed. In either
711 * case, just loop again.
712 *
713 * Otherwise, we need to prune ancestors too. This is necessary
714 * to prevent quadratic behavior of shrink_dcache_parent(), but
715 * is also expected to be beneficial in reducing dentry cache
716 * fragmentation.
d52b9086 717 */
77812a1e
NP
718 if (!parent)
719 return;
720 if (parent == dentry)
721 return;
722
723 /* Prune ancestors. */
724 dentry = parent;
d52b9086 725 while (dentry) {
b7ab39f6 726 spin_lock(&dentry->d_lock);
89e60548
NP
727 if (dentry->d_count > 1) {
728 dentry->d_count--;
729 spin_unlock(&dentry->d_lock);
730 return;
731 }
77812a1e 732 dentry = dentry_kill(dentry, 1);
d52b9086 733 }
1da177e4
LT
734}
735
3049cfe2 736static void shrink_dentry_list(struct list_head *list)
1da177e4 737{
da3bbdd4 738 struct dentry *dentry;
da3bbdd4 739
ec33679d
NP
740 rcu_read_lock();
741 for (;;) {
ec33679d
NP
742 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
743 if (&dentry->d_lru == list)
744 break; /* empty */
745 spin_lock(&dentry->d_lock);
746 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
747 spin_unlock(&dentry->d_lock);
23044507
NP
748 continue;
749 }
750
1da177e4
LT
751 /*
752 * We found an inuse dentry which was not removed from
da3bbdd4
KM
753 * the LRU because of laziness during lookup. Do not free
754 * it - just keep it off the LRU list.
1da177e4 755 */
b7ab39f6 756 if (dentry->d_count) {
ec33679d 757 dentry_lru_del(dentry);
da3bbdd4 758 spin_unlock(&dentry->d_lock);
1da177e4
LT
759 continue;
760 }
ec33679d 761
ec33679d 762 rcu_read_unlock();
77812a1e
NP
763
764 try_prune_one_dentry(dentry);
765
ec33679d 766 rcu_read_lock();
da3bbdd4 767 }
ec33679d 768 rcu_read_unlock();
3049cfe2
CH
769}
770
771/**
772 * __shrink_dcache_sb - shrink the dentry LRU on a given superblock
773 * @sb: superblock to shrink dentry LRU.
774 * @count: number of entries to prune
775 * @flags: flags to control the dentry processing
776 *
777 * If flags contains DCACHE_REFERENCED reference dentries will not be pruned.
778 */
b0d40c92 779static void __shrink_dcache_sb(struct super_block *sb, int count, int flags)
3049cfe2 780{
3049cfe2
CH
781 struct dentry *dentry;
782 LIST_HEAD(referenced);
783 LIST_HEAD(tmp);
3049cfe2 784
23044507
NP
785relock:
786 spin_lock(&dcache_lru_lock);
3049cfe2
CH
787 while (!list_empty(&sb->s_dentry_lru)) {
788 dentry = list_entry(sb->s_dentry_lru.prev,
789 struct dentry, d_lru);
790 BUG_ON(dentry->d_sb != sb);
791
23044507
NP
792 if (!spin_trylock(&dentry->d_lock)) {
793 spin_unlock(&dcache_lru_lock);
794 cpu_relax();
795 goto relock;
796 }
797
3049cfe2
CH
798 /*
799 * If we are honouring the DCACHE_REFERENCED flag and the
800 * dentry has this flag set, don't free it. Clear the flag
801 * and put it back on the LRU.
802 */
23044507
NP
803 if (flags & DCACHE_REFERENCED &&
804 dentry->d_flags & DCACHE_REFERENCED) {
805 dentry->d_flags &= ~DCACHE_REFERENCED;
806 list_move(&dentry->d_lru, &referenced);
3049cfe2 807 spin_unlock(&dentry->d_lock);
23044507
NP
808 } else {
809 list_move_tail(&dentry->d_lru, &tmp);
810 spin_unlock(&dentry->d_lock);
b0d40c92 811 if (!--count)
23044507 812 break;
3049cfe2 813 }
ec33679d 814 cond_resched_lock(&dcache_lru_lock);
3049cfe2 815 }
da3bbdd4
KM
816 if (!list_empty(&referenced))
817 list_splice(&referenced, &sb->s_dentry_lru);
23044507 818 spin_unlock(&dcache_lru_lock);
ec33679d
NP
819
820 shrink_dentry_list(&tmp);
da3bbdd4
KM
821}
822
823/**
b0d40c92 824 * prune_dcache_sb - shrink the dcache
2af14162 825 * @sb: superblock
b0d40c92 826 * @nr_to_scan: number of entries to try to free
da3bbdd4 827 *
b0d40c92
DC
828 * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
829 * done when we need more memory an called from the superblock shrinker
830 * function.
da3bbdd4 831 *
b0d40c92
DC
832 * This function may fail to free any resources if all the dentries are in
833 * use.
da3bbdd4 834 */
b0d40c92 835void prune_dcache_sb(struct super_block *sb, int nr_to_scan)
da3bbdd4 836{
b0d40c92 837 __shrink_dcache_sb(sb, nr_to_scan, DCACHE_REFERENCED);
1da177e4
LT
838}
839
1da177e4
LT
840/**
841 * shrink_dcache_sb - shrink dcache for a superblock
842 * @sb: superblock
843 *
3049cfe2
CH
844 * Shrink the dcache for the specified super block. This is used to free
845 * the dcache before unmounting a file system.
1da177e4 846 */
3049cfe2 847void shrink_dcache_sb(struct super_block *sb)
1da177e4 848{
3049cfe2
CH
849 LIST_HEAD(tmp);
850
23044507 851 spin_lock(&dcache_lru_lock);
3049cfe2
CH
852 while (!list_empty(&sb->s_dentry_lru)) {
853 list_splice_init(&sb->s_dentry_lru, &tmp);
ec33679d 854 spin_unlock(&dcache_lru_lock);
3049cfe2 855 shrink_dentry_list(&tmp);
ec33679d 856 spin_lock(&dcache_lru_lock);
3049cfe2 857 }
23044507 858 spin_unlock(&dcache_lru_lock);
1da177e4 859}
ec4f8605 860EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 861
c636ebdb
DH
862/*
863 * destroy a single subtree of dentries for unmount
864 * - see the comments on shrink_dcache_for_umount() for a description of the
865 * locking
866 */
867static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
868{
869 struct dentry *parent;
870
871 BUG_ON(!IS_ROOT(dentry));
872
c636ebdb
DH
873 for (;;) {
874 /* descend to the first leaf in the current subtree */
43c1c9cd 875 while (!list_empty(&dentry->d_subdirs))
c636ebdb
DH
876 dentry = list_entry(dentry->d_subdirs.next,
877 struct dentry, d_u.d_child);
c636ebdb
DH
878
879 /* consume the dentries from this leaf up through its parents
880 * until we find one with children or run out altogether */
881 do {
882 struct inode *inode;
883
f0023bc6
SW
884 /*
885 * remove the dentry from the lru, and inform
886 * the fs that this dentry is about to be
887 * unhashed and destroyed.
888 */
889 dentry_lru_prune(dentry);
43c1c9cd
DH
890 __d_shrink(dentry);
891
b7ab39f6 892 if (dentry->d_count != 0) {
c636ebdb
DH
893 printk(KERN_ERR
894 "BUG: Dentry %p{i=%lx,n=%s}"
895 " still in use (%d)"
896 " [unmount of %s %s]\n",
897 dentry,
898 dentry->d_inode ?
899 dentry->d_inode->i_ino : 0UL,
900 dentry->d_name.name,
b7ab39f6 901 dentry->d_count,
c636ebdb
DH
902 dentry->d_sb->s_type->name,
903 dentry->d_sb->s_id);
904 BUG();
905 }
906
2fd6b7f5 907 if (IS_ROOT(dentry)) {
c636ebdb 908 parent = NULL;
2fd6b7f5
NP
909 list_del(&dentry->d_u.d_child);
910 } else {
871c0067 911 parent = dentry->d_parent;
b7ab39f6 912 parent->d_count--;
2fd6b7f5 913 list_del(&dentry->d_u.d_child);
871c0067 914 }
c636ebdb 915
c636ebdb
DH
916 inode = dentry->d_inode;
917 if (inode) {
918 dentry->d_inode = NULL;
919 list_del_init(&dentry->d_alias);
920 if (dentry->d_op && dentry->d_op->d_iput)
921 dentry->d_op->d_iput(dentry, inode);
922 else
923 iput(inode);
924 }
925
926 d_free(dentry);
927
928 /* finished when we fall off the top of the tree,
929 * otherwise we ascend to the parent and move to the
930 * next sibling if there is one */
931 if (!parent)
312d3ca8 932 return;
c636ebdb 933 dentry = parent;
c636ebdb
DH
934 } while (list_empty(&dentry->d_subdirs));
935
936 dentry = list_entry(dentry->d_subdirs.next,
937 struct dentry, d_u.d_child);
938 }
939}
940
941/*
942 * destroy the dentries attached to a superblock on unmounting
b5c84bf6 943 * - we don't need to use dentry->d_lock because:
c636ebdb
DH
944 * - the superblock is detached from all mountings and open files, so the
945 * dentry trees will not be rearranged by the VFS
946 * - s_umount is write-locked, so the memory pressure shrinker will ignore
947 * any dentries belonging to this superblock that it comes across
948 * - the filesystem itself is no longer permitted to rearrange the dentries
949 * in this superblock
950 */
951void shrink_dcache_for_umount(struct super_block *sb)
952{
953 struct dentry *dentry;
954
955 if (down_read_trylock(&sb->s_umount))
956 BUG();
957
958 dentry = sb->s_root;
959 sb->s_root = NULL;
b7ab39f6 960 dentry->d_count--;
c636ebdb
DH
961 shrink_dcache_for_umount_subtree(dentry);
962
ceb5bdc2
NP
963 while (!hlist_bl_empty(&sb->s_anon)) {
964 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
c636ebdb
DH
965 shrink_dcache_for_umount_subtree(dentry);
966 }
967}
968
c826cb7d
LT
969/*
970 * This tries to ascend one level of parenthood, but
971 * we can race with renaming, so we need to re-check
972 * the parenthood after dropping the lock and check
973 * that the sequence number still matches.
974 */
975static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
976{
977 struct dentry *new = old->d_parent;
978
979 rcu_read_lock();
980 spin_unlock(&old->d_lock);
981 spin_lock(&new->d_lock);
982
983 /*
984 * might go back up the wrong parent if we have had a rename
985 * or deletion
986 */
987 if (new != old->d_parent ||
c83ce989 988 (old->d_flags & DCACHE_DISCONNECTED) ||
c826cb7d
LT
989 (!locked && read_seqretry(&rename_lock, seq))) {
990 spin_unlock(&new->d_lock);
991 new = NULL;
992 }
993 rcu_read_unlock();
994 return new;
995}
996
997
1da177e4
LT
998/*
999 * Search for at least 1 mount point in the dentry's subdirs.
1000 * We descend to the next level whenever the d_subdirs
1001 * list is non-empty and continue searching.
1002 */
1003
1004/**
1005 * have_submounts - check for mounts over a dentry
1006 * @parent: dentry to check.
1007 *
1008 * Return true if the parent or its subdirectories contain
1009 * a mount point
1010 */
1da177e4
LT
1011int have_submounts(struct dentry *parent)
1012{
949854d0 1013 struct dentry *this_parent;
1da177e4 1014 struct list_head *next;
949854d0 1015 unsigned seq;
58db63d0 1016 int locked = 0;
949854d0 1017
949854d0 1018 seq = read_seqbegin(&rename_lock);
58db63d0
NP
1019again:
1020 this_parent = parent;
1da177e4 1021
1da177e4
LT
1022 if (d_mountpoint(parent))
1023 goto positive;
2fd6b7f5 1024 spin_lock(&this_parent->d_lock);
1da177e4
LT
1025repeat:
1026 next = this_parent->d_subdirs.next;
1027resume:
1028 while (next != &this_parent->d_subdirs) {
1029 struct list_head *tmp = next;
5160ee6f 1030 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 1031 next = tmp->next;
2fd6b7f5
NP
1032
1033 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1da177e4 1034 /* Have we found a mount point ? */
2fd6b7f5
NP
1035 if (d_mountpoint(dentry)) {
1036 spin_unlock(&dentry->d_lock);
1037 spin_unlock(&this_parent->d_lock);
1da177e4 1038 goto positive;
2fd6b7f5 1039 }
1da177e4 1040 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1041 spin_unlock(&this_parent->d_lock);
1042 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1043 this_parent = dentry;
2fd6b7f5 1044 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1045 goto repeat;
1046 }
2fd6b7f5 1047 spin_unlock(&dentry->d_lock);
1da177e4
LT
1048 }
1049 /*
1050 * All done at this level ... ascend and resume the search.
1051 */
1052 if (this_parent != parent) {
c826cb7d
LT
1053 struct dentry *child = this_parent;
1054 this_parent = try_to_ascend(this_parent, locked, seq);
1055 if (!this_parent)
949854d0 1056 goto rename_retry;
949854d0 1057 next = child->d_u.d_child.next;
1da177e4
LT
1058 goto resume;
1059 }
2fd6b7f5 1060 spin_unlock(&this_parent->d_lock);
58db63d0 1061 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1062 goto rename_retry;
58db63d0
NP
1063 if (locked)
1064 write_sequnlock(&rename_lock);
1da177e4
LT
1065 return 0; /* No mount points found in tree */
1066positive:
58db63d0 1067 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1068 goto rename_retry;
58db63d0
NP
1069 if (locked)
1070 write_sequnlock(&rename_lock);
1da177e4 1071 return 1;
58db63d0
NP
1072
1073rename_retry:
1074 locked = 1;
1075 write_seqlock(&rename_lock);
1076 goto again;
1da177e4 1077}
ec4f8605 1078EXPORT_SYMBOL(have_submounts);
1da177e4
LT
1079
1080/*
1081 * Search the dentry child list for the specified parent,
1082 * and move any unused dentries to the end of the unused
1083 * list for prune_dcache(). We descend to the next level
1084 * whenever the d_subdirs list is non-empty and continue
1085 * searching.
1086 *
1087 * It returns zero iff there are no unused children,
1088 * otherwise it returns the number of children moved to
1089 * the end of the unused list. This may not be the total
1090 * number of unused children, because select_parent can
1091 * drop the lock and return early due to latency
1092 * constraints.
1093 */
1094static int select_parent(struct dentry * parent)
1095{
949854d0 1096 struct dentry *this_parent;
1da177e4 1097 struct list_head *next;
949854d0 1098 unsigned seq;
1da177e4 1099 int found = 0;
58db63d0 1100 int locked = 0;
1da177e4 1101
949854d0 1102 seq = read_seqbegin(&rename_lock);
58db63d0
NP
1103again:
1104 this_parent = parent;
2fd6b7f5 1105 spin_lock(&this_parent->d_lock);
1da177e4
LT
1106repeat:
1107 next = this_parent->d_subdirs.next;
1108resume:
1109 while (next != &this_parent->d_subdirs) {
1110 struct list_head *tmp = next;
5160ee6f 1111 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4
LT
1112 next = tmp->next;
1113
2fd6b7f5 1114 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
23044507 1115
1da177e4
LT
1116 /*
1117 * move only zero ref count dentries to the end
1118 * of the unused list for prune_dcache
1119 */
b7ab39f6 1120 if (!dentry->d_count) {
a4633357 1121 dentry_lru_move_tail(dentry);
1da177e4 1122 found++;
a4633357
CH
1123 } else {
1124 dentry_lru_del(dentry);
1da177e4
LT
1125 }
1126
1127 /*
1128 * We can return to the caller if we have found some (this
1129 * ensures forward progress). We'll be coming back to find
1130 * the rest.
1131 */
2fd6b7f5
NP
1132 if (found && need_resched()) {
1133 spin_unlock(&dentry->d_lock);
1da177e4 1134 goto out;
2fd6b7f5 1135 }
1da177e4
LT
1136
1137 /*
1138 * Descend a level if the d_subdirs list is non-empty.
1139 */
1140 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1141 spin_unlock(&this_parent->d_lock);
1142 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1143 this_parent = dentry;
2fd6b7f5 1144 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1145 goto repeat;
1146 }
2fd6b7f5
NP
1147
1148 spin_unlock(&dentry->d_lock);
1da177e4
LT
1149 }
1150 /*
1151 * All done at this level ... ascend and resume the search.
1152 */
1153 if (this_parent != parent) {
c826cb7d
LT
1154 struct dentry *child = this_parent;
1155 this_parent = try_to_ascend(this_parent, locked, seq);
1156 if (!this_parent)
949854d0 1157 goto rename_retry;
949854d0 1158 next = child->d_u.d_child.next;
1da177e4
LT
1159 goto resume;
1160 }
1161out:
2fd6b7f5 1162 spin_unlock(&this_parent->d_lock);
58db63d0 1163 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1164 goto rename_retry;
58db63d0
NP
1165 if (locked)
1166 write_sequnlock(&rename_lock);
1da177e4 1167 return found;
58db63d0
NP
1168
1169rename_retry:
1170 if (found)
1171 return found;
1172 locked = 1;
1173 write_seqlock(&rename_lock);
1174 goto again;
1da177e4
LT
1175}
1176
1177/**
1178 * shrink_dcache_parent - prune dcache
1179 * @parent: parent of entries to prune
1180 *
1181 * Prune the dcache to remove unused children of the parent dentry.
1182 */
1183
1184void shrink_dcache_parent(struct dentry * parent)
1185{
da3bbdd4 1186 struct super_block *sb = parent->d_sb;
1da177e4
LT
1187 int found;
1188
1189 while ((found = select_parent(parent)) != 0)
b0d40c92 1190 __shrink_dcache_sb(sb, found, 0);
1da177e4 1191}
ec4f8605 1192EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1193
1da177e4 1194/**
a4464dbc
AV
1195 * __d_alloc - allocate a dcache entry
1196 * @sb: filesystem it will belong to
1da177e4
LT
1197 * @name: qstr of the name
1198 *
1199 * Allocates a dentry. It returns %NULL if there is insufficient memory
1200 * available. On a success the dentry is returned. The name passed in is
1201 * copied and the copy passed in may be reused after this call.
1202 */
1203
a4464dbc 1204struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1205{
1206 struct dentry *dentry;
1207 char *dname;
1208
e12ba74d 1209 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1210 if (!dentry)
1211 return NULL;
1212
1213 if (name->len > DNAME_INLINE_LEN-1) {
1214 dname = kmalloc(name->len + 1, GFP_KERNEL);
1215 if (!dname) {
1216 kmem_cache_free(dentry_cache, dentry);
1217 return NULL;
1218 }
1219 } else {
1220 dname = dentry->d_iname;
1221 }
1222 dentry->d_name.name = dname;
1223
1224 dentry->d_name.len = name->len;
1225 dentry->d_name.hash = name->hash;
1226 memcpy(dname, name->name, name->len);
1227 dname[name->len] = 0;
1228
b7ab39f6 1229 dentry->d_count = 1;
dea3667b 1230 dentry->d_flags = 0;
1da177e4 1231 spin_lock_init(&dentry->d_lock);
31e6b01f 1232 seqcount_init(&dentry->d_seq);
1da177e4 1233 dentry->d_inode = NULL;
a4464dbc
AV
1234 dentry->d_parent = dentry;
1235 dentry->d_sb = sb;
1da177e4
LT
1236 dentry->d_op = NULL;
1237 dentry->d_fsdata = NULL;
ceb5bdc2 1238 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1239 INIT_LIST_HEAD(&dentry->d_lru);
1240 INIT_LIST_HEAD(&dentry->d_subdirs);
1241 INIT_LIST_HEAD(&dentry->d_alias);
2fd6b7f5 1242 INIT_LIST_HEAD(&dentry->d_u.d_child);
a4464dbc 1243 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1244
3e880fb5 1245 this_cpu_inc(nr_dentry);
312d3ca8 1246
1da177e4
LT
1247 return dentry;
1248}
a4464dbc
AV
1249
1250/**
1251 * d_alloc - allocate a dcache entry
1252 * @parent: parent of entry to allocate
1253 * @name: qstr of the name
1254 *
1255 * Allocates a dentry. It returns %NULL if there is insufficient memory
1256 * available. On a success the dentry is returned. The name passed in is
1257 * copied and the copy passed in may be reused after this call.
1258 */
1259struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1260{
1261 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1262 if (!dentry)
1263 return NULL;
1264
1265 spin_lock(&parent->d_lock);
1266 /*
1267 * don't need child lock because it is not subject
1268 * to concurrency here
1269 */
1270 __dget_dlock(parent);
1271 dentry->d_parent = parent;
1272 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1273 spin_unlock(&parent->d_lock);
1274
1275 return dentry;
1276}
ec4f8605 1277EXPORT_SYMBOL(d_alloc);
1da177e4 1278
4b936885
NP
1279struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1280{
a4464dbc
AV
1281 struct dentry *dentry = __d_alloc(sb, name);
1282 if (dentry)
4b936885 1283 dentry->d_flags |= DCACHE_DISCONNECTED;
4b936885
NP
1284 return dentry;
1285}
1286EXPORT_SYMBOL(d_alloc_pseudo);
1287
1da177e4
LT
1288struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1289{
1290 struct qstr q;
1291
1292 q.name = name;
1293 q.len = strlen(name);
1294 q.hash = full_name_hash(q.name, q.len);
1295 return d_alloc(parent, &q);
1296}
ef26ca97 1297EXPORT_SYMBOL(d_alloc_name);
1da177e4 1298
fb045adb
NP
1299void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1300{
6f7f7caa
LT
1301 WARN_ON_ONCE(dentry->d_op);
1302 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1303 DCACHE_OP_COMPARE |
1304 DCACHE_OP_REVALIDATE |
1305 DCACHE_OP_DELETE ));
1306 dentry->d_op = op;
1307 if (!op)
1308 return;
1309 if (op->d_hash)
1310 dentry->d_flags |= DCACHE_OP_HASH;
1311 if (op->d_compare)
1312 dentry->d_flags |= DCACHE_OP_COMPARE;
1313 if (op->d_revalidate)
1314 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1315 if (op->d_delete)
1316 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1317 if (op->d_prune)
1318 dentry->d_flags |= DCACHE_OP_PRUNE;
fb045adb
NP
1319
1320}
1321EXPORT_SYMBOL(d_set_d_op);
1322
360da900
OH
1323static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1324{
b23fb0a6 1325 spin_lock(&dentry->d_lock);
9875cf80
DH
1326 if (inode) {
1327 if (unlikely(IS_AUTOMOUNT(inode)))
1328 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
360da900 1329 list_add(&dentry->d_alias, &inode->i_dentry);
9875cf80 1330 }
360da900 1331 dentry->d_inode = inode;
31e6b01f 1332 dentry_rcuwalk_barrier(dentry);
b23fb0a6 1333 spin_unlock(&dentry->d_lock);
360da900
OH
1334 fsnotify_d_instantiate(dentry, inode);
1335}
1336
1da177e4
LT
1337/**
1338 * d_instantiate - fill in inode information for a dentry
1339 * @entry: dentry to complete
1340 * @inode: inode to attach to this dentry
1341 *
1342 * Fill in inode information in the entry.
1343 *
1344 * This turns negative dentries into productive full members
1345 * of society.
1346 *
1347 * NOTE! This assumes that the inode count has been incremented
1348 * (or otherwise set) by the caller to indicate that it is now
1349 * in use by the dcache.
1350 */
1351
1352void d_instantiate(struct dentry *entry, struct inode * inode)
1353{
28133c7b 1354 BUG_ON(!list_empty(&entry->d_alias));
873feea0
NP
1355 if (inode)
1356 spin_lock(&inode->i_lock);
360da900 1357 __d_instantiate(entry, inode);
873feea0
NP
1358 if (inode)
1359 spin_unlock(&inode->i_lock);
1da177e4
LT
1360 security_d_instantiate(entry, inode);
1361}
ec4f8605 1362EXPORT_SYMBOL(d_instantiate);
1da177e4
LT
1363
1364/**
1365 * d_instantiate_unique - instantiate a non-aliased dentry
1366 * @entry: dentry to instantiate
1367 * @inode: inode to attach to this dentry
1368 *
1369 * Fill in inode information in the entry. On success, it returns NULL.
1370 * If an unhashed alias of "entry" already exists, then we return the
e866cfa9 1371 * aliased dentry instead and drop one reference to inode.
1da177e4
LT
1372 *
1373 * Note that in order to avoid conflicts with rename() etc, the caller
1374 * had better be holding the parent directory semaphore.
e866cfa9
OD
1375 *
1376 * This also assumes that the inode count has been incremented
1377 * (or otherwise set) by the caller to indicate that it is now
1378 * in use by the dcache.
1da177e4 1379 */
770bfad8
DH
1380static struct dentry *__d_instantiate_unique(struct dentry *entry,
1381 struct inode *inode)
1da177e4
LT
1382{
1383 struct dentry *alias;
1384 int len = entry->d_name.len;
1385 const char *name = entry->d_name.name;
1386 unsigned int hash = entry->d_name.hash;
1387
770bfad8 1388 if (!inode) {
360da900 1389 __d_instantiate(entry, NULL);
770bfad8
DH
1390 return NULL;
1391 }
1392
1da177e4
LT
1393 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1394 struct qstr *qstr = &alias->d_name;
1395
9abca360
NP
1396 /*
1397 * Don't need alias->d_lock here, because aliases with
1398 * d_parent == entry->d_parent are not subject to name or
1399 * parent changes, because the parent inode i_mutex is held.
1400 */
1da177e4
LT
1401 if (qstr->hash != hash)
1402 continue;
1403 if (alias->d_parent != entry->d_parent)
1404 continue;
9d55c369 1405 if (dentry_cmp(qstr->name, qstr->len, name, len))
1da177e4 1406 continue;
dc0474be 1407 __dget(alias);
1da177e4
LT
1408 return alias;
1409 }
770bfad8 1410
360da900 1411 __d_instantiate(entry, inode);
1da177e4
LT
1412 return NULL;
1413}
770bfad8
DH
1414
1415struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1416{
1417 struct dentry *result;
1418
1419 BUG_ON(!list_empty(&entry->d_alias));
1420
873feea0
NP
1421 if (inode)
1422 spin_lock(&inode->i_lock);
770bfad8 1423 result = __d_instantiate_unique(entry, inode);
873feea0
NP
1424 if (inode)
1425 spin_unlock(&inode->i_lock);
770bfad8
DH
1426
1427 if (!result) {
1428 security_d_instantiate(entry, inode);
1429 return NULL;
1430 }
1431
1432 BUG_ON(!d_unhashed(result));
1433 iput(inode);
1434 return result;
1435}
1436
1da177e4
LT
1437EXPORT_SYMBOL(d_instantiate_unique);
1438
1439/**
1440 * d_alloc_root - allocate root dentry
1441 * @root_inode: inode to allocate the root for
1442 *
1443 * Allocate a root ("/") dentry for the inode given. The inode is
1444 * instantiated and returned. %NULL is returned if there is insufficient
1445 * memory or the inode passed is %NULL.
1446 */
1447
1448struct dentry * d_alloc_root(struct inode * root_inode)
1449{
1450 struct dentry *res = NULL;
1451
1452 if (root_inode) {
1453 static const struct qstr name = { .name = "/", .len = 1 };
1454
a4464dbc
AV
1455 res = __d_alloc(root_inode->i_sb, &name);
1456 if (res)
1da177e4 1457 d_instantiate(res, root_inode);
1da177e4
LT
1458 }
1459 return res;
1460}
ec4f8605 1461EXPORT_SYMBOL(d_alloc_root);
1da177e4 1462
d891eedb
BF
1463static struct dentry * __d_find_any_alias(struct inode *inode)
1464{
1465 struct dentry *alias;
1466
1467 if (list_empty(&inode->i_dentry))
1468 return NULL;
1469 alias = list_first_entry(&inode->i_dentry, struct dentry, d_alias);
1470 __dget(alias);
1471 return alias;
1472}
1473
46f72b34
SW
1474/**
1475 * d_find_any_alias - find any alias for a given inode
1476 * @inode: inode to find an alias for
1477 *
1478 * If any aliases exist for the given inode, take and return a
1479 * reference for one of them. If no aliases exist, return %NULL.
1480 */
1481struct dentry *d_find_any_alias(struct inode *inode)
d891eedb
BF
1482{
1483 struct dentry *de;
1484
1485 spin_lock(&inode->i_lock);
1486 de = __d_find_any_alias(inode);
1487 spin_unlock(&inode->i_lock);
1488 return de;
1489}
46f72b34 1490EXPORT_SYMBOL(d_find_any_alias);
d891eedb 1491
4ea3ada2
CH
1492/**
1493 * d_obtain_alias - find or allocate a dentry for a given inode
1494 * @inode: inode to allocate the dentry for
1495 *
1496 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1497 * similar open by handle operations. The returned dentry may be anonymous,
1498 * or may have a full name (if the inode was already in the cache).
1499 *
1500 * When called on a directory inode, we must ensure that the inode only ever
1501 * has one dentry. If a dentry is found, that is returned instead of
1502 * allocating a new one.
1503 *
1504 * On successful return, the reference to the inode has been transferred
44003728
CH
1505 * to the dentry. In case of an error the reference on the inode is released.
1506 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1507 * be passed in and will be the error will be propagate to the return value,
1508 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
4ea3ada2
CH
1509 */
1510struct dentry *d_obtain_alias(struct inode *inode)
1511{
9308a612
CH
1512 static const struct qstr anonstring = { .name = "" };
1513 struct dentry *tmp;
1514 struct dentry *res;
4ea3ada2
CH
1515
1516 if (!inode)
44003728 1517 return ERR_PTR(-ESTALE);
4ea3ada2
CH
1518 if (IS_ERR(inode))
1519 return ERR_CAST(inode);
1520
d891eedb 1521 res = d_find_any_alias(inode);
9308a612
CH
1522 if (res)
1523 goto out_iput;
1524
a4464dbc 1525 tmp = __d_alloc(inode->i_sb, &anonstring);
9308a612
CH
1526 if (!tmp) {
1527 res = ERR_PTR(-ENOMEM);
1528 goto out_iput;
4ea3ada2 1529 }
b5c84bf6 1530
873feea0 1531 spin_lock(&inode->i_lock);
d891eedb 1532 res = __d_find_any_alias(inode);
9308a612 1533 if (res) {
873feea0 1534 spin_unlock(&inode->i_lock);
9308a612
CH
1535 dput(tmp);
1536 goto out_iput;
1537 }
1538
1539 /* attach a disconnected dentry */
1540 spin_lock(&tmp->d_lock);
9308a612
CH
1541 tmp->d_inode = inode;
1542 tmp->d_flags |= DCACHE_DISCONNECTED;
9308a612 1543 list_add(&tmp->d_alias, &inode->i_dentry);
1879fd6a 1544 hlist_bl_lock(&tmp->d_sb->s_anon);
ceb5bdc2 1545 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1879fd6a 1546 hlist_bl_unlock(&tmp->d_sb->s_anon);
9308a612 1547 spin_unlock(&tmp->d_lock);
873feea0 1548 spin_unlock(&inode->i_lock);
24ff6663 1549 security_d_instantiate(tmp, inode);
9308a612 1550
9308a612
CH
1551 return tmp;
1552
1553 out_iput:
24ff6663
JB
1554 if (res && !IS_ERR(res))
1555 security_d_instantiate(res, inode);
9308a612
CH
1556 iput(inode);
1557 return res;
4ea3ada2 1558}
adc48720 1559EXPORT_SYMBOL(d_obtain_alias);
1da177e4
LT
1560
1561/**
1562 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1563 * @inode: the inode which may have a disconnected dentry
1564 * @dentry: a negative dentry which we want to point to the inode.
1565 *
1566 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1567 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1568 * and return it, else simply d_add the inode to the dentry and return NULL.
1569 *
1570 * This is needed in the lookup routine of any filesystem that is exportable
1571 * (via knfsd) so that we can build dcache paths to directories effectively.
1572 *
1573 * If a dentry was found and moved, then it is returned. Otherwise NULL
1574 * is returned. This matches the expected return value of ->lookup.
1575 *
1576 */
1577struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1578{
1579 struct dentry *new = NULL;
1580
a9049376
AV
1581 if (IS_ERR(inode))
1582 return ERR_CAST(inode);
1583
21c0d8fd 1584 if (inode && S_ISDIR(inode->i_mode)) {
873feea0 1585 spin_lock(&inode->i_lock);
1da177e4
LT
1586 new = __d_find_alias(inode, 1);
1587 if (new) {
1588 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
873feea0 1589 spin_unlock(&inode->i_lock);
1da177e4 1590 security_d_instantiate(new, inode);
1da177e4
LT
1591 d_move(new, dentry);
1592 iput(inode);
1593 } else {
873feea0 1594 /* already taking inode->i_lock, so d_add() by hand */
360da900 1595 __d_instantiate(dentry, inode);
873feea0 1596 spin_unlock(&inode->i_lock);
1da177e4
LT
1597 security_d_instantiate(dentry, inode);
1598 d_rehash(dentry);
1599 }
1600 } else
1601 d_add(dentry, inode);
1602 return new;
1603}
ec4f8605 1604EXPORT_SYMBOL(d_splice_alias);
1da177e4 1605
9403540c
BN
1606/**
1607 * d_add_ci - lookup or allocate new dentry with case-exact name
1608 * @inode: the inode case-insensitive lookup has found
1609 * @dentry: the negative dentry that was passed to the parent's lookup func
1610 * @name: the case-exact name to be associated with the returned dentry
1611 *
1612 * This is to avoid filling the dcache with case-insensitive names to the
1613 * same inode, only the actual correct case is stored in the dcache for
1614 * case-insensitive filesystems.
1615 *
1616 * For a case-insensitive lookup match and if the the case-exact dentry
1617 * already exists in in the dcache, use it and return it.
1618 *
1619 * If no entry exists with the exact case name, allocate new dentry with
1620 * the exact case, and return the spliced entry.
1621 */
e45b590b 1622struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
1623 struct qstr *name)
1624{
1625 int error;
1626 struct dentry *found;
1627 struct dentry *new;
1628
b6520c81
CH
1629 /*
1630 * First check if a dentry matching the name already exists,
1631 * if not go ahead and create it now.
1632 */
9403540c 1633 found = d_hash_and_lookup(dentry->d_parent, name);
9403540c
BN
1634 if (!found) {
1635 new = d_alloc(dentry->d_parent, name);
1636 if (!new) {
1637 error = -ENOMEM;
1638 goto err_out;
1639 }
b6520c81 1640
9403540c
BN
1641 found = d_splice_alias(inode, new);
1642 if (found) {
1643 dput(new);
1644 return found;
1645 }
1646 return new;
1647 }
b6520c81
CH
1648
1649 /*
1650 * If a matching dentry exists, and it's not negative use it.
1651 *
1652 * Decrement the reference count to balance the iget() done
1653 * earlier on.
1654 */
9403540c
BN
1655 if (found->d_inode) {
1656 if (unlikely(found->d_inode != inode)) {
1657 /* This can't happen because bad inodes are unhashed. */
1658 BUG_ON(!is_bad_inode(inode));
1659 BUG_ON(!is_bad_inode(found->d_inode));
1660 }
9403540c
BN
1661 iput(inode);
1662 return found;
1663 }
b6520c81 1664
9403540c 1665 /*
44396f4b
JB
1666 * We are going to instantiate this dentry, unhash it and clear the
1667 * lookup flag so we can do that.
9403540c 1668 */
44396f4b
JB
1669 if (unlikely(d_need_lookup(found)))
1670 d_clear_need_lookup(found);
b6520c81 1671
9403540c 1672 /*
9403540c 1673 * Negative dentry: instantiate it unless the inode is a directory and
b6520c81 1674 * already has a dentry.
9403540c 1675 */
4513d899
AV
1676 new = d_splice_alias(inode, found);
1677 if (new) {
1678 dput(found);
1679 found = new;
9403540c 1680 }
4513d899 1681 return found;
9403540c
BN
1682
1683err_out:
1684 iput(inode);
1685 return ERR_PTR(error);
1686}
ec4f8605 1687EXPORT_SYMBOL(d_add_ci);
1da177e4 1688
31e6b01f
NP
1689/**
1690 * __d_lookup_rcu - search for a dentry (racy, store-free)
1691 * @parent: parent dentry
1692 * @name: qstr of name we wish to find
1693 * @seq: returns d_seq value at the point where the dentry was found
1694 * @inode: returns dentry->d_inode when the inode was found valid.
1695 * Returns: dentry, or NULL
1696 *
1697 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1698 * resolution (store-free path walking) design described in
1699 * Documentation/filesystems/path-lookup.txt.
1700 *
1701 * This is not to be used outside core vfs.
1702 *
1703 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1704 * held, and rcu_read_lock held. The returned dentry must not be stored into
1705 * without taking d_lock and checking d_seq sequence count against @seq
1706 * returned here.
1707 *
1708 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1709 * function.
1710 *
1711 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1712 * the returned dentry, so long as its parent's seqlock is checked after the
1713 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1714 * is formed, giving integrity down the path walk.
1715 */
1716struct dentry *__d_lookup_rcu(struct dentry *parent, struct qstr *name,
1717 unsigned *seq, struct inode **inode)
1718{
1719 unsigned int len = name->len;
1720 unsigned int hash = name->hash;
1721 const unsigned char *str = name->name;
b07ad996 1722 struct hlist_bl_head *b = d_hash(parent, hash);
ceb5bdc2 1723 struct hlist_bl_node *node;
31e6b01f
NP
1724 struct dentry *dentry;
1725
1726 /*
1727 * Note: There is significant duplication with __d_lookup_rcu which is
1728 * required to prevent single threaded performance regressions
1729 * especially on architectures where smp_rmb (in seqcounts) are costly.
1730 * Keep the two functions in sync.
1731 */
1732
1733 /*
1734 * The hash list is protected using RCU.
1735 *
1736 * Carefully use d_seq when comparing a candidate dentry, to avoid
1737 * races with d_move().
1738 *
1739 * It is possible that concurrent renames can mess up our list
1740 * walk here and result in missing our dentry, resulting in the
1741 * false-negative result. d_lookup() protects against concurrent
1742 * renames using rename_lock seqlock.
1743 *
b0a4bb83 1744 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 1745 */
b07ad996 1746 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
31e6b01f
NP
1747 struct inode *i;
1748 const char *tname;
1749 int tlen;
1750
1751 if (dentry->d_name.hash != hash)
1752 continue;
1753
1754seqretry:
1755 *seq = read_seqcount_begin(&dentry->d_seq);
1756 if (dentry->d_parent != parent)
1757 continue;
1758 if (d_unhashed(dentry))
1759 continue;
1760 tlen = dentry->d_name.len;
1761 tname = dentry->d_name.name;
1762 i = dentry->d_inode;
e1bb5782 1763 prefetch(tname);
31e6b01f
NP
1764 /*
1765 * This seqcount check is required to ensure name and
1766 * len are loaded atomically, so as not to walk off the
1767 * edge of memory when walking. If we could load this
1768 * atomically some other way, we could drop this check.
1769 */
1770 if (read_seqcount_retry(&dentry->d_seq, *seq))
1771 goto seqretry;
830c0f0e 1772 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
31e6b01f
NP
1773 if (parent->d_op->d_compare(parent, *inode,
1774 dentry, i,
1775 tlen, tname, name))
1776 continue;
1777 } else {
9d55c369 1778 if (dentry_cmp(tname, tlen, str, len))
31e6b01f
NP
1779 continue;
1780 }
1781 /*
1782 * No extra seqcount check is required after the name
1783 * compare. The caller must perform a seqcount check in
1784 * order to do anything useful with the returned dentry
1785 * anyway.
1786 */
1787 *inode = i;
1788 return dentry;
1789 }
1790 return NULL;
1791}
1792
1da177e4
LT
1793/**
1794 * d_lookup - search for a dentry
1795 * @parent: parent dentry
1796 * @name: qstr of name we wish to find
b04f784e 1797 * Returns: dentry, or NULL
1da177e4 1798 *
b04f784e
NP
1799 * d_lookup searches the children of the parent dentry for the name in
1800 * question. If the dentry is found its reference count is incremented and the
1801 * dentry is returned. The caller must use dput to free the entry when it has
1802 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 1803 */
31e6b01f 1804struct dentry *d_lookup(struct dentry *parent, struct qstr *name)
1da177e4 1805{
31e6b01f 1806 struct dentry *dentry;
949854d0 1807 unsigned seq;
1da177e4
LT
1808
1809 do {
1810 seq = read_seqbegin(&rename_lock);
1811 dentry = __d_lookup(parent, name);
1812 if (dentry)
1813 break;
1814 } while (read_seqretry(&rename_lock, seq));
1815 return dentry;
1816}
ec4f8605 1817EXPORT_SYMBOL(d_lookup);
1da177e4 1818
31e6b01f 1819/**
b04f784e
NP
1820 * __d_lookup - search for a dentry (racy)
1821 * @parent: parent dentry
1822 * @name: qstr of name we wish to find
1823 * Returns: dentry, or NULL
1824 *
1825 * __d_lookup is like d_lookup, however it may (rarely) return a
1826 * false-negative result due to unrelated rename activity.
1827 *
1828 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1829 * however it must be used carefully, eg. with a following d_lookup in
1830 * the case of failure.
1831 *
1832 * __d_lookup callers must be commented.
1833 */
31e6b01f 1834struct dentry *__d_lookup(struct dentry *parent, struct qstr *name)
1da177e4
LT
1835{
1836 unsigned int len = name->len;
1837 unsigned int hash = name->hash;
1838 const unsigned char *str = name->name;
b07ad996 1839 struct hlist_bl_head *b = d_hash(parent, hash);
ceb5bdc2 1840 struct hlist_bl_node *node;
31e6b01f 1841 struct dentry *found = NULL;
665a7583 1842 struct dentry *dentry;
1da177e4 1843
31e6b01f
NP
1844 /*
1845 * Note: There is significant duplication with __d_lookup_rcu which is
1846 * required to prevent single threaded performance regressions
1847 * especially on architectures where smp_rmb (in seqcounts) are costly.
1848 * Keep the two functions in sync.
1849 */
1850
b04f784e
NP
1851 /*
1852 * The hash list is protected using RCU.
1853 *
1854 * Take d_lock when comparing a candidate dentry, to avoid races
1855 * with d_move().
1856 *
1857 * It is possible that concurrent renames can mess up our list
1858 * walk here and result in missing our dentry, resulting in the
1859 * false-negative result. d_lookup() protects against concurrent
1860 * renames using rename_lock seqlock.
1861 *
b0a4bb83 1862 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 1863 */
1da177e4
LT
1864 rcu_read_lock();
1865
b07ad996 1866 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
31e6b01f
NP
1867 const char *tname;
1868 int tlen;
1da177e4 1869
1da177e4
LT
1870 if (dentry->d_name.hash != hash)
1871 continue;
1da177e4
LT
1872
1873 spin_lock(&dentry->d_lock);
1da177e4
LT
1874 if (dentry->d_parent != parent)
1875 goto next;
d0185c08
LT
1876 if (d_unhashed(dentry))
1877 goto next;
1878
1da177e4
LT
1879 /*
1880 * It is safe to compare names since d_move() cannot
1881 * change the qstr (protected by d_lock).
1882 */
31e6b01f
NP
1883 tlen = dentry->d_name.len;
1884 tname = dentry->d_name.name;
fb045adb 1885 if (parent->d_flags & DCACHE_OP_COMPARE) {
621e155a
NP
1886 if (parent->d_op->d_compare(parent, parent->d_inode,
1887 dentry, dentry->d_inode,
31e6b01f 1888 tlen, tname, name))
1da177e4
LT
1889 goto next;
1890 } else {
9d55c369 1891 if (dentry_cmp(tname, tlen, str, len))
1da177e4
LT
1892 goto next;
1893 }
1894
b7ab39f6 1895 dentry->d_count++;
d0185c08 1896 found = dentry;
1da177e4
LT
1897 spin_unlock(&dentry->d_lock);
1898 break;
1899next:
1900 spin_unlock(&dentry->d_lock);
1901 }
1902 rcu_read_unlock();
1903
1904 return found;
1905}
1906
3e7e241f
EB
1907/**
1908 * d_hash_and_lookup - hash the qstr then search for a dentry
1909 * @dir: Directory to search in
1910 * @name: qstr of name we wish to find
1911 *
1912 * On hash failure or on lookup failure NULL is returned.
1913 */
1914struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1915{
1916 struct dentry *dentry = NULL;
1917
1918 /*
1919 * Check for a fs-specific hash function. Note that we must
1920 * calculate the standard hash first, as the d_op->d_hash()
1921 * routine may choose to leave the hash value unchanged.
1922 */
1923 name->hash = full_name_hash(name->name, name->len);
fb045adb 1924 if (dir->d_flags & DCACHE_OP_HASH) {
b1e6a015 1925 if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
3e7e241f
EB
1926 goto out;
1927 }
1928 dentry = d_lookup(dir, name);
1929out:
1930 return dentry;
1931}
1932
1da177e4 1933/**
786a5e15 1934 * d_validate - verify dentry provided from insecure source (deprecated)
1da177e4 1935 * @dentry: The dentry alleged to be valid child of @dparent
ff5fdb61 1936 * @dparent: The parent dentry (known to be valid)
1da177e4
LT
1937 *
1938 * An insecure source has sent us a dentry, here we verify it and dget() it.
1939 * This is used by ncpfs in its readdir implementation.
1940 * Zero is returned in the dentry is invalid.
786a5e15
NP
1941 *
1942 * This function is slow for big directories, and deprecated, do not use it.
1da177e4 1943 */
d3a23e16 1944int d_validate(struct dentry *dentry, struct dentry *dparent)
1da177e4 1945{
786a5e15 1946 struct dentry *child;
d3a23e16 1947
2fd6b7f5 1948 spin_lock(&dparent->d_lock);
786a5e15
NP
1949 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
1950 if (dentry == child) {
2fd6b7f5 1951 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
dc0474be 1952 __dget_dlock(dentry);
2fd6b7f5
NP
1953 spin_unlock(&dentry->d_lock);
1954 spin_unlock(&dparent->d_lock);
1da177e4
LT
1955 return 1;
1956 }
1957 }
2fd6b7f5 1958 spin_unlock(&dparent->d_lock);
786a5e15 1959
1da177e4
LT
1960 return 0;
1961}
ec4f8605 1962EXPORT_SYMBOL(d_validate);
1da177e4
LT
1963
1964/*
1965 * When a file is deleted, we have two options:
1966 * - turn this dentry into a negative dentry
1967 * - unhash this dentry and free it.
1968 *
1969 * Usually, we want to just turn this into
1970 * a negative dentry, but if anybody else is
1971 * currently using the dentry or the inode
1972 * we can't do that and we fall back on removing
1973 * it from the hash queues and waiting for
1974 * it to be deleted later when it has no users
1975 */
1976
1977/**
1978 * d_delete - delete a dentry
1979 * @dentry: The dentry to delete
1980 *
1981 * Turn the dentry into a negative dentry if possible, otherwise
1982 * remove it from the hash queues so it can be deleted later
1983 */
1984
1985void d_delete(struct dentry * dentry)
1986{
873feea0 1987 struct inode *inode;
7a91bf7f 1988 int isdir = 0;
1da177e4
LT
1989 /*
1990 * Are we the only user?
1991 */
357f8e65 1992again:
1da177e4 1993 spin_lock(&dentry->d_lock);
873feea0
NP
1994 inode = dentry->d_inode;
1995 isdir = S_ISDIR(inode->i_mode);
b7ab39f6 1996 if (dentry->d_count == 1) {
873feea0 1997 if (inode && !spin_trylock(&inode->i_lock)) {
357f8e65
NP
1998 spin_unlock(&dentry->d_lock);
1999 cpu_relax();
2000 goto again;
2001 }
13e3c5e5 2002 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2003 dentry_unlink_inode(dentry);
7a91bf7f 2004 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
2005 return;
2006 }
2007
2008 if (!d_unhashed(dentry))
2009 __d_drop(dentry);
2010
2011 spin_unlock(&dentry->d_lock);
7a91bf7f
JM
2012
2013 fsnotify_nameremove(dentry, isdir);
1da177e4 2014}
ec4f8605 2015EXPORT_SYMBOL(d_delete);
1da177e4 2016
b07ad996 2017static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
1da177e4 2018{
ceb5bdc2 2019 BUG_ON(!d_unhashed(entry));
1879fd6a 2020 hlist_bl_lock(b);
dea3667b 2021 entry->d_flags |= DCACHE_RCUACCESS;
b07ad996 2022 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2023 hlist_bl_unlock(b);
1da177e4
LT
2024}
2025
770bfad8
DH
2026static void _d_rehash(struct dentry * entry)
2027{
2028 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2029}
2030
1da177e4
LT
2031/**
2032 * d_rehash - add an entry back to the hash
2033 * @entry: dentry to add to the hash
2034 *
2035 * Adds a dentry to the hash according to its name.
2036 */
2037
2038void d_rehash(struct dentry * entry)
2039{
1da177e4 2040 spin_lock(&entry->d_lock);
770bfad8 2041 _d_rehash(entry);
1da177e4 2042 spin_unlock(&entry->d_lock);
1da177e4 2043}
ec4f8605 2044EXPORT_SYMBOL(d_rehash);
1da177e4 2045
fb2d5b86
NP
2046/**
2047 * dentry_update_name_case - update case insensitive dentry with a new name
2048 * @dentry: dentry to be updated
2049 * @name: new name
2050 *
2051 * Update a case insensitive dentry with new case of name.
2052 *
2053 * dentry must have been returned by d_lookup with name @name. Old and new
2054 * name lengths must match (ie. no d_compare which allows mismatched name
2055 * lengths).
2056 *
2057 * Parent inode i_mutex must be held over d_lookup and into this call (to
2058 * keep renames and concurrent inserts, and readdir(2) away).
2059 */
2060void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2061{
7ebfa57f 2062 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
fb2d5b86
NP
2063 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2064
fb2d5b86 2065 spin_lock(&dentry->d_lock);
31e6b01f 2066 write_seqcount_begin(&dentry->d_seq);
fb2d5b86 2067 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
31e6b01f 2068 write_seqcount_end(&dentry->d_seq);
fb2d5b86 2069 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
2070}
2071EXPORT_SYMBOL(dentry_update_name_case);
2072
1da177e4
LT
2073static void switch_names(struct dentry *dentry, struct dentry *target)
2074{
2075 if (dname_external(target)) {
2076 if (dname_external(dentry)) {
2077 /*
2078 * Both external: swap the pointers
2079 */
9a8d5bb4 2080 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2081 } else {
2082 /*
2083 * dentry:internal, target:external. Steal target's
2084 * storage and make target internal.
2085 */
321bcf92
BF
2086 memcpy(target->d_iname, dentry->d_name.name,
2087 dentry->d_name.len + 1);
1da177e4
LT
2088 dentry->d_name.name = target->d_name.name;
2089 target->d_name.name = target->d_iname;
2090 }
2091 } else {
2092 if (dname_external(dentry)) {
2093 /*
2094 * dentry:external, target:internal. Give dentry's
2095 * storage to target and make dentry internal
2096 */
2097 memcpy(dentry->d_iname, target->d_name.name,
2098 target->d_name.len + 1);
2099 target->d_name.name = dentry->d_name.name;
2100 dentry->d_name.name = dentry->d_iname;
2101 } else {
2102 /*
2103 * Both are internal. Just copy target to dentry
2104 */
2105 memcpy(dentry->d_iname, target->d_name.name,
2106 target->d_name.len + 1);
dc711ca3
AV
2107 dentry->d_name.len = target->d_name.len;
2108 return;
1da177e4
LT
2109 }
2110 }
9a8d5bb4 2111 swap(dentry->d_name.len, target->d_name.len);
1da177e4
LT
2112}
2113
2fd6b7f5
NP
2114static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2115{
2116 /*
2117 * XXXX: do we really need to take target->d_lock?
2118 */
2119 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2120 spin_lock(&target->d_parent->d_lock);
2121 else {
2122 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2123 spin_lock(&dentry->d_parent->d_lock);
2124 spin_lock_nested(&target->d_parent->d_lock,
2125 DENTRY_D_LOCK_NESTED);
2126 } else {
2127 spin_lock(&target->d_parent->d_lock);
2128 spin_lock_nested(&dentry->d_parent->d_lock,
2129 DENTRY_D_LOCK_NESTED);
2130 }
2131 }
2132 if (target < dentry) {
2133 spin_lock_nested(&target->d_lock, 2);
2134 spin_lock_nested(&dentry->d_lock, 3);
2135 } else {
2136 spin_lock_nested(&dentry->d_lock, 2);
2137 spin_lock_nested(&target->d_lock, 3);
2138 }
2139}
2140
2141static void dentry_unlock_parents_for_move(struct dentry *dentry,
2142 struct dentry *target)
2143{
2144 if (target->d_parent != dentry->d_parent)
2145 spin_unlock(&dentry->d_parent->d_lock);
2146 if (target->d_parent != target)
2147 spin_unlock(&target->d_parent->d_lock);
2148}
2149
1da177e4 2150/*
2fd6b7f5
NP
2151 * When switching names, the actual string doesn't strictly have to
2152 * be preserved in the target - because we're dropping the target
2153 * anyway. As such, we can just do a simple memcpy() to copy over
2154 * the new name before we switch.
2155 *
2156 * Note that we have to be a lot more careful about getting the hash
2157 * switched - we have to switch the hash value properly even if it
2158 * then no longer matches the actual (corrupted) string of the target.
2159 * The hash value has to match the hash queue that the dentry is on..
1da177e4 2160 */
9eaef27b 2161/*
18367501 2162 * __d_move - move a dentry
1da177e4
LT
2163 * @dentry: entry to move
2164 * @target: new dentry
2165 *
2166 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2167 * dcache entries should not be moved in this way. Caller must hold
2168 * rename_lock, the i_mutex of the source and target directories,
2169 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2170 */
18367501 2171static void __d_move(struct dentry * dentry, struct dentry * target)
1da177e4 2172{
1da177e4
LT
2173 if (!dentry->d_inode)
2174 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2175
2fd6b7f5
NP
2176 BUG_ON(d_ancestor(dentry, target));
2177 BUG_ON(d_ancestor(target, dentry));
2178
2fd6b7f5 2179 dentry_lock_for_move(dentry, target);
1da177e4 2180
31e6b01f
NP
2181 write_seqcount_begin(&dentry->d_seq);
2182 write_seqcount_begin(&target->d_seq);
2183
ceb5bdc2
NP
2184 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2185
2186 /*
2187 * Move the dentry to the target hash queue. Don't bother checking
2188 * for the same hash queue because of how unlikely it is.
2189 */
2190 __d_drop(dentry);
789680d1 2191 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
1da177e4
LT
2192
2193 /* Unhash the target: dput() will then get rid of it */
2194 __d_drop(target);
2195
5160ee6f
ED
2196 list_del(&dentry->d_u.d_child);
2197 list_del(&target->d_u.d_child);
1da177e4
LT
2198
2199 /* Switch the names.. */
2200 switch_names(dentry, target);
9a8d5bb4 2201 swap(dentry->d_name.hash, target->d_name.hash);
1da177e4
LT
2202
2203 /* ... and switch the parents */
2204 if (IS_ROOT(dentry)) {
2205 dentry->d_parent = target->d_parent;
2206 target->d_parent = target;
5160ee6f 2207 INIT_LIST_HEAD(&target->d_u.d_child);
1da177e4 2208 } else {
9a8d5bb4 2209 swap(dentry->d_parent, target->d_parent);
1da177e4
LT
2210
2211 /* And add them back to the (new) parent lists */
5160ee6f 2212 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1da177e4
LT
2213 }
2214
5160ee6f 2215 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2fd6b7f5 2216
31e6b01f
NP
2217 write_seqcount_end(&target->d_seq);
2218 write_seqcount_end(&dentry->d_seq);
2219
2fd6b7f5 2220 dentry_unlock_parents_for_move(dentry, target);
1da177e4 2221 spin_unlock(&target->d_lock);
c32ccd87 2222 fsnotify_d_move(dentry);
1da177e4 2223 spin_unlock(&dentry->d_lock);
18367501
AV
2224}
2225
2226/*
2227 * d_move - move a dentry
2228 * @dentry: entry to move
2229 * @target: new dentry
2230 *
2231 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2232 * dcache entries should not be moved in this way. See the locking
2233 * requirements for __d_move.
18367501
AV
2234 */
2235void d_move(struct dentry *dentry, struct dentry *target)
2236{
2237 write_seqlock(&rename_lock);
2238 __d_move(dentry, target);
1da177e4 2239 write_sequnlock(&rename_lock);
9eaef27b 2240}
ec4f8605 2241EXPORT_SYMBOL(d_move);
1da177e4 2242
e2761a11
OH
2243/**
2244 * d_ancestor - search for an ancestor
2245 * @p1: ancestor dentry
2246 * @p2: child dentry
2247 *
2248 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2249 * an ancestor of p2, else NULL.
9eaef27b 2250 */
e2761a11 2251struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2252{
2253 struct dentry *p;
2254
871c0067 2255 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2256 if (p->d_parent == p1)
e2761a11 2257 return p;
9eaef27b 2258 }
e2761a11 2259 return NULL;
9eaef27b
TM
2260}
2261
2262/*
2263 * This helper attempts to cope with remotely renamed directories
2264 *
2265 * It assumes that the caller is already holding
18367501 2266 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
9eaef27b
TM
2267 *
2268 * Note: If ever the locking in lock_rename() changes, then please
2269 * remember to update this too...
9eaef27b 2270 */
873feea0
NP
2271static struct dentry *__d_unalias(struct inode *inode,
2272 struct dentry *dentry, struct dentry *alias)
9eaef27b
TM
2273{
2274 struct mutex *m1 = NULL, *m2 = NULL;
2275 struct dentry *ret;
2276
2277 /* If alias and dentry share a parent, then no extra locks required */
2278 if (alias->d_parent == dentry->d_parent)
2279 goto out_unalias;
2280
9eaef27b
TM
2281 /* See lock_rename() */
2282 ret = ERR_PTR(-EBUSY);
2283 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2284 goto out_err;
2285 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2286 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2287 goto out_err;
2288 m2 = &alias->d_parent->d_inode->i_mutex;
2289out_unalias:
18367501 2290 __d_move(alias, dentry);
9eaef27b
TM
2291 ret = alias;
2292out_err:
873feea0 2293 spin_unlock(&inode->i_lock);
9eaef27b
TM
2294 if (m2)
2295 mutex_unlock(m2);
2296 if (m1)
2297 mutex_unlock(m1);
2298 return ret;
2299}
2300
770bfad8
DH
2301/*
2302 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2303 * named dentry in place of the dentry to be replaced.
2fd6b7f5 2304 * returns with anon->d_lock held!
770bfad8
DH
2305 */
2306static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2307{
2308 struct dentry *dparent, *aparent;
2309
2fd6b7f5 2310 dentry_lock_for_move(anon, dentry);
770bfad8 2311
31e6b01f
NP
2312 write_seqcount_begin(&dentry->d_seq);
2313 write_seqcount_begin(&anon->d_seq);
2314
770bfad8
DH
2315 dparent = dentry->d_parent;
2316 aparent = anon->d_parent;
2317
2fd6b7f5
NP
2318 switch_names(dentry, anon);
2319 swap(dentry->d_name.hash, anon->d_name.hash);
2320
770bfad8
DH
2321 dentry->d_parent = (aparent == anon) ? dentry : aparent;
2322 list_del(&dentry->d_u.d_child);
2323 if (!IS_ROOT(dentry))
2324 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2325 else
2326 INIT_LIST_HEAD(&dentry->d_u.d_child);
2327
2328 anon->d_parent = (dparent == dentry) ? anon : dparent;
2329 list_del(&anon->d_u.d_child);
2330 if (!IS_ROOT(anon))
2331 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2332 else
2333 INIT_LIST_HEAD(&anon->d_u.d_child);
2334
31e6b01f
NP
2335 write_seqcount_end(&dentry->d_seq);
2336 write_seqcount_end(&anon->d_seq);
2337
2fd6b7f5
NP
2338 dentry_unlock_parents_for_move(anon, dentry);
2339 spin_unlock(&dentry->d_lock);
2340
2341 /* anon->d_lock still locked, returns locked */
770bfad8
DH
2342 anon->d_flags &= ~DCACHE_DISCONNECTED;
2343}
2344
2345/**
2346 * d_materialise_unique - introduce an inode into the tree
2347 * @dentry: candidate dentry
2348 * @inode: inode to bind to the dentry, to which aliases may be attached
2349 *
2350 * Introduces an dentry into the tree, substituting an extant disconnected
c46c8877
JL
2351 * root directory alias in its place if there is one. Caller must hold the
2352 * i_mutex of the parent directory.
770bfad8
DH
2353 */
2354struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2355{
9eaef27b 2356 struct dentry *actual;
770bfad8
DH
2357
2358 BUG_ON(!d_unhashed(dentry));
2359
770bfad8
DH
2360 if (!inode) {
2361 actual = dentry;
360da900 2362 __d_instantiate(dentry, NULL);
357f8e65
NP
2363 d_rehash(actual);
2364 goto out_nolock;
770bfad8
DH
2365 }
2366
873feea0 2367 spin_lock(&inode->i_lock);
357f8e65 2368
9eaef27b
TM
2369 if (S_ISDIR(inode->i_mode)) {
2370 struct dentry *alias;
2371
2372 /* Does an aliased dentry already exist? */
2373 alias = __d_find_alias(inode, 0);
2374 if (alias) {
2375 actual = alias;
18367501
AV
2376 write_seqlock(&rename_lock);
2377
2378 if (d_ancestor(alias, dentry)) {
2379 /* Check for loops */
2380 actual = ERR_PTR(-ELOOP);
2381 } else if (IS_ROOT(alias)) {
2382 /* Is this an anonymous mountpoint that we
2383 * could splice into our tree? */
9eaef27b 2384 __d_materialise_dentry(dentry, alias);
18367501 2385 write_sequnlock(&rename_lock);
9eaef27b
TM
2386 __d_drop(alias);
2387 goto found;
18367501
AV
2388 } else {
2389 /* Nope, but we must(!) avoid directory
2390 * aliasing */
2391 actual = __d_unalias(inode, dentry, alias);
9eaef27b 2392 }
18367501 2393 write_sequnlock(&rename_lock);
dd179946
DH
2394 if (IS_ERR(actual)) {
2395 if (PTR_ERR(actual) == -ELOOP)
2396 pr_warn_ratelimited(
2397 "VFS: Lookup of '%s' in %s %s"
2398 " would have caused loop\n",
2399 dentry->d_name.name,
2400 inode->i_sb->s_type->name,
2401 inode->i_sb->s_id);
9eaef27b 2402 dput(alias);
dd179946 2403 }
9eaef27b
TM
2404 goto out_nolock;
2405 }
770bfad8
DH
2406 }
2407
2408 /* Add a unique reference */
2409 actual = __d_instantiate_unique(dentry, inode);
2410 if (!actual)
2411 actual = dentry;
357f8e65
NP
2412 else
2413 BUG_ON(!d_unhashed(actual));
770bfad8 2414
770bfad8
DH
2415 spin_lock(&actual->d_lock);
2416found:
2417 _d_rehash(actual);
2418 spin_unlock(&actual->d_lock);
873feea0 2419 spin_unlock(&inode->i_lock);
9eaef27b 2420out_nolock:
770bfad8
DH
2421 if (actual == dentry) {
2422 security_d_instantiate(dentry, inode);
2423 return NULL;
2424 }
2425
2426 iput(inode);
2427 return actual;
770bfad8 2428}
ec4f8605 2429EXPORT_SYMBOL_GPL(d_materialise_unique);
770bfad8 2430
cdd16d02 2431static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
2432{
2433 *buflen -= namelen;
2434 if (*buflen < 0)
2435 return -ENAMETOOLONG;
2436 *buffer -= namelen;
2437 memcpy(*buffer, str, namelen);
2438 return 0;
2439}
2440
cdd16d02
MS
2441static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2442{
2443 return prepend(buffer, buflen, name->name, name->len);
2444}
2445
1da177e4 2446/**
208898c1 2447 * prepend_path - Prepend path string to a buffer
9d1bc601 2448 * @path: the dentry/vfsmount to report
02125a82 2449 * @root: root vfsmnt/dentry
f2eb6575
MS
2450 * @buffer: pointer to the end of the buffer
2451 * @buflen: pointer to buffer length
552ce544 2452 *
949854d0 2453 * Caller holds the rename_lock.
1da177e4 2454 */
02125a82
AV
2455static int prepend_path(const struct path *path,
2456 const struct path *root,
f2eb6575 2457 char **buffer, int *buflen)
1da177e4 2458{
9d1bc601
MS
2459 struct dentry *dentry = path->dentry;
2460 struct vfsmount *vfsmnt = path->mnt;
f2eb6575
MS
2461 bool slash = false;
2462 int error = 0;
6092d048 2463
99b7db7b 2464 br_read_lock(vfsmount_lock);
f2eb6575 2465 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
2466 struct dentry * parent;
2467
1da177e4 2468 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
552ce544 2469 /* Global root? */
1da177e4 2470 if (vfsmnt->mnt_parent == vfsmnt) {
1da177e4
LT
2471 goto global_root;
2472 }
2473 dentry = vfsmnt->mnt_mountpoint;
2474 vfsmnt = vfsmnt->mnt_parent;
1da177e4
LT
2475 continue;
2476 }
2477 parent = dentry->d_parent;
2478 prefetch(parent);
9abca360 2479 spin_lock(&dentry->d_lock);
f2eb6575 2480 error = prepend_name(buffer, buflen, &dentry->d_name);
9abca360 2481 spin_unlock(&dentry->d_lock);
f2eb6575
MS
2482 if (!error)
2483 error = prepend(buffer, buflen, "/", 1);
2484 if (error)
2485 break;
2486
2487 slash = true;
1da177e4
LT
2488 dentry = parent;
2489 }
2490
f2eb6575
MS
2491 if (!error && !slash)
2492 error = prepend(buffer, buflen, "/", 1);
2493
02125a82 2494out:
99b7db7b 2495 br_read_unlock(vfsmount_lock);
f2eb6575 2496 return error;
1da177e4
LT
2497
2498global_root:
98dc568b
MS
2499 /*
2500 * Filesystems needing to implement special "root names"
2501 * should do so with ->d_dname()
2502 */
2503 if (IS_ROOT(dentry) &&
2504 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2505 WARN(1, "Root dentry has weird name <%.*s>\n",
2506 (int) dentry->d_name.len, dentry->d_name.name);
2507 }
02125a82
AV
2508 if (!slash)
2509 error = prepend(buffer, buflen, "/", 1);
2510 if (!error)
2511 error = vfsmnt->mnt_ns ? 1 : 2;
be285c71 2512 goto out;
f2eb6575 2513}
be285c71 2514
f2eb6575
MS
2515/**
2516 * __d_path - return the path of a dentry
2517 * @path: the dentry/vfsmount to report
02125a82 2518 * @root: root vfsmnt/dentry
cd956a1c 2519 * @buf: buffer to return value in
f2eb6575
MS
2520 * @buflen: buffer length
2521 *
ffd1f4ed 2522 * Convert a dentry into an ASCII path name.
f2eb6575
MS
2523 *
2524 * Returns a pointer into the buffer or an error code if the
2525 * path was too long.
2526 *
be148247 2527 * "buflen" should be positive.
f2eb6575 2528 *
02125a82 2529 * If the path is not reachable from the supplied root, return %NULL.
f2eb6575 2530 */
02125a82
AV
2531char *__d_path(const struct path *path,
2532 const struct path *root,
f2eb6575
MS
2533 char *buf, int buflen)
2534{
2535 char *res = buf + buflen;
2536 int error;
2537
2538 prepend(&res, &buflen, "\0", 1);
949854d0 2539 write_seqlock(&rename_lock);
f2eb6575 2540 error = prepend_path(path, root, &res, &buflen);
949854d0 2541 write_sequnlock(&rename_lock);
be148247 2542
02125a82
AV
2543 if (error < 0)
2544 return ERR_PTR(error);
2545 if (error > 0)
2546 return NULL;
2547 return res;
2548}
2549
2550char *d_absolute_path(const struct path *path,
2551 char *buf, int buflen)
2552{
2553 struct path root = {};
2554 char *res = buf + buflen;
2555 int error;
2556
2557 prepend(&res, &buflen, "\0", 1);
2558 write_seqlock(&rename_lock);
2559 error = prepend_path(path, &root, &res, &buflen);
2560 write_sequnlock(&rename_lock);
2561
2562 if (error > 1)
2563 error = -EINVAL;
2564 if (error < 0)
f2eb6575 2565 return ERR_PTR(error);
f2eb6575 2566 return res;
1da177e4
LT
2567}
2568
ffd1f4ed
MS
2569/*
2570 * same as __d_path but appends "(deleted)" for unlinked files.
2571 */
02125a82
AV
2572static int path_with_deleted(const struct path *path,
2573 const struct path *root,
2574 char **buf, int *buflen)
ffd1f4ed
MS
2575{
2576 prepend(buf, buflen, "\0", 1);
2577 if (d_unlinked(path->dentry)) {
2578 int error = prepend(buf, buflen, " (deleted)", 10);
2579 if (error)
2580 return error;
2581 }
2582
2583 return prepend_path(path, root, buf, buflen);
2584}
2585
8df9d1a4
MS
2586static int prepend_unreachable(char **buffer, int *buflen)
2587{
2588 return prepend(buffer, buflen, "(unreachable)", 13);
2589}
2590
a03a8a70
JB
2591/**
2592 * d_path - return the path of a dentry
cf28b486 2593 * @path: path to report
a03a8a70
JB
2594 * @buf: buffer to return value in
2595 * @buflen: buffer length
2596 *
2597 * Convert a dentry into an ASCII path name. If the entry has been deleted
2598 * the string " (deleted)" is appended. Note that this is ambiguous.
2599 *
52afeefb
AV
2600 * Returns a pointer into the buffer or an error code if the path was
2601 * too long. Note: Callers should use the returned pointer, not the passed
2602 * in buffer, to use the name! The implementation often starts at an offset
2603 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 2604 *
31f3e0b3 2605 * "buflen" should be positive.
a03a8a70 2606 */
20d4fdc1 2607char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 2608{
ffd1f4ed 2609 char *res = buf + buflen;
6ac08c39 2610 struct path root;
ffd1f4ed 2611 int error;
1da177e4 2612
c23fbb6b
ED
2613 /*
2614 * We have various synthetic filesystems that never get mounted. On
2615 * these filesystems dentries are never used for lookup purposes, and
2616 * thus don't need to be hashed. They also don't need a name until a
2617 * user wants to identify the object in /proc/pid/fd/. The little hack
2618 * below allows us to generate a name for these objects on demand:
2619 */
cf28b486
JB
2620 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2621 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 2622
f7ad3c6b 2623 get_fs_root(current->fs, &root);
949854d0 2624 write_seqlock(&rename_lock);
02125a82
AV
2625 error = path_with_deleted(path, &root, &res, &buflen);
2626 if (error < 0)
ffd1f4ed 2627 res = ERR_PTR(error);
949854d0 2628 write_sequnlock(&rename_lock);
6ac08c39 2629 path_put(&root);
1da177e4
LT
2630 return res;
2631}
ec4f8605 2632EXPORT_SYMBOL(d_path);
1da177e4 2633
8df9d1a4
MS
2634/**
2635 * d_path_with_unreachable - return the path of a dentry
2636 * @path: path to report
2637 * @buf: buffer to return value in
2638 * @buflen: buffer length
2639 *
2640 * The difference from d_path() is that this prepends "(unreachable)"
2641 * to paths which are unreachable from the current process' root.
2642 */
2643char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2644{
2645 char *res = buf + buflen;
2646 struct path root;
8df9d1a4
MS
2647 int error;
2648
2649 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2650 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2651
2652 get_fs_root(current->fs, &root);
949854d0 2653 write_seqlock(&rename_lock);
02125a82
AV
2654 error = path_with_deleted(path, &root, &res, &buflen);
2655 if (error > 0)
8df9d1a4 2656 error = prepend_unreachable(&res, &buflen);
949854d0 2657 write_sequnlock(&rename_lock);
8df9d1a4
MS
2658 path_put(&root);
2659 if (error)
2660 res = ERR_PTR(error);
2661
2662 return res;
2663}
2664
c23fbb6b
ED
2665/*
2666 * Helper function for dentry_operations.d_dname() members
2667 */
2668char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2669 const char *fmt, ...)
2670{
2671 va_list args;
2672 char temp[64];
2673 int sz;
2674
2675 va_start(args, fmt);
2676 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2677 va_end(args);
2678
2679 if (sz > sizeof(temp) || sz > buflen)
2680 return ERR_PTR(-ENAMETOOLONG);
2681
2682 buffer += buflen - sz;
2683 return memcpy(buffer, temp, sz);
2684}
2685
6092d048
RP
2686/*
2687 * Write full pathname from the root of the filesystem into the buffer.
2688 */
ec2447c2 2689static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
6092d048
RP
2690{
2691 char *end = buf + buflen;
2692 char *retval;
2693
6092d048 2694 prepend(&end, &buflen, "\0", 1);
6092d048
RP
2695 if (buflen < 1)
2696 goto Elong;
2697 /* Get '/' right */
2698 retval = end-1;
2699 *retval = '/';
2700
cdd16d02
MS
2701 while (!IS_ROOT(dentry)) {
2702 struct dentry *parent = dentry->d_parent;
9abca360 2703 int error;
6092d048 2704
6092d048 2705 prefetch(parent);
9abca360
NP
2706 spin_lock(&dentry->d_lock);
2707 error = prepend_name(&end, &buflen, &dentry->d_name);
2708 spin_unlock(&dentry->d_lock);
2709 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
6092d048
RP
2710 goto Elong;
2711
2712 retval = end;
2713 dentry = parent;
2714 }
c103135c
AV
2715 return retval;
2716Elong:
2717 return ERR_PTR(-ENAMETOOLONG);
2718}
ec2447c2
NP
2719
2720char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2721{
2722 char *retval;
2723
949854d0 2724 write_seqlock(&rename_lock);
ec2447c2 2725 retval = __dentry_path(dentry, buf, buflen);
949854d0 2726 write_sequnlock(&rename_lock);
ec2447c2
NP
2727
2728 return retval;
2729}
2730EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
2731
2732char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2733{
2734 char *p = NULL;
2735 char *retval;
2736
949854d0 2737 write_seqlock(&rename_lock);
c103135c
AV
2738 if (d_unlinked(dentry)) {
2739 p = buf + buflen;
2740 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2741 goto Elong;
2742 buflen++;
2743 }
2744 retval = __dentry_path(dentry, buf, buflen);
949854d0 2745 write_sequnlock(&rename_lock);
c103135c
AV
2746 if (!IS_ERR(retval) && p)
2747 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
2748 return retval;
2749Elong:
6092d048
RP
2750 return ERR_PTR(-ENAMETOOLONG);
2751}
2752
1da177e4
LT
2753/*
2754 * NOTE! The user-level library version returns a
2755 * character pointer. The kernel system call just
2756 * returns the length of the buffer filled (which
2757 * includes the ending '\0' character), or a negative
2758 * error value. So libc would do something like
2759 *
2760 * char *getcwd(char * buf, size_t size)
2761 * {
2762 * int retval;
2763 *
2764 * retval = sys_getcwd(buf, size);
2765 * if (retval >= 0)
2766 * return buf;
2767 * errno = -retval;
2768 * return NULL;
2769 * }
2770 */
3cdad428 2771SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 2772{
552ce544 2773 int error;
6ac08c39 2774 struct path pwd, root;
552ce544 2775 char *page = (char *) __get_free_page(GFP_USER);
1da177e4
LT
2776
2777 if (!page)
2778 return -ENOMEM;
2779
f7ad3c6b 2780 get_fs_root_and_pwd(current->fs, &root, &pwd);
1da177e4 2781
552ce544 2782 error = -ENOENT;
949854d0 2783 write_seqlock(&rename_lock);
f3da392e 2784 if (!d_unlinked(pwd.dentry)) {
552ce544 2785 unsigned long len;
8df9d1a4
MS
2786 char *cwd = page + PAGE_SIZE;
2787 int buflen = PAGE_SIZE;
1da177e4 2788
8df9d1a4 2789 prepend(&cwd, &buflen, "\0", 1);
02125a82 2790 error = prepend_path(&pwd, &root, &cwd, &buflen);
949854d0 2791 write_sequnlock(&rename_lock);
552ce544 2792
02125a82 2793 if (error < 0)
552ce544
LT
2794 goto out;
2795
8df9d1a4 2796 /* Unreachable from current root */
02125a82 2797 if (error > 0) {
8df9d1a4
MS
2798 error = prepend_unreachable(&cwd, &buflen);
2799 if (error)
2800 goto out;
2801 }
2802
552ce544
LT
2803 error = -ERANGE;
2804 len = PAGE_SIZE + page - cwd;
2805 if (len <= size) {
2806 error = len;
2807 if (copy_to_user(buf, cwd, len))
2808 error = -EFAULT;
2809 }
949854d0
NP
2810 } else {
2811 write_sequnlock(&rename_lock);
949854d0 2812 }
1da177e4
LT
2813
2814out:
6ac08c39
JB
2815 path_put(&pwd);
2816 path_put(&root);
1da177e4
LT
2817 free_page((unsigned long) page);
2818 return error;
2819}
2820
2821/*
2822 * Test whether new_dentry is a subdirectory of old_dentry.
2823 *
2824 * Trivially implemented using the dcache structure
2825 */
2826
2827/**
2828 * is_subdir - is new dentry a subdirectory of old_dentry
2829 * @new_dentry: new dentry
2830 * @old_dentry: old dentry
2831 *
2832 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2833 * Returns 0 otherwise.
2834 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2835 */
2836
e2761a11 2837int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4
LT
2838{
2839 int result;
949854d0 2840 unsigned seq;
1da177e4 2841
e2761a11
OH
2842 if (new_dentry == old_dentry)
2843 return 1;
2844
e2761a11 2845 do {
1da177e4 2846 /* for restarting inner loop in case of seq retry */
1da177e4 2847 seq = read_seqbegin(&rename_lock);
949854d0
NP
2848 /*
2849 * Need rcu_readlock to protect against the d_parent trashing
2850 * due to d_move
2851 */
2852 rcu_read_lock();
e2761a11 2853 if (d_ancestor(old_dentry, new_dentry))
1da177e4 2854 result = 1;
e2761a11
OH
2855 else
2856 result = 0;
949854d0 2857 rcu_read_unlock();
1da177e4 2858 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
2859
2860 return result;
2861}
2862
2096f759
AV
2863int path_is_under(struct path *path1, struct path *path2)
2864{
2865 struct vfsmount *mnt = path1->mnt;
2866 struct dentry *dentry = path1->dentry;
2867 int res;
99b7db7b
NP
2868
2869 br_read_lock(vfsmount_lock);
2096f759
AV
2870 if (mnt != path2->mnt) {
2871 for (;;) {
2872 if (mnt->mnt_parent == mnt) {
99b7db7b 2873 br_read_unlock(vfsmount_lock);
2096f759
AV
2874 return 0;
2875 }
2876 if (mnt->mnt_parent == path2->mnt)
2877 break;
2878 mnt = mnt->mnt_parent;
2879 }
2880 dentry = mnt->mnt_mountpoint;
2881 }
2882 res = is_subdir(dentry, path2->dentry);
99b7db7b 2883 br_read_unlock(vfsmount_lock);
2096f759
AV
2884 return res;
2885}
2886EXPORT_SYMBOL(path_is_under);
2887
1da177e4
LT
2888void d_genocide(struct dentry *root)
2889{
949854d0 2890 struct dentry *this_parent;
1da177e4 2891 struct list_head *next;
949854d0 2892 unsigned seq;
58db63d0 2893 int locked = 0;
1da177e4 2894
949854d0 2895 seq = read_seqbegin(&rename_lock);
58db63d0
NP
2896again:
2897 this_parent = root;
2fd6b7f5 2898 spin_lock(&this_parent->d_lock);
1da177e4
LT
2899repeat:
2900 next = this_parent->d_subdirs.next;
2901resume:
2902 while (next != &this_parent->d_subdirs) {
2903 struct list_head *tmp = next;
5160ee6f 2904 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 2905 next = tmp->next;
949854d0 2906
da502956
NP
2907 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2908 if (d_unhashed(dentry) || !dentry->d_inode) {
2909 spin_unlock(&dentry->d_lock);
1da177e4 2910 continue;
da502956 2911 }
1da177e4 2912 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
2913 spin_unlock(&this_parent->d_lock);
2914 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 2915 this_parent = dentry;
2fd6b7f5 2916 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
2917 goto repeat;
2918 }
949854d0
NP
2919 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2920 dentry->d_flags |= DCACHE_GENOCIDE;
2921 dentry->d_count--;
2922 }
b7ab39f6 2923 spin_unlock(&dentry->d_lock);
1da177e4
LT
2924 }
2925 if (this_parent != root) {
c826cb7d 2926 struct dentry *child = this_parent;
949854d0
NP
2927 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2928 this_parent->d_flags |= DCACHE_GENOCIDE;
2929 this_parent->d_count--;
2930 }
c826cb7d
LT
2931 this_parent = try_to_ascend(this_parent, locked, seq);
2932 if (!this_parent)
949854d0 2933 goto rename_retry;
949854d0 2934 next = child->d_u.d_child.next;
1da177e4
LT
2935 goto resume;
2936 }
2fd6b7f5 2937 spin_unlock(&this_parent->d_lock);
58db63d0 2938 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 2939 goto rename_retry;
58db63d0
NP
2940 if (locked)
2941 write_sequnlock(&rename_lock);
2942 return;
2943
2944rename_retry:
2945 locked = 1;
2946 write_seqlock(&rename_lock);
2947 goto again;
1da177e4
LT
2948}
2949
2950/**
2951 * find_inode_number - check for dentry with name
2952 * @dir: directory to check
2953 * @name: Name to find.
2954 *
2955 * Check whether a dentry already exists for the given name,
2956 * and return the inode number if it has an inode. Otherwise
2957 * 0 is returned.
2958 *
2959 * This routine is used to post-process directory listings for
2960 * filesystems using synthetic inode numbers, and is necessary
2961 * to keep getcwd() working.
2962 */
2963
2964ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2965{
2966 struct dentry * dentry;
2967 ino_t ino = 0;
2968
3e7e241f
EB
2969 dentry = d_hash_and_lookup(dir, name);
2970 if (dentry) {
1da177e4
LT
2971 if (dentry->d_inode)
2972 ino = dentry->d_inode->i_ino;
2973 dput(dentry);
2974 }
1da177e4
LT
2975 return ino;
2976}
ec4f8605 2977EXPORT_SYMBOL(find_inode_number);
1da177e4
LT
2978
2979static __initdata unsigned long dhash_entries;
2980static int __init set_dhash_entries(char *str)
2981{
2982 if (!str)
2983 return 0;
2984 dhash_entries = simple_strtoul(str, &str, 0);
2985 return 1;
2986}
2987__setup("dhash_entries=", set_dhash_entries);
2988
2989static void __init dcache_init_early(void)
2990{
2991 int loop;
2992
2993 /* If hashes are distributed across NUMA nodes, defer
2994 * hash allocation until vmalloc space is available.
2995 */
2996 if (hashdist)
2997 return;
2998
2999 dentry_hashtable =
3000 alloc_large_system_hash("Dentry cache",
b07ad996 3001 sizeof(struct hlist_bl_head),
1da177e4
LT
3002 dhash_entries,
3003 13,
3004 HASH_EARLY,
3005 &d_hash_shift,
3006 &d_hash_mask,
3007 0);
3008
3009 for (loop = 0; loop < (1 << d_hash_shift); loop++)
b07ad996 3010 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3011}
3012
74bf17cf 3013static void __init dcache_init(void)
1da177e4
LT
3014{
3015 int loop;
3016
3017 /*
3018 * A constructor could be added for stable state like the lists,
3019 * but it is probably not worth it because of the cache nature
3020 * of the dcache.
3021 */
0a31bd5f
CL
3022 dentry_cache = KMEM_CACHE(dentry,
3023 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
1da177e4
LT
3024
3025 /* Hash may have been set up in dcache_init_early */
3026 if (!hashdist)
3027 return;
3028
3029 dentry_hashtable =
3030 alloc_large_system_hash("Dentry cache",
b07ad996 3031 sizeof(struct hlist_bl_head),
1da177e4
LT
3032 dhash_entries,
3033 13,
3034 0,
3035 &d_hash_shift,
3036 &d_hash_mask,
3037 0);
3038
3039 for (loop = 0; loop < (1 << d_hash_shift); loop++)
b07ad996 3040 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3041}
3042
3043/* SLAB cache for __getname() consumers */
e18b890b 3044struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3045EXPORT_SYMBOL(names_cachep);
1da177e4 3046
1da177e4
LT
3047EXPORT_SYMBOL(d_genocide);
3048
1da177e4
LT
3049void __init vfs_caches_init_early(void)
3050{
3051 dcache_init_early();
3052 inode_init_early();
3053}
3054
3055void __init vfs_caches_init(unsigned long mempages)
3056{
3057 unsigned long reserve;
3058
3059 /* Base hash sizes on available memory, with a reserve equal to
3060 150% of current kernel size */
3061
3062 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3063 mempages -= reserve;
3064
3065 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
20c2df83 3066 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4 3067
74bf17cf
DC
3068 dcache_init();
3069 inode_init();
1da177e4 3070 files_init(mempages);
74bf17cf 3071 mnt_init();
1da177e4
LT
3072 bdev_cache_init();
3073 chrdev_init();
3074}