]> git.proxmox.com Git - qemu.git/blame - hw/axis_dev88.c
s390: Disassemble some general-instruction-extension insns.
[qemu.git] / hw / axis_dev88.c
CommitLineData
10c144e2
EI
1/*
2 * QEMU model for the AXIS devboard 88.
3 *
4 * Copyright (c) 2009 Edgar E. Iglesias, Axis Communications AB.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
4b816985
EI
24
25#include "sysbus.h"
10c144e2
EI
26#include "net.h"
27#include "flash.h"
10c144e2 28#include "boards.h"
4b816985 29#include "sysemu.h"
10c144e2 30#include "etraxfs.h"
ca20cf32
BS
31#include "loader.h"
32#include "elf.h"
10c144e2
EI
33
34#define D(x)
35#define DNAND(x)
36
37struct nand_state_t
38{
bc24a225 39 NANDFlashState *nand;
10c144e2
EI
40 unsigned int rdy:1;
41 unsigned int ale:1;
42 unsigned int cle:1;
43 unsigned int ce:1;
44};
45
46static struct nand_state_t nand_state;
c227f099 47static uint32_t nand_readl (void *opaque, target_phys_addr_t addr)
10c144e2
EI
48{
49 struct nand_state_t *s = opaque;
50 uint32_t r;
51 int rdy;
52
53 r = nand_getio(s->nand);
54 nand_getpins(s->nand, &rdy);
55 s->rdy = rdy;
56
57 DNAND(printf("%s addr=%x r=%x\n", __func__, addr, r));
58 return r;
59}
60
61static void
c227f099 62nand_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
10c144e2
EI
63{
64 struct nand_state_t *s = opaque;
65 int rdy;
66
67 DNAND(printf("%s addr=%x v=%x\n", __func__, addr, value));
68 nand_setpins(s->nand, s->cle, s->ale, s->ce, 1, 0);
69 nand_setio(s->nand, value);
70 nand_getpins(s->nand, &rdy);
71 s->rdy = rdy;
72}
73
d60efc6b 74static CPUReadMemoryFunc * const nand_read[] = {
10c144e2
EI
75 &nand_readl,
76 &nand_readl,
77 &nand_readl,
78};
79
d60efc6b 80static CPUWriteMemoryFunc * const nand_write[] = {
10c144e2
EI
81 &nand_writel,
82 &nand_writel,
83 &nand_writel,
84};
85
4a1e6bea
EI
86
87struct tempsensor_t
88{
89 unsigned int shiftreg;
90 unsigned int count;
91 enum {
92 ST_OUT, ST_IN, ST_Z
93 } state;
94
95 uint16_t regs[3];
96};
97
98static void tempsensor_clkedge(struct tempsensor_t *s,
99 unsigned int clk, unsigned int data_in)
100{
101 D(printf("%s clk=%d state=%d sr=%x\n", __func__,
102 clk, s->state, s->shiftreg));
103 if (s->count == 0) {
104 s->count = 16;
105 s->state = ST_OUT;
106 }
107 switch (s->state) {
108 case ST_OUT:
109 /* Output reg is clocked at negedge. */
110 if (!clk) {
111 s->count--;
112 s->shiftreg <<= 1;
113 if (s->count == 0) {
114 s->shiftreg = 0;
115 s->state = ST_IN;
116 s->count = 16;
117 }
118 }
119 break;
120 case ST_Z:
121 if (clk) {
122 s->count--;
123 if (s->count == 0) {
124 s->shiftreg = 0;
125 s->state = ST_OUT;
126 s->count = 16;
127 }
128 }
129 break;
130 case ST_IN:
131 /* Indata is sampled at posedge. */
132 if (clk) {
133 s->count--;
134 s->shiftreg <<= 1;
135 s->shiftreg |= data_in & 1;
136 if (s->count == 0) {
137 D(printf("%s cfgreg=%x\n", __func__, s->shiftreg));
138 s->regs[0] = s->shiftreg;
139 s->state = ST_OUT;
140 s->count = 16;
141
142 if ((s->regs[0] & 0xff) == 0) {
143 /* 25 degrees celcius. */
144 s->shiftreg = 0x0b9f;
145 } else if ((s->regs[0] & 0xff) == 0xff) {
146 /* Sensor ID, 0x8100 LM70. */
147 s->shiftreg = 0x8100;
148 } else
149 printf("Invalid tempsens state %x\n", s->regs[0]);
150 }
151 }
152 break;
153 }
154}
155
156
157#define RW_PA_DOUT 0x00
158#define R_PA_DIN 0x01
159#define RW_PA_OE 0x02
160#define RW_PD_DOUT 0x10
161#define R_PD_DIN 0x11
162#define RW_PD_OE 0x12
163
164static struct gpio_state_t
10c144e2
EI
165{
166 struct nand_state_t *nand;
4a1e6bea 167 struct tempsensor_t tempsensor;
10c144e2
EI
168 uint32_t regs[0x5c / 4];
169} gpio_state;
170
c227f099 171static uint32_t gpio_readl (void *opaque, target_phys_addr_t addr)
10c144e2
EI
172{
173 struct gpio_state_t *s = opaque;
174 uint32_t r = 0;
175
176 addr >>= 2;
177 switch (addr)
178 {
179 case R_PA_DIN:
180 r = s->regs[RW_PA_DOUT] & s->regs[RW_PA_OE];
181
182 /* Encode pins from the nand. */
183 r |= s->nand->rdy << 7;
184 break;
4a1e6bea
EI
185 case R_PD_DIN:
186 r = s->regs[RW_PD_DOUT] & s->regs[RW_PD_OE];
187
188 /* Encode temp sensor pins. */
189 r |= (!!(s->tempsensor.shiftreg & 0x10000)) << 4;
190 break;
191
10c144e2
EI
192 default:
193 r = s->regs[addr];
194 break;
195 }
196 return r;
197 D(printf("%s %x=%x\n", __func__, addr, r));
198}
199
c227f099 200static void gpio_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
10c144e2
EI
201{
202 struct gpio_state_t *s = opaque;
203 D(printf("%s %x=%x\n", __func__, addr, value));
204
205 addr >>= 2;
206 switch (addr)
207 {
208 case RW_PA_DOUT:
209 /* Decode nand pins. */
210 s->nand->ale = !!(value & (1 << 6));
211 s->nand->cle = !!(value & (1 << 5));
212 s->nand->ce = !!(value & (1 << 4));
213
214 s->regs[addr] = value;
215 break;
4a1e6bea
EI
216
217 case RW_PD_DOUT:
218 /* Temp sensor clk. */
219 if ((s->regs[addr] ^ value) & 2)
220 tempsensor_clkedge(&s->tempsensor, !!(value & 2),
221 !!(value & 16));
222 s->regs[addr] = value;
223 break;
224
10c144e2
EI
225 default:
226 s->regs[addr] = value;
227 break;
228 }
229}
230
d60efc6b 231static CPUReadMemoryFunc * const gpio_read[] = {
10c144e2
EI
232 NULL, NULL,
233 &gpio_readl,
234};
235
d60efc6b 236static CPUWriteMemoryFunc * const gpio_write[] = {
10c144e2
EI
237 NULL, NULL,
238 &gpio_writel,
239};
240
241#define INTMEM_SIZE (128 * 1024)
242
a9456998
EI
243static struct {
244 uint32_t bootstrap_pc;
245 uint32_t regs[16];
246} loadargs;
247
10c144e2
EI
248static void main_cpu_reset(void *opaque)
249{
a9456998
EI
250 int i;
251
10c144e2
EI
252 CPUState *env = opaque;
253 cpu_reset(env);
254
a9456998
EI
255 env->pc = loadargs.bootstrap_pc;
256 for (i = 0; i < 16; i++) {
257 env->regs[i] = loadargs.regs[i];
258 }
10c144e2
EI
259}
260
409dbce5
AJ
261static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
262{
263 return addr - 0x80000000LL;
264}
265
10c144e2 266static
c227f099 267void axisdev88_init (ram_addr_t ram_size,
ef998233 268 const char *boot_device,
10c144e2
EI
269 const char *kernel_filename, const char *kernel_cmdline,
270 const char *initrd_filename, const char *cpu_model)
271{
272 CPUState *env;
fd6dc90b
EI
273 DeviceState *dev;
274 SysBusDevice *s;
275 qemu_irq irq[30], nmi[2], *cpu_irq;
10c144e2
EI
276 void *etraxfs_dmac;
277 struct etraxfs_dma_client *eth[2] = {NULL, NULL};
278 int kernel_size;
279 int i;
280 int nand_regs;
281 int gpio_regs;
c227f099
AL
282 ram_addr_t phys_ram;
283 ram_addr_t phys_intmem;
10c144e2
EI
284
285 /* init CPUs */
286 if (cpu_model == NULL) {
287 cpu_model = "crisv32";
288 }
289 env = cpu_init(cpu_model);
a08d4367 290 qemu_register_reset(main_cpu_reset, env);
10c144e2
EI
291
292 /* allocate RAM */
293 phys_ram = qemu_ram_alloc(ram_size);
294 cpu_register_physical_memory(0x40000000, ram_size, phys_ram | IO_MEM_RAM);
295
296 /* The ETRAX-FS has 128Kb on chip ram, the docs refer to it as the
297 internal memory. */
298 phys_intmem = qemu_ram_alloc(INTMEM_SIZE);
299 cpu_register_physical_memory(0x38000000, INTMEM_SIZE,
300 phys_intmem | IO_MEM_RAM);
301
302
303 /* Attach a NAND flash to CS1. */
4a1e6bea 304 nand_state.nand = nand_init(NAND_MFR_STMICRO, 0x39);
1eed09cb 305 nand_regs = cpu_register_io_memory(nand_read, nand_write, &nand_state);
10c144e2
EI
306 cpu_register_physical_memory(0x10000000, 0x05000000, nand_regs);
307
308 gpio_state.nand = &nand_state;
1eed09cb 309 gpio_regs = cpu_register_io_memory(gpio_read, gpio_write, &gpio_state);
4a1e6bea 310 cpu_register_physical_memory(0x3001a000, 0x5c, gpio_regs);
10c144e2
EI
311
312
fd6dc90b
EI
313 cpu_irq = cris_pic_init_cpu(env);
314 dev = qdev_create(NULL, "etraxfs,pic");
315 /* FIXME: Is there a proper way to signal vectors to the CPU core? */
ee6847d1 316 qdev_prop_set_ptr(dev, "interrupt_vector", &env->interrupt_vector);
e23a1b33 317 qdev_init_nofail(dev);
fd6dc90b
EI
318 s = sysbus_from_qdev(dev);
319 sysbus_mmio_map(s, 0, 0x3001c000);
320 sysbus_connect_irq(s, 0, cpu_irq[0]);
321 sysbus_connect_irq(s, 1, cpu_irq[1]);
322 for (i = 0; i < 30; i++) {
067a3ddc 323 irq[i] = qdev_get_gpio_in(dev, i);
fd6dc90b 324 }
067a3ddc
PB
325 nmi[0] = qdev_get_gpio_in(dev, 30);
326 nmi[1] = qdev_get_gpio_in(dev, 31);
73cfd29f 327
ba494313 328 etraxfs_dmac = etraxfs_dmac_init(0x30000000, 10);
10c144e2
EI
329 for (i = 0; i < 10; i++) {
330 /* On ETRAX, odd numbered channels are inputs. */
73cfd29f 331 etraxfs_dmac_connect(etraxfs_dmac, i, irq + 7 + i, i & 1);
10c144e2
EI
332 }
333
334 /* Add the two ethernet blocks. */
ba494313 335 eth[0] = etraxfs_eth_init(&nd_table[0], 0x30034000, 1);
0ae18cee 336 if (nb_nics > 1)
ba494313 337 eth[1] = etraxfs_eth_init(&nd_table[1], 0x30036000, 2);
10c144e2
EI
338
339 /* The DMA Connector block is missing, hardwire things for now. */
340 etraxfs_dmac_connect_client(etraxfs_dmac, 0, eth[0]);
341 etraxfs_dmac_connect_client(etraxfs_dmac, 1, eth[0] + 1);
342 if (eth[1]) {
343 etraxfs_dmac_connect_client(etraxfs_dmac, 6, eth[1]);
344 etraxfs_dmac_connect_client(etraxfs_dmac, 7, eth[1] + 1);
345 }
346
347 /* 2 timers. */
3b1fd90e
EI
348 sysbus_create_varargs("etraxfs,timer", 0x3001e000, irq[0x1b], nmi[1], NULL);
349 sysbus_create_varargs("etraxfs,timer", 0x3005e000, irq[0x1b], nmi[1], NULL);
10c144e2
EI
350
351 for (i = 0; i < 4; i++) {
4b816985 352 sysbus_create_simple("etraxfs,serial", 0x30026000 + i * 0x2000,
3b1fd90e 353 irq[0x14 + i]);
10c144e2
EI
354 }
355
356 if (kernel_filename) {
357 uint64_t entry, high;
358 int kcmdline_len;
359
360 /* Boots a kernel elf binary, os/linux-2.6/vmlinux from the axis
361 devboard SDK. */
409dbce5 362 kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
ca20cf32 363 &entry, NULL, &high, 0, ELF_MACHINE, 0);
a9456998 364 loadargs.bootstrap_pc = entry;
10c144e2
EI
365 if (kernel_size < 0) {
366 /* Takes a kimage from the axis devboard SDK. */
dcac9679
PB
367 kernel_size = load_image_targphys(kernel_filename, 0x40004000,
368 ram_size);
a9456998
EI
369 loadargs.bootstrap_pc = 0x40004000;
370 loadargs.regs[9] = 0x40004000 + kernel_size;
10c144e2 371 }
a9456998 372 loadargs.regs[8] = 0x56902387; /* RAM init magic. */
10c144e2
EI
373
374 if (kernel_cmdline && (kcmdline_len = strlen(kernel_cmdline))) {
375 if (kcmdline_len > 256) {
376 fprintf(stderr, "Too long CRIS kernel cmdline (max 256)\n");
377 exit(1);
378 }
10c144e2 379 /* Let the kernel know we are modifying the cmdline. */
a9456998
EI
380 loadargs.regs[10] = 0x87109563;
381 loadargs.regs[11] = 0x40000000;
382 pstrcpy_targphys("cmdline", loadargs.regs[11], 256, kernel_cmdline);
10c144e2
EI
383 }
384 }
10c144e2
EI
385}
386
f80f9ec9 387static QEMUMachine axisdev88_machine = {
10c144e2
EI
388 .name = "axis-dev88",
389 .desc = "AXIS devboard 88",
390 .init = axisdev88_init,
10c144e2 391};
f80f9ec9
AL
392
393static void axisdev88_machine_init(void)
394{
395 qemu_register_machine(&axisdev88_machine);
396}
397
398machine_init(axisdev88_machine_init);