]> git.proxmox.com Git - qemu.git/blame - hw/block/nand.c
qom: aggressively optimize qom casting
[qemu.git] / hw / block / nand.c
CommitLineData
3e3d5815
AZ
1/*
2 * Flash NAND memory emulation. Based on "16M x 8 Bit NAND Flash
3 * Memory" datasheet for the KM29U128AT / K9F2808U0A chips from
4 * Samsung Electronic.
5 *
6 * Copyright (c) 2006 Openedhand Ltd.
7 * Written by Andrzej Zaborowski <balrog@zabor.org>
8 *
d5f2fd58
JR
9 * Support for additional features based on "MT29F2G16ABCWP 2Gx16"
10 * datasheet from Micron Technology and "NAND02G-B2C" datasheet
11 * from ST Microelectronics.
12 *
3e3d5815 13 * This code is licensed under the GNU GPL v2.
6b620ca3
PB
14 *
15 * Contributions after 2012-01-13 are licensed under the terms of the
16 * GNU GPL, version 2 or (at your option) any later version.
3e3d5815
AZ
17 */
18
19#ifndef NAND_IO
20
83c9f4ca 21# include "hw/hw.h"
0d09e41a 22# include "hw/block/flash.h"
9c17d615 23# include "sysemu/blockdev.h"
83c9f4ca 24# include "hw/sysbus.h"
1de7afc9 25#include "qemu/error-report.h"
3e3d5815
AZ
26
27# define NAND_CMD_READ0 0x00
28# define NAND_CMD_READ1 0x01
29# define NAND_CMD_READ2 0x50
30# define NAND_CMD_LPREAD2 0x30
31# define NAND_CMD_NOSERIALREAD2 0x35
32# define NAND_CMD_RANDOMREAD1 0x05
33# define NAND_CMD_RANDOMREAD2 0xe0
34# define NAND_CMD_READID 0x90
35# define NAND_CMD_RESET 0xff
36# define NAND_CMD_PAGEPROGRAM1 0x80
37# define NAND_CMD_PAGEPROGRAM2 0x10
38# define NAND_CMD_CACHEPROGRAM2 0x15
39# define NAND_CMD_BLOCKERASE1 0x60
40# define NAND_CMD_BLOCKERASE2 0xd0
41# define NAND_CMD_READSTATUS 0x70
42# define NAND_CMD_COPYBACKPRG1 0x85
43
44# define NAND_IOSTATUS_ERROR (1 << 0)
45# define NAND_IOSTATUS_PLANE0 (1 << 1)
46# define NAND_IOSTATUS_PLANE1 (1 << 2)
47# define NAND_IOSTATUS_PLANE2 (1 << 3)
48# define NAND_IOSTATUS_PLANE3 (1 << 4)
0bc472a9 49# define NAND_IOSTATUS_READY (1 << 6)
3e3d5815
AZ
50# define NAND_IOSTATUS_UNPROTCT (1 << 7)
51
52# define MAX_PAGE 0x800
53# define MAX_OOB 0x40
54
d4220389 55typedef struct NANDFlashState NANDFlashState;
bc24a225 56struct NANDFlashState {
d4220389 57 SysBusDevice busdev;
3e3d5815 58 uint8_t manf_id, chip_id;
48197dfa 59 uint8_t buswidth; /* in BYTES */
3e3d5815
AZ
60 int size, pages;
61 int page_shift, oob_shift, erase_shift, addr_shift;
62 uint8_t *storage;
63 BlockDriverState *bdrv;
64 int mem_oob;
65
51db57f7 66 uint8_t cle, ale, ce, wp, gnd;
3e3d5815
AZ
67
68 uint8_t io[MAX_PAGE + MAX_OOB + 0x400];
69 uint8_t *ioaddr;
70 int iolen;
71
d5f2fd58
JR
72 uint32_t cmd;
73 uint64_t addr;
3e3d5815
AZ
74 int addrlen;
75 int status;
76 int offset;
77
bc24a225
PB
78 void (*blk_write)(NANDFlashState *s);
79 void (*blk_erase)(NANDFlashState *s);
d5f2fd58 80 void (*blk_load)(NANDFlashState *s, uint64_t addr, int offset);
7b9a3d86
JQ
81
82 uint32_t ioaddr_vmstate;
3e3d5815
AZ
83};
84
89f640bc
PM
85static void mem_and(uint8_t *dest, const uint8_t *src, size_t n)
86{
87 /* Like memcpy() but we logical-AND the data into the destination */
88 int i;
89 for (i = 0; i < n; i++) {
90 dest[i] &= src[i];
91 }
92}
93
3e3d5815
AZ
94# define NAND_NO_AUTOINCR 0x00000001
95# define NAND_BUSWIDTH_16 0x00000002
96# define NAND_NO_PADDING 0x00000004
97# define NAND_CACHEPRG 0x00000008
98# define NAND_COPYBACK 0x00000010
99# define NAND_IS_AND 0x00000020
100# define NAND_4PAGE_ARRAY 0x00000040
101# define NAND_NO_READRDY 0x00000100
102# define NAND_SAMSUNG_LP (NAND_NO_PADDING | NAND_COPYBACK)
103
104# define NAND_IO
105
106# define PAGE(addr) ((addr) >> ADDR_SHIFT)
107# define PAGE_START(page) (PAGE(page) * (PAGE_SIZE + OOB_SIZE))
108# define PAGE_MASK ((1 << ADDR_SHIFT) - 1)
109# define OOB_SHIFT (PAGE_SHIFT - 5)
110# define OOB_SIZE (1 << OOB_SHIFT)
111# define SECTOR(addr) ((addr) >> (9 + ADDR_SHIFT - PAGE_SHIFT))
112# define SECTOR_OFFSET(addr) ((addr) & ((511 >> PAGE_SHIFT) << 8))
113
114# define PAGE_SIZE 256
115# define PAGE_SHIFT 8
116# define PAGE_SECTORS 1
117# define ADDR_SHIFT 8
118# include "nand.c"
119# define PAGE_SIZE 512
120# define PAGE_SHIFT 9
121# define PAGE_SECTORS 1
122# define ADDR_SHIFT 8
123# include "nand.c"
124# define PAGE_SIZE 2048
125# define PAGE_SHIFT 11
126# define PAGE_SECTORS 4
127# define ADDR_SHIFT 16
128# include "nand.c"
129
130/* Information based on Linux drivers/mtd/nand/nand_ids.c */
bc24a225 131static const struct {
3e3d5815
AZ
132 int size;
133 int width;
134 int page_shift;
135 int erase_shift;
136 uint32_t options;
137} nand_flash_ids[0x100] = {
138 [0 ... 0xff] = { 0 },
139
140 [0x6e] = { 1, 8, 8, 4, 0 },
141 [0x64] = { 2, 8, 8, 4, 0 },
142 [0x6b] = { 4, 8, 9, 4, 0 },
143 [0xe8] = { 1, 8, 8, 4, 0 },
144 [0xec] = { 1, 8, 8, 4, 0 },
145 [0xea] = { 2, 8, 8, 4, 0 },
146 [0xd5] = { 4, 8, 9, 4, 0 },
147 [0xe3] = { 4, 8, 9, 4, 0 },
148 [0xe5] = { 4, 8, 9, 4, 0 },
149 [0xd6] = { 8, 8, 9, 4, 0 },
150
151 [0x39] = { 8, 8, 9, 4, 0 },
152 [0xe6] = { 8, 8, 9, 4, 0 },
153 [0x49] = { 8, 16, 9, 4, NAND_BUSWIDTH_16 },
154 [0x59] = { 8, 16, 9, 4, NAND_BUSWIDTH_16 },
155
156 [0x33] = { 16, 8, 9, 5, 0 },
157 [0x73] = { 16, 8, 9, 5, 0 },
158 [0x43] = { 16, 16, 9, 5, NAND_BUSWIDTH_16 },
159 [0x53] = { 16, 16, 9, 5, NAND_BUSWIDTH_16 },
160
161 [0x35] = { 32, 8, 9, 5, 0 },
162 [0x75] = { 32, 8, 9, 5, 0 },
163 [0x45] = { 32, 16, 9, 5, NAND_BUSWIDTH_16 },
164 [0x55] = { 32, 16, 9, 5, NAND_BUSWIDTH_16 },
165
166 [0x36] = { 64, 8, 9, 5, 0 },
167 [0x76] = { 64, 8, 9, 5, 0 },
168 [0x46] = { 64, 16, 9, 5, NAND_BUSWIDTH_16 },
169 [0x56] = { 64, 16, 9, 5, NAND_BUSWIDTH_16 },
170
171 [0x78] = { 128, 8, 9, 5, 0 },
172 [0x39] = { 128, 8, 9, 5, 0 },
173 [0x79] = { 128, 8, 9, 5, 0 },
174 [0x72] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
175 [0x49] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
176 [0x74] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
177 [0x59] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
178
179 [0x71] = { 256, 8, 9, 5, 0 },
180
181 /*
182 * These are the new chips with large page size. The pagesize and the
183 * erasesize is determined from the extended id bytes
184 */
185# define LP_OPTIONS (NAND_SAMSUNG_LP | NAND_NO_READRDY | NAND_NO_AUTOINCR)
186# define LP_OPTIONS16 (LP_OPTIONS | NAND_BUSWIDTH_16)
187
188 /* 512 Megabit */
189 [0xa2] = { 64, 8, 0, 0, LP_OPTIONS },
190 [0xf2] = { 64, 8, 0, 0, LP_OPTIONS },
191 [0xb2] = { 64, 16, 0, 0, LP_OPTIONS16 },
192 [0xc2] = { 64, 16, 0, 0, LP_OPTIONS16 },
193
194 /* 1 Gigabit */
195 [0xa1] = { 128, 8, 0, 0, LP_OPTIONS },
196 [0xf1] = { 128, 8, 0, 0, LP_OPTIONS },
197 [0xb1] = { 128, 16, 0, 0, LP_OPTIONS16 },
198 [0xc1] = { 128, 16, 0, 0, LP_OPTIONS16 },
199
200 /* 2 Gigabit */
201 [0xaa] = { 256, 8, 0, 0, LP_OPTIONS },
202 [0xda] = { 256, 8, 0, 0, LP_OPTIONS },
203 [0xba] = { 256, 16, 0, 0, LP_OPTIONS16 },
204 [0xca] = { 256, 16, 0, 0, LP_OPTIONS16 },
205
206 /* 4 Gigabit */
207 [0xac] = { 512, 8, 0, 0, LP_OPTIONS },
208 [0xdc] = { 512, 8, 0, 0, LP_OPTIONS },
209 [0xbc] = { 512, 16, 0, 0, LP_OPTIONS16 },
210 [0xcc] = { 512, 16, 0, 0, LP_OPTIONS16 },
211
212 /* 8 Gigabit */
213 [0xa3] = { 1024, 8, 0, 0, LP_OPTIONS },
214 [0xd3] = { 1024, 8, 0, 0, LP_OPTIONS },
215 [0xb3] = { 1024, 16, 0, 0, LP_OPTIONS16 },
216 [0xc3] = { 1024, 16, 0, 0, LP_OPTIONS16 },
217
218 /* 16 Gigabit */
219 [0xa5] = { 2048, 8, 0, 0, LP_OPTIONS },
220 [0xd5] = { 2048, 8, 0, 0, LP_OPTIONS },
221 [0xb5] = { 2048, 16, 0, 0, LP_OPTIONS16 },
222 [0xc5] = { 2048, 16, 0, 0, LP_OPTIONS16 },
223};
224
d4220389 225static void nand_reset(DeviceState *dev)
3e3d5815 226{
1356b98d 227 NANDFlashState *s = FROM_SYSBUS(NANDFlashState, SYS_BUS_DEVICE(dev));
3e3d5815
AZ
228 s->cmd = NAND_CMD_READ0;
229 s->addr = 0;
230 s->addrlen = 0;
231 s->iolen = 0;
232 s->offset = 0;
233 s->status &= NAND_IOSTATUS_UNPROTCT;
0bc472a9 234 s->status |= NAND_IOSTATUS_READY;
3e3d5815
AZ
235}
236
48197dfa
JR
237static inline void nand_pushio_byte(NANDFlashState *s, uint8_t value)
238{
239 s->ioaddr[s->iolen++] = value;
240 for (value = s->buswidth; --value;) {
241 s->ioaddr[s->iolen++] = 0;
242 }
243}
244
bc24a225 245static void nand_command(NANDFlashState *s)
3e3d5815 246{
fccd2613 247 unsigned int offset;
3e3d5815
AZ
248 switch (s->cmd) {
249 case NAND_CMD_READ0:
250 s->iolen = 0;
251 break;
252
253 case NAND_CMD_READID:
3e3d5815 254 s->ioaddr = s->io;
48197dfa
JR
255 s->iolen = 0;
256 nand_pushio_byte(s, s->manf_id);
257 nand_pushio_byte(s, s->chip_id);
258 nand_pushio_byte(s, 'Q'); /* Don't-care byte (often 0xa5) */
259 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
260 /* Page Size, Block Size, Spare Size; bit 6 indicates
261 * 8 vs 16 bit width NAND.
262 */
263 nand_pushio_byte(s, (s->buswidth == 2) ? 0x55 : 0x15);
264 } else {
265 nand_pushio_byte(s, 0xc0); /* Multi-plane */
266 }
3e3d5815
AZ
267 break;
268
269 case NAND_CMD_RANDOMREAD2:
270 case NAND_CMD_NOSERIALREAD2:
271 if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP))
272 break;
fccd2613
EI
273 offset = s->addr & ((1 << s->addr_shift) - 1);
274 s->blk_load(s, s->addr, offset);
275 if (s->gnd)
276 s->iolen = (1 << s->page_shift) - offset;
277 else
278 s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
3e3d5815
AZ
279 break;
280
281 case NAND_CMD_RESET:
d4220389 282 nand_reset(&s->busdev.qdev);
3e3d5815
AZ
283 break;
284
285 case NAND_CMD_PAGEPROGRAM1:
286 s->ioaddr = s->io;
287 s->iolen = 0;
288 break;
289
290 case NAND_CMD_PAGEPROGRAM2:
291 if (s->wp) {
292 s->blk_write(s);
293 }
294 break;
295
296 case NAND_CMD_BLOCKERASE1:
297 break;
298
299 case NAND_CMD_BLOCKERASE2:
32aea752 300 s->addr &= (1ull << s->addrlen * 8) - 1;
3e3d5815
AZ
301 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP)
302 s->addr <<= 16;
303 else
304 s->addr <<= 8;
305
306 if (s->wp) {
307 s->blk_erase(s);
308 }
309 break;
310
311 case NAND_CMD_READSTATUS:
3e3d5815 312 s->ioaddr = s->io;
48197dfa
JR
313 s->iolen = 0;
314 nand_pushio_byte(s, s->status);
3e3d5815
AZ
315 break;
316
317 default:
318 printf("%s: Unknown NAND command 0x%02x\n", __FUNCTION__, s->cmd);
319 }
320}
321
7b9a3d86 322static void nand_pre_save(void *opaque)
aa941b94 323{
7b9a3d86
JQ
324 NANDFlashState *s = opaque;
325
326 s->ioaddr_vmstate = s->ioaddr - s->io;
aa941b94
AZ
327}
328
7b9a3d86 329static int nand_post_load(void *opaque, int version_id)
aa941b94 330{
7b9a3d86
JQ
331 NANDFlashState *s = opaque;
332
333 if (s->ioaddr_vmstate > sizeof(s->io)) {
aa941b94 334 return -EINVAL;
7b9a3d86
JQ
335 }
336 s->ioaddr = s->io + s->ioaddr_vmstate;
aa941b94 337
aa941b94
AZ
338 return 0;
339}
340
7b9a3d86
JQ
341static const VMStateDescription vmstate_nand = {
342 .name = "nand",
ac2466cd
AZ
343 .version_id = 1,
344 .minimum_version_id = 1,
345 .minimum_version_id_old = 1,
7b9a3d86
JQ
346 .pre_save = nand_pre_save,
347 .post_load = nand_post_load,
348 .fields = (VMStateField[]) {
349 VMSTATE_UINT8(cle, NANDFlashState),
350 VMSTATE_UINT8(ale, NANDFlashState),
351 VMSTATE_UINT8(ce, NANDFlashState),
352 VMSTATE_UINT8(wp, NANDFlashState),
353 VMSTATE_UINT8(gnd, NANDFlashState),
354 VMSTATE_BUFFER(io, NANDFlashState),
355 VMSTATE_UINT32(ioaddr_vmstate, NANDFlashState),
356 VMSTATE_INT32(iolen, NANDFlashState),
357 VMSTATE_UINT32(cmd, NANDFlashState),
d5f2fd58 358 VMSTATE_UINT64(addr, NANDFlashState),
7b9a3d86
JQ
359 VMSTATE_INT32(addrlen, NANDFlashState),
360 VMSTATE_INT32(status, NANDFlashState),
361 VMSTATE_INT32(offset, NANDFlashState),
362 /* XXX: do we want to save s->storage too? */
363 VMSTATE_END_OF_LIST()
364 }
365};
366
d4220389
JR
367static int nand_device_init(SysBusDevice *dev)
368{
369 int pagesize;
370 NANDFlashState *s = FROM_SYSBUS(NANDFlashState, dev);
371
372 s->buswidth = nand_flash_ids[s->chip_id].width >> 3;
373 s->size = nand_flash_ids[s->chip_id].size << 20;
374 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
375 s->page_shift = 11;
376 s->erase_shift = 6;
377 } else {
378 s->page_shift = nand_flash_ids[s->chip_id].page_shift;
379 s->erase_shift = nand_flash_ids[s->chip_id].erase_shift;
380 }
381
382 switch (1 << s->page_shift) {
383 case 256:
384 nand_init_256(s);
385 break;
386 case 512:
387 nand_init_512(s);
388 break;
389 case 2048:
390 nand_init_2048(s);
391 break;
392 default:
3fc3abf7
JR
393 error_report("Unsupported NAND block size");
394 return -1;
d4220389
JR
395 }
396
397 pagesize = 1 << s->oob_shift;
398 s->mem_oob = 1;
3fc3abf7
JR
399 if (s->bdrv) {
400 if (bdrv_is_read_only(s->bdrv)) {
401 error_report("Can't use a read-only drive");
402 return -1;
403 }
404 if (bdrv_getlength(s->bdrv) >=
405 (s->pages << s->page_shift) + (s->pages << s->oob_shift)) {
406 pagesize = 0;
407 s->mem_oob = 0;
408 }
409 } else {
d4220389
JR
410 pagesize += 1 << s->page_shift;
411 }
412 if (pagesize) {
7267c094 413 s->storage = (uint8_t *) memset(g_malloc(s->pages * pagesize),
d4220389
JR
414 0xff, s->pages * pagesize);
415 }
416 /* Give s->ioaddr a sane value in case we save state before it is used. */
417 s->ioaddr = s->io;
418
419 return 0;
420}
421
999e12bb
AL
422static Property nand_properties[] = {
423 DEFINE_PROP_UINT8("manufacturer_id", NANDFlashState, manf_id, 0),
424 DEFINE_PROP_UINT8("chip_id", NANDFlashState, chip_id, 0),
425 DEFINE_PROP_DRIVE("drive", NANDFlashState, bdrv),
426 DEFINE_PROP_END_OF_LIST(),
427};
428
429static void nand_class_init(ObjectClass *klass, void *data)
430{
39bffca2 431 DeviceClass *dc = DEVICE_CLASS(klass);
999e12bb
AL
432 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
433
434 k->init = nand_device_init;
39bffca2
AL
435 dc->reset = nand_reset;
436 dc->vmsd = &vmstate_nand;
437 dc->props = nand_properties;
999e12bb
AL
438}
439
8c43a6f0 440static const TypeInfo nand_info = {
39bffca2
AL
441 .name = "nand",
442 .parent = TYPE_SYS_BUS_DEVICE,
443 .instance_size = sizeof(NANDFlashState),
444 .class_init = nand_class_init,
d4220389
JR
445};
446
83f7d43a 447static void nand_register_types(void)
d4220389 448{
39bffca2 449 type_register_static(&nand_info);
d4220389
JR
450}
451
3e3d5815
AZ
452/*
453 * Chip inputs are CLE, ALE, CE, WP, GND and eight I/O pins. Chip
454 * outputs are R/B and eight I/O pins.
455 *
456 * CE, WP and R/B are active low.
457 */
d4220389 458void nand_setpins(DeviceState *dev, uint8_t cle, uint8_t ale,
51db57f7 459 uint8_t ce, uint8_t wp, uint8_t gnd)
3e3d5815 460{
d4220389 461 NANDFlashState *s = (NANDFlashState *) dev;
3e3d5815
AZ
462 s->cle = cle;
463 s->ale = ale;
464 s->ce = ce;
465 s->wp = wp;
466 s->gnd = gnd;
467 if (wp)
468 s->status |= NAND_IOSTATUS_UNPROTCT;
469 else
470 s->status &= ~NAND_IOSTATUS_UNPROTCT;
471}
472
d4220389 473void nand_getpins(DeviceState *dev, int *rb)
3e3d5815
AZ
474{
475 *rb = 1;
476}
477
d4220389 478void nand_setio(DeviceState *dev, uint32_t value)
3e3d5815 479{
48197dfa 480 int i;
d4220389 481 NANDFlashState *s = (NANDFlashState *) dev;
3e3d5815
AZ
482 if (!s->ce && s->cle) {
483 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
484 if (s->cmd == NAND_CMD_READ0 && value == NAND_CMD_LPREAD2)
485 return;
486 if (value == NAND_CMD_RANDOMREAD1) {
487 s->addr &= ~((1 << s->addr_shift) - 1);
488 s->addrlen = 0;
489 return;
490 }
491 }
492 if (value == NAND_CMD_READ0)
493 s->offset = 0;
494 else if (value == NAND_CMD_READ1) {
495 s->offset = 0x100;
496 value = NAND_CMD_READ0;
497 }
498 else if (value == NAND_CMD_READ2) {
499 s->offset = 1 << s->page_shift;
500 value = NAND_CMD_READ0;
501 }
502
503 s->cmd = value;
504
505 if (s->cmd == NAND_CMD_READSTATUS ||
506 s->cmd == NAND_CMD_PAGEPROGRAM2 ||
507 s->cmd == NAND_CMD_BLOCKERASE1 ||
508 s->cmd == NAND_CMD_BLOCKERASE2 ||
509 s->cmd == NAND_CMD_NOSERIALREAD2 ||
510 s->cmd == NAND_CMD_RANDOMREAD2 ||
511 s->cmd == NAND_CMD_RESET)
512 nand_command(s);
513
514 if (s->cmd != NAND_CMD_RANDOMREAD2) {
515 s->addrlen = 0;
3e3d5815
AZ
516 }
517 }
518
519 if (s->ale) {
fccd2613
EI
520 unsigned int shift = s->addrlen * 8;
521 unsigned int mask = ~(0xff << shift);
522 unsigned int v = value << shift;
523
524 s->addr = (s->addr & mask) | v;
3e3d5815
AZ
525 s->addrlen ++;
526
48197dfa
JR
527 switch (s->addrlen) {
528 case 1:
529 if (s->cmd == NAND_CMD_READID) {
530 nand_command(s);
531 }
532 break;
533 case 2: /* fix cache address as a byte address */
534 s->addr <<= (s->buswidth - 1);
535 break;
536 case 3:
537 if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
538 (s->cmd == NAND_CMD_READ0 ||
539 s->cmd == NAND_CMD_PAGEPROGRAM1)) {
540 nand_command(s);
541 }
542 break;
543 case 4:
544 if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
545 nand_flash_ids[s->chip_id].size < 256 && /* 1Gb or less */
546 (s->cmd == NAND_CMD_READ0 ||
547 s->cmd == NAND_CMD_PAGEPROGRAM1)) {
548 nand_command(s);
549 }
550 break;
551 case 5:
552 if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
553 nand_flash_ids[s->chip_id].size >= 256 && /* 2Gb or more */
554 (s->cmd == NAND_CMD_READ0 ||
555 s->cmd == NAND_CMD_PAGEPROGRAM1)) {
556 nand_command(s);
557 }
558 break;
559 default:
560 break;
561 }
3e3d5815
AZ
562 }
563
564 if (!s->cle && !s->ale && s->cmd == NAND_CMD_PAGEPROGRAM1) {
48197dfa
JR
565 if (s->iolen < (1 << s->page_shift) + (1 << s->oob_shift)) {
566 for (i = s->buswidth; i--; value >>= 8) {
567 s->io[s->iolen ++] = (uint8_t) (value & 0xff);
568 }
569 }
3e3d5815
AZ
570 } else if (!s->cle && !s->ale && s->cmd == NAND_CMD_COPYBACKPRG1) {
571 if ((s->addr & ((1 << s->addr_shift) - 1)) <
572 (1 << s->page_shift) + (1 << s->oob_shift)) {
48197dfa
JR
573 for (i = s->buswidth; i--; s->addr++, value >>= 8) {
574 s->io[s->iolen + (s->addr & ((1 << s->addr_shift) - 1))] =
575 (uint8_t) (value & 0xff);
576 }
3e3d5815
AZ
577 }
578 }
579}
580
d4220389 581uint32_t nand_getio(DeviceState *dev)
3e3d5815
AZ
582{
583 int offset;
48197dfa 584 uint32_t x = 0;
d4220389 585 NANDFlashState *s = (NANDFlashState *) dev;
5fafdf24 586
3e3d5815
AZ
587 /* Allow sequential reading */
588 if (!s->iolen && s->cmd == NAND_CMD_READ0) {
d5f2fd58 589 offset = (int) (s->addr & ((1 << s->addr_shift) - 1)) + s->offset;
3e3d5815
AZ
590 s->offset = 0;
591
592 s->blk_load(s, s->addr, offset);
593 if (s->gnd)
594 s->iolen = (1 << s->page_shift) - offset;
595 else
596 s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
597 }
598
599 if (s->ce || s->iolen <= 0)
600 return 0;
601
48197dfa
JR
602 for (offset = s->buswidth; offset--;) {
603 x |= s->ioaddr[offset] << (offset << 3);
604 }
d72245fb
JR
605 /* after receiving READ STATUS command all subsequent reads will
606 * return the status register value until another command is issued
607 */
608 if (s->cmd != NAND_CMD_READSTATUS) {
609 s->addr += s->buswidth;
610 s->ioaddr += s->buswidth;
611 s->iolen -= s->buswidth;
612 }
48197dfa
JR
613 return x;
614}
615
d4220389 616uint32_t nand_getbuswidth(DeviceState *dev)
48197dfa 617{
d4220389 618 NANDFlashState *s = (NANDFlashState *) dev;
48197dfa 619 return s->buswidth << 3;
3e3d5815
AZ
620}
621
d4220389 622DeviceState *nand_init(BlockDriverState *bdrv, int manf_id, int chip_id)
3e3d5815 623{
d4220389 624 DeviceState *dev;
3e3d5815
AZ
625
626 if (nand_flash_ids[chip_id].size == 0) {
2ac71179 627 hw_error("%s: Unsupported NAND chip ID.\n", __FUNCTION__);
3e3d5815 628 }
d4220389
JR
629 dev = qdev_create(NULL, "nand");
630 qdev_prop_set_uint8(dev, "manufacturer_id", manf_id);
631 qdev_prop_set_uint8(dev, "chip_id", chip_id);
632 if (bdrv) {
633 qdev_prop_set_drive_nofail(dev, "drive", bdrv);
3e3d5815
AZ
634 }
635
d4220389
JR
636 qdev_init_nofail(dev);
637 return dev;
3e3d5815
AZ
638}
639
83f7d43a 640type_init(nand_register_types)
3e3d5815
AZ
641
642#else
643
644/* Program a single page */
bc24a225 645static void glue(nand_blk_write_, PAGE_SIZE)(NANDFlashState *s)
3e3d5815 646{
d5f2fd58 647 uint64_t off, page, sector, soff;
3e3d5815
AZ
648 uint8_t iobuf[(PAGE_SECTORS + 2) * 0x200];
649 if (PAGE(s->addr) >= s->pages)
650 return;
651
652 if (!s->bdrv) {
89f640bc 653 mem_and(s->storage + PAGE_START(s->addr) + (s->addr & PAGE_MASK) +
3e3d5815
AZ
654 s->offset, s->io, s->iolen);
655 } else if (s->mem_oob) {
656 sector = SECTOR(s->addr);
657 off = (s->addr & PAGE_MASK) + s->offset;
658 soff = SECTOR_OFFSET(s->addr);
7a608f56 659 if (bdrv_read(s->bdrv, sector, iobuf, PAGE_SECTORS) < 0) {
d5f2fd58 660 printf("%s: read error in sector %" PRIu64 "\n", __func__, sector);
3e3d5815
AZ
661 return;
662 }
663
89f640bc 664 mem_and(iobuf + (soff | off), s->io, MIN(s->iolen, PAGE_SIZE - off));
3e3d5815
AZ
665 if (off + s->iolen > PAGE_SIZE) {
666 page = PAGE(s->addr);
89f640bc 667 mem_and(s->storage + (page << OOB_SHIFT), s->io + PAGE_SIZE - off,
3e3d5815
AZ
668 MIN(OOB_SIZE, off + s->iolen - PAGE_SIZE));
669 }
670
7a608f56 671 if (bdrv_write(s->bdrv, sector, iobuf, PAGE_SECTORS) < 0) {
d5f2fd58 672 printf("%s: write error in sector %" PRIu64 "\n", __func__, sector);
7a608f56 673 }
3e3d5815
AZ
674 } else {
675 off = PAGE_START(s->addr) + (s->addr & PAGE_MASK) + s->offset;
676 sector = off >> 9;
677 soff = off & 0x1ff;
7a608f56 678 if (bdrv_read(s->bdrv, sector, iobuf, PAGE_SECTORS + 2) < 0) {
d5f2fd58 679 printf("%s: read error in sector %" PRIu64 "\n", __func__, sector);
3e3d5815
AZ
680 return;
681 }
682
89f640bc 683 mem_and(iobuf + soff, s->io, s->iolen);
3e3d5815 684
7a608f56 685 if (bdrv_write(s->bdrv, sector, iobuf, PAGE_SECTORS + 2) < 0) {
d5f2fd58 686 printf("%s: write error in sector %" PRIu64 "\n", __func__, sector);
7a608f56 687 }
3e3d5815
AZ
688 }
689 s->offset = 0;
690}
691
692/* Erase a single block */
bc24a225 693static void glue(nand_blk_erase_, PAGE_SIZE)(NANDFlashState *s)
3e3d5815 694{
d5f2fd58 695 uint64_t i, page, addr;
3e3d5815
AZ
696 uint8_t iobuf[0x200] = { [0 ... 0x1ff] = 0xff, };
697 addr = s->addr & ~((1 << (ADDR_SHIFT + s->erase_shift)) - 1);
698
699 if (PAGE(addr) >= s->pages)
700 return;
701
702 if (!s->bdrv) {
703 memset(s->storage + PAGE_START(addr),
704 0xff, (PAGE_SIZE + OOB_SIZE) << s->erase_shift);
705 } else if (s->mem_oob) {
706 memset(s->storage + (PAGE(addr) << OOB_SHIFT),
707 0xff, OOB_SIZE << s->erase_shift);
708 i = SECTOR(addr);
709 page = SECTOR(addr + (ADDR_SHIFT + s->erase_shift));
710 for (; i < page; i ++)
7a608f56 711 if (bdrv_write(s->bdrv, i, iobuf, 1) < 0) {
d5f2fd58 712 printf("%s: write error in sector %" PRIu64 "\n", __func__, i);
7a608f56 713 }
3e3d5815
AZ
714 } else {
715 addr = PAGE_START(addr);
716 page = addr >> 9;
7a608f56 717 if (bdrv_read(s->bdrv, page, iobuf, 1) < 0) {
d5f2fd58 718 printf("%s: read error in sector %" PRIu64 "\n", __func__, page);
7a608f56 719 }
3e3d5815 720 memset(iobuf + (addr & 0x1ff), 0xff, (~addr & 0x1ff) + 1);
7a608f56 721 if (bdrv_write(s->bdrv, page, iobuf, 1) < 0) {
d5f2fd58 722 printf("%s: write error in sector %" PRIu64 "\n", __func__, page);
7a608f56 723 }
3e3d5815
AZ
724
725 memset(iobuf, 0xff, 0x200);
726 i = (addr & ~0x1ff) + 0x200;
727 for (addr += ((PAGE_SIZE + OOB_SIZE) << s->erase_shift) - 0x200;
728 i < addr; i += 0x200)
7a608f56 729 if (bdrv_write(s->bdrv, i >> 9, iobuf, 1) < 0) {
d5f2fd58
JR
730 printf("%s: write error in sector %" PRIu64 "\n",
731 __func__, i >> 9);
7a608f56 732 }
3e3d5815
AZ
733
734 page = i >> 9;
7a608f56 735 if (bdrv_read(s->bdrv, page, iobuf, 1) < 0) {
d5f2fd58 736 printf("%s: read error in sector %" PRIu64 "\n", __func__, page);
7a608f56 737 }
a07dec22 738 memset(iobuf, 0xff, ((addr - 1) & 0x1ff) + 1);
7a608f56 739 if (bdrv_write(s->bdrv, page, iobuf, 1) < 0) {
d5f2fd58 740 printf("%s: write error in sector %" PRIu64 "\n", __func__, page);
7a608f56 741 }
3e3d5815
AZ
742 }
743}
744
bc24a225 745static void glue(nand_blk_load_, PAGE_SIZE)(NANDFlashState *s,
d5f2fd58 746 uint64_t addr, int offset)
3e3d5815
AZ
747{
748 if (PAGE(addr) >= s->pages)
749 return;
750
751 if (s->bdrv) {
752 if (s->mem_oob) {
7a608f56 753 if (bdrv_read(s->bdrv, SECTOR(addr), s->io, PAGE_SECTORS) < 0) {
d5f2fd58
JR
754 printf("%s: read error in sector %" PRIu64 "\n",
755 __func__, SECTOR(addr));
7a608f56 756 }
3e3d5815
AZ
757 memcpy(s->io + SECTOR_OFFSET(s->addr) + PAGE_SIZE,
758 s->storage + (PAGE(s->addr) << OOB_SHIFT),
759 OOB_SIZE);
760 s->ioaddr = s->io + SECTOR_OFFSET(s->addr) + offset;
761 } else {
762 if (bdrv_read(s->bdrv, PAGE_START(addr) >> 9,
7a608f56 763 s->io, (PAGE_SECTORS + 2)) < 0) {
d5f2fd58
JR
764 printf("%s: read error in sector %" PRIu64 "\n",
765 __func__, PAGE_START(addr) >> 9);
7a608f56 766 }
3e3d5815
AZ
767 s->ioaddr = s->io + (PAGE_START(addr) & 0x1ff) + offset;
768 }
769 } else {
770 memcpy(s->io, s->storage + PAGE_START(s->addr) +
771 offset, PAGE_SIZE + OOB_SIZE - offset);
772 s->ioaddr = s->io;
773 }
3e3d5815
AZ
774}
775
bc24a225 776static void glue(nand_init_, PAGE_SIZE)(NANDFlashState *s)
3e3d5815
AZ
777{
778 s->oob_shift = PAGE_SHIFT - 5;
779 s->pages = s->size >> PAGE_SHIFT;
780 s->addr_shift = ADDR_SHIFT;
781
782 s->blk_erase = glue(nand_blk_erase_, PAGE_SIZE);
783 s->blk_write = glue(nand_blk_write_, PAGE_SIZE);
784 s->blk_load = glue(nand_blk_load_, PAGE_SIZE);
785}
786
787# undef PAGE_SIZE
788# undef PAGE_SHIFT
789# undef PAGE_SECTORS
790# undef ADDR_SHIFT
791#endif /* NAND_IO */