]> git.proxmox.com Git - qemu.git/blame - hw/cadence_gem.c
cadence_gem: Debug mode compile fixes
[qemu.git] / hw / cadence_gem.c
CommitLineData
e9f186e5
PC
1/*
2 * QEMU Xilinx GEM emulation
3 *
4 * Copyright (c) 2011 Xilinx, Inc.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25#include <zlib.h> /* For crc32 */
26
27#include "sysbus.h"
1422e32d 28#include "net/net.h"
e9f186e5
PC
29#include "net/checksum.h"
30
31#ifdef CADENCE_GEM_ERR_DEBUG
32#define DB_PRINT(...) do { \
33 fprintf(stderr, ": %s: ", __func__); \
34 fprintf(stderr, ## __VA_ARGS__); \
35 } while (0);
36#else
37 #define DB_PRINT(...)
38#endif
39
40#define GEM_NWCTRL (0x00000000/4) /* Network Control reg */
41#define GEM_NWCFG (0x00000004/4) /* Network Config reg */
42#define GEM_NWSTATUS (0x00000008/4) /* Network Status reg */
43#define GEM_USERIO (0x0000000C/4) /* User IO reg */
44#define GEM_DMACFG (0x00000010/4) /* DMA Control reg */
45#define GEM_TXSTATUS (0x00000014/4) /* TX Status reg */
46#define GEM_RXQBASE (0x00000018/4) /* RX Q Base address reg */
47#define GEM_TXQBASE (0x0000001C/4) /* TX Q Base address reg */
48#define GEM_RXSTATUS (0x00000020/4) /* RX Status reg */
49#define GEM_ISR (0x00000024/4) /* Interrupt Status reg */
50#define GEM_IER (0x00000028/4) /* Interrupt Enable reg */
51#define GEM_IDR (0x0000002C/4) /* Interrupt Disable reg */
52#define GEM_IMR (0x00000030/4) /* Interrupt Mask reg */
53#define GEM_PHYMNTNC (0x00000034/4) /* Phy Maintaince reg */
54#define GEM_RXPAUSE (0x00000038/4) /* RX Pause Time reg */
55#define GEM_TXPAUSE (0x0000003C/4) /* TX Pause Time reg */
56#define GEM_TXPARTIALSF (0x00000040/4) /* TX Partial Store and Forward */
57#define GEM_RXPARTIALSF (0x00000044/4) /* RX Partial Store and Forward */
58#define GEM_HASHLO (0x00000080/4) /* Hash Low address reg */
59#define GEM_HASHHI (0x00000084/4) /* Hash High address reg */
60#define GEM_SPADDR1LO (0x00000088/4) /* Specific addr 1 low reg */
61#define GEM_SPADDR1HI (0x0000008C/4) /* Specific addr 1 high reg */
62#define GEM_SPADDR2LO (0x00000090/4) /* Specific addr 2 low reg */
63#define GEM_SPADDR2HI (0x00000094/4) /* Specific addr 2 high reg */
64#define GEM_SPADDR3LO (0x00000098/4) /* Specific addr 3 low reg */
65#define GEM_SPADDR3HI (0x0000009C/4) /* Specific addr 3 high reg */
66#define GEM_SPADDR4LO (0x000000A0/4) /* Specific addr 4 low reg */
67#define GEM_SPADDR4HI (0x000000A4/4) /* Specific addr 4 high reg */
68#define GEM_TIDMATCH1 (0x000000A8/4) /* Type ID1 Match reg */
69#define GEM_TIDMATCH2 (0x000000AC/4) /* Type ID2 Match reg */
70#define GEM_TIDMATCH3 (0x000000B0/4) /* Type ID3 Match reg */
71#define GEM_TIDMATCH4 (0x000000B4/4) /* Type ID4 Match reg */
72#define GEM_WOLAN (0x000000B8/4) /* Wake on LAN reg */
73#define GEM_IPGSTRETCH (0x000000BC/4) /* IPG Stretch reg */
74#define GEM_SVLAN (0x000000C0/4) /* Stacked VLAN reg */
75#define GEM_MODID (0x000000FC/4) /* Module ID reg */
76#define GEM_OCTTXLO (0x00000100/4) /* Octects transmitted Low reg */
77#define GEM_OCTTXHI (0x00000104/4) /* Octects transmitted High reg */
78#define GEM_TXCNT (0x00000108/4) /* Error-free Frames transmitted */
79#define GEM_TXBCNT (0x0000010C/4) /* Error-free Broadcast Frames */
80#define GEM_TXMCNT (0x00000110/4) /* Error-free Multicast Frame */
81#define GEM_TXPAUSECNT (0x00000114/4) /* Pause Frames Transmitted */
82#define GEM_TX64CNT (0x00000118/4) /* Error-free 64 TX */
83#define GEM_TX65CNT (0x0000011C/4) /* Error-free 65-127 TX */
84#define GEM_TX128CNT (0x00000120/4) /* Error-free 128-255 TX */
85#define GEM_TX256CNT (0x00000124/4) /* Error-free 256-511 */
86#define GEM_TX512CNT (0x00000128/4) /* Error-free 512-1023 TX */
87#define GEM_TX1024CNT (0x0000012C/4) /* Error-free 1024-1518 TX */
88#define GEM_TX1519CNT (0x00000130/4) /* Error-free larger than 1519 TX */
89#define GEM_TXURUNCNT (0x00000134/4) /* TX under run error counter */
90#define GEM_SINGLECOLLCNT (0x00000138/4) /* Single Collision Frames */
91#define GEM_MULTCOLLCNT (0x0000013C/4) /* Multiple Collision Frames */
92#define GEM_EXCESSCOLLCNT (0x00000140/4) /* Excessive Collision Frames */
93#define GEM_LATECOLLCNT (0x00000144/4) /* Late Collision Frames */
94#define GEM_DEFERTXCNT (0x00000148/4) /* Deferred Transmission Frames */
95#define GEM_CSENSECNT (0x0000014C/4) /* Carrier Sense Error Counter */
96#define GEM_OCTRXLO (0x00000150/4) /* Octects Received register Low */
97#define GEM_OCTRXHI (0x00000154/4) /* Octects Received register High */
98#define GEM_RXCNT (0x00000158/4) /* Error-free Frames Received */
99#define GEM_RXBROADCNT (0x0000015C/4) /* Error-free Broadcast Frames RX */
100#define GEM_RXMULTICNT (0x00000160/4) /* Error-free Multicast Frames RX */
101#define GEM_RXPAUSECNT (0x00000164/4) /* Pause Frames Received Counter */
102#define GEM_RX64CNT (0x00000168/4) /* Error-free 64 byte Frames RX */
103#define GEM_RX65CNT (0x0000016C/4) /* Error-free 65-127B Frames RX */
104#define GEM_RX128CNT (0x00000170/4) /* Error-free 128-255B Frames RX */
105#define GEM_RX256CNT (0x00000174/4) /* Error-free 256-512B Frames RX */
106#define GEM_RX512CNT (0x00000178/4) /* Error-free 512-1023B Frames RX */
107#define GEM_RX1024CNT (0x0000017C/4) /* Error-free 1024-1518B Frames RX */
108#define GEM_RX1519CNT (0x00000180/4) /* Error-free 1519-max Frames RX */
109#define GEM_RXUNDERCNT (0x00000184/4) /* Undersize Frames Received */
110#define GEM_RXOVERCNT (0x00000188/4) /* Oversize Frames Received */
111#define GEM_RXJABCNT (0x0000018C/4) /* Jabbers Received Counter */
112#define GEM_RXFCSCNT (0x00000190/4) /* Frame Check seq. Error Counter */
113#define GEM_RXLENERRCNT (0x00000194/4) /* Length Field Error Counter */
114#define GEM_RXSYMERRCNT (0x00000198/4) /* Symbol Error Counter */
115#define GEM_RXALIGNERRCNT (0x0000019C/4) /* Alignment Error Counter */
116#define GEM_RXRSCERRCNT (0x000001A0/4) /* Receive Resource Error Counter */
117#define GEM_RXORUNCNT (0x000001A4/4) /* Receive Overrun Counter */
118#define GEM_RXIPCSERRCNT (0x000001A8/4) /* IP header Checksum Error Counter */
119#define GEM_RXTCPCCNT (0x000001AC/4) /* TCP Checksum Error Counter */
120#define GEM_RXUDPCCNT (0x000001B0/4) /* UDP Checksum Error Counter */
121
122#define GEM_1588S (0x000001D0/4) /* 1588 Timer Seconds */
123#define GEM_1588NS (0x000001D4/4) /* 1588 Timer Nanoseconds */
124#define GEM_1588ADJ (0x000001D8/4) /* 1588 Timer Adjust */
125#define GEM_1588INC (0x000001DC/4) /* 1588 Timer Increment */
126#define GEM_PTPETXS (0x000001E0/4) /* PTP Event Frame Transmitted (s) */
127#define GEM_PTPETXNS (0x000001E4/4) /* PTP Event Frame Transmitted (ns) */
128#define GEM_PTPERXS (0x000001E8/4) /* PTP Event Frame Received (s) */
129#define GEM_PTPERXNS (0x000001EC/4) /* PTP Event Frame Received (ns) */
130#define GEM_PTPPTXS (0x000001E0/4) /* PTP Peer Frame Transmitted (s) */
131#define GEM_PTPPTXNS (0x000001E4/4) /* PTP Peer Frame Transmitted (ns) */
132#define GEM_PTPPRXS (0x000001E8/4) /* PTP Peer Frame Received (s) */
133#define GEM_PTPPRXNS (0x000001EC/4) /* PTP Peer Frame Received (ns) */
134
135/* Design Configuration Registers */
136#define GEM_DESCONF (0x00000280/4)
137#define GEM_DESCONF2 (0x00000284/4)
138#define GEM_DESCONF3 (0x00000288/4)
139#define GEM_DESCONF4 (0x0000028C/4)
140#define GEM_DESCONF5 (0x00000290/4)
141#define GEM_DESCONF6 (0x00000294/4)
142#define GEM_DESCONF7 (0x00000298/4)
143
144#define GEM_MAXREG (0x00000640/4) /* Last valid GEM address */
145
146/*****************************************/
147#define GEM_NWCTRL_TXSTART 0x00000200 /* Transmit Enable */
148#define GEM_NWCTRL_TXENA 0x00000008 /* Transmit Enable */
149#define GEM_NWCTRL_RXENA 0x00000004 /* Receive Enable */
150#define GEM_NWCTRL_LOCALLOOP 0x00000002 /* Local Loopback */
151
152#define GEM_NWCFG_STRIP_FCS 0x00020000 /* Strip FCS field */
153#define GEM_NWCFG_LERR_DISC 0x00010000 /* Discard RX frames with lenth err */
154#define GEM_NWCFG_BUFF_OFST_M 0x0000C000 /* Receive buffer offset mask */
155#define GEM_NWCFG_BUFF_OFST_S 14 /* Receive buffer offset shift */
156#define GEM_NWCFG_UCAST_HASH 0x00000080 /* accept unicast if hash match */
157#define GEM_NWCFG_MCAST_HASH 0x00000040 /* accept multicast if hash match */
158#define GEM_NWCFG_BCAST_REJ 0x00000020 /* Reject broadcast packets */
159#define GEM_NWCFG_PROMISC 0x00000010 /* Accept all packets */
160
161#define GEM_DMACFG_RBUFSZ_M 0x007F0000 /* DMA RX Buffer Size mask */
162#define GEM_DMACFG_RBUFSZ_S 16 /* DMA RX Buffer Size shift */
163#define GEM_DMACFG_RBUFSZ_MUL 64 /* DMA RX Buffer Size multiplier */
164#define GEM_DMACFG_TXCSUM_OFFL 0x00000800 /* Transmit checksum offload */
165
166#define GEM_TXSTATUS_TXCMPL 0x00000020 /* Transmit Complete */
167#define GEM_TXSTATUS_USED 0x00000001 /* sw owned descriptor encountered */
168
169#define GEM_RXSTATUS_FRMRCVD 0x00000002 /* Frame received */
170#define GEM_RXSTATUS_NOBUF 0x00000001 /* Buffer unavailable */
171
172/* GEM_ISR GEM_IER GEM_IDR GEM_IMR */
173#define GEM_INT_TXCMPL 0x00000080 /* Transmit Complete */
174#define GEM_INT_TXUSED 0x00000008
175#define GEM_INT_RXUSED 0x00000004
176#define GEM_INT_RXCMPL 0x00000002
177
178#define GEM_PHYMNTNC_OP_R 0x20000000 /* read operation */
179#define GEM_PHYMNTNC_OP_W 0x10000000 /* write operation */
180#define GEM_PHYMNTNC_ADDR 0x0F800000 /* Address bits */
181#define GEM_PHYMNTNC_ADDR_SHFT 23
182#define GEM_PHYMNTNC_REG 0x007C0000 /* register bits */
183#define GEM_PHYMNTNC_REG_SHIFT 18
184
185/* Marvell PHY definitions */
186#define BOARD_PHY_ADDRESS 23 /* PHY address we will emulate a device at */
187
188#define PHY_REG_CONTROL 0
189#define PHY_REG_STATUS 1
190#define PHY_REG_PHYID1 2
191#define PHY_REG_PHYID2 3
192#define PHY_REG_ANEGADV 4
193#define PHY_REG_LINKPABIL 5
194#define PHY_REG_ANEGEXP 6
195#define PHY_REG_NEXTP 7
196#define PHY_REG_LINKPNEXTP 8
197#define PHY_REG_100BTCTRL 9
198#define PHY_REG_1000BTSTAT 10
199#define PHY_REG_EXTSTAT 15
200#define PHY_REG_PHYSPCFC_CTL 16
201#define PHY_REG_PHYSPCFC_ST 17
202#define PHY_REG_INT_EN 18
203#define PHY_REG_INT_ST 19
204#define PHY_REG_EXT_PHYSPCFC_CTL 20
205#define PHY_REG_RXERR 21
206#define PHY_REG_EACD 22
207#define PHY_REG_LED 24
208#define PHY_REG_LED_OVRD 25
209#define PHY_REG_EXT_PHYSPCFC_CTL2 26
210#define PHY_REG_EXT_PHYSPCFC_ST 27
211#define PHY_REG_CABLE_DIAG 28
212
213#define PHY_REG_CONTROL_RST 0x8000
214#define PHY_REG_CONTROL_LOOP 0x4000
215#define PHY_REG_CONTROL_ANEG 0x1000
216
217#define PHY_REG_STATUS_LINK 0x0004
218#define PHY_REG_STATUS_ANEGCMPL 0x0020
219
220#define PHY_REG_INT_ST_ANEGCMPL 0x0800
221#define PHY_REG_INT_ST_LINKC 0x0400
222#define PHY_REG_INT_ST_ENERGY 0x0010
223
224/***********************************************************************/
225#define GEM_RX_REJECT 1
226#define GEM_RX_ACCEPT 0
227
228/***********************************************************************/
229
230#define DESC_1_USED 0x80000000
231#define DESC_1_LENGTH 0x00001FFF
232
233#define DESC_1_TX_WRAP 0x40000000
234#define DESC_1_TX_LAST 0x00008000
235
236#define DESC_0_RX_WRAP 0x00000002
237#define DESC_0_RX_OWNERSHIP 0x00000001
238
239#define DESC_1_RX_SOF 0x00004000
240#define DESC_1_RX_EOF 0x00008000
241
242static inline unsigned tx_desc_get_buffer(unsigned *desc)
243{
244 return desc[0];
245}
246
247static inline unsigned tx_desc_get_used(unsigned *desc)
248{
249 return (desc[1] & DESC_1_USED) ? 1 : 0;
250}
251
252static inline void tx_desc_set_used(unsigned *desc)
253{
254 desc[1] |= DESC_1_USED;
255}
256
257static inline unsigned tx_desc_get_wrap(unsigned *desc)
258{
259 return (desc[1] & DESC_1_TX_WRAP) ? 1 : 0;
260}
261
262static inline unsigned tx_desc_get_last(unsigned *desc)
263{
264 return (desc[1] & DESC_1_TX_LAST) ? 1 : 0;
265}
266
267static inline unsigned tx_desc_get_length(unsigned *desc)
268{
269 return desc[1] & DESC_1_LENGTH;
270}
271
272static inline void print_gem_tx_desc(unsigned *desc)
273{
274 DB_PRINT("TXDESC:\n");
275 DB_PRINT("bufaddr: 0x%08x\n", *desc);
276 DB_PRINT("used_hw: %d\n", tx_desc_get_used(desc));
277 DB_PRINT("wrap: %d\n", tx_desc_get_wrap(desc));
278 DB_PRINT("last: %d\n", tx_desc_get_last(desc));
279 DB_PRINT("length: %d\n", tx_desc_get_length(desc));
280}
281
282static inline unsigned rx_desc_get_buffer(unsigned *desc)
283{
284 return desc[0] & ~0x3UL;
285}
286
287static inline unsigned rx_desc_get_wrap(unsigned *desc)
288{
289 return desc[0] & DESC_0_RX_WRAP ? 1 : 0;
290}
291
292static inline unsigned rx_desc_get_ownership(unsigned *desc)
293{
294 return desc[0] & DESC_0_RX_OWNERSHIP ? 1 : 0;
295}
296
297static inline void rx_desc_set_ownership(unsigned *desc)
298{
299 desc[0] |= DESC_0_RX_OWNERSHIP;
300}
301
302static inline void rx_desc_set_sof(unsigned *desc)
303{
304 desc[1] |= DESC_1_RX_SOF;
305}
306
307static inline void rx_desc_set_eof(unsigned *desc)
308{
309 desc[1] |= DESC_1_RX_EOF;
310}
311
312static inline void rx_desc_set_length(unsigned *desc, unsigned len)
313{
314 desc[1] &= ~DESC_1_LENGTH;
315 desc[1] |= len;
316}
317
318typedef struct {
319 SysBusDevice busdev;
320 MemoryRegion iomem;
321 NICState *nic;
322 NICConf conf;
323 qemu_irq irq;
324
325 /* GEM registers backing store */
326 uint32_t regs[GEM_MAXREG];
327 /* Mask of register bits which are write only */
328 uint32_t regs_wo[GEM_MAXREG];
329 /* Mask of register bits which are read only */
330 uint32_t regs_ro[GEM_MAXREG];
331 /* Mask of register bits which are clear on read */
332 uint32_t regs_rtc[GEM_MAXREG];
333 /* Mask of register bits which are write 1 to clear */
334 uint32_t regs_w1c[GEM_MAXREG];
335
336 /* PHY registers backing store */
337 uint16_t phy_regs[32];
338
339 uint8_t phy_loop; /* Are we in phy loopback? */
340
341 /* The current DMA descriptor pointers */
8279e042
PM
342 uint32_t rx_desc_addr;
343 uint32_t tx_desc_addr;
e9f186e5
PC
344
345} GemState;
346
347/* The broadcast MAC address: 0xFFFFFFFFFFFF */
348const uint8_t broadcast_addr[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
349
350/*
351 * gem_init_register_masks:
352 * One time initialization.
353 * Set masks to identify which register bits have magical clear properties
354 */
355static void gem_init_register_masks(GemState *s)
356{
357 /* Mask of register bits which are read only*/
358 memset(&s->regs_ro[0], 0, sizeof(s->regs_ro));
359 s->regs_ro[GEM_NWCTRL] = 0xFFF80000;
360 s->regs_ro[GEM_NWSTATUS] = 0xFFFFFFFF;
361 s->regs_ro[GEM_DMACFG] = 0xFE00F000;
362 s->regs_ro[GEM_TXSTATUS] = 0xFFFFFE08;
363 s->regs_ro[GEM_RXQBASE] = 0x00000003;
364 s->regs_ro[GEM_TXQBASE] = 0x00000003;
365 s->regs_ro[GEM_RXSTATUS] = 0xFFFFFFF0;
366 s->regs_ro[GEM_ISR] = 0xFFFFFFFF;
367 s->regs_ro[GEM_IMR] = 0xFFFFFFFF;
368 s->regs_ro[GEM_MODID] = 0xFFFFFFFF;
369
370 /* Mask of register bits which are clear on read */
371 memset(&s->regs_rtc[0], 0, sizeof(s->regs_rtc));
372 s->regs_rtc[GEM_ISR] = 0xFFFFFFFF;
373
374 /* Mask of register bits which are write 1 to clear */
375 memset(&s->regs_w1c[0], 0, sizeof(s->regs_w1c));
376 s->regs_w1c[GEM_TXSTATUS] = 0x000001F7;
377 s->regs_w1c[GEM_RXSTATUS] = 0x0000000F;
378
379 /* Mask of register bits which are write only */
380 memset(&s->regs_wo[0], 0, sizeof(s->regs_wo));
381 s->regs_wo[GEM_NWCTRL] = 0x00073E60;
382 s->regs_wo[GEM_IER] = 0x07FFFFFF;
383 s->regs_wo[GEM_IDR] = 0x07FFFFFF;
384}
385
386/*
387 * phy_update_link:
388 * Make the emulated PHY link state match the QEMU "interface" state.
389 */
390static void phy_update_link(GemState *s)
391{
392 DB_PRINT("down %d\n", s->nic->nc.link_down);
393
394 /* Autonegotiation status mirrors link status. */
395 if (s->nic->nc.link_down) {
396 s->phy_regs[PHY_REG_STATUS] &= ~(PHY_REG_STATUS_ANEGCMPL |
397 PHY_REG_STATUS_LINK);
398 s->phy_regs[PHY_REG_INT_ST] |= PHY_REG_INT_ST_LINKC;
399 } else {
400 s->phy_regs[PHY_REG_STATUS] |= (PHY_REG_STATUS_ANEGCMPL |
401 PHY_REG_STATUS_LINK);
402 s->phy_regs[PHY_REG_INT_ST] |= (PHY_REG_INT_ST_LINKC |
403 PHY_REG_INT_ST_ANEGCMPL |
404 PHY_REG_INT_ST_ENERGY);
405 }
406}
407
4e68f7a0 408static int gem_can_receive(NetClientState *nc)
e9f186e5
PC
409{
410 GemState *s;
411
412 s = DO_UPCAST(NICState, nc, nc)->opaque;
413
414 DB_PRINT("\n");
415
416 /* Do nothing if receive is not enabled. */
417 if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_RXENA)) {
418 return 0;
419 }
420
421 return 1;
422}
423
424/*
425 * gem_update_int_status:
426 * Raise or lower interrupt based on current status.
427 */
428static void gem_update_int_status(GemState *s)
429{
430 uint32_t new_interrupts = 0;
431 /* Packet transmitted ? */
432 if (s->regs[GEM_TXSTATUS] & GEM_TXSTATUS_TXCMPL) {
433 new_interrupts |= GEM_INT_TXCMPL;
434 }
435 /* End of TX ring ? */
436 if (s->regs[GEM_TXSTATUS] & GEM_TXSTATUS_USED) {
437 new_interrupts |= GEM_INT_TXUSED;
438 }
439
440 /* Frame received ? */
441 if (s->regs[GEM_RXSTATUS] & GEM_RXSTATUS_FRMRCVD) {
442 new_interrupts |= GEM_INT_RXCMPL;
443 }
444 /* RX ring full ? */
445 if (s->regs[GEM_RXSTATUS] & GEM_RXSTATUS_NOBUF) {
446 new_interrupts |= GEM_INT_RXUSED;
447 }
448
449 s->regs[GEM_ISR] |= new_interrupts & ~(s->regs[GEM_IMR]);
450
451 if (s->regs[GEM_ISR]) {
452 DB_PRINT("asserting int. (0x%08x)\n", s->regs[GEM_ISR]);
453 qemu_set_irq(s->irq, 1);
454 } else {
455 qemu_set_irq(s->irq, 0);
456 }
457}
458
459/*
460 * gem_receive_updatestats:
461 * Increment receive statistics.
462 */
463static void gem_receive_updatestats(GemState *s, const uint8_t *packet,
464 unsigned bytes)
465{
466 uint64_t octets;
467
468 /* Total octets (bytes) received */
469 octets = ((uint64_t)(s->regs[GEM_OCTRXLO]) << 32) |
470 s->regs[GEM_OCTRXHI];
471 octets += bytes;
472 s->regs[GEM_OCTRXLO] = octets >> 32;
473 s->regs[GEM_OCTRXHI] = octets;
474
475 /* Error-free Frames received */
476 s->regs[GEM_RXCNT]++;
477
478 /* Error-free Broadcast Frames counter */
479 if (!memcmp(packet, broadcast_addr, 6)) {
480 s->regs[GEM_RXBROADCNT]++;
481 }
482
483 /* Error-free Multicast Frames counter */
484 if (packet[0] == 0x01) {
485 s->regs[GEM_RXMULTICNT]++;
486 }
487
488 if (bytes <= 64) {
489 s->regs[GEM_RX64CNT]++;
490 } else if (bytes <= 127) {
491 s->regs[GEM_RX65CNT]++;
492 } else if (bytes <= 255) {
493 s->regs[GEM_RX128CNT]++;
494 } else if (bytes <= 511) {
495 s->regs[GEM_RX256CNT]++;
496 } else if (bytes <= 1023) {
497 s->regs[GEM_RX512CNT]++;
498 } else if (bytes <= 1518) {
499 s->regs[GEM_RX1024CNT]++;
500 } else {
501 s->regs[GEM_RX1519CNT]++;
502 }
503}
504
505/*
506 * Get the MAC Address bit from the specified position
507 */
508static unsigned get_bit(const uint8_t *mac, unsigned bit)
509{
510 unsigned byte;
511
512 byte = mac[bit / 8];
513 byte >>= (bit & 0x7);
514 byte &= 1;
515
516 return byte;
517}
518
519/*
520 * Calculate a GEM MAC Address hash index
521 */
522static unsigned calc_mac_hash(const uint8_t *mac)
523{
524 int index_bit, mac_bit;
525 unsigned hash_index;
526
527 hash_index = 0;
528 mac_bit = 5;
529 for (index_bit = 5; index_bit >= 0; index_bit--) {
530 hash_index |= (get_bit(mac, mac_bit) ^
531 get_bit(mac, mac_bit + 6) ^
532 get_bit(mac, mac_bit + 12) ^
533 get_bit(mac, mac_bit + 18) ^
534 get_bit(mac, mac_bit + 24) ^
535 get_bit(mac, mac_bit + 30) ^
536 get_bit(mac, mac_bit + 36) ^
537 get_bit(mac, mac_bit + 42)) << index_bit;
538 mac_bit--;
539 }
540
541 return hash_index;
542}
543
544/*
545 * gem_mac_address_filter:
546 * Accept or reject this destination address?
547 * Returns:
548 * GEM_RX_REJECT: reject
549 * GEM_RX_ACCEPT: accept
550 */
551static int gem_mac_address_filter(GemState *s, const uint8_t *packet)
552{
553 uint8_t *gem_spaddr;
554 int i;
555
556 /* Promiscuous mode? */
557 if (s->regs[GEM_NWCFG] & GEM_NWCFG_PROMISC) {
558 return GEM_RX_ACCEPT;
559 }
560
561 if (!memcmp(packet, broadcast_addr, 6)) {
562 /* Reject broadcast packets? */
563 if (s->regs[GEM_NWCFG] & GEM_NWCFG_BCAST_REJ) {
564 return GEM_RX_REJECT;
565 }
566 return GEM_RX_ACCEPT;
567 }
568
569 /* Accept packets -w- hash match? */
570 if ((packet[0] == 0x01 && (s->regs[GEM_NWCFG] & GEM_NWCFG_MCAST_HASH)) ||
571 (packet[0] != 0x01 && (s->regs[GEM_NWCFG] & GEM_NWCFG_UCAST_HASH))) {
572 unsigned hash_index;
573
574 hash_index = calc_mac_hash(packet);
575 if (hash_index < 32) {
576 if (s->regs[GEM_HASHLO] & (1<<hash_index)) {
577 return GEM_RX_ACCEPT;
578 }
579 } else {
580 hash_index -= 32;
581 if (s->regs[GEM_HASHHI] & (1<<hash_index)) {
582 return GEM_RX_ACCEPT;
583 }
584 }
585 }
586
587 /* Check all 4 specific addresses */
588 gem_spaddr = (uint8_t *)&(s->regs[GEM_SPADDR1LO]);
589 for (i = 0; i < 4; i++) {
590 if (!memcmp(packet, gem_spaddr, 6)) {
591 return GEM_RX_ACCEPT;
592 }
593
594 gem_spaddr += 8;
595 }
596
597 /* No address match; reject the packet */
598 return GEM_RX_REJECT;
599}
600
601/*
602 * gem_receive:
603 * Fit a packet handed to us by QEMU into the receive descriptor ring.
604 */
4e68f7a0 605static ssize_t gem_receive(NetClientState *nc, const uint8_t *buf, size_t size)
e9f186e5
PC
606{
607 unsigned desc[2];
a8170e5e 608 hwaddr packet_desc_addr, last_desc_addr;
e9f186e5
PC
609 GemState *s;
610 unsigned rxbufsize, bytes_to_copy;
611 unsigned rxbuf_offset;
612 uint8_t rxbuf[2048];
613 uint8_t *rxbuf_ptr;
614
615 s = DO_UPCAST(NICState, nc, nc)->opaque;
616
617 /* Do nothing if receive is not enabled. */
618 if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_RXENA)) {
619 return -1;
620 }
621
622 /* Is this destination MAC address "for us" ? */
623 if (gem_mac_address_filter(s, buf) == GEM_RX_REJECT) {
624 return -1;
625 }
626
627 /* Discard packets with receive length error enabled ? */
628 if (s->regs[GEM_NWCFG] & GEM_NWCFG_LERR_DISC) {
629 unsigned type_len;
630
631 /* Fish the ethertype / length field out of the RX packet */
632 type_len = buf[12] << 8 | buf[13];
633 /* It is a length field, not an ethertype */
634 if (type_len < 0x600) {
635 if (size < type_len) {
636 /* discard */
637 return -1;
638 }
639 }
640 }
641
642 /*
643 * Determine configured receive buffer offset (probably 0)
644 */
645 rxbuf_offset = (s->regs[GEM_NWCFG] & GEM_NWCFG_BUFF_OFST_M) >>
646 GEM_NWCFG_BUFF_OFST_S;
647
648 /* The configure size of each receive buffer. Determines how many
649 * buffers needed to hold this packet.
650 */
651 rxbufsize = ((s->regs[GEM_DMACFG] & GEM_DMACFG_RBUFSZ_M) >>
652 GEM_DMACFG_RBUFSZ_S) * GEM_DMACFG_RBUFSZ_MUL;
653 bytes_to_copy = size;
654
655 /* Strip of FCS field ? (usually yes) */
656 if (s->regs[GEM_NWCFG] & GEM_NWCFG_STRIP_FCS) {
657 rxbuf_ptr = (void *)buf;
658 } else {
659 unsigned crc_val;
660 int crc_offset;
661
662 /* The application wants the FCS field, which QEMU does not provide.
663 * We must try and caclculate one.
664 */
665
666 memcpy(rxbuf, buf, size);
5fbe02e8 667 memset(rxbuf + size, 0, sizeof(rxbuf) - size);
e9f186e5
PC
668 rxbuf_ptr = rxbuf;
669 crc_val = cpu_to_le32(crc32(0, rxbuf, MAX(size, 60)));
670 if (size < 60) {
671 crc_offset = 60;
672 } else {
673 crc_offset = size;
674 }
675 memcpy(rxbuf + crc_offset, &crc_val, sizeof(crc_val));
676
677 bytes_to_copy += 4;
678 size += 4;
679 }
680
681 /* Pad to minimum length */
682 if (size < 64) {
683 size = 64;
684 }
685
686 DB_PRINT("config bufsize: %d packet size: %ld\n", rxbufsize, size);
687
688 packet_desc_addr = s->rx_desc_addr;
689 while (1) {
080251a4 690 DB_PRINT("read descriptor 0x%x\n", (unsigned)packet_desc_addr);
e9f186e5
PC
691 /* read current descriptor */
692 cpu_physical_memory_read(packet_desc_addr,
693 (uint8_t *)&desc[0], sizeof(desc));
694
695 /* Descriptor owned by software ? */
696 if (rx_desc_get_ownership(desc) == 1) {
080251a4
PC
697 DB_PRINT("descriptor 0x%x owned by sw.\n",
698 (unsigned)packet_desc_addr);
e9f186e5
PC
699 s->regs[GEM_RXSTATUS] |= GEM_RXSTATUS_NOBUF;
700 /* Handle interrupt consequences */
701 gem_update_int_status(s);
702 return -1;
703 }
704
705 DB_PRINT("copy %d bytes to 0x%x\n", MIN(bytes_to_copy, rxbufsize),
706 rx_desc_get_buffer(desc));
707
708 /*
709 * Let's have QEMU lend a helping hand.
710 */
711 if (rx_desc_get_buffer(desc) == 0) {
712 DB_PRINT("Invalid RX buffer (NULL) for descriptor 0x%x\n",
080251a4 713 (unsigned)packet_desc_addr);
e9f186e5
PC
714 break;
715 }
716
717 /* Copy packet data to emulated DMA buffer */
718 cpu_physical_memory_write(rx_desc_get_buffer(desc) + rxbuf_offset,
719 rxbuf_ptr, MIN(bytes_to_copy, rxbufsize));
720 bytes_to_copy -= MIN(bytes_to_copy, rxbufsize);
721 rxbuf_ptr += MIN(bytes_to_copy, rxbufsize);
722 if (bytes_to_copy == 0) {
723 break;
724 }
725
726 /* Next descriptor */
727 if (rx_desc_get_wrap(desc)) {
728 packet_desc_addr = s->regs[GEM_RXQBASE];
729 } else {
730 packet_desc_addr += 8;
731 }
732 }
733
734 DB_PRINT("set length: %ld, EOF on descriptor 0x%x\n", size,
735 (unsigned)packet_desc_addr);
736
737 /* Update last descriptor with EOF and total length */
738 rx_desc_set_eof(desc);
739 rx_desc_set_length(desc, size);
740 cpu_physical_memory_write(packet_desc_addr,
741 (uint8_t *)&desc[0], sizeof(desc));
742
743 /* Advance RX packet descriptor Q */
744 last_desc_addr = packet_desc_addr;
745 packet_desc_addr = s->rx_desc_addr;
746 s->rx_desc_addr = last_desc_addr;
747 if (rx_desc_get_wrap(desc)) {
748 s->rx_desc_addr = s->regs[GEM_RXQBASE];
749 } else {
750 s->rx_desc_addr += 8;
751 }
752
080251a4 753 DB_PRINT("set SOF, OWN on descriptor 0x%08x\n", (unsigned)packet_desc_addr);
e9f186e5
PC
754
755 /* Count it */
756 gem_receive_updatestats(s, buf, size);
757
758 /* Update first descriptor (which could also be the last) */
759 /* read descriptor */
760 cpu_physical_memory_read(packet_desc_addr,
761 (uint8_t *)&desc[0], sizeof(desc));
762 rx_desc_set_sof(desc);
763 rx_desc_set_ownership(desc);
764 cpu_physical_memory_write(packet_desc_addr,
765 (uint8_t *)&desc[0], sizeof(desc));
766
767 s->regs[GEM_RXSTATUS] |= GEM_RXSTATUS_FRMRCVD;
768
769 /* Handle interrupt consequences */
770 gem_update_int_status(s);
771
772 return size;
773}
774
775/*
776 * gem_transmit_updatestats:
777 * Increment transmit statistics.
778 */
779static void gem_transmit_updatestats(GemState *s, const uint8_t *packet,
780 unsigned bytes)
781{
782 uint64_t octets;
783
784 /* Total octets (bytes) transmitted */
785 octets = ((uint64_t)(s->regs[GEM_OCTTXLO]) << 32) |
786 s->regs[GEM_OCTTXHI];
787 octets += bytes;
788 s->regs[GEM_OCTTXLO] = octets >> 32;
789 s->regs[GEM_OCTTXHI] = octets;
790
791 /* Error-free Frames transmitted */
792 s->regs[GEM_TXCNT]++;
793
794 /* Error-free Broadcast Frames counter */
795 if (!memcmp(packet, broadcast_addr, 6)) {
796 s->regs[GEM_TXBCNT]++;
797 }
798
799 /* Error-free Multicast Frames counter */
800 if (packet[0] == 0x01) {
801 s->regs[GEM_TXMCNT]++;
802 }
803
804 if (bytes <= 64) {
805 s->regs[GEM_TX64CNT]++;
806 } else if (bytes <= 127) {
807 s->regs[GEM_TX65CNT]++;
808 } else if (bytes <= 255) {
809 s->regs[GEM_TX128CNT]++;
810 } else if (bytes <= 511) {
811 s->regs[GEM_TX256CNT]++;
812 } else if (bytes <= 1023) {
813 s->regs[GEM_TX512CNT]++;
814 } else if (bytes <= 1518) {
815 s->regs[GEM_TX1024CNT]++;
816 } else {
817 s->regs[GEM_TX1519CNT]++;
818 }
819}
820
821/*
822 * gem_transmit:
823 * Fish packets out of the descriptor ring and feed them to QEMU
824 */
825static void gem_transmit(GemState *s)
826{
827 unsigned desc[2];
a8170e5e 828 hwaddr packet_desc_addr;
e9f186e5
PC
829 uint8_t tx_packet[2048];
830 uint8_t *p;
831 unsigned total_bytes;
832
833 /* Do nothing if transmit is not enabled. */
834 if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_TXENA)) {
835 return;
836 }
837
838 DB_PRINT("\n");
839
840 /* The packet we will hand off to qemu.
841 * Packets scattered across multiple descriptors are gathered to this
842 * one contiguous buffer first.
843 */
844 p = tx_packet;
845 total_bytes = 0;
846
847 /* read current descriptor */
848 packet_desc_addr = s->tx_desc_addr;
849 cpu_physical_memory_read(packet_desc_addr,
850 (uint8_t *)&desc[0], sizeof(desc));
851 /* Handle all descriptors owned by hardware */
852 while (tx_desc_get_used(desc) == 0) {
853
854 /* Do nothing if transmit is not enabled. */
855 if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_TXENA)) {
856 return;
857 }
858 print_gem_tx_desc(desc);
859
860 /* The real hardware would eat this (and possibly crash).
861 * For QEMU let's lend a helping hand.
862 */
863 if ((tx_desc_get_buffer(desc) == 0) ||
864 (tx_desc_get_length(desc) == 0)) {
080251a4
PC
865 DB_PRINT("Invalid TX descriptor @ 0x%x\n",
866 (unsigned)packet_desc_addr);
e9f186e5
PC
867 break;
868 }
869
870 /* Gather this fragment of the packet from "dma memory" to our contig.
871 * buffer.
872 */
873 cpu_physical_memory_read(tx_desc_get_buffer(desc), p,
874 tx_desc_get_length(desc));
875 p += tx_desc_get_length(desc);
876 total_bytes += tx_desc_get_length(desc);
877
878 /* Last descriptor for this packet; hand the whole thing off */
879 if (tx_desc_get_last(desc)) {
880 /* Modify the 1st descriptor of this packet to be owned by
881 * the processor.
882 */
883 cpu_physical_memory_read(s->tx_desc_addr,
884 (uint8_t *)&desc[0], sizeof(desc));
885 tx_desc_set_used(desc);
886 cpu_physical_memory_write(s->tx_desc_addr,
887 (uint8_t *)&desc[0], sizeof(desc));
888 /* Advance the hardare current descriptor past this packet */
889 if (tx_desc_get_wrap(desc)) {
890 s->tx_desc_addr = s->regs[GEM_TXQBASE];
891 } else {
892 s->tx_desc_addr = packet_desc_addr + 8;
893 }
894 DB_PRINT("TX descriptor next: 0x%08x\n", s->tx_desc_addr);
895
896 s->regs[GEM_TXSTATUS] |= GEM_TXSTATUS_TXCMPL;
897
898 /* Handle interrupt consequences */
899 gem_update_int_status(s);
900
901 /* Is checksum offload enabled? */
902 if (s->regs[GEM_DMACFG] & GEM_DMACFG_TXCSUM_OFFL) {
903 net_checksum_calculate(tx_packet, total_bytes);
904 }
905
906 /* Update MAC statistics */
907 gem_transmit_updatestats(s, tx_packet, total_bytes);
908
909 /* Send the packet somewhere */
910 if (s->phy_loop) {
911 gem_receive(&s->nic->nc, tx_packet, total_bytes);
912 } else {
913 qemu_send_packet(&s->nic->nc, tx_packet, total_bytes);
914 }
915
916 /* Prepare for next packet */
917 p = tx_packet;
918 total_bytes = 0;
919 }
920
921 /* read next descriptor */
922 if (tx_desc_get_wrap(desc)) {
923 packet_desc_addr = s->regs[GEM_TXQBASE];
924 } else {
925 packet_desc_addr += 8;
926 }
927 cpu_physical_memory_read(packet_desc_addr,
928 (uint8_t *)&desc[0], sizeof(desc));
929 }
930
931 if (tx_desc_get_used(desc)) {
932 s->regs[GEM_TXSTATUS] |= GEM_TXSTATUS_USED;
933 gem_update_int_status(s);
934 }
935}
936
937static void gem_phy_reset(GemState *s)
938{
939 memset(&s->phy_regs[0], 0, sizeof(s->phy_regs));
940 s->phy_regs[PHY_REG_CONTROL] = 0x1140;
941 s->phy_regs[PHY_REG_STATUS] = 0x7969;
942 s->phy_regs[PHY_REG_PHYID1] = 0x0141;
943 s->phy_regs[PHY_REG_PHYID2] = 0x0CC2;
944 s->phy_regs[PHY_REG_ANEGADV] = 0x01E1;
945 s->phy_regs[PHY_REG_LINKPABIL] = 0xCDE1;
946 s->phy_regs[PHY_REG_ANEGEXP] = 0x000F;
947 s->phy_regs[PHY_REG_NEXTP] = 0x2001;
948 s->phy_regs[PHY_REG_LINKPNEXTP] = 0x40E6;
949 s->phy_regs[PHY_REG_100BTCTRL] = 0x0300;
950 s->phy_regs[PHY_REG_1000BTSTAT] = 0x7C00;
951 s->phy_regs[PHY_REG_EXTSTAT] = 0x3000;
952 s->phy_regs[PHY_REG_PHYSPCFC_CTL] = 0x0078;
953 s->phy_regs[PHY_REG_PHYSPCFC_ST] = 0xBC00;
954 s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL] = 0x0C60;
955 s->phy_regs[PHY_REG_LED] = 0x4100;
956 s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL2] = 0x000A;
957 s->phy_regs[PHY_REG_EXT_PHYSPCFC_ST] = 0x848B;
958
959 phy_update_link(s);
960}
961
962static void gem_reset(DeviceState *d)
963{
1356b98d 964 GemState *s = FROM_SYSBUS(GemState, SYS_BUS_DEVICE(d));
e9f186e5
PC
965
966 DB_PRINT("\n");
967
968 /* Set post reset register values */
969 memset(&s->regs[0], 0, sizeof(s->regs));
970 s->regs[GEM_NWCFG] = 0x00080000;
971 s->regs[GEM_NWSTATUS] = 0x00000006;
972 s->regs[GEM_DMACFG] = 0x00020784;
973 s->regs[GEM_IMR] = 0x07ffffff;
974 s->regs[GEM_TXPAUSE] = 0x0000ffff;
975 s->regs[GEM_TXPARTIALSF] = 0x000003ff;
976 s->regs[GEM_RXPARTIALSF] = 0x000003ff;
977 s->regs[GEM_MODID] = 0x00020118;
978 s->regs[GEM_DESCONF] = 0x02500111;
979 s->regs[GEM_DESCONF2] = 0x2ab13fff;
980 s->regs[GEM_DESCONF5] = 0x002f2145;
981 s->regs[GEM_DESCONF6] = 0x00000200;
982
983 gem_phy_reset(s);
984
985 gem_update_int_status(s);
986}
987
988static uint16_t gem_phy_read(GemState *s, unsigned reg_num)
989{
990 DB_PRINT("reg: %d value: 0x%04x\n", reg_num, s->phy_regs[reg_num]);
991 return s->phy_regs[reg_num];
992}
993
994static void gem_phy_write(GemState *s, unsigned reg_num, uint16_t val)
995{
996 DB_PRINT("reg: %d value: 0x%04x\n", reg_num, val);
997
998 switch (reg_num) {
999 case PHY_REG_CONTROL:
1000 if (val & PHY_REG_CONTROL_RST) {
1001 /* Phy reset */
1002 gem_phy_reset(s);
1003 val &= ~(PHY_REG_CONTROL_RST | PHY_REG_CONTROL_LOOP);
1004 s->phy_loop = 0;
1005 }
1006 if (val & PHY_REG_CONTROL_ANEG) {
1007 /* Complete autonegotiation immediately */
1008 val &= ~PHY_REG_CONTROL_ANEG;
1009 s->phy_regs[PHY_REG_STATUS] |= PHY_REG_STATUS_ANEGCMPL;
1010 }
1011 if (val & PHY_REG_CONTROL_LOOP) {
1012 DB_PRINT("PHY placed in loopback\n");
1013 s->phy_loop = 1;
1014 } else {
1015 s->phy_loop = 0;
1016 }
1017 break;
1018 }
1019 s->phy_regs[reg_num] = val;
1020}
1021
1022/*
1023 * gem_read32:
1024 * Read a GEM register.
1025 */
a8170e5e 1026static uint64_t gem_read(void *opaque, hwaddr offset, unsigned size)
e9f186e5
PC
1027{
1028 GemState *s;
1029 uint32_t retval;
1030
1031 s = (GemState *)opaque;
1032
1033 offset >>= 2;
1034 retval = s->regs[offset];
1035
080251a4 1036 DB_PRINT("offset: 0x%04x read: 0x%08x\n", (unsigned)offset*4, retval);
e9f186e5
PC
1037
1038 switch (offset) {
1039 case GEM_ISR:
080251a4 1040 DB_PRINT("lowering irq on ISR read\n");
e9f186e5
PC
1041 qemu_set_irq(s->irq, 0);
1042 break;
1043 case GEM_PHYMNTNC:
1044 if (retval & GEM_PHYMNTNC_OP_R) {
1045 uint32_t phy_addr, reg_num;
1046
1047 phy_addr = (retval & GEM_PHYMNTNC_ADDR) >> GEM_PHYMNTNC_ADDR_SHFT;
1048 if (phy_addr == BOARD_PHY_ADDRESS) {
1049 reg_num = (retval & GEM_PHYMNTNC_REG) >> GEM_PHYMNTNC_REG_SHIFT;
1050 retval &= 0xFFFF0000;
1051 retval |= gem_phy_read(s, reg_num);
1052 } else {
1053 retval |= 0xFFFF; /* No device at this address */
1054 }
1055 }
1056 break;
1057 }
1058
1059 /* Squash read to clear bits */
1060 s->regs[offset] &= ~(s->regs_rtc[offset]);
1061
1062 /* Do not provide write only bits */
1063 retval &= ~(s->regs_wo[offset]);
1064
1065 DB_PRINT("0x%08x\n", retval);
1066 return retval;
1067}
1068
1069/*
1070 * gem_write32:
1071 * Write a GEM register.
1072 */
a8170e5e 1073static void gem_write(void *opaque, hwaddr offset, uint64_t val,
e9f186e5
PC
1074 unsigned size)
1075{
1076 GemState *s = (GemState *)opaque;
1077 uint32_t readonly;
1078
080251a4 1079 DB_PRINT("offset: 0x%04x write: 0x%08x ", (unsigned)offset, (unsigned)val);
e9f186e5
PC
1080 offset >>= 2;
1081
1082 /* Squash bits which are read only in write value */
1083 val &= ~(s->regs_ro[offset]);
1084 /* Preserve (only) bits which are read only in register */
1085 readonly = s->regs[offset];
1086 readonly &= s->regs_ro[offset];
1087
1088 /* Squash bits which are write 1 to clear */
1089 val &= ~(s->regs_w1c[offset] & val);
1090
1091 /* Copy register write to backing store */
1092 s->regs[offset] = val | readonly;
1093
1094 /* Handle register write side effects */
1095 switch (offset) {
1096 case GEM_NWCTRL:
1097 if (val & GEM_NWCTRL_TXSTART) {
1098 gem_transmit(s);
1099 }
1100 if (!(val & GEM_NWCTRL_TXENA)) {
1101 /* Reset to start of Q when transmit disabled. */
1102 s->tx_desc_addr = s->regs[GEM_TXQBASE];
1103 }
1104 if (!(val & GEM_NWCTRL_RXENA)) {
1105 /* Reset to start of Q when receive disabled. */
1106 s->rx_desc_addr = s->regs[GEM_RXQBASE];
1107 }
1108 break;
1109
1110 case GEM_TXSTATUS:
1111 gem_update_int_status(s);
1112 break;
1113 case GEM_RXQBASE:
1114 s->rx_desc_addr = val;
1115 break;
1116 case GEM_TXQBASE:
1117 s->tx_desc_addr = val;
1118 break;
1119 case GEM_RXSTATUS:
1120 gem_update_int_status(s);
1121 break;
1122 case GEM_IER:
1123 s->regs[GEM_IMR] &= ~val;
1124 gem_update_int_status(s);
1125 break;
1126 case GEM_IDR:
1127 s->regs[GEM_IMR] |= val;
1128 gem_update_int_status(s);
1129 break;
1130 case GEM_PHYMNTNC:
1131 if (val & GEM_PHYMNTNC_OP_W) {
1132 uint32_t phy_addr, reg_num;
1133
1134 phy_addr = (val & GEM_PHYMNTNC_ADDR) >> GEM_PHYMNTNC_ADDR_SHFT;
1135 if (phy_addr == BOARD_PHY_ADDRESS) {
1136 reg_num = (val & GEM_PHYMNTNC_REG) >> GEM_PHYMNTNC_REG_SHIFT;
1137 gem_phy_write(s, reg_num, val);
1138 }
1139 }
1140 break;
1141 }
1142
1143 DB_PRINT("newval: 0x%08x\n", s->regs[offset]);
1144}
1145
1146static const MemoryRegionOps gem_ops = {
1147 .read = gem_read,
1148 .write = gem_write,
1149 .endianness = DEVICE_LITTLE_ENDIAN,
1150};
1151
4e68f7a0 1152static void gem_cleanup(NetClientState *nc)
e9f186e5
PC
1153{
1154 GemState *s = DO_UPCAST(NICState, nc, nc)->opaque;
1155
1156 DB_PRINT("\n");
1157 s->nic = NULL;
1158}
1159
4e68f7a0 1160static void gem_set_link(NetClientState *nc)
e9f186e5
PC
1161{
1162 DB_PRINT("\n");
1163 phy_update_link(DO_UPCAST(NICState, nc, nc)->opaque);
1164}
1165
1166static NetClientInfo net_gem_info = {
2be64a68 1167 .type = NET_CLIENT_OPTIONS_KIND_NIC,
e9f186e5
PC
1168 .size = sizeof(NICState),
1169 .can_receive = gem_can_receive,
1170 .receive = gem_receive,
1171 .cleanup = gem_cleanup,
1172 .link_status_changed = gem_set_link,
1173};
1174
1175static int gem_init(SysBusDevice *dev)
1176{
1177 GemState *s;
1178
1179 DB_PRINT("\n");
1180
1181 s = FROM_SYSBUS(GemState, dev);
1182 gem_init_register_masks(s);
1183 memory_region_init_io(&s->iomem, &gem_ops, s, "enet", sizeof(s->regs));
1184 sysbus_init_mmio(dev, &s->iomem);
1185 sysbus_init_irq(dev, &s->irq);
1186 qemu_macaddr_default_if_unset(&s->conf.macaddr);
1187
1188 s->nic = qemu_new_nic(&net_gem_info, &s->conf,
1189 object_get_typename(OBJECT(dev)), dev->qdev.id, s);
1190
1191 return 0;
1192}
1193
1194static const VMStateDescription vmstate_cadence_gem = {
1195 .name = "cadence_gem",
1196 .version_id = 1,
1197 .minimum_version_id = 1,
1198 .minimum_version_id_old = 1,
1199 .fields = (VMStateField[]) {
1200 VMSTATE_UINT32_ARRAY(regs, GemState, GEM_MAXREG),
1201 VMSTATE_UINT16_ARRAY(phy_regs, GemState, 32),
1202 VMSTATE_UINT8(phy_loop, GemState),
1203 VMSTATE_UINT32(rx_desc_addr, GemState),
1204 VMSTATE_UINT32(tx_desc_addr, GemState),
1205 }
1206};
1207
1208static Property gem_properties[] = {
1209 DEFINE_NIC_PROPERTIES(GemState, conf),
1210 DEFINE_PROP_END_OF_LIST(),
1211};
1212
1213static void gem_class_init(ObjectClass *klass, void *data)
1214{
1215 DeviceClass *dc = DEVICE_CLASS(klass);
1216 SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
1217
1218 sdc->init = gem_init;
1219 dc->props = gem_properties;
1220 dc->vmsd = &vmstate_cadence_gem;
1221 dc->reset = gem_reset;
1222}
1223
8c43a6f0 1224static const TypeInfo gem_info = {
e9f186e5
PC
1225 .class_init = gem_class_init,
1226 .name = "cadence_gem",
1227 .parent = TYPE_SYS_BUS_DEVICE,
1228 .instance_size = sizeof(GemState),
1229};
1230
1231static void gem_register_types(void)
1232{
1233 type_register_static(&gem_info);
1234}
1235
1236type_init(gem_register_types)