]> git.proxmox.com Git - qemu.git/blame - hw/etraxfs_eth.c
Don't leak VLANClientState on PCI hot remove
[qemu.git] / hw / etraxfs_eth.c
CommitLineData
a3ea5df5
EI
1/*
2 * QEMU ETRAX Ethernet Controller.
3 *
4 * Copyright (c) 2008 Edgar E. Iglesias, Axis Communications AB.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25#include <stdio.h>
26#include "hw.h"
27#include "net.h"
cc53adbc 28#include "etraxfs.h"
a3ea5df5
EI
29
30#define D(x)
31
c6488268
EI
32/* Advertisement control register. */
33#define ADVERTISE_10HALF 0x0020 /* Try for 10mbps half-duplex */
34#define ADVERTISE_10FULL 0x0040 /* Try for 10mbps full-duplex */
35#define ADVERTISE_100HALF 0x0080 /* Try for 100mbps half-duplex */
36#define ADVERTISE_100FULL 0x0100 /* Try for 100mbps full-duplex */
37
2e56350e
EI
38/*
39 * The MDIO extensions in the TDK PHY model were reversed engineered from the
40 * linux driver (PHYID and Diagnostics reg).
41 * TODO: Add friendly names for the register nums.
42 */
a3ea5df5
EI
43struct qemu_phy
44{
45 uint32_t regs[32];
46
94410b78
EI
47 int link;
48
a3ea5df5 49 unsigned int (*read)(struct qemu_phy *phy, unsigned int req);
2e56350e
EI
50 void (*write)(struct qemu_phy *phy, unsigned int req,
51 unsigned int data);
a3ea5df5
EI
52};
53
54static unsigned int tdk_read(struct qemu_phy *phy, unsigned int req)
55{
56 int regnum;
57 unsigned r = 0;
58
59 regnum = req & 0x1f;
60
61 switch (regnum) {
62 case 1:
94410b78
EI
63 if (!phy->link)
64 break;
f6953f13 65 /* MR1. */
a3ea5df5
EI
66 /* Speeds and modes. */
67 r |= (1 << 13) | (1 << 14);
68 r |= (1 << 11) | (1 << 12);
69 r |= (1 << 5); /* Autoneg complete. */
f6953f13 70 r |= (1 << 3); /* Autoneg able. */
94410b78 71 r |= (1 << 2); /* link. */
a3ea5df5 72 break;
2e56350e
EI
73 case 5:
74 /* Link partner ability.
75 We are kind; always agree with whatever best mode
76 the guest advertises. */
77 r = 1 << 14; /* Success. */
78 /* Copy advertised modes. */
79 r |= phy->regs[4] & (15 << 5);
80 /* Autoneg support. */
81 r |= 1;
82 break;
83 case 18:
84 {
85 /* Diagnostics reg. */
86 int duplex = 0;
87 int speed_100 = 0;
88
94410b78
EI
89 if (!phy->link)
90 break;
91
2e56350e 92 /* Are we advertising 100 half or 100 duplex ? */
c6488268
EI
93 speed_100 = !!(phy->regs[4] & ADVERTISE_100HALF);
94 speed_100 |= !!(phy->regs[4] & ADVERTISE_100FULL);
95
2e56350e 96 /* Are we advertising 10 duplex or 100 duplex ? */
c6488268
EI
97 duplex = !!(phy->regs[4] & ADVERTISE_100FULL);
98 duplex |= !!(phy->regs[4] & ADVERTISE_10FULL);
2e56350e
EI
99 r = (speed_100 << 10) | (duplex << 11);
100 }
101 break;
102
a3ea5df5
EI
103 default:
104 r = phy->regs[regnum];
105 break;
106 }
2e56350e 107 D(printf("\n%s %x = reg[%d]\n", __func__, r, regnum));
a3ea5df5
EI
108 return r;
109}
110
111static void
112tdk_write(struct qemu_phy *phy, unsigned int req, unsigned int data)
113{
114 int regnum;
115
116 regnum = req & 0x1f;
117 D(printf("%s reg[%d] = %x\n", __func__, regnum, data));
118 switch (regnum) {
119 default:
120 phy->regs[regnum] = data;
121 break;
122 }
123}
124
125static void
126tdk_init(struct qemu_phy *phy)
127{
2e56350e
EI
128 phy->regs[0] = 0x3100;
129 /* PHY Id. */
130 phy->regs[2] = 0x0300;
131 phy->regs[3] = 0xe400;
132 /* Autonegotiation advertisement reg. */
133 phy->regs[4] = 0x01E1;
94410b78 134 phy->link = 1;
2e56350e 135
a3ea5df5
EI
136 phy->read = tdk_read;
137 phy->write = tdk_write;
138}
139
140struct qemu_mdio
141{
f6953f13 142 /* bus. */
a3ea5df5
EI
143 int mdc;
144 int mdio;
145
146 /* decoder. */
147 enum {
148 PREAMBLE,
149 SOF,
150 OPC,
151 ADDR,
152 REQ,
153 TURNAROUND,
154 DATA
155 } state;
156 unsigned int drive;
157
158 unsigned int cnt;
159 unsigned int addr;
160 unsigned int opc;
161 unsigned int req;
162 unsigned int data;
163
164 struct qemu_phy *devs[32];
165};
166
167static void
168mdio_attach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
169{
170 bus->devs[addr & 0x1f] = phy;
171}
172
d297f464 173#ifdef USE_THIS_DEAD_CODE
a3ea5df5
EI
174static void
175mdio_detach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
176{
177 bus->devs[addr & 0x1f] = NULL;
178}
d297f464 179#endif
a3ea5df5
EI
180
181static void mdio_read_req(struct qemu_mdio *bus)
182{
183 struct qemu_phy *phy;
184
185 phy = bus->devs[bus->addr];
186 if (phy && phy->read)
187 bus->data = phy->read(phy, bus->req);
188 else
189 bus->data = 0xffff;
190}
191
192static void mdio_write_req(struct qemu_mdio *bus)
193{
194 struct qemu_phy *phy;
195
196 phy = bus->devs[bus->addr];
197 if (phy && phy->write)
198 phy->write(phy, bus->req, bus->data);
199}
200
201static void mdio_cycle(struct qemu_mdio *bus)
202{
203 bus->cnt++;
204
205 D(printf("mdc=%d mdio=%d state=%d cnt=%d drv=%d\n",
206 bus->mdc, bus->mdio, bus->state, bus->cnt, bus->drive));
207#if 0
208 if (bus->mdc)
209 printf("%d", bus->mdio);
210#endif
211 switch (bus->state)
212 {
213 case PREAMBLE:
214 if (bus->mdc) {
215 if (bus->cnt >= (32 * 2) && !bus->mdio) {
216 bus->cnt = 0;
217 bus->state = SOF;
218 bus->data = 0;
219 }
220 }
221 break;
222 case SOF:
223 if (bus->mdc) {
224 if (bus->mdio != 1)
225 printf("WARNING: no SOF\n");
226 if (bus->cnt == 1*2) {
227 bus->cnt = 0;
228 bus->opc = 0;
229 bus->state = OPC;
230 }
231 }
232 break;
233 case OPC:
234 if (bus->mdc) {
235 bus->opc <<= 1;
236 bus->opc |= bus->mdio & 1;
237 if (bus->cnt == 2*2) {
238 bus->cnt = 0;
239 bus->addr = 0;
240 bus->state = ADDR;
241 }
242 }
243 break;
244 case ADDR:
245 if (bus->mdc) {
246 bus->addr <<= 1;
247 bus->addr |= bus->mdio & 1;
248
249 if (bus->cnt == 5*2) {
250 bus->cnt = 0;
251 bus->req = 0;
252 bus->state = REQ;
253 }
254 }
255 break;
256 case REQ:
257 if (bus->mdc) {
258 bus->req <<= 1;
259 bus->req |= bus->mdio & 1;
260 if (bus->cnt == 5*2) {
261 bus->cnt = 0;
262 bus->state = TURNAROUND;
263 }
264 }
265 break;
266 case TURNAROUND:
267 if (bus->mdc && bus->cnt == 2*2) {
268 bus->mdio = 0;
269 bus->cnt = 0;
270
271 if (bus->opc == 2) {
272 bus->drive = 1;
273 mdio_read_req(bus);
274 bus->mdio = bus->data & 1;
275 }
276 bus->state = DATA;
277 }
278 break;
279 case DATA:
280 if (!bus->mdc) {
281 if (bus->drive) {
2e56350e
EI
282 bus->mdio = !!(bus->data & (1 << 15));
283 bus->data <<= 1;
a3ea5df5
EI
284 }
285 } else {
286 if (!bus->drive) {
287 bus->data <<= 1;
288 bus->data |= bus->mdio;
289 }
290 if (bus->cnt == 16 * 2) {
291 bus->cnt = 0;
292 bus->state = PREAMBLE;
2e56350e
EI
293 if (!bus->drive)
294 mdio_write_req(bus);
295 bus->drive = 0;
a3ea5df5
EI
296 }
297 }
298 break;
299 default:
300 break;
301 }
302}
303
2e56350e
EI
304/* ETRAX-FS Ethernet MAC block starts here. */
305
f6953f13 306#define RW_MA0_LO 0x00
35ef81d6
EI
307#define RW_MA0_HI 0x01
308#define RW_MA1_LO 0x02
309#define RW_MA1_HI 0x03
310#define RW_GA_LO 0x04
311#define RW_GA_HI 0x05
312#define RW_GEN_CTRL 0x06
313#define RW_REC_CTRL 0x07
314#define RW_TR_CTRL 0x08
315#define RW_CLR_ERR 0x09
316#define RW_MGM_CTRL 0x0a
317#define R_STAT 0x0b
318#define FS_ETH_MAX_REGS 0x17
a3ea5df5
EI
319
320struct fs_eth
321{
f6953f13 322 CPUState *env;
a3ea5df5 323 qemu_irq *irq;
a3ea5df5 324 VLANClientState *vc;
a3ea5df5
EI
325 int ethregs;
326
f6953f13
EI
327 /* Two addrs in the filter. */
328 uint8_t macaddr[2][6];
a3ea5df5
EI
329 uint32_t regs[FS_ETH_MAX_REGS];
330
a3ea5df5
EI
331 struct etraxfs_dma_client *dma_out;
332 struct etraxfs_dma_client *dma_in;
333
334 /* MDIO bus. */
335 struct qemu_mdio mdio_bus;
c6488268
EI
336 unsigned int phyaddr;
337 int duplex_mismatch;
338
f6953f13 339 /* PHY. */
a3ea5df5
EI
340 struct qemu_phy phy;
341};
342
c6488268
EI
343static void eth_validate_duplex(struct fs_eth *eth)
344{
345 struct qemu_phy *phy;
346 unsigned int phy_duplex;
347 unsigned int mac_duplex;
348 int new_mm = 0;
349
350 phy = eth->mdio_bus.devs[eth->phyaddr];
351 phy_duplex = !!(phy->read(phy, 18) & (1 << 11));
352 mac_duplex = !!(eth->regs[RW_REC_CTRL] & 128);
353
354 if (mac_duplex != phy_duplex)
355 new_mm = 1;
356
357 if (eth->regs[RW_GEN_CTRL] & 1) {
358 if (new_mm != eth->duplex_mismatch) {
359 if (new_mm)
360 printf("HW: WARNING "
361 "ETH duplex mismatch MAC=%d PHY=%d\n",
362 mac_duplex, phy_duplex);
363 else
364 printf("HW: ETH duplex ok.\n");
365 }
366 eth->duplex_mismatch = new_mm;
367 }
368}
369
a3ea5df5
EI
370static uint32_t eth_readl (void *opaque, target_phys_addr_t addr)
371{
f6953f13 372 struct fs_eth *eth = opaque;
f6953f13 373 uint32_t r = 0;
a3ea5df5 374
35ef81d6
EI
375 addr >>= 2;
376
f6953f13 377 switch (addr) {
a3ea5df5 378 case R_STAT:
a3ea5df5
EI
379 r = eth->mdio_bus.mdio & 1;
380 break;
f6953f13 381 default:
a3ea5df5 382 r = eth->regs[addr];
35ef81d6 383 D(printf ("%s %x\n", __func__, addr * 4));
f6953f13
EI
384 break;
385 }
386 return r;
a3ea5df5
EI
387}
388
f6953f13
EI
389static void eth_update_ma(struct fs_eth *eth, int ma)
390{
391 int reg;
392 int i = 0;
393
394 ma &= 1;
395
396 reg = RW_MA0_LO;
397 if (ma)
398 reg = RW_MA1_LO;
399
400 eth->macaddr[ma][i++] = eth->regs[reg];
401 eth->macaddr[ma][i++] = eth->regs[reg] >> 8;
402 eth->macaddr[ma][i++] = eth->regs[reg] >> 16;
403 eth->macaddr[ma][i++] = eth->regs[reg] >> 24;
a59cc95e
EI
404 eth->macaddr[ma][i++] = eth->regs[reg + 1];
405 eth->macaddr[ma][i++] = eth->regs[reg + 1] >> 8;
f6953f13
EI
406
407 D(printf("set mac%d=%x.%x.%x.%x.%x.%x\n", ma,
408 eth->macaddr[ma][0], eth->macaddr[ma][1],
409 eth->macaddr[ma][2], eth->macaddr[ma][3],
410 eth->macaddr[ma][4], eth->macaddr[ma][5]));
a3ea5df5
EI
411}
412
413static void
414eth_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
415{
f6953f13 416 struct fs_eth *eth = opaque;
f6953f13 417
35ef81d6 418 addr >>= 2;
f6953f13
EI
419 switch (addr)
420 {
421 case RW_MA0_LO:
f6953f13
EI
422 case RW_MA0_HI:
423 eth->regs[addr] = value;
424 eth_update_ma(eth, 0);
425 break;
426 case RW_MA1_LO:
f6953f13
EI
427 case RW_MA1_HI:
428 eth->regs[addr] = value;
429 eth_update_ma(eth, 1);
430 break;
a3ea5df5 431
a3ea5df5
EI
432 case RW_MGM_CTRL:
433 /* Attach an MDIO/PHY abstraction. */
434 if (value & 2)
435 eth->mdio_bus.mdio = value & 1;
c6488268 436 if (eth->mdio_bus.mdc != (value & 4)) {
a3ea5df5 437 mdio_cycle(&eth->mdio_bus);
c6488268
EI
438 eth_validate_duplex(eth);
439 }
a3ea5df5
EI
440 eth->mdio_bus.mdc = !!(value & 4);
441 break;
442
c6488268
EI
443 case RW_REC_CTRL:
444 eth->regs[addr] = value;
445 eth_validate_duplex(eth);
446 break;
447
f6953f13
EI
448 default:
449 eth->regs[addr] = value;
9bcd77d6
EI
450 D(printf ("%s %x %x\n",
451 __func__, addr, value));
f6953f13
EI
452 break;
453 }
454}
455
456/* The ETRAX FS has a groupt address table (GAT) which works like a k=1 bloom
457 filter dropping group addresses we have not joined. The filter has 64
458 bits (m). The has function is a simple nible xor of the group addr. */
459static int eth_match_groupaddr(struct fs_eth *eth, const unsigned char *sa)
460{
461 unsigned int hsh;
462 int m_individual = eth->regs[RW_REC_CTRL] & 4;
463 int match;
464
465 /* First bit on the wire of a MAC address signals multicast or
466 physical address. */
467 if (!m_individual && !sa[0] & 1)
468 return 0;
469
470 /* Calculate the hash index for the GA registers. */
471 hsh = 0;
472 hsh ^= (*sa) & 0x3f;
473 hsh ^= ((*sa) >> 6) & 0x03;
474 ++sa;
475 hsh ^= ((*sa) << 2) & 0x03c;
476 hsh ^= ((*sa) >> 4) & 0xf;
477 ++sa;
478 hsh ^= ((*sa) << 4) & 0x30;
479 hsh ^= ((*sa) >> 2) & 0x3f;
480 ++sa;
481 hsh ^= (*sa) & 0x3f;
482 hsh ^= ((*sa) >> 6) & 0x03;
483 ++sa;
484 hsh ^= ((*sa) << 2) & 0x03c;
485 hsh ^= ((*sa) >> 4) & 0xf;
486 ++sa;
487 hsh ^= ((*sa) << 4) & 0x30;
488 hsh ^= ((*sa) >> 2) & 0x3f;
489
490 hsh &= 63;
491 if (hsh > 31)
492 match = eth->regs[RW_GA_HI] & (1 << (hsh - 32));
493 else
494 match = eth->regs[RW_GA_LO] & (1 << hsh);
495 D(printf("hsh=%x ga=%x.%x mtch=%d\n", hsh,
496 eth->regs[RW_GA_HI], eth->regs[RW_GA_LO], match));
497 return match;
a3ea5df5
EI
498}
499
500static int eth_can_receive(void *opaque)
501{
aa25cf46 502 return 1;
a3ea5df5
EI
503}
504
505static void eth_receive(void *opaque, const uint8_t *buf, int size)
506{
f6953f13 507 unsigned char sa_bcast[6] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
a3ea5df5 508 struct fs_eth *eth = opaque;
f6953f13
EI
509 int use_ma0 = eth->regs[RW_REC_CTRL] & 1;
510 int use_ma1 = eth->regs[RW_REC_CTRL] & 2;
511 int r_bcast = eth->regs[RW_REC_CTRL] & 8;
512
513 if (size < 12)
514 return;
515
516 D(printf("%x.%x.%x.%x.%x.%x ma=%d %d bc=%d\n",
517 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5],
518 use_ma0, use_ma1, r_bcast));
519
520 /* Does the frame get through the address filters? */
521 if ((!use_ma0 || memcmp(buf, eth->macaddr[0], 6))
522 && (!use_ma1 || memcmp(buf, eth->macaddr[1], 6))
523 && (!r_bcast || memcmp(buf, sa_bcast, 6))
524 && !eth_match_groupaddr(eth, buf))
525 return;
526
aa25cf46
EI
527 /* FIXME: Find another way to pass on the fake csum. */
528 etraxfs_dmac_input(eth->dma_in, (void *)buf, size + 4, 1);
a3ea5df5
EI
529}
530
531static int eth_tx_push(void *opaque, unsigned char *buf, int len)
532{
533 struct fs_eth *eth = opaque;
534
535 D(printf("%s buf=%p len=%d\n", __func__, buf, len));
536 qemu_send_packet(eth->vc, buf, len);
537 return len;
538}
539
94410b78
EI
540static void eth_set_link(VLANClientState *vc)
541{
542 struct fs_eth *eth = vc->opaque;
543 D(printf("%s %d\n", __func__, vc->link_down));
544 eth->phy.link = !vc->link_down;
545}
546
a3ea5df5 547static CPUReadMemoryFunc *eth_read[] = {
35ef81d6 548 NULL, NULL,
2e56350e 549 &eth_readl,
a3ea5df5
EI
550};
551
552static CPUWriteMemoryFunc *eth_write[] = {
35ef81d6 553 NULL, NULL,
2e56350e 554 &eth_writel,
a3ea5df5
EI
555};
556
a34b6eb7
AL
557static void eth_cleanup(VLANClientState *vc)
558{
559 struct fs_eth *eth = vc->opaque;
560
561 cpu_unregister_io_memory(eth->ethregs);
562
563 qemu_free(eth->dma_out);
564 qemu_free(eth);
565}
566
a3ea5df5 567void *etraxfs_eth_init(NICInfo *nd, CPUState *env,
94410b78 568 qemu_irq *irq, target_phys_addr_t base, int phyaddr)
a3ea5df5
EI
569{
570 struct etraxfs_dma_client *dma = NULL;
571 struct fs_eth *eth = NULL;
572
0ae18cee
AL
573 qemu_check_nic_model(nd, "fseth");
574
a3ea5df5 575 dma = qemu_mallocz(sizeof *dma * 2);
a3ea5df5
EI
576
577 eth = qemu_mallocz(sizeof *eth);
a3ea5df5
EI
578
579 dma[0].client.push = eth_tx_push;
580 dma[0].client.opaque = eth;
581 dma[1].client.opaque = eth;
aa25cf46 582 dma[1].client.pull = NULL;
a3ea5df5
EI
583
584 eth->env = env;
a3ea5df5
EI
585 eth->irq = irq;
586 eth->dma_out = dma;
587 eth->dma_in = dma + 1;
a3ea5df5
EI
588
589 /* Connect the phy. */
94410b78 590 eth->phyaddr = phyaddr & 0x1f;
a3ea5df5 591 tdk_init(&eth->phy);
c6488268 592 mdio_attach(&eth->mdio_bus, &eth->phy, eth->phyaddr);
a3ea5df5
EI
593
594 eth->ethregs = cpu_register_io_memory(0, eth_read, eth_write, eth);
595 cpu_register_physical_memory (base, 0x5c, eth->ethregs);
596
ed8f8da7
MM
597 eth->vc = nd->vc = qemu_new_vlan_client(nd->vlan, nd->model, nd->name,
598 eth_receive, eth_can_receive,
599 eth_cleanup, eth);
94410b78
EI
600 eth->vc->opaque = eth;
601 eth->vc->link_status_changed = eth_set_link;
a3ea5df5
EI
602
603 return dma;
a3ea5df5 604}