]> git.proxmox.com Git - qemu.git/blame - hw/fmopl.c
Merge remote branch 'kwolf/for-anthony' into staging
[qemu.git] / hw / fmopl.c
CommitLineData
85571bc7
FB
1/*
2**
3** File: fmopl.c -- software implementation of FM sound generator
4**
5** Copyright (C) 1999,2000 Tatsuyuki Satoh , MultiArcadeMachineEmurator development
6**
7** Version 0.37a
8**
9*/
10
11/*
12 preliminary :
13 Problem :
14 note:
15*/
16
17/* This version of fmopl.c is a fork of the MAME one, relicensed under the LGPL.
18 *
19 * This library is free software; you can redistribute it and/or
20 * modify it under the terms of the GNU Lesser General Public
21 * License as published by the Free Software Foundation; either
22 * version 2.1 of the License, or (at your option) any later version.
23 *
24 * This library is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
27 * Lesser General Public License for more details.
28 *
29 * You should have received a copy of the GNU Lesser General Public
8167ee88 30 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
85571bc7
FB
31 */
32
947f5fcb 33#define INLINE static inline
85571bc7
FB
34#define HAS_YM3812 1
35
36#include <stdio.h>
37#include <stdlib.h>
38#include <string.h>
39#include <stdarg.h>
40#include <math.h>
41//#include "driver.h" /* use M.A.M.E. */
42#include "fmopl.h"
43
44#ifndef PI
45#define PI 3.14159265358979323846
46#endif
47
48/* -------------------- for debug --------------------- */
49/* #define OPL_OUTPUT_LOG */
50#ifdef OPL_OUTPUT_LOG
51static FILE *opl_dbg_fp = NULL;
52static FM_OPL *opl_dbg_opl[16];
53static int opl_dbg_maxchip,opl_dbg_chip;
54#endif
55
56/* -------------------- preliminary define section --------------------- */
57/* attack/decay rate time rate */
58#define OPL_ARRATE 141280 /* RATE 4 = 2826.24ms @ 3.6MHz */
59#define OPL_DRRATE 1956000 /* RATE 4 = 39280.64ms @ 3.6MHz */
60
61#define DELTAT_MIXING_LEVEL (1) /* DELTA-T ADPCM MIXING LEVEL */
62
63#define FREQ_BITS 24 /* frequency turn */
64
65/* counter bits = 20 , octerve 7 */
66#define FREQ_RATE (1<<(FREQ_BITS-20))
67#define TL_BITS (FREQ_BITS+2)
68
69/* final output shift , limit minimum and maximum */
70#define OPL_OUTSB (TL_BITS+3-16) /* OPL output final shift 16bit */
71#define OPL_MAXOUT (0x7fff<<OPL_OUTSB)
72#define OPL_MINOUT (-0x8000<<OPL_OUTSB)
73
74/* -------------------- quality selection --------------------- */
75
76/* sinwave entries */
77/* used static memory = SIN_ENT * 4 (byte) */
78#define SIN_ENT 2048
79
80/* output level entries (envelope,sinwave) */
81/* envelope counter lower bits */
82#define ENV_BITS 16
83/* envelope output entries */
84#define EG_ENT 4096
85/* used dynamic memory = EG_ENT*4*4(byte)or EG_ENT*6*4(byte) */
86/* used static memory = EG_ENT*4 (byte) */
87
88#define EG_OFF ((2*EG_ENT)<<ENV_BITS) /* OFF */
89#define EG_DED EG_OFF
90#define EG_DST (EG_ENT<<ENV_BITS) /* DECAY START */
91#define EG_AED EG_DST
92#define EG_AST 0 /* ATTACK START */
93
94#define EG_STEP (96.0/EG_ENT) /* OPL is 0.1875 dB step */
95
96/* LFO table entries */
97#define VIB_ENT 512
98#define VIB_SHIFT (32-9)
99#define AMS_ENT 512
100#define AMS_SHIFT (32-9)
101
102#define VIB_RATE 256
103
104/* -------------------- local defines , macros --------------------- */
105
106/* register number to channel number , slot offset */
107#define SLOT1 0
108#define SLOT2 1
109
110/* envelope phase */
111#define ENV_MOD_RR 0x00
112#define ENV_MOD_DR 0x01
113#define ENV_MOD_AR 0x02
114
115/* -------------------- tables --------------------- */
116static const int slot_array[32]=
117{
118 0, 2, 4, 1, 3, 5,-1,-1,
119 6, 8,10, 7, 9,11,-1,-1,
120 12,14,16,13,15,17,-1,-1,
121 -1,-1,-1,-1,-1,-1,-1,-1
122};
123
124/* key scale level */
125/* table is 3dB/OCT , DV converts this in TL step at 6dB/OCT */
126#define DV (EG_STEP/2)
127static const UINT32 KSL_TABLE[8*16]=
128{
129 /* OCT 0 */
130 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
131 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
132 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
133 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
134 /* OCT 1 */
135 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
136 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
137 0.000/DV, 0.750/DV, 1.125/DV, 1.500/DV,
138 1.875/DV, 2.250/DV, 2.625/DV, 3.000/DV,
139 /* OCT 2 */
140 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
141 0.000/DV, 1.125/DV, 1.875/DV, 2.625/DV,
142 3.000/DV, 3.750/DV, 4.125/DV, 4.500/DV,
143 4.875/DV, 5.250/DV, 5.625/DV, 6.000/DV,
144 /* OCT 3 */
145 0.000/DV, 0.000/DV, 0.000/DV, 1.875/DV,
146 3.000/DV, 4.125/DV, 4.875/DV, 5.625/DV,
147 6.000/DV, 6.750/DV, 7.125/DV, 7.500/DV,
148 7.875/DV, 8.250/DV, 8.625/DV, 9.000/DV,
149 /* OCT 4 */
150 0.000/DV, 0.000/DV, 3.000/DV, 4.875/DV,
151 6.000/DV, 7.125/DV, 7.875/DV, 8.625/DV,
152 9.000/DV, 9.750/DV,10.125/DV,10.500/DV,
153 10.875/DV,11.250/DV,11.625/DV,12.000/DV,
154 /* OCT 5 */
155 0.000/DV, 3.000/DV, 6.000/DV, 7.875/DV,
156 9.000/DV,10.125/DV,10.875/DV,11.625/DV,
157 12.000/DV,12.750/DV,13.125/DV,13.500/DV,
158 13.875/DV,14.250/DV,14.625/DV,15.000/DV,
159 /* OCT 6 */
160 0.000/DV, 6.000/DV, 9.000/DV,10.875/DV,
161 12.000/DV,13.125/DV,13.875/DV,14.625/DV,
162 15.000/DV,15.750/DV,16.125/DV,16.500/DV,
163 16.875/DV,17.250/DV,17.625/DV,18.000/DV,
164 /* OCT 7 */
165 0.000/DV, 9.000/DV,12.000/DV,13.875/DV,
166 15.000/DV,16.125/DV,16.875/DV,17.625/DV,
167 18.000/DV,18.750/DV,19.125/DV,19.500/DV,
168 19.875/DV,20.250/DV,20.625/DV,21.000/DV
169};
170#undef DV
171
172/* sustain lebel table (3db per step) */
173/* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/
174#define SC(db) (db*((3/EG_STEP)*(1<<ENV_BITS)))+EG_DST
175static const INT32 SL_TABLE[16]={
176 SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7),
177 SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31)
178};
179#undef SC
180
181#define TL_MAX (EG_ENT*2) /* limit(tl + ksr + envelope) + sinwave */
182/* TotalLevel : 48 24 12 6 3 1.5 0.75 (dB) */
183/* TL_TABLE[ 0 to TL_MAX ] : plus section */
184/* TL_TABLE[ TL_MAX to TL_MAX+TL_MAX-1 ] : minus section */
185static INT32 *TL_TABLE;
186
187/* pointers to TL_TABLE with sinwave output offset */
188static INT32 **SIN_TABLE;
189
190/* LFO table */
191static INT32 *AMS_TABLE;
192static INT32 *VIB_TABLE;
193
194/* envelope output curve table */
195/* attack + decay + OFF */
196static INT32 ENV_CURVE[2*EG_ENT+1];
197
198/* multiple table */
199#define ML 2
200static const UINT32 MUL_TABLE[16]= {
201/* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 */
202 0.50*ML, 1.00*ML, 2.00*ML, 3.00*ML, 4.00*ML, 5.00*ML, 6.00*ML, 7.00*ML,
203 8.00*ML, 9.00*ML,10.00*ML,10.00*ML,12.00*ML,12.00*ML,15.00*ML,15.00*ML
204};
205#undef ML
206
207/* dummy attack / decay rate ( when rate == 0 ) */
208static INT32 RATE_0[16]=
209{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
210
211/* -------------------- static state --------------------- */
212
213/* lock level of common table */
214static int num_lock = 0;
215
216/* work table */
217static void *cur_chip = NULL; /* current chip point */
218/* currenct chip state */
219/* static OPLSAMPLE *bufL,*bufR; */
220static OPL_CH *S_CH;
221static OPL_CH *E_CH;
222OPL_SLOT *SLOT7_1,*SLOT7_2,*SLOT8_1,*SLOT8_2;
223
224static INT32 outd[1];
225static INT32 ams;
226static INT32 vib;
227INT32 *ams_table;
228INT32 *vib_table;
229static INT32 amsIncr;
230static INT32 vibIncr;
231static INT32 feedback2; /* connect for SLOT 2 */
232
233/* log output level */
234#define LOG_ERR 3 /* ERROR */
235#define LOG_WAR 2 /* WARNING */
236#define LOG_INF 1 /* INFORMATION */
237
238//#define LOG_LEVEL LOG_INF
239#define LOG_LEVEL LOG_ERR
240
241//#define LOG(n,x) if( (n)>=LOG_LEVEL ) logerror x
242#define LOG(n,x)
243
244/* --------------------- subroutines --------------------- */
245
246INLINE int Limit( int val, int max, int min ) {
247 if ( val > max )
248 val = max;
249 else if ( val < min )
250 val = min;
251
252 return val;
253}
254
255/* status set and IRQ handling */
256INLINE void OPL_STATUS_SET(FM_OPL *OPL,int flag)
257{
258 /* set status flag */
259 OPL->status |= flag;
260 if(!(OPL->status & 0x80))
261 {
262 if(OPL->status & OPL->statusmask)
263 { /* IRQ on */
264 OPL->status |= 0x80;
265 /* callback user interrupt handler (IRQ is OFF to ON) */
266 if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,1);
267 }
268 }
269}
270
271/* status reset and IRQ handling */
272INLINE void OPL_STATUS_RESET(FM_OPL *OPL,int flag)
273{
274 /* reset status flag */
275 OPL->status &=~flag;
276 if((OPL->status & 0x80))
277 {
278 if (!(OPL->status & OPL->statusmask) )
279 {
280 OPL->status &= 0x7f;
281 /* callback user interrupt handler (IRQ is ON to OFF) */
282 if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,0);
283 }
284 }
285}
286
287/* IRQ mask set */
288INLINE void OPL_STATUSMASK_SET(FM_OPL *OPL,int flag)
289{
290 OPL->statusmask = flag;
291 /* IRQ handling check */
292 OPL_STATUS_SET(OPL,0);
293 OPL_STATUS_RESET(OPL,0);
294}
295
296/* ----- key on ----- */
297INLINE void OPL_KEYON(OPL_SLOT *SLOT)
298{
299 /* sin wave restart */
300 SLOT->Cnt = 0;
301 /* set attack */
302 SLOT->evm = ENV_MOD_AR;
303 SLOT->evs = SLOT->evsa;
304 SLOT->evc = EG_AST;
305 SLOT->eve = EG_AED;
306}
307/* ----- key off ----- */
308INLINE void OPL_KEYOFF(OPL_SLOT *SLOT)
309{
310 if( SLOT->evm > ENV_MOD_RR)
311 {
312 /* set envelope counter from envleope output */
313 SLOT->evm = ENV_MOD_RR;
314 if( !(SLOT->evc&EG_DST) )
315 //SLOT->evc = (ENV_CURVE[SLOT->evc>>ENV_BITS]<<ENV_BITS) + EG_DST;
316 SLOT->evc = EG_DST;
317 SLOT->eve = EG_DED;
318 SLOT->evs = SLOT->evsr;
319 }
320}
321
322/* ---------- calcrate Envelope Generator & Phase Generator ---------- */
323/* return : envelope output */
324INLINE UINT32 OPL_CALC_SLOT( OPL_SLOT *SLOT )
325{
326 /* calcrate envelope generator */
327 if( (SLOT->evc+=SLOT->evs) >= SLOT->eve )
328 {
329 switch( SLOT->evm ){
330 case ENV_MOD_AR: /* ATTACK -> DECAY1 */
331 /* next DR */
332 SLOT->evm = ENV_MOD_DR;
333 SLOT->evc = EG_DST;
334 SLOT->eve = SLOT->SL;
335 SLOT->evs = SLOT->evsd;
336 break;
337 case ENV_MOD_DR: /* DECAY -> SL or RR */
338 SLOT->evc = SLOT->SL;
339 SLOT->eve = EG_DED;
340 if(SLOT->eg_typ)
341 {
342 SLOT->evs = 0;
343 }
344 else
345 {
346 SLOT->evm = ENV_MOD_RR;
347 SLOT->evs = SLOT->evsr;
348 }
349 break;
350 case ENV_MOD_RR: /* RR -> OFF */
351 SLOT->evc = EG_OFF;
352 SLOT->eve = EG_OFF+1;
353 SLOT->evs = 0;
354 break;
355 }
356 }
357 /* calcrate envelope */
358 return SLOT->TLL+ENV_CURVE[SLOT->evc>>ENV_BITS]+(SLOT->ams ? ams : 0);
359}
360
361/* set algorythm connection */
362static void set_algorythm( OPL_CH *CH)
363{
364 INT32 *carrier = &outd[0];
365 CH->connect1 = CH->CON ? carrier : &feedback2;
366 CH->connect2 = carrier;
367}
368
369/* ---------- frequency counter for operater update ---------- */
370INLINE void CALC_FCSLOT(OPL_CH *CH,OPL_SLOT *SLOT)
371{
372 int ksr;
373
374 /* frequency step counter */
375 SLOT->Incr = CH->fc * SLOT->mul;
376 ksr = CH->kcode >> SLOT->KSR;
377
378 if( SLOT->ksr != ksr )
379 {
380 SLOT->ksr = ksr;
381 /* attack , decay rate recalcration */
382 SLOT->evsa = SLOT->AR[ksr];
383 SLOT->evsd = SLOT->DR[ksr];
384 SLOT->evsr = SLOT->RR[ksr];
385 }
386 SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
387}
388
389/* set multi,am,vib,EG-TYP,KSR,mul */
390INLINE void set_mul(FM_OPL *OPL,int slot,int v)
391{
392 OPL_CH *CH = &OPL->P_CH[slot/2];
393 OPL_SLOT *SLOT = &CH->SLOT[slot&1];
394
395 SLOT->mul = MUL_TABLE[v&0x0f];
396 SLOT->KSR = (v&0x10) ? 0 : 2;
397 SLOT->eg_typ = (v&0x20)>>5;
398 SLOT->vib = (v&0x40);
399 SLOT->ams = (v&0x80);
400 CALC_FCSLOT(CH,SLOT);
401}
402
403/* set ksl & tl */
404INLINE void set_ksl_tl(FM_OPL *OPL,int slot,int v)
405{
406 OPL_CH *CH = &OPL->P_CH[slot/2];
407 OPL_SLOT *SLOT = &CH->SLOT[slot&1];
408 int ksl = v>>6; /* 0 / 1.5 / 3 / 6 db/OCT */
409
410 SLOT->ksl = ksl ? 3-ksl : 31;
411 SLOT->TL = (v&0x3f)*(0.75/EG_STEP); /* 0.75db step */
412
413 if( !(OPL->mode&0x80) )
414 { /* not CSM latch total level */
415 SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
416 }
417}
418
419/* set attack rate & decay rate */
420INLINE void set_ar_dr(FM_OPL *OPL,int slot,int v)
421{
422 OPL_CH *CH = &OPL->P_CH[slot/2];
423 OPL_SLOT *SLOT = &CH->SLOT[slot&1];
424 int ar = v>>4;
425 int dr = v&0x0f;
426
427 SLOT->AR = ar ? &OPL->AR_TABLE[ar<<2] : RATE_0;
428 SLOT->evsa = SLOT->AR[SLOT->ksr];
429 if( SLOT->evm == ENV_MOD_AR ) SLOT->evs = SLOT->evsa;
430
431 SLOT->DR = dr ? &OPL->DR_TABLE[dr<<2] : RATE_0;
432 SLOT->evsd = SLOT->DR[SLOT->ksr];
433 if( SLOT->evm == ENV_MOD_DR ) SLOT->evs = SLOT->evsd;
434}
435
436/* set sustain level & release rate */
437INLINE void set_sl_rr(FM_OPL *OPL,int slot,int v)
438{
439 OPL_CH *CH = &OPL->P_CH[slot/2];
440 OPL_SLOT *SLOT = &CH->SLOT[slot&1];
441 int sl = v>>4;
442 int rr = v & 0x0f;
443
444 SLOT->SL = SL_TABLE[sl];
445 if( SLOT->evm == ENV_MOD_DR ) SLOT->eve = SLOT->SL;
446 SLOT->RR = &OPL->DR_TABLE[rr<<2];
447 SLOT->evsr = SLOT->RR[SLOT->ksr];
448 if( SLOT->evm == ENV_MOD_RR ) SLOT->evs = SLOT->evsr;
449}
450
451/* operator output calcrator */
452#define OP_OUT(slot,env,con) slot->wavetable[((slot->Cnt+con)/(0x1000000/SIN_ENT))&(SIN_ENT-1)][env]
453/* ---------- calcrate one of channel ---------- */
454INLINE void OPL_CALC_CH( OPL_CH *CH )
455{
456 UINT32 env_out;
457 OPL_SLOT *SLOT;
458
459 feedback2 = 0;
460 /* SLOT 1 */
461 SLOT = &CH->SLOT[SLOT1];
462 env_out=OPL_CALC_SLOT(SLOT);
463 if( env_out < EG_ENT-1 )
464 {
465 /* PG */
466 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
467 else SLOT->Cnt += SLOT->Incr;
468 /* connectoion */
469 if(CH->FB)
470 {
471 int feedback1 = (CH->op1_out[0]+CH->op1_out[1])>>CH->FB;
472 CH->op1_out[1] = CH->op1_out[0];
473 *CH->connect1 += CH->op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
474 }
475 else
476 {
477 *CH->connect1 += OP_OUT(SLOT,env_out,0);
478 }
479 }else
480 {
481 CH->op1_out[1] = CH->op1_out[0];
482 CH->op1_out[0] = 0;
483 }
484 /* SLOT 2 */
485 SLOT = &CH->SLOT[SLOT2];
486 env_out=OPL_CALC_SLOT(SLOT);
487 if( env_out < EG_ENT-1 )
488 {
489 /* PG */
490 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
491 else SLOT->Cnt += SLOT->Incr;
492 /* connectoion */
493 outd[0] += OP_OUT(SLOT,env_out, feedback2);
494 }
495}
496
497/* ---------- calcrate rythm block ---------- */
498#define WHITE_NOISE_db 6.0
499INLINE void OPL_CALC_RH( OPL_CH *CH )
500{
501 UINT32 env_tam,env_sd,env_top,env_hh;
502 int whitenoise = (rand()&1)*(WHITE_NOISE_db/EG_STEP);
503 INT32 tone8;
504
505 OPL_SLOT *SLOT;
506 int env_out;
507
508 /* BD : same as FM serial mode and output level is large */
509 feedback2 = 0;
510 /* SLOT 1 */
511 SLOT = &CH[6].SLOT[SLOT1];
512 env_out=OPL_CALC_SLOT(SLOT);
513 if( env_out < EG_ENT-1 )
514 {
515 /* PG */
516 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
517 else SLOT->Cnt += SLOT->Incr;
518 /* connectoion */
519 if(CH[6].FB)
520 {
521 int feedback1 = (CH[6].op1_out[0]+CH[6].op1_out[1])>>CH[6].FB;
522 CH[6].op1_out[1] = CH[6].op1_out[0];
523 feedback2 = CH[6].op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
524 }
525 else
526 {
527 feedback2 = OP_OUT(SLOT,env_out,0);
528 }
529 }else
530 {
531 feedback2 = 0;
532 CH[6].op1_out[1] = CH[6].op1_out[0];
533 CH[6].op1_out[0] = 0;
534 }
535 /* SLOT 2 */
536 SLOT = &CH[6].SLOT[SLOT2];
537 env_out=OPL_CALC_SLOT(SLOT);
538 if( env_out < EG_ENT-1 )
539 {
540 /* PG */
541 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
542 else SLOT->Cnt += SLOT->Incr;
543 /* connectoion */
544 outd[0] += OP_OUT(SLOT,env_out, feedback2)*2;
545 }
546
547 // SD (17) = mul14[fnum7] + white noise
548 // TAM (15) = mul15[fnum8]
549 // TOP (18) = fnum6(mul18[fnum8]+whitenoise)
550 // HH (14) = fnum7(mul18[fnum8]+whitenoise) + white noise
551 env_sd =OPL_CALC_SLOT(SLOT7_2) + whitenoise;
552 env_tam=OPL_CALC_SLOT(SLOT8_1);
553 env_top=OPL_CALC_SLOT(SLOT8_2);
554 env_hh =OPL_CALC_SLOT(SLOT7_1) + whitenoise;
555
556 /* PG */
557 if(SLOT7_1->vib) SLOT7_1->Cnt += (2*SLOT7_1->Incr*vib/VIB_RATE);
558 else SLOT7_1->Cnt += 2*SLOT7_1->Incr;
559 if(SLOT7_2->vib) SLOT7_2->Cnt += ((CH[7].fc*8)*vib/VIB_RATE);
560 else SLOT7_2->Cnt += (CH[7].fc*8);
561 if(SLOT8_1->vib) SLOT8_1->Cnt += (SLOT8_1->Incr*vib/VIB_RATE);
562 else SLOT8_1->Cnt += SLOT8_1->Incr;
563 if(SLOT8_2->vib) SLOT8_2->Cnt += ((CH[8].fc*48)*vib/VIB_RATE);
564 else SLOT8_2->Cnt += (CH[8].fc*48);
565
566 tone8 = OP_OUT(SLOT8_2,whitenoise,0 );
567
568 /* SD */
569 if( env_sd < EG_ENT-1 )
570 outd[0] += OP_OUT(SLOT7_1,env_sd, 0)*8;
571 /* TAM */
572 if( env_tam < EG_ENT-1 )
573 outd[0] += OP_OUT(SLOT8_1,env_tam, 0)*2;
574 /* TOP-CY */
575 if( env_top < EG_ENT-1 )
576 outd[0] += OP_OUT(SLOT7_2,env_top,tone8)*2;
577 /* HH */
578 if( env_hh < EG_ENT-1 )
579 outd[0] += OP_OUT(SLOT7_2,env_hh,tone8)*2;
580}
581
582/* ----------- initialize time tabls ----------- */
583static void init_timetables( FM_OPL *OPL , int ARRATE , int DRRATE )
584{
585 int i;
586 double rate;
587
588 /* make attack rate & decay rate tables */
589 for (i = 0;i < 4;i++) OPL->AR_TABLE[i] = OPL->DR_TABLE[i] = 0;
590 for (i = 4;i <= 60;i++){
591 rate = OPL->freqbase; /* frequency rate */
592 if( i < 60 ) rate *= 1.0+(i&3)*0.25; /* b0-1 : x1 , x1.25 , x1.5 , x1.75 */
593 rate *= 1<<((i>>2)-1); /* b2-5 : shift bit */
594 rate *= (double)(EG_ENT<<ENV_BITS);
595 OPL->AR_TABLE[i] = rate / ARRATE;
596 OPL->DR_TABLE[i] = rate / DRRATE;
597 }
598 for (i = 60;i < 76;i++)
599 {
600 OPL->AR_TABLE[i] = EG_AED-1;
601 OPL->DR_TABLE[i] = OPL->DR_TABLE[60];
602 }
603#if 0
604 for (i = 0;i < 64 ;i++){ /* make for overflow area */
605 LOG(LOG_WAR,("rate %2d , ar %f ms , dr %f ms \n",i,
606 ((double)(EG_ENT<<ENV_BITS) / OPL->AR_TABLE[i]) * (1000.0 / OPL->rate),
607 ((double)(EG_ENT<<ENV_BITS) / OPL->DR_TABLE[i]) * (1000.0 / OPL->rate) ));
608 }
609#endif
610}
611
612/* ---------- generic table initialize ---------- */
613static int OPLOpenTable( void )
614{
615 int s,t;
616 double rate;
617 int i,j;
618 double pom;
619
620 /* allocate dynamic tables */
809c130c
AL
621 if( (TL_TABLE = malloc(TL_MAX*2*sizeof(INT32))) == NULL)
622 return 0;
623 if( (SIN_TABLE = malloc(SIN_ENT*4 *sizeof(INT32 *))) == NULL)
624 {
625 free(TL_TABLE);
626 return 0;
627 }
628 if( (AMS_TABLE = malloc(AMS_ENT*2 *sizeof(INT32))) == NULL)
629 {
630 free(TL_TABLE);
631 free(SIN_TABLE);
632 return 0;
633 }
634 if( (VIB_TABLE = malloc(VIB_ENT*2 *sizeof(INT32))) == NULL)
635 {
636 free(TL_TABLE);
637 free(SIN_TABLE);
638 free(AMS_TABLE);
639 return 0;
640 }
85571bc7
FB
641 /* make total level table */
642 for (t = 0;t < EG_ENT-1 ;t++){
643 rate = ((1<<TL_BITS)-1)/pow(10,EG_STEP*t/20); /* dB -> voltage */
644 TL_TABLE[ t] = (int)rate;
645 TL_TABLE[TL_MAX+t] = -TL_TABLE[t];
646/* LOG(LOG_INF,("TotalLevel(%3d) = %x\n",t,TL_TABLE[t]));*/
647 }
648 /* fill volume off area */
649 for ( t = EG_ENT-1; t < TL_MAX ;t++){
650 TL_TABLE[t] = TL_TABLE[TL_MAX+t] = 0;
651 }
652
653 /* make sinwave table (total level offet) */
654 /* degree 0 = degree 180 = off */
655 SIN_TABLE[0] = SIN_TABLE[SIN_ENT/2] = &TL_TABLE[EG_ENT-1];
656 for (s = 1;s <= SIN_ENT/4;s++){
657 pom = sin(2*PI*s/SIN_ENT); /* sin */
658 pom = 20*log10(1/pom); /* decibel */
659 j = pom / EG_STEP; /* TL_TABLE steps */
660
661 /* degree 0 - 90 , degree 180 - 90 : plus section */
662 SIN_TABLE[ s] = SIN_TABLE[SIN_ENT/2-s] = &TL_TABLE[j];
663 /* degree 180 - 270 , degree 360 - 270 : minus section */
664 SIN_TABLE[SIN_ENT/2+s] = SIN_TABLE[SIN_ENT -s] = &TL_TABLE[TL_MAX+j];
665/* LOG(LOG_INF,("sin(%3d) = %f:%f db\n",s,pom,(double)j * EG_STEP));*/
666 }
667 for (s = 0;s < SIN_ENT;s++)
668 {
669 SIN_TABLE[SIN_ENT*1+s] = s<(SIN_ENT/2) ? SIN_TABLE[s] : &TL_TABLE[EG_ENT];
670 SIN_TABLE[SIN_ENT*2+s] = SIN_TABLE[s % (SIN_ENT/2)];
671 SIN_TABLE[SIN_ENT*3+s] = (s/(SIN_ENT/4))&1 ? &TL_TABLE[EG_ENT] : SIN_TABLE[SIN_ENT*2+s];
672 }
673
674 /* envelope counter -> envelope output table */
675 for (i=0; i<EG_ENT; i++)
676 {
677 /* ATTACK curve */
678 pom = pow( ((double)(EG_ENT-1-i)/EG_ENT) , 8 ) * EG_ENT;
679 /* if( pom >= EG_ENT ) pom = EG_ENT-1; */
680 ENV_CURVE[i] = (int)pom;
681 /* DECAY ,RELEASE curve */
682 ENV_CURVE[(EG_DST>>ENV_BITS)+i]= i;
683 }
684 /* off */
685 ENV_CURVE[EG_OFF>>ENV_BITS]= EG_ENT-1;
686 /* make LFO ams table */
687 for (i=0; i<AMS_ENT; i++)
688 {
689 pom = (1.0+sin(2*PI*i/AMS_ENT))/2; /* sin */
690 AMS_TABLE[i] = (1.0/EG_STEP)*pom; /* 1dB */
691 AMS_TABLE[AMS_ENT+i] = (4.8/EG_STEP)*pom; /* 4.8dB */
692 }
693 /* make LFO vibrate table */
694 for (i=0; i<VIB_ENT; i++)
695 {
696 /* 100cent = 1seminote = 6% ?? */
697 pom = (double)VIB_RATE*0.06*sin(2*PI*i/VIB_ENT); /* +-100sect step */
698 VIB_TABLE[i] = VIB_RATE + (pom*0.07); /* +- 7cent */
699 VIB_TABLE[VIB_ENT+i] = VIB_RATE + (pom*0.14); /* +-14cent */
700 /* LOG(LOG_INF,("vib %d=%d\n",i,VIB_TABLE[VIB_ENT+i])); */
701 }
702 return 1;
703}
704
705
706static void OPLCloseTable( void )
707{
708 free(TL_TABLE);
709 free(SIN_TABLE);
710 free(AMS_TABLE);
711 free(VIB_TABLE);
712}
713
714/* CSM Key Controll */
715INLINE void CSMKeyControll(OPL_CH *CH)
716{
717 OPL_SLOT *slot1 = &CH->SLOT[SLOT1];
718 OPL_SLOT *slot2 = &CH->SLOT[SLOT2];
719 /* all key off */
720 OPL_KEYOFF(slot1);
721 OPL_KEYOFF(slot2);
722 /* total level latch */
723 slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
724 slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
725 /* key on */
726 CH->op1_out[0] = CH->op1_out[1] = 0;
727 OPL_KEYON(slot1);
728 OPL_KEYON(slot2);
729}
730
731/* ---------- opl initialize ---------- */
732static void OPL_initalize(FM_OPL *OPL)
733{
734 int fn;
735
736 /* frequency base */
737 OPL->freqbase = (OPL->rate) ? ((double)OPL->clock / OPL->rate) / 72 : 0;
738 /* Timer base time */
739 OPL->TimerBase = 1.0/((double)OPL->clock / 72.0 );
740 /* make time tables */
741 init_timetables( OPL , OPL_ARRATE , OPL_DRRATE );
742 /* make fnumber -> increment counter table */
743 for( fn=0 ; fn < 1024 ; fn++ )
744 {
745 OPL->FN_TABLE[fn] = OPL->freqbase * fn * FREQ_RATE * (1<<7) / 2;
746 }
747 /* LFO freq.table */
748 OPL->amsIncr = OPL->rate ? (double)AMS_ENT*(1<<AMS_SHIFT) / OPL->rate * 3.7 * ((double)OPL->clock/3600000) : 0;
749 OPL->vibIncr = OPL->rate ? (double)VIB_ENT*(1<<VIB_SHIFT) / OPL->rate * 6.4 * ((double)OPL->clock/3600000) : 0;
750}
751
752/* ---------- write a OPL registers ---------- */
753static void OPLWriteReg(FM_OPL *OPL, int r, int v)
754{
755 OPL_CH *CH;
756 int slot;
757 int block_fnum;
758
759 switch(r&0xe0)
760 {
761 case 0x00: /* 00-1f:controll */
762 switch(r&0x1f)
763 {
764 case 0x01:
765 /* wave selector enable */
766 if(OPL->type&OPL_TYPE_WAVESEL)
767 {
768 OPL->wavesel = v&0x20;
769 if(!OPL->wavesel)
770 {
771 /* preset compatible mode */
772 int c;
773 for(c=0;c<OPL->max_ch;c++)
774 {
775 OPL->P_CH[c].SLOT[SLOT1].wavetable = &SIN_TABLE[0];
776 OPL->P_CH[c].SLOT[SLOT2].wavetable = &SIN_TABLE[0];
777 }
778 }
779 }
780 return;
781 case 0x02: /* Timer 1 */
782 OPL->T[0] = (256-v)*4;
783 break;
784 case 0x03: /* Timer 2 */
785 OPL->T[1] = (256-v)*16;
786 return;
787 case 0x04: /* IRQ clear / mask and Timer enable */
788 if(v&0x80)
789 { /* IRQ flag clear */
790 OPL_STATUS_RESET(OPL,0x7f);
791 }
792 else
793 { /* set IRQ mask ,timer enable*/
794 UINT8 st1 = v&1;
795 UINT8 st2 = (v>>1)&1;
796 /* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */
797 OPL_STATUS_RESET(OPL,v&0x78);
798 OPL_STATUSMASK_SET(OPL,((~v)&0x78)|0x01);
799 /* timer 2 */
800 if(OPL->st[1] != st2)
801 {
802 double interval = st2 ? (double)OPL->T[1]*OPL->TimerBase : 0.0;
803 OPL->st[1] = st2;
804 if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+1,interval);
805 }
806 /* timer 1 */
807 if(OPL->st[0] != st1)
808 {
809 double interval = st1 ? (double)OPL->T[0]*OPL->TimerBase : 0.0;
810 OPL->st[0] = st1;
811 if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+0,interval);
812 }
813 }
814 return;
815#if BUILD_Y8950
816 case 0x06: /* Key Board OUT */
817 if(OPL->type&OPL_TYPE_KEYBOARD)
818 {
819 if(OPL->keyboardhandler_w)
820 OPL->keyboardhandler_w(OPL->keyboard_param,v);
821 else
822 LOG(LOG_WAR,("OPL:write unmapped KEYBOARD port\n"));
823 }
824 return;
825 case 0x07: /* DELTA-T controll : START,REC,MEMDATA,REPT,SPOFF,x,x,RST */
826 if(OPL->type&OPL_TYPE_ADPCM)
827 YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v);
828 return;
829 case 0x08: /* MODE,DELTA-T : CSM,NOTESEL,x,x,smpl,da/ad,64k,rom */
830 OPL->mode = v;
831 v&=0x1f; /* for DELTA-T unit */
832 case 0x09: /* START ADD */
833 case 0x0a:
834 case 0x0b: /* STOP ADD */
835 case 0x0c:
836 case 0x0d: /* PRESCALE */
837 case 0x0e:
838 case 0x0f: /* ADPCM data */
839 case 0x10: /* DELTA-N */
840 case 0x11: /* DELTA-N */
841 case 0x12: /* EG-CTRL */
842 if(OPL->type&OPL_TYPE_ADPCM)
843 YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v);
844 return;
845#if 0
846 case 0x15: /* DAC data */
847 case 0x16:
848 case 0x17: /* SHIFT */
849 return;
850 case 0x18: /* I/O CTRL (Direction) */
851 if(OPL->type&OPL_TYPE_IO)
852 OPL->portDirection = v&0x0f;
853 return;
854 case 0x19: /* I/O DATA */
855 if(OPL->type&OPL_TYPE_IO)
856 {
857 OPL->portLatch = v;
858 if(OPL->porthandler_w)
859 OPL->porthandler_w(OPL->port_param,v&OPL->portDirection);
860 }
861 return;
862 case 0x1a: /* PCM data */
863 return;
864#endif
865#endif
866 }
867 break;
868 case 0x20: /* am,vib,ksr,eg type,mul */
869 slot = slot_array[r&0x1f];
870 if(slot == -1) return;
871 set_mul(OPL,slot,v);
872 return;
873 case 0x40:
874 slot = slot_array[r&0x1f];
875 if(slot == -1) return;
876 set_ksl_tl(OPL,slot,v);
877 return;
878 case 0x60:
879 slot = slot_array[r&0x1f];
880 if(slot == -1) return;
881 set_ar_dr(OPL,slot,v);
882 return;
883 case 0x80:
884 slot = slot_array[r&0x1f];
885 if(slot == -1) return;
886 set_sl_rr(OPL,slot,v);
887 return;
888 case 0xa0:
889 switch(r)
890 {
891 case 0xbd:
892 /* amsep,vibdep,r,bd,sd,tom,tc,hh */
893 {
894 UINT8 rkey = OPL->rythm^v;
895 OPL->ams_table = &AMS_TABLE[v&0x80 ? AMS_ENT : 0];
896 OPL->vib_table = &VIB_TABLE[v&0x40 ? VIB_ENT : 0];
897 OPL->rythm = v&0x3f;
898 if(OPL->rythm&0x20)
899 {
900#if 0
901 usrintf_showmessage("OPL Rythm mode select");
902#endif
903 /* BD key on/off */
904 if(rkey&0x10)
905 {
906 if(v&0x10)
907 {
908 OPL->P_CH[6].op1_out[0] = OPL->P_CH[6].op1_out[1] = 0;
909 OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT1]);
910 OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT2]);
911 }
912 else
913 {
914 OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1]);
915 OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2]);
916 }
917 }
918 /* SD key on/off */
919 if(rkey&0x08)
920 {
921 if(v&0x08) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT2]);
922 else OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2]);
923 }/* TAM key on/off */
924 if(rkey&0x04)
925 {
926 if(v&0x04) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT1]);
927 else OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1]);
928 }
929 /* TOP-CY key on/off */
930 if(rkey&0x02)
931 {
932 if(v&0x02) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT2]);
933 else OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2]);
934 }
935 /* HH key on/off */
936 if(rkey&0x01)
937 {
938 if(v&0x01) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT1]);
939 else OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1]);
940 }
941 }
942 }
943 return;
944 }
945 /* keyon,block,fnum */
946 if( (r&0x0f) > 8) return;
947 CH = &OPL->P_CH[r&0x0f];
948 if(!(r&0x10))
949 { /* a0-a8 */
950 block_fnum = (CH->block_fnum&0x1f00) | v;
951 }
952 else
953 { /* b0-b8 */
954 int keyon = (v>>5)&1;
955 block_fnum = ((v&0x1f)<<8) | (CH->block_fnum&0xff);
956 if(CH->keyon != keyon)
957 {
958 if( (CH->keyon=keyon) )
959 {
960 CH->op1_out[0] = CH->op1_out[1] = 0;
961 OPL_KEYON(&CH->SLOT[SLOT1]);
962 OPL_KEYON(&CH->SLOT[SLOT2]);
963 }
964 else
965 {
966 OPL_KEYOFF(&CH->SLOT[SLOT1]);
967 OPL_KEYOFF(&CH->SLOT[SLOT2]);
968 }
969 }
970 }
971 /* update */
972 if(CH->block_fnum != block_fnum)
973 {
974 int blockRv = 7-(block_fnum>>10);
975 int fnum = block_fnum&0x3ff;
976 CH->block_fnum = block_fnum;
977
978 CH->ksl_base = KSL_TABLE[block_fnum>>6];
979 CH->fc = OPL->FN_TABLE[fnum]>>blockRv;
980 CH->kcode = CH->block_fnum>>9;
981 if( (OPL->mode&0x40) && CH->block_fnum&0x100) CH->kcode |=1;
982 CALC_FCSLOT(CH,&CH->SLOT[SLOT1]);
983 CALC_FCSLOT(CH,&CH->SLOT[SLOT2]);
984 }
985 return;
986 case 0xc0:
987 /* FB,C */
988 if( (r&0x0f) > 8) return;
989 CH = &OPL->P_CH[r&0x0f];
990 {
991 int feedback = (v>>1)&7;
992 CH->FB = feedback ? (8+1) - feedback : 0;
993 CH->CON = v&1;
994 set_algorythm(CH);
995 }
996 return;
997 case 0xe0: /* wave type */
998 slot = slot_array[r&0x1f];
999 if(slot == -1) return;
1000 CH = &OPL->P_CH[slot/2];
1001 if(OPL->wavesel)
1002 {
1003 /* LOG(LOG_INF,("OPL SLOT %d wave select %d\n",slot,v&3)); */
1004 CH->SLOT[slot&1].wavetable = &SIN_TABLE[(v&0x03)*SIN_ENT];
1005 }
1006 return;
1007 }
1008}
1009
1010/* lock/unlock for common table */
1011static int OPL_LockTable(void)
1012{
1013 num_lock++;
1014 if(num_lock>1) return 0;
1015 /* first time */
1016 cur_chip = NULL;
1017 /* allocate total level table (128kb space) */
1018 if( !OPLOpenTable() )
1019 {
1020 num_lock--;
1021 return -1;
1022 }
1023 return 0;
1024}
1025
1026static void OPL_UnLockTable(void)
1027{
1028 if(num_lock) num_lock--;
1029 if(num_lock) return;
1030 /* last time */
1031 cur_chip = NULL;
1032 OPLCloseTable();
1033}
1034
1035#if (BUILD_YM3812 || BUILD_YM3526)
1036/*******************************************************************************/
1037/* YM3812 local section */
1038/*******************************************************************************/
1039
1040/* ---------- update one of chip ----------- */
1041void YM3812UpdateOne(FM_OPL *OPL, INT16 *buffer, int length)
1042{
1043 int i;
1044 int data;
1045 OPLSAMPLE *buf = buffer;
1046 UINT32 amsCnt = OPL->amsCnt;
1047 UINT32 vibCnt = OPL->vibCnt;
1048 UINT8 rythm = OPL->rythm&0x20;
1049 OPL_CH *CH,*R_CH;
1050
1051 if( (void *)OPL != cur_chip ){
1052 cur_chip = (void *)OPL;
1053 /* channel pointers */
1054 S_CH = OPL->P_CH;
1055 E_CH = &S_CH[9];
1056 /* rythm slot */
1057 SLOT7_1 = &S_CH[7].SLOT[SLOT1];
1058 SLOT7_2 = &S_CH[7].SLOT[SLOT2];
1059 SLOT8_1 = &S_CH[8].SLOT[SLOT1];
1060 SLOT8_2 = &S_CH[8].SLOT[SLOT2];
1061 /* LFO state */
1062 amsIncr = OPL->amsIncr;
1063 vibIncr = OPL->vibIncr;
1064 ams_table = OPL->ams_table;
1065 vib_table = OPL->vib_table;
1066 }
1067 R_CH = rythm ? &S_CH[6] : E_CH;
1068 for( i=0; i < length ; i++ )
1069 {
1070 /* channel A channel B channel C */
1071 /* LFO */
1072 ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT];
1073 vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT];
1074 outd[0] = 0;
1075 /* FM part */
1076 for(CH=S_CH ; CH < R_CH ; CH++)
1077 OPL_CALC_CH(CH);
1078 /* Rythn part */
1079 if(rythm)
1080 OPL_CALC_RH(S_CH);
1081 /* limit check */
1082 data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT );
1083 /* store to sound buffer */
1084 buf[i] = data >> OPL_OUTSB;
1085 }
1086
1087 OPL->amsCnt = amsCnt;
1088 OPL->vibCnt = vibCnt;
1089#ifdef OPL_OUTPUT_LOG
1090 if(opl_dbg_fp)
1091 {
1092 for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++)
1093 if( opl_dbg_opl[opl_dbg_chip] == OPL) break;
1094 fprintf(opl_dbg_fp,"%c%c%c",0x20+opl_dbg_chip,length&0xff,length/256);
1095 }
1096#endif
1097}
1098#endif /* (BUILD_YM3812 || BUILD_YM3526) */
1099
1100#if BUILD_Y8950
1101
1102void Y8950UpdateOne(FM_OPL *OPL, INT16 *buffer, int length)
1103{
1104 int i;
1105 int data;
1106 OPLSAMPLE *buf = buffer;
1107 UINT32 amsCnt = OPL->amsCnt;
1108 UINT32 vibCnt = OPL->vibCnt;
1109 UINT8 rythm = OPL->rythm&0x20;
1110 OPL_CH *CH,*R_CH;
1111 YM_DELTAT *DELTAT = OPL->deltat;
1112
1113 /* setup DELTA-T unit */
1114 YM_DELTAT_DECODE_PRESET(DELTAT);
1115
1116 if( (void *)OPL != cur_chip ){
1117 cur_chip = (void *)OPL;
1118 /* channel pointers */
1119 S_CH = OPL->P_CH;
1120 E_CH = &S_CH[9];
1121 /* rythm slot */
1122 SLOT7_1 = &S_CH[7].SLOT[SLOT1];
1123 SLOT7_2 = &S_CH[7].SLOT[SLOT2];
1124 SLOT8_1 = &S_CH[8].SLOT[SLOT1];
1125 SLOT8_2 = &S_CH[8].SLOT[SLOT2];
1126 /* LFO state */
1127 amsIncr = OPL->amsIncr;
1128 vibIncr = OPL->vibIncr;
1129 ams_table = OPL->ams_table;
1130 vib_table = OPL->vib_table;
1131 }
1132 R_CH = rythm ? &S_CH[6] : E_CH;
1133 for( i=0; i < length ; i++ )
1134 {
1135 /* channel A channel B channel C */
1136 /* LFO */
1137 ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT];
1138 vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT];
1139 outd[0] = 0;
1140 /* deltaT ADPCM */
1141 if( DELTAT->portstate )
1142 YM_DELTAT_ADPCM_CALC(DELTAT);
1143 /* FM part */
1144 for(CH=S_CH ; CH < R_CH ; CH++)
1145 OPL_CALC_CH(CH);
1146 /* Rythn part */
1147 if(rythm)
1148 OPL_CALC_RH(S_CH);
1149 /* limit check */
1150 data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT );
1151 /* store to sound buffer */
1152 buf[i] = data >> OPL_OUTSB;
1153 }
1154 OPL->amsCnt = amsCnt;
1155 OPL->vibCnt = vibCnt;
1156 /* deltaT START flag */
1157 if( !DELTAT->portstate )
1158 OPL->status &= 0xfe;
1159}
1160#endif
1161
1162/* ---------- reset one of chip ---------- */
1163void OPLResetChip(FM_OPL *OPL)
1164{
1165 int c,s;
1166 int i;
1167
1168 /* reset chip */
1169 OPL->mode = 0; /* normal mode */
1170 OPL_STATUS_RESET(OPL,0x7f);
1171 /* reset with register write */
1172 OPLWriteReg(OPL,0x01,0); /* wabesel disable */
1173 OPLWriteReg(OPL,0x02,0); /* Timer1 */
1174 OPLWriteReg(OPL,0x03,0); /* Timer2 */
1175 OPLWriteReg(OPL,0x04,0); /* IRQ mask clear */
1176 for(i = 0xff ; i >= 0x20 ; i-- ) OPLWriteReg(OPL,i,0);
1177 /* reset OPerator paramater */
1178 for( c = 0 ; c < OPL->max_ch ; c++ )
1179 {
1180 OPL_CH *CH = &OPL->P_CH[c];
1181 /* OPL->P_CH[c].PAN = OPN_CENTER; */
1182 for(s = 0 ; s < 2 ; s++ )
1183 {
1184 /* wave table */
1185 CH->SLOT[s].wavetable = &SIN_TABLE[0];
1186 /* CH->SLOT[s].evm = ENV_MOD_RR; */
1187 CH->SLOT[s].evc = EG_OFF;
1188 CH->SLOT[s].eve = EG_OFF+1;
1189 CH->SLOT[s].evs = 0;
1190 }
1191 }
1192#if BUILD_Y8950
1193 if(OPL->type&OPL_TYPE_ADPCM)
1194 {
1195 YM_DELTAT *DELTAT = OPL->deltat;
1196
1197 DELTAT->freqbase = OPL->freqbase;
1198 DELTAT->output_pointer = outd;
1199 DELTAT->portshift = 5;
1200 DELTAT->output_range = DELTAT_MIXING_LEVEL<<TL_BITS;
1201 YM_DELTAT_ADPCM_Reset(DELTAT,0);
1202 }
1203#endif
1204}
1205
1206/* ---------- Create one of vietual YM3812 ---------- */
1207/* 'rate' is sampling rate and 'bufsiz' is the size of the */
1208FM_OPL *OPLCreate(int type, int clock, int rate)
1209{
1210 char *ptr;
1211 FM_OPL *OPL;
1212 int state_size;
1213 int max_ch = 9; /* normaly 9 channels */
1214
1215 if( OPL_LockTable() ==-1) return NULL;
1216 /* allocate OPL state space */
1217 state_size = sizeof(FM_OPL);
1218 state_size += sizeof(OPL_CH)*max_ch;
1219#if BUILD_Y8950
1220 if(type&OPL_TYPE_ADPCM) state_size+= sizeof(YM_DELTAT);
1221#endif
1222 /* allocate memory block */
809c130c
AL
1223 ptr = malloc(state_size);
1224 if(ptr==NULL) return NULL;
85571bc7
FB
1225 /* clear */
1226 memset(ptr,0,state_size);
1227 OPL = (FM_OPL *)ptr; ptr+=sizeof(FM_OPL);
1228 OPL->P_CH = (OPL_CH *)ptr; ptr+=sizeof(OPL_CH)*max_ch;
1229#if BUILD_Y8950
1230 if(type&OPL_TYPE_ADPCM) OPL->deltat = (YM_DELTAT *)ptr; ptr+=sizeof(YM_DELTAT);
1231#endif
1232 /* set channel state pointer */
1233 OPL->type = type;
1234 OPL->clock = clock;
1235 OPL->rate = rate;
1236 OPL->max_ch = max_ch;
1237 /* init grobal tables */
1238 OPL_initalize(OPL);
1239 /* reset chip */
1240 OPLResetChip(OPL);
1241#ifdef OPL_OUTPUT_LOG
1242 if(!opl_dbg_fp)
1243 {
1244 opl_dbg_fp = fopen("opllog.opl","wb");
1245 opl_dbg_maxchip = 0;
1246 }
1247 if(opl_dbg_fp)
1248 {
1249 opl_dbg_opl[opl_dbg_maxchip] = OPL;
1250 fprintf(opl_dbg_fp,"%c%c%c%c%c%c",0x00+opl_dbg_maxchip,
1251 type,
1252 clock&0xff,
1253 (clock/0x100)&0xff,
1254 (clock/0x10000)&0xff,
1255 (clock/0x1000000)&0xff);
1256 opl_dbg_maxchip++;
1257 }
1258#endif
1259 return OPL;
1260}
1261
1262/* ---------- Destroy one of vietual YM3812 ---------- */
1263void OPLDestroy(FM_OPL *OPL)
1264{
1265#ifdef OPL_OUTPUT_LOG
1266 if(opl_dbg_fp)
1267 {
1268 fclose(opl_dbg_fp);
1269 opl_dbg_fp = NULL;
1270 }
1271#endif
1272 OPL_UnLockTable();
1273 free(OPL);
1274}
1275
1276/* ---------- Option handlers ---------- */
1277
1278void OPLSetTimerHandler(FM_OPL *OPL,OPL_TIMERHANDLER TimerHandler,int channelOffset)
1279{
1280 OPL->TimerHandler = TimerHandler;
1281 OPL->TimerParam = channelOffset;
1282}
1283void OPLSetIRQHandler(FM_OPL *OPL,OPL_IRQHANDLER IRQHandler,int param)
1284{
1285 OPL->IRQHandler = IRQHandler;
1286 OPL->IRQParam = param;
1287}
1288void OPLSetUpdateHandler(FM_OPL *OPL,OPL_UPDATEHANDLER UpdateHandler,int param)
1289{
1290 OPL->UpdateHandler = UpdateHandler;
1291 OPL->UpdateParam = param;
1292}
1293#if BUILD_Y8950
1294void OPLSetPortHandler(FM_OPL *OPL,OPL_PORTHANDLER_W PortHandler_w,OPL_PORTHANDLER_R PortHandler_r,int param)
1295{
1296 OPL->porthandler_w = PortHandler_w;
1297 OPL->porthandler_r = PortHandler_r;
1298 OPL->port_param = param;
1299}
1300
1301void OPLSetKeyboardHandler(FM_OPL *OPL,OPL_PORTHANDLER_W KeyboardHandler_w,OPL_PORTHANDLER_R KeyboardHandler_r,int param)
1302{
1303 OPL->keyboardhandler_w = KeyboardHandler_w;
1304 OPL->keyboardhandler_r = KeyboardHandler_r;
1305 OPL->keyboard_param = param;
1306}
1307#endif
1308/* ---------- YM3812 I/O interface ---------- */
1309int OPLWrite(FM_OPL *OPL,int a,int v)
1310{
1311 if( !(a&1) )
1312 { /* address port */
1313 OPL->address = v & 0xff;
1314 }
1315 else
1316 { /* data port */
1317 if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0);
1318#ifdef OPL_OUTPUT_LOG
1319 if(opl_dbg_fp)
1320 {
1321 for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++)
1322 if( opl_dbg_opl[opl_dbg_chip] == OPL) break;
1323 fprintf(opl_dbg_fp,"%c%c%c",0x10+opl_dbg_chip,OPL->address,v);
1324 }
1325#endif
1326 OPLWriteReg(OPL,OPL->address,v);
1327 }
1328 return OPL->status>>7;
1329}
1330
1331unsigned char OPLRead(FM_OPL *OPL,int a)
1332{
1333 if( !(a&1) )
1334 { /* status port */
1335 return OPL->status & (OPL->statusmask|0x80);
1336 }
1337 /* data port */
1338 switch(OPL->address)
1339 {
1340 case 0x05: /* KeyBoard IN */
1341 if(OPL->type&OPL_TYPE_KEYBOARD)
1342 {
1343 if(OPL->keyboardhandler_r)
1344 return OPL->keyboardhandler_r(OPL->keyboard_param);
1345 else
1346 LOG(LOG_WAR,("OPL:read unmapped KEYBOARD port\n"));
1347 }
1348 return 0;
1349#if 0
1350 case 0x0f: /* ADPCM-DATA */
1351 return 0;
1352#endif
1353 case 0x19: /* I/O DATA */
1354 if(OPL->type&OPL_TYPE_IO)
1355 {
1356 if(OPL->porthandler_r)
1357 return OPL->porthandler_r(OPL->port_param);
1358 else
1359 LOG(LOG_WAR,("OPL:read unmapped I/O port\n"));
1360 }
1361 return 0;
1362 case 0x1a: /* PCM-DATA */
1363 return 0;
1364 }
1365 return 0;
1366}
1367
1368int OPLTimerOver(FM_OPL *OPL,int c)
1369{
1370 if( c )
1371 { /* Timer B */
1372 OPL_STATUS_SET(OPL,0x20);
1373 }
1374 else
1375 { /* Timer A */
1376 OPL_STATUS_SET(OPL,0x40);
1377 /* CSM mode key,TL controll */
1378 if( OPL->mode & 0x80 )
1379 { /* CSM mode total level latch and auto key on */
1380 int ch;
1381 if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0);
1382 for(ch=0;ch<9;ch++)
1383 CSMKeyControll( &OPL->P_CH[ch] );
1384 }
1385 }
1386 /* reload timer */
1387 if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+c,(double)OPL->T[c]*OPL->TimerBase);
1388 return OPL->status>>7;
1389}