]>
Commit | Line | Data |
---|---|---|
85571bc7 FB |
1 | /* |
2 | ** | |
3 | ** File: fmopl.c -- software implementation of FM sound generator | |
4 | ** | |
5 | ** Copyright (C) 1999,2000 Tatsuyuki Satoh , MultiArcadeMachineEmurator development | |
6 | ** | |
7 | ** Version 0.37a | |
8 | ** | |
9 | */ | |
10 | ||
11 | /* | |
12 | preliminary : | |
13 | Problem : | |
14 | note: | |
15 | */ | |
16 | ||
17 | /* This version of fmopl.c is a fork of the MAME one, relicensed under the LGPL. | |
18 | * | |
19 | * This library is free software; you can redistribute it and/or | |
20 | * modify it under the terms of the GNU Lesser General Public | |
21 | * License as published by the Free Software Foundation; either | |
22 | * version 2.1 of the License, or (at your option) any later version. | |
23 | * | |
24 | * This library is distributed in the hope that it will be useful, | |
25 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
26 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
27 | * Lesser General Public License for more details. | |
28 | * | |
29 | * You should have received a copy of the GNU Lesser General Public | |
8167ee88 | 30 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
85571bc7 FB |
31 | */ |
32 | ||
947f5fcb | 33 | #define INLINE static inline |
85571bc7 FB |
34 | #define HAS_YM3812 1 |
35 | ||
36 | #include <stdio.h> | |
37 | #include <stdlib.h> | |
38 | #include <string.h> | |
39 | #include <stdarg.h> | |
40 | #include <math.h> | |
41 | //#include "driver.h" /* use M.A.M.E. */ | |
42 | #include "fmopl.h" | |
43 | ||
44 | #ifndef PI | |
45 | #define PI 3.14159265358979323846 | |
46 | #endif | |
47 | ||
48 | /* -------------------- for debug --------------------- */ | |
49 | /* #define OPL_OUTPUT_LOG */ | |
50 | #ifdef OPL_OUTPUT_LOG | |
51 | static FILE *opl_dbg_fp = NULL; | |
52 | static FM_OPL *opl_dbg_opl[16]; | |
53 | static int opl_dbg_maxchip,opl_dbg_chip; | |
54 | #endif | |
55 | ||
56 | /* -------------------- preliminary define section --------------------- */ | |
57 | /* attack/decay rate time rate */ | |
58 | #define OPL_ARRATE 141280 /* RATE 4 = 2826.24ms @ 3.6MHz */ | |
59 | #define OPL_DRRATE 1956000 /* RATE 4 = 39280.64ms @ 3.6MHz */ | |
60 | ||
61 | #define DELTAT_MIXING_LEVEL (1) /* DELTA-T ADPCM MIXING LEVEL */ | |
62 | ||
63 | #define FREQ_BITS 24 /* frequency turn */ | |
64 | ||
65 | /* counter bits = 20 , octerve 7 */ | |
66 | #define FREQ_RATE (1<<(FREQ_BITS-20)) | |
67 | #define TL_BITS (FREQ_BITS+2) | |
68 | ||
69 | /* final output shift , limit minimum and maximum */ | |
70 | #define OPL_OUTSB (TL_BITS+3-16) /* OPL output final shift 16bit */ | |
71 | #define OPL_MAXOUT (0x7fff<<OPL_OUTSB) | |
72 | #define OPL_MINOUT (-0x8000<<OPL_OUTSB) | |
73 | ||
74 | /* -------------------- quality selection --------------------- */ | |
75 | ||
76 | /* sinwave entries */ | |
77 | /* used static memory = SIN_ENT * 4 (byte) */ | |
78 | #define SIN_ENT 2048 | |
79 | ||
80 | /* output level entries (envelope,sinwave) */ | |
81 | /* envelope counter lower bits */ | |
82 | #define ENV_BITS 16 | |
83 | /* envelope output entries */ | |
84 | #define EG_ENT 4096 | |
85 | /* used dynamic memory = EG_ENT*4*4(byte)or EG_ENT*6*4(byte) */ | |
86 | /* used static memory = EG_ENT*4 (byte) */ | |
87 | ||
88 | #define EG_OFF ((2*EG_ENT)<<ENV_BITS) /* OFF */ | |
89 | #define EG_DED EG_OFF | |
90 | #define EG_DST (EG_ENT<<ENV_BITS) /* DECAY START */ | |
91 | #define EG_AED EG_DST | |
92 | #define EG_AST 0 /* ATTACK START */ | |
93 | ||
94 | #define EG_STEP (96.0/EG_ENT) /* OPL is 0.1875 dB step */ | |
95 | ||
96 | /* LFO table entries */ | |
97 | #define VIB_ENT 512 | |
98 | #define VIB_SHIFT (32-9) | |
99 | #define AMS_ENT 512 | |
100 | #define AMS_SHIFT (32-9) | |
101 | ||
102 | #define VIB_RATE 256 | |
103 | ||
104 | /* -------------------- local defines , macros --------------------- */ | |
105 | ||
106 | /* register number to channel number , slot offset */ | |
107 | #define SLOT1 0 | |
108 | #define SLOT2 1 | |
109 | ||
110 | /* envelope phase */ | |
111 | #define ENV_MOD_RR 0x00 | |
112 | #define ENV_MOD_DR 0x01 | |
113 | #define ENV_MOD_AR 0x02 | |
114 | ||
115 | /* -------------------- tables --------------------- */ | |
116 | static const int slot_array[32]= | |
117 | { | |
118 | 0, 2, 4, 1, 3, 5,-1,-1, | |
119 | 6, 8,10, 7, 9,11,-1,-1, | |
120 | 12,14,16,13,15,17,-1,-1, | |
121 | -1,-1,-1,-1,-1,-1,-1,-1 | |
122 | }; | |
123 | ||
124 | /* key scale level */ | |
125 | /* table is 3dB/OCT , DV converts this in TL step at 6dB/OCT */ | |
126 | #define DV (EG_STEP/2) | |
127 | static const UINT32 KSL_TABLE[8*16]= | |
128 | { | |
129 | /* OCT 0 */ | |
130 | 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, | |
131 | 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, | |
132 | 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, | |
133 | 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, | |
134 | /* OCT 1 */ | |
135 | 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, | |
136 | 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, | |
137 | 0.000/DV, 0.750/DV, 1.125/DV, 1.500/DV, | |
138 | 1.875/DV, 2.250/DV, 2.625/DV, 3.000/DV, | |
139 | /* OCT 2 */ | |
140 | 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, | |
141 | 0.000/DV, 1.125/DV, 1.875/DV, 2.625/DV, | |
142 | 3.000/DV, 3.750/DV, 4.125/DV, 4.500/DV, | |
143 | 4.875/DV, 5.250/DV, 5.625/DV, 6.000/DV, | |
144 | /* OCT 3 */ | |
145 | 0.000/DV, 0.000/DV, 0.000/DV, 1.875/DV, | |
146 | 3.000/DV, 4.125/DV, 4.875/DV, 5.625/DV, | |
147 | 6.000/DV, 6.750/DV, 7.125/DV, 7.500/DV, | |
148 | 7.875/DV, 8.250/DV, 8.625/DV, 9.000/DV, | |
149 | /* OCT 4 */ | |
150 | 0.000/DV, 0.000/DV, 3.000/DV, 4.875/DV, | |
151 | 6.000/DV, 7.125/DV, 7.875/DV, 8.625/DV, | |
152 | 9.000/DV, 9.750/DV,10.125/DV,10.500/DV, | |
153 | 10.875/DV,11.250/DV,11.625/DV,12.000/DV, | |
154 | /* OCT 5 */ | |
155 | 0.000/DV, 3.000/DV, 6.000/DV, 7.875/DV, | |
156 | 9.000/DV,10.125/DV,10.875/DV,11.625/DV, | |
157 | 12.000/DV,12.750/DV,13.125/DV,13.500/DV, | |
158 | 13.875/DV,14.250/DV,14.625/DV,15.000/DV, | |
159 | /* OCT 6 */ | |
160 | 0.000/DV, 6.000/DV, 9.000/DV,10.875/DV, | |
161 | 12.000/DV,13.125/DV,13.875/DV,14.625/DV, | |
162 | 15.000/DV,15.750/DV,16.125/DV,16.500/DV, | |
163 | 16.875/DV,17.250/DV,17.625/DV,18.000/DV, | |
164 | /* OCT 7 */ | |
165 | 0.000/DV, 9.000/DV,12.000/DV,13.875/DV, | |
166 | 15.000/DV,16.125/DV,16.875/DV,17.625/DV, | |
167 | 18.000/DV,18.750/DV,19.125/DV,19.500/DV, | |
168 | 19.875/DV,20.250/DV,20.625/DV,21.000/DV | |
169 | }; | |
170 | #undef DV | |
171 | ||
172 | /* sustain lebel table (3db per step) */ | |
173 | /* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/ | |
174 | #define SC(db) (db*((3/EG_STEP)*(1<<ENV_BITS)))+EG_DST | |
175 | static const INT32 SL_TABLE[16]={ | |
176 | SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7), | |
177 | SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31) | |
178 | }; | |
179 | #undef SC | |
180 | ||
181 | #define TL_MAX (EG_ENT*2) /* limit(tl + ksr + envelope) + sinwave */ | |
182 | /* TotalLevel : 48 24 12 6 3 1.5 0.75 (dB) */ | |
183 | /* TL_TABLE[ 0 to TL_MAX ] : plus section */ | |
184 | /* TL_TABLE[ TL_MAX to TL_MAX+TL_MAX-1 ] : minus section */ | |
185 | static INT32 *TL_TABLE; | |
186 | ||
187 | /* pointers to TL_TABLE with sinwave output offset */ | |
188 | static INT32 **SIN_TABLE; | |
189 | ||
190 | /* LFO table */ | |
191 | static INT32 *AMS_TABLE; | |
192 | static INT32 *VIB_TABLE; | |
193 | ||
194 | /* envelope output curve table */ | |
195 | /* attack + decay + OFF */ | |
196 | static INT32 ENV_CURVE[2*EG_ENT+1]; | |
197 | ||
198 | /* multiple table */ | |
199 | #define ML 2 | |
200 | static const UINT32 MUL_TABLE[16]= { | |
201 | /* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 */ | |
202 | 0.50*ML, 1.00*ML, 2.00*ML, 3.00*ML, 4.00*ML, 5.00*ML, 6.00*ML, 7.00*ML, | |
203 | 8.00*ML, 9.00*ML,10.00*ML,10.00*ML,12.00*ML,12.00*ML,15.00*ML,15.00*ML | |
204 | }; | |
205 | #undef ML | |
206 | ||
207 | /* dummy attack / decay rate ( when rate == 0 ) */ | |
208 | static INT32 RATE_0[16]= | |
209 | {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; | |
210 | ||
211 | /* -------------------- static state --------------------- */ | |
212 | ||
213 | /* lock level of common table */ | |
214 | static int num_lock = 0; | |
215 | ||
216 | /* work table */ | |
217 | static void *cur_chip = NULL; /* current chip point */ | |
218 | /* currenct chip state */ | |
219 | /* static OPLSAMPLE *bufL,*bufR; */ | |
220 | static OPL_CH *S_CH; | |
221 | static OPL_CH *E_CH; | |
222 | OPL_SLOT *SLOT7_1,*SLOT7_2,*SLOT8_1,*SLOT8_2; | |
223 | ||
224 | static INT32 outd[1]; | |
225 | static INT32 ams; | |
226 | static INT32 vib; | |
227 | INT32 *ams_table; | |
228 | INT32 *vib_table; | |
229 | static INT32 amsIncr; | |
230 | static INT32 vibIncr; | |
231 | static INT32 feedback2; /* connect for SLOT 2 */ | |
232 | ||
233 | /* log output level */ | |
234 | #define LOG_ERR 3 /* ERROR */ | |
235 | #define LOG_WAR 2 /* WARNING */ | |
236 | #define LOG_INF 1 /* INFORMATION */ | |
237 | ||
238 | //#define LOG_LEVEL LOG_INF | |
239 | #define LOG_LEVEL LOG_ERR | |
240 | ||
241 | //#define LOG(n,x) if( (n)>=LOG_LEVEL ) logerror x | |
242 | #define LOG(n,x) | |
243 | ||
244 | /* --------------------- subroutines --------------------- */ | |
245 | ||
246 | INLINE int Limit( int val, int max, int min ) { | |
247 | if ( val > max ) | |
248 | val = max; | |
249 | else if ( val < min ) | |
250 | val = min; | |
251 | ||
252 | return val; | |
253 | } | |
254 | ||
255 | /* status set and IRQ handling */ | |
256 | INLINE void OPL_STATUS_SET(FM_OPL *OPL,int flag) | |
257 | { | |
258 | /* set status flag */ | |
259 | OPL->status |= flag; | |
260 | if(!(OPL->status & 0x80)) | |
261 | { | |
262 | if(OPL->status & OPL->statusmask) | |
263 | { /* IRQ on */ | |
264 | OPL->status |= 0x80; | |
265 | /* callback user interrupt handler (IRQ is OFF to ON) */ | |
266 | if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,1); | |
267 | } | |
268 | } | |
269 | } | |
270 | ||
271 | /* status reset and IRQ handling */ | |
272 | INLINE void OPL_STATUS_RESET(FM_OPL *OPL,int flag) | |
273 | { | |
274 | /* reset status flag */ | |
275 | OPL->status &=~flag; | |
276 | if((OPL->status & 0x80)) | |
277 | { | |
278 | if (!(OPL->status & OPL->statusmask) ) | |
279 | { | |
280 | OPL->status &= 0x7f; | |
281 | /* callback user interrupt handler (IRQ is ON to OFF) */ | |
282 | if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,0); | |
283 | } | |
284 | } | |
285 | } | |
286 | ||
287 | /* IRQ mask set */ | |
288 | INLINE void OPL_STATUSMASK_SET(FM_OPL *OPL,int flag) | |
289 | { | |
290 | OPL->statusmask = flag; | |
291 | /* IRQ handling check */ | |
292 | OPL_STATUS_SET(OPL,0); | |
293 | OPL_STATUS_RESET(OPL,0); | |
294 | } | |
295 | ||
296 | /* ----- key on ----- */ | |
297 | INLINE void OPL_KEYON(OPL_SLOT *SLOT) | |
298 | { | |
299 | /* sin wave restart */ | |
300 | SLOT->Cnt = 0; | |
301 | /* set attack */ | |
302 | SLOT->evm = ENV_MOD_AR; | |
303 | SLOT->evs = SLOT->evsa; | |
304 | SLOT->evc = EG_AST; | |
305 | SLOT->eve = EG_AED; | |
306 | } | |
307 | /* ----- key off ----- */ | |
308 | INLINE void OPL_KEYOFF(OPL_SLOT *SLOT) | |
309 | { | |
310 | if( SLOT->evm > ENV_MOD_RR) | |
311 | { | |
312 | /* set envelope counter from envleope output */ | |
313 | SLOT->evm = ENV_MOD_RR; | |
314 | if( !(SLOT->evc&EG_DST) ) | |
315 | //SLOT->evc = (ENV_CURVE[SLOT->evc>>ENV_BITS]<<ENV_BITS) + EG_DST; | |
316 | SLOT->evc = EG_DST; | |
317 | SLOT->eve = EG_DED; | |
318 | SLOT->evs = SLOT->evsr; | |
319 | } | |
320 | } | |
321 | ||
322 | /* ---------- calcrate Envelope Generator & Phase Generator ---------- */ | |
323 | /* return : envelope output */ | |
324 | INLINE UINT32 OPL_CALC_SLOT( OPL_SLOT *SLOT ) | |
325 | { | |
326 | /* calcrate envelope generator */ | |
327 | if( (SLOT->evc+=SLOT->evs) >= SLOT->eve ) | |
328 | { | |
329 | switch( SLOT->evm ){ | |
330 | case ENV_MOD_AR: /* ATTACK -> DECAY1 */ | |
331 | /* next DR */ | |
332 | SLOT->evm = ENV_MOD_DR; | |
333 | SLOT->evc = EG_DST; | |
334 | SLOT->eve = SLOT->SL; | |
335 | SLOT->evs = SLOT->evsd; | |
336 | break; | |
337 | case ENV_MOD_DR: /* DECAY -> SL or RR */ | |
338 | SLOT->evc = SLOT->SL; | |
339 | SLOT->eve = EG_DED; | |
340 | if(SLOT->eg_typ) | |
341 | { | |
342 | SLOT->evs = 0; | |
343 | } | |
344 | else | |
345 | { | |
346 | SLOT->evm = ENV_MOD_RR; | |
347 | SLOT->evs = SLOT->evsr; | |
348 | } | |
349 | break; | |
350 | case ENV_MOD_RR: /* RR -> OFF */ | |
351 | SLOT->evc = EG_OFF; | |
352 | SLOT->eve = EG_OFF+1; | |
353 | SLOT->evs = 0; | |
354 | break; | |
355 | } | |
356 | } | |
357 | /* calcrate envelope */ | |
358 | return SLOT->TLL+ENV_CURVE[SLOT->evc>>ENV_BITS]+(SLOT->ams ? ams : 0); | |
359 | } | |
360 | ||
361 | /* set algorythm connection */ | |
362 | static void set_algorythm( OPL_CH *CH) | |
363 | { | |
364 | INT32 *carrier = &outd[0]; | |
365 | CH->connect1 = CH->CON ? carrier : &feedback2; | |
366 | CH->connect2 = carrier; | |
367 | } | |
368 | ||
369 | /* ---------- frequency counter for operater update ---------- */ | |
370 | INLINE void CALC_FCSLOT(OPL_CH *CH,OPL_SLOT *SLOT) | |
371 | { | |
372 | int ksr; | |
373 | ||
374 | /* frequency step counter */ | |
375 | SLOT->Incr = CH->fc * SLOT->mul; | |
376 | ksr = CH->kcode >> SLOT->KSR; | |
377 | ||
378 | if( SLOT->ksr != ksr ) | |
379 | { | |
380 | SLOT->ksr = ksr; | |
381 | /* attack , decay rate recalcration */ | |
382 | SLOT->evsa = SLOT->AR[ksr]; | |
383 | SLOT->evsd = SLOT->DR[ksr]; | |
384 | SLOT->evsr = SLOT->RR[ksr]; | |
385 | } | |
386 | SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl); | |
387 | } | |
388 | ||
389 | /* set multi,am,vib,EG-TYP,KSR,mul */ | |
390 | INLINE void set_mul(FM_OPL *OPL,int slot,int v) | |
391 | { | |
392 | OPL_CH *CH = &OPL->P_CH[slot/2]; | |
393 | OPL_SLOT *SLOT = &CH->SLOT[slot&1]; | |
394 | ||
395 | SLOT->mul = MUL_TABLE[v&0x0f]; | |
396 | SLOT->KSR = (v&0x10) ? 0 : 2; | |
397 | SLOT->eg_typ = (v&0x20)>>5; | |
398 | SLOT->vib = (v&0x40); | |
399 | SLOT->ams = (v&0x80); | |
400 | CALC_FCSLOT(CH,SLOT); | |
401 | } | |
402 | ||
403 | /* set ksl & tl */ | |
404 | INLINE void set_ksl_tl(FM_OPL *OPL,int slot,int v) | |
405 | { | |
406 | OPL_CH *CH = &OPL->P_CH[slot/2]; | |
407 | OPL_SLOT *SLOT = &CH->SLOT[slot&1]; | |
408 | int ksl = v>>6; /* 0 / 1.5 / 3 / 6 db/OCT */ | |
409 | ||
410 | SLOT->ksl = ksl ? 3-ksl : 31; | |
411 | SLOT->TL = (v&0x3f)*(0.75/EG_STEP); /* 0.75db step */ | |
412 | ||
413 | if( !(OPL->mode&0x80) ) | |
414 | { /* not CSM latch total level */ | |
415 | SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl); | |
416 | } | |
417 | } | |
418 | ||
419 | /* set attack rate & decay rate */ | |
420 | INLINE void set_ar_dr(FM_OPL *OPL,int slot,int v) | |
421 | { | |
422 | OPL_CH *CH = &OPL->P_CH[slot/2]; | |
423 | OPL_SLOT *SLOT = &CH->SLOT[slot&1]; | |
424 | int ar = v>>4; | |
425 | int dr = v&0x0f; | |
426 | ||
427 | SLOT->AR = ar ? &OPL->AR_TABLE[ar<<2] : RATE_0; | |
428 | SLOT->evsa = SLOT->AR[SLOT->ksr]; | |
429 | if( SLOT->evm == ENV_MOD_AR ) SLOT->evs = SLOT->evsa; | |
430 | ||
431 | SLOT->DR = dr ? &OPL->DR_TABLE[dr<<2] : RATE_0; | |
432 | SLOT->evsd = SLOT->DR[SLOT->ksr]; | |
433 | if( SLOT->evm == ENV_MOD_DR ) SLOT->evs = SLOT->evsd; | |
434 | } | |
435 | ||
436 | /* set sustain level & release rate */ | |
437 | INLINE void set_sl_rr(FM_OPL *OPL,int slot,int v) | |
438 | { | |
439 | OPL_CH *CH = &OPL->P_CH[slot/2]; | |
440 | OPL_SLOT *SLOT = &CH->SLOT[slot&1]; | |
441 | int sl = v>>4; | |
442 | int rr = v & 0x0f; | |
443 | ||
444 | SLOT->SL = SL_TABLE[sl]; | |
445 | if( SLOT->evm == ENV_MOD_DR ) SLOT->eve = SLOT->SL; | |
446 | SLOT->RR = &OPL->DR_TABLE[rr<<2]; | |
447 | SLOT->evsr = SLOT->RR[SLOT->ksr]; | |
448 | if( SLOT->evm == ENV_MOD_RR ) SLOT->evs = SLOT->evsr; | |
449 | } | |
450 | ||
451 | /* operator output calcrator */ | |
452 | #define OP_OUT(slot,env,con) slot->wavetable[((slot->Cnt+con)/(0x1000000/SIN_ENT))&(SIN_ENT-1)][env] | |
453 | /* ---------- calcrate one of channel ---------- */ | |
454 | INLINE void OPL_CALC_CH( OPL_CH *CH ) | |
455 | { | |
456 | UINT32 env_out; | |
457 | OPL_SLOT *SLOT; | |
458 | ||
459 | feedback2 = 0; | |
460 | /* SLOT 1 */ | |
461 | SLOT = &CH->SLOT[SLOT1]; | |
462 | env_out=OPL_CALC_SLOT(SLOT); | |
463 | if( env_out < EG_ENT-1 ) | |
464 | { | |
465 | /* PG */ | |
466 | if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE); | |
467 | else SLOT->Cnt += SLOT->Incr; | |
468 | /* connectoion */ | |
469 | if(CH->FB) | |
470 | { | |
471 | int feedback1 = (CH->op1_out[0]+CH->op1_out[1])>>CH->FB; | |
472 | CH->op1_out[1] = CH->op1_out[0]; | |
473 | *CH->connect1 += CH->op1_out[0] = OP_OUT(SLOT,env_out,feedback1); | |
474 | } | |
475 | else | |
476 | { | |
477 | *CH->connect1 += OP_OUT(SLOT,env_out,0); | |
478 | } | |
479 | }else | |
480 | { | |
481 | CH->op1_out[1] = CH->op1_out[0]; | |
482 | CH->op1_out[0] = 0; | |
483 | } | |
484 | /* SLOT 2 */ | |
485 | SLOT = &CH->SLOT[SLOT2]; | |
486 | env_out=OPL_CALC_SLOT(SLOT); | |
487 | if( env_out < EG_ENT-1 ) | |
488 | { | |
489 | /* PG */ | |
490 | if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE); | |
491 | else SLOT->Cnt += SLOT->Incr; | |
492 | /* connectoion */ | |
493 | outd[0] += OP_OUT(SLOT,env_out, feedback2); | |
494 | } | |
495 | } | |
496 | ||
497 | /* ---------- calcrate rythm block ---------- */ | |
498 | #define WHITE_NOISE_db 6.0 | |
499 | INLINE void OPL_CALC_RH( OPL_CH *CH ) | |
500 | { | |
501 | UINT32 env_tam,env_sd,env_top,env_hh; | |
502 | int whitenoise = (rand()&1)*(WHITE_NOISE_db/EG_STEP); | |
503 | INT32 tone8; | |
504 | ||
505 | OPL_SLOT *SLOT; | |
506 | int env_out; | |
507 | ||
508 | /* BD : same as FM serial mode and output level is large */ | |
509 | feedback2 = 0; | |
510 | /* SLOT 1 */ | |
511 | SLOT = &CH[6].SLOT[SLOT1]; | |
512 | env_out=OPL_CALC_SLOT(SLOT); | |
513 | if( env_out < EG_ENT-1 ) | |
514 | { | |
515 | /* PG */ | |
516 | if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE); | |
517 | else SLOT->Cnt += SLOT->Incr; | |
518 | /* connectoion */ | |
519 | if(CH[6].FB) | |
520 | { | |
521 | int feedback1 = (CH[6].op1_out[0]+CH[6].op1_out[1])>>CH[6].FB; | |
522 | CH[6].op1_out[1] = CH[6].op1_out[0]; | |
523 | feedback2 = CH[6].op1_out[0] = OP_OUT(SLOT,env_out,feedback1); | |
524 | } | |
525 | else | |
526 | { | |
527 | feedback2 = OP_OUT(SLOT,env_out,0); | |
528 | } | |
529 | }else | |
530 | { | |
531 | feedback2 = 0; | |
532 | CH[6].op1_out[1] = CH[6].op1_out[0]; | |
533 | CH[6].op1_out[0] = 0; | |
534 | } | |
535 | /* SLOT 2 */ | |
536 | SLOT = &CH[6].SLOT[SLOT2]; | |
537 | env_out=OPL_CALC_SLOT(SLOT); | |
538 | if( env_out < EG_ENT-1 ) | |
539 | { | |
540 | /* PG */ | |
541 | if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE); | |
542 | else SLOT->Cnt += SLOT->Incr; | |
543 | /* connectoion */ | |
544 | outd[0] += OP_OUT(SLOT,env_out, feedback2)*2; | |
545 | } | |
546 | ||
547 | // SD (17) = mul14[fnum7] + white noise | |
548 | // TAM (15) = mul15[fnum8] | |
549 | // TOP (18) = fnum6(mul18[fnum8]+whitenoise) | |
550 | // HH (14) = fnum7(mul18[fnum8]+whitenoise) + white noise | |
551 | env_sd =OPL_CALC_SLOT(SLOT7_2) + whitenoise; | |
552 | env_tam=OPL_CALC_SLOT(SLOT8_1); | |
553 | env_top=OPL_CALC_SLOT(SLOT8_2); | |
554 | env_hh =OPL_CALC_SLOT(SLOT7_1) + whitenoise; | |
555 | ||
556 | /* PG */ | |
557 | if(SLOT7_1->vib) SLOT7_1->Cnt += (2*SLOT7_1->Incr*vib/VIB_RATE); | |
558 | else SLOT7_1->Cnt += 2*SLOT7_1->Incr; | |
559 | if(SLOT7_2->vib) SLOT7_2->Cnt += ((CH[7].fc*8)*vib/VIB_RATE); | |
560 | else SLOT7_2->Cnt += (CH[7].fc*8); | |
561 | if(SLOT8_1->vib) SLOT8_1->Cnt += (SLOT8_1->Incr*vib/VIB_RATE); | |
562 | else SLOT8_1->Cnt += SLOT8_1->Incr; | |
563 | if(SLOT8_2->vib) SLOT8_2->Cnt += ((CH[8].fc*48)*vib/VIB_RATE); | |
564 | else SLOT8_2->Cnt += (CH[8].fc*48); | |
565 | ||
566 | tone8 = OP_OUT(SLOT8_2,whitenoise,0 ); | |
567 | ||
568 | /* SD */ | |
569 | if( env_sd < EG_ENT-1 ) | |
570 | outd[0] += OP_OUT(SLOT7_1,env_sd, 0)*8; | |
571 | /* TAM */ | |
572 | if( env_tam < EG_ENT-1 ) | |
573 | outd[0] += OP_OUT(SLOT8_1,env_tam, 0)*2; | |
574 | /* TOP-CY */ | |
575 | if( env_top < EG_ENT-1 ) | |
576 | outd[0] += OP_OUT(SLOT7_2,env_top,tone8)*2; | |
577 | /* HH */ | |
578 | if( env_hh < EG_ENT-1 ) | |
579 | outd[0] += OP_OUT(SLOT7_2,env_hh,tone8)*2; | |
580 | } | |
581 | ||
582 | /* ----------- initialize time tabls ----------- */ | |
583 | static void init_timetables( FM_OPL *OPL , int ARRATE , int DRRATE ) | |
584 | { | |
585 | int i; | |
586 | double rate; | |
587 | ||
588 | /* make attack rate & decay rate tables */ | |
589 | for (i = 0;i < 4;i++) OPL->AR_TABLE[i] = OPL->DR_TABLE[i] = 0; | |
590 | for (i = 4;i <= 60;i++){ | |
591 | rate = OPL->freqbase; /* frequency rate */ | |
592 | if( i < 60 ) rate *= 1.0+(i&3)*0.25; /* b0-1 : x1 , x1.25 , x1.5 , x1.75 */ | |
593 | rate *= 1<<((i>>2)-1); /* b2-5 : shift bit */ | |
594 | rate *= (double)(EG_ENT<<ENV_BITS); | |
595 | OPL->AR_TABLE[i] = rate / ARRATE; | |
596 | OPL->DR_TABLE[i] = rate / DRRATE; | |
597 | } | |
598 | for (i = 60;i < 76;i++) | |
599 | { | |
600 | OPL->AR_TABLE[i] = EG_AED-1; | |
601 | OPL->DR_TABLE[i] = OPL->DR_TABLE[60]; | |
602 | } | |
603 | #if 0 | |
604 | for (i = 0;i < 64 ;i++){ /* make for overflow area */ | |
605 | LOG(LOG_WAR,("rate %2d , ar %f ms , dr %f ms \n",i, | |
606 | ((double)(EG_ENT<<ENV_BITS) / OPL->AR_TABLE[i]) * (1000.0 / OPL->rate), | |
607 | ((double)(EG_ENT<<ENV_BITS) / OPL->DR_TABLE[i]) * (1000.0 / OPL->rate) )); | |
608 | } | |
609 | #endif | |
610 | } | |
611 | ||
612 | /* ---------- generic table initialize ---------- */ | |
613 | static int OPLOpenTable( void ) | |
614 | { | |
615 | int s,t; | |
616 | double rate; | |
617 | int i,j; | |
618 | double pom; | |
619 | ||
620 | /* allocate dynamic tables */ | |
809c130c AL |
621 | if( (TL_TABLE = malloc(TL_MAX*2*sizeof(INT32))) == NULL) |
622 | return 0; | |
623 | if( (SIN_TABLE = malloc(SIN_ENT*4 *sizeof(INT32 *))) == NULL) | |
624 | { | |
625 | free(TL_TABLE); | |
626 | return 0; | |
627 | } | |
628 | if( (AMS_TABLE = malloc(AMS_ENT*2 *sizeof(INT32))) == NULL) | |
629 | { | |
630 | free(TL_TABLE); | |
631 | free(SIN_TABLE); | |
632 | return 0; | |
633 | } | |
634 | if( (VIB_TABLE = malloc(VIB_ENT*2 *sizeof(INT32))) == NULL) | |
635 | { | |
636 | free(TL_TABLE); | |
637 | free(SIN_TABLE); | |
638 | free(AMS_TABLE); | |
639 | return 0; | |
640 | } | |
85571bc7 FB |
641 | /* make total level table */ |
642 | for (t = 0;t < EG_ENT-1 ;t++){ | |
643 | rate = ((1<<TL_BITS)-1)/pow(10,EG_STEP*t/20); /* dB -> voltage */ | |
644 | TL_TABLE[ t] = (int)rate; | |
645 | TL_TABLE[TL_MAX+t] = -TL_TABLE[t]; | |
646 | /* LOG(LOG_INF,("TotalLevel(%3d) = %x\n",t,TL_TABLE[t]));*/ | |
647 | } | |
648 | /* fill volume off area */ | |
649 | for ( t = EG_ENT-1; t < TL_MAX ;t++){ | |
650 | TL_TABLE[t] = TL_TABLE[TL_MAX+t] = 0; | |
651 | } | |
652 | ||
653 | /* make sinwave table (total level offet) */ | |
654 | /* degree 0 = degree 180 = off */ | |
655 | SIN_TABLE[0] = SIN_TABLE[SIN_ENT/2] = &TL_TABLE[EG_ENT-1]; | |
656 | for (s = 1;s <= SIN_ENT/4;s++){ | |
657 | pom = sin(2*PI*s/SIN_ENT); /* sin */ | |
658 | pom = 20*log10(1/pom); /* decibel */ | |
659 | j = pom / EG_STEP; /* TL_TABLE steps */ | |
660 | ||
661 | /* degree 0 - 90 , degree 180 - 90 : plus section */ | |
662 | SIN_TABLE[ s] = SIN_TABLE[SIN_ENT/2-s] = &TL_TABLE[j]; | |
663 | /* degree 180 - 270 , degree 360 - 270 : minus section */ | |
664 | SIN_TABLE[SIN_ENT/2+s] = SIN_TABLE[SIN_ENT -s] = &TL_TABLE[TL_MAX+j]; | |
665 | /* LOG(LOG_INF,("sin(%3d) = %f:%f db\n",s,pom,(double)j * EG_STEP));*/ | |
666 | } | |
667 | for (s = 0;s < SIN_ENT;s++) | |
668 | { | |
669 | SIN_TABLE[SIN_ENT*1+s] = s<(SIN_ENT/2) ? SIN_TABLE[s] : &TL_TABLE[EG_ENT]; | |
670 | SIN_TABLE[SIN_ENT*2+s] = SIN_TABLE[s % (SIN_ENT/2)]; | |
671 | SIN_TABLE[SIN_ENT*3+s] = (s/(SIN_ENT/4))&1 ? &TL_TABLE[EG_ENT] : SIN_TABLE[SIN_ENT*2+s]; | |
672 | } | |
673 | ||
674 | /* envelope counter -> envelope output table */ | |
675 | for (i=0; i<EG_ENT; i++) | |
676 | { | |
677 | /* ATTACK curve */ | |
678 | pom = pow( ((double)(EG_ENT-1-i)/EG_ENT) , 8 ) * EG_ENT; | |
679 | /* if( pom >= EG_ENT ) pom = EG_ENT-1; */ | |
680 | ENV_CURVE[i] = (int)pom; | |
681 | /* DECAY ,RELEASE curve */ | |
682 | ENV_CURVE[(EG_DST>>ENV_BITS)+i]= i; | |
683 | } | |
684 | /* off */ | |
685 | ENV_CURVE[EG_OFF>>ENV_BITS]= EG_ENT-1; | |
686 | /* make LFO ams table */ | |
687 | for (i=0; i<AMS_ENT; i++) | |
688 | { | |
689 | pom = (1.0+sin(2*PI*i/AMS_ENT))/2; /* sin */ | |
690 | AMS_TABLE[i] = (1.0/EG_STEP)*pom; /* 1dB */ | |
691 | AMS_TABLE[AMS_ENT+i] = (4.8/EG_STEP)*pom; /* 4.8dB */ | |
692 | } | |
693 | /* make LFO vibrate table */ | |
694 | for (i=0; i<VIB_ENT; i++) | |
695 | { | |
696 | /* 100cent = 1seminote = 6% ?? */ | |
697 | pom = (double)VIB_RATE*0.06*sin(2*PI*i/VIB_ENT); /* +-100sect step */ | |
698 | VIB_TABLE[i] = VIB_RATE + (pom*0.07); /* +- 7cent */ | |
699 | VIB_TABLE[VIB_ENT+i] = VIB_RATE + (pom*0.14); /* +-14cent */ | |
700 | /* LOG(LOG_INF,("vib %d=%d\n",i,VIB_TABLE[VIB_ENT+i])); */ | |
701 | } | |
702 | return 1; | |
703 | } | |
704 | ||
705 | ||
706 | static void OPLCloseTable( void ) | |
707 | { | |
708 | free(TL_TABLE); | |
709 | free(SIN_TABLE); | |
710 | free(AMS_TABLE); | |
711 | free(VIB_TABLE); | |
712 | } | |
713 | ||
714 | /* CSM Key Controll */ | |
715 | INLINE void CSMKeyControll(OPL_CH *CH) | |
716 | { | |
717 | OPL_SLOT *slot1 = &CH->SLOT[SLOT1]; | |
718 | OPL_SLOT *slot2 = &CH->SLOT[SLOT2]; | |
719 | /* all key off */ | |
720 | OPL_KEYOFF(slot1); | |
721 | OPL_KEYOFF(slot2); | |
722 | /* total level latch */ | |
723 | slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl); | |
724 | slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl); | |
725 | /* key on */ | |
726 | CH->op1_out[0] = CH->op1_out[1] = 0; | |
727 | OPL_KEYON(slot1); | |
728 | OPL_KEYON(slot2); | |
729 | } | |
730 | ||
731 | /* ---------- opl initialize ---------- */ | |
732 | static void OPL_initalize(FM_OPL *OPL) | |
733 | { | |
734 | int fn; | |
735 | ||
736 | /* frequency base */ | |
737 | OPL->freqbase = (OPL->rate) ? ((double)OPL->clock / OPL->rate) / 72 : 0; | |
738 | /* Timer base time */ | |
739 | OPL->TimerBase = 1.0/((double)OPL->clock / 72.0 ); | |
740 | /* make time tables */ | |
741 | init_timetables( OPL , OPL_ARRATE , OPL_DRRATE ); | |
742 | /* make fnumber -> increment counter table */ | |
743 | for( fn=0 ; fn < 1024 ; fn++ ) | |
744 | { | |
745 | OPL->FN_TABLE[fn] = OPL->freqbase * fn * FREQ_RATE * (1<<7) / 2; | |
746 | } | |
747 | /* LFO freq.table */ | |
748 | OPL->amsIncr = OPL->rate ? (double)AMS_ENT*(1<<AMS_SHIFT) / OPL->rate * 3.7 * ((double)OPL->clock/3600000) : 0; | |
749 | OPL->vibIncr = OPL->rate ? (double)VIB_ENT*(1<<VIB_SHIFT) / OPL->rate * 6.4 * ((double)OPL->clock/3600000) : 0; | |
750 | } | |
751 | ||
752 | /* ---------- write a OPL registers ---------- */ | |
753 | static void OPLWriteReg(FM_OPL *OPL, int r, int v) | |
754 | { | |
755 | OPL_CH *CH; | |
756 | int slot; | |
757 | int block_fnum; | |
758 | ||
759 | switch(r&0xe0) | |
760 | { | |
761 | case 0x00: /* 00-1f:controll */ | |
762 | switch(r&0x1f) | |
763 | { | |
764 | case 0x01: | |
765 | /* wave selector enable */ | |
766 | if(OPL->type&OPL_TYPE_WAVESEL) | |
767 | { | |
768 | OPL->wavesel = v&0x20; | |
769 | if(!OPL->wavesel) | |
770 | { | |
771 | /* preset compatible mode */ | |
772 | int c; | |
773 | for(c=0;c<OPL->max_ch;c++) | |
774 | { | |
775 | OPL->P_CH[c].SLOT[SLOT1].wavetable = &SIN_TABLE[0]; | |
776 | OPL->P_CH[c].SLOT[SLOT2].wavetable = &SIN_TABLE[0]; | |
777 | } | |
778 | } | |
779 | } | |
780 | return; | |
781 | case 0x02: /* Timer 1 */ | |
782 | OPL->T[0] = (256-v)*4; | |
783 | break; | |
784 | case 0x03: /* Timer 2 */ | |
785 | OPL->T[1] = (256-v)*16; | |
786 | return; | |
787 | case 0x04: /* IRQ clear / mask and Timer enable */ | |
788 | if(v&0x80) | |
789 | { /* IRQ flag clear */ | |
790 | OPL_STATUS_RESET(OPL,0x7f); | |
791 | } | |
792 | else | |
793 | { /* set IRQ mask ,timer enable*/ | |
794 | UINT8 st1 = v&1; | |
795 | UINT8 st2 = (v>>1)&1; | |
796 | /* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */ | |
797 | OPL_STATUS_RESET(OPL,v&0x78); | |
798 | OPL_STATUSMASK_SET(OPL,((~v)&0x78)|0x01); | |
799 | /* timer 2 */ | |
800 | if(OPL->st[1] != st2) | |
801 | { | |
802 | double interval = st2 ? (double)OPL->T[1]*OPL->TimerBase : 0.0; | |
803 | OPL->st[1] = st2; | |
804 | if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+1,interval); | |
805 | } | |
806 | /* timer 1 */ | |
807 | if(OPL->st[0] != st1) | |
808 | { | |
809 | double interval = st1 ? (double)OPL->T[0]*OPL->TimerBase : 0.0; | |
810 | OPL->st[0] = st1; | |
811 | if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+0,interval); | |
812 | } | |
813 | } | |
814 | return; | |
815 | #if BUILD_Y8950 | |
816 | case 0x06: /* Key Board OUT */ | |
817 | if(OPL->type&OPL_TYPE_KEYBOARD) | |
818 | { | |
819 | if(OPL->keyboardhandler_w) | |
820 | OPL->keyboardhandler_w(OPL->keyboard_param,v); | |
821 | else | |
822 | LOG(LOG_WAR,("OPL:write unmapped KEYBOARD port\n")); | |
823 | } | |
824 | return; | |
825 | case 0x07: /* DELTA-T controll : START,REC,MEMDATA,REPT,SPOFF,x,x,RST */ | |
826 | if(OPL->type&OPL_TYPE_ADPCM) | |
827 | YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v); | |
828 | return; | |
829 | case 0x08: /* MODE,DELTA-T : CSM,NOTESEL,x,x,smpl,da/ad,64k,rom */ | |
830 | OPL->mode = v; | |
831 | v&=0x1f; /* for DELTA-T unit */ | |
832 | case 0x09: /* START ADD */ | |
833 | case 0x0a: | |
834 | case 0x0b: /* STOP ADD */ | |
835 | case 0x0c: | |
836 | case 0x0d: /* PRESCALE */ | |
837 | case 0x0e: | |
838 | case 0x0f: /* ADPCM data */ | |
839 | case 0x10: /* DELTA-N */ | |
840 | case 0x11: /* DELTA-N */ | |
841 | case 0x12: /* EG-CTRL */ | |
842 | if(OPL->type&OPL_TYPE_ADPCM) | |
843 | YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v); | |
844 | return; | |
845 | #if 0 | |
846 | case 0x15: /* DAC data */ | |
847 | case 0x16: | |
848 | case 0x17: /* SHIFT */ | |
849 | return; | |
850 | case 0x18: /* I/O CTRL (Direction) */ | |
851 | if(OPL->type&OPL_TYPE_IO) | |
852 | OPL->portDirection = v&0x0f; | |
853 | return; | |
854 | case 0x19: /* I/O DATA */ | |
855 | if(OPL->type&OPL_TYPE_IO) | |
856 | { | |
857 | OPL->portLatch = v; | |
858 | if(OPL->porthandler_w) | |
859 | OPL->porthandler_w(OPL->port_param,v&OPL->portDirection); | |
860 | } | |
861 | return; | |
862 | case 0x1a: /* PCM data */ | |
863 | return; | |
864 | #endif | |
865 | #endif | |
866 | } | |
867 | break; | |
868 | case 0x20: /* am,vib,ksr,eg type,mul */ | |
869 | slot = slot_array[r&0x1f]; | |
870 | if(slot == -1) return; | |
871 | set_mul(OPL,slot,v); | |
872 | return; | |
873 | case 0x40: | |
874 | slot = slot_array[r&0x1f]; | |
875 | if(slot == -1) return; | |
876 | set_ksl_tl(OPL,slot,v); | |
877 | return; | |
878 | case 0x60: | |
879 | slot = slot_array[r&0x1f]; | |
880 | if(slot == -1) return; | |
881 | set_ar_dr(OPL,slot,v); | |
882 | return; | |
883 | case 0x80: | |
884 | slot = slot_array[r&0x1f]; | |
885 | if(slot == -1) return; | |
886 | set_sl_rr(OPL,slot,v); | |
887 | return; | |
888 | case 0xa0: | |
889 | switch(r) | |
890 | { | |
891 | case 0xbd: | |
892 | /* amsep,vibdep,r,bd,sd,tom,tc,hh */ | |
893 | { | |
894 | UINT8 rkey = OPL->rythm^v; | |
895 | OPL->ams_table = &AMS_TABLE[v&0x80 ? AMS_ENT : 0]; | |
896 | OPL->vib_table = &VIB_TABLE[v&0x40 ? VIB_ENT : 0]; | |
897 | OPL->rythm = v&0x3f; | |
898 | if(OPL->rythm&0x20) | |
899 | { | |
900 | #if 0 | |
901 | usrintf_showmessage("OPL Rythm mode select"); | |
902 | #endif | |
903 | /* BD key on/off */ | |
904 | if(rkey&0x10) | |
905 | { | |
906 | if(v&0x10) | |
907 | { | |
908 | OPL->P_CH[6].op1_out[0] = OPL->P_CH[6].op1_out[1] = 0; | |
909 | OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT1]); | |
910 | OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT2]); | |
911 | } | |
912 | else | |
913 | { | |
914 | OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1]); | |
915 | OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2]); | |
916 | } | |
917 | } | |
918 | /* SD key on/off */ | |
919 | if(rkey&0x08) | |
920 | { | |
921 | if(v&0x08) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT2]); | |
922 | else OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2]); | |
923 | }/* TAM key on/off */ | |
924 | if(rkey&0x04) | |
925 | { | |
926 | if(v&0x04) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT1]); | |
927 | else OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1]); | |
928 | } | |
929 | /* TOP-CY key on/off */ | |
930 | if(rkey&0x02) | |
931 | { | |
932 | if(v&0x02) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT2]); | |
933 | else OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2]); | |
934 | } | |
935 | /* HH key on/off */ | |
936 | if(rkey&0x01) | |
937 | { | |
938 | if(v&0x01) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT1]); | |
939 | else OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1]); | |
940 | } | |
941 | } | |
942 | } | |
943 | return; | |
944 | } | |
945 | /* keyon,block,fnum */ | |
946 | if( (r&0x0f) > 8) return; | |
947 | CH = &OPL->P_CH[r&0x0f]; | |
948 | if(!(r&0x10)) | |
949 | { /* a0-a8 */ | |
950 | block_fnum = (CH->block_fnum&0x1f00) | v; | |
951 | } | |
952 | else | |
953 | { /* b0-b8 */ | |
954 | int keyon = (v>>5)&1; | |
955 | block_fnum = ((v&0x1f)<<8) | (CH->block_fnum&0xff); | |
956 | if(CH->keyon != keyon) | |
957 | { | |
958 | if( (CH->keyon=keyon) ) | |
959 | { | |
960 | CH->op1_out[0] = CH->op1_out[1] = 0; | |
961 | OPL_KEYON(&CH->SLOT[SLOT1]); | |
962 | OPL_KEYON(&CH->SLOT[SLOT2]); | |
963 | } | |
964 | else | |
965 | { | |
966 | OPL_KEYOFF(&CH->SLOT[SLOT1]); | |
967 | OPL_KEYOFF(&CH->SLOT[SLOT2]); | |
968 | } | |
969 | } | |
970 | } | |
971 | /* update */ | |
972 | if(CH->block_fnum != block_fnum) | |
973 | { | |
974 | int blockRv = 7-(block_fnum>>10); | |
975 | int fnum = block_fnum&0x3ff; | |
976 | CH->block_fnum = block_fnum; | |
977 | ||
978 | CH->ksl_base = KSL_TABLE[block_fnum>>6]; | |
979 | CH->fc = OPL->FN_TABLE[fnum]>>blockRv; | |
980 | CH->kcode = CH->block_fnum>>9; | |
981 | if( (OPL->mode&0x40) && CH->block_fnum&0x100) CH->kcode |=1; | |
982 | CALC_FCSLOT(CH,&CH->SLOT[SLOT1]); | |
983 | CALC_FCSLOT(CH,&CH->SLOT[SLOT2]); | |
984 | } | |
985 | return; | |
986 | case 0xc0: | |
987 | /* FB,C */ | |
988 | if( (r&0x0f) > 8) return; | |
989 | CH = &OPL->P_CH[r&0x0f]; | |
990 | { | |
991 | int feedback = (v>>1)&7; | |
992 | CH->FB = feedback ? (8+1) - feedback : 0; | |
993 | CH->CON = v&1; | |
994 | set_algorythm(CH); | |
995 | } | |
996 | return; | |
997 | case 0xe0: /* wave type */ | |
998 | slot = slot_array[r&0x1f]; | |
999 | if(slot == -1) return; | |
1000 | CH = &OPL->P_CH[slot/2]; | |
1001 | if(OPL->wavesel) | |
1002 | { | |
1003 | /* LOG(LOG_INF,("OPL SLOT %d wave select %d\n",slot,v&3)); */ | |
1004 | CH->SLOT[slot&1].wavetable = &SIN_TABLE[(v&0x03)*SIN_ENT]; | |
1005 | } | |
1006 | return; | |
1007 | } | |
1008 | } | |
1009 | ||
1010 | /* lock/unlock for common table */ | |
1011 | static int OPL_LockTable(void) | |
1012 | { | |
1013 | num_lock++; | |
1014 | if(num_lock>1) return 0; | |
1015 | /* first time */ | |
1016 | cur_chip = NULL; | |
1017 | /* allocate total level table (128kb space) */ | |
1018 | if( !OPLOpenTable() ) | |
1019 | { | |
1020 | num_lock--; | |
1021 | return -1; | |
1022 | } | |
1023 | return 0; | |
1024 | } | |
1025 | ||
1026 | static void OPL_UnLockTable(void) | |
1027 | { | |
1028 | if(num_lock) num_lock--; | |
1029 | if(num_lock) return; | |
1030 | /* last time */ | |
1031 | cur_chip = NULL; | |
1032 | OPLCloseTable(); | |
1033 | } | |
1034 | ||
1035 | #if (BUILD_YM3812 || BUILD_YM3526) | |
1036 | /*******************************************************************************/ | |
1037 | /* YM3812 local section */ | |
1038 | /*******************************************************************************/ | |
1039 | ||
1040 | /* ---------- update one of chip ----------- */ | |
1041 | void YM3812UpdateOne(FM_OPL *OPL, INT16 *buffer, int length) | |
1042 | { | |
1043 | int i; | |
1044 | int data; | |
1045 | OPLSAMPLE *buf = buffer; | |
1046 | UINT32 amsCnt = OPL->amsCnt; | |
1047 | UINT32 vibCnt = OPL->vibCnt; | |
1048 | UINT8 rythm = OPL->rythm&0x20; | |
1049 | OPL_CH *CH,*R_CH; | |
1050 | ||
1051 | if( (void *)OPL != cur_chip ){ | |
1052 | cur_chip = (void *)OPL; | |
1053 | /* channel pointers */ | |
1054 | S_CH = OPL->P_CH; | |
1055 | E_CH = &S_CH[9]; | |
1056 | /* rythm slot */ | |
1057 | SLOT7_1 = &S_CH[7].SLOT[SLOT1]; | |
1058 | SLOT7_2 = &S_CH[7].SLOT[SLOT2]; | |
1059 | SLOT8_1 = &S_CH[8].SLOT[SLOT1]; | |
1060 | SLOT8_2 = &S_CH[8].SLOT[SLOT2]; | |
1061 | /* LFO state */ | |
1062 | amsIncr = OPL->amsIncr; | |
1063 | vibIncr = OPL->vibIncr; | |
1064 | ams_table = OPL->ams_table; | |
1065 | vib_table = OPL->vib_table; | |
1066 | } | |
1067 | R_CH = rythm ? &S_CH[6] : E_CH; | |
1068 | for( i=0; i < length ; i++ ) | |
1069 | { | |
1070 | /* channel A channel B channel C */ | |
1071 | /* LFO */ | |
1072 | ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT]; | |
1073 | vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT]; | |
1074 | outd[0] = 0; | |
1075 | /* FM part */ | |
1076 | for(CH=S_CH ; CH < R_CH ; CH++) | |
1077 | OPL_CALC_CH(CH); | |
1078 | /* Rythn part */ | |
1079 | if(rythm) | |
1080 | OPL_CALC_RH(S_CH); | |
1081 | /* limit check */ | |
1082 | data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT ); | |
1083 | /* store to sound buffer */ | |
1084 | buf[i] = data >> OPL_OUTSB; | |
1085 | } | |
1086 | ||
1087 | OPL->amsCnt = amsCnt; | |
1088 | OPL->vibCnt = vibCnt; | |
1089 | #ifdef OPL_OUTPUT_LOG | |
1090 | if(opl_dbg_fp) | |
1091 | { | |
1092 | for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++) | |
1093 | if( opl_dbg_opl[opl_dbg_chip] == OPL) break; | |
1094 | fprintf(opl_dbg_fp,"%c%c%c",0x20+opl_dbg_chip,length&0xff,length/256); | |
1095 | } | |
1096 | #endif | |
1097 | } | |
1098 | #endif /* (BUILD_YM3812 || BUILD_YM3526) */ | |
1099 | ||
1100 | #if BUILD_Y8950 | |
1101 | ||
1102 | void Y8950UpdateOne(FM_OPL *OPL, INT16 *buffer, int length) | |
1103 | { | |
1104 | int i; | |
1105 | int data; | |
1106 | OPLSAMPLE *buf = buffer; | |
1107 | UINT32 amsCnt = OPL->amsCnt; | |
1108 | UINT32 vibCnt = OPL->vibCnt; | |
1109 | UINT8 rythm = OPL->rythm&0x20; | |
1110 | OPL_CH *CH,*R_CH; | |
1111 | YM_DELTAT *DELTAT = OPL->deltat; | |
1112 | ||
1113 | /* setup DELTA-T unit */ | |
1114 | YM_DELTAT_DECODE_PRESET(DELTAT); | |
1115 | ||
1116 | if( (void *)OPL != cur_chip ){ | |
1117 | cur_chip = (void *)OPL; | |
1118 | /* channel pointers */ | |
1119 | S_CH = OPL->P_CH; | |
1120 | E_CH = &S_CH[9]; | |
1121 | /* rythm slot */ | |
1122 | SLOT7_1 = &S_CH[7].SLOT[SLOT1]; | |
1123 | SLOT7_2 = &S_CH[7].SLOT[SLOT2]; | |
1124 | SLOT8_1 = &S_CH[8].SLOT[SLOT1]; | |
1125 | SLOT8_2 = &S_CH[8].SLOT[SLOT2]; | |
1126 | /* LFO state */ | |
1127 | amsIncr = OPL->amsIncr; | |
1128 | vibIncr = OPL->vibIncr; | |
1129 | ams_table = OPL->ams_table; | |
1130 | vib_table = OPL->vib_table; | |
1131 | } | |
1132 | R_CH = rythm ? &S_CH[6] : E_CH; | |
1133 | for( i=0; i < length ; i++ ) | |
1134 | { | |
1135 | /* channel A channel B channel C */ | |
1136 | /* LFO */ | |
1137 | ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT]; | |
1138 | vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT]; | |
1139 | outd[0] = 0; | |
1140 | /* deltaT ADPCM */ | |
1141 | if( DELTAT->portstate ) | |
1142 | YM_DELTAT_ADPCM_CALC(DELTAT); | |
1143 | /* FM part */ | |
1144 | for(CH=S_CH ; CH < R_CH ; CH++) | |
1145 | OPL_CALC_CH(CH); | |
1146 | /* Rythn part */ | |
1147 | if(rythm) | |
1148 | OPL_CALC_RH(S_CH); | |
1149 | /* limit check */ | |
1150 | data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT ); | |
1151 | /* store to sound buffer */ | |
1152 | buf[i] = data >> OPL_OUTSB; | |
1153 | } | |
1154 | OPL->amsCnt = amsCnt; | |
1155 | OPL->vibCnt = vibCnt; | |
1156 | /* deltaT START flag */ | |
1157 | if( !DELTAT->portstate ) | |
1158 | OPL->status &= 0xfe; | |
1159 | } | |
1160 | #endif | |
1161 | ||
1162 | /* ---------- reset one of chip ---------- */ | |
1163 | void OPLResetChip(FM_OPL *OPL) | |
1164 | { | |
1165 | int c,s; | |
1166 | int i; | |
1167 | ||
1168 | /* reset chip */ | |
1169 | OPL->mode = 0; /* normal mode */ | |
1170 | OPL_STATUS_RESET(OPL,0x7f); | |
1171 | /* reset with register write */ | |
1172 | OPLWriteReg(OPL,0x01,0); /* wabesel disable */ | |
1173 | OPLWriteReg(OPL,0x02,0); /* Timer1 */ | |
1174 | OPLWriteReg(OPL,0x03,0); /* Timer2 */ | |
1175 | OPLWriteReg(OPL,0x04,0); /* IRQ mask clear */ | |
1176 | for(i = 0xff ; i >= 0x20 ; i-- ) OPLWriteReg(OPL,i,0); | |
1177 | /* reset OPerator paramater */ | |
1178 | for( c = 0 ; c < OPL->max_ch ; c++ ) | |
1179 | { | |
1180 | OPL_CH *CH = &OPL->P_CH[c]; | |
1181 | /* OPL->P_CH[c].PAN = OPN_CENTER; */ | |
1182 | for(s = 0 ; s < 2 ; s++ ) | |
1183 | { | |
1184 | /* wave table */ | |
1185 | CH->SLOT[s].wavetable = &SIN_TABLE[0]; | |
1186 | /* CH->SLOT[s].evm = ENV_MOD_RR; */ | |
1187 | CH->SLOT[s].evc = EG_OFF; | |
1188 | CH->SLOT[s].eve = EG_OFF+1; | |
1189 | CH->SLOT[s].evs = 0; | |
1190 | } | |
1191 | } | |
1192 | #if BUILD_Y8950 | |
1193 | if(OPL->type&OPL_TYPE_ADPCM) | |
1194 | { | |
1195 | YM_DELTAT *DELTAT = OPL->deltat; | |
1196 | ||
1197 | DELTAT->freqbase = OPL->freqbase; | |
1198 | DELTAT->output_pointer = outd; | |
1199 | DELTAT->portshift = 5; | |
1200 | DELTAT->output_range = DELTAT_MIXING_LEVEL<<TL_BITS; | |
1201 | YM_DELTAT_ADPCM_Reset(DELTAT,0); | |
1202 | } | |
1203 | #endif | |
1204 | } | |
1205 | ||
1206 | /* ---------- Create one of vietual YM3812 ---------- */ | |
1207 | /* 'rate' is sampling rate and 'bufsiz' is the size of the */ | |
1208 | FM_OPL *OPLCreate(int type, int clock, int rate) | |
1209 | { | |
1210 | char *ptr; | |
1211 | FM_OPL *OPL; | |
1212 | int state_size; | |
1213 | int max_ch = 9; /* normaly 9 channels */ | |
1214 | ||
1215 | if( OPL_LockTable() ==-1) return NULL; | |
1216 | /* allocate OPL state space */ | |
1217 | state_size = sizeof(FM_OPL); | |
1218 | state_size += sizeof(OPL_CH)*max_ch; | |
1219 | #if BUILD_Y8950 | |
1220 | if(type&OPL_TYPE_ADPCM) state_size+= sizeof(YM_DELTAT); | |
1221 | #endif | |
1222 | /* allocate memory block */ | |
809c130c AL |
1223 | ptr = malloc(state_size); |
1224 | if(ptr==NULL) return NULL; | |
85571bc7 FB |
1225 | /* clear */ |
1226 | memset(ptr,0,state_size); | |
1227 | OPL = (FM_OPL *)ptr; ptr+=sizeof(FM_OPL); | |
1228 | OPL->P_CH = (OPL_CH *)ptr; ptr+=sizeof(OPL_CH)*max_ch; | |
1229 | #if BUILD_Y8950 | |
1230 | if(type&OPL_TYPE_ADPCM) OPL->deltat = (YM_DELTAT *)ptr; ptr+=sizeof(YM_DELTAT); | |
1231 | #endif | |
1232 | /* set channel state pointer */ | |
1233 | OPL->type = type; | |
1234 | OPL->clock = clock; | |
1235 | OPL->rate = rate; | |
1236 | OPL->max_ch = max_ch; | |
1237 | /* init grobal tables */ | |
1238 | OPL_initalize(OPL); | |
1239 | /* reset chip */ | |
1240 | OPLResetChip(OPL); | |
1241 | #ifdef OPL_OUTPUT_LOG | |
1242 | if(!opl_dbg_fp) | |
1243 | { | |
1244 | opl_dbg_fp = fopen("opllog.opl","wb"); | |
1245 | opl_dbg_maxchip = 0; | |
1246 | } | |
1247 | if(opl_dbg_fp) | |
1248 | { | |
1249 | opl_dbg_opl[opl_dbg_maxchip] = OPL; | |
1250 | fprintf(opl_dbg_fp,"%c%c%c%c%c%c",0x00+opl_dbg_maxchip, | |
1251 | type, | |
1252 | clock&0xff, | |
1253 | (clock/0x100)&0xff, | |
1254 | (clock/0x10000)&0xff, | |
1255 | (clock/0x1000000)&0xff); | |
1256 | opl_dbg_maxchip++; | |
1257 | } | |
1258 | #endif | |
1259 | return OPL; | |
1260 | } | |
1261 | ||
1262 | /* ---------- Destroy one of vietual YM3812 ---------- */ | |
1263 | void OPLDestroy(FM_OPL *OPL) | |
1264 | { | |
1265 | #ifdef OPL_OUTPUT_LOG | |
1266 | if(opl_dbg_fp) | |
1267 | { | |
1268 | fclose(opl_dbg_fp); | |
1269 | opl_dbg_fp = NULL; | |
1270 | } | |
1271 | #endif | |
1272 | OPL_UnLockTable(); | |
1273 | free(OPL); | |
1274 | } | |
1275 | ||
1276 | /* ---------- Option handlers ---------- */ | |
1277 | ||
1278 | void OPLSetTimerHandler(FM_OPL *OPL,OPL_TIMERHANDLER TimerHandler,int channelOffset) | |
1279 | { | |
1280 | OPL->TimerHandler = TimerHandler; | |
1281 | OPL->TimerParam = channelOffset; | |
1282 | } | |
1283 | void OPLSetIRQHandler(FM_OPL *OPL,OPL_IRQHANDLER IRQHandler,int param) | |
1284 | { | |
1285 | OPL->IRQHandler = IRQHandler; | |
1286 | OPL->IRQParam = param; | |
1287 | } | |
1288 | void OPLSetUpdateHandler(FM_OPL *OPL,OPL_UPDATEHANDLER UpdateHandler,int param) | |
1289 | { | |
1290 | OPL->UpdateHandler = UpdateHandler; | |
1291 | OPL->UpdateParam = param; | |
1292 | } | |
1293 | #if BUILD_Y8950 | |
1294 | void OPLSetPortHandler(FM_OPL *OPL,OPL_PORTHANDLER_W PortHandler_w,OPL_PORTHANDLER_R PortHandler_r,int param) | |
1295 | { | |
1296 | OPL->porthandler_w = PortHandler_w; | |
1297 | OPL->porthandler_r = PortHandler_r; | |
1298 | OPL->port_param = param; | |
1299 | } | |
1300 | ||
1301 | void OPLSetKeyboardHandler(FM_OPL *OPL,OPL_PORTHANDLER_W KeyboardHandler_w,OPL_PORTHANDLER_R KeyboardHandler_r,int param) | |
1302 | { | |
1303 | OPL->keyboardhandler_w = KeyboardHandler_w; | |
1304 | OPL->keyboardhandler_r = KeyboardHandler_r; | |
1305 | OPL->keyboard_param = param; | |
1306 | } | |
1307 | #endif | |
1308 | /* ---------- YM3812 I/O interface ---------- */ | |
1309 | int OPLWrite(FM_OPL *OPL,int a,int v) | |
1310 | { | |
1311 | if( !(a&1) ) | |
1312 | { /* address port */ | |
1313 | OPL->address = v & 0xff; | |
1314 | } | |
1315 | else | |
1316 | { /* data port */ | |
1317 | if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0); | |
1318 | #ifdef OPL_OUTPUT_LOG | |
1319 | if(opl_dbg_fp) | |
1320 | { | |
1321 | for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++) | |
1322 | if( opl_dbg_opl[opl_dbg_chip] == OPL) break; | |
1323 | fprintf(opl_dbg_fp,"%c%c%c",0x10+opl_dbg_chip,OPL->address,v); | |
1324 | } | |
1325 | #endif | |
1326 | OPLWriteReg(OPL,OPL->address,v); | |
1327 | } | |
1328 | return OPL->status>>7; | |
1329 | } | |
1330 | ||
1331 | unsigned char OPLRead(FM_OPL *OPL,int a) | |
1332 | { | |
1333 | if( !(a&1) ) | |
1334 | { /* status port */ | |
1335 | return OPL->status & (OPL->statusmask|0x80); | |
1336 | } | |
1337 | /* data port */ | |
1338 | switch(OPL->address) | |
1339 | { | |
1340 | case 0x05: /* KeyBoard IN */ | |
1341 | if(OPL->type&OPL_TYPE_KEYBOARD) | |
1342 | { | |
1343 | if(OPL->keyboardhandler_r) | |
1344 | return OPL->keyboardhandler_r(OPL->keyboard_param); | |
1345 | else | |
1346 | LOG(LOG_WAR,("OPL:read unmapped KEYBOARD port\n")); | |
1347 | } | |
1348 | return 0; | |
1349 | #if 0 | |
1350 | case 0x0f: /* ADPCM-DATA */ | |
1351 | return 0; | |
1352 | #endif | |
1353 | case 0x19: /* I/O DATA */ | |
1354 | if(OPL->type&OPL_TYPE_IO) | |
1355 | { | |
1356 | if(OPL->porthandler_r) | |
1357 | return OPL->porthandler_r(OPL->port_param); | |
1358 | else | |
1359 | LOG(LOG_WAR,("OPL:read unmapped I/O port\n")); | |
1360 | } | |
1361 | return 0; | |
1362 | case 0x1a: /* PCM-DATA */ | |
1363 | return 0; | |
1364 | } | |
1365 | return 0; | |
1366 | } | |
1367 | ||
1368 | int OPLTimerOver(FM_OPL *OPL,int c) | |
1369 | { | |
1370 | if( c ) | |
1371 | { /* Timer B */ | |
1372 | OPL_STATUS_SET(OPL,0x20); | |
1373 | } | |
1374 | else | |
1375 | { /* Timer A */ | |
1376 | OPL_STATUS_SET(OPL,0x40); | |
1377 | /* CSM mode key,TL controll */ | |
1378 | if( OPL->mode & 0x80 ) | |
1379 | { /* CSM mode total level latch and auto key on */ | |
1380 | int ch; | |
1381 | if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0); | |
1382 | for(ch=0;ch<9;ch++) | |
1383 | CSMKeyControll( &OPL->P_CH[ch] ); | |
1384 | } | |
1385 | } | |
1386 | /* reload timer */ | |
1387 | if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+c,(double)OPL->T[c]*OPL->TimerBase); | |
1388 | return OPL->status>>7; | |
1389 | } |