]> git.proxmox.com Git - qemu.git/blame - hw/m48t08.c
monitor fixes
[qemu.git] / hw / m48t08.c
CommitLineData
420557e8
FB
1/*
2 * QEMU M48T08 NVRAM emulation for Sparc platform
3 *
4 * Copyright (c) 2003-2004 Jocelyn Mayer
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24#include "vl.h"
25#include "m48t08.h"
26
27//#define DEBUG_NVRAM
28
29#if defined(DEBUG_NVRAM)
30#define NVRAM_PRINTF(fmt, args...) do { printf(fmt , ##args); } while (0)
31#else
32#define NVRAM_PRINTF(fmt, args...) do { } while (0)
33#endif
34
35#define NVRAM_MAX_MEM 0xfff0
36
37struct m48t08_t {
38 /* Hardware parameters */
39 int mem_index;
40 uint32_t mem_base;
41 uint16_t size;
42 /* RTC management */
43 time_t time_offset;
44 time_t stop_time;
45 /* NVRAM storage */
46 uint8_t lock;
47 uint16_t addr;
48 uint8_t *buffer;
49};
50
51/* Fake timer functions */
52/* Generic helpers for BCD */
53static inline uint8_t toBCD (uint8_t value)
54{
55 return (((value / 10) % 10) << 4) | (value % 10);
56}
57
58static inline uint8_t fromBCD (uint8_t BCD)
59{
60 return ((BCD >> 4) * 10) + (BCD & 0x0F);
61}
62
63/* RTC management helpers */
64static void get_time (m48t08_t *NVRAM, struct tm *tm)
65{
66 time_t t;
67
68 t = time(NULL) + NVRAM->time_offset;
69#ifdef _WIN32
70 memcpy(tm,localtime(&t),sizeof(*tm));
71#else
72 localtime_r (&t, tm) ;
73#endif
74}
75
76static void set_time (m48t08_t *NVRAM, struct tm *tm)
77{
78 time_t now, new_time;
79
80 new_time = mktime(tm);
81 now = time(NULL);
82 NVRAM->time_offset = new_time - now;
83}
84
85/* Direct access to NVRAM */
86void m48t08_write (m48t08_t *NVRAM, uint32_t val)
87{
88 struct tm tm;
89 int tmp;
90
91 if (NVRAM->addr > NVRAM_MAX_MEM && NVRAM->addr < 0x2000)
92 NVRAM_PRINTF("%s: 0x%08x => 0x%08x\n", __func__, NVRAM->addr, val);
93 switch (NVRAM->addr) {
94 case 0x1FF8:
95 /* control */
96 NVRAM->buffer[0x1FF8] = (val & ~0xA0) | 0x90;
97 break;
98 case 0x1FF9:
99 /* seconds (BCD) */
100 tmp = fromBCD(val & 0x7F);
101 if (tmp >= 0 && tmp <= 59) {
102 get_time(NVRAM, &tm);
103 tm.tm_sec = tmp;
104 set_time(NVRAM, &tm);
105 }
106 if ((val & 0x80) ^ (NVRAM->buffer[0x1FF9] & 0x80)) {
107 if (val & 0x80) {
108 NVRAM->stop_time = time(NULL);
109 } else {
110 NVRAM->time_offset += NVRAM->stop_time - time(NULL);
111 NVRAM->stop_time = 0;
112 }
113 }
114 NVRAM->buffer[0x1FF9] = val & 0x80;
115 break;
116 case 0x1FFA:
117 /* minutes (BCD) */
118 tmp = fromBCD(val & 0x7F);
119 if (tmp >= 0 && tmp <= 59) {
120 get_time(NVRAM, &tm);
121 tm.tm_min = tmp;
122 set_time(NVRAM, &tm);
123 }
124 break;
125 case 0x1FFB:
126 /* hours (BCD) */
127 tmp = fromBCD(val & 0x3F);
128 if (tmp >= 0 && tmp <= 23) {
129 get_time(NVRAM, &tm);
130 tm.tm_hour = tmp;
131 set_time(NVRAM, &tm);
132 }
133 break;
134 case 0x1FFC:
135 /* day of the week / century */
136 tmp = fromBCD(val & 0x07);
137 get_time(NVRAM, &tm);
138 tm.tm_wday = tmp;
139 set_time(NVRAM, &tm);
140 NVRAM->buffer[0x1FFC] = val & 0x40;
141 break;
142 case 0x1FFD:
143 /* date */
144 tmp = fromBCD(val & 0x1F);
145 if (tmp != 0) {
146 get_time(NVRAM, &tm);
147 tm.tm_mday = tmp;
148 set_time(NVRAM, &tm);
149 }
150 break;
151 case 0x1FFE:
152 /* month */
153 tmp = fromBCD(val & 0x1F);
154 if (tmp >= 1 && tmp <= 12) {
155 get_time(NVRAM, &tm);
156 tm.tm_mon = tmp - 1;
157 set_time(NVRAM, &tm);
158 }
159 break;
160 case 0x1FFF:
161 /* year */
162 tmp = fromBCD(val);
163 if (tmp >= 0 && tmp <= 99) {
164 get_time(NVRAM, &tm);
165 tm.tm_year = fromBCD(val);
166 set_time(NVRAM, &tm);
167 }
168 break;
169 default:
170 /* Check lock registers state */
171 if (NVRAM->addr >= 0x20 && NVRAM->addr <= 0x2F && (NVRAM->lock & 1))
172 break;
173 if (NVRAM->addr >= 0x30 && NVRAM->addr <= 0x3F && (NVRAM->lock & 2))
174 break;
175 if (NVRAM->addr < NVRAM_MAX_MEM ||
176 (NVRAM->addr > 0x1FFF && NVRAM->addr < NVRAM->size)) {
177 NVRAM->buffer[NVRAM->addr] = val & 0xFF;
178 }
179 break;
180 }
181}
182
183uint32_t m48t08_read (m48t08_t *NVRAM)
184{
185 struct tm tm;
186 uint32_t retval = 0xFF;
187
188 switch (NVRAM->addr) {
189 case 0x1FF8:
190 /* control */
191 goto do_read;
192 case 0x1FF9:
193 /* seconds (BCD) */
194 get_time(NVRAM, &tm);
195 retval = (NVRAM->buffer[0x1FF9] & 0x80) | toBCD(tm.tm_sec);
196 break;
197 case 0x1FFA:
198 /* minutes (BCD) */
199 get_time(NVRAM, &tm);
200 retval = toBCD(tm.tm_min);
201 break;
202 case 0x1FFB:
203 /* hours (BCD) */
204 get_time(NVRAM, &tm);
205 retval = toBCD(tm.tm_hour);
206 break;
207 case 0x1FFC:
208 /* day of the week / century */
209 get_time(NVRAM, &tm);
210 retval = NVRAM->buffer[0x1FFC] | tm.tm_wday;
211 break;
212 case 0x1FFD:
213 /* date */
214 get_time(NVRAM, &tm);
215 retval = toBCD(tm.tm_mday);
216 break;
217 case 0x1FFE:
218 /* month */
219 get_time(NVRAM, &tm);
220 retval = toBCD(tm.tm_mon + 1);
221 break;
222 case 0x1FFF:
223 /* year */
224 get_time(NVRAM, &tm);
225 retval = toBCD(tm.tm_year);
226 break;
227 default:
228 /* Check lock registers state */
229 if (NVRAM->addr >= 0x20 && NVRAM->addr <= 0x2F && (NVRAM->lock & 1))
230 break;
231 if (NVRAM->addr >= 0x30 && NVRAM->addr <= 0x3F && (NVRAM->lock & 2))
232 break;
233 if (NVRAM->addr < NVRAM_MAX_MEM ||
234 (NVRAM->addr > 0x1FFF && NVRAM->addr < NVRAM->size)) {
235 do_read:
236 retval = NVRAM->buffer[NVRAM->addr];
237 }
238 break;
239 }
240 if (NVRAM->addr > NVRAM_MAX_MEM + 1 && NVRAM->addr < 0x2000)
241 NVRAM_PRINTF("0x%08x <= 0x%08x\n", NVRAM->addr, retval);
242
243 return retval;
244}
245
246void m48t08_set_addr (m48t08_t *NVRAM, uint32_t addr)
247{
248 NVRAM->addr = addr;
249}
250
251void m48t08_toggle_lock (m48t08_t *NVRAM, int lock)
252{
253 NVRAM->lock ^= 1 << lock;
254}
255
256static void nvram_writeb (void *opaque, target_phys_addr_t addr, uint32_t value)
257{
258 m48t08_t *NVRAM = opaque;
259
260 addr -= NVRAM->mem_base;
261 if (addr < NVRAM_MAX_MEM)
262 NVRAM->buffer[addr] = value;
263}
264
265static void nvram_writew (void *opaque, target_phys_addr_t addr, uint32_t value)
266{
267 m48t08_t *NVRAM = opaque;
268
269 addr -= NVRAM->mem_base;
270 if (addr < NVRAM_MAX_MEM) {
271 NVRAM->buffer[addr] = value >> 8;
272 NVRAM->buffer[addr + 1] = value;
273 }
274}
275
276static void nvram_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
277{
278 m48t08_t *NVRAM = opaque;
279
280 addr -= NVRAM->mem_base;
281 if (addr < NVRAM_MAX_MEM) {
282 NVRAM->buffer[addr] = value >> 24;
283 NVRAM->buffer[addr + 1] = value >> 16;
284 NVRAM->buffer[addr + 2] = value >> 8;
285 NVRAM->buffer[addr + 3] = value;
286 }
287}
288
289static uint32_t nvram_readb (void *opaque, target_phys_addr_t addr)
290{
291 m48t08_t *NVRAM = opaque;
292 uint32_t retval = 0;
293
294 addr -= NVRAM->mem_base;
295 if (addr < NVRAM_MAX_MEM)
296 retval = NVRAM->buffer[addr];
297
298 return retval;
299}
300
301static uint32_t nvram_readw (void *opaque, target_phys_addr_t addr)
302{
303 m48t08_t *NVRAM = opaque;
304 uint32_t retval = 0;
305
306 addr -= NVRAM->mem_base;
307 if (addr < NVRAM_MAX_MEM) {
308 retval = NVRAM->buffer[addr] << 8;
309 retval |= NVRAM->buffer[addr + 1];
310 }
311
312 return retval;
313}
314
315static uint32_t nvram_readl (void *opaque, target_phys_addr_t addr)
316{
317 m48t08_t *NVRAM = opaque;
318 uint32_t retval = 0;
319
320 addr -= NVRAM->mem_base;
321 if (addr < NVRAM_MAX_MEM) {
322 retval = NVRAM->buffer[addr] << 24;
323 retval |= NVRAM->buffer[addr + 1] << 16;
324 retval |= NVRAM->buffer[addr + 2] << 8;
325 retval |= NVRAM->buffer[addr + 3];
326 }
327
328 return retval;
329}
330
331static CPUWriteMemoryFunc *nvram_write[] = {
332 &nvram_writeb,
333 &nvram_writew,
334 &nvram_writel,
335};
336
337static CPUReadMemoryFunc *nvram_read[] = {
338 &nvram_readb,
339 &nvram_readw,
340 &nvram_readl,
341};
342
343/* Initialisation routine */
8d5f07fa 344m48t08_t *m48t08_init(uint32_t mem_base, uint16_t size, uint8_t *macaddr)
420557e8
FB
345{
346 m48t08_t *s;
347 int i;
348 unsigned char tmp = 0;
349
350 s = qemu_mallocz(sizeof(m48t08_t));
351 if (!s)
352 return NULL;
353 s->buffer = qemu_mallocz(size);
354 if (!s->buffer) {
355 qemu_free(s);
356 return NULL;
357 }
358 s->size = size;
359 s->mem_base = mem_base;
360 s->addr = 0;
361 if (mem_base != 0) {
362 s->mem_index = cpu_register_io_memory(0, nvram_read, nvram_write, s);
363 cpu_register_physical_memory(mem_base, 0x4000, s->mem_index);
364 }
365 s->lock = 0;
366
367 i = 0x1fd8;
368 s->buffer[i++] = 0x01;
369 s->buffer[i++] = 0x80; /* Sun4m OBP */
8d5f07fa 370 memcpy(&s->buffer[i], macaddr, 6);
420557e8
FB
371
372 /* Calculate checksum */
373 for (i = 0x1fd8; i < 0x1fe7; i++) {
374 tmp ^= s->buffer[i];
375 }
376 s->buffer[0x1fe7] = tmp;
377 return s;
378}
379
380#if 0
381struct idprom
382{
383 unsigned char id_format; /* Format identifier (always 0x01) */
384 unsigned char id_machtype; /* Machine type */
385 unsigned char id_ethaddr[6]; /* Hardware ethernet address */
386 long id_date; /* Date of manufacture */
387 unsigned int id_sernum:24; /* Unique serial number */
388 unsigned char id_cksum; /* Checksum - xor of the data bytes */
389 unsigned char reserved[16];
390};
391#endif