]> git.proxmox.com Git - qemu.git/blame - hw/musicpal.c
Fix tcg after commit 6800
[qemu.git] / hw / musicpal.c
CommitLineData
24859b68
AZ
1/*
2 * Marvell MV88W8618 / Freecom MusicPal emulation.
3 *
4 * Copyright (c) 2008 Jan Kiszka
5 *
6 * This code is licenced under the GNU GPL v2.
7 */
8
9#include "hw.h"
10#include "arm-misc.h"
11#include "devices.h"
12#include "net.h"
13#include "sysemu.h"
14#include "boards.h"
15#include "pc.h"
16#include "qemu-timer.h"
17#include "block.h"
18#include "flash.h"
19#include "console.h"
20#include "audio/audio.h"
21#include "i2c.h"
22
23#define MP_ETH_BASE 0x80008000
24#define MP_ETH_SIZE 0x00001000
25
26#define MP_UART1_BASE 0x8000C840
27#define MP_UART2_BASE 0x8000C940
28
29#define MP_FLASHCFG_BASE 0x90006000
30#define MP_FLASHCFG_SIZE 0x00001000
31
32#define MP_AUDIO_BASE 0x90007000
33#define MP_AUDIO_SIZE 0x00001000
34
35#define MP_PIC_BASE 0x90008000
36#define MP_PIC_SIZE 0x00001000
37
38#define MP_PIT_BASE 0x90009000
39#define MP_PIT_SIZE 0x00001000
40
41#define MP_LCD_BASE 0x9000c000
42#define MP_LCD_SIZE 0x00001000
43
44#define MP_SRAM_BASE 0xC0000000
45#define MP_SRAM_SIZE 0x00020000
46
47#define MP_RAM_DEFAULT_SIZE 32*1024*1024
48#define MP_FLASH_SIZE_MAX 32*1024*1024
49
50#define MP_TIMER1_IRQ 4
51/* ... */
52#define MP_TIMER4_IRQ 7
53#define MP_EHCI_IRQ 8
54#define MP_ETH_IRQ 9
55#define MP_UART1_IRQ 11
56#define MP_UART2_IRQ 11
57#define MP_GPIO_IRQ 12
58#define MP_RTC_IRQ 28
59#define MP_AUDIO_IRQ 30
60
61static uint32_t gpio_in_state = 0xffffffff;
7c6ce4ba 62static uint32_t gpio_isr;
24859b68
AZ
63static uint32_t gpio_out_state;
64static ram_addr_t sram_off;
65
66/* Address conversion helpers */
67static void *target2host_addr(uint32_t addr)
68{
69 if (addr < MP_SRAM_BASE) {
70 if (addr >= MP_RAM_DEFAULT_SIZE)
71 return NULL;
72 return (void *)(phys_ram_base + addr);
73 } else {
74 if (addr >= MP_SRAM_BASE + MP_SRAM_SIZE)
75 return NULL;
76 return (void *)(phys_ram_base + sram_off + addr - MP_SRAM_BASE);
77 }
78}
79
80static uint32_t host2target_addr(void *addr)
81{
82 if (addr < ((void *)phys_ram_base) + sram_off)
83 return (unsigned long)addr - (unsigned long)phys_ram_base;
84 else
85 return (unsigned long)addr - (unsigned long)phys_ram_base -
86 sram_off + MP_SRAM_BASE;
87}
88
89
90typedef enum i2c_state {
91 STOPPED = 0,
92 INITIALIZING,
93 SENDING_BIT7,
94 SENDING_BIT6,
95 SENDING_BIT5,
96 SENDING_BIT4,
97 SENDING_BIT3,
98 SENDING_BIT2,
99 SENDING_BIT1,
100 SENDING_BIT0,
101 WAITING_FOR_ACK,
102 RECEIVING_BIT7,
103 RECEIVING_BIT6,
104 RECEIVING_BIT5,
105 RECEIVING_BIT4,
106 RECEIVING_BIT3,
107 RECEIVING_BIT2,
108 RECEIVING_BIT1,
109 RECEIVING_BIT0,
110 SENDING_ACK
111} i2c_state;
112
113typedef struct i2c_interface {
114 i2c_bus *bus;
115 i2c_state state;
116 int last_data;
117 int last_clock;
118 uint8_t buffer;
119 int current_addr;
120} i2c_interface;
121
122static void i2c_enter_stop(i2c_interface *i2c)
123{
124 if (i2c->current_addr >= 0)
125 i2c_end_transfer(i2c->bus);
126 i2c->current_addr = -1;
127 i2c->state = STOPPED;
128}
129
130static void i2c_state_update(i2c_interface *i2c, int data, int clock)
131{
132 if (!i2c)
133 return;
134
135 switch (i2c->state) {
136 case STOPPED:
137 if (data == 0 && i2c->last_data == 1 && clock == 1)
138 i2c->state = INITIALIZING;
139 break;
140
141 case INITIALIZING:
142 if (clock == 0 && i2c->last_clock == 1 && data == 0)
143 i2c->state = SENDING_BIT7;
144 else
145 i2c_enter_stop(i2c);
146 break;
147
148 case SENDING_BIT7 ... SENDING_BIT0:
149 if (clock == 0 && i2c->last_clock == 1) {
150 i2c->buffer = (i2c->buffer << 1) | data;
151 i2c->state++; /* will end up in WAITING_FOR_ACK */
152 } else if (data == 1 && i2c->last_data == 0 && clock == 1)
153 i2c_enter_stop(i2c);
154 break;
155
156 case WAITING_FOR_ACK:
157 if (clock == 0 && i2c->last_clock == 1) {
158 if (i2c->current_addr < 0) {
159 i2c->current_addr = i2c->buffer;
160 i2c_start_transfer(i2c->bus, i2c->current_addr & 0xfe,
161 i2c->buffer & 1);
162 } else
163 i2c_send(i2c->bus, i2c->buffer);
164 if (i2c->current_addr & 1) {
165 i2c->state = RECEIVING_BIT7;
166 i2c->buffer = i2c_recv(i2c->bus);
167 } else
168 i2c->state = SENDING_BIT7;
169 } else if (data == 1 && i2c->last_data == 0 && clock == 1)
170 i2c_enter_stop(i2c);
171 break;
172
173 case RECEIVING_BIT7 ... RECEIVING_BIT0:
174 if (clock == 0 && i2c->last_clock == 1) {
175 i2c->state++; /* will end up in SENDING_ACK */
176 i2c->buffer <<= 1;
177 } else if (data == 1 && i2c->last_data == 0 && clock == 1)
178 i2c_enter_stop(i2c);
179 break;
180
181 case SENDING_ACK:
182 if (clock == 0 && i2c->last_clock == 1) {
183 i2c->state = RECEIVING_BIT7;
184 if (data == 0)
185 i2c->buffer = i2c_recv(i2c->bus);
186 else
187 i2c_nack(i2c->bus);
188 } else if (data == 1 && i2c->last_data == 0 && clock == 1)
189 i2c_enter_stop(i2c);
190 break;
191 }
192
193 i2c->last_data = data;
194 i2c->last_clock = clock;
195}
196
197static int i2c_get_data(i2c_interface *i2c)
198{
199 if (!i2c)
200 return 0;
201
202 switch (i2c->state) {
203 case RECEIVING_BIT7 ... RECEIVING_BIT0:
204 return (i2c->buffer >> 7);
205
206 case WAITING_FOR_ACK:
207 default:
208 return 0;
209 }
210}
211
212static i2c_interface *mixer_i2c;
213
214#ifdef HAS_AUDIO
215
216/* Audio register offsets */
217#define MP_AUDIO_PLAYBACK_MODE 0x00
218#define MP_AUDIO_CLOCK_DIV 0x18
219#define MP_AUDIO_IRQ_STATUS 0x20
220#define MP_AUDIO_IRQ_ENABLE 0x24
221#define MP_AUDIO_TX_START_LO 0x28
222#define MP_AUDIO_TX_THRESHOLD 0x2C
223#define MP_AUDIO_TX_STATUS 0x38
224#define MP_AUDIO_TX_START_HI 0x40
225
226/* Status register and IRQ enable bits */
227#define MP_AUDIO_TX_HALF (1 << 6)
228#define MP_AUDIO_TX_FULL (1 << 7)
229
230/* Playback mode bits */
231#define MP_AUDIO_16BIT_SAMPLE (1 << 0)
232#define MP_AUDIO_PLAYBACK_EN (1 << 7)
233#define MP_AUDIO_CLOCK_24MHZ (1 << 9)
4001a81e 234#define MP_AUDIO_MONO (1 << 14)
24859b68
AZ
235
236/* Wolfson 8750 I2C address */
237#define MP_WM_ADDR 0x34
238
b1d8e52e 239static const char audio_name[] = "mv88w8618";
24859b68
AZ
240
241typedef struct musicpal_audio_state {
24859b68
AZ
242 qemu_irq irq;
243 uint32_t playback_mode;
244 uint32_t status;
245 uint32_t irq_enable;
246 unsigned long phys_buf;
a350e694 247 int8_t *target_buffer;
24859b68
AZ
248 unsigned int threshold;
249 unsigned int play_pos;
250 unsigned int last_free;
251 uint32_t clock_div;
252 i2c_slave *wm;
253} musicpal_audio_state;
254
255static void audio_callback(void *opaque, int free_out, int free_in)
256{
257 musicpal_audio_state *s = opaque;
4f3cb3be 258 int16_t *codec_buffer;
a350e694 259 int8_t *mem_buffer;
24859b68
AZ
260 int pos, block_size;
261
262 if (!(s->playback_mode & MP_AUDIO_PLAYBACK_EN))
263 return;
264
265 if (s->playback_mode & MP_AUDIO_16BIT_SAMPLE)
4001a81e
AZ
266 free_out <<= 1;
267
268 if (!(s->playback_mode & MP_AUDIO_MONO))
24859b68
AZ
269 free_out <<= 1;
270
271 block_size = s->threshold/2;
272 if (free_out - s->last_free < block_size)
273 return;
274
4001a81e
AZ
275 mem_buffer = s->target_buffer + s->play_pos;
276 if (s->playback_mode & MP_AUDIO_16BIT_SAMPLE) {
277 if (s->playback_mode & MP_AUDIO_MONO) {
278 codec_buffer = wm8750_dac_buffer(s->wm, block_size >> 1);
279 for (pos = 0; pos < block_size; pos += 2) {
a350e694
AZ
280 *codec_buffer++ = *(int16_t *)mem_buffer;
281 *codec_buffer++ = *(int16_t *)mem_buffer;
4f3cb3be 282 mem_buffer += 2;
4001a81e
AZ
283 }
284 } else
285 memcpy(wm8750_dac_buffer(s->wm, block_size >> 2),
286 (uint32_t *)mem_buffer, block_size);
287 } else {
288 if (s->playback_mode & MP_AUDIO_MONO) {
289 codec_buffer = wm8750_dac_buffer(s->wm, block_size);
290 for (pos = 0; pos < block_size; pos++) {
a350e694
AZ
291 *codec_buffer++ = cpu_to_le16(256 * *mem_buffer);
292 *codec_buffer++ = cpu_to_le16(256 * *mem_buffer++);
4001a81e
AZ
293 }
294 } else {
295 codec_buffer = wm8750_dac_buffer(s->wm, block_size >> 1);
296 for (pos = 0; pos < block_size; pos += 2) {
a350e694
AZ
297 *codec_buffer++ = cpu_to_le16(256 * *mem_buffer++);
298 *codec_buffer++ = cpu_to_le16(256 * *mem_buffer++);
4001a81e 299 }
24859b68 300 }
662caa6f
AZ
301 }
302 wm8750_dac_commit(s->wm);
24859b68
AZ
303
304 s->last_free = free_out - block_size;
305
306 if (s->play_pos == 0) {
307 s->status |= MP_AUDIO_TX_HALF;
308 s->play_pos = block_size;
309 } else {
310 s->status |= MP_AUDIO_TX_FULL;
311 s->play_pos = 0;
312 }
313
314 if (s->status & s->irq_enable)
315 qemu_irq_raise(s->irq);
316}
317
af83e09e
AZ
318static void musicpal_audio_clock_update(musicpal_audio_state *s)
319{
320 int rate;
321
322 if (s->playback_mode & MP_AUDIO_CLOCK_24MHZ)
323 rate = 24576000 / 64; /* 24.576MHz */
324 else
325 rate = 11289600 / 64; /* 11.2896MHz */
326
327 rate /= ((s->clock_div >> 8) & 0xff) + 1;
328
91834991 329 wm8750_set_bclk_in(s->wm, rate);
af83e09e
AZ
330}
331
24859b68
AZ
332static uint32_t musicpal_audio_read(void *opaque, target_phys_addr_t offset)
333{
334 musicpal_audio_state *s = opaque;
335
24859b68
AZ
336 switch (offset) {
337 case MP_AUDIO_PLAYBACK_MODE:
338 return s->playback_mode;
339
340 case MP_AUDIO_CLOCK_DIV:
341 return s->clock_div;
342
343 case MP_AUDIO_IRQ_STATUS:
344 return s->status;
345
346 case MP_AUDIO_IRQ_ENABLE:
347 return s->irq_enable;
348
349 case MP_AUDIO_TX_STATUS:
350 return s->play_pos >> 2;
351
352 default:
353 return 0;
354 }
355}
356
357static void musicpal_audio_write(void *opaque, target_phys_addr_t offset,
358 uint32_t value)
359{
360 musicpal_audio_state *s = opaque;
361
24859b68
AZ
362 switch (offset) {
363 case MP_AUDIO_PLAYBACK_MODE:
364 if (value & MP_AUDIO_PLAYBACK_EN &&
365 !(s->playback_mode & MP_AUDIO_PLAYBACK_EN)) {
366 s->status = 0;
367 s->last_free = 0;
368 s->play_pos = 0;
369 }
370 s->playback_mode = value;
af83e09e 371 musicpal_audio_clock_update(s);
24859b68
AZ
372 break;
373
374 case MP_AUDIO_CLOCK_DIV:
375 s->clock_div = value;
376 s->last_free = 0;
377 s->play_pos = 0;
af83e09e 378 musicpal_audio_clock_update(s);
24859b68
AZ
379 break;
380
381 case MP_AUDIO_IRQ_STATUS:
382 s->status &= ~value;
383 break;
384
385 case MP_AUDIO_IRQ_ENABLE:
386 s->irq_enable = value;
387 if (s->status & s->irq_enable)
388 qemu_irq_raise(s->irq);
389 break;
390
391 case MP_AUDIO_TX_START_LO:
392 s->phys_buf = (s->phys_buf & 0xFFFF0000) | (value & 0xFFFF);
393 s->target_buffer = target2host_addr(s->phys_buf);
394 s->play_pos = 0;
395 s->last_free = 0;
396 break;
397
398 case MP_AUDIO_TX_THRESHOLD:
399 s->threshold = (value + 1) * 4;
400 break;
401
402 case MP_AUDIO_TX_START_HI:
403 s->phys_buf = (s->phys_buf & 0xFFFF) | (value << 16);
404 s->target_buffer = target2host_addr(s->phys_buf);
405 s->play_pos = 0;
406 s->last_free = 0;
407 break;
408 }
409}
410
411static void musicpal_audio_reset(void *opaque)
412{
413 musicpal_audio_state *s = opaque;
414
415 s->playback_mode = 0;
416 s->status = 0;
417 s->irq_enable = 0;
418}
419
420static CPUReadMemoryFunc *musicpal_audio_readfn[] = {
421 musicpal_audio_read,
422 musicpal_audio_read,
423 musicpal_audio_read
424};
425
426static CPUWriteMemoryFunc *musicpal_audio_writefn[] = {
427 musicpal_audio_write,
428 musicpal_audio_write,
429 musicpal_audio_write
430};
431
432static i2c_interface *musicpal_audio_init(uint32_t base, qemu_irq irq)
433{
434 AudioState *audio;
435 musicpal_audio_state *s;
436 i2c_interface *i2c;
437 int iomemtype;
438
439 audio = AUD_init();
440 if (!audio) {
441 AUD_log(audio_name, "No audio state\n");
442 return NULL;
443 }
444
445 s = qemu_mallocz(sizeof(musicpal_audio_state));
24859b68
AZ
446 s->irq = irq;
447
448 i2c = qemu_mallocz(sizeof(i2c_interface));
24859b68
AZ
449 i2c->bus = i2c_init_bus();
450 i2c->current_addr = -1;
451
452 s->wm = wm8750_init(i2c->bus, audio);
453 if (!s->wm)
454 return NULL;
455 i2c_set_slave_address(s->wm, MP_WM_ADDR);
456 wm8750_data_req_set(s->wm, audio_callback, s);
457
458 iomemtype = cpu_register_io_memory(0, musicpal_audio_readfn,
459 musicpal_audio_writefn, s);
460 cpu_register_physical_memory(base, MP_AUDIO_SIZE, iomemtype);
461
462 qemu_register_reset(musicpal_audio_reset, s);
463
464 return i2c;
465}
466#else /* !HAS_AUDIO */
467static i2c_interface *musicpal_audio_init(uint32_t base, qemu_irq irq)
468{
469 return NULL;
470}
471#endif /* !HAS_AUDIO */
472
473/* Ethernet register offsets */
474#define MP_ETH_SMIR 0x010
475#define MP_ETH_PCXR 0x408
476#define MP_ETH_SDCMR 0x448
477#define MP_ETH_ICR 0x450
478#define MP_ETH_IMR 0x458
479#define MP_ETH_FRDP0 0x480
480#define MP_ETH_FRDP1 0x484
481#define MP_ETH_FRDP2 0x488
482#define MP_ETH_FRDP3 0x48C
483#define MP_ETH_CRDP0 0x4A0
484#define MP_ETH_CRDP1 0x4A4
485#define MP_ETH_CRDP2 0x4A8
486#define MP_ETH_CRDP3 0x4AC
487#define MP_ETH_CTDP0 0x4E0
488#define MP_ETH_CTDP1 0x4E4
489#define MP_ETH_CTDP2 0x4E8
490#define MP_ETH_CTDP3 0x4EC
491
492/* MII PHY access */
493#define MP_ETH_SMIR_DATA 0x0000FFFF
494#define MP_ETH_SMIR_ADDR 0x03FF0000
495#define MP_ETH_SMIR_OPCODE (1 << 26) /* Read value */
496#define MP_ETH_SMIR_RDVALID (1 << 27)
497
498/* PHY registers */
499#define MP_ETH_PHY1_BMSR 0x00210000
500#define MP_ETH_PHY1_PHYSID1 0x00410000
501#define MP_ETH_PHY1_PHYSID2 0x00610000
502
503#define MP_PHY_BMSR_LINK 0x0004
504#define MP_PHY_BMSR_AUTONEG 0x0008
505
506#define MP_PHY_88E3015 0x01410E20
507
508/* TX descriptor status */
509#define MP_ETH_TX_OWN (1 << 31)
510
511/* RX descriptor status */
512#define MP_ETH_RX_OWN (1 << 31)
513
514/* Interrupt cause/mask bits */
515#define MP_ETH_IRQ_RX_BIT 0
516#define MP_ETH_IRQ_RX (1 << MP_ETH_IRQ_RX_BIT)
517#define MP_ETH_IRQ_TXHI_BIT 2
518#define MP_ETH_IRQ_TXLO_BIT 3
519
520/* Port config bits */
521#define MP_ETH_PCXR_2BSM_BIT 28 /* 2-byte incoming suffix */
522
523/* SDMA command bits */
524#define MP_ETH_CMD_TXHI (1 << 23)
525#define MP_ETH_CMD_TXLO (1 << 22)
526
527typedef struct mv88w8618_tx_desc {
528 uint32_t cmdstat;
529 uint16_t res;
530 uint16_t bytes;
531 uint32_t buffer;
532 uint32_t next;
533} mv88w8618_tx_desc;
534
535typedef struct mv88w8618_rx_desc {
536 uint32_t cmdstat;
537 uint16_t bytes;
538 uint16_t buffer_size;
539 uint32_t buffer;
540 uint32_t next;
541} mv88w8618_rx_desc;
542
543typedef struct mv88w8618_eth_state {
24859b68
AZ
544 qemu_irq irq;
545 uint32_t smir;
546 uint32_t icr;
547 uint32_t imr;
548 int vlan_header;
549 mv88w8618_tx_desc *tx_queue[2];
550 mv88w8618_rx_desc *rx_queue[4];
551 mv88w8618_rx_desc *frx_queue[4];
552 mv88w8618_rx_desc *cur_rx[4];
553 VLANClientState *vc;
554} mv88w8618_eth_state;
555
556static int eth_can_receive(void *opaque)
557{
558 return 1;
559}
560
561static void eth_receive(void *opaque, const uint8_t *buf, int size)
562{
563 mv88w8618_eth_state *s = opaque;
564 mv88w8618_rx_desc *desc;
565 int i;
566
567 for (i = 0; i < 4; i++) {
568 desc = s->cur_rx[i];
569 if (!desc)
570 continue;
571 do {
572 if (le32_to_cpu(desc->cmdstat) & MP_ETH_RX_OWN &&
573 le16_to_cpu(desc->buffer_size) >= size) {
574 memcpy(target2host_addr(le32_to_cpu(desc->buffer) +
575 s->vlan_header),
576 buf, size);
577 desc->bytes = cpu_to_le16(size + s->vlan_header);
578 desc->cmdstat &= cpu_to_le32(~MP_ETH_RX_OWN);
579 s->cur_rx[i] = target2host_addr(le32_to_cpu(desc->next));
580
581 s->icr |= MP_ETH_IRQ_RX;
582 if (s->icr & s->imr)
583 qemu_irq_raise(s->irq);
584 return;
585 }
586 desc = target2host_addr(le32_to_cpu(desc->next));
587 } while (desc != s->rx_queue[i]);
588 }
589}
590
591static void eth_send(mv88w8618_eth_state *s, int queue_index)
592{
593 mv88w8618_tx_desc *desc = s->tx_queue[queue_index];
594
595 do {
596 if (le32_to_cpu(desc->cmdstat) & MP_ETH_TX_OWN) {
597 qemu_send_packet(s->vc,
598 target2host_addr(le32_to_cpu(desc->buffer)),
599 le16_to_cpu(desc->bytes));
600 desc->cmdstat &= cpu_to_le32(~MP_ETH_TX_OWN);
601 s->icr |= 1 << (MP_ETH_IRQ_TXLO_BIT - queue_index);
602 }
603 desc = target2host_addr(le32_to_cpu(desc->next));
604 } while (desc != s->tx_queue[queue_index]);
605}
606
607static uint32_t mv88w8618_eth_read(void *opaque, target_phys_addr_t offset)
608{
609 mv88w8618_eth_state *s = opaque;
610
24859b68
AZ
611 switch (offset) {
612 case MP_ETH_SMIR:
613 if (s->smir & MP_ETH_SMIR_OPCODE) {
614 switch (s->smir & MP_ETH_SMIR_ADDR) {
615 case MP_ETH_PHY1_BMSR:
616 return MP_PHY_BMSR_LINK | MP_PHY_BMSR_AUTONEG |
617 MP_ETH_SMIR_RDVALID;
618 case MP_ETH_PHY1_PHYSID1:
619 return (MP_PHY_88E3015 >> 16) | MP_ETH_SMIR_RDVALID;
620 case MP_ETH_PHY1_PHYSID2:
621 return (MP_PHY_88E3015 & 0xFFFF) | MP_ETH_SMIR_RDVALID;
622 default:
623 return MP_ETH_SMIR_RDVALID;
624 }
625 }
626 return 0;
627
628 case MP_ETH_ICR:
629 return s->icr;
630
631 case MP_ETH_IMR:
632 return s->imr;
633
634 case MP_ETH_FRDP0 ... MP_ETH_FRDP3:
635 return host2target_addr(s->frx_queue[(offset - MP_ETH_FRDP0)/4]);
636
637 case MP_ETH_CRDP0 ... MP_ETH_CRDP3:
638 return host2target_addr(s->rx_queue[(offset - MP_ETH_CRDP0)/4]);
639
640 case MP_ETH_CTDP0 ... MP_ETH_CTDP3:
641 return host2target_addr(s->tx_queue[(offset - MP_ETH_CTDP0)/4]);
642
643 default:
644 return 0;
645 }
646}
647
648static void mv88w8618_eth_write(void *opaque, target_phys_addr_t offset,
649 uint32_t value)
650{
651 mv88w8618_eth_state *s = opaque;
652
24859b68
AZ
653 switch (offset) {
654 case MP_ETH_SMIR:
655 s->smir = value;
656 break;
657
658 case MP_ETH_PCXR:
659 s->vlan_header = ((value >> MP_ETH_PCXR_2BSM_BIT) & 1) * 2;
660 break;
661
662 case MP_ETH_SDCMR:
663 if (value & MP_ETH_CMD_TXHI)
664 eth_send(s, 1);
665 if (value & MP_ETH_CMD_TXLO)
666 eth_send(s, 0);
667 if (value & (MP_ETH_CMD_TXHI | MP_ETH_CMD_TXLO) && s->icr & s->imr)
668 qemu_irq_raise(s->irq);
669 break;
670
671 case MP_ETH_ICR:
672 s->icr &= value;
673 break;
674
675 case MP_ETH_IMR:
676 s->imr = value;
677 if (s->icr & s->imr)
678 qemu_irq_raise(s->irq);
679 break;
680
681 case MP_ETH_FRDP0 ... MP_ETH_FRDP3:
682 s->frx_queue[(offset - MP_ETH_FRDP0)/4] = target2host_addr(value);
683 break;
684
685 case MP_ETH_CRDP0 ... MP_ETH_CRDP3:
686 s->rx_queue[(offset - MP_ETH_CRDP0)/4] =
687 s->cur_rx[(offset - MP_ETH_CRDP0)/4] = target2host_addr(value);
688 break;
689
690 case MP_ETH_CTDP0 ... MP_ETH_CTDP3:
691 s->tx_queue[(offset - MP_ETH_CTDP0)/4] = target2host_addr(value);
692 break;
693 }
694}
695
696static CPUReadMemoryFunc *mv88w8618_eth_readfn[] = {
697 mv88w8618_eth_read,
698 mv88w8618_eth_read,
699 mv88w8618_eth_read
700};
701
702static CPUWriteMemoryFunc *mv88w8618_eth_writefn[] = {
703 mv88w8618_eth_write,
704 mv88w8618_eth_write,
705 mv88w8618_eth_write
706};
707
708static void mv88w8618_eth_init(NICInfo *nd, uint32_t base, qemu_irq irq)
709{
710 mv88w8618_eth_state *s;
711 int iomemtype;
712
0ae18cee
AL
713 qemu_check_nic_model(nd, "mv88w8618");
714
24859b68 715 s = qemu_mallocz(sizeof(mv88w8618_eth_state));
24859b68 716 s->irq = irq;
7a9f6e4a 717 s->vc = qemu_new_vlan_client(nd->vlan, nd->model, nd->name,
bf38c1a0 718 eth_receive, eth_can_receive, s);
24859b68
AZ
719 iomemtype = cpu_register_io_memory(0, mv88w8618_eth_readfn,
720 mv88w8618_eth_writefn, s);
721 cpu_register_physical_memory(base, MP_ETH_SIZE, iomemtype);
722}
723
724/* LCD register offsets */
725#define MP_LCD_IRQCTRL 0x180
726#define MP_LCD_IRQSTAT 0x184
727#define MP_LCD_SPICTRL 0x1ac
728#define MP_LCD_INST 0x1bc
729#define MP_LCD_DATA 0x1c0
730
731/* Mode magics */
732#define MP_LCD_SPI_DATA 0x00100011
733#define MP_LCD_SPI_CMD 0x00104011
734#define MP_LCD_SPI_INVALID 0x00000000
735
736/* Commmands */
737#define MP_LCD_INST_SETPAGE0 0xB0
738/* ... */
739#define MP_LCD_INST_SETPAGE7 0xB7
740
741#define MP_LCD_TEXTCOLOR 0xe0e0ff /* RRGGBB */
742
743typedef struct musicpal_lcd_state {
24859b68
AZ
744 uint32_t mode;
745 uint32_t irqctrl;
746 int page;
747 int page_off;
748 DisplayState *ds;
749 uint8_t video_ram[128*64/8];
750} musicpal_lcd_state;
751
752static uint32_t lcd_brightness;
753
754static uint8_t scale_lcd_color(uint8_t col)
755{
756 int tmp = col;
757
758 switch (lcd_brightness) {
759 case 0x00000007: /* 0 */
760 return 0;
761
762 case 0x00020000: /* 1 */
763 return (tmp * 1) / 7;
764
765 case 0x00020001: /* 2 */
766 return (tmp * 2) / 7;
767
768 case 0x00040000: /* 3 */
769 return (tmp * 3) / 7;
770
771 case 0x00010006: /* 4 */
772 return (tmp * 4) / 7;
773
774 case 0x00020005: /* 5 */
775 return (tmp * 5) / 7;
776
777 case 0x00040003: /* 6 */
778 return (tmp * 6) / 7;
779
780 case 0x00030004: /* 7 */
781 default:
782 return col;
783 }
784}
785
0266f2c7
AZ
786#define SET_LCD_PIXEL(depth, type) \
787static inline void glue(set_lcd_pixel, depth) \
788 (musicpal_lcd_state *s, int x, int y, type col) \
789{ \
790 int dx, dy; \
0e1f5a0c 791 type *pixel = &((type *) ds_get_data(s->ds))[(y * 128 * 3 + x) * 3]; \
0266f2c7
AZ
792\
793 for (dy = 0; dy < 3; dy++, pixel += 127 * 3) \
794 for (dx = 0; dx < 3; dx++, pixel++) \
795 *pixel = col; \
24859b68 796}
0266f2c7
AZ
797SET_LCD_PIXEL(8, uint8_t)
798SET_LCD_PIXEL(16, uint16_t)
799SET_LCD_PIXEL(32, uint32_t)
800
801#include "pixel_ops.h"
24859b68
AZ
802
803static void lcd_refresh(void *opaque)
804{
805 musicpal_lcd_state *s = opaque;
0266f2c7 806 int x, y, col;
24859b68 807
0e1f5a0c 808 switch (ds_get_bits_per_pixel(s->ds)) {
0266f2c7
AZ
809 case 0:
810 return;
811#define LCD_REFRESH(depth, func) \
812 case depth: \
813 col = func(scale_lcd_color((MP_LCD_TEXTCOLOR >> 16) & 0xff), \
814 scale_lcd_color((MP_LCD_TEXTCOLOR >> 8) & 0xff), \
815 scale_lcd_color(MP_LCD_TEXTCOLOR & 0xff)); \
816 for (x = 0; x < 128; x++) \
817 for (y = 0; y < 64; y++) \
818 if (s->video_ram[x + (y/8)*128] & (1 << (y % 8))) \
819 glue(set_lcd_pixel, depth)(s, x, y, col); \
820 else \
821 glue(set_lcd_pixel, depth)(s, x, y, 0); \
822 break;
823 LCD_REFRESH(8, rgb_to_pixel8)
824 LCD_REFRESH(16, rgb_to_pixel16)
8927bcfd 825 LCD_REFRESH(32, rgb_to_pixel32)
0266f2c7
AZ
826 default:
827 cpu_abort(cpu_single_env, "unsupported colour depth %i\n",
0e1f5a0c 828 ds_get_bits_per_pixel(s->ds));
0266f2c7 829 }
24859b68
AZ
830
831 dpy_update(s->ds, 0, 0, 128*3, 64*3);
832}
833
167bc3d2
AZ
834static void lcd_invalidate(void *opaque)
835{
167bc3d2
AZ
836}
837
24859b68
AZ
838static uint32_t musicpal_lcd_read(void *opaque, target_phys_addr_t offset)
839{
840 musicpal_lcd_state *s = opaque;
841
24859b68
AZ
842 switch (offset) {
843 case MP_LCD_IRQCTRL:
844 return s->irqctrl;
845
846 default:
847 return 0;
848 }
849}
850
851static void musicpal_lcd_write(void *opaque, target_phys_addr_t offset,
852 uint32_t value)
853{
854 musicpal_lcd_state *s = opaque;
855
24859b68
AZ
856 switch (offset) {
857 case MP_LCD_IRQCTRL:
858 s->irqctrl = value;
859 break;
860
861 case MP_LCD_SPICTRL:
862 if (value == MP_LCD_SPI_DATA || value == MP_LCD_SPI_CMD)
863 s->mode = value;
864 else
865 s->mode = MP_LCD_SPI_INVALID;
866 break;
867
868 case MP_LCD_INST:
869 if (value >= MP_LCD_INST_SETPAGE0 && value <= MP_LCD_INST_SETPAGE7) {
870 s->page = value - MP_LCD_INST_SETPAGE0;
871 s->page_off = 0;
872 }
873 break;
874
875 case MP_LCD_DATA:
876 if (s->mode == MP_LCD_SPI_CMD) {
877 if (value >= MP_LCD_INST_SETPAGE0 &&
878 value <= MP_LCD_INST_SETPAGE7) {
879 s->page = value - MP_LCD_INST_SETPAGE0;
880 s->page_off = 0;
881 }
882 } else if (s->mode == MP_LCD_SPI_DATA) {
883 s->video_ram[s->page*128 + s->page_off] = value;
884 s->page_off = (s->page_off + 1) & 127;
885 }
886 break;
887 }
888}
889
890static CPUReadMemoryFunc *musicpal_lcd_readfn[] = {
891 musicpal_lcd_read,
892 musicpal_lcd_read,
893 musicpal_lcd_read
894};
895
896static CPUWriteMemoryFunc *musicpal_lcd_writefn[] = {
897 musicpal_lcd_write,
898 musicpal_lcd_write,
899 musicpal_lcd_write
900};
901
3023f332 902static void musicpal_lcd_init(uint32_t base)
24859b68
AZ
903{
904 musicpal_lcd_state *s;
905 int iomemtype;
906
907 s = qemu_mallocz(sizeof(musicpal_lcd_state));
24859b68
AZ
908 iomemtype = cpu_register_io_memory(0, musicpal_lcd_readfn,
909 musicpal_lcd_writefn, s);
910 cpu_register_physical_memory(base, MP_LCD_SIZE, iomemtype);
911
3023f332
AL
912 s->ds = graphic_console_init(lcd_refresh, lcd_invalidate,
913 NULL, NULL, s);
914 qemu_console_resize(s->ds, 128*3, 64*3);
24859b68
AZ
915}
916
917/* PIC register offsets */
918#define MP_PIC_STATUS 0x00
919#define MP_PIC_ENABLE_SET 0x08
920#define MP_PIC_ENABLE_CLR 0x0C
921
922typedef struct mv88w8618_pic_state
923{
24859b68
AZ
924 uint32_t level;
925 uint32_t enabled;
926 qemu_irq parent_irq;
927} mv88w8618_pic_state;
928
929static void mv88w8618_pic_update(mv88w8618_pic_state *s)
930{
931 qemu_set_irq(s->parent_irq, (s->level & s->enabled));
932}
933
934static void mv88w8618_pic_set_irq(void *opaque, int irq, int level)
935{
936 mv88w8618_pic_state *s = opaque;
937
938 if (level)
939 s->level |= 1 << irq;
940 else
941 s->level &= ~(1 << irq);
942 mv88w8618_pic_update(s);
943}
944
945static uint32_t mv88w8618_pic_read(void *opaque, target_phys_addr_t offset)
946{
947 mv88w8618_pic_state *s = opaque;
948
24859b68
AZ
949 switch (offset) {
950 case MP_PIC_STATUS:
951 return s->level & s->enabled;
952
953 default:
954 return 0;
955 }
956}
957
958static void mv88w8618_pic_write(void *opaque, target_phys_addr_t offset,
959 uint32_t value)
960{
961 mv88w8618_pic_state *s = opaque;
962
24859b68
AZ
963 switch (offset) {
964 case MP_PIC_ENABLE_SET:
965 s->enabled |= value;
966 break;
967
968 case MP_PIC_ENABLE_CLR:
969 s->enabled &= ~value;
970 s->level &= ~value;
971 break;
972 }
973 mv88w8618_pic_update(s);
974}
975
976static void mv88w8618_pic_reset(void *opaque)
977{
978 mv88w8618_pic_state *s = opaque;
979
980 s->level = 0;
981 s->enabled = 0;
982}
983
984static CPUReadMemoryFunc *mv88w8618_pic_readfn[] = {
985 mv88w8618_pic_read,
986 mv88w8618_pic_read,
987 mv88w8618_pic_read
988};
989
990static CPUWriteMemoryFunc *mv88w8618_pic_writefn[] = {
991 mv88w8618_pic_write,
992 mv88w8618_pic_write,
993 mv88w8618_pic_write
994};
995
996static qemu_irq *mv88w8618_pic_init(uint32_t base, qemu_irq parent_irq)
997{
998 mv88w8618_pic_state *s;
999 int iomemtype;
1000 qemu_irq *qi;
1001
1002 s = qemu_mallocz(sizeof(mv88w8618_pic_state));
24859b68 1003 qi = qemu_allocate_irqs(mv88w8618_pic_set_irq, s, 32);
24859b68
AZ
1004 s->parent_irq = parent_irq;
1005 iomemtype = cpu_register_io_memory(0, mv88w8618_pic_readfn,
1006 mv88w8618_pic_writefn, s);
1007 cpu_register_physical_memory(base, MP_PIC_SIZE, iomemtype);
1008
1009 qemu_register_reset(mv88w8618_pic_reset, s);
1010
1011 return qi;
1012}
1013
1014/* PIT register offsets */
1015#define MP_PIT_TIMER1_LENGTH 0x00
1016/* ... */
1017#define MP_PIT_TIMER4_LENGTH 0x0C
1018#define MP_PIT_CONTROL 0x10
1019#define MP_PIT_TIMER1_VALUE 0x14
1020/* ... */
1021#define MP_PIT_TIMER4_VALUE 0x20
1022#define MP_BOARD_RESET 0x34
1023
1024/* Magic board reset value (probably some watchdog behind it) */
1025#define MP_BOARD_RESET_MAGIC 0x10000
1026
1027typedef struct mv88w8618_timer_state {
1028 ptimer_state *timer;
1029 uint32_t limit;
1030 int freq;
1031 qemu_irq irq;
1032} mv88w8618_timer_state;
1033
1034typedef struct mv88w8618_pit_state {
1035 void *timer[4];
1036 uint32_t control;
24859b68
AZ
1037} mv88w8618_pit_state;
1038
1039static void mv88w8618_timer_tick(void *opaque)
1040{
1041 mv88w8618_timer_state *s = opaque;
1042
1043 qemu_irq_raise(s->irq);
1044}
1045
1046static void *mv88w8618_timer_init(uint32_t freq, qemu_irq irq)
1047{
1048 mv88w8618_timer_state *s;
1049 QEMUBH *bh;
1050
1051 s = qemu_mallocz(sizeof(mv88w8618_timer_state));
1052 s->irq = irq;
1053 s->freq = freq;
1054
1055 bh = qemu_bh_new(mv88w8618_timer_tick, s);
1056 s->timer = ptimer_init(bh);
1057
1058 return s;
1059}
1060
1061static uint32_t mv88w8618_pit_read(void *opaque, target_phys_addr_t offset)
1062{
1063 mv88w8618_pit_state *s = opaque;
1064 mv88w8618_timer_state *t;
1065
24859b68
AZ
1066 switch (offset) {
1067 case MP_PIT_TIMER1_VALUE ... MP_PIT_TIMER4_VALUE:
1068 t = s->timer[(offset-MP_PIT_TIMER1_VALUE) >> 2];
1069 return ptimer_get_count(t->timer);
1070
1071 default:
1072 return 0;
1073 }
1074}
1075
1076static void mv88w8618_pit_write(void *opaque, target_phys_addr_t offset,
1077 uint32_t value)
1078{
1079 mv88w8618_pit_state *s = opaque;
1080 mv88w8618_timer_state *t;
1081 int i;
1082
24859b68
AZ
1083 switch (offset) {
1084 case MP_PIT_TIMER1_LENGTH ... MP_PIT_TIMER4_LENGTH:
1085 t = s->timer[offset >> 2];
1086 t->limit = value;
1087 ptimer_set_limit(t->timer, t->limit, 1);
1088 break;
1089
1090 case MP_PIT_CONTROL:
1091 for (i = 0; i < 4; i++) {
1092 if (value & 0xf) {
1093 t = s->timer[i];
1094 ptimer_set_limit(t->timer, t->limit, 0);
1095 ptimer_set_freq(t->timer, t->freq);
1096 ptimer_run(t->timer, 0);
1097 }
1098 value >>= 4;
1099 }
1100 break;
1101
1102 case MP_BOARD_RESET:
1103 if (value == MP_BOARD_RESET_MAGIC)
1104 qemu_system_reset_request();
1105 break;
1106 }
1107}
1108
1109static CPUReadMemoryFunc *mv88w8618_pit_readfn[] = {
1110 mv88w8618_pit_read,
1111 mv88w8618_pit_read,
1112 mv88w8618_pit_read
1113};
1114
1115static CPUWriteMemoryFunc *mv88w8618_pit_writefn[] = {
1116 mv88w8618_pit_write,
1117 mv88w8618_pit_write,
1118 mv88w8618_pit_write
1119};
1120
1121static void mv88w8618_pit_init(uint32_t base, qemu_irq *pic, int irq)
1122{
1123 int iomemtype;
1124 mv88w8618_pit_state *s;
1125
1126 s = qemu_mallocz(sizeof(mv88w8618_pit_state));
24859b68 1127
24859b68
AZ
1128 /* Letting them all run at 1 MHz is likely just a pragmatic
1129 * simplification. */
1130 s->timer[0] = mv88w8618_timer_init(1000000, pic[irq]);
1131 s->timer[1] = mv88w8618_timer_init(1000000, pic[irq + 1]);
1132 s->timer[2] = mv88w8618_timer_init(1000000, pic[irq + 2]);
1133 s->timer[3] = mv88w8618_timer_init(1000000, pic[irq + 3]);
1134
1135 iomemtype = cpu_register_io_memory(0, mv88w8618_pit_readfn,
1136 mv88w8618_pit_writefn, s);
1137 cpu_register_physical_memory(base, MP_PIT_SIZE, iomemtype);
1138}
1139
1140/* Flash config register offsets */
1141#define MP_FLASHCFG_CFGR0 0x04
1142
1143typedef struct mv88w8618_flashcfg_state {
24859b68
AZ
1144 uint32_t cfgr0;
1145} mv88w8618_flashcfg_state;
1146
1147static uint32_t mv88w8618_flashcfg_read(void *opaque,
1148 target_phys_addr_t offset)
1149{
1150 mv88w8618_flashcfg_state *s = opaque;
1151
24859b68
AZ
1152 switch (offset) {
1153 case MP_FLASHCFG_CFGR0:
1154 return s->cfgr0;
1155
1156 default:
1157 return 0;
1158 }
1159}
1160
1161static void mv88w8618_flashcfg_write(void *opaque, target_phys_addr_t offset,
1162 uint32_t value)
1163{
1164 mv88w8618_flashcfg_state *s = opaque;
1165
24859b68
AZ
1166 switch (offset) {
1167 case MP_FLASHCFG_CFGR0:
1168 s->cfgr0 = value;
1169 break;
1170 }
1171}
1172
1173static CPUReadMemoryFunc *mv88w8618_flashcfg_readfn[] = {
1174 mv88w8618_flashcfg_read,
1175 mv88w8618_flashcfg_read,
1176 mv88w8618_flashcfg_read
1177};
1178
1179static CPUWriteMemoryFunc *mv88w8618_flashcfg_writefn[] = {
1180 mv88w8618_flashcfg_write,
1181 mv88w8618_flashcfg_write,
1182 mv88w8618_flashcfg_write
1183};
1184
1185static void mv88w8618_flashcfg_init(uint32_t base)
1186{
1187 int iomemtype;
1188 mv88w8618_flashcfg_state *s;
1189
1190 s = qemu_mallocz(sizeof(mv88w8618_flashcfg_state));
24859b68 1191
24859b68
AZ
1192 s->cfgr0 = 0xfffe4285; /* Default as set by U-Boot for 8 MB flash */
1193 iomemtype = cpu_register_io_memory(0, mv88w8618_flashcfg_readfn,
1194 mv88w8618_flashcfg_writefn, s);
1195 cpu_register_physical_memory(base, MP_FLASHCFG_SIZE, iomemtype);
1196}
1197
1198/* Various registers in the 0x80000000 domain */
1199#define MP_BOARD_REVISION 0x2018
1200
1201#define MP_WLAN_MAGIC1 0xc11c
1202#define MP_WLAN_MAGIC2 0xc124
1203
1204#define MP_GPIO_OE_LO 0xd008
1205#define MP_GPIO_OUT_LO 0xd00c
1206#define MP_GPIO_IN_LO 0xd010
1207#define MP_GPIO_ISR_LO 0xd020
1208#define MP_GPIO_OE_HI 0xd508
1209#define MP_GPIO_OUT_HI 0xd50c
1210#define MP_GPIO_IN_HI 0xd510
1211#define MP_GPIO_ISR_HI 0xd520
1212
1213/* GPIO bits & masks */
1214#define MP_GPIO_WHEEL_VOL (1 << 8)
1215#define MP_GPIO_WHEEL_VOL_INV (1 << 9)
1216#define MP_GPIO_WHEEL_NAV (1 << 10)
1217#define MP_GPIO_WHEEL_NAV_INV (1 << 11)
1218#define MP_GPIO_LCD_BRIGHTNESS 0x00070000
1219#define MP_GPIO_BTN_FAVORITS (1 << 19)
1220#define MP_GPIO_BTN_MENU (1 << 20)
1221#define MP_GPIO_BTN_VOLUME (1 << 21)
1222#define MP_GPIO_BTN_NAVIGATION (1 << 22)
1223#define MP_GPIO_I2C_DATA_BIT 29
1224#define MP_GPIO_I2C_DATA (1 << MP_GPIO_I2C_DATA_BIT)
1225#define MP_GPIO_I2C_CLOCK_BIT 30
1226
1227/* LCD brightness bits in GPIO_OE_HI */
1228#define MP_OE_LCD_BRIGHTNESS 0x0007
1229
1230static uint32_t musicpal_read(void *opaque, target_phys_addr_t offset)
1231{
24859b68
AZ
1232 switch (offset) {
1233 case MP_BOARD_REVISION:
1234 return 0x0031;
1235
1236 case MP_GPIO_OE_HI: /* used for LCD brightness control */
1237 return lcd_brightness & MP_OE_LCD_BRIGHTNESS;
1238
1239 case MP_GPIO_OUT_LO:
1240 return gpio_out_state & 0xFFFF;
1241 case MP_GPIO_OUT_HI:
1242 return gpio_out_state >> 16;
1243
1244 case MP_GPIO_IN_LO:
1245 return gpio_in_state & 0xFFFF;
1246 case MP_GPIO_IN_HI:
1247 /* Update received I2C data */
1248 gpio_in_state = (gpio_in_state & ~MP_GPIO_I2C_DATA) |
1249 (i2c_get_data(mixer_i2c) << MP_GPIO_I2C_DATA_BIT);
1250 return gpio_in_state >> 16;
1251
24859b68 1252 case MP_GPIO_ISR_LO:
7c6ce4ba 1253 return gpio_isr & 0xFFFF;
24859b68 1254 case MP_GPIO_ISR_HI:
7c6ce4ba 1255 return gpio_isr >> 16;
24859b68
AZ
1256
1257 /* Workaround to allow loading the binary-only wlandrv.ko crap
1258 * from the original Freecom firmware. */
1259 case MP_WLAN_MAGIC1:
1260 return ~3;
1261 case MP_WLAN_MAGIC2:
1262 return -1;
1263
1264 default:
1265 return 0;
1266 }
1267}
1268
1269static void musicpal_write(void *opaque, target_phys_addr_t offset,
1270 uint32_t value)
1271{
24859b68
AZ
1272 switch (offset) {
1273 case MP_GPIO_OE_HI: /* used for LCD brightness control */
1274 lcd_brightness = (lcd_brightness & MP_GPIO_LCD_BRIGHTNESS) |
1275 (value & MP_OE_LCD_BRIGHTNESS);
1276 break;
1277
1278 case MP_GPIO_OUT_LO:
1279 gpio_out_state = (gpio_out_state & 0xFFFF0000) | (value & 0xFFFF);
1280 break;
1281 case MP_GPIO_OUT_HI:
1282 gpio_out_state = (gpio_out_state & 0xFFFF) | (value << 16);
1283 lcd_brightness = (lcd_brightness & 0xFFFF) |
1284 (gpio_out_state & MP_GPIO_LCD_BRIGHTNESS);
1285 i2c_state_update(mixer_i2c,
1286 (gpio_out_state >> MP_GPIO_I2C_DATA_BIT) & 1,
1287 (gpio_out_state >> MP_GPIO_I2C_CLOCK_BIT) & 1);
1288 break;
1289
1290 }
1291}
1292
1293/* Keyboard codes & masks */
7c6ce4ba 1294#define KEY_RELEASED 0x80
24859b68
AZ
1295#define KEY_CODE 0x7f
1296
1297#define KEYCODE_TAB 0x0f
1298#define KEYCODE_ENTER 0x1c
1299#define KEYCODE_F 0x21
1300#define KEYCODE_M 0x32
1301
1302#define KEYCODE_EXTENDED 0xe0
1303#define KEYCODE_UP 0x48
1304#define KEYCODE_DOWN 0x50
1305#define KEYCODE_LEFT 0x4b
1306#define KEYCODE_RIGHT 0x4d
1307
1308static void musicpal_key_event(void *opaque, int keycode)
1309{
1310 qemu_irq irq = opaque;
1311 uint32_t event = 0;
1312 static int kbd_extended;
1313
1314 if (keycode == KEYCODE_EXTENDED) {
1315 kbd_extended = 1;
1316 return;
1317 }
1318
1319 if (kbd_extended)
1320 switch (keycode & KEY_CODE) {
1321 case KEYCODE_UP:
1322 event = MP_GPIO_WHEEL_NAV | MP_GPIO_WHEEL_NAV_INV;
1323 break;
1324
1325 case KEYCODE_DOWN:
1326 event = MP_GPIO_WHEEL_NAV;
1327 break;
1328
1329 case KEYCODE_LEFT:
1330 event = MP_GPIO_WHEEL_VOL | MP_GPIO_WHEEL_VOL_INV;
1331 break;
1332
1333 case KEYCODE_RIGHT:
1334 event = MP_GPIO_WHEEL_VOL;
1335 break;
1336 }
7c6ce4ba 1337 else {
24859b68
AZ
1338 switch (keycode & KEY_CODE) {
1339 case KEYCODE_F:
1340 event = MP_GPIO_BTN_FAVORITS;
1341 break;
1342
1343 case KEYCODE_TAB:
1344 event = MP_GPIO_BTN_VOLUME;
1345 break;
1346
1347 case KEYCODE_ENTER:
1348 event = MP_GPIO_BTN_NAVIGATION;
1349 break;
1350
1351 case KEYCODE_M:
1352 event = MP_GPIO_BTN_MENU;
1353 break;
1354 }
7c6ce4ba
AZ
1355 /* Do not repeat already pressed buttons */
1356 if (!(keycode & KEY_RELEASED) && !(gpio_in_state & event))
1357 event = 0;
1358 }
24859b68 1359
7c6ce4ba
AZ
1360 if (event) {
1361 if (keycode & KEY_RELEASED) {
1362 gpio_in_state |= event;
1363 } else {
1364 gpio_in_state &= ~event;
1365 gpio_isr = event;
1366 qemu_irq_raise(irq);
1367 }
24859b68
AZ
1368 }
1369
1370 kbd_extended = 0;
1371}
1372
1373static CPUReadMemoryFunc *musicpal_readfn[] = {
1374 musicpal_read,
1375 musicpal_read,
1376 musicpal_read,
1377};
1378
1379static CPUWriteMemoryFunc *musicpal_writefn[] = {
1380 musicpal_write,
1381 musicpal_write,
1382 musicpal_write,
1383};
1384
1385static struct arm_boot_info musicpal_binfo = {
1386 .loader_start = 0x0,
1387 .board_id = 0x20e,
1388};
1389
b0f6edb1 1390static void musicpal_init(ram_addr_t ram_size, int vga_ram_size,
3023f332 1391 const char *boot_device,
24859b68
AZ
1392 const char *kernel_filename, const char *kernel_cmdline,
1393 const char *initrd_filename, const char *cpu_model)
1394{
1395 CPUState *env;
1396 qemu_irq *pic;
1397 int index;
1398 int iomemtype;
1399 unsigned long flash_size;
1400
1401 if (!cpu_model)
1402 cpu_model = "arm926";
1403
1404 env = cpu_init(cpu_model);
1405 if (!env) {
1406 fprintf(stderr, "Unable to find CPU definition\n");
1407 exit(1);
1408 }
1409 pic = arm_pic_init_cpu(env);
1410
1411 /* For now we use a fixed - the original - RAM size */
1412 cpu_register_physical_memory(0, MP_RAM_DEFAULT_SIZE,
1413 qemu_ram_alloc(MP_RAM_DEFAULT_SIZE));
1414
1415 sram_off = qemu_ram_alloc(MP_SRAM_SIZE);
1416 cpu_register_physical_memory(MP_SRAM_BASE, MP_SRAM_SIZE, sram_off);
1417
1418 /* Catch various stuff not handled by separate subsystems */
1419 iomemtype = cpu_register_io_memory(0, musicpal_readfn,
b0f6edb1 1420 musicpal_writefn, env);
24859b68
AZ
1421 cpu_register_physical_memory(0x80000000, 0x10000, iomemtype);
1422
1423 pic = mv88w8618_pic_init(MP_PIC_BASE, pic[ARM_PIC_CPU_IRQ]);
1424 mv88w8618_pit_init(MP_PIT_BASE, pic, MP_TIMER1_IRQ);
1425
1426 if (serial_hds[0])
b6cd0ea1 1427 serial_mm_init(MP_UART1_BASE, 2, pic[MP_UART1_IRQ], 1825000,
24859b68
AZ
1428 serial_hds[0], 1);
1429 if (serial_hds[1])
b6cd0ea1 1430 serial_mm_init(MP_UART2_BASE, 2, pic[MP_UART2_IRQ], 1825000,
24859b68
AZ
1431 serial_hds[1], 1);
1432
1433 /* Register flash */
1434 index = drive_get_index(IF_PFLASH, 0, 0);
1435 if (index != -1) {
1436 flash_size = bdrv_getlength(drives_table[index].bdrv);
1437 if (flash_size != 8*1024*1024 && flash_size != 16*1024*1024 &&
1438 flash_size != 32*1024*1024) {
1439 fprintf(stderr, "Invalid flash image size\n");
1440 exit(1);
1441 }
1442
1443 /*
1444 * The original U-Boot accesses the flash at 0xFE000000 instead of
1445 * 0xFF800000 (if there is 8 MB flash). So remap flash access if the
1446 * image is smaller than 32 MB.
1447 */
1448 pflash_cfi02_register(0-MP_FLASH_SIZE_MAX, qemu_ram_alloc(flash_size),
1449 drives_table[index].bdrv, 0x10000,
1450 (flash_size + 0xffff) >> 16,
1451 MP_FLASH_SIZE_MAX / flash_size,
1452 2, 0x00BF, 0x236D, 0x0000, 0x0000,
1453 0x5555, 0x2AAA);
1454 }
1455 mv88w8618_flashcfg_init(MP_FLASHCFG_BASE);
1456
3023f332 1457 musicpal_lcd_init(MP_LCD_BASE);
24859b68
AZ
1458
1459 qemu_add_kbd_event_handler(musicpal_key_event, pic[MP_GPIO_IRQ]);
1460
24859b68
AZ
1461 mv88w8618_eth_init(&nd_table[0], MP_ETH_BASE, pic[MP_ETH_IRQ]);
1462
1463 mixer_i2c = musicpal_audio_init(MP_AUDIO_BASE, pic[MP_AUDIO_IRQ]);
1464
1465 musicpal_binfo.ram_size = MP_RAM_DEFAULT_SIZE;
1466 musicpal_binfo.kernel_filename = kernel_filename;
1467 musicpal_binfo.kernel_cmdline = kernel_cmdline;
1468 musicpal_binfo.initrd_filename = initrd_filename;
b0f6edb1 1469 arm_load_kernel(env, &musicpal_binfo);
24859b68
AZ
1470}
1471
1472QEMUMachine musicpal_machine = {
4b32e168
AL
1473 .name = "musicpal",
1474 .desc = "Marvell 88w8618 / MusicPal (ARM926EJ-S)",
1475 .init = musicpal_init,
3d878caa
AZ
1476 .ram_require = MP_RAM_DEFAULT_SIZE + MP_SRAM_SIZE +
1477 MP_FLASH_SIZE_MAX + RAMSIZE_FIXED,
24859b68 1478};