]> git.proxmox.com Git - qemu.git/blame - hw/nand.c
user: Restore debug usage message for '-d ?' in user mode emulation
[qemu.git] / hw / nand.c
CommitLineData
3e3d5815
AZ
1/*
2 * Flash NAND memory emulation. Based on "16M x 8 Bit NAND Flash
3 * Memory" datasheet for the KM29U128AT / K9F2808U0A chips from
4 * Samsung Electronic.
5 *
6 * Copyright (c) 2006 Openedhand Ltd.
7 * Written by Andrzej Zaborowski <balrog@zabor.org>
8 *
9 * This code is licensed under the GNU GPL v2.
10 */
11
12#ifndef NAND_IO
13
87ecb68b
PB
14# include "hw.h"
15# include "flash.h"
666daa68 16# include "blockdev.h"
87ecb68b 17/* FIXME: Pass block device as an argument. */
3e3d5815
AZ
18
19# define NAND_CMD_READ0 0x00
20# define NAND_CMD_READ1 0x01
21# define NAND_CMD_READ2 0x50
22# define NAND_CMD_LPREAD2 0x30
23# define NAND_CMD_NOSERIALREAD2 0x35
24# define NAND_CMD_RANDOMREAD1 0x05
25# define NAND_CMD_RANDOMREAD2 0xe0
26# define NAND_CMD_READID 0x90
27# define NAND_CMD_RESET 0xff
28# define NAND_CMD_PAGEPROGRAM1 0x80
29# define NAND_CMD_PAGEPROGRAM2 0x10
30# define NAND_CMD_CACHEPROGRAM2 0x15
31# define NAND_CMD_BLOCKERASE1 0x60
32# define NAND_CMD_BLOCKERASE2 0xd0
33# define NAND_CMD_READSTATUS 0x70
34# define NAND_CMD_COPYBACKPRG1 0x85
35
36# define NAND_IOSTATUS_ERROR (1 << 0)
37# define NAND_IOSTATUS_PLANE0 (1 << 1)
38# define NAND_IOSTATUS_PLANE1 (1 << 2)
39# define NAND_IOSTATUS_PLANE2 (1 << 3)
40# define NAND_IOSTATUS_PLANE3 (1 << 4)
41# define NAND_IOSTATUS_BUSY (1 << 6)
42# define NAND_IOSTATUS_UNPROTCT (1 << 7)
43
44# define MAX_PAGE 0x800
45# define MAX_OOB 0x40
46
bc24a225 47struct NANDFlashState {
3e3d5815
AZ
48 uint8_t manf_id, chip_id;
49 int size, pages;
50 int page_shift, oob_shift, erase_shift, addr_shift;
51 uint8_t *storage;
52 BlockDriverState *bdrv;
53 int mem_oob;
54
51db57f7 55 uint8_t cle, ale, ce, wp, gnd;
3e3d5815
AZ
56
57 uint8_t io[MAX_PAGE + MAX_OOB + 0x400];
58 uint8_t *ioaddr;
59 int iolen;
60
61 uint32_t cmd, addr;
62 int addrlen;
63 int status;
64 int offset;
65
bc24a225
PB
66 void (*blk_write)(NANDFlashState *s);
67 void (*blk_erase)(NANDFlashState *s);
68 void (*blk_load)(NANDFlashState *s, uint32_t addr, int offset);
7b9a3d86
JQ
69
70 uint32_t ioaddr_vmstate;
3e3d5815
AZ
71};
72
73# define NAND_NO_AUTOINCR 0x00000001
74# define NAND_BUSWIDTH_16 0x00000002
75# define NAND_NO_PADDING 0x00000004
76# define NAND_CACHEPRG 0x00000008
77# define NAND_COPYBACK 0x00000010
78# define NAND_IS_AND 0x00000020
79# define NAND_4PAGE_ARRAY 0x00000040
80# define NAND_NO_READRDY 0x00000100
81# define NAND_SAMSUNG_LP (NAND_NO_PADDING | NAND_COPYBACK)
82
83# define NAND_IO
84
85# define PAGE(addr) ((addr) >> ADDR_SHIFT)
86# define PAGE_START(page) (PAGE(page) * (PAGE_SIZE + OOB_SIZE))
87# define PAGE_MASK ((1 << ADDR_SHIFT) - 1)
88# define OOB_SHIFT (PAGE_SHIFT - 5)
89# define OOB_SIZE (1 << OOB_SHIFT)
90# define SECTOR(addr) ((addr) >> (9 + ADDR_SHIFT - PAGE_SHIFT))
91# define SECTOR_OFFSET(addr) ((addr) & ((511 >> PAGE_SHIFT) << 8))
92
93# define PAGE_SIZE 256
94# define PAGE_SHIFT 8
95# define PAGE_SECTORS 1
96# define ADDR_SHIFT 8
97# include "nand.c"
98# define PAGE_SIZE 512
99# define PAGE_SHIFT 9
100# define PAGE_SECTORS 1
101# define ADDR_SHIFT 8
102# include "nand.c"
103# define PAGE_SIZE 2048
104# define PAGE_SHIFT 11
105# define PAGE_SECTORS 4
106# define ADDR_SHIFT 16
107# include "nand.c"
108
109/* Information based on Linux drivers/mtd/nand/nand_ids.c */
bc24a225 110static const struct {
3e3d5815
AZ
111 int size;
112 int width;
113 int page_shift;
114 int erase_shift;
115 uint32_t options;
116} nand_flash_ids[0x100] = {
117 [0 ... 0xff] = { 0 },
118
119 [0x6e] = { 1, 8, 8, 4, 0 },
120 [0x64] = { 2, 8, 8, 4, 0 },
121 [0x6b] = { 4, 8, 9, 4, 0 },
122 [0xe8] = { 1, 8, 8, 4, 0 },
123 [0xec] = { 1, 8, 8, 4, 0 },
124 [0xea] = { 2, 8, 8, 4, 0 },
125 [0xd5] = { 4, 8, 9, 4, 0 },
126 [0xe3] = { 4, 8, 9, 4, 0 },
127 [0xe5] = { 4, 8, 9, 4, 0 },
128 [0xd6] = { 8, 8, 9, 4, 0 },
129
130 [0x39] = { 8, 8, 9, 4, 0 },
131 [0xe6] = { 8, 8, 9, 4, 0 },
132 [0x49] = { 8, 16, 9, 4, NAND_BUSWIDTH_16 },
133 [0x59] = { 8, 16, 9, 4, NAND_BUSWIDTH_16 },
134
135 [0x33] = { 16, 8, 9, 5, 0 },
136 [0x73] = { 16, 8, 9, 5, 0 },
137 [0x43] = { 16, 16, 9, 5, NAND_BUSWIDTH_16 },
138 [0x53] = { 16, 16, 9, 5, NAND_BUSWIDTH_16 },
139
140 [0x35] = { 32, 8, 9, 5, 0 },
141 [0x75] = { 32, 8, 9, 5, 0 },
142 [0x45] = { 32, 16, 9, 5, NAND_BUSWIDTH_16 },
143 [0x55] = { 32, 16, 9, 5, NAND_BUSWIDTH_16 },
144
145 [0x36] = { 64, 8, 9, 5, 0 },
146 [0x76] = { 64, 8, 9, 5, 0 },
147 [0x46] = { 64, 16, 9, 5, NAND_BUSWIDTH_16 },
148 [0x56] = { 64, 16, 9, 5, NAND_BUSWIDTH_16 },
149
150 [0x78] = { 128, 8, 9, 5, 0 },
151 [0x39] = { 128, 8, 9, 5, 0 },
152 [0x79] = { 128, 8, 9, 5, 0 },
153 [0x72] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
154 [0x49] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
155 [0x74] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
156 [0x59] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
157
158 [0x71] = { 256, 8, 9, 5, 0 },
159
160 /*
161 * These are the new chips with large page size. The pagesize and the
162 * erasesize is determined from the extended id bytes
163 */
164# define LP_OPTIONS (NAND_SAMSUNG_LP | NAND_NO_READRDY | NAND_NO_AUTOINCR)
165# define LP_OPTIONS16 (LP_OPTIONS | NAND_BUSWIDTH_16)
166
167 /* 512 Megabit */
168 [0xa2] = { 64, 8, 0, 0, LP_OPTIONS },
169 [0xf2] = { 64, 8, 0, 0, LP_OPTIONS },
170 [0xb2] = { 64, 16, 0, 0, LP_OPTIONS16 },
171 [0xc2] = { 64, 16, 0, 0, LP_OPTIONS16 },
172
173 /* 1 Gigabit */
174 [0xa1] = { 128, 8, 0, 0, LP_OPTIONS },
175 [0xf1] = { 128, 8, 0, 0, LP_OPTIONS },
176 [0xb1] = { 128, 16, 0, 0, LP_OPTIONS16 },
177 [0xc1] = { 128, 16, 0, 0, LP_OPTIONS16 },
178
179 /* 2 Gigabit */
180 [0xaa] = { 256, 8, 0, 0, LP_OPTIONS },
181 [0xda] = { 256, 8, 0, 0, LP_OPTIONS },
182 [0xba] = { 256, 16, 0, 0, LP_OPTIONS16 },
183 [0xca] = { 256, 16, 0, 0, LP_OPTIONS16 },
184
185 /* 4 Gigabit */
186 [0xac] = { 512, 8, 0, 0, LP_OPTIONS },
187 [0xdc] = { 512, 8, 0, 0, LP_OPTIONS },
188 [0xbc] = { 512, 16, 0, 0, LP_OPTIONS16 },
189 [0xcc] = { 512, 16, 0, 0, LP_OPTIONS16 },
190
191 /* 8 Gigabit */
192 [0xa3] = { 1024, 8, 0, 0, LP_OPTIONS },
193 [0xd3] = { 1024, 8, 0, 0, LP_OPTIONS },
194 [0xb3] = { 1024, 16, 0, 0, LP_OPTIONS16 },
195 [0xc3] = { 1024, 16, 0, 0, LP_OPTIONS16 },
196
197 /* 16 Gigabit */
198 [0xa5] = { 2048, 8, 0, 0, LP_OPTIONS },
199 [0xd5] = { 2048, 8, 0, 0, LP_OPTIONS },
200 [0xb5] = { 2048, 16, 0, 0, LP_OPTIONS16 },
201 [0xc5] = { 2048, 16, 0, 0, LP_OPTIONS16 },
202};
203
bc24a225 204static void nand_reset(NANDFlashState *s)
3e3d5815
AZ
205{
206 s->cmd = NAND_CMD_READ0;
207 s->addr = 0;
208 s->addrlen = 0;
209 s->iolen = 0;
210 s->offset = 0;
211 s->status &= NAND_IOSTATUS_UNPROTCT;
212}
213
bc24a225 214static void nand_command(NANDFlashState *s)
3e3d5815 215{
fccd2613 216 unsigned int offset;
3e3d5815
AZ
217 switch (s->cmd) {
218 case NAND_CMD_READ0:
219 s->iolen = 0;
220 break;
221
222 case NAND_CMD_READID:
223 s->io[0] = s->manf_id;
224 s->io[1] = s->chip_id;
225 s->io[2] = 'Q'; /* Don't-care byte (often 0xa5) */
226 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP)
227 s->io[3] = 0x15; /* Page Size, Block Size, Spare Size.. */
228 else
229 s->io[3] = 0xc0; /* Multi-plane */
230 s->ioaddr = s->io;
231 s->iolen = 4;
232 break;
233
234 case NAND_CMD_RANDOMREAD2:
235 case NAND_CMD_NOSERIALREAD2:
236 if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP))
237 break;
fccd2613
EI
238 offset = s->addr & ((1 << s->addr_shift) - 1);
239 s->blk_load(s, s->addr, offset);
240 if (s->gnd)
241 s->iolen = (1 << s->page_shift) - offset;
242 else
243 s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
3e3d5815
AZ
244 break;
245
246 case NAND_CMD_RESET:
247 nand_reset(s);
248 break;
249
250 case NAND_CMD_PAGEPROGRAM1:
251 s->ioaddr = s->io;
252 s->iolen = 0;
253 break;
254
255 case NAND_CMD_PAGEPROGRAM2:
256 if (s->wp) {
257 s->blk_write(s);
258 }
259 break;
260
261 case NAND_CMD_BLOCKERASE1:
262 break;
263
264 case NAND_CMD_BLOCKERASE2:
265 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP)
266 s->addr <<= 16;
267 else
268 s->addr <<= 8;
269
270 if (s->wp) {
271 s->blk_erase(s);
272 }
273 break;
274
275 case NAND_CMD_READSTATUS:
276 s->io[0] = s->status;
277 s->ioaddr = s->io;
278 s->iolen = 1;
279 break;
280
281 default:
282 printf("%s: Unknown NAND command 0x%02x\n", __FUNCTION__, s->cmd);
283 }
284}
285
7b9a3d86 286static void nand_pre_save(void *opaque)
aa941b94 287{
7b9a3d86
JQ
288 NANDFlashState *s = opaque;
289
290 s->ioaddr_vmstate = s->ioaddr - s->io;
aa941b94
AZ
291}
292
7b9a3d86 293static int nand_post_load(void *opaque, int version_id)
aa941b94 294{
7b9a3d86
JQ
295 NANDFlashState *s = opaque;
296
297 if (s->ioaddr_vmstate > sizeof(s->io)) {
aa941b94 298 return -EINVAL;
7b9a3d86
JQ
299 }
300 s->ioaddr = s->io + s->ioaddr_vmstate;
aa941b94 301
aa941b94
AZ
302 return 0;
303}
304
7b9a3d86
JQ
305static const VMStateDescription vmstate_nand = {
306 .name = "nand",
307 .version_id = 0,
308 .minimum_version_id = 0,
309 .minimum_version_id_old = 0,
310 .pre_save = nand_pre_save,
311 .post_load = nand_post_load,
312 .fields = (VMStateField[]) {
313 VMSTATE_UINT8(cle, NANDFlashState),
314 VMSTATE_UINT8(ale, NANDFlashState),
315 VMSTATE_UINT8(ce, NANDFlashState),
316 VMSTATE_UINT8(wp, NANDFlashState),
317 VMSTATE_UINT8(gnd, NANDFlashState),
318 VMSTATE_BUFFER(io, NANDFlashState),
319 VMSTATE_UINT32(ioaddr_vmstate, NANDFlashState),
320 VMSTATE_INT32(iolen, NANDFlashState),
321 VMSTATE_UINT32(cmd, NANDFlashState),
322 VMSTATE_UINT32(addr, NANDFlashState),
323 VMSTATE_INT32(addrlen, NANDFlashState),
324 VMSTATE_INT32(status, NANDFlashState),
325 VMSTATE_INT32(offset, NANDFlashState),
326 /* XXX: do we want to save s->storage too? */
327 VMSTATE_END_OF_LIST()
328 }
329};
330
3e3d5815
AZ
331/*
332 * Chip inputs are CLE, ALE, CE, WP, GND and eight I/O pins. Chip
333 * outputs are R/B and eight I/O pins.
334 *
335 * CE, WP and R/B are active low.
336 */
51db57f7
JQ
337void nand_setpins(NANDFlashState *s, uint8_t cle, uint8_t ale,
338 uint8_t ce, uint8_t wp, uint8_t gnd)
3e3d5815
AZ
339{
340 s->cle = cle;
341 s->ale = ale;
342 s->ce = ce;
343 s->wp = wp;
344 s->gnd = gnd;
345 if (wp)
346 s->status |= NAND_IOSTATUS_UNPROTCT;
347 else
348 s->status &= ~NAND_IOSTATUS_UNPROTCT;
349}
350
bc24a225 351void nand_getpins(NANDFlashState *s, int *rb)
3e3d5815
AZ
352{
353 *rb = 1;
354}
355
bc24a225 356void nand_setio(NANDFlashState *s, uint8_t value)
3e3d5815
AZ
357{
358 if (!s->ce && s->cle) {
359 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
360 if (s->cmd == NAND_CMD_READ0 && value == NAND_CMD_LPREAD2)
361 return;
362 if (value == NAND_CMD_RANDOMREAD1) {
363 s->addr &= ~((1 << s->addr_shift) - 1);
364 s->addrlen = 0;
365 return;
366 }
367 }
368 if (value == NAND_CMD_READ0)
369 s->offset = 0;
370 else if (value == NAND_CMD_READ1) {
371 s->offset = 0x100;
372 value = NAND_CMD_READ0;
373 }
374 else if (value == NAND_CMD_READ2) {
375 s->offset = 1 << s->page_shift;
376 value = NAND_CMD_READ0;
377 }
378
379 s->cmd = value;
380
381 if (s->cmd == NAND_CMD_READSTATUS ||
382 s->cmd == NAND_CMD_PAGEPROGRAM2 ||
383 s->cmd == NAND_CMD_BLOCKERASE1 ||
384 s->cmd == NAND_CMD_BLOCKERASE2 ||
385 s->cmd == NAND_CMD_NOSERIALREAD2 ||
386 s->cmd == NAND_CMD_RANDOMREAD2 ||
387 s->cmd == NAND_CMD_RESET)
388 nand_command(s);
389
390 if (s->cmd != NAND_CMD_RANDOMREAD2) {
391 s->addrlen = 0;
3e3d5815
AZ
392 }
393 }
394
395 if (s->ale) {
fccd2613
EI
396 unsigned int shift = s->addrlen * 8;
397 unsigned int mask = ~(0xff << shift);
398 unsigned int v = value << shift;
399
400 s->addr = (s->addr & mask) | v;
3e3d5815
AZ
401 s->addrlen ++;
402
403 if (s->addrlen == 1 && s->cmd == NAND_CMD_READID)
404 nand_command(s);
405
406 if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
407 s->addrlen == 3 && (
408 s->cmd == NAND_CMD_READ0 ||
409 s->cmd == NAND_CMD_PAGEPROGRAM1))
410 nand_command(s);
411 if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
412 s->addrlen == 4 && (
413 s->cmd == NAND_CMD_READ0 ||
414 s->cmd == NAND_CMD_PAGEPROGRAM1))
415 nand_command(s);
416 }
417
418 if (!s->cle && !s->ale && s->cmd == NAND_CMD_PAGEPROGRAM1) {
419 if (s->iolen < (1 << s->page_shift) + (1 << s->oob_shift))
420 s->io[s->iolen ++] = value;
421 } else if (!s->cle && !s->ale && s->cmd == NAND_CMD_COPYBACKPRG1) {
422 if ((s->addr & ((1 << s->addr_shift) - 1)) <
423 (1 << s->page_shift) + (1 << s->oob_shift)) {
424 s->io[s->iolen + (s->addr & ((1 << s->addr_shift) - 1))] = value;
425 s->addr ++;
426 }
427 }
428}
429
bc24a225 430uint8_t nand_getio(NANDFlashState *s)
3e3d5815
AZ
431{
432 int offset;
5fafdf24 433
3e3d5815
AZ
434 /* Allow sequential reading */
435 if (!s->iolen && s->cmd == NAND_CMD_READ0) {
436 offset = (s->addr & ((1 << s->addr_shift) - 1)) + s->offset;
437 s->offset = 0;
438
439 s->blk_load(s, s->addr, offset);
440 if (s->gnd)
441 s->iolen = (1 << s->page_shift) - offset;
442 else
443 s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
444 }
445
446 if (s->ce || s->iolen <= 0)
447 return 0;
448
449 s->iolen --;
fccd2613 450 s->addr++;
3e3d5815
AZ
451 return *(s->ioaddr ++);
452}
453
bc24a225 454NANDFlashState *nand_init(int manf_id, int chip_id)
3e3d5815
AZ
455{
456 int pagesize;
bc24a225 457 NANDFlashState *s;
751c6a17 458 DriveInfo *dinfo;
3e3d5815
AZ
459
460 if (nand_flash_ids[chip_id].size == 0) {
2ac71179 461 hw_error("%s: Unsupported NAND chip ID.\n", __FUNCTION__);
3e3d5815
AZ
462 }
463
bc24a225 464 s = (NANDFlashState *) qemu_mallocz(sizeof(NANDFlashState));
751c6a17
GH
465 dinfo = drive_get(IF_MTD, 0, 0);
466 if (dinfo)
467 s->bdrv = dinfo->bdrv;
3e3d5815
AZ
468 s->manf_id = manf_id;
469 s->chip_id = chip_id;
470 s->size = nand_flash_ids[s->chip_id].size << 20;
471 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
472 s->page_shift = 11;
473 s->erase_shift = 6;
474 } else {
475 s->page_shift = nand_flash_ids[s->chip_id].page_shift;
476 s->erase_shift = nand_flash_ids[s->chip_id].erase_shift;
477 }
478
479 switch (1 << s->page_shift) {
480 case 256:
481 nand_init_256(s);
482 break;
483 case 512:
484 nand_init_512(s);
485 break;
486 case 2048:
487 nand_init_2048(s);
488 break;
489 default:
2ac71179 490 hw_error("%s: Unsupported NAND block size.\n", __FUNCTION__);
3e3d5815
AZ
491 }
492
493 pagesize = 1 << s->oob_shift;
494 s->mem_oob = 1;
495 if (s->bdrv && bdrv_getlength(s->bdrv) >=
496 (s->pages << s->page_shift) + (s->pages << s->oob_shift)) {
497 pagesize = 0;
498 s->mem_oob = 0;
499 }
500
501 if (!s->bdrv)
502 pagesize += 1 << s->page_shift;
503 if (pagesize)
504 s->storage = (uint8_t *) memset(qemu_malloc(s->pages * pagesize),
505 0xff, s->pages * pagesize);
48927926
PB
506 /* Give s->ioaddr a sane value in case we save state before it
507 is used. */
508 s->ioaddr = s->io;
aa941b94 509
7b9a3d86 510 vmstate_register(NULL, -1, &vmstate_nand, s);
aa941b94 511
3e3d5815
AZ
512 return s;
513}
514
bc24a225 515void nand_done(NANDFlashState *s)
3e3d5815
AZ
516{
517 if (s->bdrv) {
518 bdrv_close(s->bdrv);
519 bdrv_delete(s->bdrv);
520 }
521
522 if (!s->bdrv || s->mem_oob)
5f6eab3f 523 qemu_free(s->storage);
3e3d5815 524
5f6eab3f 525 qemu_free(s);
3e3d5815
AZ
526}
527
528#else
529
530/* Program a single page */
bc24a225 531static void glue(nand_blk_write_, PAGE_SIZE)(NANDFlashState *s)
3e3d5815
AZ
532{
533 uint32_t off, page, sector, soff;
534 uint8_t iobuf[(PAGE_SECTORS + 2) * 0x200];
535 if (PAGE(s->addr) >= s->pages)
536 return;
537
538 if (!s->bdrv) {
539 memcpy(s->storage + PAGE_START(s->addr) + (s->addr & PAGE_MASK) +
540 s->offset, s->io, s->iolen);
541 } else if (s->mem_oob) {
542 sector = SECTOR(s->addr);
543 off = (s->addr & PAGE_MASK) + s->offset;
544 soff = SECTOR_OFFSET(s->addr);
545 if (bdrv_read(s->bdrv, sector, iobuf, PAGE_SECTORS) == -1) {
546 printf("%s: read error in sector %i\n", __FUNCTION__, sector);
547 return;
548 }
549
550 memcpy(iobuf + (soff | off), s->io, MIN(s->iolen, PAGE_SIZE - off));
551 if (off + s->iolen > PAGE_SIZE) {
552 page = PAGE(s->addr);
553 memcpy(s->storage + (page << OOB_SHIFT), s->io + PAGE_SIZE - off,
554 MIN(OOB_SIZE, off + s->iolen - PAGE_SIZE));
555 }
556
557 if (bdrv_write(s->bdrv, sector, iobuf, PAGE_SECTORS) == -1)
558 printf("%s: write error in sector %i\n", __FUNCTION__, sector);
559 } else {
560 off = PAGE_START(s->addr) + (s->addr & PAGE_MASK) + s->offset;
561 sector = off >> 9;
562 soff = off & 0x1ff;
563 if (bdrv_read(s->bdrv, sector, iobuf, PAGE_SECTORS + 2) == -1) {
564 printf("%s: read error in sector %i\n", __FUNCTION__, sector);
565 return;
566 }
567
568 memcpy(iobuf + soff, s->io, s->iolen);
569
570 if (bdrv_write(s->bdrv, sector, iobuf, PAGE_SECTORS + 2) == -1)
571 printf("%s: write error in sector %i\n", __FUNCTION__, sector);
572 }
573 s->offset = 0;
574}
575
576/* Erase a single block */
bc24a225 577static void glue(nand_blk_erase_, PAGE_SIZE)(NANDFlashState *s)
3e3d5815
AZ
578{
579 uint32_t i, page, addr;
580 uint8_t iobuf[0x200] = { [0 ... 0x1ff] = 0xff, };
581 addr = s->addr & ~((1 << (ADDR_SHIFT + s->erase_shift)) - 1);
582
583 if (PAGE(addr) >= s->pages)
584 return;
585
586 if (!s->bdrv) {
587 memset(s->storage + PAGE_START(addr),
588 0xff, (PAGE_SIZE + OOB_SIZE) << s->erase_shift);
589 } else if (s->mem_oob) {
590 memset(s->storage + (PAGE(addr) << OOB_SHIFT),
591 0xff, OOB_SIZE << s->erase_shift);
592 i = SECTOR(addr);
593 page = SECTOR(addr + (ADDR_SHIFT + s->erase_shift));
594 for (; i < page; i ++)
595 if (bdrv_write(s->bdrv, i, iobuf, 1) == -1)
596 printf("%s: write error in sector %i\n", __FUNCTION__, i);
597 } else {
598 addr = PAGE_START(addr);
599 page = addr >> 9;
600 if (bdrv_read(s->bdrv, page, iobuf, 1) == -1)
601 printf("%s: read error in sector %i\n", __FUNCTION__, page);
602 memset(iobuf + (addr & 0x1ff), 0xff, (~addr & 0x1ff) + 1);
603 if (bdrv_write(s->bdrv, page, iobuf, 1) == -1)
604 printf("%s: write error in sector %i\n", __FUNCTION__, page);
605
606 memset(iobuf, 0xff, 0x200);
607 i = (addr & ~0x1ff) + 0x200;
608 for (addr += ((PAGE_SIZE + OOB_SIZE) << s->erase_shift) - 0x200;
609 i < addr; i += 0x200)
610 if (bdrv_write(s->bdrv, i >> 9, iobuf, 1) == -1)
611 printf("%s: write error in sector %i\n", __FUNCTION__, i >> 9);
612
613 page = i >> 9;
614 if (bdrv_read(s->bdrv, page, iobuf, 1) == -1)
615 printf("%s: read error in sector %i\n", __FUNCTION__, page);
a07dec22 616 memset(iobuf, 0xff, ((addr - 1) & 0x1ff) + 1);
3e3d5815
AZ
617 if (bdrv_write(s->bdrv, page, iobuf, 1) == -1)
618 printf("%s: write error in sector %i\n", __FUNCTION__, page);
619 }
620}
621
bc24a225 622static void glue(nand_blk_load_, PAGE_SIZE)(NANDFlashState *s,
3e3d5815
AZ
623 uint32_t addr, int offset)
624{
625 if (PAGE(addr) >= s->pages)
626 return;
627
628 if (s->bdrv) {
629 if (s->mem_oob) {
630 if (bdrv_read(s->bdrv, SECTOR(addr), s->io, PAGE_SECTORS) == -1)
631 printf("%s: read error in sector %i\n",
632 __FUNCTION__, SECTOR(addr));
633 memcpy(s->io + SECTOR_OFFSET(s->addr) + PAGE_SIZE,
634 s->storage + (PAGE(s->addr) << OOB_SHIFT),
635 OOB_SIZE);
636 s->ioaddr = s->io + SECTOR_OFFSET(s->addr) + offset;
637 } else {
638 if (bdrv_read(s->bdrv, PAGE_START(addr) >> 9,
639 s->io, (PAGE_SECTORS + 2)) == -1)
640 printf("%s: read error in sector %i\n",
641 __FUNCTION__, PAGE_START(addr) >> 9);
642 s->ioaddr = s->io + (PAGE_START(addr) & 0x1ff) + offset;
643 }
644 } else {
645 memcpy(s->io, s->storage + PAGE_START(s->addr) +
646 offset, PAGE_SIZE + OOB_SIZE - offset);
647 s->ioaddr = s->io;
648 }
3e3d5815
AZ
649}
650
bc24a225 651static void glue(nand_init_, PAGE_SIZE)(NANDFlashState *s)
3e3d5815
AZ
652{
653 s->oob_shift = PAGE_SHIFT - 5;
654 s->pages = s->size >> PAGE_SHIFT;
655 s->addr_shift = ADDR_SHIFT;
656
657 s->blk_erase = glue(nand_blk_erase_, PAGE_SIZE);
658 s->blk_write = glue(nand_blk_write_, PAGE_SIZE);
659 s->blk_load = glue(nand_blk_load_, PAGE_SIZE);
660}
661
662# undef PAGE_SIZE
663# undef PAGE_SHIFT
664# undef PAGE_SECTORS
665# undef ADDR_SHIFT
666#endif /* NAND_IO */