]> git.proxmox.com Git - qemu.git/blame - hw/ne2000.c
Don't leak VLANClientState on PCI hot remove
[qemu.git] / hw / ne2000.c
CommitLineData
80cabfad
FB
1/*
2 * QEMU NE2000 emulation
5fafdf24 3 *
80cabfad 4 * Copyright (c) 2003-2004 Fabrice Bellard
5fafdf24 5 *
80cabfad
FB
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
87ecb68b
PB
24#include "hw.h"
25#include "pci.h"
9596ebb7 26#include "pc.h"
87ecb68b 27#include "net.h"
80cabfad
FB
28
29/* debug NE2000 card */
30//#define DEBUG_NE2000
31
b41a2cd1 32#define MAX_ETH_FRAME_SIZE 1514
80cabfad
FB
33
34#define E8390_CMD 0x00 /* The command register (for all pages) */
35/* Page 0 register offsets. */
36#define EN0_CLDALO 0x01 /* Low byte of current local dma addr RD */
37#define EN0_STARTPG 0x01 /* Starting page of ring bfr WR */
38#define EN0_CLDAHI 0x02 /* High byte of current local dma addr RD */
39#define EN0_STOPPG 0x02 /* Ending page +1 of ring bfr WR */
40#define EN0_BOUNDARY 0x03 /* Boundary page of ring bfr RD WR */
41#define EN0_TSR 0x04 /* Transmit status reg RD */
42#define EN0_TPSR 0x04 /* Transmit starting page WR */
43#define EN0_NCR 0x05 /* Number of collision reg RD */
44#define EN0_TCNTLO 0x05 /* Low byte of tx byte count WR */
45#define EN0_FIFO 0x06 /* FIFO RD */
46#define EN0_TCNTHI 0x06 /* High byte of tx byte count WR */
47#define EN0_ISR 0x07 /* Interrupt status reg RD WR */
48#define EN0_CRDALO 0x08 /* low byte of current remote dma address RD */
49#define EN0_RSARLO 0x08 /* Remote start address reg 0 */
50#define EN0_CRDAHI 0x09 /* high byte, current remote dma address RD */
51#define EN0_RSARHI 0x09 /* Remote start address reg 1 */
52#define EN0_RCNTLO 0x0a /* Remote byte count reg WR */
089af991 53#define EN0_RTL8029ID0 0x0a /* Realtek ID byte #1 RD */
80cabfad 54#define EN0_RCNTHI 0x0b /* Remote byte count reg WR */
089af991 55#define EN0_RTL8029ID1 0x0b /* Realtek ID byte #2 RD */
80cabfad
FB
56#define EN0_RSR 0x0c /* rx status reg RD */
57#define EN0_RXCR 0x0c /* RX configuration reg WR */
58#define EN0_TXCR 0x0d /* TX configuration reg WR */
59#define EN0_COUNTER0 0x0d /* Rcv alignment error counter RD */
60#define EN0_DCFG 0x0e /* Data configuration reg WR */
61#define EN0_COUNTER1 0x0e /* Rcv CRC error counter RD */
62#define EN0_IMR 0x0f /* Interrupt mask reg WR */
63#define EN0_COUNTER2 0x0f /* Rcv missed frame error counter RD */
64
65#define EN1_PHYS 0x11
66#define EN1_CURPAG 0x17
67#define EN1_MULT 0x18
68
a343df16
FB
69#define EN2_STARTPG 0x21 /* Starting page of ring bfr RD */
70#define EN2_STOPPG 0x22 /* Ending page +1 of ring bfr RD */
71
089af991
FB
72#define EN3_CONFIG0 0x33
73#define EN3_CONFIG1 0x34
74#define EN3_CONFIG2 0x35
75#define EN3_CONFIG3 0x36
76
80cabfad
FB
77/* Register accessed at EN_CMD, the 8390 base addr. */
78#define E8390_STOP 0x01 /* Stop and reset the chip */
79#define E8390_START 0x02 /* Start the chip, clear reset */
80#define E8390_TRANS 0x04 /* Transmit a frame */
81#define E8390_RREAD 0x08 /* Remote read */
82#define E8390_RWRITE 0x10 /* Remote write */
83#define E8390_NODMA 0x20 /* Remote DMA */
84#define E8390_PAGE0 0x00 /* Select page chip registers */
85#define E8390_PAGE1 0x40 /* using the two high-order bits */
86#define E8390_PAGE2 0x80 /* Page 3 is invalid. */
87
88/* Bits in EN0_ISR - Interrupt status register */
89#define ENISR_RX 0x01 /* Receiver, no error */
90#define ENISR_TX 0x02 /* Transmitter, no error */
91#define ENISR_RX_ERR 0x04 /* Receiver, with error */
92#define ENISR_TX_ERR 0x08 /* Transmitter, with error */
93#define ENISR_OVER 0x10 /* Receiver overwrote the ring */
94#define ENISR_COUNTERS 0x20 /* Counters need emptying */
95#define ENISR_RDC 0x40 /* remote dma complete */
96#define ENISR_RESET 0x80 /* Reset completed */
97#define ENISR_ALL 0x3f /* Interrupts we will enable */
98
99/* Bits in received packet status byte and EN0_RSR*/
100#define ENRSR_RXOK 0x01 /* Received a good packet */
101#define ENRSR_CRC 0x02 /* CRC error */
102#define ENRSR_FAE 0x04 /* frame alignment error */
103#define ENRSR_FO 0x08 /* FIFO overrun */
104#define ENRSR_MPA 0x10 /* missed pkt */
105#define ENRSR_PHY 0x20 /* physical/multicast address */
106#define ENRSR_DIS 0x40 /* receiver disable. set in monitor mode */
107#define ENRSR_DEF 0x80 /* deferring */
108
109/* Transmitted packet status, EN0_TSR. */
110#define ENTSR_PTX 0x01 /* Packet transmitted without error */
111#define ENTSR_ND 0x02 /* The transmit wasn't deferred. */
112#define ENTSR_COL 0x04 /* The transmit collided at least once. */
113#define ENTSR_ABT 0x08 /* The transmit collided 16 times, and was deferred. */
114#define ENTSR_CRS 0x10 /* The carrier sense was lost. */
115#define ENTSR_FU 0x20 /* A "FIFO underrun" occurred during transmit. */
116#define ENTSR_CDH 0x40 /* The collision detect "heartbeat" signal was lost. */
117#define ENTSR_OWC 0x80 /* There was an out-of-window collision. */
118
ee9dbb29
FB
119#define NE2000_PMEM_SIZE (32*1024)
120#define NE2000_PMEM_START (16*1024)
121#define NE2000_PMEM_END (NE2000_PMEM_SIZE+NE2000_PMEM_START)
122#define NE2000_MEM_SIZE NE2000_PMEM_END
80cabfad
FB
123
124typedef struct NE2000State {
125 uint8_t cmd;
126 uint32_t start;
127 uint32_t stop;
128 uint8_t boundary;
129 uint8_t tsr;
130 uint8_t tpsr;
131 uint16_t tcnt;
132 uint16_t rcnt;
133 uint32_t rsar;
8d6c7eb8 134 uint8_t rsr;
7c9d8e07 135 uint8_t rxcr;
80cabfad
FB
136 uint8_t isr;
137 uint8_t dcfg;
138 uint8_t imr;
139 uint8_t phys[6]; /* mac address */
140 uint8_t curpag;
141 uint8_t mult[8]; /* multicast mask array */
d537cf6c 142 qemu_irq irq;
a34b6eb7 143 int isa_io_base;
4a9c9687 144 PCIDevice *pci_dev;
7c9d8e07
FB
145 VLANClientState *vc;
146 uint8_t macaddr[6];
80cabfad
FB
147 uint8_t mem[NE2000_MEM_SIZE];
148} NE2000State;
149
80cabfad
FB
150static void ne2000_reset(NE2000State *s)
151{
152 int i;
153
154 s->isr = ENISR_RESET;
7c9d8e07 155 memcpy(s->mem, s->macaddr, 6);
80cabfad
FB
156 s->mem[14] = 0x57;
157 s->mem[15] = 0x57;
158
159 /* duplicate prom data */
160 for(i = 15;i >= 0; i--) {
161 s->mem[2 * i] = s->mem[i];
162 s->mem[2 * i + 1] = s->mem[i];
163 }
164}
165
166static void ne2000_update_irq(NE2000State *s)
167{
168 int isr;
a343df16 169 isr = (s->isr & s->imr) & 0x7f;
a541f297 170#if defined(DEBUG_NE2000)
d537cf6c
PB
171 printf("NE2000: Set IRQ to %d (%02x %02x)\n",
172 isr ? 1 : 0, s->isr, s->imr);
a541f297 173#endif
d537cf6c 174 qemu_set_irq(s->irq, (isr != 0));
80cabfad
FB
175}
176
7c9d8e07
FB
177#define POLYNOMIAL 0x04c11db6
178
179/* From FreeBSD */
180/* XXX: optimize */
181static int compute_mcast_idx(const uint8_t *ep)
182{
183 uint32_t crc;
184 int carry, i, j;
185 uint8_t b;
186
187 crc = 0xffffffff;
188 for (i = 0; i < 6; i++) {
189 b = *ep++;
190 for (j = 0; j < 8; j++) {
191 carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01);
192 crc <<= 1;
193 b >>= 1;
194 if (carry)
195 crc = ((crc ^ POLYNOMIAL) | carry);
196 }
197 }
198 return (crc >> 26);
199}
200
d861b05e 201static int ne2000_buffer_full(NE2000State *s)
80cabfad 202{
80cabfad 203 int avail, index, boundary;
d861b05e 204
80cabfad
FB
205 index = s->curpag << 8;
206 boundary = s->boundary << 8;
28c1c656 207 if (index < boundary)
80cabfad
FB
208 avail = boundary - index;
209 else
210 avail = (s->stop - s->start) - (index - boundary);
211 if (avail < (MAX_ETH_FRAME_SIZE + 4))
d861b05e
PB
212 return 1;
213 return 0;
214}
215
216static int ne2000_can_receive(void *opaque)
217{
218 NE2000State *s = opaque;
3b46e624 219
d861b05e 220 if (s->cmd & E8390_STOP)
e89f00e6 221 return 1;
d861b05e 222 return !ne2000_buffer_full(s);
80cabfad
FB
223}
224
b41a2cd1
FB
225#define MIN_BUF_SIZE 60
226
227static void ne2000_receive(void *opaque, const uint8_t *buf, int size)
80cabfad 228{
b41a2cd1 229 NE2000State *s = opaque;
80cabfad 230 uint8_t *p;
0ae045ae 231 unsigned int total_len, next, avail, len, index, mcast_idx;
b41a2cd1 232 uint8_t buf1[60];
5fafdf24 233 static const uint8_t broadcast_macaddr[6] =
7c9d8e07 234 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
3b46e624 235
80cabfad
FB
236#if defined(DEBUG_NE2000)
237 printf("NE2000: received len=%d\n", size);
238#endif
239
d861b05e 240 if (s->cmd & E8390_STOP || ne2000_buffer_full(s))
7c9d8e07 241 return;
3b46e624 242
7c9d8e07
FB
243 /* XXX: check this */
244 if (s->rxcr & 0x10) {
245 /* promiscuous: receive all */
246 } else {
247 if (!memcmp(buf, broadcast_macaddr, 6)) {
248 /* broadcast address */
249 if (!(s->rxcr & 0x04))
250 return;
251 } else if (buf[0] & 0x01) {
252 /* multicast */
253 if (!(s->rxcr & 0x08))
254 return;
255 mcast_idx = compute_mcast_idx(buf);
256 if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
257 return;
258 } else if (s->mem[0] == buf[0] &&
3b46e624
TS
259 s->mem[2] == buf[1] &&
260 s->mem[4] == buf[2] &&
261 s->mem[6] == buf[3] &&
262 s->mem[8] == buf[4] &&
7c9d8e07
FB
263 s->mem[10] == buf[5]) {
264 /* match */
265 } else {
266 return;
267 }
268 }
269
270
b41a2cd1
FB
271 /* if too small buffer, then expand it */
272 if (size < MIN_BUF_SIZE) {
273 memcpy(buf1, buf, size);
274 memset(buf1 + size, 0, MIN_BUF_SIZE - size);
275 buf = buf1;
276 size = MIN_BUF_SIZE;
277 }
278
80cabfad
FB
279 index = s->curpag << 8;
280 /* 4 bytes for header */
281 total_len = size + 4;
282 /* address for next packet (4 bytes for CRC) */
283 next = index + ((total_len + 4 + 255) & ~0xff);
284 if (next >= s->stop)
285 next -= (s->stop - s->start);
286 /* prepare packet header */
287 p = s->mem + index;
8d6c7eb8
FB
288 s->rsr = ENRSR_RXOK; /* receive status */
289 /* XXX: check this */
290 if (buf[0] & 0x01)
291 s->rsr |= ENRSR_PHY;
292 p[0] = s->rsr;
80cabfad
FB
293 p[1] = next >> 8;
294 p[2] = total_len;
295 p[3] = total_len >> 8;
296 index += 4;
297
298 /* write packet data */
299 while (size > 0) {
0ae045ae
TS
300 if (index <= s->stop)
301 avail = s->stop - index;
302 else
303 avail = 0;
80cabfad
FB
304 len = size;
305 if (len > avail)
306 len = avail;
307 memcpy(s->mem + index, buf, len);
308 buf += len;
309 index += len;
310 if (index == s->stop)
311 index = s->start;
312 size -= len;
313 }
314 s->curpag = next >> 8;
8d6c7eb8 315
9f083493 316 /* now we can signal we have received something */
80cabfad
FB
317 s->isr |= ENISR_RX;
318 ne2000_update_irq(s);
319}
320
b41a2cd1 321static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
80cabfad 322{
b41a2cd1 323 NE2000State *s = opaque;
40545f84 324 int offset, page, index;
80cabfad
FB
325
326 addr &= 0xf;
327#ifdef DEBUG_NE2000
328 printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
329#endif
330 if (addr == E8390_CMD) {
331 /* control register */
332 s->cmd = val;
a343df16 333 if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */
ee9dbb29 334 s->isr &= ~ENISR_RESET;
e91c8a77 335 /* test specific case: zero length transfer */
80cabfad
FB
336 if ((val & (E8390_RREAD | E8390_RWRITE)) &&
337 s->rcnt == 0) {
338 s->isr |= ENISR_RDC;
339 ne2000_update_irq(s);
340 }
341 if (val & E8390_TRANS) {
40545f84 342 index = (s->tpsr << 8);
5fafdf24 343 /* XXX: next 2 lines are a hack to make netware 3.11 work */
40545f84
FB
344 if (index >= NE2000_PMEM_END)
345 index -= NE2000_PMEM_SIZE;
346 /* fail safe: check range on the transmitted length */
347 if (index + s->tcnt <= NE2000_PMEM_END) {
7c9d8e07 348 qemu_send_packet(s->vc, s->mem + index, s->tcnt);
40545f84 349 }
e91c8a77 350 /* signal end of transfer */
80cabfad
FB
351 s->tsr = ENTSR_PTX;
352 s->isr |= ENISR_TX;
5fafdf24 353 s->cmd &= ~E8390_TRANS;
80cabfad
FB
354 ne2000_update_irq(s);
355 }
356 }
357 } else {
358 page = s->cmd >> 6;
359 offset = addr | (page << 4);
360 switch(offset) {
361 case EN0_STARTPG:
362 s->start = val << 8;
363 break;
364 case EN0_STOPPG:
365 s->stop = val << 8;
366 break;
367 case EN0_BOUNDARY:
368 s->boundary = val;
369 break;
370 case EN0_IMR:
371 s->imr = val;
372 ne2000_update_irq(s);
373 break;
374 case EN0_TPSR:
375 s->tpsr = val;
376 break;
377 case EN0_TCNTLO:
378 s->tcnt = (s->tcnt & 0xff00) | val;
379 break;
380 case EN0_TCNTHI:
381 s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
382 break;
383 case EN0_RSARLO:
384 s->rsar = (s->rsar & 0xff00) | val;
385 break;
386 case EN0_RSARHI:
387 s->rsar = (s->rsar & 0x00ff) | (val << 8);
388 break;
389 case EN0_RCNTLO:
390 s->rcnt = (s->rcnt & 0xff00) | val;
391 break;
392 case EN0_RCNTHI:
393 s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
394 break;
7c9d8e07
FB
395 case EN0_RXCR:
396 s->rxcr = val;
397 break;
80cabfad
FB
398 case EN0_DCFG:
399 s->dcfg = val;
400 break;
401 case EN0_ISR:
ee9dbb29 402 s->isr &= ~(val & 0x7f);
80cabfad
FB
403 ne2000_update_irq(s);
404 break;
405 case EN1_PHYS ... EN1_PHYS + 5:
406 s->phys[offset - EN1_PHYS] = val;
407 break;
408 case EN1_CURPAG:
409 s->curpag = val;
410 break;
411 case EN1_MULT ... EN1_MULT + 7:
412 s->mult[offset - EN1_MULT] = val;
413 break;
414 }
415 }
416}
417
b41a2cd1 418static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
80cabfad 419{
b41a2cd1 420 NE2000State *s = opaque;
80cabfad
FB
421 int offset, page, ret;
422
423 addr &= 0xf;
424 if (addr == E8390_CMD) {
425 ret = s->cmd;
426 } else {
427 page = s->cmd >> 6;
428 offset = addr | (page << 4);
429 switch(offset) {
430 case EN0_TSR:
431 ret = s->tsr;
432 break;
433 case EN0_BOUNDARY:
434 ret = s->boundary;
435 break;
436 case EN0_ISR:
437 ret = s->isr;
438 break;
ee9dbb29
FB
439 case EN0_RSARLO:
440 ret = s->rsar & 0x00ff;
441 break;
442 case EN0_RSARHI:
443 ret = s->rsar >> 8;
444 break;
80cabfad
FB
445 case EN1_PHYS ... EN1_PHYS + 5:
446 ret = s->phys[offset - EN1_PHYS];
447 break;
448 case EN1_CURPAG:
449 ret = s->curpag;
450 break;
451 case EN1_MULT ... EN1_MULT + 7:
452 ret = s->mult[offset - EN1_MULT];
453 break;
8d6c7eb8
FB
454 case EN0_RSR:
455 ret = s->rsr;
456 break;
a343df16
FB
457 case EN2_STARTPG:
458 ret = s->start >> 8;
459 break;
460 case EN2_STOPPG:
461 ret = s->stop >> 8;
462 break;
089af991
FB
463 case EN0_RTL8029ID0:
464 ret = 0x50;
465 break;
466 case EN0_RTL8029ID1:
467 ret = 0x43;
468 break;
469 case EN3_CONFIG0:
470 ret = 0; /* 10baseT media */
471 break;
472 case EN3_CONFIG2:
473 ret = 0x40; /* 10baseT active */
474 break;
475 case EN3_CONFIG3:
476 ret = 0x40; /* Full duplex */
477 break;
80cabfad
FB
478 default:
479 ret = 0x00;
480 break;
481 }
482 }
483#ifdef DEBUG_NE2000
484 printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
485#endif
486 return ret;
487}
488
5fafdf24 489static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr,
69b91039 490 uint32_t val)
ee9dbb29 491{
5fafdf24 492 if (addr < 32 ||
ee9dbb29
FB
493 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
494 s->mem[addr] = val;
495 }
496}
497
5fafdf24 498static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr,
ee9dbb29
FB
499 uint32_t val)
500{
501 addr &= ~1; /* XXX: check exact behaviour if not even */
5fafdf24 502 if (addr < 32 ||
ee9dbb29 503 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
69b91039
FB
504 *(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
505 }
506}
507
5fafdf24 508static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr,
69b91039
FB
509 uint32_t val)
510{
57ccbabe 511 addr &= ~1; /* XXX: check exact behaviour if not even */
5fafdf24 512 if (addr < 32 ||
69b91039 513 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
57ccbabe 514 cpu_to_le32wu((uint32_t *)(s->mem + addr), val);
ee9dbb29
FB
515 }
516}
517
518static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
519{
5fafdf24 520 if (addr < 32 ||
ee9dbb29
FB
521 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
522 return s->mem[addr];
523 } else {
524 return 0xff;
525 }
526}
527
528static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
529{
530 addr &= ~1; /* XXX: check exact behaviour if not even */
5fafdf24 531 if (addr < 32 ||
ee9dbb29 532 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
69b91039 533 return le16_to_cpu(*(uint16_t *)(s->mem + addr));
ee9dbb29
FB
534 } else {
535 return 0xffff;
536 }
537}
538
69b91039
FB
539static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
540{
57ccbabe 541 addr &= ~1; /* XXX: check exact behaviour if not even */
5fafdf24 542 if (addr < 32 ||
69b91039 543 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
57ccbabe 544 return le32_to_cpupu((uint32_t *)(s->mem + addr));
69b91039
FB
545 } else {
546 return 0xffffffff;
547 }
548}
549
3df3f6fd
FB
550static inline void ne2000_dma_update(NE2000State *s, int len)
551{
552 s->rsar += len;
553 /* wrap */
554 /* XXX: check what to do if rsar > stop */
555 if (s->rsar == s->stop)
556 s->rsar = s->start;
557
558 if (s->rcnt <= len) {
559 s->rcnt = 0;
e91c8a77 560 /* signal end of transfer */
3df3f6fd
FB
561 s->isr |= ENISR_RDC;
562 ne2000_update_irq(s);
563 } else {
564 s->rcnt -= len;
565 }
566}
567
b41a2cd1 568static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
80cabfad 569{
b41a2cd1 570 NE2000State *s = opaque;
80cabfad
FB
571
572#ifdef DEBUG_NE2000
573 printf("NE2000: asic write val=0x%04x\n", val);
574#endif
ee9dbb29 575 if (s->rcnt == 0)
3df3f6fd 576 return;
80cabfad
FB
577 if (s->dcfg & 0x01) {
578 /* 16 bit access */
ee9dbb29 579 ne2000_mem_writew(s, s->rsar, val);
3df3f6fd 580 ne2000_dma_update(s, 2);
80cabfad
FB
581 } else {
582 /* 8 bit access */
ee9dbb29 583 ne2000_mem_writeb(s, s->rsar, val);
3df3f6fd 584 ne2000_dma_update(s, 1);
80cabfad
FB
585 }
586}
587
b41a2cd1 588static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
80cabfad 589{
b41a2cd1 590 NE2000State *s = opaque;
80cabfad
FB
591 int ret;
592
80cabfad
FB
593 if (s->dcfg & 0x01) {
594 /* 16 bit access */
ee9dbb29 595 ret = ne2000_mem_readw(s, s->rsar);
3df3f6fd 596 ne2000_dma_update(s, 2);
80cabfad
FB
597 } else {
598 /* 8 bit access */
ee9dbb29 599 ret = ne2000_mem_readb(s, s->rsar);
3df3f6fd 600 ne2000_dma_update(s, 1);
80cabfad
FB
601 }
602#ifdef DEBUG_NE2000
603 printf("NE2000: asic read val=0x%04x\n", ret);
604#endif
605 return ret;
606}
607
69b91039
FB
608static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
609{
610 NE2000State *s = opaque;
611
612#ifdef DEBUG_NE2000
613 printf("NE2000: asic writel val=0x%04x\n", val);
614#endif
615 if (s->rcnt == 0)
3df3f6fd 616 return;
69b91039
FB
617 /* 32 bit access */
618 ne2000_mem_writel(s, s->rsar, val);
3df3f6fd 619 ne2000_dma_update(s, 4);
69b91039
FB
620}
621
622static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
623{
624 NE2000State *s = opaque;
625 int ret;
626
627 /* 32 bit access */
628 ret = ne2000_mem_readl(s, s->rsar);
3df3f6fd 629 ne2000_dma_update(s, 4);
69b91039
FB
630#ifdef DEBUG_NE2000
631 printf("NE2000: asic readl val=0x%04x\n", ret);
632#endif
633 return ret;
634}
635
b41a2cd1 636static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
80cabfad
FB
637{
638 /* nothing to do (end of reset pulse) */
639}
640
b41a2cd1 641static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
80cabfad 642{
b41a2cd1 643 NE2000State *s = opaque;
80cabfad
FB
644 ne2000_reset(s);
645 return 0;
646}
647
30ca2aab
FB
648static void ne2000_save(QEMUFile* f,void* opaque)
649{
650 NE2000State* s=(NE2000State*)opaque;
60fe76f3 651 uint32_t tmp;
30ca2aab 652
1941d19c
FB
653 if (s->pci_dev)
654 pci_device_save(s->pci_dev, f);
655
acff9df6
FB
656 qemu_put_8s(f, &s->rxcr);
657
30ca2aab
FB
658 qemu_put_8s(f, &s->cmd);
659 qemu_put_be32s(f, &s->start);
660 qemu_put_be32s(f, &s->stop);
661 qemu_put_8s(f, &s->boundary);
662 qemu_put_8s(f, &s->tsr);
663 qemu_put_8s(f, &s->tpsr);
664 qemu_put_be16s(f, &s->tcnt);
665 qemu_put_be16s(f, &s->rcnt);
666 qemu_put_be32s(f, &s->rsar);
667 qemu_put_8s(f, &s->rsr);
668 qemu_put_8s(f, &s->isr);
669 qemu_put_8s(f, &s->dcfg);
670 qemu_put_8s(f, &s->imr);
671 qemu_put_buffer(f, s->phys, 6);
672 qemu_put_8s(f, &s->curpag);
673 qemu_put_buffer(f, s->mult, 8);
d537cf6c
PB
674 tmp = 0;
675 qemu_put_be32s(f, &tmp); /* ignored, was irq */
30ca2aab
FB
676 qemu_put_buffer(f, s->mem, NE2000_MEM_SIZE);
677}
678
679static int ne2000_load(QEMUFile* f,void* opaque,int version_id)
680{
681 NE2000State* s=(NE2000State*)opaque;
1941d19c 682 int ret;
60fe76f3 683 uint32_t tmp;
1941d19c
FB
684
685 if (version_id > 3)
686 return -EINVAL;
687
688 if (s->pci_dev && version_id >= 3) {
689 ret = pci_device_load(s->pci_dev, f);
690 if (ret < 0)
691 return ret;
692 }
30ca2aab 693
1941d19c 694 if (version_id >= 2) {
acff9df6 695 qemu_get_8s(f, &s->rxcr);
acff9df6 696 } else {
1941d19c 697 s->rxcr = 0x0c;
acff9df6 698 }
30ca2aab
FB
699
700 qemu_get_8s(f, &s->cmd);
701 qemu_get_be32s(f, &s->start);
702 qemu_get_be32s(f, &s->stop);
703 qemu_get_8s(f, &s->boundary);
704 qemu_get_8s(f, &s->tsr);
705 qemu_get_8s(f, &s->tpsr);
706 qemu_get_be16s(f, &s->tcnt);
707 qemu_get_be16s(f, &s->rcnt);
708 qemu_get_be32s(f, &s->rsar);
709 qemu_get_8s(f, &s->rsr);
710 qemu_get_8s(f, &s->isr);
711 qemu_get_8s(f, &s->dcfg);
712 qemu_get_8s(f, &s->imr);
713 qemu_get_buffer(f, s->phys, 6);
714 qemu_get_8s(f, &s->curpag);
715 qemu_get_buffer(f, s->mult, 8);
d537cf6c 716 qemu_get_be32s(f, &tmp); /* ignored */
30ca2aab
FB
717 qemu_get_buffer(f, s->mem, NE2000_MEM_SIZE);
718
719 return 0;
720}
721
a34b6eb7
AL
722static void isa_ne2000_cleanup(VLANClientState *vc)
723{
724 NE2000State *s = vc->opaque;
725
726 unregister_savevm("ne2000", s);
727
728 isa_unassign_ioport(s->isa_io_base, 16);
729 isa_unassign_ioport(s->isa_io_base + 0x10, 2);
730 isa_unassign_ioport(s->isa_io_base + 0x1f, 1);
731
732 qemu_free(s);
733}
734
d537cf6c 735void isa_ne2000_init(int base, qemu_irq irq, NICInfo *nd)
80cabfad 736{
b41a2cd1 737 NE2000State *s;
3b46e624 738
0ae18cee
AL
739 qemu_check_nic_model(nd, "ne2k_isa");
740
b41a2cd1 741 s = qemu_mallocz(sizeof(NE2000State));
3b46e624 742
b41a2cd1
FB
743 register_ioport_write(base, 16, 1, ne2000_ioport_write, s);
744 register_ioport_read(base, 16, 1, ne2000_ioport_read, s);
80cabfad 745
b41a2cd1
FB
746 register_ioport_write(base + 0x10, 1, 1, ne2000_asic_ioport_write, s);
747 register_ioport_read(base + 0x10, 1, 1, ne2000_asic_ioport_read, s);
748 register_ioport_write(base + 0x10, 2, 2, ne2000_asic_ioport_write, s);
749 register_ioport_read(base + 0x10, 2, 2, ne2000_asic_ioport_read, s);
80cabfad 750
b41a2cd1
FB
751 register_ioport_write(base + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
752 register_ioport_read(base + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
a34b6eb7 753 s->isa_io_base = base;
80cabfad 754 s->irq = irq;
7c9d8e07 755 memcpy(s->macaddr, nd->macaddr, 6);
80cabfad
FB
756
757 ne2000_reset(s);
b41a2cd1 758
ed8f8da7
MM
759 s->vc = nd->vc = qemu_new_vlan_client(nd->vlan, nd->model, nd->name,
760 ne2000_receive, ne2000_can_receive,
761 isa_ne2000_cleanup, s);
7c9d8e07 762
7cb7434b 763 qemu_format_nic_info_str(s->vc, s->macaddr);
3b46e624 764
18fdb1c5 765 register_savevm("ne2000", -1, 2, ne2000_save, ne2000_load, s);
80cabfad 766}
69b91039
FB
767
768/***********************************************************/
769/* PCI NE2000 definitions */
770
771typedef struct PCINE2000State {
772 PCIDevice dev;
773 NE2000State ne2000;
774} PCINE2000State;
775
5fafdf24 776static void ne2000_map(PCIDevice *pci_dev, int region_num,
69b91039
FB
777 uint32_t addr, uint32_t size, int type)
778{
779 PCINE2000State *d = (PCINE2000State *)pci_dev;
780 NE2000State *s = &d->ne2000;
781
782 register_ioport_write(addr, 16, 1, ne2000_ioport_write, s);
783 register_ioport_read(addr, 16, 1, ne2000_ioport_read, s);
784
785 register_ioport_write(addr + 0x10, 1, 1, ne2000_asic_ioport_write, s);
786 register_ioport_read(addr + 0x10, 1, 1, ne2000_asic_ioport_read, s);
787 register_ioport_write(addr + 0x10, 2, 2, ne2000_asic_ioport_write, s);
788 register_ioport_read(addr + 0x10, 2, 2, ne2000_asic_ioport_read, s);
789 register_ioport_write(addr + 0x10, 4, 4, ne2000_asic_ioport_writel, s);
790 register_ioport_read(addr + 0x10, 4, 4, ne2000_asic_ioport_readl, s);
791
792 register_ioport_write(addr + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
793 register_ioport_read(addr + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
794}
795
a34b6eb7
AL
796static void ne2000_cleanup(VLANClientState *vc)
797{
798 NE2000State *s = vc->opaque;
799
800 unregister_savevm("ne2000", s);
801}
802
72da4208 803PCIDevice *pci_ne2000_init(PCIBus *bus, NICInfo *nd, int devfn)
69b91039
FB
804{
805 PCINE2000State *d;
806 NE2000State *s;
807 uint8_t *pci_conf;
3b46e624 808
46e50e9d
FB
809 d = (PCINE2000State *)pci_register_device(bus,
810 "NE2000", sizeof(PCINE2000State),
5fafdf24 811 devfn,
4a9c9687 812 NULL, NULL);
260437cb
CW
813 if (!d)
814 return NULL;
815
69b91039 816 pci_conf = d->dev.config;
deb54399 817 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REALTEK);
4ebcf884 818 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REALTEK_RTL8029);
173a543b 819 pci_config_set_class(pci_conf, PCI_CLASS_NETWORK_ETHERNET);
69b91039 820 pci_conf[0x0e] = 0x00; // header_type
4a9c9687 821 pci_conf[0x3d] = 1; // interrupt pin 0
3b46e624 822
5fafdf24 823 pci_register_io_region(&d->dev, 0, 0x100,
69b91039
FB
824 PCI_ADDRESS_SPACE_IO, ne2000_map);
825 s = &d->ne2000;
d537cf6c 826 s->irq = d->dev.irq[0];
4a9c9687 827 s->pci_dev = (PCIDevice *)d;
7c9d8e07 828 memcpy(s->macaddr, nd->macaddr, 6);
69b91039 829 ne2000_reset(s);
7a9f6e4a 830 s->vc = qemu_new_vlan_client(nd->vlan, nd->model, nd->name,
a34b6eb7
AL
831 ne2000_receive, ne2000_can_receive,
832 ne2000_cleanup, s);
7c9d8e07 833
7cb7434b 834 qemu_format_nic_info_str(s->vc, s->macaddr);
3b46e624 835
18fdb1c5 836 register_savevm("ne2000", -1, 3, ne2000_save, ne2000_load, s);
72da4208
AL
837
838 return (PCIDevice *)d;
69b91039 839}