]> git.proxmox.com Git - qemu.git/blame - hw/ne2000.c
remove is_graphic_console from vga.c (Stefano Stabellini)
[qemu.git] / hw / ne2000.c
CommitLineData
80cabfad
FB
1/*
2 * QEMU NE2000 emulation
5fafdf24 3 *
80cabfad 4 * Copyright (c) 2003-2004 Fabrice Bellard
5fafdf24 5 *
80cabfad
FB
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
87ecb68b
PB
24#include "hw.h"
25#include "pci.h"
9596ebb7 26#include "pc.h"
87ecb68b 27#include "net.h"
80cabfad
FB
28
29/* debug NE2000 card */
30//#define DEBUG_NE2000
31
b41a2cd1 32#define MAX_ETH_FRAME_SIZE 1514
80cabfad
FB
33
34#define E8390_CMD 0x00 /* The command register (for all pages) */
35/* Page 0 register offsets. */
36#define EN0_CLDALO 0x01 /* Low byte of current local dma addr RD */
37#define EN0_STARTPG 0x01 /* Starting page of ring bfr WR */
38#define EN0_CLDAHI 0x02 /* High byte of current local dma addr RD */
39#define EN0_STOPPG 0x02 /* Ending page +1 of ring bfr WR */
40#define EN0_BOUNDARY 0x03 /* Boundary page of ring bfr RD WR */
41#define EN0_TSR 0x04 /* Transmit status reg RD */
42#define EN0_TPSR 0x04 /* Transmit starting page WR */
43#define EN0_NCR 0x05 /* Number of collision reg RD */
44#define EN0_TCNTLO 0x05 /* Low byte of tx byte count WR */
45#define EN0_FIFO 0x06 /* FIFO RD */
46#define EN0_TCNTHI 0x06 /* High byte of tx byte count WR */
47#define EN0_ISR 0x07 /* Interrupt status reg RD WR */
48#define EN0_CRDALO 0x08 /* low byte of current remote dma address RD */
49#define EN0_RSARLO 0x08 /* Remote start address reg 0 */
50#define EN0_CRDAHI 0x09 /* high byte, current remote dma address RD */
51#define EN0_RSARHI 0x09 /* Remote start address reg 1 */
52#define EN0_RCNTLO 0x0a /* Remote byte count reg WR */
089af991 53#define EN0_RTL8029ID0 0x0a /* Realtek ID byte #1 RD */
80cabfad 54#define EN0_RCNTHI 0x0b /* Remote byte count reg WR */
089af991 55#define EN0_RTL8029ID1 0x0b /* Realtek ID byte #2 RD */
80cabfad
FB
56#define EN0_RSR 0x0c /* rx status reg RD */
57#define EN0_RXCR 0x0c /* RX configuration reg WR */
58#define EN0_TXCR 0x0d /* TX configuration reg WR */
59#define EN0_COUNTER0 0x0d /* Rcv alignment error counter RD */
60#define EN0_DCFG 0x0e /* Data configuration reg WR */
61#define EN0_COUNTER1 0x0e /* Rcv CRC error counter RD */
62#define EN0_IMR 0x0f /* Interrupt mask reg WR */
63#define EN0_COUNTER2 0x0f /* Rcv missed frame error counter RD */
64
65#define EN1_PHYS 0x11
66#define EN1_CURPAG 0x17
67#define EN1_MULT 0x18
68
a343df16
FB
69#define EN2_STARTPG 0x21 /* Starting page of ring bfr RD */
70#define EN2_STOPPG 0x22 /* Ending page +1 of ring bfr RD */
71
089af991
FB
72#define EN3_CONFIG0 0x33
73#define EN3_CONFIG1 0x34
74#define EN3_CONFIG2 0x35
75#define EN3_CONFIG3 0x36
76
80cabfad
FB
77/* Register accessed at EN_CMD, the 8390 base addr. */
78#define E8390_STOP 0x01 /* Stop and reset the chip */
79#define E8390_START 0x02 /* Start the chip, clear reset */
80#define E8390_TRANS 0x04 /* Transmit a frame */
81#define E8390_RREAD 0x08 /* Remote read */
82#define E8390_RWRITE 0x10 /* Remote write */
83#define E8390_NODMA 0x20 /* Remote DMA */
84#define E8390_PAGE0 0x00 /* Select page chip registers */
85#define E8390_PAGE1 0x40 /* using the two high-order bits */
86#define E8390_PAGE2 0x80 /* Page 3 is invalid. */
87
88/* Bits in EN0_ISR - Interrupt status register */
89#define ENISR_RX 0x01 /* Receiver, no error */
90#define ENISR_TX 0x02 /* Transmitter, no error */
91#define ENISR_RX_ERR 0x04 /* Receiver, with error */
92#define ENISR_TX_ERR 0x08 /* Transmitter, with error */
93#define ENISR_OVER 0x10 /* Receiver overwrote the ring */
94#define ENISR_COUNTERS 0x20 /* Counters need emptying */
95#define ENISR_RDC 0x40 /* remote dma complete */
96#define ENISR_RESET 0x80 /* Reset completed */
97#define ENISR_ALL 0x3f /* Interrupts we will enable */
98
99/* Bits in received packet status byte and EN0_RSR*/
100#define ENRSR_RXOK 0x01 /* Received a good packet */
101#define ENRSR_CRC 0x02 /* CRC error */
102#define ENRSR_FAE 0x04 /* frame alignment error */
103#define ENRSR_FO 0x08 /* FIFO overrun */
104#define ENRSR_MPA 0x10 /* missed pkt */
105#define ENRSR_PHY 0x20 /* physical/multicast address */
106#define ENRSR_DIS 0x40 /* receiver disable. set in monitor mode */
107#define ENRSR_DEF 0x80 /* deferring */
108
109/* Transmitted packet status, EN0_TSR. */
110#define ENTSR_PTX 0x01 /* Packet transmitted without error */
111#define ENTSR_ND 0x02 /* The transmit wasn't deferred. */
112#define ENTSR_COL 0x04 /* The transmit collided at least once. */
113#define ENTSR_ABT 0x08 /* The transmit collided 16 times, and was deferred. */
114#define ENTSR_CRS 0x10 /* The carrier sense was lost. */
115#define ENTSR_FU 0x20 /* A "FIFO underrun" occurred during transmit. */
116#define ENTSR_CDH 0x40 /* The collision detect "heartbeat" signal was lost. */
117#define ENTSR_OWC 0x80 /* There was an out-of-window collision. */
118
ee9dbb29
FB
119#define NE2000_PMEM_SIZE (32*1024)
120#define NE2000_PMEM_START (16*1024)
121#define NE2000_PMEM_END (NE2000_PMEM_SIZE+NE2000_PMEM_START)
122#define NE2000_MEM_SIZE NE2000_PMEM_END
80cabfad
FB
123
124typedef struct NE2000State {
125 uint8_t cmd;
126 uint32_t start;
127 uint32_t stop;
128 uint8_t boundary;
129 uint8_t tsr;
130 uint8_t tpsr;
131 uint16_t tcnt;
132 uint16_t rcnt;
133 uint32_t rsar;
8d6c7eb8 134 uint8_t rsr;
7c9d8e07 135 uint8_t rxcr;
80cabfad
FB
136 uint8_t isr;
137 uint8_t dcfg;
138 uint8_t imr;
139 uint8_t phys[6]; /* mac address */
140 uint8_t curpag;
141 uint8_t mult[8]; /* multicast mask array */
d537cf6c 142 qemu_irq irq;
4a9c9687 143 PCIDevice *pci_dev;
7c9d8e07
FB
144 VLANClientState *vc;
145 uint8_t macaddr[6];
80cabfad
FB
146 uint8_t mem[NE2000_MEM_SIZE];
147} NE2000State;
148
80cabfad
FB
149static void ne2000_reset(NE2000State *s)
150{
151 int i;
152
153 s->isr = ENISR_RESET;
7c9d8e07 154 memcpy(s->mem, s->macaddr, 6);
80cabfad
FB
155 s->mem[14] = 0x57;
156 s->mem[15] = 0x57;
157
158 /* duplicate prom data */
159 for(i = 15;i >= 0; i--) {
160 s->mem[2 * i] = s->mem[i];
161 s->mem[2 * i + 1] = s->mem[i];
162 }
163}
164
165static void ne2000_update_irq(NE2000State *s)
166{
167 int isr;
a343df16 168 isr = (s->isr & s->imr) & 0x7f;
a541f297 169#if defined(DEBUG_NE2000)
d537cf6c
PB
170 printf("NE2000: Set IRQ to %d (%02x %02x)\n",
171 isr ? 1 : 0, s->isr, s->imr);
a541f297 172#endif
d537cf6c 173 qemu_set_irq(s->irq, (isr != 0));
80cabfad
FB
174}
175
7c9d8e07
FB
176#define POLYNOMIAL 0x04c11db6
177
178/* From FreeBSD */
179/* XXX: optimize */
180static int compute_mcast_idx(const uint8_t *ep)
181{
182 uint32_t crc;
183 int carry, i, j;
184 uint8_t b;
185
186 crc = 0xffffffff;
187 for (i = 0; i < 6; i++) {
188 b = *ep++;
189 for (j = 0; j < 8; j++) {
190 carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01);
191 crc <<= 1;
192 b >>= 1;
193 if (carry)
194 crc = ((crc ^ POLYNOMIAL) | carry);
195 }
196 }
197 return (crc >> 26);
198}
199
d861b05e 200static int ne2000_buffer_full(NE2000State *s)
80cabfad 201{
80cabfad 202 int avail, index, boundary;
d861b05e 203
80cabfad
FB
204 index = s->curpag << 8;
205 boundary = s->boundary << 8;
28c1c656 206 if (index < boundary)
80cabfad
FB
207 avail = boundary - index;
208 else
209 avail = (s->stop - s->start) - (index - boundary);
210 if (avail < (MAX_ETH_FRAME_SIZE + 4))
d861b05e
PB
211 return 1;
212 return 0;
213}
214
215static int ne2000_can_receive(void *opaque)
216{
217 NE2000State *s = opaque;
3b46e624 218
d861b05e 219 if (s->cmd & E8390_STOP)
e89f00e6 220 return 1;
d861b05e 221 return !ne2000_buffer_full(s);
80cabfad
FB
222}
223
b41a2cd1
FB
224#define MIN_BUF_SIZE 60
225
226static void ne2000_receive(void *opaque, const uint8_t *buf, int size)
80cabfad 227{
b41a2cd1 228 NE2000State *s = opaque;
80cabfad 229 uint8_t *p;
0ae045ae 230 unsigned int total_len, next, avail, len, index, mcast_idx;
b41a2cd1 231 uint8_t buf1[60];
5fafdf24 232 static const uint8_t broadcast_macaddr[6] =
7c9d8e07 233 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
3b46e624 234
80cabfad
FB
235#if defined(DEBUG_NE2000)
236 printf("NE2000: received len=%d\n", size);
237#endif
238
d861b05e 239 if (s->cmd & E8390_STOP || ne2000_buffer_full(s))
7c9d8e07 240 return;
3b46e624 241
7c9d8e07
FB
242 /* XXX: check this */
243 if (s->rxcr & 0x10) {
244 /* promiscuous: receive all */
245 } else {
246 if (!memcmp(buf, broadcast_macaddr, 6)) {
247 /* broadcast address */
248 if (!(s->rxcr & 0x04))
249 return;
250 } else if (buf[0] & 0x01) {
251 /* multicast */
252 if (!(s->rxcr & 0x08))
253 return;
254 mcast_idx = compute_mcast_idx(buf);
255 if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
256 return;
257 } else if (s->mem[0] == buf[0] &&
3b46e624
TS
258 s->mem[2] == buf[1] &&
259 s->mem[4] == buf[2] &&
260 s->mem[6] == buf[3] &&
261 s->mem[8] == buf[4] &&
7c9d8e07
FB
262 s->mem[10] == buf[5]) {
263 /* match */
264 } else {
265 return;
266 }
267 }
268
269
b41a2cd1
FB
270 /* if too small buffer, then expand it */
271 if (size < MIN_BUF_SIZE) {
272 memcpy(buf1, buf, size);
273 memset(buf1 + size, 0, MIN_BUF_SIZE - size);
274 buf = buf1;
275 size = MIN_BUF_SIZE;
276 }
277
80cabfad
FB
278 index = s->curpag << 8;
279 /* 4 bytes for header */
280 total_len = size + 4;
281 /* address for next packet (4 bytes for CRC) */
282 next = index + ((total_len + 4 + 255) & ~0xff);
283 if (next >= s->stop)
284 next -= (s->stop - s->start);
285 /* prepare packet header */
286 p = s->mem + index;
8d6c7eb8
FB
287 s->rsr = ENRSR_RXOK; /* receive status */
288 /* XXX: check this */
289 if (buf[0] & 0x01)
290 s->rsr |= ENRSR_PHY;
291 p[0] = s->rsr;
80cabfad
FB
292 p[1] = next >> 8;
293 p[2] = total_len;
294 p[3] = total_len >> 8;
295 index += 4;
296
297 /* write packet data */
298 while (size > 0) {
0ae045ae
TS
299 if (index <= s->stop)
300 avail = s->stop - index;
301 else
302 avail = 0;
80cabfad
FB
303 len = size;
304 if (len > avail)
305 len = avail;
306 memcpy(s->mem + index, buf, len);
307 buf += len;
308 index += len;
309 if (index == s->stop)
310 index = s->start;
311 size -= len;
312 }
313 s->curpag = next >> 8;
8d6c7eb8 314
9f083493 315 /* now we can signal we have received something */
80cabfad
FB
316 s->isr |= ENISR_RX;
317 ne2000_update_irq(s);
318}
319
b41a2cd1 320static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
80cabfad 321{
b41a2cd1 322 NE2000State *s = opaque;
40545f84 323 int offset, page, index;
80cabfad
FB
324
325 addr &= 0xf;
326#ifdef DEBUG_NE2000
327 printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
328#endif
329 if (addr == E8390_CMD) {
330 /* control register */
331 s->cmd = val;
a343df16 332 if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */
ee9dbb29 333 s->isr &= ~ENISR_RESET;
e91c8a77 334 /* test specific case: zero length transfer */
80cabfad
FB
335 if ((val & (E8390_RREAD | E8390_RWRITE)) &&
336 s->rcnt == 0) {
337 s->isr |= ENISR_RDC;
338 ne2000_update_irq(s);
339 }
340 if (val & E8390_TRANS) {
40545f84 341 index = (s->tpsr << 8);
5fafdf24 342 /* XXX: next 2 lines are a hack to make netware 3.11 work */
40545f84
FB
343 if (index >= NE2000_PMEM_END)
344 index -= NE2000_PMEM_SIZE;
345 /* fail safe: check range on the transmitted length */
346 if (index + s->tcnt <= NE2000_PMEM_END) {
7c9d8e07 347 qemu_send_packet(s->vc, s->mem + index, s->tcnt);
40545f84 348 }
e91c8a77 349 /* signal end of transfer */
80cabfad
FB
350 s->tsr = ENTSR_PTX;
351 s->isr |= ENISR_TX;
5fafdf24 352 s->cmd &= ~E8390_TRANS;
80cabfad
FB
353 ne2000_update_irq(s);
354 }
355 }
356 } else {
357 page = s->cmd >> 6;
358 offset = addr | (page << 4);
359 switch(offset) {
360 case EN0_STARTPG:
361 s->start = val << 8;
362 break;
363 case EN0_STOPPG:
364 s->stop = val << 8;
365 break;
366 case EN0_BOUNDARY:
367 s->boundary = val;
368 break;
369 case EN0_IMR:
370 s->imr = val;
371 ne2000_update_irq(s);
372 break;
373 case EN0_TPSR:
374 s->tpsr = val;
375 break;
376 case EN0_TCNTLO:
377 s->tcnt = (s->tcnt & 0xff00) | val;
378 break;
379 case EN0_TCNTHI:
380 s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
381 break;
382 case EN0_RSARLO:
383 s->rsar = (s->rsar & 0xff00) | val;
384 break;
385 case EN0_RSARHI:
386 s->rsar = (s->rsar & 0x00ff) | (val << 8);
387 break;
388 case EN0_RCNTLO:
389 s->rcnt = (s->rcnt & 0xff00) | val;
390 break;
391 case EN0_RCNTHI:
392 s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
393 break;
7c9d8e07
FB
394 case EN0_RXCR:
395 s->rxcr = val;
396 break;
80cabfad
FB
397 case EN0_DCFG:
398 s->dcfg = val;
399 break;
400 case EN0_ISR:
ee9dbb29 401 s->isr &= ~(val & 0x7f);
80cabfad
FB
402 ne2000_update_irq(s);
403 break;
404 case EN1_PHYS ... EN1_PHYS + 5:
405 s->phys[offset - EN1_PHYS] = val;
406 break;
407 case EN1_CURPAG:
408 s->curpag = val;
409 break;
410 case EN1_MULT ... EN1_MULT + 7:
411 s->mult[offset - EN1_MULT] = val;
412 break;
413 }
414 }
415}
416
b41a2cd1 417static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
80cabfad 418{
b41a2cd1 419 NE2000State *s = opaque;
80cabfad
FB
420 int offset, page, ret;
421
422 addr &= 0xf;
423 if (addr == E8390_CMD) {
424 ret = s->cmd;
425 } else {
426 page = s->cmd >> 6;
427 offset = addr | (page << 4);
428 switch(offset) {
429 case EN0_TSR:
430 ret = s->tsr;
431 break;
432 case EN0_BOUNDARY:
433 ret = s->boundary;
434 break;
435 case EN0_ISR:
436 ret = s->isr;
437 break;
ee9dbb29
FB
438 case EN0_RSARLO:
439 ret = s->rsar & 0x00ff;
440 break;
441 case EN0_RSARHI:
442 ret = s->rsar >> 8;
443 break;
80cabfad
FB
444 case EN1_PHYS ... EN1_PHYS + 5:
445 ret = s->phys[offset - EN1_PHYS];
446 break;
447 case EN1_CURPAG:
448 ret = s->curpag;
449 break;
450 case EN1_MULT ... EN1_MULT + 7:
451 ret = s->mult[offset - EN1_MULT];
452 break;
8d6c7eb8
FB
453 case EN0_RSR:
454 ret = s->rsr;
455 break;
a343df16
FB
456 case EN2_STARTPG:
457 ret = s->start >> 8;
458 break;
459 case EN2_STOPPG:
460 ret = s->stop >> 8;
461 break;
089af991
FB
462 case EN0_RTL8029ID0:
463 ret = 0x50;
464 break;
465 case EN0_RTL8029ID1:
466 ret = 0x43;
467 break;
468 case EN3_CONFIG0:
469 ret = 0; /* 10baseT media */
470 break;
471 case EN3_CONFIG2:
472 ret = 0x40; /* 10baseT active */
473 break;
474 case EN3_CONFIG3:
475 ret = 0x40; /* Full duplex */
476 break;
80cabfad
FB
477 default:
478 ret = 0x00;
479 break;
480 }
481 }
482#ifdef DEBUG_NE2000
483 printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
484#endif
485 return ret;
486}
487
5fafdf24 488static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr,
69b91039 489 uint32_t val)
ee9dbb29 490{
5fafdf24 491 if (addr < 32 ||
ee9dbb29
FB
492 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
493 s->mem[addr] = val;
494 }
495}
496
5fafdf24 497static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr,
ee9dbb29
FB
498 uint32_t val)
499{
500 addr &= ~1; /* XXX: check exact behaviour if not even */
5fafdf24 501 if (addr < 32 ||
ee9dbb29 502 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
69b91039
FB
503 *(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
504 }
505}
506
5fafdf24 507static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr,
69b91039
FB
508 uint32_t val)
509{
57ccbabe 510 addr &= ~1; /* XXX: check exact behaviour if not even */
5fafdf24 511 if (addr < 32 ||
69b91039 512 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
57ccbabe 513 cpu_to_le32wu((uint32_t *)(s->mem + addr), val);
ee9dbb29
FB
514 }
515}
516
517static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
518{
5fafdf24 519 if (addr < 32 ||
ee9dbb29
FB
520 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
521 return s->mem[addr];
522 } else {
523 return 0xff;
524 }
525}
526
527static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
528{
529 addr &= ~1; /* XXX: check exact behaviour if not even */
5fafdf24 530 if (addr < 32 ||
ee9dbb29 531 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
69b91039 532 return le16_to_cpu(*(uint16_t *)(s->mem + addr));
ee9dbb29
FB
533 } else {
534 return 0xffff;
535 }
536}
537
69b91039
FB
538static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
539{
57ccbabe 540 addr &= ~1; /* XXX: check exact behaviour if not even */
5fafdf24 541 if (addr < 32 ||
69b91039 542 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
57ccbabe 543 return le32_to_cpupu((uint32_t *)(s->mem + addr));
69b91039
FB
544 } else {
545 return 0xffffffff;
546 }
547}
548
3df3f6fd
FB
549static inline void ne2000_dma_update(NE2000State *s, int len)
550{
551 s->rsar += len;
552 /* wrap */
553 /* XXX: check what to do if rsar > stop */
554 if (s->rsar == s->stop)
555 s->rsar = s->start;
556
557 if (s->rcnt <= len) {
558 s->rcnt = 0;
e91c8a77 559 /* signal end of transfer */
3df3f6fd
FB
560 s->isr |= ENISR_RDC;
561 ne2000_update_irq(s);
562 } else {
563 s->rcnt -= len;
564 }
565}
566
b41a2cd1 567static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
80cabfad 568{
b41a2cd1 569 NE2000State *s = opaque;
80cabfad
FB
570
571#ifdef DEBUG_NE2000
572 printf("NE2000: asic write val=0x%04x\n", val);
573#endif
ee9dbb29 574 if (s->rcnt == 0)
3df3f6fd 575 return;
80cabfad
FB
576 if (s->dcfg & 0x01) {
577 /* 16 bit access */
ee9dbb29 578 ne2000_mem_writew(s, s->rsar, val);
3df3f6fd 579 ne2000_dma_update(s, 2);
80cabfad
FB
580 } else {
581 /* 8 bit access */
ee9dbb29 582 ne2000_mem_writeb(s, s->rsar, val);
3df3f6fd 583 ne2000_dma_update(s, 1);
80cabfad
FB
584 }
585}
586
b41a2cd1 587static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
80cabfad 588{
b41a2cd1 589 NE2000State *s = opaque;
80cabfad
FB
590 int ret;
591
80cabfad
FB
592 if (s->dcfg & 0x01) {
593 /* 16 bit access */
ee9dbb29 594 ret = ne2000_mem_readw(s, s->rsar);
3df3f6fd 595 ne2000_dma_update(s, 2);
80cabfad
FB
596 } else {
597 /* 8 bit access */
ee9dbb29 598 ret = ne2000_mem_readb(s, s->rsar);
3df3f6fd 599 ne2000_dma_update(s, 1);
80cabfad
FB
600 }
601#ifdef DEBUG_NE2000
602 printf("NE2000: asic read val=0x%04x\n", ret);
603#endif
604 return ret;
605}
606
69b91039
FB
607static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
608{
609 NE2000State *s = opaque;
610
611#ifdef DEBUG_NE2000
612 printf("NE2000: asic writel val=0x%04x\n", val);
613#endif
614 if (s->rcnt == 0)
3df3f6fd 615 return;
69b91039
FB
616 /* 32 bit access */
617 ne2000_mem_writel(s, s->rsar, val);
3df3f6fd 618 ne2000_dma_update(s, 4);
69b91039
FB
619}
620
621static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
622{
623 NE2000State *s = opaque;
624 int ret;
625
626 /* 32 bit access */
627 ret = ne2000_mem_readl(s, s->rsar);
3df3f6fd 628 ne2000_dma_update(s, 4);
69b91039
FB
629#ifdef DEBUG_NE2000
630 printf("NE2000: asic readl val=0x%04x\n", ret);
631#endif
632 return ret;
633}
634
b41a2cd1 635static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
80cabfad
FB
636{
637 /* nothing to do (end of reset pulse) */
638}
639
b41a2cd1 640static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
80cabfad 641{
b41a2cd1 642 NE2000State *s = opaque;
80cabfad
FB
643 ne2000_reset(s);
644 return 0;
645}
646
30ca2aab
FB
647static void ne2000_save(QEMUFile* f,void* opaque)
648{
649 NE2000State* s=(NE2000State*)opaque;
60fe76f3 650 uint32_t tmp;
30ca2aab 651
1941d19c
FB
652 if (s->pci_dev)
653 pci_device_save(s->pci_dev, f);
654
acff9df6
FB
655 qemu_put_8s(f, &s->rxcr);
656
30ca2aab
FB
657 qemu_put_8s(f, &s->cmd);
658 qemu_put_be32s(f, &s->start);
659 qemu_put_be32s(f, &s->stop);
660 qemu_put_8s(f, &s->boundary);
661 qemu_put_8s(f, &s->tsr);
662 qemu_put_8s(f, &s->tpsr);
663 qemu_put_be16s(f, &s->tcnt);
664 qemu_put_be16s(f, &s->rcnt);
665 qemu_put_be32s(f, &s->rsar);
666 qemu_put_8s(f, &s->rsr);
667 qemu_put_8s(f, &s->isr);
668 qemu_put_8s(f, &s->dcfg);
669 qemu_put_8s(f, &s->imr);
670 qemu_put_buffer(f, s->phys, 6);
671 qemu_put_8s(f, &s->curpag);
672 qemu_put_buffer(f, s->mult, 8);
d537cf6c
PB
673 tmp = 0;
674 qemu_put_be32s(f, &tmp); /* ignored, was irq */
30ca2aab
FB
675 qemu_put_buffer(f, s->mem, NE2000_MEM_SIZE);
676}
677
678static int ne2000_load(QEMUFile* f,void* opaque,int version_id)
679{
680 NE2000State* s=(NE2000State*)opaque;
1941d19c 681 int ret;
60fe76f3 682 uint32_t tmp;
1941d19c
FB
683
684 if (version_id > 3)
685 return -EINVAL;
686
687 if (s->pci_dev && version_id >= 3) {
688 ret = pci_device_load(s->pci_dev, f);
689 if (ret < 0)
690 return ret;
691 }
30ca2aab 692
1941d19c 693 if (version_id >= 2) {
acff9df6 694 qemu_get_8s(f, &s->rxcr);
acff9df6 695 } else {
1941d19c 696 s->rxcr = 0x0c;
acff9df6 697 }
30ca2aab
FB
698
699 qemu_get_8s(f, &s->cmd);
700 qemu_get_be32s(f, &s->start);
701 qemu_get_be32s(f, &s->stop);
702 qemu_get_8s(f, &s->boundary);
703 qemu_get_8s(f, &s->tsr);
704 qemu_get_8s(f, &s->tpsr);
705 qemu_get_be16s(f, &s->tcnt);
706 qemu_get_be16s(f, &s->rcnt);
707 qemu_get_be32s(f, &s->rsar);
708 qemu_get_8s(f, &s->rsr);
709 qemu_get_8s(f, &s->isr);
710 qemu_get_8s(f, &s->dcfg);
711 qemu_get_8s(f, &s->imr);
712 qemu_get_buffer(f, s->phys, 6);
713 qemu_get_8s(f, &s->curpag);
714 qemu_get_buffer(f, s->mult, 8);
d537cf6c 715 qemu_get_be32s(f, &tmp); /* ignored */
30ca2aab
FB
716 qemu_get_buffer(f, s->mem, NE2000_MEM_SIZE);
717
718 return 0;
719}
720
d537cf6c 721void isa_ne2000_init(int base, qemu_irq irq, NICInfo *nd)
80cabfad 722{
b41a2cd1 723 NE2000State *s;
3b46e624 724
0ae18cee
AL
725 qemu_check_nic_model(nd, "ne2k_isa");
726
b41a2cd1 727 s = qemu_mallocz(sizeof(NE2000State));
3b46e624 728
b41a2cd1
FB
729 register_ioport_write(base, 16, 1, ne2000_ioport_write, s);
730 register_ioport_read(base, 16, 1, ne2000_ioport_read, s);
80cabfad 731
b41a2cd1
FB
732 register_ioport_write(base + 0x10, 1, 1, ne2000_asic_ioport_write, s);
733 register_ioport_read(base + 0x10, 1, 1, ne2000_asic_ioport_read, s);
734 register_ioport_write(base + 0x10, 2, 2, ne2000_asic_ioport_write, s);
735 register_ioport_read(base + 0x10, 2, 2, ne2000_asic_ioport_read, s);
80cabfad 736
b41a2cd1
FB
737 register_ioport_write(base + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
738 register_ioport_read(base + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
80cabfad 739 s->irq = irq;
7c9d8e07 740 memcpy(s->macaddr, nd->macaddr, 6);
80cabfad
FB
741
742 ne2000_reset(s);
b41a2cd1 743
7a9f6e4a 744 s->vc = qemu_new_vlan_client(nd->vlan, nd->model, nd->name,
bf38c1a0 745 ne2000_receive, ne2000_can_receive, s);
7c9d8e07 746
7cb7434b 747 qemu_format_nic_info_str(s->vc, s->macaddr);
3b46e624 748
18fdb1c5 749 register_savevm("ne2000", -1, 2, ne2000_save, ne2000_load, s);
80cabfad 750}
69b91039
FB
751
752/***********************************************************/
753/* PCI NE2000 definitions */
754
755typedef struct PCINE2000State {
756 PCIDevice dev;
757 NE2000State ne2000;
758} PCINE2000State;
759
5fafdf24 760static void ne2000_map(PCIDevice *pci_dev, int region_num,
69b91039
FB
761 uint32_t addr, uint32_t size, int type)
762{
763 PCINE2000State *d = (PCINE2000State *)pci_dev;
764 NE2000State *s = &d->ne2000;
765
766 register_ioport_write(addr, 16, 1, ne2000_ioport_write, s);
767 register_ioport_read(addr, 16, 1, ne2000_ioport_read, s);
768
769 register_ioport_write(addr + 0x10, 1, 1, ne2000_asic_ioport_write, s);
770 register_ioport_read(addr + 0x10, 1, 1, ne2000_asic_ioport_read, s);
771 register_ioport_write(addr + 0x10, 2, 2, ne2000_asic_ioport_write, s);
772 register_ioport_read(addr + 0x10, 2, 2, ne2000_asic_ioport_read, s);
773 register_ioport_write(addr + 0x10, 4, 4, ne2000_asic_ioport_writel, s);
774 register_ioport_read(addr + 0x10, 4, 4, ne2000_asic_ioport_readl, s);
775
776 register_ioport_write(addr + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
777 register_ioport_read(addr + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
778}
779
72da4208 780PCIDevice *pci_ne2000_init(PCIBus *bus, NICInfo *nd, int devfn)
69b91039
FB
781{
782 PCINE2000State *d;
783 NE2000State *s;
784 uint8_t *pci_conf;
3b46e624 785
46e50e9d
FB
786 d = (PCINE2000State *)pci_register_device(bus,
787 "NE2000", sizeof(PCINE2000State),
5fafdf24 788 devfn,
4a9c9687 789 NULL, NULL);
69b91039 790 pci_conf = d->dev.config;
deb54399 791 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REALTEK);
4ebcf884 792 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REALTEK_RTL8029);
173a543b 793 pci_config_set_class(pci_conf, PCI_CLASS_NETWORK_ETHERNET);
69b91039 794 pci_conf[0x0e] = 0x00; // header_type
4a9c9687 795 pci_conf[0x3d] = 1; // interrupt pin 0
3b46e624 796
5fafdf24 797 pci_register_io_region(&d->dev, 0, 0x100,
69b91039
FB
798 PCI_ADDRESS_SPACE_IO, ne2000_map);
799 s = &d->ne2000;
d537cf6c 800 s->irq = d->dev.irq[0];
4a9c9687 801 s->pci_dev = (PCIDevice *)d;
7c9d8e07 802 memcpy(s->macaddr, nd->macaddr, 6);
69b91039 803 ne2000_reset(s);
7a9f6e4a 804 s->vc = qemu_new_vlan_client(nd->vlan, nd->model, nd->name,
bf38c1a0 805 ne2000_receive, ne2000_can_receive, s);
7c9d8e07 806
7cb7434b 807 qemu_format_nic_info_str(s->vc, s->macaddr);
3b46e624 808
18fdb1c5 809 register_savevm("ne2000", -1, 3, ne2000_save, ne2000_load, s);
72da4208
AL
810
811 return (PCIDevice *)d;
69b91039 812}