]> git.proxmox.com Git - qemu.git/blame - hw/omap.c
Constification
[qemu.git] / hw / omap.c
CommitLineData
c3d2689d
AZ
1/*
2 * TI OMAP processors emulation.
3 *
4 * Copyright (C) 2006-2007 Andrzej Zaborowski <balrog@zabor.org>
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 of
9 * the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
19 * MA 02111-1307 USA
20 */
21#include "vl.h"
22#include "arm_pic.h"
23
24/* Should signal the TCMI */
66450b15
AZ
25uint32_t omap_badwidth_read8(void *opaque, target_phys_addr_t addr)
26{
02645926
AZ
27 uint8_t ret;
28
66450b15 29 OMAP_8B_REG(addr);
b854bc19 30 cpu_physical_memory_read(addr, (void *) &ret, 1);
02645926 31 return ret;
66450b15
AZ
32}
33
34void omap_badwidth_write8(void *opaque, target_phys_addr_t addr,
35 uint32_t value)
36{
b854bc19
AZ
37 uint8_t val8 = value;
38
66450b15 39 OMAP_8B_REG(addr);
b854bc19 40 cpu_physical_memory_write(addr, (void *) &val8, 1);
66450b15
AZ
41}
42
b30bb3a2 43uint32_t omap_badwidth_read16(void *opaque, target_phys_addr_t addr)
c3d2689d 44{
b854bc19
AZ
45 uint16_t ret;
46
c3d2689d 47 OMAP_16B_REG(addr);
b854bc19
AZ
48 cpu_physical_memory_read(addr, (void *) &ret, 2);
49 return ret;
c3d2689d
AZ
50}
51
b30bb3a2 52void omap_badwidth_write16(void *opaque, target_phys_addr_t addr,
c3d2689d
AZ
53 uint32_t value)
54{
b854bc19
AZ
55 uint16_t val16 = value;
56
c3d2689d 57 OMAP_16B_REG(addr);
b854bc19 58 cpu_physical_memory_write(addr, (void *) &val16, 2);
c3d2689d
AZ
59}
60
b30bb3a2 61uint32_t omap_badwidth_read32(void *opaque, target_phys_addr_t addr)
c3d2689d 62{
b854bc19
AZ
63 uint32_t ret;
64
c3d2689d 65 OMAP_32B_REG(addr);
b854bc19
AZ
66 cpu_physical_memory_read(addr, (void *) &ret, 4);
67 return ret;
c3d2689d
AZ
68}
69
b30bb3a2 70void omap_badwidth_write32(void *opaque, target_phys_addr_t addr,
c3d2689d
AZ
71 uint32_t value)
72{
73 OMAP_32B_REG(addr);
b854bc19 74 cpu_physical_memory_write(addr, (void *) &value, 4);
c3d2689d
AZ
75}
76
c3d2689d
AZ
77/* Interrupt Handlers */
78struct omap_intr_handler_s {
79 qemu_irq *pins;
80 qemu_irq *parent_pic;
81 target_phys_addr_t base;
82
83 /* state */
84 uint32_t irqs;
85 uint32_t mask;
86 uint32_t sens_edge;
87 uint32_t fiq;
88 int priority[32];
89 uint32_t new_irq_agr;
90 uint32_t new_fiq_agr;
91 int sir_irq;
92 int sir_fiq;
93 int stats[32];
94};
95
96static void omap_inth_update(struct omap_intr_handler_s *s)
97{
cfa0b71d
AZ
98 uint32_t irq = s->irqs & ~s->mask & ~s->fiq;
99 uint32_t fiq = s->irqs & ~s->mask & s->fiq;
c3d2689d 100
cfa0b71d
AZ
101 if (s->new_irq_agr || !irq) {
102 qemu_set_irq(s->parent_pic[ARM_PIC_CPU_IRQ], irq);
103 if (irq)
104 s->new_irq_agr = 0;
105 }
c3d2689d 106
cfa0b71d
AZ
107 if (s->new_fiq_agr || !irq) {
108 qemu_set_irq(s->parent_pic[ARM_PIC_CPU_FIQ], fiq);
109 if (fiq)
110 s->new_fiq_agr = 0;
111 }
c3d2689d
AZ
112}
113
114static void omap_inth_sir_update(struct omap_intr_handler_s *s)
115{
116 int i, intr_irq, intr_fiq, p_irq, p_fiq, p, f;
117 uint32_t level = s->irqs & ~s->mask;
118
119 intr_irq = 0;
120 intr_fiq = 0;
121 p_irq = -1;
122 p_fiq = -1;
123 /* Find the interrupt line with the highest dynamic priority */
124 for (f = ffs(level), i = f - 1, level >>= f - 1; f; i += f, level >>= f) {
125 p = s->priority[i];
126 if (s->fiq & (1 << i)) {
127 if (p > p_fiq) {
128 p_fiq = p;
129 intr_fiq = i;
130 }
131 } else {
132 if (p > p_irq) {
133 p_irq = p;
134 intr_irq = i;
135 }
136 }
137
138 f = ffs(level >> 1);
139 }
140
141 s->sir_irq = intr_irq;
142 s->sir_fiq = intr_fiq;
143}
144
145#define INT_FALLING_EDGE 0
146#define INT_LOW_LEVEL 1
147
148static void omap_set_intr(void *opaque, int irq, int req)
149{
150 struct omap_intr_handler_s *ih = (struct omap_intr_handler_s *) opaque;
151 uint32_t rise;
152
153 if (req) {
154 rise = ~ih->irqs & (1 << irq);
155 ih->irqs |= rise;
cfa0b71d 156 ih->stats[irq] += !!rise;
c3d2689d
AZ
157 } else {
158 rise = ih->sens_edge & ih->irqs & (1 << irq);
159 ih->irqs &= ~rise;
160 }
161
162 if (rise & ~ih->mask) {
163 omap_inth_sir_update(ih);
164
165 omap_inth_update(ih);
166 }
167}
168
169static uint32_t omap_inth_read(void *opaque, target_phys_addr_t addr)
170{
171 struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque;
172 int i, offset = addr - s->base;
173
174 switch (offset) {
175 case 0x00: /* ITR */
176 return s->irqs;
177
178 case 0x04: /* MIR */
179 return s->mask;
180
181 case 0x10: /* SIR_IRQ_CODE */
182 i = s->sir_irq;
183 if (((s->sens_edge >> i) & 1) == INT_FALLING_EDGE && i) {
184 s->irqs &= ~(1 << i);
185 omap_inth_sir_update(s);
186 omap_inth_update(s);
187 }
188 return i;
189
190 case 0x14: /* SIR_FIQ_CODE */
191 i = s->sir_fiq;
192 if (((s->sens_edge >> i) & 1) == INT_FALLING_EDGE && i) {
193 s->irqs &= ~(1 << i);
194 omap_inth_sir_update(s);
195 omap_inth_update(s);
196 }
197 return i;
198
199 case 0x18: /* CONTROL_REG */
200 return 0;
201
202 case 0x1c: /* ILR0 */
203 case 0x20: /* ILR1 */
204 case 0x24: /* ILR2 */
205 case 0x28: /* ILR3 */
206 case 0x2c: /* ILR4 */
207 case 0x30: /* ILR5 */
208 case 0x34: /* ILR6 */
209 case 0x38: /* ILR7 */
210 case 0x3c: /* ILR8 */
211 case 0x40: /* ILR9 */
212 case 0x44: /* ILR10 */
213 case 0x48: /* ILR11 */
214 case 0x4c: /* ILR12 */
215 case 0x50: /* ILR13 */
216 case 0x54: /* ILR14 */
217 case 0x58: /* ILR15 */
218 case 0x5c: /* ILR16 */
219 case 0x60: /* ILR17 */
220 case 0x64: /* ILR18 */
221 case 0x68: /* ILR19 */
222 case 0x6c: /* ILR20 */
223 case 0x70: /* ILR21 */
224 case 0x74: /* ILR22 */
225 case 0x78: /* ILR23 */
226 case 0x7c: /* ILR24 */
227 case 0x80: /* ILR25 */
228 case 0x84: /* ILR26 */
229 case 0x88: /* ILR27 */
230 case 0x8c: /* ILR28 */
231 case 0x90: /* ILR29 */
232 case 0x94: /* ILR30 */
233 case 0x98: /* ILR31 */
234 i = (offset - 0x1c) >> 2;
235 return (s->priority[i] << 2) |
236 (((s->sens_edge >> i) & 1) << 1) |
237 ((s->fiq >> i) & 1);
238
239 case 0x9c: /* ISR */
240 return 0x00000000;
241
242 default:
243 OMAP_BAD_REG(addr);
244 break;
245 }
246 return 0;
247}
248
249static void omap_inth_write(void *opaque, target_phys_addr_t addr,
250 uint32_t value)
251{
252 struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque;
253 int i, offset = addr - s->base;
254
255 switch (offset) {
256 case 0x00: /* ITR */
257 s->irqs &= value;
258 omap_inth_sir_update(s);
259 omap_inth_update(s);
260 return;
261
262 case 0x04: /* MIR */
263 s->mask = value;
264 omap_inth_sir_update(s);
265 omap_inth_update(s);
266 return;
267
268 case 0x10: /* SIR_IRQ_CODE */
269 case 0x14: /* SIR_FIQ_CODE */
270 OMAP_RO_REG(addr);
271 break;
272
273 case 0x18: /* CONTROL_REG */
274 if (value & 2)
275 s->new_fiq_agr = ~0;
276 if (value & 1)
277 s->new_irq_agr = ~0;
278 omap_inth_update(s);
279 return;
280
281 case 0x1c: /* ILR0 */
282 case 0x20: /* ILR1 */
283 case 0x24: /* ILR2 */
284 case 0x28: /* ILR3 */
285 case 0x2c: /* ILR4 */
286 case 0x30: /* ILR5 */
287 case 0x34: /* ILR6 */
288 case 0x38: /* ILR7 */
289 case 0x3c: /* ILR8 */
290 case 0x40: /* ILR9 */
291 case 0x44: /* ILR10 */
292 case 0x48: /* ILR11 */
293 case 0x4c: /* ILR12 */
294 case 0x50: /* ILR13 */
295 case 0x54: /* ILR14 */
296 case 0x58: /* ILR15 */
297 case 0x5c: /* ILR16 */
298 case 0x60: /* ILR17 */
299 case 0x64: /* ILR18 */
300 case 0x68: /* ILR19 */
301 case 0x6c: /* ILR20 */
302 case 0x70: /* ILR21 */
303 case 0x74: /* ILR22 */
304 case 0x78: /* ILR23 */
305 case 0x7c: /* ILR24 */
306 case 0x80: /* ILR25 */
307 case 0x84: /* ILR26 */
308 case 0x88: /* ILR27 */
309 case 0x8c: /* ILR28 */
310 case 0x90: /* ILR29 */
311 case 0x94: /* ILR30 */
312 case 0x98: /* ILR31 */
313 i = (offset - 0x1c) >> 2;
314 s->priority[i] = (value >> 2) & 0x1f;
315 s->sens_edge &= ~(1 << i);
316 s->sens_edge |= ((value >> 1) & 1) << i;
317 s->fiq &= ~(1 << i);
318 s->fiq |= (value & 1) << i;
319 return;
320
321 case 0x9c: /* ISR */
322 for (i = 0; i < 32; i ++)
323 if (value & (1 << i)) {
324 omap_set_intr(s, i, 1);
325 return;
326 }
327 return;
328
329 default:
330 OMAP_BAD_REG(addr);
331 }
332}
333
334static CPUReadMemoryFunc *omap_inth_readfn[] = {
335 omap_badwidth_read32,
336 omap_badwidth_read32,
337 omap_inth_read,
338};
339
340static CPUWriteMemoryFunc *omap_inth_writefn[] = {
341 omap_inth_write,
342 omap_inth_write,
343 omap_inth_write,
344};
345
346static void omap_inth_reset(struct omap_intr_handler_s *s)
347{
348 s->irqs = 0x00000000;
349 s->mask = 0xffffffff;
350 s->sens_edge = 0x00000000;
351 s->fiq = 0x00000000;
352 memset(s->priority, 0, sizeof(s->priority));
353 s->new_irq_agr = ~0;
354 s->new_fiq_agr = ~0;
355 s->sir_irq = 0;
356 s->sir_fiq = 0;
357
358 omap_inth_update(s);
359}
360
361struct omap_intr_handler_s *omap_inth_init(target_phys_addr_t base,
362 unsigned long size, qemu_irq parent[2], omap_clk clk)
363{
364 int iomemtype;
365 struct omap_intr_handler_s *s = (struct omap_intr_handler_s *)
366 qemu_mallocz(sizeof(struct omap_intr_handler_s));
367
368 s->parent_pic = parent;
369 s->base = base;
370 s->pins = qemu_allocate_irqs(omap_set_intr, s, 32);
371 omap_inth_reset(s);
372
373 iomemtype = cpu_register_io_memory(0, omap_inth_readfn,
374 omap_inth_writefn, s);
375 cpu_register_physical_memory(s->base, size, iomemtype);
376
377 return s;
378}
379
380/* OMAP1 DMA module */
381typedef enum {
382 constant = 0,
383 post_incremented,
384 single_index,
385 double_index,
386} omap_dma_addressing_t;
387
388struct omap_dma_channel_s {
389 int burst[2];
390 int pack[2];
391 enum omap_dma_port port[2];
392 target_phys_addr_t addr[2];
393 omap_dma_addressing_t mode[2];
394 int data_type;
395 int end_prog;
396 int repeat;
397 int auto_init;
398 int priority;
399 int fs;
400 int sync;
401 int running;
402 int interrupts;
403 int status;
404 int signalled;
405 int post_sync;
406 int transfer;
407 uint16_t elements;
408 uint16_t frames;
409 uint16_t frame_index;
410 uint16_t element_index;
411 uint16_t cpc;
412
413 struct omap_dma_reg_set_s {
414 target_phys_addr_t src, dest;
415 int frame;
416 int element;
417 int frame_delta[2];
418 int elem_delta[2];
419 int frames;
420 int elements;
421 } active_set;
422};
423
424struct omap_dma_s {
425 qemu_irq *ih;
426 QEMUTimer *tm;
427 struct omap_mpu_state_s *mpu;
428 target_phys_addr_t base;
429 omap_clk clk;
430 int64_t delay;
1af2b62d 431 uint32_t drq;
c3d2689d
AZ
432
433 uint16_t gcr;
434 int run_count;
435
436 int chans;
437 struct omap_dma_channel_s ch[16];
438 struct omap_dma_lcd_channel_s lcd_ch;
439};
440
441static void omap_dma_interrupts_update(struct omap_dma_s *s)
442{
443 /* First three interrupts are shared between two channels each. */
444 qemu_set_irq(s->ih[OMAP_INT_DMA_CH0_6],
445 (s->ch[0].status | s->ch[6].status) & 0x3f);
446 qemu_set_irq(s->ih[OMAP_INT_DMA_CH1_7],
447 (s->ch[1].status | s->ch[7].status) & 0x3f);
448 qemu_set_irq(s->ih[OMAP_INT_DMA_CH2_8],
449 (s->ch[2].status | s->ch[8].status) & 0x3f);
450 qemu_set_irq(s->ih[OMAP_INT_DMA_CH3],
451 (s->ch[3].status) & 0x3f);
452 qemu_set_irq(s->ih[OMAP_INT_DMA_CH4],
453 (s->ch[4].status) & 0x3f);
454 qemu_set_irq(s->ih[OMAP_INT_DMA_CH5],
455 (s->ch[5].status) & 0x3f);
456}
457
458static void omap_dma_channel_load(struct omap_dma_s *s, int ch)
459{
460 struct omap_dma_reg_set_s *a = &s->ch[ch].active_set;
461 int i;
462
463 /*
464 * TODO: verify address ranges and alignment
465 * TODO: port endianness
466 */
467
468 a->src = s->ch[ch].addr[0];
469 a->dest = s->ch[ch].addr[1];
470 a->frames = s->ch[ch].frames;
471 a->elements = s->ch[ch].elements;
472 a->frame = 0;
473 a->element = 0;
474
475 if (unlikely(!s->ch[ch].elements || !s->ch[ch].frames)) {
476 printf("%s: bad DMA request\n", __FUNCTION__);
477 return;
478 }
479
480 for (i = 0; i < 2; i ++)
481 switch (s->ch[ch].mode[i]) {
482 case constant:
483 a->elem_delta[i] = 0;
484 a->frame_delta[i] = 0;
485 break;
486 case post_incremented:
487 a->elem_delta[i] = s->ch[ch].data_type;
488 a->frame_delta[i] = 0;
489 break;
490 case single_index:
491 a->elem_delta[i] = s->ch[ch].data_type +
492 s->ch[ch].element_index - 1;
493 if (s->ch[ch].element_index > 0x7fff)
494 a->elem_delta[i] -= 0x10000;
495 a->frame_delta[i] = 0;
496 break;
497 case double_index:
498 a->elem_delta[i] = s->ch[ch].data_type +
499 s->ch[ch].element_index - 1;
500 if (s->ch[ch].element_index > 0x7fff)
501 a->elem_delta[i] -= 0x10000;
502 a->frame_delta[i] = s->ch[ch].frame_index -
503 s->ch[ch].element_index;
504 if (s->ch[ch].frame_index > 0x7fff)
505 a->frame_delta[i] -= 0x10000;
506 break;
507 default:
508 break;
509 }
510}
511
512static inline void omap_dma_request_run(struct omap_dma_s *s,
513 int channel, int request)
514{
515next_channel:
516 if (request > 0)
517 for (; channel < 9; channel ++)
518 if (s->ch[channel].sync == request && s->ch[channel].running)
519 break;
520 if (channel >= 9)
521 return;
522
523 if (s->ch[channel].transfer) {
524 if (request > 0) {
525 s->ch[channel ++].post_sync = request;
526 goto next_channel;
527 }
528 s->ch[channel].status |= 0x02; /* Synchronisation drop */
529 omap_dma_interrupts_update(s);
530 return;
531 }
532
533 if (!s->ch[channel].signalled)
534 s->run_count ++;
535 s->ch[channel].signalled = 1;
536
537 if (request > 0)
538 s->ch[channel].status |= 0x40; /* External request */
539
1af2b62d 540 if (s->delay && !qemu_timer_pending(s->tm))
c3d2689d
AZ
541 qemu_mod_timer(s->tm, qemu_get_clock(vm_clock) + s->delay);
542
543 if (request > 0) {
544 channel ++;
545 goto next_channel;
546 }
547}
548
549static inline void omap_dma_request_stop(struct omap_dma_s *s, int channel)
550{
551 if (s->ch[channel].signalled)
552 s->run_count --;
553 s->ch[channel].signalled = 0;
554
555 if (!s->run_count)
556 qemu_del_timer(s->tm);
557}
558
559static void omap_dma_channel_run(struct omap_dma_s *s)
560{
561 int ch;
562 uint16_t status;
563 uint8_t value[4];
564 struct omap_dma_port_if_s *src_p, *dest_p;
565 struct omap_dma_reg_set_s *a;
566
567 for (ch = 0; ch < 9; ch ++) {
568 a = &s->ch[ch].active_set;
569
570 src_p = &s->mpu->port[s->ch[ch].port[0]];
571 dest_p = &s->mpu->port[s->ch[ch].port[1]];
572 if (s->ch[ch].signalled && (!src_p->addr_valid(s->mpu, a->src) ||
573 !dest_p->addr_valid(s->mpu, a->dest))) {
574#if 0
575 /* Bus time-out */
576 if (s->ch[ch].interrupts & 0x01)
577 s->ch[ch].status |= 0x01;
578 omap_dma_request_stop(s, ch);
579 continue;
580#endif
581 printf("%s: Bus time-out in DMA%i operation\n", __FUNCTION__, ch);
582 }
583
584 status = s->ch[ch].status;
585 while (status == s->ch[ch].status && s->ch[ch].signalled) {
586 /* Transfer a single element */
587 s->ch[ch].transfer = 1;
588 cpu_physical_memory_read(a->src, value, s->ch[ch].data_type);
589 cpu_physical_memory_write(a->dest, value, s->ch[ch].data_type);
590 s->ch[ch].transfer = 0;
591
592 a->src += a->elem_delta[0];
593 a->dest += a->elem_delta[1];
594 a->element ++;
595
596 /* Check interrupt conditions */
597 if (a->element == a->elements) {
598 a->element = 0;
599 a->src += a->frame_delta[0];
600 a->dest += a->frame_delta[1];
601 a->frame ++;
602
603 if (a->frame == a->frames) {
604 if (!s->ch[ch].repeat || !s->ch[ch].auto_init)
605 s->ch[ch].running = 0;
606
607 if (s->ch[ch].auto_init &&
608 (s->ch[ch].repeat ||
609 s->ch[ch].end_prog))
610 omap_dma_channel_load(s, ch);
611
612 if (s->ch[ch].interrupts & 0x20)
613 s->ch[ch].status |= 0x20;
614
615 if (!s->ch[ch].sync)
616 omap_dma_request_stop(s, ch);
617 }
618
619 if (s->ch[ch].interrupts & 0x08)
620 s->ch[ch].status |= 0x08;
621
1af2b62d
AZ
622 if (s->ch[ch].sync && s->ch[ch].fs &&
623 !(s->drq & (1 << s->ch[ch].sync))) {
c3d2689d
AZ
624 s->ch[ch].status &= ~0x40;
625 omap_dma_request_stop(s, ch);
626 }
627 }
628
629 if (a->element == 1 && a->frame == a->frames - 1)
630 if (s->ch[ch].interrupts & 0x10)
631 s->ch[ch].status |= 0x10;
632
633 if (a->element == (a->elements >> 1))
634 if (s->ch[ch].interrupts & 0x04)
635 s->ch[ch].status |= 0x04;
636
1af2b62d
AZ
637 if (s->ch[ch].sync && !s->ch[ch].fs &&
638 !(s->drq & (1 << s->ch[ch].sync))) {
c3d2689d
AZ
639 s->ch[ch].status &= ~0x40;
640 omap_dma_request_stop(s, ch);
641 }
642
643 /*
644 * Process requests made while the element was
645 * being transferred.
646 */
647 if (s->ch[ch].post_sync) {
648 omap_dma_request_run(s, 0, s->ch[ch].post_sync);
649 s->ch[ch].post_sync = 0;
650 }
651
652#if 0
653 break;
654#endif
655 }
656
657 s->ch[ch].cpc = a->dest & 0x0000ffff;
658 }
659
660 omap_dma_interrupts_update(s);
661 if (s->run_count && s->delay)
662 qemu_mod_timer(s->tm, qemu_get_clock(vm_clock) + s->delay);
663}
664
665static int omap_dma_ch_reg_read(struct omap_dma_s *s,
666 int ch, int reg, uint16_t *value) {
667 switch (reg) {
668 case 0x00: /* SYS_DMA_CSDP_CH0 */
669 *value = (s->ch[ch].burst[1] << 14) |
670 (s->ch[ch].pack[1] << 13) |
671 (s->ch[ch].port[1] << 9) |
672 (s->ch[ch].burst[0] << 7) |
673 (s->ch[ch].pack[0] << 6) |
674 (s->ch[ch].port[0] << 2) |
675 (s->ch[ch].data_type >> 1);
676 break;
677
678 case 0x02: /* SYS_DMA_CCR_CH0 */
679 *value = (s->ch[ch].mode[1] << 14) |
680 (s->ch[ch].mode[0] << 12) |
681 (s->ch[ch].end_prog << 11) |
682 (s->ch[ch].repeat << 9) |
683 (s->ch[ch].auto_init << 8) |
684 (s->ch[ch].running << 7) |
685 (s->ch[ch].priority << 6) |
686 (s->ch[ch].fs << 5) | s->ch[ch].sync;
687 break;
688
689 case 0x04: /* SYS_DMA_CICR_CH0 */
690 *value = s->ch[ch].interrupts;
691 break;
692
693 case 0x06: /* SYS_DMA_CSR_CH0 */
694 /* FIXME: shared CSR for channels sharing the interrupts */
695 *value = s->ch[ch].status;
696 s->ch[ch].status &= 0x40;
697 omap_dma_interrupts_update(s);
698 break;
699
700 case 0x08: /* SYS_DMA_CSSA_L_CH0 */
701 *value = s->ch[ch].addr[0] & 0x0000ffff;
702 break;
703
704 case 0x0a: /* SYS_DMA_CSSA_U_CH0 */
705 *value = s->ch[ch].addr[0] >> 16;
706 break;
707
708 case 0x0c: /* SYS_DMA_CDSA_L_CH0 */
709 *value = s->ch[ch].addr[1] & 0x0000ffff;
710 break;
711
712 case 0x0e: /* SYS_DMA_CDSA_U_CH0 */
713 *value = s->ch[ch].addr[1] >> 16;
714 break;
715
716 case 0x10: /* SYS_DMA_CEN_CH0 */
717 *value = s->ch[ch].elements;
718 break;
719
720 case 0x12: /* SYS_DMA_CFN_CH0 */
721 *value = s->ch[ch].frames;
722 break;
723
724 case 0x14: /* SYS_DMA_CFI_CH0 */
725 *value = s->ch[ch].frame_index;
726 break;
727
728 case 0x16: /* SYS_DMA_CEI_CH0 */
729 *value = s->ch[ch].element_index;
730 break;
731
732 case 0x18: /* SYS_DMA_CPC_CH0 */
733 *value = s->ch[ch].cpc;
734 break;
735
736 default:
737 return 1;
738 }
739 return 0;
740}
741
742static int omap_dma_ch_reg_write(struct omap_dma_s *s,
743 int ch, int reg, uint16_t value) {
744 switch (reg) {
745 case 0x00: /* SYS_DMA_CSDP_CH0 */
746 s->ch[ch].burst[1] = (value & 0xc000) >> 14;
747 s->ch[ch].pack[1] = (value & 0x2000) >> 13;
748 s->ch[ch].port[1] = (enum omap_dma_port) ((value & 0x1e00) >> 9);
749 s->ch[ch].burst[0] = (value & 0x0180) >> 7;
750 s->ch[ch].pack[0] = (value & 0x0040) >> 6;
751 s->ch[ch].port[0] = (enum omap_dma_port) ((value & 0x003c) >> 2);
752 s->ch[ch].data_type = (1 << (value & 3));
753 if (s->ch[ch].port[0] >= omap_dma_port_last)
754 printf("%s: invalid DMA port %i\n", __FUNCTION__,
755 s->ch[ch].port[0]);
756 if (s->ch[ch].port[1] >= omap_dma_port_last)
757 printf("%s: invalid DMA port %i\n", __FUNCTION__,
758 s->ch[ch].port[1]);
759 if ((value & 3) == 3)
760 printf("%s: bad data_type for DMA channel %i\n", __FUNCTION__, ch);
761 break;
762
763 case 0x02: /* SYS_DMA_CCR_CH0 */
764 s->ch[ch].mode[1] = (omap_dma_addressing_t) ((value & 0xc000) >> 14);
765 s->ch[ch].mode[0] = (omap_dma_addressing_t) ((value & 0x3000) >> 12);
766 s->ch[ch].end_prog = (value & 0x0800) >> 11;
767 s->ch[ch].repeat = (value & 0x0200) >> 9;
768 s->ch[ch].auto_init = (value & 0x0100) >> 8;
769 s->ch[ch].priority = (value & 0x0040) >> 6;
770 s->ch[ch].fs = (value & 0x0020) >> 5;
771 s->ch[ch].sync = value & 0x001f;
772 if (value & 0x0080) {
773 if (s->ch[ch].running) {
774 if (!s->ch[ch].signalled &&
775 s->ch[ch].auto_init && s->ch[ch].end_prog)
776 omap_dma_channel_load(s, ch);
777 } else {
778 s->ch[ch].running = 1;
779 omap_dma_channel_load(s, ch);
780 }
1af2b62d 781 if (!s->ch[ch].sync || (s->drq & (1 << s->ch[ch].sync)))
c3d2689d
AZ
782 omap_dma_request_run(s, ch, 0);
783 } else {
784 s->ch[ch].running = 0;
785 omap_dma_request_stop(s, ch);
786 }
787 break;
788
789 case 0x04: /* SYS_DMA_CICR_CH0 */
790 s->ch[ch].interrupts = value & 0x003f;
791 break;
792
793 case 0x06: /* SYS_DMA_CSR_CH0 */
794 return 1;
795
796 case 0x08: /* SYS_DMA_CSSA_L_CH0 */
797 s->ch[ch].addr[0] &= 0xffff0000;
798 s->ch[ch].addr[0] |= value;
799 break;
800
801 case 0x0a: /* SYS_DMA_CSSA_U_CH0 */
802 s->ch[ch].addr[0] &= 0x0000ffff;
b854bc19 803 s->ch[ch].addr[0] |= (uint32_t) value << 16;
c3d2689d
AZ
804 break;
805
806 case 0x0c: /* SYS_DMA_CDSA_L_CH0 */
807 s->ch[ch].addr[1] &= 0xffff0000;
808 s->ch[ch].addr[1] |= value;
809 break;
810
811 case 0x0e: /* SYS_DMA_CDSA_U_CH0 */
812 s->ch[ch].addr[1] &= 0x0000ffff;
b854bc19 813 s->ch[ch].addr[1] |= (uint32_t) value << 16;
c3d2689d
AZ
814 break;
815
816 case 0x10: /* SYS_DMA_CEN_CH0 */
817 s->ch[ch].elements = value & 0xffff;
818 break;
819
820 case 0x12: /* SYS_DMA_CFN_CH0 */
821 s->ch[ch].frames = value & 0xffff;
822 break;
823
824 case 0x14: /* SYS_DMA_CFI_CH0 */
825 s->ch[ch].frame_index = value & 0xffff;
826 break;
827
828 case 0x16: /* SYS_DMA_CEI_CH0 */
829 s->ch[ch].element_index = value & 0xffff;
830 break;
831
832 case 0x18: /* SYS_DMA_CPC_CH0 */
833 return 1;
834
835 default:
836 OMAP_BAD_REG((unsigned long) reg);
837 }
838 return 0;
839}
840
841static uint32_t omap_dma_read(void *opaque, target_phys_addr_t addr)
842{
843 struct omap_dma_s *s = (struct omap_dma_s *) opaque;
844 int i, reg, ch, offset = addr - s->base;
845 uint16_t ret;
846
847 switch (offset) {
848 case 0x000 ... 0x2fe:
849 reg = offset & 0x3f;
850 ch = (offset >> 6) & 0x0f;
851 if (omap_dma_ch_reg_read(s, ch, reg, &ret))
852 break;
853 return ret;
854
855 case 0x300: /* SYS_DMA_LCD_CTRL */
856 i = s->lcd_ch.condition;
857 s->lcd_ch.condition = 0;
858 qemu_irq_lower(s->lcd_ch.irq);
859 return ((s->lcd_ch.src == imif) << 6) | (i << 3) |
860 (s->lcd_ch.interrupts << 1) | s->lcd_ch.dual;
861
862 case 0x302: /* SYS_DMA_LCD_TOP_F1_L */
863 return s->lcd_ch.src_f1_top & 0xffff;
864
865 case 0x304: /* SYS_DMA_LCD_TOP_F1_U */
866 return s->lcd_ch.src_f1_top >> 16;
867
868 case 0x306: /* SYS_DMA_LCD_BOT_F1_L */
869 return s->lcd_ch.src_f1_bottom & 0xffff;
870
871 case 0x308: /* SYS_DMA_LCD_BOT_F1_U */
872 return s->lcd_ch.src_f1_bottom >> 16;
873
874 case 0x30a: /* SYS_DMA_LCD_TOP_F2_L */
875 return s->lcd_ch.src_f2_top & 0xffff;
876
877 case 0x30c: /* SYS_DMA_LCD_TOP_F2_U */
878 return s->lcd_ch.src_f2_top >> 16;
879
880 case 0x30e: /* SYS_DMA_LCD_BOT_F2_L */
881 return s->lcd_ch.src_f2_bottom & 0xffff;
882
883 case 0x310: /* SYS_DMA_LCD_BOT_F2_U */
884 return s->lcd_ch.src_f2_bottom >> 16;
885
886 case 0x400: /* SYS_DMA_GCR */
887 return s->gcr;
888 }
889
890 OMAP_BAD_REG(addr);
891 return 0;
892}
893
894static void omap_dma_write(void *opaque, target_phys_addr_t addr,
895 uint32_t value)
896{
897 struct omap_dma_s *s = (struct omap_dma_s *) opaque;
898 int reg, ch, offset = addr - s->base;
899
900 switch (offset) {
901 case 0x000 ... 0x2fe:
902 reg = offset & 0x3f;
903 ch = (offset >> 6) & 0x0f;
904 if (omap_dma_ch_reg_write(s, ch, reg, value))
905 OMAP_RO_REG(addr);
906 break;
907
908 case 0x300: /* SYS_DMA_LCD_CTRL */
909 s->lcd_ch.src = (value & 0x40) ? imif : emiff;
910 s->lcd_ch.condition = 0;
911 /* Assume no bus errors and thus no BUS_ERROR irq bits. */
912 s->lcd_ch.interrupts = (value >> 1) & 1;
913 s->lcd_ch.dual = value & 1;
914 break;
915
916 case 0x302: /* SYS_DMA_LCD_TOP_F1_L */
917 s->lcd_ch.src_f1_top &= 0xffff0000;
918 s->lcd_ch.src_f1_top |= 0x0000ffff & value;
919 break;
920
921 case 0x304: /* SYS_DMA_LCD_TOP_F1_U */
922 s->lcd_ch.src_f1_top &= 0x0000ffff;
923 s->lcd_ch.src_f1_top |= value << 16;
924 break;
925
926 case 0x306: /* SYS_DMA_LCD_BOT_F1_L */
927 s->lcd_ch.src_f1_bottom &= 0xffff0000;
928 s->lcd_ch.src_f1_bottom |= 0x0000ffff & value;
929 break;
930
931 case 0x308: /* SYS_DMA_LCD_BOT_F1_U */
932 s->lcd_ch.src_f1_bottom &= 0x0000ffff;
933 s->lcd_ch.src_f1_bottom |= value << 16;
934 break;
935
936 case 0x30a: /* SYS_DMA_LCD_TOP_F2_L */
937 s->lcd_ch.src_f2_top &= 0xffff0000;
938 s->lcd_ch.src_f2_top |= 0x0000ffff & value;
939 break;
940
941 case 0x30c: /* SYS_DMA_LCD_TOP_F2_U */
942 s->lcd_ch.src_f2_top &= 0x0000ffff;
943 s->lcd_ch.src_f2_top |= value << 16;
944 break;
945
946 case 0x30e: /* SYS_DMA_LCD_BOT_F2_L */
947 s->lcd_ch.src_f2_bottom &= 0xffff0000;
948 s->lcd_ch.src_f2_bottom |= 0x0000ffff & value;
949 break;
950
951 case 0x310: /* SYS_DMA_LCD_BOT_F2_U */
952 s->lcd_ch.src_f2_bottom &= 0x0000ffff;
953 s->lcd_ch.src_f2_bottom |= value << 16;
954 break;
955
956 case 0x400: /* SYS_DMA_GCR */
957 s->gcr = value & 0x000c;
958 break;
959
960 default:
961 OMAP_BAD_REG(addr);
962 }
963}
964
965static CPUReadMemoryFunc *omap_dma_readfn[] = {
966 omap_badwidth_read16,
967 omap_dma_read,
968 omap_badwidth_read16,
969};
970
971static CPUWriteMemoryFunc *omap_dma_writefn[] = {
972 omap_badwidth_write16,
973 omap_dma_write,
974 omap_badwidth_write16,
975};
976
977static void omap_dma_request(void *opaque, int drq, int req)
978{
979 struct omap_dma_s *s = (struct omap_dma_s *) opaque;
1af2b62d
AZ
980 /* The request pins are level triggered. */
981 if (req) {
982 if (~s->drq & (1 << drq)) {
983 s->drq |= 1 << drq;
984 omap_dma_request_run(s, 0, drq);
985 }
986 } else
987 s->drq &= ~(1 << drq);
c3d2689d
AZ
988}
989
990static void omap_dma_clk_update(void *opaque, int line, int on)
991{
992 struct omap_dma_s *s = (struct omap_dma_s *) opaque;
993
994 if (on) {
995 s->delay = ticks_per_sec >> 5;
996 if (s->run_count)
997 qemu_mod_timer(s->tm, qemu_get_clock(vm_clock) + s->delay);
998 } else {
999 s->delay = 0;
1000 qemu_del_timer(s->tm);
1001 }
1002}
1003
1004static void omap_dma_reset(struct omap_dma_s *s)
1005{
1006 int i;
1007
1008 qemu_del_timer(s->tm);
1009 s->gcr = 0x0004;
1af2b62d 1010 s->drq = 0x00000000;
c3d2689d
AZ
1011 s->run_count = 0;
1012 s->lcd_ch.src = emiff;
1013 s->lcd_ch.condition = 0;
1014 s->lcd_ch.interrupts = 0;
1015 s->lcd_ch.dual = 0;
1016 memset(s->ch, 0, sizeof(s->ch));
1017 for (i = 0; i < s->chans; i ++)
1018 s->ch[i].interrupts = 0x0003;
1019}
1020
1021struct omap_dma_s *omap_dma_init(target_phys_addr_t base,
1022 qemu_irq pic[], struct omap_mpu_state_s *mpu, omap_clk clk)
1023{
1024 int iomemtype;
1025 struct omap_dma_s *s = (struct omap_dma_s *)
1026 qemu_mallocz(sizeof(struct omap_dma_s));
1027
1028 s->ih = pic;
1029 s->base = base;
1030 s->chans = 9;
1031 s->mpu = mpu;
1032 s->clk = clk;
1033 s->lcd_ch.irq = pic[OMAP_INT_DMA_LCD];
1034 s->lcd_ch.mpu = mpu;
1035 s->tm = qemu_new_timer(vm_clock, (QEMUTimerCB *) omap_dma_channel_run, s);
1036 omap_clk_adduser(s->clk, qemu_allocate_irqs(omap_dma_clk_update, s, 1)[0]);
1037 mpu->drq = qemu_allocate_irqs(omap_dma_request, s, 32);
1038 omap_dma_reset(s);
1af2b62d 1039 omap_dma_clk_update(s, 0, 1);
c3d2689d
AZ
1040
1041 iomemtype = cpu_register_io_memory(0, omap_dma_readfn,
1042 omap_dma_writefn, s);
1043 cpu_register_physical_memory(s->base, 0x800, iomemtype);
1044
1045 return s;
1046}
1047
1048/* DMA ports */
b854bc19 1049static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
c3d2689d
AZ
1050 target_phys_addr_t addr)
1051{
1052 return addr >= OMAP_EMIFF_BASE && addr < OMAP_EMIFF_BASE + s->sdram_size;
1053}
1054
b854bc19 1055static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
c3d2689d
AZ
1056 target_phys_addr_t addr)
1057{
1058 return addr >= OMAP_EMIFS_BASE && addr < OMAP_EMIFF_BASE;
1059}
1060
b854bc19 1061static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
c3d2689d
AZ
1062 target_phys_addr_t addr)
1063{
1064 return addr >= OMAP_IMIF_BASE && addr < OMAP_IMIF_BASE + s->sram_size;
1065}
1066
b854bc19 1067static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
c3d2689d
AZ
1068 target_phys_addr_t addr)
1069{
1070 return addr >= 0xfffb0000 && addr < 0xffff0000;
1071}
1072
b854bc19 1073static int omap_validate_local_addr(struct omap_mpu_state_s *s,
c3d2689d
AZ
1074 target_phys_addr_t addr)
1075{
1076 return addr >= OMAP_LOCALBUS_BASE && addr < OMAP_LOCALBUS_BASE + 0x1000000;
1077}
1078
b854bc19 1079static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
c3d2689d
AZ
1080 target_phys_addr_t addr)
1081{
1082 return addr >= 0xe1010000 && addr < 0xe1020004;
1083}
1084
1085/* MPU OS timers */
1086struct omap_mpu_timer_s {
1087 qemu_irq irq;
1088 omap_clk clk;
1089 target_phys_addr_t base;
1090 uint32_t val;
1091 int64_t time;
1092 QEMUTimer *timer;
1093 int64_t rate;
1094 int it_ena;
1095
1096 int enable;
1097 int ptv;
1098 int ar;
1099 int st;
1100 uint32_t reset_val;
1101};
1102
1103static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
1104{
1105 uint64_t distance = qemu_get_clock(vm_clock) - timer->time;
1106
1107 if (timer->st && timer->enable && timer->rate)
1108 return timer->val - muldiv64(distance >> (timer->ptv + 1),
1109 timer->rate, ticks_per_sec);
1110 else
1111 return timer->val;
1112}
1113
1114static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
1115{
1116 timer->val = omap_timer_read(timer);
1117 timer->time = qemu_get_clock(vm_clock);
1118}
1119
1120static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
1121{
1122 int64_t expires;
1123
1124 if (timer->enable && timer->st && timer->rate) {
1125 timer->val = timer->reset_val; /* Should skip this on clk enable */
b854bc19 1126 expires = muldiv64(timer->val << (timer->ptv + 1),
c3d2689d 1127 ticks_per_sec, timer->rate);
b854bc19
AZ
1128
1129 /* If timer expiry would be sooner than in about 1 ms and
1130 * auto-reload isn't set, then fire immediately. This is a hack
1131 * to make systems like PalmOS run in acceptable time. PalmOS
1132 * sets the interval to a very low value and polls the status bit
1133 * in a busy loop when it wants to sleep just a couple of CPU
1134 * ticks. */
1135 if (expires > (ticks_per_sec >> 10) || timer->ar)
1136 qemu_mod_timer(timer->timer, timer->time + expires);
1137 else {
1138 timer->val = 0;
1139 timer->st = 0;
1140 if (timer->it_ena)
1141 qemu_irq_raise(timer->irq);
1142 }
c3d2689d
AZ
1143 } else
1144 qemu_del_timer(timer->timer);
1145}
1146
1147static void omap_timer_tick(void *opaque)
1148{
1149 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
1150 omap_timer_sync(timer);
1151
1152 if (!timer->ar) {
1153 timer->val = 0;
1154 timer->st = 0;
1155 }
1156
1157 if (timer->it_ena)
1158 qemu_irq_raise(timer->irq);
1159 omap_timer_update(timer);
1160}
1161
1162static void omap_timer_clk_update(void *opaque, int line, int on)
1163{
1164 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
1165
1166 omap_timer_sync(timer);
1167 timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
1168 omap_timer_update(timer);
1169}
1170
1171static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
1172{
1173 omap_clk_adduser(timer->clk,
1174 qemu_allocate_irqs(omap_timer_clk_update, timer, 1)[0]);
1175 timer->rate = omap_clk_getrate(timer->clk);
1176}
1177
1178static uint32_t omap_mpu_timer_read(void *opaque, target_phys_addr_t addr)
1179{
1180 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
1181 int offset = addr - s->base;
1182
1183 switch (offset) {
1184 case 0x00: /* CNTL_TIMER */
1185 return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
1186
1187 case 0x04: /* LOAD_TIM */
1188 break;
1189
1190 case 0x08: /* READ_TIM */
1191 return omap_timer_read(s);
1192 }
1193
1194 OMAP_BAD_REG(addr);
1195 return 0;
1196}
1197
1198static void omap_mpu_timer_write(void *opaque, target_phys_addr_t addr,
1199 uint32_t value)
1200{
1201 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
1202 int offset = addr - s->base;
1203
1204 switch (offset) {
1205 case 0x00: /* CNTL_TIMER */
1206 omap_timer_sync(s);
1207 s->enable = (value >> 5) & 1;
1208 s->ptv = (value >> 2) & 7;
1209 s->ar = (value >> 1) & 1;
1210 s->st = value & 1;
1211 omap_timer_update(s);
1212 return;
1213
1214 case 0x04: /* LOAD_TIM */
1215 s->reset_val = value;
1216 return;
1217
1218 case 0x08: /* READ_TIM */
1219 OMAP_RO_REG(addr);
1220 break;
1221
1222 default:
1223 OMAP_BAD_REG(addr);
1224 }
1225}
1226
1227static CPUReadMemoryFunc *omap_mpu_timer_readfn[] = {
1228 omap_badwidth_read32,
1229 omap_badwidth_read32,
1230 omap_mpu_timer_read,
1231};
1232
1233static CPUWriteMemoryFunc *omap_mpu_timer_writefn[] = {
1234 omap_badwidth_write32,
1235 omap_badwidth_write32,
1236 omap_mpu_timer_write,
1237};
1238
1239static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
1240{
1241 qemu_del_timer(s->timer);
1242 s->enable = 0;
1243 s->reset_val = 31337;
1244 s->val = 0;
1245 s->ptv = 0;
1246 s->ar = 0;
1247 s->st = 0;
1248 s->it_ena = 1;
1249}
1250
1251struct omap_mpu_timer_s *omap_mpu_timer_init(target_phys_addr_t base,
1252 qemu_irq irq, omap_clk clk)
1253{
1254 int iomemtype;
1255 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *)
1256 qemu_mallocz(sizeof(struct omap_mpu_timer_s));
1257
1258 s->irq = irq;
1259 s->clk = clk;
1260 s->base = base;
1261 s->timer = qemu_new_timer(vm_clock, omap_timer_tick, s);
1262 omap_mpu_timer_reset(s);
1263 omap_timer_clk_setup(s);
1264
1265 iomemtype = cpu_register_io_memory(0, omap_mpu_timer_readfn,
1266 omap_mpu_timer_writefn, s);
1267 cpu_register_physical_memory(s->base, 0x100, iomemtype);
1268
1269 return s;
1270}
1271
1272/* Watchdog timer */
1273struct omap_watchdog_timer_s {
1274 struct omap_mpu_timer_s timer;
1275 uint8_t last_wr;
1276 int mode;
1277 int free;
1278 int reset;
1279};
1280
1281static uint32_t omap_wd_timer_read(void *opaque, target_phys_addr_t addr)
1282{
1283 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
1284 int offset = addr - s->timer.base;
1285
1286 switch (offset) {
1287 case 0x00: /* CNTL_TIMER */
1288 return (s->timer.ptv << 9) | (s->timer.ar << 8) |
1289 (s->timer.st << 7) | (s->free << 1);
1290
1291 case 0x04: /* READ_TIMER */
1292 return omap_timer_read(&s->timer);
1293
1294 case 0x08: /* TIMER_MODE */
1295 return s->mode << 15;
1296 }
1297
1298 OMAP_BAD_REG(addr);
1299 return 0;
1300}
1301
1302static void omap_wd_timer_write(void *opaque, target_phys_addr_t addr,
1303 uint32_t value)
1304{
1305 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
1306 int offset = addr - s->timer.base;
1307
1308 switch (offset) {
1309 case 0x00: /* CNTL_TIMER */
1310 omap_timer_sync(&s->timer);
1311 s->timer.ptv = (value >> 9) & 7;
1312 s->timer.ar = (value >> 8) & 1;
1313 s->timer.st = (value >> 7) & 1;
1314 s->free = (value >> 1) & 1;
1315 omap_timer_update(&s->timer);
1316 break;
1317
1318 case 0x04: /* LOAD_TIMER */
1319 s->timer.reset_val = value & 0xffff;
1320 break;
1321
1322 case 0x08: /* TIMER_MODE */
1323 if (!s->mode && ((value >> 15) & 1))
1324 omap_clk_get(s->timer.clk);
1325 s->mode |= (value >> 15) & 1;
1326 if (s->last_wr == 0xf5) {
1327 if ((value & 0xff) == 0xa0) {
1328 s->mode = 0;
1329 omap_clk_put(s->timer.clk);
1330 } else {
1331 /* XXX: on T|E hardware somehow this has no effect,
1332 * on Zire 71 it works as specified. */
1333 s->reset = 1;
1334 qemu_system_reset_request();
1335 }
1336 }
1337 s->last_wr = value & 0xff;
1338 break;
1339
1340 default:
1341 OMAP_BAD_REG(addr);
1342 }
1343}
1344
1345static CPUReadMemoryFunc *omap_wd_timer_readfn[] = {
1346 omap_badwidth_read16,
1347 omap_wd_timer_read,
1348 omap_badwidth_read16,
1349};
1350
1351static CPUWriteMemoryFunc *omap_wd_timer_writefn[] = {
1352 omap_badwidth_write16,
1353 omap_wd_timer_write,
1354 omap_badwidth_write16,
1355};
1356
1357static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
1358{
1359 qemu_del_timer(s->timer.timer);
1360 if (!s->mode)
1361 omap_clk_get(s->timer.clk);
1362 s->mode = 1;
1363 s->free = 1;
1364 s->reset = 0;
1365 s->timer.enable = 1;
1366 s->timer.it_ena = 1;
1367 s->timer.reset_val = 0xffff;
1368 s->timer.val = 0;
1369 s->timer.st = 0;
1370 s->timer.ptv = 0;
1371 s->timer.ar = 0;
1372 omap_timer_update(&s->timer);
1373}
1374
1375struct omap_watchdog_timer_s *omap_wd_timer_init(target_phys_addr_t base,
1376 qemu_irq irq, omap_clk clk)
1377{
1378 int iomemtype;
1379 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *)
1380 qemu_mallocz(sizeof(struct omap_watchdog_timer_s));
1381
1382 s->timer.irq = irq;
1383 s->timer.clk = clk;
1384 s->timer.base = base;
1385 s->timer.timer = qemu_new_timer(vm_clock, omap_timer_tick, &s->timer);
1386 omap_wd_timer_reset(s);
1387 omap_timer_clk_setup(&s->timer);
1388
1389 iomemtype = cpu_register_io_memory(0, omap_wd_timer_readfn,
1390 omap_wd_timer_writefn, s);
1391 cpu_register_physical_memory(s->timer.base, 0x100, iomemtype);
1392
1393 return s;
1394}
1395
1396/* 32-kHz timer */
1397struct omap_32khz_timer_s {
1398 struct omap_mpu_timer_s timer;
1399};
1400
1401static uint32_t omap_os_timer_read(void *opaque, target_phys_addr_t addr)
1402{
1403 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
1404 int offset = addr - s->timer.base;
1405
1406 switch (offset) {
1407 case 0x00: /* TVR */
1408 return s->timer.reset_val;
1409
1410 case 0x04: /* TCR */
1411 return omap_timer_read(&s->timer);
1412
1413 case 0x08: /* CR */
1414 return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
1415
1416 default:
1417 break;
1418 }
1419 OMAP_BAD_REG(addr);
1420 return 0;
1421}
1422
1423static void omap_os_timer_write(void *opaque, target_phys_addr_t addr,
1424 uint32_t value)
1425{
1426 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
1427 int offset = addr - s->timer.base;
1428
1429 switch (offset) {
1430 case 0x00: /* TVR */
1431 s->timer.reset_val = value & 0x00ffffff;
1432 break;
1433
1434 case 0x04: /* TCR */
1435 OMAP_RO_REG(addr);
1436 break;
1437
1438 case 0x08: /* CR */
1439 s->timer.ar = (value >> 3) & 1;
1440 s->timer.it_ena = (value >> 2) & 1;
1441 if (s->timer.st != (value & 1) || (value & 2)) {
1442 omap_timer_sync(&s->timer);
1443 s->timer.enable = value & 1;
1444 s->timer.st = value & 1;
1445 omap_timer_update(&s->timer);
1446 }
1447 break;
1448
1449 default:
1450 OMAP_BAD_REG(addr);
1451 }
1452}
1453
1454static CPUReadMemoryFunc *omap_os_timer_readfn[] = {
1455 omap_badwidth_read32,
1456 omap_badwidth_read32,
1457 omap_os_timer_read,
1458};
1459
1460static CPUWriteMemoryFunc *omap_os_timer_writefn[] = {
1461 omap_badwidth_write32,
1462 omap_badwidth_write32,
1463 omap_os_timer_write,
1464};
1465
1466static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
1467{
1468 qemu_del_timer(s->timer.timer);
1469 s->timer.enable = 0;
1470 s->timer.it_ena = 0;
1471 s->timer.reset_val = 0x00ffffff;
1472 s->timer.val = 0;
1473 s->timer.st = 0;
1474 s->timer.ptv = 0;
1475 s->timer.ar = 1;
1476}
1477
1478struct omap_32khz_timer_s *omap_os_timer_init(target_phys_addr_t base,
1479 qemu_irq irq, omap_clk clk)
1480{
1481 int iomemtype;
1482 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *)
1483 qemu_mallocz(sizeof(struct omap_32khz_timer_s));
1484
1485 s->timer.irq = irq;
1486 s->timer.clk = clk;
1487 s->timer.base = base;
1488 s->timer.timer = qemu_new_timer(vm_clock, omap_timer_tick, &s->timer);
1489 omap_os_timer_reset(s);
1490 omap_timer_clk_setup(&s->timer);
1491
1492 iomemtype = cpu_register_io_memory(0, omap_os_timer_readfn,
1493 omap_os_timer_writefn, s);
1494 cpu_register_physical_memory(s->timer.base, 0x800, iomemtype);
1495
1496 return s;
1497}
1498
1499/* Ultra Low-Power Device Module */
1500static uint32_t omap_ulpd_pm_read(void *opaque, target_phys_addr_t addr)
1501{
1502 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1503 int offset = addr - s->ulpd_pm_base;
1504 uint16_t ret;
1505
1506 switch (offset) {
1507 case 0x14: /* IT_STATUS */
1508 ret = s->ulpd_pm_regs[offset >> 2];
1509 s->ulpd_pm_regs[offset >> 2] = 0;
1510 qemu_irq_lower(s->irq[1][OMAP_INT_GAUGE_32K]);
1511 return ret;
1512
1513 case 0x18: /* Reserved */
1514 case 0x1c: /* Reserved */
1515 case 0x20: /* Reserved */
1516 case 0x28: /* Reserved */
1517 case 0x2c: /* Reserved */
1518 OMAP_BAD_REG(addr);
1519 case 0x00: /* COUNTER_32_LSB */
1520 case 0x04: /* COUNTER_32_MSB */
1521 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
1522 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
1523 case 0x10: /* GAUGING_CTRL */
1524 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
1525 case 0x30: /* CLOCK_CTRL */
1526 case 0x34: /* SOFT_REQ */
1527 case 0x38: /* COUNTER_32_FIQ */
1528 case 0x3c: /* DPLL_CTRL */
1529 case 0x40: /* STATUS_REQ */
1530 /* XXX: check clk::usecount state for every clock */
1531 case 0x48: /* LOCL_TIME */
1532 case 0x4c: /* APLL_CTRL */
1533 case 0x50: /* POWER_CTRL */
1534 return s->ulpd_pm_regs[offset >> 2];
1535 }
1536
1537 OMAP_BAD_REG(addr);
1538 return 0;
1539}
1540
1541static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
1542 uint16_t diff, uint16_t value)
1543{
1544 if (diff & (1 << 4)) /* USB_MCLK_EN */
1545 omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
1546 if (diff & (1 << 5)) /* DIS_USB_PVCI_CLK */
1547 omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
1548}
1549
1550static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
1551 uint16_t diff, uint16_t value)
1552{
1553 if (diff & (1 << 0)) /* SOFT_DPLL_REQ */
1554 omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
1555 if (diff & (1 << 1)) /* SOFT_COM_REQ */
1556 omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
1557 if (diff & (1 << 2)) /* SOFT_SDW_REQ */
1558 omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
1559 if (diff & (1 << 3)) /* SOFT_USB_REQ */
1560 omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
1561}
1562
1563static void omap_ulpd_pm_write(void *opaque, target_phys_addr_t addr,
1564 uint32_t value)
1565{
1566 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1567 int offset = addr - s->ulpd_pm_base;
1568 int64_t now, ticks;
1569 int div, mult;
1570 static const int bypass_div[4] = { 1, 2, 4, 4 };
1571 uint16_t diff;
1572
1573 switch (offset) {
1574 case 0x00: /* COUNTER_32_LSB */
1575 case 0x04: /* COUNTER_32_MSB */
1576 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
1577 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
1578 case 0x14: /* IT_STATUS */
1579 case 0x40: /* STATUS_REQ */
1580 OMAP_RO_REG(addr);
1581 break;
1582
1583 case 0x10: /* GAUGING_CTRL */
1584 /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
1585 if ((s->ulpd_pm_regs[offset >> 2] ^ value) & 1) {
1586 now = qemu_get_clock(vm_clock);
1587
1588 if (value & 1)
1589 s->ulpd_gauge_start = now;
1590 else {
1591 now -= s->ulpd_gauge_start;
1592
1593 /* 32-kHz ticks */
1594 ticks = muldiv64(now, 32768, ticks_per_sec);
1595 s->ulpd_pm_regs[0x00 >> 2] = (ticks >> 0) & 0xffff;
1596 s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
1597 if (ticks >> 32) /* OVERFLOW_32K */
1598 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
1599
1600 /* High frequency ticks */
1601 ticks = muldiv64(now, 12000000, ticks_per_sec);
1602 s->ulpd_pm_regs[0x08 >> 2] = (ticks >> 0) & 0xffff;
1603 s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
1604 if (ticks >> 32) /* OVERFLOW_HI_FREQ */
1605 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
1606
1607 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0; /* IT_GAUGING */
1608 qemu_irq_raise(s->irq[1][OMAP_INT_GAUGE_32K]);
1609 }
1610 }
1611 s->ulpd_pm_regs[offset >> 2] = value;
1612 break;
1613
1614 case 0x18: /* Reserved */
1615 case 0x1c: /* Reserved */
1616 case 0x20: /* Reserved */
1617 case 0x28: /* Reserved */
1618 case 0x2c: /* Reserved */
1619 OMAP_BAD_REG(addr);
1620 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
1621 case 0x38: /* COUNTER_32_FIQ */
1622 case 0x48: /* LOCL_TIME */
1623 case 0x50: /* POWER_CTRL */
1624 s->ulpd_pm_regs[offset >> 2] = value;
1625 break;
1626
1627 case 0x30: /* CLOCK_CTRL */
1628 diff = s->ulpd_pm_regs[offset >> 2] ^ value;
1629 s->ulpd_pm_regs[offset >> 2] = value & 0x3f;
1630 omap_ulpd_clk_update(s, diff, value);
1631 break;
1632
1633 case 0x34: /* SOFT_REQ */
1634 diff = s->ulpd_pm_regs[offset >> 2] ^ value;
1635 s->ulpd_pm_regs[offset >> 2] = value & 0x1f;
1636 omap_ulpd_req_update(s, diff, value);
1637 break;
1638
1639 case 0x3c: /* DPLL_CTRL */
1640 /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
1641 * omitted altogether, probably a typo. */
1642 /* This register has identical semantics with DPLL(1:3) control
1643 * registers, see omap_dpll_write() */
1644 diff = s->ulpd_pm_regs[offset >> 2] & value;
1645 s->ulpd_pm_regs[offset >> 2] = value & 0x2fff;
1646 if (diff & (0x3ff << 2)) {
1647 if (value & (1 << 4)) { /* PLL_ENABLE */
1648 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
1649 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
1650 } else {
1651 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
1652 mult = 1;
1653 }
1654 omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
1655 }
1656
1657 /* Enter the desired mode. */
1658 s->ulpd_pm_regs[offset >> 2] =
1659 (s->ulpd_pm_regs[offset >> 2] & 0xfffe) |
1660 ((s->ulpd_pm_regs[offset >> 2] >> 4) & 1);
1661
1662 /* Act as if the lock is restored. */
1663 s->ulpd_pm_regs[offset >> 2] |= 2;
1664 break;
1665
1666 case 0x4c: /* APLL_CTRL */
1667 diff = s->ulpd_pm_regs[offset >> 2] & value;
1668 s->ulpd_pm_regs[offset >> 2] = value & 0xf;
1669 if (diff & (1 << 0)) /* APLL_NDPLL_SWITCH */
1670 omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
1671 (value & (1 << 0)) ? "apll" : "dpll4"));
1672 break;
1673
1674 default:
1675 OMAP_BAD_REG(addr);
1676 }
1677}
1678
1679static CPUReadMemoryFunc *omap_ulpd_pm_readfn[] = {
1680 omap_badwidth_read16,
1681 omap_ulpd_pm_read,
1682 omap_badwidth_read16,
1683};
1684
1685static CPUWriteMemoryFunc *omap_ulpd_pm_writefn[] = {
1686 omap_badwidth_write16,
1687 omap_ulpd_pm_write,
1688 omap_badwidth_write16,
1689};
1690
1691static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
1692{
1693 mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
1694 mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
1695 mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
1696 mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
1697 mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
1698 mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
1699 mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
1700 mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
1701 mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
1702 mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
1703 mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
1704 omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
1705 mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
1706 omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
1707 mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
1708 mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
1709 mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
1710 mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
1711 mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
1712 mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
1713 mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
1714 omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
1715 omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
1716}
1717
1718static void omap_ulpd_pm_init(target_phys_addr_t base,
1719 struct omap_mpu_state_s *mpu)
1720{
1721 int iomemtype = cpu_register_io_memory(0, omap_ulpd_pm_readfn,
1722 omap_ulpd_pm_writefn, mpu);
1723
1724 mpu->ulpd_pm_base = base;
1725 cpu_register_physical_memory(mpu->ulpd_pm_base, 0x800, iomemtype);
1726 omap_ulpd_pm_reset(mpu);
1727}
1728
1729/* OMAP Pin Configuration */
1730static uint32_t omap_pin_cfg_read(void *opaque, target_phys_addr_t addr)
1731{
1732 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1733 int offset = addr - s->pin_cfg_base;
1734
1735 switch (offset) {
1736 case 0x00: /* FUNC_MUX_CTRL_0 */
1737 case 0x04: /* FUNC_MUX_CTRL_1 */
1738 case 0x08: /* FUNC_MUX_CTRL_2 */
1739 return s->func_mux_ctrl[offset >> 2];
1740
1741 case 0x0c: /* COMP_MODE_CTRL_0 */
1742 return s->comp_mode_ctrl[0];
1743
1744 case 0x10: /* FUNC_MUX_CTRL_3 */
1745 case 0x14: /* FUNC_MUX_CTRL_4 */
1746 case 0x18: /* FUNC_MUX_CTRL_5 */
1747 case 0x1c: /* FUNC_MUX_CTRL_6 */
1748 case 0x20: /* FUNC_MUX_CTRL_7 */
1749 case 0x24: /* FUNC_MUX_CTRL_8 */
1750 case 0x28: /* FUNC_MUX_CTRL_9 */
1751 case 0x2c: /* FUNC_MUX_CTRL_A */
1752 case 0x30: /* FUNC_MUX_CTRL_B */
1753 case 0x34: /* FUNC_MUX_CTRL_C */
1754 case 0x38: /* FUNC_MUX_CTRL_D */
1755 return s->func_mux_ctrl[(offset >> 2) - 1];
1756
1757 case 0x40: /* PULL_DWN_CTRL_0 */
1758 case 0x44: /* PULL_DWN_CTRL_1 */
1759 case 0x48: /* PULL_DWN_CTRL_2 */
1760 case 0x4c: /* PULL_DWN_CTRL_3 */
1761 return s->pull_dwn_ctrl[(offset & 0xf) >> 2];
1762
1763 case 0x50: /* GATE_INH_CTRL_0 */
1764 return s->gate_inh_ctrl[0];
1765
1766 case 0x60: /* VOLTAGE_CTRL_0 */
1767 return s->voltage_ctrl[0];
1768
1769 case 0x70: /* TEST_DBG_CTRL_0 */
1770 return s->test_dbg_ctrl[0];
1771
1772 case 0x80: /* MOD_CONF_CTRL_0 */
1773 return s->mod_conf_ctrl[0];
1774 }
1775
1776 OMAP_BAD_REG(addr);
1777 return 0;
1778}
1779
1780static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
1781 uint32_t diff, uint32_t value)
1782{
1783 if (s->compat1509) {
1784 if (diff & (1 << 9)) /* BLUETOOTH */
1785 omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
1786 (~value >> 9) & 1);
1787 if (diff & (1 << 7)) /* USB.CLKO */
1788 omap_clk_onoff(omap_findclk(s, "usb.clko"),
1789 (value >> 7) & 1);
1790 }
1791}
1792
1793static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
1794 uint32_t diff, uint32_t value)
1795{
1796 if (s->compat1509) {
1797 if (diff & (1 << 31)) /* MCBSP3_CLK_HIZ_DI */
1798 omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"),
1799 (value >> 31) & 1);
1800 if (diff & (1 << 1)) /* CLK32K */
1801 omap_clk_onoff(omap_findclk(s, "clk32k_out"),
1802 (~value >> 1) & 1);
1803 }
1804}
1805
1806static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
1807 uint32_t diff, uint32_t value)
1808{
1809 if (diff & (1 << 31)) /* CONF_MOD_UART3_CLK_MODE_R */
1810 omap_clk_reparent(omap_findclk(s, "uart3_ck"),
1811 omap_findclk(s, ((value >> 31) & 1) ?
1812 "ck_48m" : "armper_ck"));
1813 if (diff & (1 << 30)) /* CONF_MOD_UART2_CLK_MODE_R */
1814 omap_clk_reparent(omap_findclk(s, "uart2_ck"),
1815 omap_findclk(s, ((value >> 30) & 1) ?
1816 "ck_48m" : "armper_ck"));
1817 if (diff & (1 << 29)) /* CONF_MOD_UART1_CLK_MODE_R */
1818 omap_clk_reparent(omap_findclk(s, "uart1_ck"),
1819 omap_findclk(s, ((value >> 29) & 1) ?
1820 "ck_48m" : "armper_ck"));
1821 if (diff & (1 << 23)) /* CONF_MOD_MMC_SD_CLK_REQ_R */
1822 omap_clk_reparent(omap_findclk(s, "mmc_ck"),
1823 omap_findclk(s, ((value >> 23) & 1) ?
1824 "ck_48m" : "armper_ck"));
1825 if (diff & (1 << 12)) /* CONF_MOD_COM_MCLK_12_48_S */
1826 omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
1827 omap_findclk(s, ((value >> 12) & 1) ?
1828 "ck_48m" : "armper_ck"));
1829 if (diff & (1 << 9)) /* CONF_MOD_USB_HOST_HHC_UHO */
1830 omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
1831}
1832
1833static void omap_pin_cfg_write(void *opaque, target_phys_addr_t addr,
1834 uint32_t value)
1835{
1836 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1837 int offset = addr - s->pin_cfg_base;
1838 uint32_t diff;
1839
1840 switch (offset) {
1841 case 0x00: /* FUNC_MUX_CTRL_0 */
1842 diff = s->func_mux_ctrl[offset >> 2] ^ value;
1843 s->func_mux_ctrl[offset >> 2] = value;
1844 omap_pin_funcmux0_update(s, diff, value);
1845 return;
1846
1847 case 0x04: /* FUNC_MUX_CTRL_1 */
1848 diff = s->func_mux_ctrl[offset >> 2] ^ value;
1849 s->func_mux_ctrl[offset >> 2] = value;
1850 omap_pin_funcmux1_update(s, diff, value);
1851 return;
1852
1853 case 0x08: /* FUNC_MUX_CTRL_2 */
1854 s->func_mux_ctrl[offset >> 2] = value;
1855 return;
1856
1857 case 0x0c: /* COMP_MODE_CTRL_0 */
1858 s->comp_mode_ctrl[0] = value;
1859 s->compat1509 = (value != 0x0000eaef);
1860 omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
1861 omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
1862 return;
1863
1864 case 0x10: /* FUNC_MUX_CTRL_3 */
1865 case 0x14: /* FUNC_MUX_CTRL_4 */
1866 case 0x18: /* FUNC_MUX_CTRL_5 */
1867 case 0x1c: /* FUNC_MUX_CTRL_6 */
1868 case 0x20: /* FUNC_MUX_CTRL_7 */
1869 case 0x24: /* FUNC_MUX_CTRL_8 */
1870 case 0x28: /* FUNC_MUX_CTRL_9 */
1871 case 0x2c: /* FUNC_MUX_CTRL_A */
1872 case 0x30: /* FUNC_MUX_CTRL_B */
1873 case 0x34: /* FUNC_MUX_CTRL_C */
1874 case 0x38: /* FUNC_MUX_CTRL_D */
1875 s->func_mux_ctrl[(offset >> 2) - 1] = value;
1876 return;
1877
1878 case 0x40: /* PULL_DWN_CTRL_0 */
1879 case 0x44: /* PULL_DWN_CTRL_1 */
1880 case 0x48: /* PULL_DWN_CTRL_2 */
1881 case 0x4c: /* PULL_DWN_CTRL_3 */
1882 s->pull_dwn_ctrl[(offset & 0xf) >> 2] = value;
1883 return;
1884
1885 case 0x50: /* GATE_INH_CTRL_0 */
1886 s->gate_inh_ctrl[0] = value;
1887 return;
1888
1889 case 0x60: /* VOLTAGE_CTRL_0 */
1890 s->voltage_ctrl[0] = value;
1891 return;
1892
1893 case 0x70: /* TEST_DBG_CTRL_0 */
1894 s->test_dbg_ctrl[0] = value;
1895 return;
1896
1897 case 0x80: /* MOD_CONF_CTRL_0 */
1898 diff = s->mod_conf_ctrl[0] ^ value;
1899 s->mod_conf_ctrl[0] = value;
1900 omap_pin_modconf1_update(s, diff, value);
1901 return;
1902
1903 default:
1904 OMAP_BAD_REG(addr);
1905 }
1906}
1907
1908static CPUReadMemoryFunc *omap_pin_cfg_readfn[] = {
1909 omap_badwidth_read32,
1910 omap_badwidth_read32,
1911 omap_pin_cfg_read,
1912};
1913
1914static CPUWriteMemoryFunc *omap_pin_cfg_writefn[] = {
1915 omap_badwidth_write32,
1916 omap_badwidth_write32,
1917 omap_pin_cfg_write,
1918};
1919
1920static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
1921{
1922 /* Start in Compatibility Mode. */
1923 mpu->compat1509 = 1;
1924 omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
1925 omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
1926 omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
1927 memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
1928 memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
1929 memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
1930 memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
1931 memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
1932 memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
1933 memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
1934}
1935
1936static void omap_pin_cfg_init(target_phys_addr_t base,
1937 struct omap_mpu_state_s *mpu)
1938{
1939 int iomemtype = cpu_register_io_memory(0, omap_pin_cfg_readfn,
1940 omap_pin_cfg_writefn, mpu);
1941
1942 mpu->pin_cfg_base = base;
1943 cpu_register_physical_memory(mpu->pin_cfg_base, 0x800, iomemtype);
1944 omap_pin_cfg_reset(mpu);
1945}
1946
1947/* Device Identification, Die Identification */
1948static uint32_t omap_id_read(void *opaque, target_phys_addr_t addr)
1949{
1950 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1951
1952 switch (addr) {
1953 case 0xfffe1800: /* DIE_ID_LSB */
1954 return 0xc9581f0e;
1955 case 0xfffe1804: /* DIE_ID_MSB */
1956 return 0xa8858bfa;
1957
1958 case 0xfffe2000: /* PRODUCT_ID_LSB */
1959 return 0x00aaaafc;
1960 case 0xfffe2004: /* PRODUCT_ID_MSB */
1961 return 0xcafeb574;
1962
1963 case 0xfffed400: /* JTAG_ID_LSB */
1964 switch (s->mpu_model) {
1965 case omap310:
1966 return 0x03310315;
1967 case omap1510:
1968 return 0x03310115;
1969 }
1970 break;
1971
1972 case 0xfffed404: /* JTAG_ID_MSB */
1973 switch (s->mpu_model) {
1974 case omap310:
1975 return 0xfb57402f;
1976 case omap1510:
1977 return 0xfb47002f;
1978 }
1979 break;
1980 }
1981
1982 OMAP_BAD_REG(addr);
1983 return 0;
1984}
1985
1986static void omap_id_write(void *opaque, target_phys_addr_t addr,
1987 uint32_t value)
1988{
1989 OMAP_BAD_REG(addr);
1990}
1991
1992static CPUReadMemoryFunc *omap_id_readfn[] = {
1993 omap_badwidth_read32,
1994 omap_badwidth_read32,
1995 omap_id_read,
1996};
1997
1998static CPUWriteMemoryFunc *omap_id_writefn[] = {
1999 omap_badwidth_write32,
2000 omap_badwidth_write32,
2001 omap_id_write,
2002};
2003
2004static void omap_id_init(struct omap_mpu_state_s *mpu)
2005{
2006 int iomemtype = cpu_register_io_memory(0, omap_id_readfn,
2007 omap_id_writefn, mpu);
2008 cpu_register_physical_memory(0xfffe1800, 0x800, iomemtype);
2009 cpu_register_physical_memory(0xfffed400, 0x100, iomemtype);
2010 if (!cpu_is_omap15xx(mpu))
2011 cpu_register_physical_memory(0xfffe2000, 0x800, iomemtype);
2012}
2013
2014/* MPUI Control (Dummy) */
2015static uint32_t omap_mpui_read(void *opaque, target_phys_addr_t addr)
2016{
2017 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2018 int offset = addr - s->mpui_base;
2019
2020 switch (offset) {
2021 case 0x00: /* CTRL */
2022 return s->mpui_ctrl;
2023 case 0x04: /* DEBUG_ADDR */
2024 return 0x01ffffff;
2025 case 0x08: /* DEBUG_DATA */
2026 return 0xffffffff;
2027 case 0x0c: /* DEBUG_FLAG */
2028 return 0x00000800;
2029 case 0x10: /* STATUS */
2030 return 0x00000000;
2031
2032 /* Not in OMAP310 */
2033 case 0x14: /* DSP_STATUS */
2034 case 0x18: /* DSP_BOOT_CONFIG */
2035 return 0x00000000;
2036 case 0x1c: /* DSP_MPUI_CONFIG */
2037 return 0x0000ffff;
2038 }
2039
2040 OMAP_BAD_REG(addr);
2041 return 0;
2042}
2043
2044static void omap_mpui_write(void *opaque, target_phys_addr_t addr,
2045 uint32_t value)
2046{
2047 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2048 int offset = addr - s->mpui_base;
2049
2050 switch (offset) {
2051 case 0x00: /* CTRL */
2052 s->mpui_ctrl = value & 0x007fffff;
2053 break;
2054
2055 case 0x04: /* DEBUG_ADDR */
2056 case 0x08: /* DEBUG_DATA */
2057 case 0x0c: /* DEBUG_FLAG */
2058 case 0x10: /* STATUS */
2059 /* Not in OMAP310 */
2060 case 0x14: /* DSP_STATUS */
2061 OMAP_RO_REG(addr);
2062 case 0x18: /* DSP_BOOT_CONFIG */
2063 case 0x1c: /* DSP_MPUI_CONFIG */
2064 break;
2065
2066 default:
2067 OMAP_BAD_REG(addr);
2068 }
2069}
2070
2071static CPUReadMemoryFunc *omap_mpui_readfn[] = {
2072 omap_badwidth_read32,
2073 omap_badwidth_read32,
2074 omap_mpui_read,
2075};
2076
2077static CPUWriteMemoryFunc *omap_mpui_writefn[] = {
2078 omap_badwidth_write32,
2079 omap_badwidth_write32,
2080 omap_mpui_write,
2081};
2082
2083static void omap_mpui_reset(struct omap_mpu_state_s *s)
2084{
2085 s->mpui_ctrl = 0x0003ff1b;
2086}
2087
2088static void omap_mpui_init(target_phys_addr_t base,
2089 struct omap_mpu_state_s *mpu)
2090{
2091 int iomemtype = cpu_register_io_memory(0, omap_mpui_readfn,
2092 omap_mpui_writefn, mpu);
2093
2094 mpu->mpui_base = base;
2095 cpu_register_physical_memory(mpu->mpui_base, 0x100, iomemtype);
2096
2097 omap_mpui_reset(mpu);
2098}
2099
2100/* TIPB Bridges */
2101struct omap_tipb_bridge_s {
2102 target_phys_addr_t base;
2103 qemu_irq abort;
2104
2105 int width_intr;
2106 uint16_t control;
2107 uint16_t alloc;
2108 uint16_t buffer;
2109 uint16_t enh_control;
2110};
2111
2112static uint32_t omap_tipb_bridge_read(void *opaque, target_phys_addr_t addr)
2113{
2114 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
2115 int offset = addr - s->base;
2116
2117 switch (offset) {
2118 case 0x00: /* TIPB_CNTL */
2119 return s->control;
2120 case 0x04: /* TIPB_BUS_ALLOC */
2121 return s->alloc;
2122 case 0x08: /* MPU_TIPB_CNTL */
2123 return s->buffer;
2124 case 0x0c: /* ENHANCED_TIPB_CNTL */
2125 return s->enh_control;
2126 case 0x10: /* ADDRESS_DBG */
2127 case 0x14: /* DATA_DEBUG_LOW */
2128 case 0x18: /* DATA_DEBUG_HIGH */
2129 return 0xffff;
2130 case 0x1c: /* DEBUG_CNTR_SIG */
2131 return 0x00f8;
2132 }
2133
2134 OMAP_BAD_REG(addr);
2135 return 0;
2136}
2137
2138static void omap_tipb_bridge_write(void *opaque, target_phys_addr_t addr,
2139 uint32_t value)
2140{
2141 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
2142 int offset = addr - s->base;
2143
2144 switch (offset) {
2145 case 0x00: /* TIPB_CNTL */
2146 s->control = value & 0xffff;
2147 break;
2148
2149 case 0x04: /* TIPB_BUS_ALLOC */
2150 s->alloc = value & 0x003f;
2151 break;
2152
2153 case 0x08: /* MPU_TIPB_CNTL */
2154 s->buffer = value & 0x0003;
2155 break;
2156
2157 case 0x0c: /* ENHANCED_TIPB_CNTL */
2158 s->width_intr = !(value & 2);
2159 s->enh_control = value & 0x000f;
2160 break;
2161
2162 case 0x10: /* ADDRESS_DBG */
2163 case 0x14: /* DATA_DEBUG_LOW */
2164 case 0x18: /* DATA_DEBUG_HIGH */
2165 case 0x1c: /* DEBUG_CNTR_SIG */
2166 OMAP_RO_REG(addr);
2167 break;
2168
2169 default:
2170 OMAP_BAD_REG(addr);
2171 }
2172}
2173
2174static CPUReadMemoryFunc *omap_tipb_bridge_readfn[] = {
2175 omap_badwidth_read16,
2176 omap_tipb_bridge_read,
2177 omap_tipb_bridge_read,
2178};
2179
2180static CPUWriteMemoryFunc *omap_tipb_bridge_writefn[] = {
2181 omap_badwidth_write16,
2182 omap_tipb_bridge_write,
2183 omap_tipb_bridge_write,
2184};
2185
2186static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
2187{
2188 s->control = 0xffff;
2189 s->alloc = 0x0009;
2190 s->buffer = 0x0000;
2191 s->enh_control = 0x000f;
2192}
2193
2194struct omap_tipb_bridge_s *omap_tipb_bridge_init(target_phys_addr_t base,
2195 qemu_irq abort_irq, omap_clk clk)
2196{
2197 int iomemtype;
2198 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *)
2199 qemu_mallocz(sizeof(struct omap_tipb_bridge_s));
2200
2201 s->abort = abort_irq;
2202 s->base = base;
2203 omap_tipb_bridge_reset(s);
2204
2205 iomemtype = cpu_register_io_memory(0, omap_tipb_bridge_readfn,
2206 omap_tipb_bridge_writefn, s);
2207 cpu_register_physical_memory(s->base, 0x100, iomemtype);
2208
2209 return s;
2210}
2211
2212/* Dummy Traffic Controller's Memory Interface */
2213static uint32_t omap_tcmi_read(void *opaque, target_phys_addr_t addr)
2214{
2215 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2216 int offset = addr - s->tcmi_base;
2217 uint32_t ret;
2218
2219 switch (offset) {
2220 case 0xfffecc00: /* IMIF_PRIO */
2221 case 0xfffecc04: /* EMIFS_PRIO */
2222 case 0xfffecc08: /* EMIFF_PRIO */
2223 case 0xfffecc0c: /* EMIFS_CONFIG */
2224 case 0xfffecc10: /* EMIFS_CS0_CONFIG */
2225 case 0xfffecc14: /* EMIFS_CS1_CONFIG */
2226 case 0xfffecc18: /* EMIFS_CS2_CONFIG */
2227 case 0xfffecc1c: /* EMIFS_CS3_CONFIG */
2228 case 0xfffecc24: /* EMIFF_MRS */
2229 case 0xfffecc28: /* TIMEOUT1 */
2230 case 0xfffecc2c: /* TIMEOUT2 */
2231 case 0xfffecc30: /* TIMEOUT3 */
2232 case 0xfffecc3c: /* EMIFF_SDRAM_CONFIG_2 */
2233 case 0xfffecc40: /* EMIFS_CFG_DYN_WAIT */
2234 return s->tcmi_regs[offset >> 2];
2235
2236 case 0xfffecc20: /* EMIFF_SDRAM_CONFIG */
2237 ret = s->tcmi_regs[offset >> 2];
2238 s->tcmi_regs[offset >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
2239 /* XXX: We can try using the VGA_DIRTY flag for this */
2240 return ret;
2241 }
2242
2243 OMAP_BAD_REG(addr);
2244 return 0;
2245}
2246
2247static void omap_tcmi_write(void *opaque, target_phys_addr_t addr,
2248 uint32_t value)
2249{
2250 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2251 int offset = addr - s->tcmi_base;
2252
2253 switch (offset) {
2254 case 0xfffecc00: /* IMIF_PRIO */
2255 case 0xfffecc04: /* EMIFS_PRIO */
2256 case 0xfffecc08: /* EMIFF_PRIO */
2257 case 0xfffecc10: /* EMIFS_CS0_CONFIG */
2258 case 0xfffecc14: /* EMIFS_CS1_CONFIG */
2259 case 0xfffecc18: /* EMIFS_CS2_CONFIG */
2260 case 0xfffecc1c: /* EMIFS_CS3_CONFIG */
2261 case 0xfffecc20: /* EMIFF_SDRAM_CONFIG */
2262 case 0xfffecc24: /* EMIFF_MRS */
2263 case 0xfffecc28: /* TIMEOUT1 */
2264 case 0xfffecc2c: /* TIMEOUT2 */
2265 case 0xfffecc30: /* TIMEOUT3 */
2266 case 0xfffecc3c: /* EMIFF_SDRAM_CONFIG_2 */
2267 case 0xfffecc40: /* EMIFS_CFG_DYN_WAIT */
2268 s->tcmi_regs[offset >> 2] = value;
2269 break;
2270 case 0xfffecc0c: /* EMIFS_CONFIG */
2271 s->tcmi_regs[offset >> 2] = (value & 0xf) | (1 << 4);
2272 break;
2273
2274 default:
2275 OMAP_BAD_REG(addr);
2276 }
2277}
2278
2279static CPUReadMemoryFunc *omap_tcmi_readfn[] = {
2280 omap_badwidth_read32,
2281 omap_badwidth_read32,
2282 omap_tcmi_read,
2283};
2284
2285static CPUWriteMemoryFunc *omap_tcmi_writefn[] = {
2286 omap_badwidth_write32,
2287 omap_badwidth_write32,
2288 omap_tcmi_write,
2289};
2290
2291static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
2292{
2293 mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
2294 mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
2295 mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
2296 mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
2297 mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
2298 mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
2299 mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
2300 mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
2301 mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
2302 mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
2303 mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
2304 mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
2305 mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
2306 mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
2307 mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
2308}
2309
2310static void omap_tcmi_init(target_phys_addr_t base,
2311 struct omap_mpu_state_s *mpu)
2312{
2313 int iomemtype = cpu_register_io_memory(0, omap_tcmi_readfn,
2314 omap_tcmi_writefn, mpu);
2315
2316 mpu->tcmi_base = base;
2317 cpu_register_physical_memory(mpu->tcmi_base, 0x100, iomemtype);
2318 omap_tcmi_reset(mpu);
2319}
2320
2321/* Digital phase-locked loops control */
2322static uint32_t omap_dpll_read(void *opaque, target_phys_addr_t addr)
2323{
2324 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
2325 int offset = addr - s->base;
2326
2327 if (offset == 0x00) /* CTL_REG */
2328 return s->mode;
2329
2330 OMAP_BAD_REG(addr);
2331 return 0;
2332}
2333
2334static void omap_dpll_write(void *opaque, target_phys_addr_t addr,
2335 uint32_t value)
2336{
2337 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
2338 uint16_t diff;
2339 int offset = addr - s->base;
2340 static const int bypass_div[4] = { 1, 2, 4, 4 };
2341 int div, mult;
2342
2343 if (offset == 0x00) { /* CTL_REG */
2344 /* See omap_ulpd_pm_write() too */
2345 diff = s->mode & value;
2346 s->mode = value & 0x2fff;
2347 if (diff & (0x3ff << 2)) {
2348 if (value & (1 << 4)) { /* PLL_ENABLE */
2349 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
2350 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
2351 } else {
2352 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
2353 mult = 1;
2354 }
2355 omap_clk_setrate(s->dpll, div, mult);
2356 }
2357
2358 /* Enter the desired mode. */
2359 s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
2360
2361 /* Act as if the lock is restored. */
2362 s->mode |= 2;
2363 } else {
2364 OMAP_BAD_REG(addr);
2365 }
2366}
2367
2368static CPUReadMemoryFunc *omap_dpll_readfn[] = {
2369 omap_badwidth_read16,
2370 omap_dpll_read,
2371 omap_badwidth_read16,
2372};
2373
2374static CPUWriteMemoryFunc *omap_dpll_writefn[] = {
2375 omap_badwidth_write16,
2376 omap_dpll_write,
2377 omap_badwidth_write16,
2378};
2379
2380static void omap_dpll_reset(struct dpll_ctl_s *s)
2381{
2382 s->mode = 0x2002;
2383 omap_clk_setrate(s->dpll, 1, 1);
2384}
2385
2386static void omap_dpll_init(struct dpll_ctl_s *s, target_phys_addr_t base,
2387 omap_clk clk)
2388{
2389 int iomemtype = cpu_register_io_memory(0, omap_dpll_readfn,
2390 omap_dpll_writefn, s);
2391
2392 s->base = base;
2393 s->dpll = clk;
2394 omap_dpll_reset(s);
2395
2396 cpu_register_physical_memory(s->base, 0x100, iomemtype);
2397}
2398
2399/* UARTs */
2400struct omap_uart_s {
2401 SerialState *serial; /* TODO */
2402};
2403
2404static void omap_uart_reset(struct omap_uart_s *s)
2405{
2406}
2407
2408struct omap_uart_s *omap_uart_init(target_phys_addr_t base,
2409 qemu_irq irq, omap_clk clk, CharDriverState *chr)
2410{
2411 struct omap_uart_s *s = (struct omap_uart_s *)
2412 qemu_mallocz(sizeof(struct omap_uart_s));
2413 if (chr)
2414 s->serial = serial_mm_init(base, 2, irq, chr, 1);
2415 return s;
2416}
2417
2418/* MPU Clock/Reset/Power Mode Control */
2419static uint32_t omap_clkm_read(void *opaque, target_phys_addr_t addr)
2420{
2421 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2422 int offset = addr - s->clkm.mpu_base;
2423
2424 switch (offset) {
2425 case 0x00: /* ARM_CKCTL */
2426 return s->clkm.arm_ckctl;
2427
2428 case 0x04: /* ARM_IDLECT1 */
2429 return s->clkm.arm_idlect1;
2430
2431 case 0x08: /* ARM_IDLECT2 */
2432 return s->clkm.arm_idlect2;
2433
2434 case 0x0c: /* ARM_EWUPCT */
2435 return s->clkm.arm_ewupct;
2436
2437 case 0x10: /* ARM_RSTCT1 */
2438 return s->clkm.arm_rstct1;
2439
2440 case 0x14: /* ARM_RSTCT2 */
2441 return s->clkm.arm_rstct2;
2442
2443 case 0x18: /* ARM_SYSST */
2444 return (s->clkm.clocking_scheme < 11) | s->clkm.cold_start;
2445
2446 case 0x1c: /* ARM_CKOUT1 */
2447 return s->clkm.arm_ckout1;
2448
2449 case 0x20: /* ARM_CKOUT2 */
2450 break;
2451 }
2452
2453 OMAP_BAD_REG(addr);
2454 return 0;
2455}
2456
2457static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
2458 uint16_t diff, uint16_t value)
2459{
2460 omap_clk clk;
2461
2462 if (diff & (1 << 14)) { /* ARM_INTHCK_SEL */
2463 if (value & (1 << 14))
2464 /* Reserved */;
2465 else {
2466 clk = omap_findclk(s, "arminth_ck");
2467 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
2468 }
2469 }
2470 if (diff & (1 << 12)) { /* ARM_TIMXO */
2471 clk = omap_findclk(s, "armtim_ck");
2472 if (value & (1 << 12))
2473 omap_clk_reparent(clk, omap_findclk(s, "clkin"));
2474 else
2475 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
2476 }
2477 /* XXX: en_dspck */
2478 if (diff & (3 << 10)) { /* DSPMMUDIV */
2479 clk = omap_findclk(s, "dspmmu_ck");
2480 omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
2481 }
2482 if (diff & (3 << 8)) { /* TCDIV */
2483 clk = omap_findclk(s, "tc_ck");
2484 omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
2485 }
2486 if (diff & (3 << 6)) { /* DSPDIV */
2487 clk = omap_findclk(s, "dsp_ck");
2488 omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
2489 }
2490 if (diff & (3 << 4)) { /* ARMDIV */
2491 clk = omap_findclk(s, "arm_ck");
2492 omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
2493 }
2494 if (diff & (3 << 2)) { /* LCDDIV */
2495 clk = omap_findclk(s, "lcd_ck");
2496 omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
2497 }
2498 if (diff & (3 << 0)) { /* PERDIV */
2499 clk = omap_findclk(s, "armper_ck");
2500 omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
2501 }
2502}
2503
2504static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
2505 uint16_t diff, uint16_t value)
2506{
2507 omap_clk clk;
2508
2509 if (value & (1 << 11)) /* SETARM_IDLE */
2510 cpu_interrupt(s->env, CPU_INTERRUPT_HALT);
2511 if (!(value & (1 << 10))) /* WKUP_MODE */
2512 qemu_system_shutdown_request(); /* XXX: disable wakeup from IRQ */
2513
2514#define SET_CANIDLE(clock, bit) \
2515 if (diff & (1 << bit)) { \
2516 clk = omap_findclk(s, clock); \
2517 omap_clk_canidle(clk, (value >> bit) & 1); \
2518 }
2519 SET_CANIDLE("mpuwd_ck", 0) /* IDLWDT_ARM */
2520 SET_CANIDLE("armxor_ck", 1) /* IDLXORP_ARM */
2521 SET_CANIDLE("mpuper_ck", 2) /* IDLPER_ARM */
2522 SET_CANIDLE("lcd_ck", 3) /* IDLLCD_ARM */
2523 SET_CANIDLE("lb_ck", 4) /* IDLLB_ARM */
2524 SET_CANIDLE("hsab_ck", 5) /* IDLHSAB_ARM */
2525 SET_CANIDLE("tipb_ck", 6) /* IDLIF_ARM */
2526 SET_CANIDLE("dma_ck", 6) /* IDLIF_ARM */
2527 SET_CANIDLE("tc_ck", 6) /* IDLIF_ARM */
2528 SET_CANIDLE("dpll1", 7) /* IDLDPLL_ARM */
2529 SET_CANIDLE("dpll2", 7) /* IDLDPLL_ARM */
2530 SET_CANIDLE("dpll3", 7) /* IDLDPLL_ARM */
2531 SET_CANIDLE("mpui_ck", 8) /* IDLAPI_ARM */
2532 SET_CANIDLE("armtim_ck", 9) /* IDLTIM_ARM */
2533}
2534
2535static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
2536 uint16_t diff, uint16_t value)
2537{
2538 omap_clk clk;
2539
2540#define SET_ONOFF(clock, bit) \
2541 if (diff & (1 << bit)) { \
2542 clk = omap_findclk(s, clock); \
2543 omap_clk_onoff(clk, (value >> bit) & 1); \
2544 }
2545 SET_ONOFF("mpuwd_ck", 0) /* EN_WDTCK */
2546 SET_ONOFF("armxor_ck", 1) /* EN_XORPCK */
2547 SET_ONOFF("mpuper_ck", 2) /* EN_PERCK */
2548 SET_ONOFF("lcd_ck", 3) /* EN_LCDCK */
2549 SET_ONOFF("lb_ck", 4) /* EN_LBCK */
2550 SET_ONOFF("hsab_ck", 5) /* EN_HSABCK */
2551 SET_ONOFF("mpui_ck", 6) /* EN_APICK */
2552 SET_ONOFF("armtim_ck", 7) /* EN_TIMCK */
2553 SET_CANIDLE("dma_ck", 8) /* DMACK_REQ */
2554 SET_ONOFF("arm_gpio_ck", 9) /* EN_GPIOCK */
2555 SET_ONOFF("lbfree_ck", 10) /* EN_LBFREECK */
2556}
2557
2558static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
2559 uint16_t diff, uint16_t value)
2560{
2561 omap_clk clk;
2562
2563 if (diff & (3 << 4)) { /* TCLKOUT */
2564 clk = omap_findclk(s, "tclk_out");
2565 switch ((value >> 4) & 3) {
2566 case 1:
2567 omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
2568 omap_clk_onoff(clk, 1);
2569 break;
2570 case 2:
2571 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
2572 omap_clk_onoff(clk, 1);
2573 break;
2574 default:
2575 omap_clk_onoff(clk, 0);
2576 }
2577 }
2578 if (diff & (3 << 2)) { /* DCLKOUT */
2579 clk = omap_findclk(s, "dclk_out");
2580 switch ((value >> 2) & 3) {
2581 case 0:
2582 omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
2583 break;
2584 case 1:
2585 omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
2586 break;
2587 case 2:
2588 omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
2589 break;
2590 case 3:
2591 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
2592 break;
2593 }
2594 }
2595 if (diff & (3 << 0)) { /* ACLKOUT */
2596 clk = omap_findclk(s, "aclk_out");
2597 switch ((value >> 0) & 3) {
2598 case 1:
2599 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
2600 omap_clk_onoff(clk, 1);
2601 break;
2602 case 2:
2603 omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
2604 omap_clk_onoff(clk, 1);
2605 break;
2606 case 3:
2607 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
2608 omap_clk_onoff(clk, 1);
2609 break;
2610 default:
2611 omap_clk_onoff(clk, 0);
2612 }
2613 }
2614}
2615
2616static void omap_clkm_write(void *opaque, target_phys_addr_t addr,
2617 uint32_t value)
2618{
2619 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2620 int offset = addr - s->clkm.mpu_base;
2621 uint16_t diff;
2622 omap_clk clk;
2623 static const char *clkschemename[8] = {
2624 "fully synchronous", "fully asynchronous", "synchronous scalable",
2625 "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
2626 };
2627
2628 switch (offset) {
2629 case 0x00: /* ARM_CKCTL */
2630 diff = s->clkm.arm_ckctl ^ value;
2631 s->clkm.arm_ckctl = value & 0x7fff;
2632 omap_clkm_ckctl_update(s, diff, value);
2633 return;
2634
2635 case 0x04: /* ARM_IDLECT1 */
2636 diff = s->clkm.arm_idlect1 ^ value;
2637 s->clkm.arm_idlect1 = value & 0x0fff;
2638 omap_clkm_idlect1_update(s, diff, value);
2639 return;
2640
2641 case 0x08: /* ARM_IDLECT2 */
2642 diff = s->clkm.arm_idlect2 ^ value;
2643 s->clkm.arm_idlect2 = value & 0x07ff;
2644 omap_clkm_idlect2_update(s, diff, value);
2645 return;
2646
2647 case 0x0c: /* ARM_EWUPCT */
2648 diff = s->clkm.arm_ewupct ^ value;
2649 s->clkm.arm_ewupct = value & 0x003f;
2650 return;
2651
2652 case 0x10: /* ARM_RSTCT1 */
2653 diff = s->clkm.arm_rstct1 ^ value;
2654 s->clkm.arm_rstct1 = value & 0x0007;
2655 if (value & 9) {
2656 qemu_system_reset_request();
2657 s->clkm.cold_start = 0xa;
2658 }
2659 if (diff & ~value & 4) { /* DSP_RST */
2660 omap_mpui_reset(s);
2661 omap_tipb_bridge_reset(s->private_tipb);
2662 omap_tipb_bridge_reset(s->public_tipb);
2663 }
2664 if (diff & 2) { /* DSP_EN */
2665 clk = omap_findclk(s, "dsp_ck");
2666 omap_clk_canidle(clk, (~value >> 1) & 1);
2667 }
2668 return;
2669
2670 case 0x14: /* ARM_RSTCT2 */
2671 s->clkm.arm_rstct2 = value & 0x0001;
2672 return;
2673
2674 case 0x18: /* ARM_SYSST */
2675 if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
2676 s->clkm.clocking_scheme = (value >> 11) & 7;
2677 printf("%s: clocking scheme set to %s\n", __FUNCTION__,
2678 clkschemename[s->clkm.clocking_scheme]);
2679 }
2680 s->clkm.cold_start &= value & 0x3f;
2681 return;
2682
2683 case 0x1c: /* ARM_CKOUT1 */
2684 diff = s->clkm.arm_ckout1 ^ value;
2685 s->clkm.arm_ckout1 = value & 0x003f;
2686 omap_clkm_ckout1_update(s, diff, value);
2687 return;
2688
2689 case 0x20: /* ARM_CKOUT2 */
2690 default:
2691 OMAP_BAD_REG(addr);
2692 }
2693}
2694
2695static CPUReadMemoryFunc *omap_clkm_readfn[] = {
2696 omap_badwidth_read16,
2697 omap_clkm_read,
2698 omap_badwidth_read16,
2699};
2700
2701static CPUWriteMemoryFunc *omap_clkm_writefn[] = {
2702 omap_badwidth_write16,
2703 omap_clkm_write,
2704 omap_badwidth_write16,
2705};
2706
2707static uint32_t omap_clkdsp_read(void *opaque, target_phys_addr_t addr)
2708{
2709 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2710 int offset = addr - s->clkm.dsp_base;
2711
2712 switch (offset) {
2713 case 0x04: /* DSP_IDLECT1 */
2714 return s->clkm.dsp_idlect1;
2715
2716 case 0x08: /* DSP_IDLECT2 */
2717 return s->clkm.dsp_idlect2;
2718
2719 case 0x14: /* DSP_RSTCT2 */
2720 return s->clkm.dsp_rstct2;
2721
2722 case 0x18: /* DSP_SYSST */
2723 return (s->clkm.clocking_scheme < 11) | s->clkm.cold_start |
2724 (s->env->halted << 6); /* Quite useless... */
2725 }
2726
2727 OMAP_BAD_REG(addr);
2728 return 0;
2729}
2730
2731static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
2732 uint16_t diff, uint16_t value)
2733{
2734 omap_clk clk;
2735
2736 SET_CANIDLE("dspxor_ck", 1); /* IDLXORP_DSP */
2737}
2738
2739static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
2740 uint16_t diff, uint16_t value)
2741{
2742 omap_clk clk;
2743
2744 SET_ONOFF("dspxor_ck", 1); /* EN_XORPCK */
2745}
2746
2747static void omap_clkdsp_write(void *opaque, target_phys_addr_t addr,
2748 uint32_t value)
2749{
2750 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2751 int offset = addr - s->clkm.dsp_base;
2752 uint16_t diff;
2753
2754 switch (offset) {
2755 case 0x04: /* DSP_IDLECT1 */
2756 diff = s->clkm.dsp_idlect1 ^ value;
2757 s->clkm.dsp_idlect1 = value & 0x01f7;
2758 omap_clkdsp_idlect1_update(s, diff, value);
2759 break;
2760
2761 case 0x08: /* DSP_IDLECT2 */
2762 s->clkm.dsp_idlect2 = value & 0x0037;
2763 diff = s->clkm.dsp_idlect1 ^ value;
2764 omap_clkdsp_idlect2_update(s, diff, value);
2765 break;
2766
2767 case 0x14: /* DSP_RSTCT2 */
2768 s->clkm.dsp_rstct2 = value & 0x0001;
2769 break;
2770
2771 case 0x18: /* DSP_SYSST */
2772 s->clkm.cold_start &= value & 0x3f;
2773 break;
2774
2775 default:
2776 OMAP_BAD_REG(addr);
2777 }
2778}
2779
2780static CPUReadMemoryFunc *omap_clkdsp_readfn[] = {
2781 omap_badwidth_read16,
2782 omap_clkdsp_read,
2783 omap_badwidth_read16,
2784};
2785
2786static CPUWriteMemoryFunc *omap_clkdsp_writefn[] = {
2787 omap_badwidth_write16,
2788 omap_clkdsp_write,
2789 omap_badwidth_write16,
2790};
2791
2792static void omap_clkm_reset(struct omap_mpu_state_s *s)
2793{
2794 if (s->wdt && s->wdt->reset)
2795 s->clkm.cold_start = 0x6;
2796 s->clkm.clocking_scheme = 0;
2797 omap_clkm_ckctl_update(s, ~0, 0x3000);
2798 s->clkm.arm_ckctl = 0x3000;
2799 omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 & 0x0400, 0x0400);
2800 s->clkm.arm_idlect1 = 0x0400;
2801 omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 & 0x0100, 0x0100);
2802 s->clkm.arm_idlect2 = 0x0100;
2803 s->clkm.arm_ewupct = 0x003f;
2804 s->clkm.arm_rstct1 = 0x0000;
2805 s->clkm.arm_rstct2 = 0x0000;
2806 s->clkm.arm_ckout1 = 0x0015;
2807 s->clkm.dpll1_mode = 0x2002;
2808 omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
2809 s->clkm.dsp_idlect1 = 0x0040;
2810 omap_clkdsp_idlect2_update(s, ~0, 0x0000);
2811 s->clkm.dsp_idlect2 = 0x0000;
2812 s->clkm.dsp_rstct2 = 0x0000;
2813}
2814
2815static void omap_clkm_init(target_phys_addr_t mpu_base,
2816 target_phys_addr_t dsp_base, struct omap_mpu_state_s *s)
2817{
2818 int iomemtype[2] = {
2819 cpu_register_io_memory(0, omap_clkm_readfn, omap_clkm_writefn, s),
2820 cpu_register_io_memory(0, omap_clkdsp_readfn, omap_clkdsp_writefn, s),
2821 };
2822
2823 s->clkm.mpu_base = mpu_base;
2824 s->clkm.dsp_base = dsp_base;
2825 s->clkm.cold_start = 0x3a;
2826 omap_clkm_reset(s);
2827
2828 cpu_register_physical_memory(s->clkm.mpu_base, 0x100, iomemtype[0]);
2829 cpu_register_physical_memory(s->clkm.dsp_base, 0x1000, iomemtype[1]);
2830}
2831
fe71e81a
AZ
2832/* MPU I/O */
2833struct omap_mpuio_s {
2834 target_phys_addr_t base;
2835 qemu_irq irq;
2836 qemu_irq kbd_irq;
2837 qemu_irq *in;
2838 qemu_irq handler[16];
2839 qemu_irq wakeup;
2840
2841 uint16_t inputs;
2842 uint16_t outputs;
2843 uint16_t dir;
2844 uint16_t edge;
2845 uint16_t mask;
2846 uint16_t ints;
2847
2848 uint16_t debounce;
2849 uint16_t latch;
2850 uint8_t event;
2851
2852 uint8_t buttons[5];
2853 uint8_t row_latch;
2854 uint8_t cols;
2855 int kbd_mask;
2856 int clk;
2857};
2858
2859static void omap_mpuio_set(void *opaque, int line, int level)
2860{
2861 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2862 uint16_t prev = s->inputs;
2863
2864 if (level)
2865 s->inputs |= 1 << line;
2866 else
2867 s->inputs &= ~(1 << line);
2868
2869 if (((1 << line) & s->dir & ~s->mask) && s->clk) {
2870 if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
2871 s->ints |= 1 << line;
2872 qemu_irq_raise(s->irq);
2873 /* TODO: wakeup */
2874 }
2875 if ((s->event & (1 << 0)) && /* SET_GPIO_EVENT_MODE */
2876 (s->event >> 1) == line) /* PIN_SELECT */
2877 s->latch = s->inputs;
2878 }
2879}
2880
2881static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
2882{
2883 int i;
2884 uint8_t *row, rows = 0, cols = ~s->cols;
2885
38a34e1d 2886 for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
fe71e81a 2887 if (*row & cols)
38a34e1d 2888 rows |= i;
fe71e81a 2889
38a34e1d 2890 qemu_set_irq(s->kbd_irq, rows && ~s->kbd_mask && s->clk);
fe71e81a
AZ
2891 s->row_latch = rows ^ 0x1f;
2892}
2893
2894static uint32_t omap_mpuio_read(void *opaque, target_phys_addr_t addr)
2895{
2896 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2897 int offset = addr - s->base;
2898 uint16_t ret;
2899
2900 switch (offset) {
2901 case 0x00: /* INPUT_LATCH */
2902 return s->inputs;
2903
2904 case 0x04: /* OUTPUT_REG */
2905 return s->outputs;
2906
2907 case 0x08: /* IO_CNTL */
2908 return s->dir;
2909
2910 case 0x10: /* KBR_LATCH */
2911 return s->row_latch;
2912
2913 case 0x14: /* KBC_REG */
2914 return s->cols;
2915
2916 case 0x18: /* GPIO_EVENT_MODE_REG */
2917 return s->event;
2918
2919 case 0x1c: /* GPIO_INT_EDGE_REG */
2920 return s->edge;
2921
2922 case 0x20: /* KBD_INT */
2923 return (s->row_latch != 0x1f) && !s->kbd_mask;
2924
2925 case 0x24: /* GPIO_INT */
2926 ret = s->ints;
8e129e07
AZ
2927 s->ints &= s->mask;
2928 if (ret)
2929 qemu_irq_lower(s->irq);
fe71e81a
AZ
2930 return ret;
2931
2932 case 0x28: /* KBD_MASKIT */
2933 return s->kbd_mask;
2934
2935 case 0x2c: /* GPIO_MASKIT */
2936 return s->mask;
2937
2938 case 0x30: /* GPIO_DEBOUNCING_REG */
2939 return s->debounce;
2940
2941 case 0x34: /* GPIO_LATCH_REG */
2942 return s->latch;
2943 }
2944
2945 OMAP_BAD_REG(addr);
2946 return 0;
2947}
2948
2949static void omap_mpuio_write(void *opaque, target_phys_addr_t addr,
2950 uint32_t value)
2951{
2952 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2953 int offset = addr - s->base;
2954 uint16_t diff;
2955 int ln;
2956
2957 switch (offset) {
2958 case 0x04: /* OUTPUT_REG */
2959 diff = s->outputs ^ (value & ~s->dir);
2960 s->outputs = value;
2961 value &= ~s->dir;
2962 while ((ln = ffs(diff))) {
2963 ln --;
2964 if (s->handler[ln])
2965 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2966 diff &= ~(1 << ln);
2967 }
2968 break;
2969
2970 case 0x08: /* IO_CNTL */
2971 diff = s->outputs & (s->dir ^ value);
2972 s->dir = value;
2973
2974 value = s->outputs & ~s->dir;
2975 while ((ln = ffs(diff))) {
2976 ln --;
2977 if (s->handler[ln])
2978 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2979 diff &= ~(1 << ln);
2980 }
2981 break;
2982
2983 case 0x14: /* KBC_REG */
2984 s->cols = value;
2985 omap_mpuio_kbd_update(s);
2986 break;
2987
2988 case 0x18: /* GPIO_EVENT_MODE_REG */
2989 s->event = value & 0x1f;
2990 break;
2991
2992 case 0x1c: /* GPIO_INT_EDGE_REG */
2993 s->edge = value;
2994 break;
2995
2996 case 0x28: /* KBD_MASKIT */
2997 s->kbd_mask = value & 1;
2998 omap_mpuio_kbd_update(s);
2999 break;
3000
3001 case 0x2c: /* GPIO_MASKIT */
3002 s->mask = value;
3003 break;
3004
3005 case 0x30: /* GPIO_DEBOUNCING_REG */
3006 s->debounce = value & 0x1ff;
3007 break;
3008
3009 case 0x00: /* INPUT_LATCH */
3010 case 0x10: /* KBR_LATCH */
3011 case 0x20: /* KBD_INT */
3012 case 0x24: /* GPIO_INT */
3013 case 0x34: /* GPIO_LATCH_REG */
3014 OMAP_RO_REG(addr);
3015 return;
3016
3017 default:
3018 OMAP_BAD_REG(addr);
3019 return;
3020 }
3021}
3022
3023static CPUReadMemoryFunc *omap_mpuio_readfn[] = {
3024 omap_badwidth_read16,
3025 omap_mpuio_read,
3026 omap_badwidth_read16,
3027};
3028
3029static CPUWriteMemoryFunc *omap_mpuio_writefn[] = {
3030 omap_badwidth_write16,
3031 omap_mpuio_write,
3032 omap_badwidth_write16,
3033};
3034
3035void omap_mpuio_reset(struct omap_mpuio_s *s)
3036{
3037 s->inputs = 0;
3038 s->outputs = 0;
3039 s->dir = ~0;
3040 s->event = 0;
3041 s->edge = 0;
3042 s->kbd_mask = 0;
3043 s->mask = 0;
3044 s->debounce = 0;
3045 s->latch = 0;
3046 s->ints = 0;
3047 s->row_latch = 0x1f;
38a34e1d 3048 s->clk = 1;
fe71e81a
AZ
3049}
3050
3051static void omap_mpuio_onoff(void *opaque, int line, int on)
3052{
3053 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
3054
3055 s->clk = on;
3056 if (on)
3057 omap_mpuio_kbd_update(s);
3058}
3059
3060struct omap_mpuio_s *omap_mpuio_init(target_phys_addr_t base,
3061 qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
3062 omap_clk clk)
3063{
3064 int iomemtype;
3065 struct omap_mpuio_s *s = (struct omap_mpuio_s *)
3066 qemu_mallocz(sizeof(struct omap_mpuio_s));
3067
3068 s->base = base;
3069 s->irq = gpio_int;
3070 s->kbd_irq = kbd_int;
3071 s->wakeup = wakeup;
3072 s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
3073 omap_mpuio_reset(s);
3074
3075 iomemtype = cpu_register_io_memory(0, omap_mpuio_readfn,
3076 omap_mpuio_writefn, s);
3077 cpu_register_physical_memory(s->base, 0x800, iomemtype);
3078
3079 omap_clk_adduser(clk, qemu_allocate_irqs(omap_mpuio_onoff, s, 1)[0]);
3080
3081 return s;
3082}
3083
3084qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
3085{
3086 return s->in;
3087}
3088
3089void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
3090{
3091 if (line >= 16 || line < 0)
3092 cpu_abort(cpu_single_env, "%s: No GPIO line %i\n", __FUNCTION__, line);
3093 s->handler[line] = handler;
3094}
3095
3096void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
3097{
3098 if (row >= 5 || row < 0)
3099 cpu_abort(cpu_single_env, "%s: No key %i-%i\n",
3100 __FUNCTION__, col, row);
3101
3102 if (down)
38a34e1d 3103 s->buttons[row] |= 1 << col;
fe71e81a 3104 else
38a34e1d 3105 s->buttons[row] &= ~(1 << col);
fe71e81a
AZ
3106
3107 omap_mpuio_kbd_update(s);
3108}
3109
64330148
AZ
3110/* General-Purpose I/O */
3111struct omap_gpio_s {
3112 target_phys_addr_t base;
3113 qemu_irq irq;
3114 qemu_irq *in;
3115 qemu_irq handler[16];
3116
3117 uint16_t inputs;
3118 uint16_t outputs;
3119 uint16_t dir;
3120 uint16_t edge;
3121 uint16_t mask;
3122 uint16_t ints;
3123};
3124
3125static void omap_gpio_set(void *opaque, int line, int level)
3126{
3127 struct omap_gpio_s *s = (struct omap_gpio_s *) opaque;
3128 uint16_t prev = s->inputs;
3129
3130 if (level)
3131 s->inputs |= 1 << line;
3132 else
3133 s->inputs &= ~(1 << line);
3134
3135 if (((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) &
3136 (1 << line) & s->dir & ~s->mask) {
3137 s->ints |= 1 << line;
3138 qemu_irq_raise(s->irq);
3139 }
3140}
3141
3142static uint32_t omap_gpio_read(void *opaque, target_phys_addr_t addr)
3143{
3144 struct omap_gpio_s *s = (struct omap_gpio_s *) opaque;
3145 int offset = addr - s->base;
64330148
AZ
3146
3147 switch (offset) {
3148 case 0x00: /* DATA_INPUT */
3149 return s->inputs;
3150
3151 case 0x04: /* DATA_OUTPUT */
3152 return s->outputs;
3153
3154 case 0x08: /* DIRECTION_CONTROL */
3155 return s->dir;
3156
3157 case 0x0c: /* INTERRUPT_CONTROL */
3158 return s->edge;
3159
3160 case 0x10: /* INTERRUPT_MASK */
3161 return s->mask;
3162
3163 case 0x14: /* INTERRUPT_STATUS */
3164 return s->ints;
3165 }
3166
3167 OMAP_BAD_REG(addr);
3168 return 0;
3169}
3170
3171static void omap_gpio_write(void *opaque, target_phys_addr_t addr,
3172 uint32_t value)
3173{
3174 struct omap_gpio_s *s = (struct omap_gpio_s *) opaque;
3175 int offset = addr - s->base;
3176 uint16_t diff;
3177 int ln;
3178
3179 switch (offset) {
3180 case 0x00: /* DATA_INPUT */
3181 OMAP_RO_REG(addr);
3182 return;
3183
3184 case 0x04: /* DATA_OUTPUT */
66450b15 3185 diff = (s->outputs ^ value) & ~s->dir;
64330148 3186 s->outputs = value;
64330148
AZ
3187 while ((ln = ffs(diff))) {
3188 ln --;
3189 if (s->handler[ln])
3190 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
3191 diff &= ~(1 << ln);
3192 }
3193 break;
3194
3195 case 0x08: /* DIRECTION_CONTROL */
3196 diff = s->outputs & (s->dir ^ value);
3197 s->dir = value;
3198
3199 value = s->outputs & ~s->dir;
3200 while ((ln = ffs(diff))) {
3201 ln --;
3202 if (s->handler[ln])
3203 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
3204 diff &= ~(1 << ln);
3205 }
3206 break;
3207
3208 case 0x0c: /* INTERRUPT_CONTROL */
3209 s->edge = value;
3210 break;
3211
3212 case 0x10: /* INTERRUPT_MASK */
3213 s->mask = value;
3214 break;
3215
3216 case 0x14: /* INTERRUPT_STATUS */
3217 s->ints &= ~value;
3218 if (!s->ints)
3219 qemu_irq_lower(s->irq);
3220 break;
3221
3222 default:
3223 OMAP_BAD_REG(addr);
3224 return;
3225 }
3226}
3227
3efda49d 3228/* *Some* sources say the memory region is 32-bit. */
64330148 3229static CPUReadMemoryFunc *omap_gpio_readfn[] = {
3efda49d 3230 omap_badwidth_read16,
64330148 3231 omap_gpio_read,
3efda49d 3232 omap_badwidth_read16,
64330148
AZ
3233};
3234
3235static CPUWriteMemoryFunc *omap_gpio_writefn[] = {
3efda49d 3236 omap_badwidth_write16,
64330148 3237 omap_gpio_write,
3efda49d 3238 omap_badwidth_write16,
64330148
AZ
3239};
3240
3241void omap_gpio_reset(struct omap_gpio_s *s)
3242{
3243 s->inputs = 0;
3244 s->outputs = ~0;
3245 s->dir = ~0;
3246 s->edge = ~0;
3247 s->mask = ~0;
3248 s->ints = 0;
3249}
3250
3251struct omap_gpio_s *omap_gpio_init(target_phys_addr_t base,
3252 qemu_irq irq, omap_clk clk)
3253{
3254 int iomemtype;
3255 struct omap_gpio_s *s = (struct omap_gpio_s *)
3256 qemu_mallocz(sizeof(struct omap_gpio_s));
3257
3258 s->base = base;
3259 s->irq = irq;
3260 s->in = qemu_allocate_irqs(omap_gpio_set, s, 16);
3261 omap_gpio_reset(s);
3262
3263 iomemtype = cpu_register_io_memory(0, omap_gpio_readfn,
3264 omap_gpio_writefn, s);
3265 cpu_register_physical_memory(s->base, 0x1000, iomemtype);
3266
3267 return s;
3268}
3269
3270qemu_irq *omap_gpio_in_get(struct omap_gpio_s *s)
3271{
3272 return s->in;
3273}
3274
3275void omap_gpio_out_set(struct omap_gpio_s *s, int line, qemu_irq handler)
3276{
3277 if (line >= 16 || line < 0)
3278 cpu_abort(cpu_single_env, "%s: No GPIO line %i\n", __FUNCTION__, line);
3279 s->handler[line] = handler;
3280}
3281
d951f6ff
AZ
3282/* MicroWire Interface */
3283struct omap_uwire_s {
3284 target_phys_addr_t base;
3285 qemu_irq txirq;
3286 qemu_irq rxirq;
3287 qemu_irq txdrq;
3288
3289 uint16_t txbuf;
3290 uint16_t rxbuf;
3291 uint16_t control;
3292 uint16_t setup[5];
3293
3294 struct uwire_slave_s *chip[4];
3295};
3296
3297static void omap_uwire_transfer_start(struct omap_uwire_s *s)
3298{
3299 int chipselect = (s->control >> 10) & 3; /* INDEX */
3300 struct uwire_slave_s *slave = s->chip[chipselect];
3301
3302 if ((s->control >> 5) & 0x1f) { /* NB_BITS_WR */
3303 if (s->control & (1 << 12)) /* CS_CMD */
3304 if (slave && slave->send)
3305 slave->send(slave->opaque,
3306 s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
3307 s->control &= ~(1 << 14); /* CSRB */
3308 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
3309 * a DRQ. When is the level IRQ supposed to be reset? */
3310 }
3311
3312 if ((s->control >> 0) & 0x1f) { /* NB_BITS_RD */
3313 if (s->control & (1 << 12)) /* CS_CMD */
3314 if (slave && slave->receive)
3315 s->rxbuf = slave->receive(slave->opaque);
3316 s->control |= 1 << 15; /* RDRB */
3317 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
3318 * a DRQ. When is the level IRQ supposed to be reset? */
3319 }
3320}
3321
3322static uint32_t omap_uwire_read(void *opaque, target_phys_addr_t addr)
3323{
3324 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
3325 int offset = addr - s->base;
3326
3327 switch (offset) {
3328 case 0x00: /* RDR */
3329 s->control &= ~(1 << 15); /* RDRB */
3330 return s->rxbuf;
3331
3332 case 0x04: /* CSR */
3333 return s->control;
3334
3335 case 0x08: /* SR1 */
3336 return s->setup[0];
3337 case 0x0c: /* SR2 */
3338 return s->setup[1];
3339 case 0x10: /* SR3 */
3340 return s->setup[2];
3341 case 0x14: /* SR4 */
3342 return s->setup[3];
3343 case 0x18: /* SR5 */
3344 return s->setup[4];
3345 }
3346
3347 OMAP_BAD_REG(addr);
3348 return 0;
3349}
3350
3351static void omap_uwire_write(void *opaque, target_phys_addr_t addr,
3352 uint32_t value)
3353{
3354 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
3355 int offset = addr - s->base;
3356
3357 switch (offset) {
3358 case 0x00: /* TDR */
3359 s->txbuf = value; /* TD */
3360 s->control |= 1 << 14; /* CSRB */
3361 if ((s->setup[4] & (1 << 2)) && /* AUTO_TX_EN */
3362 ((s->setup[4] & (1 << 3)) || /* CS_TOGGLE_TX_EN */
3363 (s->control & (1 << 12)))) /* CS_CMD */
3364 omap_uwire_transfer_start(s);
3365 break;
3366
3367 case 0x04: /* CSR */
3368 s->control = value & 0x1fff;
3369 if (value & (1 << 13)) /* START */
3370 omap_uwire_transfer_start(s);
3371 break;
3372
3373 case 0x08: /* SR1 */
3374 s->setup[0] = value & 0x003f;
3375 break;
3376
3377 case 0x0c: /* SR2 */
3378 s->setup[1] = value & 0x0fc0;
3379 break;
3380
3381 case 0x10: /* SR3 */
3382 s->setup[2] = value & 0x0003;
3383 break;
3384
3385 case 0x14: /* SR4 */
3386 s->setup[3] = value & 0x0001;
3387 break;
3388
3389 case 0x18: /* SR5 */
3390 s->setup[4] = value & 0x000f;
3391 break;
3392
3393 default:
3394 OMAP_BAD_REG(addr);
3395 return;
3396 }
3397}
3398
3399static CPUReadMemoryFunc *omap_uwire_readfn[] = {
3400 omap_badwidth_read16,
3401 omap_uwire_read,
3402 omap_badwidth_read16,
3403};
3404
3405static CPUWriteMemoryFunc *omap_uwire_writefn[] = {
3406 omap_badwidth_write16,
3407 omap_uwire_write,
3408 omap_badwidth_write16,
3409};
3410
3411void omap_uwire_reset(struct omap_uwire_s *s)
3412{
66450b15 3413 s->control = 0;
d951f6ff
AZ
3414 s->setup[0] = 0;
3415 s->setup[1] = 0;
3416 s->setup[2] = 0;
3417 s->setup[3] = 0;
3418 s->setup[4] = 0;
3419}
3420
3421struct omap_uwire_s *omap_uwire_init(target_phys_addr_t base,
3422 qemu_irq *irq, qemu_irq dma, omap_clk clk)
3423{
3424 int iomemtype;
3425 struct omap_uwire_s *s = (struct omap_uwire_s *)
3426 qemu_mallocz(sizeof(struct omap_uwire_s));
3427
3428 s->base = base;
3429 s->txirq = irq[0];
3430 s->rxirq = irq[1];
3431 s->txdrq = dma;
3432 omap_uwire_reset(s);
3433
3434 iomemtype = cpu_register_io_memory(0, omap_uwire_readfn,
3435 omap_uwire_writefn, s);
3436 cpu_register_physical_memory(s->base, 0x800, iomemtype);
3437
3438 return s;
3439}
3440
3441void omap_uwire_attach(struct omap_uwire_s *s,
3442 struct uwire_slave_s *slave, int chipselect)
3443{
3444 if (chipselect < 0 || chipselect > 3)
3445 cpu_abort(cpu_single_env, "%s: Bad chipselect %i\n", __FUNCTION__,
3446 chipselect);
3447
3448 s->chip[chipselect] = slave;
3449}
3450
66450b15
AZ
3451/* Pseudonoise Pulse-Width Light Modulator */
3452void omap_pwl_update(struct omap_mpu_state_s *s)
3453{
3454 int output = (s->pwl.clk && s->pwl.enable) ? s->pwl.level : 0;
3455
3456 if (output != s->pwl.output) {
3457 s->pwl.output = output;
3458 printf("%s: Backlight now at %i/256\n", __FUNCTION__, output);
3459 }
3460}
3461
3462static uint32_t omap_pwl_read(void *opaque, target_phys_addr_t addr)
3463{
3464 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
3465 int offset = addr - s->pwl.base;
3466
3467 switch (offset) {
3468 case 0x00: /* PWL_LEVEL */
3469 return s->pwl.level;
3470 case 0x04: /* PWL_CTRL */
3471 return s->pwl.enable;
3472 }
3473 OMAP_BAD_REG(addr);
3474 return 0;
3475}
3476
3477static void omap_pwl_write(void *opaque, target_phys_addr_t addr,
3478 uint32_t value)
3479{
3480 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
3481 int offset = addr - s->pwl.base;
3482
3483 switch (offset) {
3484 case 0x00: /* PWL_LEVEL */
3485 s->pwl.level = value;
3486 omap_pwl_update(s);
3487 break;
3488 case 0x04: /* PWL_CTRL */
3489 s->pwl.enable = value & 1;
3490 omap_pwl_update(s);
3491 break;
3492 default:
3493 OMAP_BAD_REG(addr);
3494 return;
3495 }
3496}
3497
3498static CPUReadMemoryFunc *omap_pwl_readfn[] = {
02645926 3499 omap_pwl_read,
66450b15
AZ
3500 omap_badwidth_read8,
3501 omap_badwidth_read8,
66450b15
AZ
3502};
3503
3504static CPUWriteMemoryFunc *omap_pwl_writefn[] = {
02645926 3505 omap_pwl_write,
66450b15
AZ
3506 omap_badwidth_write8,
3507 omap_badwidth_write8,
66450b15
AZ
3508};
3509
3510void omap_pwl_reset(struct omap_mpu_state_s *s)
3511{
3512 s->pwl.output = 0;
3513 s->pwl.level = 0;
3514 s->pwl.enable = 0;
3515 s->pwl.clk = 1;
3516 omap_pwl_update(s);
3517}
3518
3519static void omap_pwl_clk_update(void *opaque, int line, int on)
3520{
3521 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
3522
3523 s->pwl.clk = on;
3524 omap_pwl_update(s);
3525}
3526
3527static void omap_pwl_init(target_phys_addr_t base, struct omap_mpu_state_s *s,
3528 omap_clk clk)
3529{
3530 int iomemtype;
3531
66450b15
AZ
3532 omap_pwl_reset(s);
3533
3534 iomemtype = cpu_register_io_memory(0, omap_pwl_readfn,
3535 omap_pwl_writefn, s);
b854bc19 3536 cpu_register_physical_memory(base, 0x800, iomemtype);
66450b15
AZ
3537
3538 omap_clk_adduser(clk, qemu_allocate_irqs(omap_pwl_clk_update, s, 1)[0]);
3539}
3540
f34c417b
AZ
3541/* Pulse-Width Tone module */
3542static uint32_t omap_pwt_read(void *opaque, target_phys_addr_t addr)
3543{
3544 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
3545 int offset = addr - s->pwt.base;
3546
3547 switch (offset) {
3548 case 0x00: /* FRC */
3549 return s->pwt.frc;
3550 case 0x04: /* VCR */
3551 return s->pwt.vrc;
3552 case 0x08: /* GCR */
3553 return s->pwt.gcr;
3554 }
3555 OMAP_BAD_REG(addr);
3556 return 0;
3557}
3558
3559static void omap_pwt_write(void *opaque, target_phys_addr_t addr,
3560 uint32_t value)
3561{
3562 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
3563 int offset = addr - s->pwt.base;
3564
3565 switch (offset) {
3566 case 0x00: /* FRC */
3567 s->pwt.frc = value & 0x3f;
3568 break;
3569 case 0x04: /* VRC */
3570 if ((value ^ s->pwt.vrc) & 1) {
3571 if (value & 1)
3572 printf("%s: %iHz buzz on\n", __FUNCTION__, (int)
3573 /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
3574 ((omap_clk_getrate(s->pwt.clk) >> 3) /
3575 /* Pre-multiplexer divider */
3576 ((s->pwt.gcr & 2) ? 1 : 154) /
3577 /* Octave multiplexer */
3578 (2 << (value & 3)) *
3579 /* 101/107 divider */
3580 ((value & (1 << 2)) ? 101 : 107) *
3581 /* 49/55 divider */
3582 ((value & (1 << 3)) ? 49 : 55) *
3583 /* 50/63 divider */
3584 ((value & (1 << 4)) ? 50 : 63) *
3585 /* 80/127 divider */
3586 ((value & (1 << 5)) ? 80 : 127) /
3587 (107 * 55 * 63 * 127)));
3588 else
3589 printf("%s: silence!\n", __FUNCTION__);
3590 }
3591 s->pwt.vrc = value & 0x7f;
3592 break;
3593 case 0x08: /* GCR */
3594 s->pwt.gcr = value & 3;
3595 break;
3596 default:
3597 OMAP_BAD_REG(addr);
3598 return;
3599 }
3600}
3601
3602static CPUReadMemoryFunc *omap_pwt_readfn[] = {
02645926 3603 omap_pwt_read,
f34c417b
AZ
3604 omap_badwidth_read8,
3605 omap_badwidth_read8,
f34c417b
AZ
3606};
3607
3608static CPUWriteMemoryFunc *omap_pwt_writefn[] = {
02645926 3609 omap_pwt_write,
f34c417b
AZ
3610 omap_badwidth_write8,
3611 omap_badwidth_write8,
f34c417b
AZ
3612};
3613
3614void omap_pwt_reset(struct omap_mpu_state_s *s)
3615{
3616 s->pwt.frc = 0;
3617 s->pwt.vrc = 0;
3618 s->pwt.gcr = 0;
3619}
3620
3621static void omap_pwt_init(target_phys_addr_t base, struct omap_mpu_state_s *s,
3622 omap_clk clk)
3623{
3624 int iomemtype;
3625
f34c417b
AZ
3626 s->pwt.clk = clk;
3627 omap_pwt_reset(s);
3628
3629 iomemtype = cpu_register_io_memory(0, omap_pwt_readfn,
3630 omap_pwt_writefn, s);
b854bc19 3631 cpu_register_physical_memory(base, 0x800, iomemtype);
f34c417b
AZ
3632}
3633
5c1c390f
AZ
3634/* Real-time Clock module */
3635struct omap_rtc_s {
3636 target_phys_addr_t base;
3637 qemu_irq irq;
3638 qemu_irq alarm;
3639 QEMUTimer *clk;
3640
3641 uint8_t interrupts;
3642 uint8_t status;
3643 int16_t comp_reg;
3644 int running;
3645 int pm_am;
3646 int auto_comp;
3647 int round;
3648 struct tm *(*convert)(const time_t *timep, struct tm *result);
3649 struct tm alarm_tm;
3650 time_t alarm_ti;
3651
3652 struct tm current_tm;
3653 time_t ti;
3654 uint64_t tick;
3655};
3656
3657static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
3658{
3659 qemu_set_irq(s->alarm, (s->status >> 6) & 1);
3660}
3661
3662static void omap_rtc_alarm_update(struct omap_rtc_s *s)
3663{
3664 s->alarm_ti = mktime(&s->alarm_tm);
3665 if (s->alarm_ti == -1)
3666 printf("%s: conversion failed\n", __FUNCTION__);
3667}
3668
3669static inline uint8_t omap_rtc_bcd(int num)
3670{
3671 return ((num / 10) << 4) | (num % 10);
3672}
3673
3674static inline int omap_rtc_bin(uint8_t num)
3675{
3676 return (num & 15) + 10 * (num >> 4);
3677}
3678
3679static uint32_t omap_rtc_read(void *opaque, target_phys_addr_t addr)
3680{
3681 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
3682 int offset = addr - s->base;
3683 uint8_t i;
3684
3685 switch (offset) {
3686 case 0x00: /* SECONDS_REG */
3687 return omap_rtc_bcd(s->current_tm.tm_sec);
3688
3689 case 0x04: /* MINUTES_REG */
3690 return omap_rtc_bcd(s->current_tm.tm_min);
3691
3692 case 0x08: /* HOURS_REG */
3693 if (s->pm_am)
3694 return ((s->current_tm.tm_hour > 11) << 7) |
3695 omap_rtc_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
3696 else
3697 return omap_rtc_bcd(s->current_tm.tm_hour);
3698
3699 case 0x0c: /* DAYS_REG */
3700 return omap_rtc_bcd(s->current_tm.tm_mday);
3701
3702 case 0x10: /* MONTHS_REG */
3703 return omap_rtc_bcd(s->current_tm.tm_mon + 1);
3704
3705 case 0x14: /* YEARS_REG */
3706 return omap_rtc_bcd(s->current_tm.tm_year % 100);
3707
3708 case 0x18: /* WEEK_REG */
3709 return s->current_tm.tm_wday;
3710
3711 case 0x20: /* ALARM_SECONDS_REG */
3712 return omap_rtc_bcd(s->alarm_tm.tm_sec);
3713
3714 case 0x24: /* ALARM_MINUTES_REG */
3715 return omap_rtc_bcd(s->alarm_tm.tm_min);
3716
3717 case 0x28: /* ALARM_HOURS_REG */
3718 if (s->pm_am)
3719 return ((s->alarm_tm.tm_hour > 11) << 7) |
3720 omap_rtc_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
3721 else
3722 return omap_rtc_bcd(s->alarm_tm.tm_hour);
3723
3724 case 0x2c: /* ALARM_DAYS_REG */
3725 return omap_rtc_bcd(s->alarm_tm.tm_mday);
3726
3727 case 0x30: /* ALARM_MONTHS_REG */
3728 return omap_rtc_bcd(s->alarm_tm.tm_mon + 1);
3729
3730 case 0x34: /* ALARM_YEARS_REG */
3731 return omap_rtc_bcd(s->alarm_tm.tm_year % 100);
3732
3733 case 0x40: /* RTC_CTRL_REG */
3734 return (s->pm_am << 3) | (s->auto_comp << 2) |
3735 (s->round << 1) | s->running;
3736
3737 case 0x44: /* RTC_STATUS_REG */
3738 i = s->status;
3739 s->status &= ~0x3d;
3740 return i;
3741
3742 case 0x48: /* RTC_INTERRUPTS_REG */
3743 return s->interrupts;
3744
3745 case 0x4c: /* RTC_COMP_LSB_REG */
3746 return ((uint16_t) s->comp_reg) & 0xff;
3747
3748 case 0x50: /* RTC_COMP_MSB_REG */
3749 return ((uint16_t) s->comp_reg) >> 8;
3750 }
3751
3752 OMAP_BAD_REG(addr);
3753 return 0;
3754}
3755
3756static void omap_rtc_write(void *opaque, target_phys_addr_t addr,
3757 uint32_t value)
3758{
3759 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
3760 int offset = addr - s->base;
3761 struct tm new_tm;
3762 time_t ti[2];
3763
3764 switch (offset) {
3765 case 0x00: /* SECONDS_REG */
3766#if ALMDEBUG
3767 printf("RTC SEC_REG <-- %02x\n", value);
3768#endif
3769 s->ti -= s->current_tm.tm_sec;
3770 s->ti += omap_rtc_bin(value);
3771 return;
3772
3773 case 0x04: /* MINUTES_REG */
3774#if ALMDEBUG
3775 printf("RTC MIN_REG <-- %02x\n", value);
3776#endif
3777 s->ti -= s->current_tm.tm_min * 60;
3778 s->ti += omap_rtc_bin(value) * 60;
3779 return;
3780
3781 case 0x08: /* HOURS_REG */
3782#if ALMDEBUG
3783 printf("RTC HRS_REG <-- %02x\n", value);
3784#endif
3785 s->ti -= s->current_tm.tm_hour * 3600;
3786 if (s->pm_am) {
3787 s->ti += (omap_rtc_bin(value & 0x3f) & 12) * 3600;
3788 s->ti += ((value >> 7) & 1) * 43200;
3789 } else
3790 s->ti += omap_rtc_bin(value & 0x3f) * 3600;
3791 return;
3792
3793 case 0x0c: /* DAYS_REG */
3794#if ALMDEBUG
3795 printf("RTC DAY_REG <-- %02x\n", value);
3796#endif
3797 s->ti -= s->current_tm.tm_mday * 86400;
3798 s->ti += omap_rtc_bin(value) * 86400;
3799 return;
3800
3801 case 0x10: /* MONTHS_REG */
3802#if ALMDEBUG
3803 printf("RTC MTH_REG <-- %02x\n", value);
3804#endif
3805 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
3806 new_tm.tm_mon = omap_rtc_bin(value);
3807 ti[0] = mktime(&s->current_tm);
3808 ti[1] = mktime(&new_tm);
3809
3810 if (ti[0] != -1 && ti[1] != -1) {
3811 s->ti -= ti[0];
3812 s->ti += ti[1];
3813 } else {
3814 /* A less accurate version */
3815 s->ti -= s->current_tm.tm_mon * 2592000;
3816 s->ti += omap_rtc_bin(value) * 2592000;
3817 }
3818 return;
3819
3820 case 0x14: /* YEARS_REG */
3821#if ALMDEBUG
3822 printf("RTC YRS_REG <-- %02x\n", value);
3823#endif
3824 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
3825 new_tm.tm_year += omap_rtc_bin(value) - (new_tm.tm_year % 100);
3826 ti[0] = mktime(&s->current_tm);
3827 ti[1] = mktime(&new_tm);
3828
3829 if (ti[0] != -1 && ti[1] != -1) {
3830 s->ti -= ti[0];
3831 s->ti += ti[1];
3832 } else {
3833 /* A less accurate version */
3834 s->ti -= (s->current_tm.tm_year % 100) * 31536000;
3835 s->ti += omap_rtc_bin(value) * 31536000;
3836 }
3837 return;
3838
3839 case 0x18: /* WEEK_REG */
3840 return; /* Ignored */
3841
3842 case 0x20: /* ALARM_SECONDS_REG */
3843#if ALMDEBUG
3844 printf("ALM SEC_REG <-- %02x\n", value);
3845#endif
3846 s->alarm_tm.tm_sec = omap_rtc_bin(value);
3847 omap_rtc_alarm_update(s);
3848 return;
3849
3850 case 0x24: /* ALARM_MINUTES_REG */
3851#if ALMDEBUG
3852 printf("ALM MIN_REG <-- %02x\n", value);
3853#endif
3854 s->alarm_tm.tm_min = omap_rtc_bin(value);
3855 omap_rtc_alarm_update(s);
3856 return;
3857
3858 case 0x28: /* ALARM_HOURS_REG */
3859#if ALMDEBUG
3860 printf("ALM HRS_REG <-- %02x\n", value);
3861#endif
3862 if (s->pm_am)
3863 s->alarm_tm.tm_hour =
3864 ((omap_rtc_bin(value & 0x3f)) % 12) +
3865 ((value >> 7) & 1) * 12;
3866 else
3867 s->alarm_tm.tm_hour = omap_rtc_bin(value);
3868 omap_rtc_alarm_update(s);
3869 return;
3870
3871 case 0x2c: /* ALARM_DAYS_REG */
3872#if ALMDEBUG
3873 printf("ALM DAY_REG <-- %02x\n", value);
3874#endif
3875 s->alarm_tm.tm_mday = omap_rtc_bin(value);
3876 omap_rtc_alarm_update(s);
3877 return;
3878
3879 case 0x30: /* ALARM_MONTHS_REG */
3880#if ALMDEBUG
3881 printf("ALM MON_REG <-- %02x\n", value);
3882#endif
3883 s->alarm_tm.tm_mon = omap_rtc_bin(value);
3884 omap_rtc_alarm_update(s);
3885 return;
3886
3887 case 0x34: /* ALARM_YEARS_REG */
3888#if ALMDEBUG
3889 printf("ALM YRS_REG <-- %02x\n", value);
3890#endif
3891 s->alarm_tm.tm_year = omap_rtc_bin(value);
3892 omap_rtc_alarm_update(s);
3893 return;
3894
3895 case 0x40: /* RTC_CTRL_REG */
3896#if ALMDEBUG
3897 printf("RTC CONTROL <-- %02x\n", value);
3898#endif
3899 s->pm_am = (value >> 3) & 1;
3900 s->auto_comp = (value >> 2) & 1;
3901 s->round = (value >> 1) & 1;
3902 s->running = value & 1;
3903 s->status &= 0xfd;
3904 s->status |= s->running << 1;
3905 return;
3906
3907 case 0x44: /* RTC_STATUS_REG */
3908#if ALMDEBUG
3909 printf("RTC STATUSL <-- %02x\n", value);
3910#endif
3911 s->status &= ~((value & 0xc0) ^ 0x80);
3912 omap_rtc_interrupts_update(s);
3913 return;
3914
3915 case 0x48: /* RTC_INTERRUPTS_REG */
3916#if ALMDEBUG
3917 printf("RTC INTRS <-- %02x\n", value);
3918#endif
3919 s->interrupts = value;
3920 return;
3921
3922 case 0x4c: /* RTC_COMP_LSB_REG */
3923#if ALMDEBUG
3924 printf("RTC COMPLSB <-- %02x\n", value);
3925#endif
3926 s->comp_reg &= 0xff00;
3927 s->comp_reg |= 0x00ff & value;
3928 return;
3929
3930 case 0x50: /* RTC_COMP_MSB_REG */
3931#if ALMDEBUG
3932 printf("RTC COMPMSB <-- %02x\n", value);
3933#endif
3934 s->comp_reg &= 0x00ff;
3935 s->comp_reg |= 0xff00 & (value << 8);
3936 return;
3937
3938 default:
3939 OMAP_BAD_REG(addr);
3940 return;
3941 }
3942}
3943
3944static CPUReadMemoryFunc *omap_rtc_readfn[] = {
3945 omap_rtc_read,
3946 omap_badwidth_read8,
3947 omap_badwidth_read8,
3948};
3949
3950static CPUWriteMemoryFunc *omap_rtc_writefn[] = {
3951 omap_rtc_write,
3952 omap_badwidth_write8,
3953 omap_badwidth_write8,
3954};
3955
3956static void omap_rtc_tick(void *opaque)
3957{
3958 struct omap_rtc_s *s = opaque;
3959
3960 if (s->round) {
3961 /* Round to nearest full minute. */
3962 if (s->current_tm.tm_sec < 30)
3963 s->ti -= s->current_tm.tm_sec;
3964 else
3965 s->ti += 60 - s->current_tm.tm_sec;
3966
3967 s->round = 0;
3968 }
3969
3970 localtime_r(&s->ti, &s->current_tm);
3971
3972 if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
3973 s->status |= 0x40;
3974 omap_rtc_interrupts_update(s);
3975 }
3976
3977 if (s->interrupts & 0x04)
3978 switch (s->interrupts & 3) {
3979 case 0:
3980 s->status |= 0x04;
3981 qemu_irq_raise(s->irq);
3982 break;
3983 case 1:
3984 if (s->current_tm.tm_sec)
3985 break;
3986 s->status |= 0x08;
3987 qemu_irq_raise(s->irq);
3988 break;
3989 case 2:
3990 if (s->current_tm.tm_sec || s->current_tm.tm_min)
3991 break;
3992 s->status |= 0x10;
3993 qemu_irq_raise(s->irq);
3994 break;
3995 case 3:
3996 if (s->current_tm.tm_sec ||
3997 s->current_tm.tm_min || s->current_tm.tm_hour)
3998 break;
3999 s->status |= 0x20;
4000 qemu_irq_raise(s->irq);
4001 break;
4002 }
4003
4004 /* Move on */
4005 if (s->running)
4006 s->ti ++;
4007 s->tick += 1000;
4008
4009 /*
4010 * Every full hour add a rough approximation of the compensation
4011 * register to the 32kHz Timer (which drives the RTC) value.
4012 */
4013 if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
4014 s->tick += s->comp_reg * 1000 / 32768;
4015
4016 qemu_mod_timer(s->clk, s->tick);
4017}
4018
4019void omap_rtc_reset(struct omap_rtc_s *s)
4020{
4021 s->interrupts = 0;
4022 s->comp_reg = 0;
4023 s->running = 0;
4024 s->pm_am = 0;
4025 s->auto_comp = 0;
4026 s->round = 0;
4027 s->tick = qemu_get_clock(rt_clock);
4028 memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
4029 s->alarm_tm.tm_mday = 0x01;
4030 s->status = 1 << 7;
4031 time(&s->ti);
4032 s->ti = mktime(s->convert(&s->ti, &s->current_tm));
4033
4034 omap_rtc_alarm_update(s);
4035 omap_rtc_tick(s);
4036}
4037
4038struct omap_rtc_s *omap_rtc_init(target_phys_addr_t base,
4039 qemu_irq *irq, omap_clk clk)
4040{
4041 int iomemtype;
4042 struct omap_rtc_s *s = (struct omap_rtc_s *)
4043 qemu_mallocz(sizeof(struct omap_rtc_s));
4044
4045 s->base = base;
4046 s->irq = irq[0];
4047 s->alarm = irq[1];
4048 s->clk = qemu_new_timer(rt_clock, omap_rtc_tick, s);
4049 s->convert = rtc_utc ? gmtime_r : localtime_r;
4050
4051 omap_rtc_reset(s);
4052
4053 iomemtype = cpu_register_io_memory(0, omap_rtc_readfn,
4054 omap_rtc_writefn, s);
4055 cpu_register_physical_memory(s->base, 0x800, iomemtype);
4056
4057 return s;
4058}
4059
c3d2689d
AZ
4060/* General chip reset */
4061static void omap_mpu_reset(void *opaque)
4062{
4063 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
4064
4065 omap_clkm_reset(mpu);
4066 omap_inth_reset(mpu->ih[0]);
4067 omap_inth_reset(mpu->ih[1]);
4068 omap_dma_reset(mpu->dma);
4069 omap_mpu_timer_reset(mpu->timer[0]);
4070 omap_mpu_timer_reset(mpu->timer[1]);
4071 omap_mpu_timer_reset(mpu->timer[2]);
4072 omap_wd_timer_reset(mpu->wdt);
4073 omap_os_timer_reset(mpu->os_timer);
4074 omap_lcdc_reset(mpu->lcd);
4075 omap_ulpd_pm_reset(mpu);
4076 omap_pin_cfg_reset(mpu);
4077 omap_mpui_reset(mpu);
4078 omap_tipb_bridge_reset(mpu->private_tipb);
4079 omap_tipb_bridge_reset(mpu->public_tipb);
4080 omap_dpll_reset(&mpu->dpll[0]);
4081 omap_dpll_reset(&mpu->dpll[1]);
4082 omap_dpll_reset(&mpu->dpll[2]);
d951f6ff
AZ
4083 omap_uart_reset(mpu->uart[0]);
4084 omap_uart_reset(mpu->uart[1]);
4085 omap_uart_reset(mpu->uart[2]);
b30bb3a2 4086 omap_mmc_reset(mpu->mmc);
fe71e81a 4087 omap_mpuio_reset(mpu->mpuio);
64330148 4088 omap_gpio_reset(mpu->gpio);
d951f6ff 4089 omap_uwire_reset(mpu->microwire);
66450b15 4090 omap_pwl_reset(mpu);
4a2c8ac2
AZ
4091 omap_pwt_reset(mpu);
4092 omap_i2c_reset(mpu->i2c);
5c1c390f 4093 omap_rtc_reset(mpu->rtc);
c3d2689d
AZ
4094 cpu_reset(mpu->env);
4095}
4096
4097static void omap_mpu_wakeup(void *opaque, int irq, int req)
4098{
4099 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
4100
fe71e81a
AZ
4101 if (mpu->env->halted)
4102 cpu_interrupt(mpu->env, CPU_INTERRUPT_EXITTB);
c3d2689d
AZ
4103}
4104
4105struct omap_mpu_state_s *omap310_mpu_init(unsigned long sdram_size,
4106 DisplayState *ds, const char *core)
4107{
4108 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *)
4109 qemu_mallocz(sizeof(struct omap_mpu_state_s));
4110 ram_addr_t imif_base, emiff_base;
4111
4112 /* Core */
4113 s->mpu_model = omap310;
4114 s->env = cpu_init();
4115 s->sdram_size = sdram_size;
4116 s->sram_size = OMAP15XX_SRAM_SIZE;
4117
4118 cpu_arm_set_model(s->env, core ?: "ti925t");
4119
fe71e81a
AZ
4120 s->wakeup = qemu_allocate_irqs(omap_mpu_wakeup, s, 1)[0];
4121
c3d2689d
AZ
4122 /* Clocks */
4123 omap_clk_init(s);
4124
4125 /* Memory-mapped stuff */
4126 cpu_register_physical_memory(OMAP_EMIFF_BASE, s->sdram_size,
4127 (emiff_base = qemu_ram_alloc(s->sdram_size)) | IO_MEM_RAM);
4128 cpu_register_physical_memory(OMAP_IMIF_BASE, s->sram_size,
4129 (imif_base = qemu_ram_alloc(s->sram_size)) | IO_MEM_RAM);
4130
4131 omap_clkm_init(0xfffece00, 0xe1008000, s);
4132
4133 s->ih[0] = omap_inth_init(0xfffecb00, 0x100,
4134 arm_pic_init_cpu(s->env),
4135 omap_findclk(s, "arminth_ck"));
4136 s->ih[1] = omap_inth_init(0xfffe0000, 0x800,
4137 &s->ih[0]->pins[OMAP_INT_15XX_IH2_IRQ],
4138 omap_findclk(s, "arminth_ck"));
4139 s->irq[0] = s->ih[0]->pins;
4140 s->irq[1] = s->ih[1]->pins;
4141
4142 s->dma = omap_dma_init(0xfffed800, s->irq[0], s,
4143 omap_findclk(s, "dma_ck"));
4144 s->port[emiff ].addr_valid = omap_validate_emiff_addr;
4145 s->port[emifs ].addr_valid = omap_validate_emifs_addr;
4146 s->port[imif ].addr_valid = omap_validate_imif_addr;
4147 s->port[tipb ].addr_valid = omap_validate_tipb_addr;
4148 s->port[local ].addr_valid = omap_validate_local_addr;
4149 s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
4150
4151 s->timer[0] = omap_mpu_timer_init(0xfffec500,
4152 s->irq[0][OMAP_INT_TIMER1],
4153 omap_findclk(s, "mputim_ck"));
4154 s->timer[1] = omap_mpu_timer_init(0xfffec600,
4155 s->irq[0][OMAP_INT_TIMER2],
4156 omap_findclk(s, "mputim_ck"));
4157 s->timer[2] = omap_mpu_timer_init(0xfffec700,
4158 s->irq[0][OMAP_INT_TIMER3],
4159 omap_findclk(s, "mputim_ck"));
4160
4161 s->wdt = omap_wd_timer_init(0xfffec800,
4162 s->irq[0][OMAP_INT_WD_TIMER],
4163 omap_findclk(s, "armwdt_ck"));
4164
4165 s->os_timer = omap_os_timer_init(0xfffb9000,
4166 s->irq[1][OMAP_INT_OS_TIMER],
4167 omap_findclk(s, "clk32-kHz"));
4168
4169 s->lcd = omap_lcdc_init(0xfffec000, s->irq[0][OMAP_INT_LCD_CTRL],
4170 &s->dma->lcd_ch, ds, imif_base, emiff_base,
4171 omap_findclk(s, "lcd_ck"));
4172
4173 omap_ulpd_pm_init(0xfffe0800, s);
4174 omap_pin_cfg_init(0xfffe1000, s);
4175 omap_id_init(s);
4176
4177 omap_mpui_init(0xfffec900, s);
4178
4179 s->private_tipb = omap_tipb_bridge_init(0xfffeca00,
4180 s->irq[0][OMAP_INT_BRIDGE_PRIV],
4181 omap_findclk(s, "tipb_ck"));
4182 s->public_tipb = omap_tipb_bridge_init(0xfffed300,
4183 s->irq[0][OMAP_INT_BRIDGE_PUB],
4184 omap_findclk(s, "tipb_ck"));
4185
4186 omap_tcmi_init(0xfffecc00, s);
4187
d951f6ff 4188 s->uart[0] = omap_uart_init(0xfffb0000, s->irq[1][OMAP_INT_UART1],
c3d2689d
AZ
4189 omap_findclk(s, "uart1_ck"),
4190 serial_hds[0]);
d951f6ff 4191 s->uart[1] = omap_uart_init(0xfffb0800, s->irq[1][OMAP_INT_UART2],
c3d2689d
AZ
4192 omap_findclk(s, "uart2_ck"),
4193 serial_hds[0] ? serial_hds[1] : 0);
d951f6ff 4194 s->uart[2] = omap_uart_init(0xe1019800, s->irq[0][OMAP_INT_UART3],
c3d2689d
AZ
4195 omap_findclk(s, "uart3_ck"),
4196 serial_hds[0] && serial_hds[1] ? serial_hds[2] : 0);
4197
4198 omap_dpll_init(&s->dpll[0], 0xfffecf00, omap_findclk(s, "dpll1"));
4199 omap_dpll_init(&s->dpll[1], 0xfffed000, omap_findclk(s, "dpll2"));
4200 omap_dpll_init(&s->dpll[2], 0xfffed100, omap_findclk(s, "dpll3"));
4201
b30bb3a2
AZ
4202 s->mmc = omap_mmc_init(0xfffb7800, s->irq[1][OMAP_INT_OQN],
4203 &s->drq[OMAP_DMA_MMC_TX], omap_findclk(s, "mmc_ck"));
4204
fe71e81a
AZ
4205 s->mpuio = omap_mpuio_init(0xfffb5000,
4206 s->irq[1][OMAP_INT_KEYBOARD], s->irq[1][OMAP_INT_MPUIO],
4207 s->wakeup, omap_findclk(s, "clk32-kHz"));
4208
3efda49d 4209 s->gpio = omap_gpio_init(0xfffce000, s->irq[0][OMAP_INT_GPIO_BANK1],
66450b15 4210 omap_findclk(s, "arm_gpio_ck"));
64330148 4211
d951f6ff
AZ
4212 s->microwire = omap_uwire_init(0xfffb3000, &s->irq[1][OMAP_INT_uWireTX],
4213 s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
4214
66450b15 4215 omap_pwl_init(0xfffb5800, s, omap_findclk(s, "clk32-kHz"));
f34c417b 4216 omap_pwt_init(0xfffb6000, s, omap_findclk(s, "xtal_osc_12m"));
66450b15 4217
4a2c8ac2
AZ
4218 s->i2c = omap_i2c_init(0xfffb3800, s->irq[1][OMAP_INT_I2C],
4219 &s->drq[OMAP_DMA_I2C_RX], omap_findclk(s, "mpuper_ck"));
4220
5c1c390f
AZ
4221 s->rtc = omap_rtc_init(0xfffb4800, &s->irq[1][OMAP_INT_RTC_TIMER],
4222 omap_findclk(s, "clk32-kHz"));
02645926
AZ
4223
4224 /* Register mappings not currenlty implemented:
4225 * McBSP2 Comm fffb1000 - fffb17ff
4226 * McBSP1 Audio fffb1800 - fffb1fff (not mapped on OMAP310)
4227 * MCSI2 Comm fffb2000 - fffb27ff (not mapped on OMAP310)
4228 * MCSI1 Bluetooth fffb2800 - fffb2fff (not mapped on OMAP310)
4229 * USB W2FC fffb4000 - fffb47ff
4230 * Camera Interface fffb6800 - fffb6fff
4231 * McBSP3 fffb7000 - fffb77ff (not mapped on OMAP310)
4232 * USB Host fffba000 - fffba7ff
4233 * FAC fffba800 - fffbafff
4234 * HDQ/1-Wire fffbc000 - fffbc7ff
b854bc19 4235 * TIPB switches fffbc800 - fffbcfff
02645926
AZ
4236 * LED1 fffbd000 - fffbd7ff
4237 * LED2 fffbd800 - fffbdfff
4238 * Mailbox fffcf000 - fffcf7ff
4239 * Local bus IF fffec100 - fffec1ff
4240 * Local bus MMU fffec200 - fffec2ff
4241 * DSP MMU fffed200 - fffed2ff
4242 */
4243
c3d2689d 4244 qemu_register_reset(omap_mpu_reset, s);
c3d2689d
AZ
4245
4246 return s;
4247}